THE nature and the number of the parts of which animals are severally composed are matters which have already been set forth in detail in the book of Researches about Animals. We have now to inquire what are the causes that in each case have determined this composition, a subject quite distinct from that dealt with in the Researches.

Now there are three degrees of composition; and of these the first in order, as all will allow, is composition out of what some call the elements, such as earth, air, water, fire. Perhaps, however, it would be more accurate to say composition out of the elementary forces; nor indeed out of all of these, but out of a limited number of them, as defined in previous treatises. For fluid and solid, hot and cold, form the material of all composite bodies; and all other differences are secondary to these, such differences, that is, as heaviness or lightness, density or rarity, roughness or smoothness, and any other such properties of matter as there may be. Second degree of composition is that by which the homogeneous parts of animals, such as bone, flesh, and the like, are constituted out of the primary substances. The third and last stage is the composition which forms the heterogeneous parts, such as face, hand, and the rest.

Now the order of actual development and the order of logical existence are always the inverse of each other. For that which is posterior
in the order of development is antecedent in the order of nature, and that is genetically last which in nature is first.

(That this is so is manifest by induction; for a house does not exist for the sake of bricks and stones, but these materials for the sake of the house; and the same is the case with the materials of other bodies. Nor is induction required to show this. it is included in our conception of generation. For generation is a process from a something to a something; that which is generated having a cause in which it originates and a cause in which it ends. The originating cause is the primary efficient cause, which is something already endowed with tangible existence, while the final cause is some definite form or similar end; for man generates man, and plant generates plant, in each case out of the underlying material.)

In order of time, then, the material and the generative process must necessarily be anterior to the being that is generated; but in logical order the definitive character and form of each being precedes the material. This is evident if one only tries to define the process of formation. For the definition of house-building includes and presupposes that of the house; but the definition of the house does not include nor presuppose that of house-building; and the same is true of all other productions. So that it must necessarily be that the elementary material exists for the sake of the homogeneous parts, seeing that these are genetically posterior to it, just as the heterogeneous parts are posterior genetically to them. For these heterogeneous parts have reached the end and goal, having the third degree of composition, in which degree generation or development often attains its final term.

Animals, then, are composed of homogeneous parts, and are also composed of heterogeneous parts. The former, however, exist for the sake of the latter. For the active functions and operations of the body are carried on by these; that is, by the heterogeneous parts, such as the eye, the nostril, the whole face, the fingers, the hand, and the whole arm. But inasmuch as there is a great variety in the functions and motions not only of aggregate animals but also of the individ-
ual organs, it is necessary that the substances out of which these are composed shall present a diversity of properties. For some purposes softness is advantageous, for others hardness; some parts must be capable of extension, others of flexion. Such properties, then, are distributed separately to the different homogeneous parts, one being soft another hard, one fluid another solid, one viscous another brittle; whereas each of the heterogeneous parts presents a combination of multifarious properties. For the hand, to take an example, requires one property to enable it to effect pressure, and another and different property for simpleprehension. For this reason the active or executive parts of the body are compounded out of bones, sinews, flesh, and the like, but not these latter out of the former.

So far, then, as has yet been stated, the relations between these two orders of parts are determined by a final cause. We have, however, to inquire whether necessity may not also have a share in the matter; and it must be admitted that these mutual relations could not from the very beginning have possibly been other than they are. For heterogeneous parts can be made up out of homogeneous parts, either from a plurality of them, or from a single one, as is the case with some of the viscera which, varying in configuration, are yet, to speak broadly, formed from a single homogeneous substance; but that homogeneous substances should be formed out of a combination of heterogeneous parts is clearly an impossibility. For these causes, then, some parts of animals are simple and homogeneous, while others are composite and heterogeneous; and dividing the parts into the active or executive and the sensitive, each one of the former is, as before said, heterogeneous, and each one of the latter homogeneous. For it is in homogeneous parts alone that sensation can occur, as the following considerations show.

Each sense is confined to a single order of sensibles, and its organ must be such as to admit the action of that kind or order. But it is only that which is endowed with a property in posse that is acted on by that which has the like property in esse, so that the two are the same in kind, and if the latter is single so also is the former. Thus it is
that while no physiologists ever dream of saying of the hand or face or other such part that one is earth, another water, another fire, they couple each separate sense-organ with a separate element, asserting this one to be air and that other to be fire.

Sensation, then, is confined to the simple or homogeneous parts. But, as might reasonably be expected, the organ of touch, though still homogeneous, is yet the least simple of all the sense-organs. For touch more than any other sense appears to be correlated to several distinct kinds of objects, and to recognize more than one category of contrasts, heat and cold, for instance, solidity and fluidity, and other similar oppositions. Accordingly, the organ which deals with these varied objects is of all the sense-organs the most corporeal, being either the flesh, or the substance which in some animals takes the place of flesh.

Now as there cannot possibly be an animal without sensation, it follows as a necessary consequence that every animal must have some homogeneous parts; for these alone are capable of sensation, the heterogeneous parts serving for the active functions. Again, as the sensory faculty, the motor faculty, and the nutritive faculty are all lodged in one and the same part of the body, as was stated in a former treatise, it is necessary that the part which is the primary seat of these principles shall on the one hand, in its character of general sensory recipient, be one of the simple parts; and on the other hand shall, in its motor and active character, be one of the heterogeneous parts. For this reason it is the heart which in sanguineous animals constitutes this central part, and in bloodless animals it is that which takes the place of a heart. For the heart, like the other viscera, is one of the homogeneous parts; for, if cut up, its pieces are homogeneous in substance with each other. But it is at the same time heterogeneous in virtue of its definite configuration. And the same is true of the other so-called viscera, which are indeed formed from the same material as the heart. For all these viscera have a sanguineous character owing to their being situated upon vascular ducts and branches. For just as a stream of water deposits mud, so the various
viscera, the heart excepted, are, as it were, deposits from the stream of blood in the vessels. And as to the heart, the very starting-point of the vessels, and the actual seat of the force by which the blood is first fabricated, it is but what one would naturally expect, that out of the selfsame nutriment of which it is the recipient its own proper substance shall be formed. Such, then, are the reasons why the viscera are of sanguineous aspect; and why in one point of view they are homogeneous, in another heterogeneous.

2

Of the homogeneous parts of animals, some are soft and fluid, others hard and solid; and of the former some are fluid permanently, others only so long as they are in the living body. Such are blood, serum, lard, suet, marrow, semen, bile, milk when present, flesh, and their various analogues. For the parts enumerated are not to be found in all animals, some animals only having parts analogous to them. Of the hard and solid homogeneous parts bone, fish-spine, sinew, blood-vessel, are examples. The last of these points to a sub-division that may be made in the class of homogeneous parts. For in some of them the whole and a portion of the whole in one sense are designated by the same term-as, for example, is the case with blood-vessel and bit of blood-vessel-while in another sense they are not; but a portion of a heterogeneous part, such as face, in no sense has the same designation as the whole.

The first question to be asked is what are the causes to which these homogeneous parts owe their existence? The causes are various; and this whether the parts be solid or fluid. Thus one set of homogeneous parts represent the material out of which the heterogeneous parts are formed; for each separate organ is constructed of bones, sinews, flesh, and the like; which are either essential elements in its formation, or contribute to the proper discharge of its function. A second set are the nutriment of the first, and are invariably fluid, for all growth occurs at the expense of fluid matter; while a third set are the residue of the second. Such, for instance, are the faeces and, in
animals that have a bladder, the urine; the former being the dregs of the solid nutriment, the latter of the fluid.

Even the individual homogeneous parts present variations, which are intended in each case to render them more serviceable for their purpose. The variations of the blood may be selected to illustrate this. For different bloods differ in their degrees of thinness or thickness, of clearness or turbidity, of coldness or heat; and this whether we compare the bloods from different parts of the same individual or the bloods of different animals. For, in the individual, all the differences just enumerated distinguish the blood of the upper and of the lower halves of the body; and, dealing with classes, one section of animals is sanguineous, while the other has no blood, but only something resembling it in its place. As regards the results of such differences, the thicker and the hotter blood is, the more conducive is it to strength, while in proportion to its thinness and its coldness is its suitability for sensation and intelligence. A like distinction exists also in the fluid which is analogous to blood. This explains how it is that bees and other similar creatures are of a more intelligent nature than many sanguineous animals; and that, of sanguineous animals, those are the most intelligent whose blood is thin and cold. Noblest of all are those whose blood is hot, and at the same time thin and clear. For such are suited alike for the development of courage and of intelligence. Accordingly, the upper parts are superior in these respects to the lower, the male superior to the female, and the right side to the left. As with the blood so also with the other parts, homogeneous and heterogeneous alike. For here also such variations as occur must be held either to be related to the essential constitution and mode of life of the several animals, or, in other cases, to be merely matters of slightly better or slightly worse. Two animals, for instance, may have eyes. But in one these eyes may be of fluid consistency, while in the other they are hard; and in one there may be eyelids, in the other no such appendages. In such a case, the fluid consistency and the presence of eyelids, which are intended to add to the accuracy of vision, are differences of degree. As to why all animals must of necessity have blood or something of a similar
character, and what the nature of blood may be, these are matters which can only be considered when we have first discussed hot and cold. For the natural properties of many substances are referable to these two elementary principles; and it is a matter of frequent dispute what animals or what parts of animals are hot and what cold. For some maintain that water animals are hotter than such as live on land, asserting that their natural heat counterbalances the coldness of their medium; and again, that bloodless animals are hotter than those with blood, and females than males. Parmenides, for instance, and some others declare that women are hotter than men, and that it is the warmth and abundance of their blood which causes their menstrual flow, while Empedocles maintains the opposite opinion. Again, comparing the blood and the bile, some speak of the former as hot and of the latter as cold, while others invert the description. If there be this endless disputing about hot and cold, which of all things that affect our senses are the most distinct, what are we to think as to our other sensory impressions?

The explanation of the difficulty appears to be that the term ‘hotter’ is used in several senses; so that different statements, though in verbal contradiction with each other, may yet all be more or less true. There ought, then, to be some clear understanding as to the sense in which natural substances are to be termed hot or cold, solid or fluid. For it appears manifest that these are properties on which even life and death are largely dependent, and that they are moreover the causes of sleep and waking, of maturity and old age, of health and disease; while no similar influence belongs to roughness and smoothness, to heaviness and lightness, nor, in short, to any other such properties of matter. That this should be so is but in accordance with rational expectation. For hot and cold, solid and fluid, as was stated in a former treatise, are the foundations of the physical elements.

Is then the term hot used in one sense or in many? To answer this we must ascertain what special effect is attributed to a hotter substance, and if there be several such, how many these may be.
A body then is in one sense said to be hotter than another, if it impart a greater amount of heat to an object in contact with it. In a second sense, that is said to be hotter which causes the keener sensation when touched, and especially if the sensation be attended with pain. This criterion, however, would seem sometimes to be a false one; for occasionally it is the idiosyncrasy of the individual that causes the sensation to be painful. Again, of two things, that is the hotter which the more readily melts a fusible substance, or sets on fire an inflammable one. Again, of two masses of one and the same substance, the larger is said to have more heat than the smaller. Again, of two bodies, that is said to be the hotter which takes the longer time in cooling, as also we call that which is rapidly heated hotter than that which is long about it; as though the rapidity implied proximity and this again similarity of nature, while the want of rapidity implied distance and this again dissimilarity of nature. The term hotter is used then in all the various senses that have been mentioned, and perhaps in still more. Now it is impossible for one body to be hotter than another in all these different fashions. Boiling water for instance, though it is more scalding than flame, yet has no power of burning or melting combustible or fusible matter, while flame has. So again this boiling water is hotter than a small fire, and yet gets cold more rapidly and completely. For in fact fire never becomes cold; whereas water invariably does so. Boiling water, again, is hotter to the touch than oil; yet it gets cold and solid more rapidly than this other fluid. Blood, again, is hotter to the touch than either water or oil, and yet coagulates before them. Iron, again, and stones and other similar bodies are longer in getting heated than water, but when once heated burn other substances with a much greater intensity. Another distinction is this. In some of the bodies which are called hot the heat is derived from without, while in others it belongs to the bodies themselves; and it makes a most important difference whether the heat has the former or the latter origin. For to call that one of two bodies the hotter, which is possessed of heat, we may almost say, accidentally and not of its own essence, is very much the same thing as if, finding that some man in a fever was a musi-
cian, one were to say that musicians are hotter than healthy men. Of that which is hot per se and that which is hot per accidens, the former is the slower to cool, while not rarely the latter is the hotter to the touch. The former again is the more burning of the two-flame, for instance, as compared with boiling water—while the latter, as the boiling water, which is hot per accidens, is the more heating to the touch. From all this it is clear that it is no simple matter to decide which of two bodies is the hotter. For the first may be the hotter in one sense, the second the hotter in another. Indeed in some of these cases it is impossible to say simply even whether a thing is hot or not. For the actual substratum may not itself be hot, but may be hot when coupled with heat as an attribute, as would be the case if one attached a single name to hot water or hot iron. It is after this manner that blood is hot. In such cases, in those, that is, in which the substratum owes its heat to an external influence, it is plain that cold is not a mere privation, but an actual existence.

There is no knowing but that even fire may be another of these cases. For the substratum of fire may be smoke or charcoal, and though the former of these is always hot, smoke being an uprising vapour, yet the latter becomes cold when its flame is extinguished, as also would oil and pinewood under similar circumstances. But even substances that have been burnt nearly all possess some heat, cinders, for example, and ashes, the dejections also of animals, and, among the excretions, bile; because some residue of heat has been left in them after their combustion. It is in another sense that pinewood and fat substances are hot; namely, because they rapidly assume the actuality of fire.

Heat appears to cause both coagulation and melting. Now such things as are formed merely of water are solidified by cold, while such as are formed of nothing but earth are solidified by fire. Hot substances again are solidified by cold, and, when they consist chiefly of earth, the process of solidification is rapid, and the resulting substance is insoluble; but, when their main constituent is water, the solid matter is again soluble. What kinds of substances, however,
admit of being solidified, and what are the causes of solidification, are questions that have already been dealt with more precisely in another treatise.

In conclusion, then, seeing that the terms hot and hotter are used in many different senses, and that no one substance can be hotter than others in all these senses, we must, when we attribute this character to an object, add such further statements as that this substance is hotter per se, though that other is often hotter per accidens; or again, that this substance is potentially hot, that other actually so; or again, that this substance is hotter in the sense of causing a greater feeling of heat when touched, while that other is hotter in the sense of producing flame and burning. The term hot being used in all these various senses, it plainly follows that the term cold will also be used with like ambiguity.

So much then as to the signification of the terms hot and cold, hotter and colder.

3

In natural sequence we have next to treat of solid and fluid. These terms are used in various senses. Sometimes, for instance, they denote things that are potentially, at other times things that are actually, solid or fluid. Ice for example, or any other solidified fluid, is spoken of as being actually and accidentally solid, while potentially and essentially it is fluid. Similarly earth and ashes and the like, when mixed with water, are actually and accidentally fluid, but potentially and essentially are solid. Now separate the constituents in such a mixture and you have on the one hand the watery components to which its fluidity was due, and these are both actually and potentially fluid, and on the other hand the earthy components, and these are in every way solid; and it is to bodies that are solid in this complete manner that the term ‘solid’ is most properly and absolutely applicable. So also the opposite term ‘fluid’ is strictly and absolutely applicable to that only which is both potentially and actually fluid. The same remark applies also to hot bodies and to cold.
These distinctions, then, being laid down, it is plain that blood is essentially hot in so far as that heat is connoted in its name; just as if boiling water were denoted by a single term, boiling would be connoted in that term. But the substratum of blood, that which it is in substance while it is blood in form, is not hot. Blood then in a certain sense is essentially hot, and in another sense is not so. For heat is included in the definition of blood, just as whiteness is included in the definition of a white man, and so far therefore blood is essentially hot. But so far as blood becomes hot from some external influence, it is not hot essentially.

As with hot and cold, so also is it with solid and fluid. We can therefore understand how some substances are hot and fluid so long as they remain in the living body, but become perceptibly cold and coagulate so soon as they are separated from it; while others are hot and consistent while in the body, but when withdrawn under a change to the opposite condition, and become cold and fluid. Of the former blood is an example, of the latter bile; for while blood solidifies when thus separated, yellow bile under the same circumstances becomes more fluid. We must attribute to such substances the possession of opposite properties in a greater or less degree.

In what sense, then, the blood is hot and in what sense fluid, and how far it partakes of the opposite properties, has now been fairly explained. Now since everything that grows must take nourishment, and nutriment in all cases consists of fluid and solid substances, and since it is by the force of heat that these are concocted and changed, it follows that all living things, animals and plants alike, must on this account, if on no other, have a natural source of heat. This natural heat, moreover, must belong to many parts, seeing that the organs by which the various elaborations of the food are effected are many in number. For first of all there is the mouth and the parts inside the mouth, on which the first share in the duty clearly devolves, in such animals at least as live on food which requires disintegration. The mouth, however, does not actually concoct the food, but merely facilitates concoction; for the subdivision of the food into small bits
facilitates the action of heat upon it. After the mouth come the upper and the lower abdominal cavities, and here it is that concoction is effected by the aid of natural heat. Again, just as there is a channel for the admission of the unconcocted food into the stomach, namely the mouth, and in some animals the so-called oesophagus, which is continuous with the mouth and reaches to the stomach, so must there also be other and more numerous channels by which the concocted food or nutriment shall pass out of the stomach and intestines into the body at large, and to which these cavities shall serve as a kind of manger. For plants get their food from the earth by means of their roots; and this food is already elaborated when taken in, which is the reason why plants produce no excrement, the earth and its heat serving them in the stead of a stomach. But animals, with scarcely an exception, and conspicuously all such as are capable of locomotion, are provided with a stomachal sac, which is as it were an internal substitute for the earth. They must therefore have some instrument which shall correspond to the roots of plants, with which they may absorb their food from this sac, so that the proper end of the successive stages of concoction may at last be attained. The mouth then, its duty done, passes over the food to the stomach, and there must necessarily be something to receive it in turn from this. This something is furnished by the bloodvessels, which run throughout the whole extent of the mesentery from its lowest part right up to the stomach. A description of these will be found in the treatises on Anatomy and Natural History. Now as there is a receptacle for the entire matter taken as food, and also a receptacle for its excremental residue, and again a third receptacle, namely the vessels, which serve as such for the blood, it is plain that this blood must be the final nutritive material in such animals as have it; while in bloodless animals the same is the case with the fluid which represents the blood. This explains why the blood diminishes in quantity when no food is taken, and increases when much is consumed, and also why it becomes healthy and unhealthy according as the food is of the one or the other character. These facts, then, and others of a like kind, make it plain that the purpose of the blood in sanguineous animals
is to subserve the nutrition of the body. They also explain why no more sensation is produced by touching the blood than by touching one of the excretions or the food, whereas when the flesh is touched sensation is produced. For the blood is not continuous nor united by growth with the flesh, but simply lies loose in its receptacle, that is in the heart and vessels. The manner in which the parts grow at the expense of the blood, and indeed the whole question of nutrition, will find a more suitable place for exposition in the treatise on Generation, and in other writings. For our present purpose all that need be said is that the blood exists for the sake of nutrition, that is the nutrition of the parts; and with this much let us therefore content ourselves.

4

What are called fibres are found in the blood of some animals but not of all. There are none, for instance, in the blood of deer and of roes; and for this reason the blood of such animals as these never coagulates. For one part of the blood consists mainly of water and therefore does not coagulate, this process occurring only in the other and earthy constituent, that is to say in the fibres, while the fluid part is evaporating.

Some at any rate of the animals with watery blood have a keener intellect than those whose blood is of an earthier nature. This is due not to the coldness of their blood, but rather to its thinness and purity; neither of which qualities belongs to the earthy matter. For the thinner and purer its fluid is, the more easily affected is an animal’s sensibility. Thus it is that some bloodless animals, notwithstanding their want of blood, are yet more intelligent than some among the sanguineous kinds. Such for instance, as already said, is the case with the bee and the tribe of ants, and whatever other animals there may be of a like nature. At the same time too great an excess of water makes animals timorous. For fear chills the body; so that in animals whose heart contains so watery a mixture the way is prepared for the operation of this emotion. For water is congealed by cold. This also
explains why bloodless animals are, as a general rule, more timorous than such as have blood, so that they remain motionless, when frightened, and discharge their excretions, and in some instances change colour. Such animals, on the other hand, as have thick and abundant fibres in their blood are of a more earthy nature, and of a choleric temperament, and liable to bursts of passion. For anger is productive of heat; and solids, when they have been made hot, give off more heat than fluids. The fibres therefore, being earthy and solid, are turned into so many hot embers in the blood, like the embers in a vapour-bath, and cause ebullition in the fits of passion.

This explains why bulls and boars are so choleric and so passionate. For their blood is exceedingly rich in fibres, and the bull’s at any rate coagulates more rapidly than that of any other animal. If these fibres, that is to say if the earthy constituents of which we are speaking, are taken out of the blood, the fluid that remains behind will no longer coagulate; just as the watery residue of mud will not coagulate after removal of the earth. But if the fibres are left the fluid coagulates, as also does mud, under the influence of cold. For when the heat is expelled by the cold, the fluid, as has been already stated, passes off with it by evaporation, and the residue is dried up and solidified, not by heat but by cold. So long, however, as the blood is in the body, it is kept fluid by animal heat.

The character of the blood affects both the temperament and the sensory faculties of animals in many ways. This is indeed what might reasonably be expected, seeing that the blood is the material of which the whole body is made. For nutriment supplies the material, and the blood is the ultimate nutriment. It makes then a considerable difference whether the blood be hot or cold, thin or thick, turbid or clear.

The watery part of the blood is serum; and it is watery, either owing to its not being yet concocted, or owing to its having become corrupted; so that one part of the serum is the resultant of a necessary process, while another part is material intended to serve for the formation of the blood.
The differences between lard and suet correspond to differences of blood. For both are blood concocted into these forms as a result of abundant nutrition, being that surplus blood that is not expended on the fleshy part of the body, and is of an easily concocted and fatty character. This is shown by the unctuous aspect of these substances; for such unctuous aspect in fluids is due to a combination of air and fire. It follows from what has been said that no non-sanguineous animals have either lard or suet; for they have no blood. Among sanguineous animals those whose blood is dense have suet rather than lard. For suet is of an earthy nature, that is to say, it contains but a small proportion of water and is chiefly composed of earth; and this it is that makes it coagulate, just as the fibrous matter of blood coagulates, or broths which contain such fibrous matter. Thus it is that in those horned animals that have no front teeth in the upper jaw the fat consists of suet. For the very fact that they have horns and huckle-bones shows that their composition is rich in this earthy element; for all such appurtenances are solid and earthy in character. On the other hand in those hornless animals that have front teeth in both jaws, and whose feet are divided into toes, there is no suet, but in its place lard; and this, not being of an earthy character, neither coagulates nor dries up into a friable mass.

Both lard and suet when present in moderate amount are beneficial; for they contribute to health and strength, while they are no hindrance to sensation. But when they are present in great excess, they are injurious and destructive. For were the whole body formed of them it would perish. For an animal is an animal in virtue of its sensory part, that is in virtue of its flesh, or of the substance analogous to flesh. But the blood, as before stated, is not sensitive; as therefore is neither lard nor suet, seeing that they are nothing but concocted blood. Were then the whole body composed of these substances, it would be utterly without sensation. Such animals, again, as are excessively fat age rapidly. For so much of their blood is used in forming fat, that they have but little left; and when there is but
little blood the way is already open for decay. For decay may be said
to be deficiency of blood, the scantiness of which renders it liable,
like all bodies of small bulk, to be injuriously affected by any chance
excess of heat or cold. For the same reason fat animals are less pro-

cific than others. For that part of the blood which should go to form
semen and seed is used up in the production of lard and suet, which
are nothing but concocted blood; so that in these animals there is
either no reproductive excretion at all, or only a scanty amount.

So much then of blood and serum, and of lard and suet. Each
of these has been described, and the purposes told for which they
severally exist. The marrow also is of the nature of blood, and not, as
some think, the germinal force of the semen. That this is the case is
quite evident in very young animals. For in the embryo the marrow
of the bones has a blood-like appearance, which is but natural, see-
ing that the parts are all constructed out of blood, and that it is on
blood that the embryo is nourished. But, as the young animal grows
up and ripens into maturity, the marrow changes its colour, just as
do the external parts and the viscera. For the viscera also in animals,
so long as they are young, have each and all a blood-like look, owing
to the large amount of this fluid which they contain.

The consistency of the marrow agrees with that of the fat. For
when the fat consists of lard, then the marrow also is unctuous and
lard-like; but when the blood is converted by concoction into suet,
and does not assume the form of lard, then the marrow also has a
suety character. In those animals, therefore, that have horns and are
without upper front teeth, the marrow has the character of suet;
while it takes the form of lard in those that have front teeth in both
jaws, and that also have the foot divided into toes. What has ben
said hardly applies to the spinal marrow. For it is necessary that this
shall be continuous and extend without break through the whole
backbone, inasmuch as this bone consists of separate vertebrae. But
were the spinal marrow either of unctuous fat or of suet, it could not
hold together in such a continuous mass as it does, but would either be too fluid or too frangible.

There are some animals that can hardly be said to have any marrow. These are those whose bones are strong and solid, as is the case with the lion. For in this animal the marrow is so utterly insignificant that the bones look as though they had none at all. However, as it is necessary that animals shall have bones or something analogous to them, such as the fish-spines of water-animals, it is also a matter of necessity that some of these bones shall contain marrow; for the substance contained within the bones is the nutriment out of which these are formed. Now the universal nutriment, as already stated, is blood; and the blood within the bone, owing to the heat which is developed in it from its being thus surrounded, undergoes concoction, and self-concocted blood is suet or lard; so that it is perfectly intelligible how the marrow within the bone comes to have the character of these substances. So also it is easy to understand why, in those animals that have strong and compact bones, some of these should be entirely void of marrow, while the rest contain but little of it; for here the nutriment is spent in forming the bones.

Those animals that have fish-spines in place of bones have no other marrow than that of the chine. For in the first place they have naturally but a small amount of blood; and secondly the only hollow fish-spine is that of the chine. In this then marrow is formed; this being the only spine in which there is space for it, and, moreover, being the only one which owing to its division into parts requires a connecting bond. This too is the reason why the marrow of the chine, as already mentioned, is somewhat different from that of other bones. For, having to act the part of a clasp, it must be of glutinous character, and at the same time sinewy so as to admit of stretching.

Such then are the reasons for the existence of marrow, in those animals that have any, and such its nature. It is evidently the surplus of the sanguineous nutriment apportioned to the bones and fish-spines, which has undergone concoction owing to its being enclosed within them.
From the marrow we pass on in natural sequence to the brain. For there are many who think that the brain itself consists of marrow, and that it forms the commencement of that substance, because they see that the spinal marrow is continuous with it. In reality the two may be said to be utterly opposite to each other in character. For of all the parts of the body there is none so cold as the brain; whereas the marrow is of a hot nature, as is plainly shown by its fat and unctuous character. Indeed this is the very reason why the brain and spinal marrow are continuous with each other. For, wherever the action of any part is in excess, nature so contrives as to set by it another part with an excess of contrary action, so that the excesses of the two may counterbalance each other. Now that the marrow is hot is clearly shown by many indications. The coldness of the brain is also manifest enough. For in the first place it is cold even to the touch; and, secondly, of all the fluid parts of the body it is the driest and the one that has the least blood; for in fact it has no blood at all in its proper substance. This brain is not residual matter, nor yet is it one of the parts which are anatomically continuous with each other; but it has a character peculiar to itself, as might indeed be expected. That it has no continuity with the organs of sense is plain from simple inspection, and is still more clearly shown by the fact, that, when it is touched, no sensation is produced; in which respect it resembles the blood of animals and their excrement. The purpose of its presence in animals is no less than the preservation of the whole body. For some writers assert that the soul is fire or some such force. This, however, is but a rough and inaccurate assertion; and it would perhaps be better to say that the soul is incorporate in some substance of a fiery character. The reason for this being so is that of all substances there is none so suitable for ministering to the operations of the soul as that which is possessed of heat. For nutrition and the imparting of motion are offices of the soul, and it is by heat that these are most readily effected. To say then that the soul is fire is much the same thing as to confound the auger or the saw with
the carpenter or his craft, simply because the work is wrought by the
two in conjunction. So far then this much is plain, that all animals
must necessarily have a certain amount of heat. But as all influences
require to be counterbalanced, so that they may be reduced to mod-
eration and brought to the mean (for in the mean, and not in either
extreme, lies the true and rational position), nature has contrived the
brain as a counterpoise to the region of the heart with its contained
heat, and has given it to animals to moderate the latter, combining
in it the properties of earth and water. For this reason it is, that ev-
ery sanguineous animal has a brain; whereas no bloodless creature
has such an organ, unless indeed it be, as the Poulp, by analogy. For
where there is no blood, there in consequence there is but little heat.
The brain, then, tempers the heat and seething of the heart. In order,
however, that it may not itself be absolutely without heat, but may
have a moderate amount, branches run from both blood-vessels, that
is to say from the great vessel and from what is called the aorta, and
end in the membrane which surrounds the brain; while at the same
time, in order to prevent any injury from the heat, these encompass-
ing vessels, instead of being few and large, are numerous and small,
and their blood scanty and clear, instead of being abundant and
thick. We can now understand why defluxions have their origin in
the head, and occur whenever the parts about the brain have more
than a due proportion of coldness. For when the nutriment steams
upwards through the blood-vessels, its refuse portion is chilled by
the influence of this region, and forms defluxions of phlegm and
serum. We must suppose, to compare small things with great, that
the like happens here as occurs in the production of showers. For
when vapour steams up from the earth and is carried by the heat into
the upper regions, so soon as it reaches the cold air that is above the
earth, it condenses again into water owing to the refrigeration, and
falls back to the earth as rain. These, however, are matters which may
be suitably considered in the Principles of Diseases, so far as natural
philosophy has anything to say to them.

It is the brain again-or, in animals that have no brain, the part
analogous to it-which is the cause of sleep. For either by chilling
the blood that streams upwards after food, or by some other similar influences, it produces heaviness in the region in which it lies (which is the reason why drowsy persons hang the head), and causes the heat to escape downwards in company with the blood. It is the accumulation of this in excess in the lower region that produces complete sleep, taking away the power of standing upright from those animals to whom that posture is natural, and from the rest the power of holding up the head. These, however, are matters which have been separately considered in the treatises on Sensation and on Sleep.

That the brain is a compound of earth and water is shown by what occurs when it is boiled. For, when so treated, it turns hard and solid, inasmuch as the water is evaporated by the heat, and leaves the earthy part behind. Just the same occurs when pulse and other fruits are boiled. For these also are hardened by the process, because the water which enters into their composition is driven off and leaves the earth, which is their main constituent, behind.

Of all animals, man has the largest brain in proportion to his size; and it is larger in men than in women. This is because the region of the heart and of the lung is hotter and richer in blood in man than in any other animal; and in men than in women. This again explains why man, alone of animals, stands erect. For the heat, overcoming any opposite inclination, makes growth take its own line of direction, which is from the centre of the body upwards. It is then as a counterpoise to his excessive heat that in man’s brain there is this superabundant fluidity and coldness; and it is again owing to this superabundance that the cranial bone, which some call the Bregma, is the last to become solidified; so long does evaporation continue to occur through it under the influence of heat. Man is the only sanguineous animal in which this takes place. Man, again, has more sutures in his skull than any other animal, and the male more than the female. The explanation is again to be found in the greater size of the brain, which demands free ventilation, proportionate to its bulk. For if the brain be either too fluid or too solid, it will not perform its office, but in the one case will freeze the blood, and in the
other will not cool it at all; and thus will cause disease, madness, and death. For the cardiac heat and the centre of life is most delicate in its sympathies, and is immediately sensitive to the slightest change or affection of the blood on the outer surface of the brain.

The fluids which are present in the animal body at the time of birth have now nearly all been considered. Amongst those that appear only at a later period are the residua of the food, which include the deposits of the belly and also those of the bladder. Besides these there is the semen and the milk, one or the other of which makes its appearance in appropriate animals. Of these fluids the excremental residua of the food may be suitably discussed by themselves, when we come to examine and consider the subject of nutrition. Then will be the time to explain in what animals they are found, and what are the reasons for their presence. Similarly all questions concerning the semen and the milk may be dealt with in the treatise on Generation, for the former of these fluids is the very starting-point of the generative process, and the latter has no other ground of existence than generative purposes.

8

We have now to consider the remaining homogeneous parts, and will begin with flesh, and with the substance that, in animals that have no flesh, takes its place. The reason for so beginning is that flesh forms the very basis of animals, and is the essential constituent of their body. Its right to this precedence can also be demonstrated logically. For an animal is by our definition something that has sensibility and chief of all the primary sensibility, which is that of Touch; and it is the flesh, or analogous substance, which is the organ of this sense. And it is the organ, either in the same way as the pupil is the organ of sight, that is it constitutes the primary organ of the sense; or it is the organ and the medium through which the object acts combined, that is it answers to the pupil with the whole transparent medium attached to it. Now in the case of the other senses it was impossible for nature to unite the medium with the sense-or-
gan, nor would such a junction have served any purpose; but in the case of touch she was compelled by necessity to do so. For of all the sense-organs that of touch is the only one that has corporeal substance, or at any rate it is more corporeal than any other, and its medium must be corporeal like itself.

It is obvious also to sense that it is for the sake of the flesh that all the other parts exist. By the other parts I mean the bones, the skin, the sinews, and the blood-vessels, and, again, the hair and the various kinds of nails, and anything else there may be of a like character. Thus the bones are a contrivance to give security to the soft parts, to which purpose they are adapted by their hardness; and in animals that have no bones the same office is fulfilled by some analogous substance, as by fishspine in some fishes, and by cartilage in others.

Now in some animals this supporting substance is situated within the body, while in some of the bloodless species it is placed on the outside. The latter is the case in all the Crustacea, as the Carcini (Crabs) and the Carabi (Prickly Lobsters); it is the case also in the Testacea, as for instance in the several species known by the general name of oysters. For in all these animals the fleshy substance is within, and the earthy matter, which holds the soft parts together and keeps them from injury, is on the outside. For the shell not only enables the soft parts to hold together, but also, as the animal is bloodless and so has but little natural warmth, surrounds it, as a chaufferette does the embers, and keeps in the smouldering heat. Similar to this seems to be the arrangement in another and distinct tribe of animals, namely the Tortoises, including the Chelone and the several kinds of Emys. But in Insects and in Cephalopods the plan is entirely different, there being moreover a contrast between these two themselves. For in neither of these does there appear to be any bony or earthy part, worthy of notice, distinctly separated from the rest of the body. Thus in the Cephalopods the main bulk of the body consists of a soft flesh-like substance, or rather of a substance which is intermediate to flesh and sinew, so as not to be so readily destructible as actual flesh. I call this substance intermediate to
flesh and sinew, because it is soft like the former, while it admits of stretching like the latter. Its cleavage, however, is such that it splits not longitudinally, like sinew, but into circular segments, this being the most advantageous condition, so far as strength is concerned. These animals have also a part inside them corresponding to the spino-

uous bones of fishes. For instance, in the Cuttle-fishes there is what is known as the os sepiae, and in the Calamaries there is the so-called gladius. In the Poulps, on the other hand, there is no such internal part, because the body, or, as it is termed in them, the head, forms but a short sac, whereas it is of considerable length in the other two; and it was this length which led nature to assign to them their hard support, so as to ensure their straightness and inflexibility; just as she has assigned to sanguineous animals their bones or their fish-spines, as the case may be. To come now to Insects. In these the arrange-

ment is quite different from that of the Cephalopods; quite different also from that which obtains in sanguineous animals, as indeed has been already stated. For in an insect there is no distinction into soft and hard parts, but the whole body is hard, the hardness, however, being of such a character as to be more flesh-like than bone, and more earthy and bone-like than flesh. The purpose of this is to make the body of the insect less liable to get broken into pieces.

There is a resemblance between the osseous and the vascular sys-
tems; for each has a central part in which it begins, and each forms a continuous whole. For no bone in the body exists as a separate thing in itself, but each is either a portion of what may be considered a continuous whole, or at any rate is linked with the rest by contact and by attachments; so that nature may use adjoining bones either as though they were actually continuous and formed a single bone, or, for purposes of flexure, as though they were two and distinct. And similarly no blood-vessel has in itself a separate individuality; but they all form parts of one whole. For an isolated bone, if such there were, would in the first place be unable to perform the office for the sake of which bones exist; for, were it discontinuous and separated
from the rest by a gap, it would be perfectly unable to produce either flexure or extension; nor only so, but it would actually be injurious, acting like a thorn or an arrow lodged in the flesh. Similarly if a vessel were isolated, and not continuous with the vascular centre, it would be unable to retain the blood within it in a proper state. For it is the warmth derived from this centre that hinders the blood from coagulating; indeed the blood, when withdrawn from its influence, becomes manifestly putrid. Now the centre or origin of the blood-vessels is the heart, and the centre or origin of the bones, in all animals that have bones, is what is called the chine. With this all the other bones of the body are in continuity; for it is the chine that holds together the whole length of an animal and preserves its straightness. But since it is necessary that the body of an animal shall bend during locomotion, this chine, while it is one in virtue of the continuity of its parts, yet its division into vertebrae is made to consist of many segments. It is from this chine that the bones of the limbs, in such animals as have these parts, proceed, and with it they are continuous, being fastened together by the sinews where the limbs admit of flexure, and having their extremities adapted to each other, either by the one being hollowed and the other rounded, or by both being hollowed and including between them a hucklebone, as a connecting bolt, so as to allow of flexure and extension. For without some such arrangement these movements would be utterly impossible, or at any rate would be performed with great difficulty. There are some joints, again, in which the lower end of the one bone and the upper end of the other are alike in shape. In these cases the bones are bound together by sinews, and cartilaginous pieces are interposed in the joint, to serve as a kind of padding, and prevent the two extremities from grating against each other.

Round about the bones, and attached to them by thin fibrous bands, grow the fleshy parts, for the sake of which the bones themselves exist. For just as an artist, when he is moulding an animal out of clay or other soft substance, takes first some solid body as a basis, and round this moulds the clay, so also has nature acted in fashioning the animal body out of flesh. Thus we find all the fleshy parts,
with one exception, supported by bones, which serve, when the parts are organs of motion, to facilitate flexure, and, when the parts are motionless, act as a protection. The ribs, for example, which enclose the chest are intended to ensure the safety of the heart and neighbouring viscera. The exception of which mention was made is the belly. The walls of this are in all animals devoid of bones; in order that there may be no hindrance to the expansion which necessarily occurs in this part after a meal, nor, in females, any interference with the growth of the foetus, which is lodged here.

Now the bones of viviparous animals, of such, that is, as are not merely externally but also internally viviparous, vary but very little from each other in point of strength, which in all of them is considerable. For the Vivipara in their bodily proportions are far above other animals, and many of them occasionally grow to an enormous size, as is the case in Libya and in hot and dry countries generally. But the greater the bulk of an animal, the stronger, the bigger, and the harder, are the supports which it requires; and comparing the big animals with each other, this requirement will be most marked in those that live a life of rapine. Thus it is that the bones of males are harder than those of females; and the bones of flesh-eaters, that get their food by fighting, are harder than those of Herbivora. Of this the Lion is an example; for so hard are its bones, that, when struck, they give off sparks, as though they were stones. It may be mentioned also that the Dolphin, in as much as it is viviparous, is provided with bones and not with fish-spines.

In those sanguineous animals, on the other hand, that are oviparous, the bones present successive slight variations of character. Thus in Birds there are bones, but these are not so strong as the bones of the Vivipara. Then come the Oviparous fishes, where there is no bone, but merely fish-spine. In the Serpents too the bones have the character of fish-spine, excepting in the very large species, where the solid foundation of the body requires to be stronger, in order that the animal itself may be strong, the same reason prevailing as in the case of the Vivipara. Lastly, in the Selachia, as they are called,
the fish-spines are replaced by cartilage. For it is necessary that the
movements of these animals shall be of an undulating character;
and this again requires the framework that supports the body to be
made of a pliable and not of a brittle substance. Moreover, in these
Selachia nature has used all the earthy matter on the skin; and she is
unable to allot to many different parts one and the same superfluity
of material. Even in viviparous animals many of the bones are car-
tilaginous. This happens in those parts where it is to the advantage
of the surrounding flesh that its solid base shall be soft and mucil-
aginous. Such, for instance, is the case with the ears and nostrils;
for in projecting parts, such as these, brittle substances would soon
get broken. Cartilage and bone are indeed fundamentally the same
thing, the differences between them being merely matters of degree.
Thus neither cartilage nor bone, when once cut off, grows again.
Now the cartilages of these land animals are without marrow, that
is without any distinctly separate marrow. For the marrow, which in
bones is distinctly separate, is here mixed up with the whole mass,
and gives a soft and mucilaginous consistence to the cartilage. But
in the Selachia the chine, though it is cartilaginous, yet contains
marrow; for here it stands in the stead of a bone.

Very nearly resembling the bones to the touch are such parts as
nails, hoofs, whether solid or cloven, horns, and the beaks of birds,
all of which are intended to serve as means of defence. For the or-
gans which are made out of these substances, and which are called
by the same names as the substances themselves, the organ hoof, for
instance, and the organ horn, are contrivances to ensure the pres-
ervation of the animals to which they severally belong. In this class
too must be reckoned the teeth, which in some animals have but a
single function, namely the mastication of the food, while in oth-
ers they have an additional office, namely to serve as weapons; as is
the case with all animals that have sharp interfitting teeth or that
have tusks. All these parts are necessarily of solid and earthy char-
acter; for the value of a weapon depends on such properties. Their
earthly character explains how it is that all such parts are more de-
veloped in four-footed vivipara than in man. For there is always more
earth in the composition of these animals than in that of the human body. However, not only all these parts but such others as are nearly connected with them, skin for instance, bladder, membrane, hairs, feathers, and their analogues, and any other similar parts that there may be, will be considered farther on with the heterogeneous parts. There we shall inquire into the causes which produce them, and into the objects of their presence severally in the bodies of animals. For, as with the heterogeneous parts, so with these, it is from a consideration of their functions that alone we can derive any knowledge of them. The reason for dealing with them at all in this part of the treatise, and classifying them with the homogeneous parts, is that under one and the same name are confounded the entire organs and the substances of which they are composed. But of all these substances flesh and bone form the basis. Semen and milk were also passed over when we were considering the homogeneous fluids. For the treatise on Generation will afford a more suitable place for their examination, seeing that the former of the two is the very foundation of the thing generated, while the latter is its nourishment.

10

Let us now make, as it were, a fresh beginning, and consider the heterogeneous parts, taking those first which are the first in importance. For in all animals, at least in all the perfect kinds, there are two parts more essential than the rest, namely the part which serves for the ingestion of food, and the part which serves for the discharge of its residue. For without food growth and even existence is impossible. Intervening again between these two parts there is invariably a third, in which is lodged the vital principle. As for plants, though they also are included by us among things that have life, yet are they without any part for the discharge of waste residue. For the food which they absorb from the ground is already concocted, and they give off as its equivalent their seeds and fruits. Plants, again, inasmuch as they are without locomotion, present no great variety in their heterogeneous parts. For, where the functions are but few, few also are the organs required to effect them. The configuration of
plants is a matter then for separate consideration. Animals, however, that not only live but feel, present a greater multiformity of parts, and this diversity is greater in some animals than in others, being most varied in those to whose share has fallen not mere life but life of high degree. Now such an animal is man. For of all living beings with which we are acquainted man alone partakes of the divine, or at any rate partakes of it in a fuller measure than the rest. For this reason, then, and also because his external parts and their forms are more familiar to us than those of other animals, we must speak of man first; and this the more fitly, because in him alone do the natural parts hold the natural position; his upper part being turned towards that which is upper in the universe. For, of all animals, man alone stands erect.

In man, then, the head is destitute of flesh; this being the necessary consequence of what has already been stated concerning the brain. There are, indeed, some who hold that the life of man would be longer than it is, were his head more abundantly furnished with flesh; and they account for the absence of this substance by saying that it is intended to add to the perfection of sensation. For the brain they assert to be the organ of sensation; and sensation, they say, cannot penetrate to parts that are too thickly covered with flesh. But neither part of this statement is true. On the contrary, were the region of the brain thickly covered with flesh, the very purpose for which animals are provided with a brain would be directly contravened. For the brain would itself be heated to excess and so unable to cool any other part; and, as to the other half of their statement, the brain cannot be the cause of any of the sensations, seeing that it is itself as utterly without feeling as any one of the excretions. These writers see that certain of the senses are located in the head, and are unable to discern the reason for this; they see also that the brain is the most peculiar of all the animal organs; and out of these facts they form an argument, by which they link sensation and brain together. It has, however, already been clearly set forth in the treatise on Sensation, that it is the region of the heart that constitutes the sensory centre. There also it was stated that two of the senses,
namely touch and taste, are manifestly in immediate connexion with
the heart; and that as regards the other three, namely hearing, sight,
and the centrally placed sense of smell, it is the character of their
sense-organs which causes them to be lodged as a rule in the head.
Vision is so placed in all animals. But such is not invariably the case
with hearing or with smell. For fishes and the like hear and smell,
and yet have no visible organs for these senses in the head; a fact
which demonstrates the accuracy of the opinion here maintained.
Now that vision, whenever it exists, should be in the neighbourhood
of the brain is but what one would rationally expect. For the brain
is fluid and cold, and vision is of the nature of water, water being of
all transparent substances the one most easily confined. Moreover it
cannot but necessarily be that the more precise senses will have their
precision rendered still greater if ministered to by parts that have the
purest blood. For the motion of the heat of blood destroys sensory
activity. For these reasons the organs of the precise senses are lodged
in the head.

It is not only the fore part of the head that is destitute of flesh, but
the hind part also. For, in all animals that have a head, it is this head
which more than any other part requires to be held up. But, were the
head heavily laden with flesh, this would be impossible; for nothing
so burdened can be held upright. This is an additional proof that the
absence of flesh from the head has no reference to brain sensation.
For there is no brain in the hinder part of the head, and yet this is as
much without flesh as is the front.

In some animals hearing as well as vision is lodged in the region
of the head. Nor is this without a rational explanation. For what is
called the empty space is full of air, and the organ of hearing is, as we
say, of the nature of air. Now there are channels which lead from the
eyes to the blood-vessels that surround the brain; and similarly there
is a channel which leads back again from each ear and connects it
with the hinder part of the head. But no part that is without blood is
dowered with sensation, as neither is the blood itself, but only some
one of the parts that are formed of blood.
The brain in all animals that have one is placed in the front part of the head; because the direction in which sensation acts is in front; and because the heart, from which sensation proceeds, is in the front part of the body; and lastly because the instruments of sensation are the blood-containing parts, and the cavity in the posterior part of the skull is destitute of blood-vessels.

As to the position of the sense-organs, they have been arranged by nature in the following well-ordered manner. The organs of hearing are so placed as to divide the circumference of the head into two equal halves; for they have to hear not only sounds which are directly in line with themselves, but sounds from all quarters. The organs of vision are placed in front, because sight is exercised only in a straight line, and moving as we do in a forward direction it is necessary that we should see before us, in the direction of our motion. Lastly, the organs of smell are placed with good reason between the eyes. For as the body consists of two parts, a right half and a left, so also each organ of sense is double. In the case of touch this is not apparent, the reason being that the primary organ of this sense is not the flesh or analogous part, but lies internally. In the case of taste, which is merely a modification of touch and which is placed in the tongue, the fact is more apparent than in the case of touch, but still not so manifest as in the case of the other senses. However, even in taste it is evident enough; for in some animals the tongue is plainly forked. The double character of the sensations is, however, more conspicuous in the other organs of sense. For there are two ears and two eyes, and the nostrils, though joined together, are also two. Were these latter otherwise disposed, and separated from each other as are the ears, neither they nor the nose in which they are placed would be able to perform their office. For in such animals as have nostrils olfaction is effected by means of inspiration, and the organ of inspiration is placed in front and in the middle line. This is the reason why nature has brought the two nostrils together and placed them as the central of the three sense-organs, setting them side by side on a level with each other, to avail themselves of the inspiratory motion. In other
animals than man the arrangement of these sense-organs is also such as is adapted in each case to the special requirements.

11

For instance, in quadrupeds the ears stand out freely from the head and are set to all appearance above the eyes. Not that they are in reality above the eyes; but they seem to be so, because the animal does not stand erect, but has its head hung downwards. This being the usual attitude of the animal when in motion, it is of advantage that its ears shall be high up and movable; for by turning themselves about they can the better take in sounds from every quarter.

12

In birds, on the other hand, there are no ears, but only the auditory passages. This is because their skin is hard and because they have feathers instead of hairs, so that they have not got the proper material for the formation of ears. Exactly the same is the case with such oviparous quadrupeds as are clad with scaly plates, and the same explanation applies to them. There is also one of the viviparous quadrupeds, namely the seal, that has no ears but only the auditory passages. The explanation of this is that the seal, though a quadruped, is a quadruped of stunted formation.

13

Men, and Birds, and Quadrupeds, viviparous and oviparous alike, have their eyes protected by lids. In the Vivipara there are two of these; and both are used by these animals not only in closing the eyes, but also in the act of blinking; whereas the oviparous quadrupeds, and the heavy-bodied birds as well as some others, use only the lower lid to close the eye; while birds blink by means of a membrane that issues from the canthus. The reason for the eyes being thus protected is that nature has made them of fluid consistency, in order to ensure keenness of vision. For had they been covered with hard skin, they would, it is true, have been less liable to get injured by
anything falling into them from without, but they would not have been sharp-sighted. It is then to ensure keenness of vision that the skin over the pupil is fine and delicate; while the lids are superadded as a protection from injury. It is as a still further safeguard that all these animals blink, and man most of all; this action (which is not performed from deliberate intention but from a natural instinct) serving to keep objects from falling into the eyes; and being more frequent in man than in the rest of these animals, because of the greater delicacy of his skin. These lids are made of a roll of skin; and it is because they are made of skin and contain no flesh that neither they, nor the similarly constructed prepuce, unite again when once cut.

As to the oviparous quadrupeds, and such birds as resemble them in closing the eye with the lower lid, it is the hardness of the skin of their heads which makes them do so. For such birds as have heavy bodies are not made for flight; and so the materials which would otherwise have gone to increase the growth of the feathers are diverted thence, and used to augment the thickness of the skin. Birds therefore of this kind close the eye with the lower lid; whereas pigeons and the like use both upper and lower lids for the purpose. As birds are covered with feathers, so oviparous quadrupeds are covered with scaly plates; and these in all their forms are harder than hairs, so that the skin also to which they belong is harder than the skin of hairy animals. In these animals, then, the skin on the head is hard, and so does not allow of the formation of an upper eyelid, whereas lower down the integument is of a flesh-like character, so that the lower lid can be thin and extensible.

The act of blinking is performed by the heavy-bodied birds by means of the membrane already mentioned, and not by this lower lid. For in blinking rapid motion is required, and such is the motion of this membrane, whereas that of the lower lid is slow. It is from the canthus that is nearest to the nostrils that the membrane comes. For it is better to have one starting-point for nictitation than two; and in these birds this starting-point is the junction of eye and
nostrils, an anterior starting-point being preferable to a lateral one. Oviparous quadrupeds do not blink in like manner as the birds; for, living as they do on the ground, they are free from the necessity of having eyes of fluid consistency and of keen sight, whereas these are essential requisites for birds, inasmuch as they have to use their eyes at long distances. This too explains why birds with talons, that have to search for prey by eye from aloft, and therefore soar to greater heights than other birds, are sharpsighted; while common fowls and the like, that live on the ground and are not made for flight, have no such keenness of vision. For there is nothing in their mode of life which imperatively requires it.

Fishes and Insects and the hard-skinned Crustacea present certain differences in their eyes, but so far resemble each other as that none of them have eyelids. As for the hard-skinned Crustacea it is utterly out of the question that they should have any; for an eyelid, to be of use, requires the action of the skin to be rapid. These animals then have no eyelids and, in default of this protection, their eyes are hard, just as though the lid were attached to the surface of the eye, and the animal saw through it. Inasmuch, however, as such hardness must necessarily blunt the sharpness of vision, nature has endowed the eyes of Insects, and still more those of Crustacea, with mobility (just as she has given some quadrupeds movable ears), in order that they may be able to turn to the light and catch its rays, and so see more plainly. Fishes, however, have eyes of a fluid consistency. For animals that move much about have to use their vision at considerable distances. If now they live on land, the air in which they move is transparent enough. But the water in which fishes live is a hindrance to sharp sight, though it has this advantage over the air, that it does not contain so many objects to knock against the eyes. The risk of collision being thus small, nature, who makes nothing in vain, has given no eyelids to fishes, while to counterbalance the opacity of the water she has made their eyes of fluid consistency.
All animals that have hairs on the body have lashes on the eye-lids; but birds and animals with scale-like plates, being hairless, have none. The Libyan ostrich, indeed, forms an exception; for, though a bird, it is furnished with eyelashes. This exception, however, will be explained hereafter. Of hairy animals, man alone has lashes on both lids. For in quadrupeds there is a greater abundance of hair on the back than on the under side of the body; whereas in man the contrary is the case, and the hair is more abundant on the front surface than on the back. The reason for this is that hair is intended to serve as a protection to its possessor. Now, in quadrupeds, owing to their inclined attitude, the under or anterior surface does not require so much protection as the back, and is therefore left comparatively bald, in spite of its being the nobler of the two sides. But in man, owing to his upright attitude, the anterior and posterior surfaces of the body are on an equality as regards need of protection. Nature therefore has assigned the protective covering to the nobler of the two surfaces; for invariably she brings about the best arrangement of such as are possible. This then is the reason that there is no lower eyelash in any quadruped; though in some a few scattered hairs sprout out under the lower lid. This also is the reason that they never have hair in the axillae, nor on the pubes, as man has. Their hair, then, instead of being collected in these parts, is either thickly set over the whole dorsal surface, as is the case for instance in dogs, or, sometimes, forms a mane, as in horses and the like, or as in the male lion where the mane is still more flowing and ample. So, again, whenever there is a tail of any length, nature decks it with hair, with long hair if the stem of the tail be short, as in horses, with short hair if the stem be long, regard also being had to the condition of the rest of the body. For nature invariably gives to one part what she subtracts from another. Thus when she has covered the general surface of an animal’s body with an excess of hair, she leaves a deficiency in the region of the tail. This, for instance, in the case with bears.
No animal has so much hair on the head as man. This, in the first place, is the necessary result of the fluid character of his brain, and of the presence of so many sutures in his skull. For wherever there is the most fluid and the most heat, there also must necessarily occur the greatest outgrowth. But, secondly, the thickness of the hair in this part has a final cause, being intended to protect the head, by preserving it from excess of either heat or cold. And as the brain of man is larger and more fluid than that of any other animal, it requires a proportionately greater amount of protection. For the more fluid a substance is, the more readily does it get excessively heated or excessively chilled, while substances of an opposite character are less liable to such injurious affections.

These, however, are matters which by their close connexion with eyelashes have led us to digress from our real topic, namely the cause to which these lashes owe their existence. We must therefore defer any further remarks we may have to make on these matters till the proper occasion arises and then return to their consideration.

15

Both eyebrows and eyelashes exist for the protection of the eyes; the former that they may shelter them, like the eaves of a house, from any fluids that trickle down from the head; the latter to act like the palisades which are sometimes placed in front of enclosures, and keep out any objects which might otherwise get in. The brows are placed over the junction of two bones, which is the reason that in old age they often become so bushy as to require cutting. The lashes are set at the terminations of small blood-vessels. For the vessels come to an end where the skin itself terminates; and, in all places where these endings occur, the exudation of moisture of a corporeal character necessitates the growth of hairs, unless there be some operation of nature which interferes, by diverting the moisture to another purpose.
Viviparous quadrupeds, as a rule, present no great variety of form in the organ of smell. In those of them, however, whose jaws project forwards and taper to a narrow end, so as to form what is called a snout, the nostrils are placed in this projection, there being no other available plan; while, in the rest, there is a more definite demarcation between nostrils and jaws. But in no animal is this part so peculiar as in the elephant, where it attains an extraordinary and strength. For the elephant uses its nostril as a hand; this being the instrument with which it conveys food, fluid and solid alike, to its mouth. With it, too, it tears up trees, coiling it round their stems. In fact it applies it generally to the purposes of a hand. For the elephant has the double character of a land animal, and of one that lives in swamps. Seeing then that it has to get its food from the water, and yet must necessarily breathe, inasmuch as it is a land animal and has blood; seeing, also, that its excessive weight prevents it from passing rapidly from water to land, as some other sanguineous vivipara that breathe can do, it becomes necessary that it shall be suited alike for life in the water and for life on dry land. just then as divers are sometimes provided with instruments for respiration, through which they can draw air from above the water, and thus may remain for a long time under the sea, so also have elephants been furnished by nature with their lengthened nostril; and, whenever they have to traverse the water, they lift this up above the surface and breathe through it. For the elephant’s proboscis, as already said, is a nostril. Now it would have been impossible for this nostril to have the form of a proboscis, had it been hard and incapable of bending. For its very length would then have prevented the animal from supplying itself with food, being as great an impediment as the of certain oxen, that are said to be obliged to walk backwards while they are grazing. It is therefore soft and flexible, and, being such, is made, in addition to its own proper functions, to serve the office of the fore-feet; nature in this following her wonted plan of using one and the same part for several purposes. For in polydactylous quadrupeds the fore-feet are intended not
merely to support the weight of the body, but to serve as hands. But in elephants, though they must be reckoned polydactylous, as their foot has neither cloven nor solid hoof, the fore-feet, owing to the great size and weight of the body, are reduced to the condition of mere supports; and indeed their slow motion and unfitness for bending make them useless for any other purpose. A nostril, then, is given to the elephant for respiration, as to every other animal that has a lung, and is lengthened out and endowed with its power of coiling because the animal has to remain for considerable periods of time in the water, and is unable to pass thence to dry ground with any rapidity. But as the feet are shorn of their full office, this same part is also, as already said, made by nature to supply their place, and give such help as otherwise would be rendered by them.

As to other sanguineous animals, the Birds, the Serpents, and the Oviparous quadrupeds, in all of them there are the nostril-holes, placed in front of the mouth; but in none are there any distinctly formed nostrils, nothing in fact which can be called nostrils except from a functional point of view. A bird at any rate has nothing which can properly be called a nose. For its so-called beak is a substitute for jaws. The reason for this is to be found in the natural conformation of birds. For they are winged bipeds; and this makes it necessary that their heads and neck shall be of light weight; just as it makes it necessary that their breast shall be narrow. The beak therefore with which they are provided is formed of a bone-like substance, in order that it may serve as a weapon as well as for nutritive purposes, but is made of narrow dimensions to suit the small size of the head. In this beak are placed the olfactory passages. But there are no nostrils; for such could not possibly be placed there.

As for those animals that have no respiration, it has already been explained why it is that they are without nostrils, and perceive odours either through gills, or through a blowhole, or, if they are insects, by the hypozoma; and how the power of smelling depends, like their motion, upon the innate spirit of their bodies, which in all of them is implanted by nature and not introduced from without.
Under the nostrils are the lips, in such sanguineous animals, that is, as have teeth. For in birds, as already has been said, the purposes of nutrition and defence are fulfilled by a bonelike beak, which forms a compound substitute for teeth and lips. For supposing that one were to cut off a man's lips, unite his upper teeth together, and similarly his under ones, and then were to lengthen out the two separate pieces thus formed, narrowing them on either side and making them project forwards, supposing, I say, this to be done, we should at once have a bird-like beak.

The use of the lips in all animals except man is to preserve and guard the teeth; and thus it is that the distinctness with which the lips are formed is in direct proportion to the degree of nicety and perfection with which the teeth are fashioned. In man the lips are soft and flesh-like and capable of separating from each other. Their purpose, as in other animals, is to guard the teeth, but they are more especially intended to serve a higher office, contributing in common with other parts to man's faculty of speech. For just as nature has made man's tongue unlike that of other animals, and, in accordance with what I have said is her not uncommon practice, has used it for two distinct operations, namely for the perception of savours and for speech, so also has she acted with regard to the lips, and made them serve both for speech and for the protection of the teeth. For vocal speech consists of combinations of the letters, and most of these would be impossible to pronounce, were the lips not moist, nor the tongue such as it is. For some letters are formed by closures of the lips and others by applications of the tongue. But what are the differences presented by these and what the nature and extent of such differences, are questions to which answers must be sought from those who are versed in metrical science. It was necessary that the two parts which we are discussing should, in conformity with the requirements, be severally adapted to fulfil the office mentioned above, and be of appropriate character. Therefore are they made of flesh, and flesh is softer in man than in any other animal, the reason for this being that of all animals man has the most delicate sense of touch.
The tongue is placed under the vaulted roof of the mouth. In land animals it presents but little diversity. But in other animals it is variable, and this whether we compare them as a class with such as live on land, or compare their several species with each other. It is in man that the tongue attains its greatest degree of freedom, of softness, and of breadth; the object of this being to render it suitable for its double function. For its softness fits it for the perception of savours, a sense which is more delicate in man than in any other animal, softness being most impressionable by touch, of which sense taste is but a variety. This same softness again, together with its breadth, adapts it for the articulation of letters and for speech. For these qualities, combined with its freedom from attachment, are those which suit it best for advancing and retiring in every direction. That this is so is plain, if we consider the case of those who are tongue-tied in however slight a degree. For their speech is indistinct and lisping; that is to say there are certain letters which they cannot pronounce. In being broad is comprised the possibility of becoming narrow; for in the great the small is included, but not the great in the small.

What has been said explains why, among birds, those that are most capable of pronouncing letters are such as have the broadest tongues; and why the viviparous and sanguineous quadrupeds, where the tongue is hard and thick and not free in its motions, have a very limited vocal articulation. Some birds have a considerable variety of notes. These are the smaller kinds. But it is the birds with talons that have the broader tongues. All birds use their tongues to communicate with each other. But some do this in a greater degree than the rest; so that in some cases it even seems as though actual instruction were imparted from one to another by its agency. These, however, are matters which have already been discussed in the Researches concerning Animals.

As to those oviparous and sanguineous animals that live not in the air but on the earth, their tongue in most cases is tied down and
hard, and is therefore useless for vocal purposes; in the serpents, however, and in the lizards it is long and forked, so as to be suited for the perception of savours. So long indeed is this part in serpents, that though small while in the mouth it can be protruded to a great distance. In these animals it is forked and has a fine and hair-like extremity, because of their great liking for dainty food. For by this arrangement they derive a twofold pleasure from savours, their gustatory sensation being as it were doubled.

Even some bloodless animals have an organ that serves for the perception of savours; and in sanguineous animals such an organ is invariably variably. For even in such of these as would seem to an ordinary observer to have nothing of the kind, some of the fishes for example, there is a kind of shabby representative of a tongue, much like what exists in river crocodiles. In most of these cases the apparent absence of the part can be rationally explained on some ground or other. For in the first place the interior of the mouth in animals of this character is invariably spinous. Secondly, in water animals there is but short space of time for the perception of savours, and as the use of this sense is thus of short duration, shortened also is the separate part which subserves it. The reason for their food being so rapidly transmitted to the stomach is that they cannot possibly spend any time in sucking out the juices; for were they to attempt to do so, the water would make its way in during the process. Unless therefore one pulls their mouth very widely open, the projection of this part is quite invisible. The region exposed by thus opening the mouth is spinous; for it is formed by the close apposition of the gills, which are of a spinous character.

In crocodiles the immobility of the lower jaw also contributes in some measure to stunt the development of the tongue. For the crocodile's tongue is adherent to the lower jaw. For its upper and lower jaws are, as it were, inverted, it being the upper jaw which in other animals is the immovable one. The tongue, however, on this animal is not attached to the upper jaw, because that would interfere with the ingestion of food, but adheres to the lower jaw, because this is,
as it were, the upper one which has changed its place. Moreover, it is the crocodile's lot, though a land animal, to live the life of a fish, and this again necessarily involves an indistinct formation of the part in question.

The roof of the mouth resembles flesh, even in many of the fishes; and in some of the river species, as for instance in the fishes known as Cyprini, is so very flesh-like and soft as to be taken by careless observers for a tongue. The tongue of fishes, however, though it exists as a separate part, is never formed with such distinctness as this, as has been already explained. Again, as the gustatory sensibility is intended to serve animals in the selection of food, it is not diffused equally over the whole surface of the tongue-like organ, but is placed chiefly in the tip; and for this reason it is the tip which is the only part of the tongue separated in fishes from the rest of the mouth. As all animals are sensible to the pleasure derivable from food, they all feel a desire for it. For the object of desire is the pleasant. The part, however, by which food produces the sensation is not precisely alike in all of them, but while in some it is free from attachments, in others, where it is not required for vocal pur, poses, it is adherent. In some again it is hard, in others soft or flesh-like. Thus even the Crustacea, the Carabi for instance and the like, and the Cephalopods, such as the Sepias and the Poulps, have some such part inside the mouth. As for the Insects, some of them have the part which serves as tongue inside the mouth, as is the case with ants, and as is also the case with many Testacea, while in others it is placed externally. In this latter case it resembles a sting, and is hollow and spongy, so as to serve at one and the same time for the tasting and for the sucking up of nutriment. This is plainly to be seen in flies and bees and all such animals, and likewise in some of the Testacea. In the Purpurae, for instance, so strong is this part that it enables them to bore holes through the hard covering of shell-fish, of the spiral snails, for example, that are used as bait to catch them. So also the gad-flies and cattle-flies can pierce through the skin of man, and some of them even through the skins of other animals. Such, then, in these animals is the nature of the tongue, which is thus as it were the counterpart
of the elephant’s nostril. For as in the elephant the nostril is used as a weapon, so in these animals the tongue serves as a sting.

In all other animals the tongue agrees with description already given.