INDEX.

Vol. III.

Aberdeenshire, passage from trap into granite in, 361
Abesse, near Dax, section of inland cliff at,—see wood-cut No. 53, 210
Acquapendente, alternations of volcanic tuffs with the Subappennine marls at, 159
Adanson on the age of the baobab tree, 99
Adlington hills, 279
Adorno, opposite dip of the strata in two sections near, 78
Adour, section of tertiary strata in the valley of the—see diag. No. 51, 207
Adour, view of the transverse valley of the river—see wood-cut No. 73, 299
Agassiz, M., on fossil fish of the brown coal formation, 200
—on the fossil fish of the Paris basin, 253
—on the distinctness of the secondary and tertiary fossil fish, 327
Age of volcanos, mode of computing the, 97
Ages, relative, of rocks how determined, 35
Ailet, Lake, how formed, 209
Aix, in Provence, tertiary strata of, 276
—fossil insects abundant in the calcareous marl of, 277
Albenga, height of the tertiary strata above the sea at, 165, 166
—resemblance of the strata at, to the Subappennines, 167
Allan, Mr. T., his discovery of the bones of mammalia in the fresh-water strata of the Isle of Wight, 281
Allier, river, section of volcanic tuff and fresh-water limestone on the banks of the, 258
Alluvium, passage of marine crag strata into, 181
—ancient, of the valley of the Rhine, 209
—of the Weald valley, 295
Alluviums formed in all ages, 145
—of the newer Pliocene period, 139, 145, 151
—distinction between regular subaqueous strata and, 145
—marine, 145
—British, how formed, 147
—European, in great part tertiary, 150
Alluviums, underlying lavas of Catalonia, 188, 189, 190, 192
—of the Miocene era, localities of, 217
—trachytic breccias alternating with, in Auvergne—see wood-cut No. 54, 217
—of Auvergne, extinct quadrupeds in, 218
—of different ages covered by lava in Auvergne—see wood-cut No. 61, 266
—of the Eocene period, 317
Alps, shells drifted into the Mediterranean from the, 48
—erratic blocks of the, 148
—Maritime, tertiary strata at the base of the, 164
—secondary strata penetrated by granite in, 358
—strata of oolite altered in, 371
Altered strata in contact with granite, 370, 371
—strata, enumeration of the probable conversions of sedimentary strata into well-known metamorphic rocks, 373
Alternations of strata with and without organic remains, how caused, 254
Alum Bay, alternation of the London and plastic clay in, 278
Amer, geological structure of the country near, 185
Anapo, valley of the, 111
Andernach, gorge of, 152
—loess and volcanic ejections alternating at, 153
Andes, sudden rise of the, said to have caused the historical deluge, 148
Angers, fossil shells found at—see tables Appendix I.
Anglesia, changes caused by a volcanic dike in, 363
Animals, their fossilization partial, 31
—remains of, in the successive tertiary periods, 59
Anoplotherium found in the fresh-water formation of the Isle of Wight, 281, 317
Anthracite, whence derived, 373
Anticlinal axis of the Weald valley—see wood-cuts Nos. 63 and 64, 288
Anticlinal and synclinal lines described—see wood-cut No. 68, 293
INDEX.

Anticlinal lines, how far those formed at the same time are parallel, 349
Antilles, recent shells imbedded in limestone in the, 133
Antrim, chalk in, converted into marble by trap-dike, 369
— altered coal and lias in, 369
Apennines, tertiary strata at the foot of the, 155
Apolinarius does not mention the volcanos in his description of Auvergne, 269
Areas of sedimentary deposition, shifting of the, 26
Argillaceous strata, change caused by a dike of lava in, 70
Arno, river, yellow sand like the Subapennines deposited by the, 161
Arun, transverse valley of the, 298, 299
Asia, western, great cavity in, 29, 270
Astroni, crater of, 187
Atlantis of Plato, 330
Atrio del Cavallo, dikes in the, 124
Aurillac, fresh-water formation of, 236
— silex abundant in the fresh-water strata of, 237
— resemblance of the fresh-water limestone and flints to the chalk, 237
— proofs of the gradual deposition of the fresh-water marls of, 239
Australian breccias, bones of marsupial animals in, 143
Auvergne, appearance of some of the lavas of, 94
— position of the Miocene alluviums of—see wood-cut No. 54, 217
— extinct quadrupeds in the alluviums of, 218
— age of the volcanic rocks of, 224
— lacustrine deposits of, 226
— map of the lacustrine basins and volcanic rocks of—see wood-cut No. 56, 226
— tertiary red marl and sandstone of, like new red sandstone, 229, 333
— indusial limestone of, 232
— dip of the tertiary strata of, 233, 235
— arrangement and origin of the fresh-water formation of, 233
— analogy of the tertiary deposits of, to those of the Paris basin, 241
— geographical connexion of the Paris basin and, 241
— probably once connected with the Paris basin by a chain of lakes, 241
— volcanic rocks of, 257
— igneous rocks associated with the lacustrine strata of, 258
— volcanic breccias of, how formed, 259
— minor volcanos of, 260, 263
— long succession of eruptions in, 260
— ravines excavated through lava in, 264
— Auvergne, lavas resting on alluviums of different ages in—see wood-cut No. 61, 266
— age of the volcanos of, 268, 269
Aventine, Mount, a deposit of calcareous tufa on, 139
Bagneux, alternation of plastic clay and calcaire grossier at, 244
Bagshot sand, its composition, &c., 280
Banos del Pujio, elevated sea-cliff near, 131
Baobab tree, its size, probable age, &c., 99, 272
Baraque, la Petite, section of vertical marls in a ravine near—see wood-cut No. 57, 231
Barcelona, height of the marine tertiary strata of, 193
Barcombe, section from the north escarpment of the South Downs to—see wood-cut No. 71, 296
Barzone, gypsum found in the Subapennine marls near, 159
Basalt, theory of the aqueous origin of, 4
Basalts of the Bay of Trezza, Paternò, &c., their relative age, 82
Basterot, M. de, on the fossil shells of Bordeaux and Dax, 20, 206
Battoch, Mount, granite veins of, 357
Bay of Trezza, sub-Etnean formations exposed in the, 78
— proofs of ancient submarine eruptions in the, 78
Bayonne, age of the tertiary strata near, 343
— age of the newest secondary strata near, 343
Bawdesley, inclination of the crag strata near, 174
Beauchamp, remains of a palaeotherium and fresh-water shells in calcaire grossier at, 252
Beachy Head, termination of the chalk escarpment at, 291
— thickness of the upper green-sand at, 292
Beginning of things, supposed proofs of, 383
Belbet, section of white limestone in the quarry of, 237
Belgium, tertiary formations of, 276
— fossil shells from—see table, Appendix I.
Bellemi, Mount, caves in, 143
Beudant, M., on the volcanic rocks of Hungary, 222
Bingen, gorge of, 152
Binstead, mammiferous remains found in the quarries of, 251, 317
Blaye, limestone of, 208
— its position—see wood-cut No. 52, 209
INDEX.

Blue marl with shells of the Val di Noto, 67
Bobaye, M., on the successive elevations of the Morea, 113, 132
— on the formation of osseous breccias in the Morea, 144
— on the tertiary strata of the Morea, 170
Bolos, Don Francisco, on the volcanos of Olot, in Catalonia, 187, 191, 193
— on the destruction of Olot by earthquake, in 1421, 191
Bonelli, Signor, on the fossil shells of Savona, 166
— on the fossil shells of the Superga, 211
Bonn, blocks of quartz containing casts of fresh-water shells found near, 199
— remains of frogs from the brown coal formation in the museum at, 200
Bordeaux, tertiary strata of, 20, 206
— Eocene strata in the basin of, 208
— fossil shells of—see table, Appendix I.
Bormida, tertiary strata of the valley of the, 211
Bosque de Tosca, a mound of lava near Olot, 186
Botley Hill, height of, 288
Boué, M., on the loess of the valley of the Rhine, 151
— on the value of zoological characters in determining the chronological relations of strata, 208
— term molasse vague employed by, 212
— on the tertiary formations of Hungary and Transylvania, 213
— on the fossil shells of Hungary, 223
— on the volcanic rocks of Transylvania, 223
— his objections to the theory of M. Elie de Beaumont, 346, 347
Bouillet, M., on the extinct quadrupeds of Mont Perrier, 218
— on alluvium of different ages in Auvergne, 267
Boulade, position of the alluvium of the—see wood-cut No. 54, 217
Boulon and Ceret, dip of the tertiary strata between, 170
Bourbon, Isle of, a volcanic eruption every two years in the, 363
Bowdich, Mr., fossil shells of recent species brought from Madeira by, 134
Braganza river, brown clay deposited by the, 161
Breccias in the series of superimposed formations, causes of, 26, 33
Breccias in the Val del Bove, 93
— osseous, in Sicilian caves, 139
Breccias, in Australian caves, 143
— now in progress in the Morea, 144
— trachytic, alternations of alluvium and—see wood-cut No. 54, 217
— volcanic, of Auvergne, 259
Brighton, deposit containing recent shells in the cliffs near, 182
British alluviums, how formed, 147
— their age, 147, 272
Brocchi on the tertiary strata of the Subapennines, 18, 155
— on the number of shells common to Italy and the Paris basin, 156
— on the age of the Italian tertiary strata, 156
— on the organic remains of the sub-Apennine strata, 163
Bromley, pebble with oysters attached to it found in the plastic clay at, 278
Bromniart, M. Alex., on the formations of the Paris basin, 16
— on the conglomerate of the hill of the Superga, 211
— tabular view of his arrangement of the strata of the Paris basin—see wood-cut No. 58, 243, 247
Bromn, M., on the loess of the Rhine, 151, 153, 154
Brown coal formation near the valley of the Rhine, 199
— organic remains of the, 200
Brueil, quarry of, 237
Buckland, Dr., on the Val del Bove, 83
— on the grooved summits of the Corsorphine Hills, 147
— on the effects of the Deluge, 271
— on the Plastic clay, 278
— on tertiary outliers on chalk hills, 283
— on the former continuity of the London and Hampshire basins, 283
— on valleys of elevation, 305, 307, 309
Budoshagy, rent exhaling sulphureous vapoours in the mountain of, 223
Buduras, jets of air from subterranean caverns called, 190
Bulimus montanus drifted from the Alps into the Mediterranean, 48
Buried cones on Etna, sections of, 88
Burton, M. J., his discovery of tertiary strata on the western borders of the Red Sea, 135
Cadibons, section of the fresh-water formations of—see wood-cut No. 55, 221
— lignites of, remains of an anthracotherium found in, 222
Caernarvonshire, tertiary strata of, 135
Cesar, volcanos of Auvergne not mentioned by, 269
INDEX.

Cairo, green sand containing shells at, 211
Calabria, recent tertiary strata of, 22
— effects of the earthquake of 1783, 142, 319
Calais, ripple marks formed by the winds on the dunes near—see wood-cut No. 36, 176
Calanna, lava of Etna turned from its course by the hill of—see wood-cut No. 18, 86
— description of the valley of, 85, 91
Calcaire grossier, alternation of the Plastic clay and, 244
— number of fossil shells of, 245
— abundance of cerithia in, 245
— alternates with fresh-water limestone at Triel, 246
— manner in which it was deposited, 246
— in part destroyed when the upper marine strata were formed, 248
— abundance of microscopic shells in the, 250
— Palaecotherium and fresh-water shells in, 252
Calcaire silicieux de the Paris basin, 246
— alternates with calcaire grossier at Triel, 246
— how formed, 246
Calcereous grit and peperino, sections of—see diagrams Nos. 9 and 10, 72
Caltagirone, blue shelly marl of, 66, 67
— fossil shells from—see list, Appendix II, 55
Calatanisseta, dip of the tertiary strata at, 74
— list of fossil shells from,—Appendix II, 54
Cambridgeshire, great line of chalk escarpment from, to Dorsetshire, 315
Campagna di Roma, age of the volcanic rocks of the, 183
Campania, tertiary formation of, 118
— comparison of recorded changes in, with those commemorated by geological monuments, 118
— age of the volcanic and associated rocks of, 126
— external configuration of the country how caused, 127
— affords no signs of diluvial waves, 128
Canadian lakes, changes which would take place in the Gulf of St. Lawrence if they were filled up, 28
Cantal, fresh-water formations of, 236
— fresh-water limestone and flints resembling chalk in the, 237
— proofs of the gradual deposition of marl in the, 239
Cape Wrath, granite veins of—see wood-cuts Nos. 85 and 86, 354

Capitol, hill of the, a deposit of calcareous tufa found on the, 138
Cape Santa Croce, shelly limestone resting on lava at, 68
Capra, flowing of the lavas of 1811 and 1819 round the rock of—see wood-cut No. 21, 92
— traversed by dikes, 92
Carboniferous series, 326
Carcare, tertiary strata of—see wood-cut No. 55, 207, 222
— fossil shells of, 211
Cardona, rock salt of, its relative age, 333
Casamicciola, shells found in stratified tuff at, 126
Caspian Sea, level of the, 29, 271
Castell de Stolles, ravine excavated in lava opposite the, 189
Castell Follitt, extent of the lava stream of—see map, wood-cut No. 43, 184
— section of lava cut through by river at—see wood-cut No. 46, 189, 190
Castello d'Acì, 81
Castrogiovanni, section of the Val di Noto series at—see diagram No. 5, 64
— hill of, its height, 66
— capped by the Val di Noto limestone, 66
— fossil fish found in gypseous marls at, 67
— list of fossil shells from—Appendix II, 55
Castelgomberto, fossil shells of—see Table, Appendix I.
Catalonia, volcanic district of, 183
— extent of the volcanic region of—see map, wood-cut No. 43, 184
— volcanic cones and lavas of—(see Frontispiece), 185
— ravines, excavated through lava in, 188, 189
— age of the volcanos of, 191
— superposition of rocks in the volcanic district of—see wood-cut No. 47, 192
Catania, volcanic conglomerates forming on the beach at, 73
— plain of, 75, 76
— marine formation near, 78
Catastrophes, remarks on theories respecting, 6, 33
Catcliff, Little, section of part of, showing the inclination of the layers in opposite directions—see wood-cut No. 33, 175
Cavalaccio, Monte, shells procured from the tufts of, 79
Caves in Sicily, osseous breccias found in, 139
— perforated in the interior by lithodomy, 140, 141
— Australian, bones of marsupial animals in, 143
INDEX.

Cavo delle Neve, hollow in Ischia called the, 127
— ancient sea-beach seen near, 127
Cellent, lava current of—see map, wood-cut, No 43, 184
— section above the bridge of—see wood-cut No. 45, 188
Central France, volcanic rocks of, 224, 257
— fresh-water, formations of, 225
— analogy of the tertiary deposits of, to those of the Paris basin, 241, 247
— valleys of, how formed, 319
Cer, valley of the, sections of foliated marls in the, 239
Céret and Boulon, dip of the tertiary strata between, 170
Cerithia, abundance of in the calcaire grossier, 245
Chabriol, M., on the fossil mammals of Mont Perrier, 218
Chadrat, pisolitic limestone of, 232
Chalk, protruded masses of in the crag strata—see wood-cuts Nos. 41 and 42, 179, 180
— English tertiary strata, conformable to the, 282
— deep indentations filled with sand, &c., on its surface, 282
— tertiary outliers on, 283
— fissure in the, filled with sand near Lewes, 283
— and upper green sand of the Weald valley, 286
— escarpments of the Weald valley, once sea-cliffs—see wood-cuts Nos. 65 and 66, 289, 290, 291
— why no ruins of, on the central district of the Weald, 295
— of the North and South Downs, its former continuity, 303
— the alternative of the hypothesis that it was once continuous considered, 304
— valleys and furrows in the, how caused, 311
— cliffs, rapid waste of on Sussex coast, 311
— greatest elevation attained by it in England, 314
— great line of escarpment formed by the, through the central parts of England, 315
— nearly all the land in Europe has emerged since the deposition of the, 330
— has been elevated at successive periods, 331
— converted into marble by trap dike in Antrim, 369
Chalk-flints, analysis of, 238
Chamalieres, near Clermont, section at, 228
Chambon, lake of, formed by the lava of the Puy de Tartaret, 264
Chamouni, glaciers of, 150
Champheix, tertiary red marls of, 229
Champoleon in the Alps, strata altered near, 371
Champadelle, section of vertical marls at,
—see wood-cut No. 57, 231
Chili, Newer Pliocene marine strata at great heights in, 130
Christie, Dr. T., his account of the Cave of San Ciro, 140
— on caverns in Mount Beliemi, Sicily, 143
Cirque of Gavarnie, in the Pyrenees, 88
Cisterna on Elba, formed by a subsidence in 1792, 96, 129
Classification of tertiary formations in chronological order, 45
Clay-slate, lamination of, in the Pyrenees
—see wood-cut No. 89, 366
— may be altered into shale, 373
— convertible into hornblende schist, 373
Clermont, section of littoral deposits near, 228
— section of vertical marls near—see wood-cut No. 57, 231
— alternations of volcanic tuff and fresh-water limestone near, 258
Cliff, Mr., on the bones of animals from Australian caves, 144
Climate, effects of changes of, on species, 44
Coal reduced to cinder by trap dike, 370
Colle, fresh-water formation of, 137
— fossil shells of living species in the, 138
Comb Hurst, hills of, 279
Côme, lava current of, 186
Conception Bay, fossil shells of recent species found at great heights in, 130
Conglomerate, tertiary, of Nice, 167
— now formed by the rivers near Nice, 168, 169
— time required for the formation of great beds of, 170
Conglomerates, volcanic, of the Val di Noto, 73
— now forming on the shores of Calabria and Ischia, 73
Contemporaneous origin of Rocks, how determined, 37
Contemporaneous, remarks on the term, 52
Continents, position of former, 328, 330
Contortions in the Newer Pliocene strata in the Isle of Cyclops—see wood-cut No. 15, 80
Conybeare, Rev. W. D., on the English crag, 19
INDEX.

Coneybeare, Rev. W. D., on the thickness of the London clay, 279
— on the organic remains of the London clay, 280
— on indentations in the chalk near Rochester, 282
— on the transverse valleys of the North and South Downs, 293
— on the former continuity of the chalk of the North and South Downs, 303
— his objections to the theory of M. E. de Beaumont, 348
Coomb, view of the ravine called the, near Lewes—see wood-cut No. 75, 301
Coquimbo, parallel roads of, 131
Corals standing erect among igneous and aqueous formations at Galieri, 73
Cornwall, granite veins of—see wood-cut No. 87, 355, 370
— argillaceous schist, containing organic remains in, 376
Costa de Pujou, structure of the hill of—see frontispiece, 186
Corstorphine hills, parallel grooves on their summits, how formed, 147
Cotentin, tertiary formation of the, 276
Coudes, tertiary red marl and sand-stone of, like 'new red sand-stone,' 229
Couze, river, lake formed by the filling up of its ancient bed by lava, 264
Crag of England, organic remains of the, 19
— its relative age, 171
— number of shells found in the, 171
— its mineral composition, 171
— relative position of the—see diag. No. 30, 172
— lacustrine deposits resting on the, 173
— forms of stratification of the—see wood-cuts 173, 174, 175
— dip of the strata of the, 174, 175
— comparison between the Faluns of Touraine and the, 203
— derangement in the strata of the—see wood-cuts, 177
— passage of, into alluvium, 181
— its resemblance to formations now in progress, 177, 182
— proportion of living species in the fossil shells of the—see Appendix I., p. 47
— number common to Italy and the, ib. 47
— number common to Sicily and the, ib. 47
— number common to Italy, Sicily, and the, ib. 47
— geographical distribution of the living species found in the, ib. 47, 51
Craters, volcanic, of the Eifel, how formed, 196
Creta, argillaceous deposit called, 67, 76
— resting on columnar lava in the Isle of Cyclops—see wood-cut No. 14, 79
Crocodile of the Ganges found in both salt and fresh water, 330
Croizet, M. J., on extinct quadrupeds of Mount Perrier, 218
— on alluviums of different ages in Auvergne, 267
Cromer, bent strata of loam in the cliffs near—see wood-cut No. 37, 178
Crowborough hill, height of, 288
— thickness of strata removed from the summit of, 313
Cuckland, Mr. A., on distinct lines of ancient sea-cliffs on the coast of Peru, 130
Cuckmere, transverse valley of the, 298, 299
Curtis, Mr. J., on the fossil insects of Aix, in Provence, 277
Cussac, bones of extinct quadrupeds in alluvium under lava at, 219
Cutch, changes caused by the earthquake of 1819 in, 104, 249, 318
Cuvier, M., on the mammiferous remains of the Upper Val d'Arno, 221
— on the tertiary strata of the Paris basin, 16, 247, 243
— on the fossil organic remains of the Paris basin, 253
Cyclops, view of the island of, in the Bay of Trezza—see wood-cut No. 14, 79
— its height, &c., 79
— stratified marl resting on columnar lava in the—see wood-cut No. 14, 79
Cypris, abundance of the remains of, in the fresh-water strata of Auvergne, 230
— habits of the living species of, 230
Darent, transverse valley of the, 298, 299
Daubeny, Dr., on the Val di Noto limestone, 66
— on the volcanic region of Olot, in Catalonia, 184
— on the volcanic district of the Lower Rhine and Eifel, 201
— on the age of the Auvergne volcanos, 269
D'Aubuisson, on the appearance of some of the Auvergne lavas, 94
Daun, lake-craters of the Eifel seen near, 195
Dax, tertiary formations of, 20, 206
— section of tertiary strata overlying the chalk near—see diag. No. 51, 207
— section of inland cliff near—see wood-cut No. 53, 210
— fossil shells of—see tables Appendix I.
De Beaumont, M. Elie, on the cause of the historical deluge, 148, 272
— his theory of the contemporaneous origin of parallel mountain chains considered, 337
— his proofs that different chains were raised at different epochs, 340
INDEX.

De Beaumont, M. Elie, objections to the theory of, 341
—— on modern granite of the Alps, 358
De Candolle on the longevity of trees, 99
De la Beche, Mr., on M. Elie de Beaumont's theory, 347
Delta, of the Niger, size of the, 329
—— of the Nile, preyed on by currents, 28
—— of Rhone, in lake of Geneva, 27
De Luc, on the deluge, 271
Deluge, on the changes caused by the, 270
—— M. Elie Beaumont, on the cause of the historical, 148
Denudation, effects of, 30, 32
—— of the Valley of the Weald, 285
Deposition, sedimentary, shifting of the areas of, 25
Descartes, 97
Deshayes, M., his comparison of the fossil shells of Touraine, S. E. of France, Piedmont and Vienna, 21
—— his tables of fossil shells, 49—— see Appendix I.
—— on the shells of the Val di Noto, series, 65, 67
—— on shells of the sub-Etnaean beds, 79
—— on the fossil shells of Ischia, 126
—— on the fossil shells of the Antilles, 153
—— on the fresh-water shells of Colle, 138
—— on the fossil shells of the Crag, 171
—— on the limestone of Blaye, 208
—— on the fossil shells of Volhynia and Podolia, 215
—— on the fossil shells of Hungary, 223
—— on the abundance of Cerithia in the Paris basin, 245
—— on the changes which the Cardium porosulum underwent during its existence in the Paris basin, 259
—— on the microscopic shells of the Paris basin, 251
—— on the fossil shells of the Netherlands, 276
—— on the number of shells common to the Maestrict beds, chalk, and upper green sand, 325
—— on the distinctness of the secondary and tertiary fossil shells, 327
—— on the secondary fossil shells of the Pyrenees, 343
Desmoullins, M. Ch., on the Eocene deposits of the environs of Bordeaux, 209
Desnoyers, M., on the organic remains of the Faluns, 205
—— on the tertiary formations of Touraine, 20, 203
—— on the resemblance of the English Crag and the Faluns of the Loire, 204
Desnoyers, M., on the fossil organic remains of the Orleánnais, 219
—— on the alternation of the plastic clay and calcaire grossier in the Paris basin, 244
—— on the tertiary formations of the Cotentin, 276
—— on the marine tertiary strata near Rennes, 275
Devil's-dyke, view of the chalk escarpment of the South Downs, taken from the—— see wood-cut No. 65, 290
Diagonal stratification of the Crag strata—— see wood-cuts, 174, 175
—— cause of this arrangement, 176
Dikes, intersecting limestone, 69
—— traversing peperino near Palagonia,—— see diagrams Nos. 6 and 7, 69
—— on the summit of the lime-stone platform, Val di Noto, 70
—— off tuff or peperino, how formed, 70
—— changes caused in argillaceous strata by, 70
—— on Etna, their form, origin, and composition, 90
—— at the base of the Serra del Solfizio—— see wood-cut, No. 19, 90
—— changes caused by, in the escarpment of Somma, 91
—— in the Val del Bove, as seen from the summit of Etna—— see wood-cut No. 22, 93
—— some caused by the filling up of fissures by lava, 122, 123
—— of Somma—— see wood-cut No. 25, 122
—— cause of the parallelism of their opposite sides, 122
—— varieties in their texture, 124
—— volcanic, in Madeira, 134
—— strata altered by, 369
Diluvial theories, 270
Diluvial waves, whether there are signs of their occurrence on Etna, 101
—— no signs of, in Campania, 128
Dip and direction of the tertiary strata of Sicily, 73
—— of the marine strata at the foot of Etna, 78
Dominica, alternations of coral and lava in, 133
Dorsetshire, valleys of elevation in, 308
Dorsetshire and Cambridgeshire, great line of chalk escarpment between, 315
Doué, M. Bertrand de, on the fossil mammiferous remains of Velay, 219
—— on the lacustrine deposits of Velay, 235, 236
—— on the igneous rocks of Velay, 262
Douce, M. Bertrand de, on Auvergne alluviums under lava, 267
Du Bois, M., on the tertiary strata of Volhynia and Podolia, 215
Dufrenoy, M., on the limestone of Blaye, near Bordeaux, 209
— on the hill of Gergovia, 258
— on the age of the red marl and rocksalt of Cardona, 333
Durance, river, land-shells brought from the Alps into the Rhone by the, 48
Dunwich, thickness of the crag strata in the cliffs near, 172
Dunwich, dip of the crag strata in a cliff between Mismer and—see wood-cut No. 33, 175
Dunes, near Calais, ripple marks formed by the winds on the—see wood-cut, No. 36, 176

Earthquake, Olot destroyed by, in 1421, 191
— of Cutch, effects of the, 104, 249, 318
Earthquakes, their effects on the excavation of valleys, 113
— during the Eocene period, 312
Earth's crust, signs of a succession of former changes recognizable in, 1
— arrangement of the materials composing the, 8
Earth's surface may be greatly changed in one part while an adjoining tract remains stationary, 128
East Indian Archipelago, tertiary formations of the, 133
Ehrenhausen, coralline limestone of the hills of, 214
Eichwald, M., on the tertiary deposits of Volhynia and Podolia, 215
Eifel, volcanoes of the, 193
— map of the volcanic district of the—see wood-cut No. 49, 194
— lake-craters of the—see wood-cut, No. 49, 195
— trace of the, and its origin, 197
— age of the volcanic rocks of the, 199
Elevation of land, how caused, 105
Elevation, proofs of successive, 111
Elsa, valley of the, fresh-water formations of, 137

England, elevation of land gradual in the S.E. of, 318
— on the excavation of valleys in the S.E. of, 319
Enza, river, nature of the sediment deposited by the, 161
Eocene period, derivation of the term, 55
— proportion of living species in the fossil shells of the, 55
— position of the beds referrible to this era—see diagrams Nos. 3 and 4, 20, 21
— geographical distribution of the recent species found in the, 55
— mammiferous remains of the, 59
— fresh-water formations of the, 225
— marine formations of the, 241
— our knowledge of the physical geography, fauna and flora of the, considerable, 254
— volcanic rocks of the, 257
— map of the principal tertiary basins of the—see wood-cut No. 62, 275
— earthquakes during the, 312
— alluviums of the, 317
— chasm between the newest secondary formations and those of the, 328
— great volume of hypogene rocks formed since, 381
— number of species of fossil shells common to different formations referrible to the, Appendix I., p. 49
— number of living species in the fossil shells of the, itb., 50
— number common to the Pliocene, Miocene, and, itb., 50
— geographical distribution of the living species found in the, itb., 51
Eocene strata in the Bordeaux basin, 208
— its relative position—see wood-cut No. 52, 209
Epomeo, shells found in volcanic tuff near the summit of, 126
Erratic blocks of the Alps, 148
— transported by ice, 149
Escarpments, manner in which the sea destroys successive lines of, 111, 292
Escarpments of the chalk in the Weald valley, once sea-cliffs—see wood-cuts, Nos. 65 and 66, 289, 291
Estuary deposits, arrangement of, 9
Eternity of the earth, or of present system of changes not assumed in this work, 383
Etna, marine and volcanic formations at its base, 75
— view of, from the limestone platform of Primosole—see diagram No. 11, 75
— connexion of the strata at its base with those of the Val di Noto—see diagram No. 12, 76
INDEX.

Etna, southern base of, 77
— recent shells in clay at the foot of, 77
— dip of the marine strata at the base of, 78
— eastern side of, 78
— shells in tuffs and marls on the east side of, 79
— lavas of the Cyclopian isles, not currents from, 81
— internal structure of the cone of, 83
— great valley on the east side of—see wood-cut No. 17, 83
— lateral eruptions of, 84
— manner of increase of the principal cone of, 84
— sections of buried cones on, 88
— form, composition, and origin of the dikes on, 90
— veins of lava on—see wood-cut No. 20, 91
— view from the summit of, into the Val del Bove—see wood-cut No. 22, 93
— subsidences on, 96
— antiquity of the cone of, 97
— whether signs of diluvial waves are observable on, 101
— list of fossil shells from the flanks of—Appendix II., p. 53.

Europe, newest tertiary strata of, 22
— large portions of, submerged when the secondary strata were formed, 23
— almost all the land in, has emerged since the deposition of the chalk, 330

European tertiary strata, successive origin of the, 18

European alluviums in great part tertiary, 150

Excavation of valleys, 319

Faluns of Touraine, 203
— comparison between the English crag and the, 203, 204
— were formed in a shallow sea, 204
— organic remains of the, 204, 206

Fasano, escarpment of marine strata seen near, 78

Fault in the cliff-hills near Lewes—see section, wood-cut No. 76, 301

Finchchio, view of the rock of, with the lavas of 1811 and 1819 flowing round it—see wood-cut No. 21, 92

Firestone of the Weald Valley, 286
— terrace formed by the harder beds of—see wood-cut No. 67, 291, 292

Fish, skeletons of, by no means frequent in a fossil state, 47
— fossil, of Castrogiovanni, 67

Fitz, Dr., on the secondary rocks of the Valley of the Weald, 286
— on the denudation of the Weald Valley, 259

Fitz, Dr., on faults in the strata of the Forest ridge, 293
— on a line of vertical and inclined strata from the Isle of Wight to Dieppe, 315
— an ammonite found in the Maestricht beds by, 325
— on the extent and thickness of the Wealden, 329
— on the delta of the Niger, 329

Fiume Salsolo, in Sicily, 252

Fleming, Dr., on the effects of the deluge, 271

Flinty slate, slate-clay of the lias, converted into, by trap dike, 370

Flood, supposed effects of the, 270
— hypothesis of a partial, 270

Florida, schistose and arenaceous limestone of, 66

Fluvial, river, ravines in lava excavated by, 186, 189

Forest ridge of the Weald Valley, 293
— faults in the strata of the, 293
— thickness of masses removed from the, 313

Formations, causes of the superposition of successive, 26
— universal, remarks on the theory of, 38
— new subdivisions of the tertiary, 52

Fossa Grande, section of Vesuvius seen in, 84

Fossilization of plants and animals partial, 31

Fossils, distinctness of the secondary and tertiary, 327

Fresh-water deposits, secondary, why rare, 330

Fuveau, in Provence, tertiary strata of, 276

Gabel Tor, volcano of, 136

Galleri, a bed of corals found standing erect among igneous and aqueous formations at, 73

Ganges, the crocodile of the, found both in fresh and salt water, 330

Gannet, fresh-water limestone of, 232

Garnets, in altered shale, 369

Garranada, hill of, described—(see frontispiece, 187

Gavarnie, cirque of, 88
— lamination of clay-slate near—see wood-cut No. 89, 366

Gault of the Valley of the Weald, 286
— valley formed at its out-crop, 292
— forms an escarpment towards the Weald clay, 293

Gemunden Maar, view of the—see wood-cut No. 49, 195
INDEX.

Geneva, lake of, advance of the delta of the Rhone in, 27
— change which will take place in the distribution of sediment when it is filled up, 27
Genoa, height of the tertiary strata above the sea at, 165, 166
— position of the strata—see diagram No. 28, 166
Geological periods, their distinctness may arise from our imperfect information, 56
Gergovia, hill of, alternation of volcanic tuff and fresh-water marls in, 258
— section of, 259
— intersected by a dike of basalt—see wood-cut, No. 60, 259
Giacomo, St., valley of, described, 84, 85, 91
Gillenfeld, description of the Pulvermaar of, 197
Girgenti, section at—see diagram No. 5, 64
— shells found in the limestone of, 65
— dip of the tertiary strata at, 74
— list of fossil shells from—see Appendix II., p. 54
Gironde, tertiary strata of the basin of the, 206
Glaciers of Savoy, great quantities of rock brought down by the, 149
Glen Roy, parallel roads of, 131
Glen Tilt, junction of limestone and granite in—see wood-cut No. 88, 356
Gly, river, tertiary strata in the valley of the, 170
Gneiss, mineral composition of, 365, 367
— passage of, into granite, 367, 372
— was originally deposited from water, 367
— whence derived, 373
Gozzo degli Martiri, dikes intersecting limestone at, 69
— view of the valley of—see wood-cut No. 23, 110
Grammichele, beds of incoherent yellow sand with shells found near, 66
— bones of the mammoth found in alluvium at, 151
Grampians, granite veins of the, 357
Granada, tertiary strata of, 170
Granite, junction of limestone and, in Glen Tilt—see wood-cut No. 88, 356
— formed at different periods, 13, 357
— passage from trap into, 361
— origin of, 12, 363
— passage of gneiss into, 367, 372
— changes produced by its contact with strata of lias and oolite in the Alps, 371
Granite veins, their various forms and mineral composition—see wood-cuts, Nos. 85, 86, 87, and 88, 353, 356, 370
Gravesend, deep indentations in the chalk filled with sand, gravel, &c., near, 282
Greywacke, 377
— of the Eisel, 194
— age of the rocks termed, 327
Greenough, Mr., on fossil shells from the borders of the Red Sea, 136
Grifone, Monte, caves containing the remains of extinct animals in, 141
Grit, calcareous, and peperino, sections of—see diagrams Nos. 9 and 10, 72
Grooved surface of rocks, how formed, 147
Grosnez, near Nice, tertiary strata found at, 135
Guadaloupe, active volcanos in, 133
Guidotti, Signor, on the shells of the gypsum of Monte Cerio, 159
Gypseous marls containing fish found at Castrogiovanni, 63, 67
Gypsum, and marls, of the Paris basin, 247
— bones of quadrupeds, &c., in, 251
— on the entire absence of marine remains in the, 252
— of St. Romain on the Allier, 233
— beds of, interstratified with the sub-Apennine marls, 159
— unaltered shells in the, 159
Gyrogonites, abundant in the fresh-water formations of the Paris basin, 250
Hall, Sir James, his experiments on rocks, 124
— on the grooved summits of the Corstorphine hills, 147
Hall, Capt. B., on the parallel roads of Coquimbo, 131
— on vertical dikes of lava in Madeira, 134
— on the veins traversing the Table Mountain, Cape of Good Hope, 354
Hamilton, Sir W., his account of the eruption of Vesuvius in 1779, 122
Hampshire basin, tertiary formations of the, 18, 280
— mammiferous remains of the, 280, 281
— on the former continuity of the London and, 283
Happisborough, diagonal stratification of the crag strata near—see wood-cut No. 32, 174
Hartz mountains, geological and geographical axes of the, 346
Hastings sands, their composition, 286
— anticlinal axis formed by the, 287
Haute Loire, fresh-water formation of the, 235
Headen Hill, section of, 281
Heat, its influence on the consolidation of strata, 334
Hebrides, age of the volcanic rocks of the, 336
INDEX.

Heidelberg, shells found in the loess at, 152
— loess and gravel alternating at, 153
— granites of different ages near, 357
Henslow, Professor, on the changes caused by a volcanic dike in Anglesia, 368
Hibbert, Dr., on the extinct volcanos of the Rhine, 197, 201
— on the loess of the valley of the Rhine, 151
— on the mammiferous remains of Velay, 219
Highbeach, in Essex, height of the London clay at, 312
Hoffmann, Professor, his examination of Sicily, 63
— on the limestone of Capo Santa Croce, 68
— on the new island of Sciaccia, 71
— on the Val del Bove, 88
— on cave deposits in Sicily, 139, 140, 141
Honduras, recent strata of the, 133
Hornblende schist, altered clay or shale, 373
Horn, Dr., on the map of the volcanic district of the Eifel and Lower Rhine—see wood-cut No. 48, 194
— on the geology of the Lower Rhine and Eifel, 201
Hugi, M., on secondary strata altered into gneiss in the Alps, 372
— on modern granite in the Alps, 358
Human remains now becoming imbedded in osseous breccias in the Morea, 144
Humboldt, on the depression of a large part of Asia, below the level of the sea, 29
Hundsdruck, beds and veins of quartz found in the mountains of the, 201
Hungary, tertiary formations of, 212
— age of the tertiary strata of, 215
— volcanic rocks of, 222
— age of the igneous rocks of, 223
Hutton, his opinion as to altered sedimentary rocks, 382
Huttonian hypothesis of the origin of gneiss, 366
Hydropogone, term proposed as a substitute for primary, 374
— formations, no order of succession in, 375
— rocks, their identity of character in distant regions, 376
— produced in all ages in equal quantities, 377
— their relative age, 377
— volume of, formed since the Eocene period, 381

Icebergs, rocks transported by, deposited wherever they are dissolved, 149, 150
Idienne, volcanic mountain of, 252
Indusial limestone of Auvergne, 232
Inkpen hill, the highest point of the chalk in England, 314
Inland cliff near Dax—see wood-cut No. 53, 209
Inland cliffs on East side of Val di Noto, 111
Insects, fossil of, Aix, 277
Ischia, volcanic conglomerates now in progress on the shores of, 73
— fossil shells of recent species found at great heights in, 126
— external configuration of, how caused, 127
— list of fossil shells from—Appendix II., 57
Isle of Bourbon, a volcanic eruption every two years in, 363
Isle of Cyclops, in the bay of Trezza, view of—see wood-cut No. 14, 79
— its height, &c., 79
— stratified marl resting on columnar lava in the—see wood-cut No. 14, 79
— contortions in the newer Pliocene, strata of—see wood-cut No. 15, 80
— divided into two parts by a great fissure, 80
— newer Pliocene strata invaded by lava in—see wood-cut No. 16, 81
— lavas of, not currents from Etna, 81
Isle of Purbeck, traversed by a line of vertical or inclined strata, 315
Isle of Wight, geology of the, 18
— fall of one of the Needles of the, into the sea in 1772, 181
— fresh-water strata of the, 280
— mammiferous remains of the, 281, 317
— vertical strata of the, 315
Italy, tertiary strata of, 18
— age of the volcanic rocks of, 183
— number of living species in the fossil shells of—see Appendix I., 47
— number of those common to Sicily and, ib. 47
— number common to the Crag and, ib. 47
— number common to Sicily, the and, ib. 47
Jack, Dr., on the geology of the island of Pulo Nias, 134
Jamaica, fossil shells of recent species from, in the British Museum, 133
Java, subsidence of the volcano of Papan-diyang, in the island of, 96
— vegetation destroyed by hot sulphuric water from a mountain in, 252
Jobert, M., on the extinct quadrupeds of Mont Perrier, 218
— on the hill of Gergovia, 258
Jobert, M., on the different ages of Auvergne alluviums, 267
Jorullo, time for which the lava of, retained its heat, 363
Jura, erratic blocks of the, 148
Kaiserstuhl, volcanic hills in the plains of the Rhine, 152
— covered nearly to their summits with loess, 152
Katavothrons of the plain of Tripolitza now filling up with osseous breccias, 144
Kater, Capt., on recent deposits near Ramsgate, 182
Keferstein, M., his objections to M. de Beaumont's theory, 347
Kingsclere, valley of, ground plan of the — see wood-cut No. 78, 305
— section across the, from North to South — see wood-cut No. 79, 305
— section of the, with the heights on a true scale — see wood-cut No. 80, 306
— anticlinal axis of the, 306
— proofs of denudation in the, 307
Killas of Cornwall, 370
Laach, lake-crater of, 197
Lacustrine deposits overlying the crag — see diagram No. 30, 173
Lake Aidat, formed by the damming up of a river by lava, 269
Lake-craters of the Eifel — see wood-cuts Nos. 49 and 50, 195, 196
— how formed, 196
Lakes, arrangement of deposits in, 8
Lake Superior, recent deposits in, analogous to those of the Eocene lakes in Auvergne, 230
— nature of the recent deposits in, 334
— the bursting of its barrier would cause an extensive deluge, 270
Lamarch, his list of the fossil shells of the Paris basin, 156
La Motta, valleys excavated through blue marl capped with columnar basalt at, 77
— volcanic conglomerate of — see diagram No. 13, 77
— relative age of the basalts of, 82
Lancashire, tertiary strata of, 135
Land, elevation of, caused by subterranean lava, 105
Land-shells drifted from the Alps into the Mediterranean, 48
Landers, on the delta of the Niger, 330
Landes, tertiary strata of the, 206
La Roche, section of the hill of, 229
Las Planas, lava current of, 189
La Trinité, near Nice, fossil shells of, 168
Lauder, Sir T. D., on the parallel roads of Glen Roy, 131
Lava, a bed of oysters between two currents of, at Vizzini, 73
Lava, columnar, stratified marl resting on, in the Isle of Cyclops — see wood-cut No. 14, 79
— minerals in cavities of, 81
— veins of, on Etna, 91
— great length of time which it requires to cool, 363
Lava streams solid externally while in motion, 86
Lavas of the Cyclopian isles not currents from Etna, 81
Lavas and breccias of the Val del Bove, 93
Lavas excavated by rivers in Catalonia, 186, 189
Lavas and alluviums of different ages in Auvergne — see wood-cut No. 61, 266
La Vissiere, fresh-water limestone covered by volcanic rocks at, 263
— faults in the limestone at, 263
Leeward Islands, geology of the, 132
Le Grand d'Aussy, M., on alluviums under lava in Auvergne, 267
Leith Hill, height of, 293
Lentini, volcanic pebbles covered with serpule in the limestone near, 73
— dip of the strata at, 74
— valleys near, their origin, 111
Leonhard, M., on the loess of the valley of the Rhine, 151
— on the volcanic district of the Lower Rhine, 201
— on granites of different ages near Heidelberg, 357
Lewes, fissures in the chalk filled with sand near, 283
— view of the ravine called the Coomb near — see wood-cut No. 75, 301
— fault in the cliff-hills near — see wood-cut No. 76, 301
Leybros, fresh-water limestone of, 237
Lias, strata of the, 326
— strata between the Carboniferous group and the, 326
— converted into flinty slate by trap dikes in Antrim, 370
— altered in the Alps, 372
— altered in Hebrides, 378
Licodia, relative age of the basalts of, 82
Lignite, interstratified with the sub-Apennine marls, 159
Lima, valley of, proofs of the successive rise of the, 130
Limagne d'Auvergne, lacustrine deposits and volcanic rocks of the — see map, wood-cut No. 56, 226
Limestone formation of the Val di Noto described — see diagram No. 5, 64
— its organic remains, 65
Limestone, resting on lava at Capo Santa Croce, 88
Lithological character of the sub-Apennine beds, 157, 162
INDEX.

Lockart, M., on the fossil remains of the Orleanais, 219
Loess of the valley of the Rhine, 151
— mineral, composition of the, 151
— its thickness and origin, 152
— gravel, &c. alternating with, 153
— list of shells from the—see Appendix II., 58
Loire, tertiary strata of the basin of the,
— relative age of the strata of the—see diagram No. 3, 20
— ‘faluns’ of the, 203
London basin, tertiary deposits of the, 18, 277
— on the former continuity of the Hampshire and, 283
— fossil shells of the—see Tables, Appendix I.
— proportion of living species in the fossil shells of the—Appendix I., 50
London clay, its composition, thickness, &c., 279
— septaria of the, 279
— the fossil shells identifiable with those of the Paris basin, 280
— organic remains of the, 280
Lower green-sand described, 286
Lower Rhine, see Rhine.
Lucina divaricata, wide geographical range of the, 254
Luy, section of tertiary strata in the valley of
the—see diagram No. 51, 207
Maars, or lake-craters of the Eifel—see wood-cuts Nos. 49 and 50, 195, 196
— how formed, 196
Macculloch, Dr., on the parallel roads of
Glen Roy, 131
— sub-Apenine strata termed marine alluvia by, 157
— on the granite veins of Cape Wrath, in Scotland, 354
— on the junction of granite and limestone in Glen Tilt, 356
— on the granitic rocks of Shetland, 357
— on the granite of Sky, 358
— on the trap rocks of Scotland, 360
— on the granite of Aberdeenshire, 361
— on the passage of gneiss into granite, 372
Macigno of the Italians the greywacke of the Germans, 162
Maclure, Dr., on the geology of the Leeward Islands, 132
— on the volcanic district of Olot in Catalonia, 184
— his observations preceded by those of Don Bolos, 193
Madeira, fossil shells of recent species brought from, 134
Vol. III.
Madeira, vertical dikes of compact lava seen in, 134
— violently shaken by earthquakes during the last century, 134
Maastricht beds, fossils of the, 324
— chasm between the Eocene and, 325
— number of fossil shells common to the chalk and, 325
— number common to the upper greensand and, 325
Magnum, river, 167
— section from Monte Calvo to the sea by the valley of—see diagram, No. 29, 167
Malaga, tertiary strata of, 170
Mammalia, fossil, importance of the remains of, 47
— duration of species in, more limited than in testaces, 140
— shells of living species found with extinct, 140
Mammiferous remains of the successive tertiary eras, 59
Mammot, task of the, found in calcareous tufa near Rome, 139
Man, remains of, now becoming imbedded in osseous breccias in the Morea, 144
Mantell, Mr., on the fossil shells of the crag, 171
— on deposits containing recent shells in the cliffs near Brighton, 182
— on tertiary outlayers on the chalk, 283
— on the secondary rocks of the Weald valley, 286
— his section of the valley of the Weald, with the heights on a true scale—see wood-cut No. 64, 288
— his section from the North escarpment of the South Downs to Barcombe—see wood-cut No. 71, 296
— on the absence of chalk detritus on the central ridge of the Weald, 296
— his section of a fault in the cliff-hills near Lewes—see wood-cut No. 76, 301
— his discovery of the Mososaurus of Maastricht in the English chalk, 325
Map of the volcanic district of Catalonia—see wood-cut, No. 43, 184
— of the volcanic region of the Eifel—see wood-cut No. 48, 194
— of Auvergne, showing its geographical connexion with the Paris basin—see wood-cut No. 56, 226
Marculot, fresh-water limestone of, 232
Mardolce, grotto of, bones of extinct quadrupeds found in the, 140
— pierced in the interior by boring testaces, 141
— breccia in, how formed, 141
INDEX.

Marienfoist, blocks of quartz containing casts of fresh-water shells found near, 199
Marine alluviums, 145
Marine testacea, wide range of, 44, 48
Marls, sub-Apennine, localities of the, 158, 159
— sometimes thinly laminated, 158
— interstratified with lignite and gypsum, 159
— capped by basalt at some places, 159
Martin, Mr., on the Valley of the Weald, 293
— on the transverse valleys of the North and South Downs, 299
— his supposed section of a transverse valley—see wood-cut No. 74, 300
— his estimate of the thickness of strata removed from the summit of the Forest ridge, 313
Maritime Alps, tertiary strata at the base of the, 164
Marupial animals, their remains found in breccias in Australian caves, 143
Mascalucia, subsidence on Etna near the town of, 96
Medesano, lignite in the sub-Apennine marls at, 159
Mediterranean, organic remains of the, 40
— distinct from those of the Red Sea, 41, 205
— shells drifted from the Alps into the, 48
Medway, transverse valley of the, 298, 299
Meerfelder Maar described, 197
Mefilli, view of a circular valley near—see wood-cut No. 23, 110
— inland cliffs seen near, 111
Merdogne, fresh-water marls intersected by a dike of basalt above the village of, 259
Metamorphic, the term proposed and defined, 374
— rocks of the Alps, altered lies and oolite, 371
— sometimes pass into sedimentary, 376
— sometimes divided by strong line of demarcation, 376
— in what manner their age should be determined, 378
— why those visible to us are for the most part ancient, 380
— why they appear the oldest, 379
Micaceous schist, whence derived, 373
Microscopic fossil shells abundant near Siena, 163
— shells of the Paris basin,—see Plate IV., 250
Militello, list of fossil shells from,—see Appendix II., p. 54
Mineral character, persistency of, why apparently greatest in older rocks, 331
— characters, proofs of contemporaneous origin derived from, 37
Mineral composition of the sub-Apennine strata, 157
— of rocks no proof of contemporaneous origin, 161
Minerals in the cavities of lava, Isle of Cyclops, 81
Miocene period, term whence derived, 54
— proportion of living species in the fossil shells of the, 54
— position of the beds referrible to the—see diagrams, Nos. 3 and 4, 20, 21
— mammiferous remains of the, 59
— Marine formations of the, 202
— fresh-water formations of the, 219
— volcanic rocks of the, 222
— alluviums, localities of, 217
— fossil shells of the—see tables Appendix I.
— general results derived from the fossil shells of the—Appendix I., p. 47
— number of fossil species of shells common to different formations referrible to the, ib., p. 47.
— number of living species in the fossil shells of the, ib., p. 48
— number of species common to the plioene and, ib., p. 49
— geographical distribution of the living species of the, ib., 51
Mirambeau, red clay and sand of, 208
Misman, 'dip of the crag strata in a cliff between Dunwich and—see wood-cut, No. 33, 175
Misterbianco, valleys excavated through blue marl at, 77
Mitchell, Major, on breccias in Australian caves, 143
Mitscherlich, M., on the minerals found in Somma, 121
Modern causes, remarks on the term, 319
Molasse, thickness of, at Stein, 153
— of Switzerland, 212
— its place in the series of tertiary formations not yet known, 212
Mole, transverse valley of the, 298
Molluscan animals, superior longevity of the species of, 48
Mont Dor, age of the volcano of, 260, 262
— its height, form, and composition, 261
Mont Ferrat, tertiary strata of the hills of, 21
— hills of, geological structure of the, 211
Monte Calvo, section from to the sea—see diagram No. 29, 167
Monte Cairo, unaltered shells found in the gyspum of, 159
Monte Grifone, caves containing osseous breccias in, 141
Montosier, M., on alluviums of different ages in Auvergne, 267
Monte Mario, marine strata of, 138
— shells changed into calcareous spar in, 160
Montmartre, gypsum of, 247
— bones of quadrupeds, &c. in the gypsum of, 251
— entire absence of marine remains in the gypsum of, 252
Mont Mezen, age of the, 260
Monte Nuovo, formation of, 104, 128, 125
Montpelier, tertiary strata of, 215
Mont Perrier, position of the Miocene alluviums of—see wood-cut, No. 54, 217
— remains of extinct quadrupeds in the alluvium of, 218
— age of the trachytic breccias of, 262
Montsacopa, volcanic cone of—(see Frontispiece,) 186
Mountain chains formed of successive igneous and aqueous groups superimposed on each other, 240
— on the relative antiquity of, 337
— difficulty of determining the relative ages of, 350
Moravia, fossil shells of—see tables, Appendix I.
Morea, osseous breccias now forming in the, 144
— tertiary strata of the, 170
— distinct ranges of sea cliffs at various elevations in the, 113, 132
— fossil shells of the—see tables, Appendix I.
Moropano, fossil shells found in tuff near the town of, 126
Mosenberg, a mountain with a triple volcanic cone, 197
Mosasaurus of Maestricht found also in the English chalk, 325
Mundesley, protuberances of chalk in the crag strata near, 180
Murat, fresh-water deposits covered by volcanic rocks near, 263
Murchison, Mr., on the tertiary strata of Grosseil, near Nice, 135
— on tertiary strata at the base of the Maritime Alps, 166, 168
— his section of the manner in which the crag rests on the chalk—see diagram No. 30, 173
— on the Superga, 211
— on the tertiary formations of Styria, gaam 213, 214
— on the fresh-water formation of Cadibona, 222
— on the volcanic rocks of Styria, 224
— on central France, 227
— on the lacustrine strata of the Cantal, 239
— on Auvergne, 258
— on the Plomb du Cantal, 263
— on the excavation of valleys, 265
— on the tertiary formations of Aix, in Provence, 277
— on the terrace formed by the hard beds of the upper green-sand, 292
Murphy, Lieut. H., on the height of the North Downs, 258
Musara, sections of buried cones seen near the rock of, 88
— flowing of the lava of 1811 and 1819 round—see wood-cut, No. 21, 92
— traversed by dikes, 92
Nadder, valley of the, 308
Nantes, tertiary strata near, resting on primary rocks, 204
Naples, recent tertiary strata in the district around, 22
— volcanic region of, changes which it has undergone in the last 2000 years, 118
— recent shells in volcanic tuffs near, 126
Necker, M. L. A., on the dikes of Somma, 121
— on the cause of the parallelism of their opposite sides, 122
— on the varieties in texture of the dikes of Somma, 124
Needles of the Isle of Wight, fall of one of them into the sea in 1772, 181
Nesti, M., on the fossil elephant of the upper Val d'Arno, 221
Netherlands, tertiary formations of the, 276
Newer Pliocene period—see Pliocene period, newer
Newhaven, patches of tertiary strata found on the chalk near, 286
Nice, height of the tertiary strata above the sea at, 165, 167
— section from Monte Calvo to the sea, by the valley of Magnan near—see diagram No. 29, 167
— great beds of conglomerate near, 167
— dip of the strata, 168
Niger, delta of the, area covered by the, 329
Nile, its delta now preyed on by currents, 28
Noeggerath, M., his map of the Eifel district, 193
— on volcanic district of the Rhine, 201
Norfolk, crag strata of, 171
— rapid waste of the cliffs on the coast of, 297
Northampton, Lord, fossil fish found near Castrogiovanni by, 67
North Downs, chalk ridge called the, 287
— section across the valley of the Weald from the south to the—see wood-cuts, No. 63 and 64, 288
— highest point of the, 288
— on the former continuity of the chalk of the, with that of the South Downs, 303
Noto, Val di, formations of the, 63
— volcanic rocks of the, 63, 67
Novara, hill of, in Sicily, junction of tuff and limestone in the—see diagram No. 8, 70
INDEX.

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odoardii, on the recent origin of the tertiary strata of Italy, 19</td>
<td>19</td>
</tr>
<tr>
<td>Ginsingen, fossil reptile found at, 7</td>
<td>7</td>
</tr>
<tr>
<td>Older Pliocene period—see Pliocene period, older</td>
<td></td>
</tr>
<tr>
<td>Olivet, volcanic cone of—(see frontispiece,) 187</td>
<td>187</td>
</tr>
<tr>
<td>Olot, volcanic district of, 183</td>
<td>183</td>
</tr>
<tr>
<td>—its extent—see map, wood-cut No. 43, 184</td>
<td></td>
</tr>
<tr>
<td>—number of volcanic cones in—(see frontispiece, 185)</td>
<td></td>
</tr>
<tr>
<td>—geological structure of the district around, 185</td>
<td></td>
</tr>
<tr>
<td>—age of the volcanos of, 191</td>
<td>191</td>
</tr>
<tr>
<td>—town of, destroyed by an earthquake in 1421, 191</td>
<td></td>
</tr>
<tr>
<td>—country between Perpignan and, occasionally shaken by earthquakes, 191</td>
<td></td>
</tr>
<tr>
<td>Omalius d’Halloy, on the former connexion of Auvergne and the Paris basin by lakes, 241</td>
<td>241</td>
</tr>
<tr>
<td>Oolite, or jura limestone formation, 326</td>
<td>326</td>
</tr>
<tr>
<td>—converted into hypogene rock in the Alps, 371</td>
<td></td>
</tr>
<tr>
<td>Organic remains, controversy as to the real nature of, 3</td>
<td>3</td>
</tr>
<tr>
<td>—theories to account for their occurrence in high mountains, 4</td>
<td>4</td>
</tr>
<tr>
<td>—contemporaneous origin of rocks proved by, 39</td>
<td>39</td>
</tr>
<tr>
<td>—comparative value of different classes of, 46</td>
<td>46</td>
</tr>
<tr>
<td>Origin of the globe, no geological proofs of, 384</td>
<td>384</td>
</tr>
<tr>
<td>Olivierais, fossil remains of the, 219</td>
<td>219</td>
</tr>
<tr>
<td>Orthès, tertiary strata of, 207</td>
<td>207</td>
</tr>
<tr>
<td>Osseous breccias, in Sicilian caves, 139</td>
<td>139</td>
</tr>
<tr>
<td>—in Australian caves, 143</td>
<td>143</td>
</tr>
<tr>
<td>—now forming in the Morea, 144</td>
<td>144</td>
</tr>
<tr>
<td>Ostento, tertiary strata of, 22</td>
<td>22</td>
</tr>
<tr>
<td>Ouse, transverse valley of the, 298, 299</td>
<td>298, 299</td>
</tr>
<tr>
<td>—has filled up an arm of the sea, 300</td>
<td>300</td>
</tr>
<tr>
<td>Outlying patches of tertiary strata on chalk hills, 283</td>
<td>283</td>
</tr>
<tr>
<td>Pachydermata, great abundance of this order in the Eocene period, 59</td>
<td>59</td>
</tr>
<tr>
<td>Pacific, lines of ancient sea cliffs on the shores of the, 130</td>
<td>130</td>
</tr>
<tr>
<td>Paleothemium found in the fresh-water strata of the Isle of Wight, 281, 317</td>
<td>281, 317</td>
</tr>
<tr>
<td>Palagonia, dikes traversing peperino at—see diagrams Nos. 6 and 7, 69</td>
<td>69</td>
</tr>
<tr>
<td>—section to Paterno from—see diagram No. 12, 76</td>
<td>76</td>
</tr>
<tr>
<td>Palermo, caves containing osseous breccias near, 140</td>
<td>140</td>
</tr>
<tr>
<td>—fossil shells from—see list Appendix II., p. 55, 56</td>
<td></td>
</tr>
<tr>
<td>Panella, in Ischia, ancient sea-beach seen near, 127</td>
<td>127</td>
</tr>
<tr>
<td>Papandarayang, subsidence of the volcanic cone of, 96</td>
<td>96</td>
</tr>
<tr>
<td>Parallel roads of Coquimbo, 131</td>
<td>131</td>
</tr>
<tr>
<td>—of Glen Roy, 131</td>
<td></td>
</tr>
<tr>
<td>Paris, comparison between the tertiary strata of, and those of England, 282</td>
<td>282</td>
</tr>
<tr>
<td>Paris basin, formations of the, 16</td>
<td>16</td>
</tr>
<tr>
<td>—organic remains of the, 16</td>
<td></td>
</tr>
<tr>
<td>—all tertiary formations at first referred to the age of those of the, 17</td>
<td></td>
</tr>
<tr>
<td>—analogy of the deposits of central France to those of the, 241</td>
<td></td>
</tr>
<tr>
<td>—geographical connexion of Auvergne and the, 241</td>
<td></td>
</tr>
<tr>
<td>—subdivisions of strata in the, 242</td>
<td></td>
</tr>
<tr>
<td>—diagrams showing the relation which the strata bear to each other—see wood-cuts, Nos. 58 and 59, 243</td>
<td></td>
</tr>
<tr>
<td>—superposition of different formations in the, 244</td>
<td></td>
</tr>
<tr>
<td>—plastic clay and sands of the, 244</td>
<td></td>
</tr>
<tr>
<td>—calcaire grossier, 245</td>
<td></td>
</tr>
<tr>
<td>—calcaire siliceux described, 246</td>
<td></td>
</tr>
<tr>
<td>—gypsum and marls of the, 246</td>
<td></td>
</tr>
<tr>
<td>—second or upper marine group, 248</td>
<td></td>
</tr>
<tr>
<td>—third fresh-water formation, 249</td>
<td></td>
</tr>
<tr>
<td>—age of the deposits of the, 20, 250</td>
<td></td>
</tr>
<tr>
<td>—abundance of microscopic shells in the, 20, 250</td>
<td></td>
</tr>
<tr>
<td>—bones of quadrupeds in gypsum, 251</td>
<td></td>
</tr>
<tr>
<td>—alternation of strata with and without organic remains in the, 254</td>
<td></td>
</tr>
<tr>
<td>—number of living species in the fossil testacea of the, 55, 253</td>
<td></td>
</tr>
<tr>
<td>—concluding remarks on the tertiary strata of, the, 254</td>
<td></td>
</tr>
<tr>
<td>—fossil shells of the—see tables, Appendix I.</td>
<td></td>
</tr>
<tr>
<td>—number of living species in the fossil shells of the—Appendix I., p. 50</td>
<td></td>
</tr>
<tr>
<td>Parkinson, Mr., on the crag, 19, 156</td>
<td>156</td>
</tr>
<tr>
<td>Parma, sub-Apennine marls thinly laminated near, 158</td>
<td>158</td>
</tr>
<tr>
<td>—these marls interstratified with lignite in the territory of, 159</td>
<td>159</td>
</tr>
<tr>
<td>—silicified shells found in the marls near, 160</td>
<td>160</td>
</tr>
<tr>
<td>—blue marl of, a fresh-water univale filled with marine shells found in the, 163</td>
<td></td>
</tr>
<tr>
<td>—river, brown clay deposited by the, 161</td>
<td>161</td>
</tr>
<tr>
<td>Paroxysmal elevations, theory of, 128</td>
<td>128</td>
</tr>
<tr>
<td>Parch, Mr., on the tertiary strata of the basin of Vienna, 213</td>
<td>213</td>
</tr>
<tr>
<td>Paterno, section from, to Palagonia—see diagram, No. 12, 76</td>
<td>76</td>
</tr>
<tr>
<td>—valleys excavated through blue marl at, 77</td>
<td>77</td>
</tr>
<tr>
<td>—relative age of the basalts of, 82</td>
<td>82</td>
</tr>
<tr>
<td>Pauliac, limestone of, 208</td>
<td>208</td>
</tr>
<tr>
<td>Pegwell bay, recent deposits in, 182</td>
<td>182</td>
</tr>
</tbody>
</table>
INDEX.

Pentalica, great limestone of the Val di Noto seen in the valley of, 64
Pendland, Mr., on the bones of animals from Australian caves, 144
— on the mammiferous remains of the Upper Val d’Arno, 220
Peperino, traversed by dikes near Palagonia—see diagrams, Nos. 6 and 7, 69
— dikes of, how formed, 70
— sections of calcareous grit and—see diagrams Nos. 9 and 10, 72
Peperinos, of the Val di Noto, 71
— how formed, 71
Perpignan, the country between Olot and, occasionally shaken by earthquakes, 191
— fossil shells of—see Tables, Appendix I.
Peru, proofs of successive elevation of the coast of, 130
Pewsey, Vale of, 308
Phillips, Mr., his analysis of chalk flints, 238
Philosopher’s Tower on Etna, 128
Phlegrean Fields, minor cones of the, 125
Piana, conglomerate of, 211
Piazza, dip of the tertiary strata at, 74
Piedmont, tertiary strata of, 20, 211
— their relative age—see diagram, No. 4, 21
Pitchstone, a thin band of, formed at the contact of the dikes of Somma and intersected beds, 124
Placentia, character of the sediment transported by rivers in the territory of, 161
Plants, their fossilization partial, 31
— fossil, importance of, in geology, 47
Plas Newydd, changes caused in sedimentary strata by a volcanic dike near, 368
Plastic clay and sand of the London basin, 278
— its thickness, composition, &c., 278
— organic remains rare in the, 279
— clay and sand of the Paris basin, 244
— alternates with calcaire gossier, 244
Pliny does not mention the Auvergne volcanos in his Natural History, 269
Pliocene period, newer, derivation of the term, 53
— proportion of living species in the fossil shells of the, 53
— marine formations of the, 62
— contortions in strata of, in the Isle of Cyclops—see wood-cut, No. 15, 80
— strata of, invaded by lava—see wood-cut No. 16, 81
— submarine rocks of fusion, formed during the, 107
— fresh-water formations of the, 137
Pliocene period, newer, osseous breccias and cave deposits of the, 139
— alluvium of the, 145
— extinct animals in breccias of the, 140
Pliocene period, older, proportion of living species in the fossil shells of the, 54
— position of the beds referrible to this era—see diagrams Nos. 3 and 4, 20, 21
— mammiferous remains of the, 59
— tertiary formations referrible to the, 155
— volcanic rocks of the, 183
— elevation of land on the East coast of England since the commencement of the, 316
Pliocene period, fossil shells of the—see Table, Appendix I.
— general results derived from the fossil shells of the—Appendix I., p. 47
— number of species of fossil shells common to different formations of the—Appendix I., p. 47
— number of living species in the fossil shells of the—Appendix I., p. 47
— number of species common to the Miocene and—Appendix I., p. 49
— geographical distribution of the living species of the—Appendix I., p. 51
— strata of Sicily, their dip and direction, 73
Pliocene strata of Sicily, origin of the, 103
— changes of the surface during and since their emergence, 109
— strata, newer, only visible in countries of earthquakes, 129
Plomb du Cantal, successive accumulation of the, 240
— age of the volcanic rocks of the, 260, 262
— its height, form, structure, &c., 263
— fresh-water limestone covered by volcanic rocks on the northern side of the, 263
Plutonic rocks, 353
— distinction between volcanic and, 359
— their relative age, 364, 377
— changes produced by, 370
— why those now visible are for the most part very ancient, 379
Podolica, tertiary formations of, 215
Poggibonsi, conglomerate of, 160
Pont du Chateau, alteration of volcanic tuff and fresh-water limestone at, 258
Portella di Calanna, furrows in the defile called, how formed, 147
Pratt, Mr., on the mammiferous remains of the Isle of Wight, 281
Pressure, effects of, on the consolidation of strata, 334
Prevost, M. Constant, on the tertiary strata of Vienna, 21, 212
— tabular view of his arrangement of the strata of the Paris basin—see woodcut No. 59, 243
— on the alternation of the calcaire grossier, and siliceous limestone, 246, 248
— on the manner in which the mammiferous remains may have been preserved in the Paris gypsum, 252
— on the alternation of strata with and without organic remains, 254
Primary, on the rocks usually termed, 10, 352
— their relation to volcanic and sedimentary formations, 352
— divisible into two groups, the stratified and unstratified, 353
— on the stratified rocks called, 12, 365
— the term why faulty, 374
— strata, how far entitled to the appellation, 377
Primitive, term now abandoned, 13
Primioso, termination of the Val di Noto, limestone at, 75
— view of Etna from—see diagram No. 11, 75
Procida, island of, would resemble Ischia if raised, 127
Pulo Nias, fossil shells of recent species found in the island of, 134
Pulvermaar, description of the, 197
Punto del Nasone on Somma, dikes or veins of lava seen at—see wood-cut No. 25, 122
Punto di Guimento, veins of lava at—see wood-cut No. 20, 91
Puracé, extinct volcano of, 252
Pusanibio river, sulphuric and muriatic acids, and oxides of iron in the waters of the, 252
Puy Arzet, chalk with conformable beds of tuff in the hill called, 207
Puy de Come, ravine excavated through the lava of the, 264
Puy de Jussat, quartzose grits of, 229
Puy de Marmont, alternation of volcanic tuff and fresh-water marl in the, 258
Puy de Pariou, 268
Puy Rouge, ravine cut through the lava of the, 265
Puy de Tartaret, 264
Puy en Velay, bones of extinct quadrupeds in alluvium under lava near, 219
— fresh-water formation of, 235
Puzzuoli, inland cliff near, will be destroyed, 112
— no great wave caused by the rise of the coast near, in 1538, 128
Pyrenees, tertiary strata at the eastern extremity of the, 170
Pyrenees, tertiary formations between the basin of the Gironde and the, 206
— their relative age, 341
— tertiary strata abutting against vertical mica-schist at the eastern end of the, 348
— lamination of clay-slate in the—see wood-cut No. 89, 366
Quartz, compact, whence derived, 373
Quorra, or Niger, delta of the, 329
Radicofani, sub-Apennine marls capped by basalt at, 159
— age of the volcanic rocks of, 183
Radusa, fossil fish found in great abundance at, 67
Ramond, M., on alluviums of Avuergne, 267
Ramsgate, recent deposits in the cliffs near, 182
Ravines excavated through the lavas of Avuergne, 264, 265
Recent formations, description of, 52
— form a common point of departure in all countries, 58
— why first considered, 62
Recent and Tertiary formations, synoptic table of, 61
Red marl and sandstone of Avuergne like 'new red sandstone,' 229, 333
Red marl, supposed universality of, 333
Red Sea, and Mediterranean, distinct assemblages of species found in the, 41, 205
— tertiary strata found on its western borders, 135
— list of fossil shells from—see Appendix II., 57
Rennes, tertiary strata near, 276
Rhine, lower, volcanos of the, 193
— map of the volcanic district of the, 194
— age of the volcanic rocks of the, uncertain, 199
— origin of the trass of the, 197
— ancient alluviums of the, 200
Rhone, delta of, in lake of Geneva, 27
— shells drifted from the Alps to the Mediterranean by the, 48
Ricciofi, Signior, task of the mammoth from the Roman travertin shown to the author by, 138
Rimao, valley of, lines of ancient sea-cliffs in, 130
Ripple marks formed by the wind on the dunes near Calais—see wood-cut No. 36, 176
Risso, G., on the fossil shells of Groseil, near Nice, 135
— on the fossil shells of St. Madeleine, near Nice, 168
Rivers, difference in the sediment of, 40
Robert, M., on extinct quadrupeds of Cus-sac, 219
Rocca di Ferro, shells in the tufts of, 79
Rochester, indentations in the chalk filled with sand, &c., near, 282
Rocks, distinction between sedimentary and volcanic, 10, 352
— primary, 10
— origin of the primary, 11, 363
— distinction between primary, secondary and tertiary, 10
— persistency of mineral character, why apparently greatest in the older, 331
— older, why most consolidated, 334
— older, why most disturbed, 335
— secondary volcanic, of many different ages, 335
— relative age of, how determined, 35
— proofs of, by superposition, 35
— proofs by included fragments of older rocks, 36
— proofs of their contemporaneous origin derived from mineral characters, 37
— proofs from organic remains, 39
— volcanic of the Val di Noto, 63, 67
— grooved surface of, 147
— transportation of, by ice, 149
— identity of their mineral composition no proof of contemporaneous origin, 161
Roderberg, crater of, described, 198
Rome, travertins of, 138
— hills of, capped by calcareous tufo, 138
Ronca, fossil shells found at—see Table, Appendix 1.
Royat, ruins of Roman bridges and baths at, prove that no great changes have taken place since their erection, 269
Rozet, M., on the loess of the valley of the Rhine, 151
Runton, folding of the crag strata in the cliffs near—see wood-cut No. 38, 178
St. Christopher's, alternations of coral and volcanic substances in, 133
St. Eustatia, tertiary formations in, 133
St. Hospice, tertiary strata in the peninsula of, 135
St. Lawrence, Gulf of, changes which would result in, on the filling up of the Canadian lakes, 28
St. Madeleine, near Nice, shells abundant in the loamy strata of, 168
St. Michael's Mount, Cornwall, 371
St. Peter's Mount, Maestricht, fossils of, 325
St. Romain, gypsum worked at, 233
St. Vincents, active volcanos in, 133
Salisbury Craig, altered strata in, 369
San Ciro, cave of, breccia containing bone of extinct quadrupeds in, 141
San Ciro, position of the cave of,—see diagram No. 27, 141
San Felis de Palleróis, deep ravine cut through lava near the town of, 189
San Quirico, hills of, their composition, 159
Sand and conglomerate of the sub-Apen-nine strata described, 159
Santa Croce, Cape of, limestone resting on lava at, 68
Santa Madalena, section at the bridge of, 186
Santa Margarita, size of the volcanic crater of, 187
Sardinian volcanos, their age uncertain, 193
— rest on a tertiary formation, 193
Sasso, Dr., on the tertiary strata of Genoa, 166
— on the fossil shells of Albenga, 167
Saucats, fresh-water limestone of, 207
Savona, tertiary strata of—see wood-cut No. 55, 166, 222
Sciacca, volcanic island of, 69, 71
Scoresby, Capt., on the transportation of rocks by icebergs, 150
Scotland, parallel grooves formed in the beds of torrents in, 147
— granite veins of—see wood-cuts Nos. 83 and 86, 354
Scrope, Mr. G. P., on the volcanic district of Naples, 125
— on the extinct volcanos of the Rhine, 197, 201
— on the hill of Gergovia, 258
— on Mont Dor, 261
— on the excavation of lava by the river Sioule, 265
— on alluviums under lava at different elevations in Auvergne, 267
Sea-cliffs, successive elevations proved by—see wood-cut No. 24, 111
— manner in which the sea destroys successive ranges of, 111, 292
— distinct ranges of ancient, in the Morea, 113
— found elevated to great heights in Peru, 130
Seaford, waste of the chalk cliffs at, 311
Secondary rocks, 14
— of the Weald, valley divisible into five groups, 286
— their rise and degradation gradual, 308
— enumeration of the principal groups of, 324
— no species common to the tertiary and, 327
— circumstances under which they originated, 23, 329
— why more consolidated, 334
— why more disturbed, 335
Secondary rocks, volcanic, of many different ages, 335
Secondary fresh-water deposits why rare, 330
Secondary periods, duration of, 328
Sedgwick, Professor, on diluvial waves, 101, 272
—— on the tertiary formations of Styria, 213, 214
—— on the volcanic rocks of Styria, 224
—— on the Isle of Wight, 281, 315
—— on synclinal lines, 293
—— on the theory of M. Elie de Beaumont, 347
—— on the Cornish granite veins, 355
—— on garnets in altered shale, 369
Sediment, changes in the distribution of, which would take place on the filling up of large lakes, 27
Sedimentary deposition, causes which occasion the shifting of the areas of, 26
Sedimentary rocks, distinction between volcanic and, 10
Seguinat, Montagne de, laminations of clay-slate in the—— see wood-cut, No. 89, 366
Selenite found in clay at the foot of Etna, 77
Septaria of the London clay described, 279
Serra del Solfito, sections of buried conies in the cliffs of, 88
—— dikes at the base of—— see wood-cut No. 19, 90
Serres, M. Marcel de, on the drifting of land shells to the sea by the Rhone, 48
—— on the tertiary strata of Montpellier, 215
—— on the fossil insects of Aix, 277
Sicily, geological structure of, 22, 63
—— dip and direction of the newer Pliocene strata of, 73
—— origin of the newer Pliocene strata of, 103
—— form of the valleys of, 109
—— no peculiar indigenous species found in, 115
—— breccias containing bones of extinct animals in caves in, 139
—— alluviums of the newer Pliocene period in, 151
—— fossil shells of—— see Tables, Appendix I.
—— number of living species in the fossil shells of—— see Appendix I., 47
—— number common to Italy and, ib. 47
—— number common to Italy, the Crag and, ib. 47
—— number of species proper to, ib. 47
Shells, tables of fossil—— (see Appendix,) 49
—— characteristic tertiary—— (see Plates,) 50
—— necessity of accurately determining the species of, 50
Shells, recent, numerical proportion of in the different tertiary periods, 58
—— number of species of, found both living and fossil, 394
—— fossil tertiary, number examined to construct the tables, 394
—— fossil, number common to all the tertiary periods, Appendix I., 50
—— living, number of those found in a fossil state in all the tertiary periods, ib. 50
—— geographical distribution of those species which have their fossil analogues, ib. 51
Sheringham, sections in the cliffs east of—— see wood-cuts, Nos. 39 and 46, 178, 179
—— rapid waste of the cliffs at—— see section, wood-cut No. 72, 297
Shetland, action of the sea on the coast of, 146
—— granites of different ages in, 357
—— passage of trap into granite in, 362
Siebengebirge, volcanic phenomena of the, 198
Sienna, Subapennine strata near the town of, 160
—— microscopic fossil shells very abundant near, 163
—— list of fossil shells from—— Appendix II., 59
Siliceous schist, clay converted into by lava, 70, 81
Silvertop, Col., on the tertiary strata of Spain, 170
Simeto, plain of the, 76
Sioule, river, ravines cut through lava-currents by the, 265
Sky, age of the granite of, 358
Smyth, Capt. W. H., his drawing of the Isle of Cyclops—— see wood-cut No. 14, 79
—— on the extinct volcanos of Sardinia, 193
Somma, escarpment of, 84, 85, 87, 96
—— changes caused by dikes in the, 91
—— dikes of, 121
—— minerals found in, 121
—— parallelism of the opposite sides of the dikes of, 122
—— varieties in the texture of the dikes of, 124
Somma and Vesuvius, differences in the composition of, 120
Sortino, great limestone formation seen in the valleys of, 64
—— bones of extinct animals in caves near, 139
South Downs, chalk ridge called the, 287
—— section from to the North Downs across the Weald Valley—— see wood-cuts No. 63 and 64, 288
—— highest point of the, 288
INDEX.

South Downs, view of the escarpment of the—see wood-cut No. 65, 290
—section from their northern escarpment to Barcombe—see wood-cut No. 71, 296
—on the former continuity of the chalk of the North and, 303
Spaccaforno limestone, 65
Spain, tertiary formations of, 170
—extinct volcanos of the north of, 183
—lava excavated by rivers in, 186, 189
Species, changes of, everywhere in progress, 30
—effects of changes of climate on, 44
—superior longevity of molluscs, 45
—necessity of accurately determining, 49
—living, proportion of in the fossils of the newer Pliocene period, 53
—in the older Pliocene period, 54
—in the Miocene period, 54
—in the Eocene period, 55
—their geographical distribution, 55
—in Sicily older than the country they inhabit, 115
—outlive great revolutions in physical geography, 115
—none common to the secondary and tertiary formations, 327
Spinto, fossil shells in green sand at, 211
Steininger, M., on the loess of the Rhine, 151
—on the volcanic district of the Eifel, 201
Steyning, chalk escarpment as seen from the hill above—see wood-cut No. 66, 291
Stirling Castle, altered strata in the rock of, 369
Stour, transverse valley of the, 298
Strata, cause of the limited continuity of, 9
—order of succession of—see diagram No. 1, 14
—origin of the European tertiary, at successive periods, 18
—Recent, form a common point of departure in all countries, 58
—with and without organic remains alternating in the Paris basin, 254
—on the consolidation of, 334
Stratification, unconformable, remarks on, 30, 33
—of the Crag—see wood-cuts, 174, 175
—of primary rocks—see wood-cut No. 89, 365, 366
Strike of beds, explanation of the term, 346
Stromboli, lava of, has been in constant ebulition for 2000 years, 363
Studer, M., on the loess of the valley of the Rhine, 152
—on the molasse of Switzerland, 212
Styria, tertiary formations of, 212
—age of the tertiary strata of, 214
—volcanic rocks of, 223
Sub-Apennine strata, 18, 155
—opinions of Brocchi on the, 155
—lithological characters of the, 157, 162
—not all of the same age, 157
—termed marine alluvia by Dr. Macculloch, 157
—subdivisions of the, described, 158
—how formed, 160
—organic remains of the, 163
—fossil shells of the—see Tables, Appendix I.
Subaqueous deposits, our continents chiefly composed of, 9
—how raised, 104
—distinction between alluvium and, 145
Submarine eruptions, proofs of ancient, in the Bay of Trezza, 78, 81
Subsidence on Papandayang, in Java, 96
—on Etma, 96
Subterranean lava the cause of the elevation of land, 105
Subterranean rocks of fusion, probable structure of the recent, 107
Suffolk, relative age of the tertiary strata of—see diagram No. 4, 21
—crag strata of, 171
—cliffs, thickness of the crag in the, 172
Superga, strata composing the hill of the, highly inclined, 211
—fossil shells of the, 211
Superior, Lake. See Lake Superior.
Superposition, of successive formations, causes of the, 26
—proof of more recent origin, 35
—exceptions in regard to volcanic rocks, 36
—no invariable order of, in Hypogene formations, 375
Surface, different states of the, when the secondary and tertiary strata were formed, 23
Switzerland, 'molasse' of, 212
Synclinal and anticlinal lines described—see wood-cut No. 68, 293
Syenites not distinguishable from granites, 358
Synoptical Table of Recent and Tertiary Formations, 61
Syracuse, section at—see diagram No. 5, 64
—shells found in the limestone of, 65
—range of inland cliffs seen to the north of, 111
—bones of extinct animals in caves near, 140
—list of fossil shells from—Appendix II, p. 54
INDEX.

Table-Mountain, 'Cape of Good Hope, intersected by veins—see wood-cut No. 85, 354
Tanaro, plains of the, 211
Taro, river, nature of the sediment deposited by the, 161
Taunus, beds and large quartz veins found in the mountains of the, 201
Tech, tertiary strata in the valley of the, 170
Ter, valley of the, 185
Terolnel, river, lava excavated by the, 189
Terraces, manner in which the sea destroys successive lines of—see wood-cut No. 24, 111, 292
Terranova, dip of the tertiary strata at, 74
Tertiary formations, general remarks on the, 15
— of the Paris basin, 16, 241
— at first all referred to the age of those of the Paris basin, 17, 19
— origin of the European, at successive periods, 18
— of the sub-Appennine hills, 18
— of Touraine, 20
— of Bordeaux and Dax, 20
— of Piedmont, 20
— of the Valley of the Bormida, 21
— of the Superga, near Turin, 21
— of the basin of Vieuza, 21
— newer than the sub-Appennines, 21
— the newest often blend with those of the historical era, 22
— different circumstances under which these and the secondary formations may have originated, 23, 329
— state of the surface when they were formed, 24
— classification of, in chronological order, 45
— new subdivisions of the, 52
— normal proportion of recent shells in different, 53, 54, 55, 58
— mammiferous remains of successive, 59

Synoptic Table of Recent and, 61
— of Sicily, 63
— of Campania, 118
— of Chili and Peru, 130
— of the West India Archipelago, 132
— of the East India Archipelago, 133
— of Norway and Sweden, 135
— on the western borders of the Red Sea, 135
— identity of their mineral composition no proof of contemporaneous origin, 161
— of the Po, Arno, and Tiber, their resemblance, 161
— at the base of the Maritime Alps, 164
— at the eastern extremity of the Pyrenees, 170
— in Spain, 170
— in the Morea, 170
— of England, 18, 19, 135, 171, 277
— Tertiary formations, of Touraine, 20, 203
— of the basin of the Gironde and the district of the Landes, 206
— of Piedmont, 211
— of Switzerland, 212
— of Styria, Vienna, Hungary, &c., 212
— of Volhynia and Podolia, 215
— of Montpellier, 215
— of Auvergne, 217, 226
— of Velay, 219, 235
— of the Orleanais, 219
— of the Upper Val d'Arno, 219
— of Cadibona, 221
— of the Cantal, 236
— of the Cotentin, or Valognes, 276
— of Rennes, 276
— of the Netherlands, 276
— of Aix in Provence, 276
— no species common to the secondary and, 327
Testacea, fossil, of chief importance, 47
— marine, wide range of, 44, 48
— longevity of the species of, 48, 56
Tet, valley of the, tertiary strata found in, 170
Thames, basin of the, 18
Theorizing in geology, different methods of, 1
Tiber, river, has flowed in its present channel since the building of Rome, 138
— yellow sand deposited by the, 161
— valley of the, 139
Time, effects of prepossessions in regard to the duration of past, 97
Touraine, tertiary strata of, 20, 203
— and Paris, relative age of the tertiary strata of—see diagram No. 3, 20
— fossil shells of—see Tables, Appendix I.
Trachytic breccias and alluviums alternating in Auvergne, 217
Transitional formations, remarks on, 13
Transverse valleys in the North and South Downs—see wood-cut No. 73, 298
— remarks on their formation, 299
— supposed section of one of them—see wood-cut No. 74, 300
Transylvania, tertiary formations of, 213
— age of the tertiary strata of, 215
— volcanic rocks of, 223
— fossil shells of—see Tables, Appendix I.
Trap rocks, origin of the term, 360
— of Scotland, how formed, 360
— passage of, into granite, 361
Trass of the Rhine volcanos, 197
— its origin, 198
Travertins of the valley of the Elaa, 137
— of Rome, recent shells with the task of the mammoth found in, 138
Trees, longevity of, 99, 272
Trezza, bay of, sub-Betic formations exposed in the, 78
— proofs of sub-marine eruptions in the, 78, 81
INDEX.

Trimingham, manner in which the crag strata rest on the chalk near—see diagram No. 30, 173
— view of a promontory of chalk and crag near—see wood-cut No. 41, 179
— section of the northern protuberance of chalk at—see wood-cut No. 42, 180
Tripolitza, plain of, breccias now forming in the, 144
Tufa, calcareous, the hills of Rome capped by, 138
— task of the mammoth found in, near Rome, 138
Tuff, dikes of, how formed, 70
— in the hill of Novera—see diagram No. 8, 70
— volcanic, recent shells in, near Naples, 126
— shells found in, at great heights in Ischia, 126
Turin, tertiary formations of, 211
— fossil shells of—see Tables, Appendix I.
Tuscany, fresh-water formations of, 137
— age of the volcanic rocks of, 183
Uddevalla, elevated beaches of, 135
Unconformability of strata, remarks on the, 30, 33
Universal formations, remarks on the theory of, 38
Universality of red marl, remarks on the supposed, 333
— of certain hypogene rocks, 376
Upper marine formations of the Paris basin how formed, 248

Val d’Arno, Upper, mineral character of the lacustrine strata of the, 161
— fresh-water formations of the, 219
— mammiferous remains of the, 220
Val del Bove, great valley on east side of Etna—see wood-cut No. 17, 83
— its length, depth, &c., 84
— description of the, 87
— its circular form, 87
— dikes numerous in the, 87
— dip of the beds in the, 87
— section of buried cones seen in, 88
— difference in the dip of the beds where these occur, 88
— scenery of the, 88
— form, composition, and origin of the dikes in, 90
— view of, from the summit of Etna—see wood-cut No. 22, 93
— lavas and breccias of the, 93
— origin of the, 95
— floods in, caused by melting of snow by lava, 96
Valdemone, formations of, 75
Val di Calanna, its crateriform shape, 85
— dip of the beds in the, 85

Val di Calanna, its origin, 85
— began to be filled up by lava in 1811 and 1819—see wood-cut No. 18, 86
Val di Noto, formations of the, 63
— divisible into three groups—see diagram No. 5, 64
— volcanic rocks of the, 63, 67
— volcanic conglomerates of the, 73
— proofs of the gradual accumulation of the formations of the, 73
— connexion of the formations of the, with those at the base of Etna—see diagram No. 12, 76
— form of the valleys in the limestone districts of the, 110
— inland cliffs seen on the east side of, 111
— igneous rocks of the, 361
— fossil shells from the—see Appendix II., p. 53
Vale of Pewsey, 308
Valley of the Nadder, 308
— of the Weald—see Weald
Valleys, of elevation, 305
— on Etna, account of, 83
— of Sicily, their form—see wood-cut No. 23, 110
— most rapidly excavated where earthquakes prevail, 113, 148
— and parallel troughs between the North and South Downs, how formed, 294
— transverse, of the North and South Downs, 298
— how formed—see wood-cut No. 74, 300
— and furrows on the chalk, how caused, 311
— of the South-east of England, how formed, 319
Valmondois, rolled blocks of calcaire grossier in the upper marine sandstone of, 219
Valognes, tertiary strata of the environs of, 276
— fossil shells of—see Tables, Appendix I.
Van der Wyck, M., on the Eifel district, 201
Var, river, large quantities of gravel swept into the sea by the, 168, 169
Vatican, hill of, the calcareous tufa on the, 138
Veaugirard, alternation of calcaire grossier and plastic clay at, 244
Veins of lava on Etna—see wood-cut No. 20, 91
Velay, bones of extinct quadrupeds in volcanic scoriae in, 219
— fresh-water formations of, 235
— age of the volcanic rocks of, 224, 260, 262
INDEX.

Velay, ancient alluviums covered by lava at different heights in, 262
Vertical and inclined strata, great line of, from the Isle of Wight to Dieppe, 315, Vesuvius, dikes of, 121
— channels formed by the flowing of lava from, in 1779, 122
— and Somma, difference in their composition, 120
Vichy, tertiary oolitic limestone of, 232
— dip of the lacustrine strata at, 233
Vienna, tertiary formations of, 21, 212
— age of the tertiary strata of, 214
— basin, fossil shells of the—see Table, Appendix I.
Vigolano, gypsum interstratified with sub-Apennine marls at, 159
Villasmonde, shells found in limestone at, 65
— list of fossil shells from—Appendix II., 54
Villefranche, bay of, tertiary strata found near the, 135
Vinegar river, sulphuric and muriatic acids, and oxide of iron, in the waters of the, 252
Virlet, M., on the tertiary strata of the Morea, 170
Viterbo, volcanic tufts and sub-Apennine marls alternating at, 159
— age of the volcanic rocks of, 183
Vivian, Professor, on the character of the Sicilian flora, 115
— on the tertiary strata of Genoa, 166
Vizzini, junction of inclined tuff and horizontal limestone near—see diagram No. 8, 70
— changes caused by a dike of lava in argillaceous strata at, 70
— a bed of oysters between two lava-currents at, 73
Volcanic breccias in Auvergne, how formed, 259
Volcanic conglomerates of the Val di Noto, 73
— now forming on the shores of Catania and Ischia, 73
Volcanic dikes, strata altered by, 70, 368
Volcanic district of Catalonia, superposition of rocks in the—see wood-cut No. 47, 192
Volcanic lines, modern, not parallel, 349
Volcanic region of Naples, changes which it has undergone during the last 2000 years, 118
Volcanic rocks, distinction between sedimentary and, 10
— relative age of, how determined, 36
— of the Val di Noto, 68
— of Campania, their age, 126
— of central France, 257
— secondary, of many different ages, 335
Volcanic rocks, distinction between plutonic and, 359
Volcanos, mode of computing the age of, 97
— sometimes inactive for centuries, 98
— of Olot, in Catalonia, described—see Frontispiece, 183
— extinct, of Sardinia, 193
— of the Lower Rhine and the Eifel, 193
— the result of successive accumulation, 240
— attempt to divide them into ante-diluvian and post-diluvian, 268
Volhynia, tertiary formations of, 215
Vollz, M., on the loess of the Rhine, 151
Von Buch, M., on the Eifel, 201
— on the tertiary formations of Volhynia and Podolia, 215
— on the general range of volcanic lines over the globe, 349
Von Dechen, M., on the volcanic district of the Lower Rhine, 201
— on the Hartz mountains, 346
— his objections to the theory of M. de Beaumont, 346, 347
— on the Cornish granite veins—see wood-cut No. 87, 355
Von Oeynhausen, his map of the Eifel district, 193
— on the volcanic district of the Rhine, 201
— on the granite veins of Cornwall—see wood-cut No. 87, 355
Walton, section of shelly crag near—see wood-cut No. 31, 174
— lamination of sand and loam near—see wood-cut No. 34, 175
Warburtos, Mr., on the Bagshot sand, 280
Watt, Gregory, his experiments on melted rocks, 124, 372
Weald, denudation of the valley of the, 285
— secondary rocks of the, divisible into five groups, 286
— section of the valley of the—see wood-cuts Nos. 63 and 64, 287, 288
— clay, its composition, 286
— gradual rise and degradation of the rocks of the, 289
— alluvium of the valley of the, 295
— extent of denudation in the valley of the, 303, 313
Wealden, secondary group, called the, 325
— organic remains of the, 325
— its great extent and thickness, 329
— how deposited, 329
Webster, M., on the geology of the Isle of Wight, 18, 315
— on the tertiary formations of the London and Hampshire basins, 278, 280
INDEX.

Wellington Valley, Australia, breccias containing remains of marsupial animals found in, 143
West Indian Archipelago, tertiary formations of the, 132
Wey, transverse valley of the, 298, 299
Whewell, Rev. W., 53
Wildon, thickness of the coralline limestone of, 214
Wiltshire, valleys of elevation in, 308
Willy, valley of the, 308
Winds, ripple-marks caused by, on the dunes near Calais—see wood-cut No. 35, 176
Wrotham Hill, height of, 288

Yarmouth, thickness of crag in the cliffs near, 172
Ytrac, fresh-water flints strewed over the surface near, 237
Zaffarana, valleys extending from the summit of Etna to the neighbourhood of, 83
Zocolaro, hill of, lava of Etna deflected from its course by the—see wood-cut No. 18, 86
Zoological provinces, great extent of, 40
Zoophytes, recent species of, but little known, 47

THE END.

London: Printed by W. Clowes, Stamford street.