ACER negundo, reversion in, 338 Actiniæ, regeneration in, 127 Adler, on galls, 219

Adventitious buds, Sachs's view of, 211; formation by means of ac-

cessory idioplasm, 212, 218 Alternation of generations, in its relation to the idioplasm, 173; hereditary variability of individual generations, 174; in Daphnidæ, 175; in Aphis, 178; in Medusæ, 179; caused by two kinds of

germ-plasm, 182, 457

Amphimixis, or the intermingling of individuals, 20, 24; its relation to reproduction, 232; resulting in complications in the composition of the germ-plasm, 235; the cause of all reversion, 337; the means of producing variation, 413; its relation to bud-variations, 439; the cause of an increase or decrease in the development of a character, 464

Ancestral germ-plasms — not analogous to Spencer's 'physiological

units,' 11

Antirrhinum majus, Darwin's experiments with the peloric form of, 331

Aphis, alternation of generations, 178

Ascaris megalocephala, the chromosomes of, 86; diagram, fig. 18,

page 233 Ascidians, regeneration, 139; eggs

contrasted with those of frogs, 141; gemmation, 160; comparison of gemmation with embryogeny, 162

Auerbach, on nuclear division, 23

Balfour, phylogeny of gemmation,

Balsamine, transmission of variations of, 445

Baumann, chemical constitution of protoplasm, 40

Bees, polymorphism in, 376

Begonia, adventitious buds, 211

Beneden, Ed. van, observations on fertilisation of egg in Ascaris, 23; function of the centrosomes, 25; view concerning idants, 244

Biophors, or bearers of vitality, the smallest vital units, 40; a group of molecules on which the phenomena of life depend, 40; resemblance to Spencer's 'physiological units,'40; difference between them and Nägeli's 'micellæ,' 41; de Vries's 'pangenes,' and Wiesner's 'plasomes,' 42; bearers of cellqualities, 42; number of kinds unlimited, 44; all protoplasm constituted by, 45; their size and number, 85; combined anew in the formation of galls, 221, 448

Beyerinck on galls, 219; gall of Nematus, 222

Blending, of parental characters not a fundamental phenomenon of heredity, 8; of paternal and maternal idioplasm in ontogeny, 253; of parental characters in the offspring, 261, 266, 297

Blood-corpuscles controlled by de-

terminants, 57 Blumenbach's 'nisus formativus,' 103, 104

Bonellia viridis, its dimorphism, 364 Bonnet, on the regeneration of eye of Triton, 125; on worms, 131

fixed position, 135

Boveri, observations on fertilisation of egg in Ascaris, 23; function of the centrosomes, 25; observations on the egg of the sea-urchin artificially deprived of its nucleus, 28; chromosomes of Ascaris megalocephala, 86; differentiation of somatic cells of Ascaris megalocephala, 191; number of nuclear rods in two species of Ascaris, 241; view concerning idants, 242

Brandza, examination of hybrids with regard to parental charac-

ters, 270

Brooks, W. K., on the laws of heredity, 9; on variation, 412; on the non-transmission of acquired characters, 396

Ernst, on 'Elementar Brücke, organismen,' 2; on ultimate vital particles, 20; on albumen, 38; plasm, 39

Bryophyllum, budding in, 211

Bud-variation, 436; theoretical explanation of, 441

Bütschli, investigations on the processes of nuclear division, 23;

the polar bodies correspond to aborted ova, 251

Butterflies, the markings on the wings of, as confirming the theory of determinants, 54, 174, 264, 265; Kallima parallecta as an example of relative perfection, 272; the origin of climatic variations in the idioplasm, 379, 399, 407, 418

CARDAMINE pratensis, budding in,

Carneri, observations on telegony,

Caspary, experiments in crossing Cytisus laburnum and C. purpureus, 343

Castration, as a cause of sexual reversion, 358

Born, development of eggs in a Cecidomyia poæ, formation of galls, 22I

> Centrosome, with its sphere of attraction, is an apparatus for the division of the cell and nucleus, 23; continuity of the centrosome, 48

> Chabry, experiments on eggs of Ascidians, 136

> Chromatin, the hereditary substance, 24, 26; must be different in each kind of cell, 32

> Chromosomes correspond to the idioplasm, 10; their form, 24; spoken of as idants, 67

Continuity of the germ-plasm, historical account of, 198

Control of the cell, 45

Cuttings, development and origin in the idioplasm of, 212

Cyclops, observations on segmenting ova, 191

Cymathoidæ, temporary sexual dimorphism, 111

on the organic nature of proto- Cypris reptans, markings on the shell in their relation to the theory of determinants, 88; reversion in, 344; theoretical explanation of reversion in, 347

Cytisus adami, 339; theoretical explanation of the variation in, 344

DAPHNIA pulex, alternation of generations in, 175

Daphnidæ, embryogeny of, 184; secondary nature of the differentiation of germ-cells of, 186;

germ-track of, 192

Darwin, Charles, 'pangenesis,' 2; 'gemmules,' 3; comparison of the 'gemmules' with Spencer's 'physiological units,' 6; on correlated variations, 84; on the white coloration in animals and plants, 277; on breeding, 291; on the force of heredity in cattle, 293; on reversion in plant-hybrids, 299; on reversion to remote ancestors, 316; on reversion in pigeons, 323; in mules, 328; in Antirrhinum majus, 331; experiments on crossing Cytisus laburnum

INDEX 47I

and C. purpurea, 340; on latent | Determinants, the theory of, 53; primary constituents, 352; on transmission of acquired characters, 384, 394; on variation, 406, 410; on baldness in birds, 426; on the transmission of budvariations, 441; on the transmission of a variation in Ballota nigra, 446

Datura ferox and D. lævis, reversion of hybrids to an unknown an-

cestral form, 317

Davenport, on budding in Polyzoa,

Degeneration in its relation to the theory of determinants, 83

Déjerine, on the transmission of nervous complaints, 369

Determinants or determining parts, 57; control groups of cells, 57; are a group of biophors, 59; possess special qualities, 60; are definitely localised in the idioplasm, 61; constitute the ids, 62; their forces of attraction, 66; their behaviour in the course of ontogeny, 69; their disintegration into biophors, 69; their growth and multiplication, 71; their number, 89; supplementary determinants, 103, 112, 127, 131, 149; the separation of a group of, 153; their disintegration in gemmation, 160; their separation into groups in the development of somatic cells, 209; their modification in the formation of galls, 222; control of the cell by the combined influence of paternal and maternal determinants, 261; homologous and heterologous determinants, 264; their controlling forces, 269; number of homodynamous determinants varies in ontogeny, 271; homodynamous and heterodynamous determinants, 264, 278; proof of their disintegration into biophors, 348; in cases of dimorphism, 355; variations due to changes in their composition, 406, 418, 448

summary, 225; reversion explained by, 335; applied to sexual dimorphism, 366

Determinates or hereditary parts, 57 Dianthus chinensis and D. barbatus, crosses between, 302

Dichogeny in plants, 114, 380, 462 Dicyemidæ, distribution of heredi-

tary parts, 59

Digitalis lutea and D. purpurea,

crosses between, 255

Dimorphism, normal, 352; its basis in the idioplasm, 354; pathological, 370; double, in Papilio turnus, 375; seasonal, 379, 462

Diptera, course of germ-track, 192; renewal of the alimentary epi-

thelium, 57

Disarticulation of the limb of Triton. in connection with the hypothesis of supplementary determinants, 110

Diseases, transmission of.

hæmophilia, 370

Doubling of limbs in insects, 429; of whole groups of determinants, 428

Driesch, experiments with eggs of sea-urchins, 137; on the blastomeres of the frog, 141

Elsberg, Louis, 41 Embryonic cells, 33 Eudendrium, budding of, 155, 156, fig. 6

FERNS, regeneration and gemmation, 215

Fertilisation, essential part of the process, 232

Fission in Naidæ, 146; in Microstomidæ, 149, 456

Flemming, on nuclear division, 23; on the splitting of the chromosomes in nuclear division, 25, 68

Focke, on plant-hybrids, 261; on hybrids of Nicotiana, 267; on reversion in hybrids, 299; on recrossing, 302; on 'xenia,' 383

Fol, on the transference of the centrosome into the ovum during fertilisation, 29

Fraisse, on regeneration in Amphibia, 96; in Salamandra, 99; in lizards, 110, 116

Fucoidæ, polar bodies of, 251

GALLS, 218; definite new formations composed of modified cells, 221

Galton, Francis, acceptation of the 'gemmule' hypothesis, but rejection of that of their free circulation, 7; theory of the blending of characters of parents in the children, 7, 257; germ-substance composed of homologous gemmules, 72; supposed priority as regards the assumption of the continuity of the germ-plasm, 198

Gärtner, on plant-hybrids, 299; recrossing of hybrids, 305

Gemmation in Coelerentata, 154; 'blastogenic' idioplasm, 157; in Polyzoa, 158; in Tunicata, 160; in plants, 163; comparison of the process in plants and animals, 166; its phylogeny, 168; resulting from adaptation in polypes, 217; brief summary, 225, 456

Germ-cells, their formation, 183; shifting of place of origin in the course of phylogeny, 186; only certain series of cells contain the primary constituents of germ-cells, 189; distinction between germand somatic-cells, 208; the combination of ids in germ-cells, 245, 247; only half the number of parental ids contained in them, 257, 457

Germ-plasm constituting the immortal reproductive substance, 9; is the first ontogenetic stage of the idioplasm, 35; its fundamental units, 37; its composition out of biophors, 40, 48; its fixed architecture, 61; it forms a complete unit by itself, 62; summary relating to its structure, 75; magnitude of its constituents, 85;

blastogenic' idioplasm, 166; its regular division, 171; accessory germ-plasm, 174; its continuity, 183; its composition, 37, 77, 186; its modification caused by amphimixis, 235; its composition out of paternal and maternal idants, 254; its partial variations, 249, 271; reversion due to its ancestral determinants, 336; transformation and the gradual production of reversion, 336; 'blastogenic' germ-plasm, 441; reserve germ-plasm, 447, 453

Germ-tracks, course taken by the germ-plasm from the ovum to the reproductive cell, 184; their course in the Metazoa, 192; their cells alone capable of giving rise to primary germ-cells, 194; each cell in them contains perfectly definite somatic elements, 210;

brief summary, 228

Giard, view that the polar bodies correspond to aborted ova, 251 Godron, reversion in *Melandryum*

album and M. rubrum, 306 Götte, regeneration in Salamandra,

Gruber, August, artificial division of Infusoria, 52

Guignard, on the reduction of idants in the germ-cells of plants, 250; on the union of nuclei, 30

HABERLANDT, on the relations between the functions and position of the nucleus, 46

Häckel, Ernst, on the 'perigenesis of the plastidule,' 41; on the law of sexual transmission, 369

Häcker, Valentin, on the phenomena of reduction in the germ-cells of Arthropods, 250

Hæmophilia, 370

Hallez, on the embryology of Nematodes, 137

Hatschek, 53; on variation and sexual reproduction, 413

Henking, on the phenomena of reduction in the germ-cells of Arthropods, 250

Hensen, Victor, on amphigonic heredity, 253; on the increase of a character, 424

Herbert, experiments with Cytisus adami, 343

Hereditary substance, not contained in the body of the cell, but in its nucleus, 10; composed of primary constituents, 15; forms but a small part of the substance of the egg, 22; composed of different qualities, 26; the extreme complexity of its structure, 29; its growth, 31; of unicellular organisms, 451; of multicellular organisms, 452

Heredity, its fundamental phenomena, 20; in unicellular organisms, 52; in reference to the structure of the germ-plasm, 69; $\mathbf{a}\mathbf{n}\mathbf{d}$ homochronic homotopic forms, 75; in monogonic reproduction, 92; in sexual reproduction, 230, 253; explanation of apparently monogonic heredity in plant-hybrids, 259; in Man, 259; as regards the colour of the eyes, 278; example of apparently monogonic heredity, 267, 280; force of, 290; as regards acquired characters, 392; mutilations, 396; 'sports,' 444; the apparatus for transmission, 466

Hertwig, Oscar, view of fertilisation as a conjugation of nuclei, 23; on the germinal layers of the Metazoa, 113; on the nuclear rods in two varieties of Ascaris megalocephala, 241

Heterobiophorids, hypothetical pri-

mitive organisms, 450

Heterokinesis, nuclear division resulting in parts which are dissimilar as regards their hereditary tendencies, 34

Hildebrandt, hybrids of two species of Oxalis, 255

His, theory of special regions in the germ giving rise to special organs,

Hoffmann, experiments with Papaver alpinum, 437

Homobiophorids, hypothetical primitive organisms, 450

Homœokinesis, nuclear division resulting in parts which are similar as regards their hereditary tendencies, 34

Hoppe-Seyler, chemical constitution of protoplasm, 40

Humming-birds, sexual dimorphism of, 427

Hybrids of various species of plants, 255; the theory of idants, 259; plant - hybrids, 260; apparent monogonic transmission in, 302

Hydra, regeneration, 127; gemmation, 155

Hydractinia echinata, formation of germ-cells, 189

Hydroids, formation of the bud from a single cell, 166; embryogeny, 184; shifting of place of origin of germ-cells, 186; germtracks of, 207

ID, the, in ontogeny, 60; the number contained in the individual idant, 241

Idants, constituting the hereditary substance in sexual reproduction, 234; composed of dissimilar ids, 238; constituting groups of ids, 241; their number, 245; become doubled by division, 246; combination of, 247; of ancestors contained in the germ-plasm, 257; their combination in plant-hybrids, 297, 302; intermingling of, in transmission, 312

Idioplasm, Nägeli's conception of the, 10; my view of the, 33; contrasted with morphoplasm, 38; composed of ids, 63; phyletic variation of, in the differentiation of species, 79, 434

Ids or ancestral germ-plasms composed of determinants, 62; their individual difference, 236; homologous and heterologous, 264; gradual transformation of, 271; number variable according to age of characters, 273; struggle of parental ids, 285

Increase of a character by crossing, 424 Individual prepotency, 291

Ivy, 111; dichogeny in, 380

JÄGER, Gustav, supposed priority as regards the hypothesis of the continuity of the germ-plasm, 200

KENNEL, regeneration of beak of stork, 125; division, 150

Kiwi (Apteryx), disappearance of wings, 82

Kleinenberg, development of Lumbricus trapezoides, 170

Kölreutter, crossing of Nicotiana rustica and N. paniculata, 261, 269; on recrossing, 305

Kowalewsky, on supernumerary toes of horses, 334

Kraepelin, investigations on hermaphrodite bees, 361

LAMARCK, on the transmission of acquired characters, 395

Lang, A., the regenerative faculty as an arrangement for protection, 93; budding in hydroids, 155

Leptodora hyalina, development of, 176; sexual characters of, and the theory of determinants, 363

Leuckart, Rudolph, discovery of parthenogenesis in bees, 356; on the combination of secondary sexual characters in hermaphrodite bees, 360

Leydig, regeneration in lizards, 110,

Liebscher, crossing of Hordeum steudelii and H. trifurcatum, 301 Loeb, gemmation in Tubularia mesembryanthemum, 216

Lumbriculus, regeneration in, 126,

Lucas, Prosper, on transmission of polydactylism, 373

Lycæna, as illustration of the theory of determinants, 58, 62; *L. adonis* and *L. agestis*, 87; colouring and dimorphism of, 359, 373; variation in, 422

MARRUBIUM vaillantii, 270 Marsh, on supernumerary toes in

horses, 334

Medusæ, formation of germ-cells, 187; degeneration into a mere gonophore, 187

Mesohippus, 334

Meyer, O. E., on molecules, 86

Micellar theory, 41

Miescher-Rusch, on nuclein, 50

Morphoplasm, 38

Mules, transverse stripes of, indicating reversion, 316; theoretical explanation of stripes, 329; pathological variation, 429

Müller, Josef, 'gamomachia' and 'gamophagia,' 296

NÄGELI, Carl von, physiological theory of descent, 9; the hereditary substance constitutes only an infinitesimal part of the egg-cell, 22; the 'micella,' 41; on variation, 411; the ibis and crocodile in connection with variation,

416; bud-variation, 442 Nais, regeneration of, 126

Naudin, experiments with Datura,

Nicotiana rustica and N. paniculata, crosses between, 261; difference in the flowers of, 267; N. alata and N. langsdorffii, 300

Nipples, supernumerary, in human beings as examples of reversion,

Nitsche, O., budding in Polyzoa,

Nussbaum, artificial division in Infusoria, 52; idea of the continuity of germ-cells, 201

OKA, budding in Polyzoa, 159

Ontogeny, or development of the individual, 32; depends upon gradual changes in the germplasm, 32; part played by determinants in the course of, 80; can only be explained by 'evolution,' and not by epigenesis, 138; resulting from the union of the germ-plasm of two parents, 253

Otter-sheep, 291 Owen, Sir Richard, on cells, 198 Oxalis, crosses between different Reducing division of the germspecies of, 255

Pangenes, the, of de Vries as bearers of constituent qualities, 15; their miscibility, 15; compared with biophors, 42

Papilio turnus, 375

Pflüger, the hereditary substance only an infinitesimal part of the egg-cell, 22; influence of gravity on the development of frogs' eggs,

Phanerogams, budding in, 216 Philippeaux on regeneration in

Tritons, 118

Phylogeny, 77; parallelism between phylogeny and ontogeny. 80; of the process of fission in the Metazoa, 151; of regeneration, 114; of gemmation, 168; of the apparatus for transmission,

Pigeons, reversion to the rockpigeon, 323, 352; increase of a character by selection, 426, 427 Plasomes, the, of Wiesner, 20 Plastidules, the, of Haeckel, 41 Plumularia, budding in, 155 Podocoryne cornea, 158 Polydactylism, the transmission of, 373, 429

Polymorphism, 374; of animal and plant stocks, 376, 462 Polyommatus phlæas, 399, 420

Polyzoa, budding in, 158; formation of buds from different cells, 165; 'blastogenic' germ-plasm, 218

Primula acaulis, reversion to longstalked variety in, 16 Protohippus, 334

RATH, O. vom, on threads of 'linin' between the idants, 244; on the phenomena of reduction in the germ-cells of Arthropods, 250 Rauber, supposed priority as re-

gards the view of the continuity of the germ-plasm, 200

Ray Lankester on the non-transmission of acquired characters, 396

plasm, 11, 22, 235; consists in the extrusion of ids, 240; influence on the composition of the germ-plasm, 242; cause of difference between children of the same parents, 257; in its relation to reversion, 306

Regeneration, its cause and origin in the idioplasm, 93; constitutes an arrangement for protection, 93; physiological, 94; of the epidermis, 95; palingenetic, 105; coenogenetic, 108; of the caudal region of the vertebral column, 109; phylogeny of, 114; physiological and pathological, 119; depends on adaptation, 119; in fishes, birds, and mammals, 120; difference of the capacity for in lower and higher animals, 124; acquired by selection, 125; facultative or polygenetic, 126; in plants, 132; formation of callus, 133; in animal embryos, 134; of segmentation - cells, 139; summary, 225, 455

Reisseck, on crosses between Cytisus laburnum and C. purpureus, 343 Reproduction, sexual, 230, 457; its effect, 240; in Man, and transmission of parental characters,

257; by fission, 456

Reversion in plant-hybrids, 299; to the pure ancestral form, 305; in Man, and the crossing of different races, 308; to a grandparent, 309; to characters of remote ancestors, 316; in Datura, 317, 321; to ancestral forms of flowers in plants, 305; to rudimentary characters, 333; in gemmation, 338; in parthenogenesis, 344; sexual, 367; in bud-variations, 447, 458

Rhabditis nigrovenosa, segmentation of ovum, 195, fig. 15; germ-

track of, 196

Roux, W., on the purpose of the apparatus for division of the nucleus, 26; on the struggle of parts, 107; on gravity producing no effect in the differentiation of the egg into the embryo, 135; experiments on frogs' eggs, 136; on post-generation, 142

Rückert, J., behaviour of chromosomes during maturation in the ovum of the dog-fish, 50, 71, 247

SALHS, on the formation of callus, 133; on the growth of Chara, 164; on adventitious buds, 211 Sagitta, embryogeny of, 185; course

of the germ-track of, 192
Salamandra, regeneration of limbs,

99 Salpæ, budding in, 162; alternation of generations in, 180

Schreiber, on the regenerative power in *Triton marmoratus*, 115

Seeliger, O., on budding — in Polyzoa, 158; in Clavelina, 160; in Salpæ, 162; in Pedicellina, 218

Self-differentiation of cells, 136 Semper, Carl, on the process of fission in *Nais*, 147

Settegast, on infection of the germ, 385

Siebold, von, on the determination of sex in bees, 356; on hermaphrodite bees, 361

Siren lacertina, regenerative power in, 115

Spallanzani, on the capacity for regeneration in different organs, 117; in Triton, 120; in the jaw of Triton, 125

Spencer, Herbert, 'physiological units,' 51; their relation to Darwin's 'gemmules,' 6; on heredity, 7; on regeneration, 104; regeneration compared with crystallisation, 128

Stimuli considered as causing an incitement to growth, 129

Strasburger, on fertilisation in Phanerogams, 23; on the essential similarity of male and female nuclei, 23; on the dynamical effect of nuclear matter, 45 Struggle of individual characters, 274; of the ids in ontogeny, 260 Supplementary determinants, 103; their change in the course of phylogeny, 112; in processes of regeneration in *Hydra*, 127; antimeral, 131; the origin of, 149 Syphilis, the transmission of, 388

TARDIGRADA, extent of the hereditary parts, 59.
Telegony or infection of the germ,

383

Termites, polymorphism in, 379 Thuja, dichogeny in, 382

Transmission (see Heredity).

Triton, 100; diagram of regeneration of fore-limb in, 102, 115; experiment on regeneration of lung in, 117

Tuberculosis, and infection of the germ, 389

Tubularia mesembryanthemum, budding in, 216

Tunicata, budding in, 160 Twins, 140; identical and dissimi-

lar, 254
Type in a technical sense, 313

Vanessa, levana and prorsa, 379
Variation, intercalary remarks on, 271; theoretical demonstration of, 410; normal individual variation, 410; cause of hereditary variation, 428; summary of the present view with regard to variation, 431; variations on a larger scale in plants, 435

Verworn, M., view that the hereditary substance is also contained in the cell-body, 28

Vilmorin, on individual potency in plants, 291

Vines, view that the assumption of a special reproductive substance is unnecessary, 202; on embryonic substance, 204

Viola tricolor, reversion to the ancestral form, 320

Vöchting, H., on 'transplantation in the plant-body,' 129

Volvox, proof of that a difference exists between the somatic- and the germ-cells, 213; as an example of sexual dimorphism, 355 Vries, Hugo de, objection to the theory of ancestral germ-plasms, 12; 'intracellular pangenesis' compared with Darwin's 'pangenesis,' 12; objection to the view that the hereditary substance is contained in the nucleus only, 26; on the structure of protoplasm, 38; on Haeckel's 'plastidules,' 41; objection to Strasburger's and Haberlandt's views, 46; the 'pangenes' as bearers of cell-qualities, 42; on the continuity of cellular organisms, 56; on primary and accessory germtracks, 206, 211; on the continuity of the germ-plasm, 207; on galls as contradicting the latter, 218; galls of Cecidomyia poæ, 221; on the crosses between two species of beans, 297; on planthybrids, 300; on dichogeny, 380, 45I

WAGNER, F. von, on gemniation and fission, 145; on fission in Microstoma lineare, 149; gemmation, 154

Wallace, Alfred Russel, on Papilio memnon, 376; on variation,

Ward, Lester, Neo-Darwinism and Neo-Lamarckism, 408 Weeping Ash, 444, 446

Wiesner, Julius, on the elementary structure and growth of living substance, 19; on the constitution of protoplasm, 39; on the continuity of the constituent parts of the cell, 48

Willow, rudiments of roots in the

shoots of the, 382

ZANDER, R., on polydactylism,

Ziegler, Ernst, on the law of the specific character of the tissues, 112; on tuberculosis, 390; on polydactylism regarded as a germvariation, 430

Norwood Press :

J. S. Cushing & Co. - Berwick & Smith. Boston, Mass., U.S.A.