Authentication for Virtual Organizations: From Passwords to X509, Identity Federation and GridShib

BRIITE Meeting
Salk Institute, La Jolla CA.
November 3th, 2005

Von Welch

vwelch@ncsa.uiuc.edu

Outline

- What are Virtual Organizations (VOs)?
- Authentication in VOs
 - Global names
 - X509 and PKIs
 - Identity Federation
 - Shibboleth
 - On-line CAs
- GridShib
- Challenges Ahead

What is a Virtual Organization?

- A dynamic set of users and resources, from different institutions, who operated in a coordinated, controlled manner to achieve a common goal.
- Key attributes:
 - Dynamic
 - All users and resources still belong to original institution
 - Coordinated and controlled
 - Shared policy

What's an institution?

- AKA a "real organization"
- Some relevant attributes:
- Have users
- Professional IT staff and services
 - Define namespace
 - Authentication mechanism
 - Reluctant to change
- Legal standing
- Persistent
- Cares about reputation, legal standing

Some VO examples

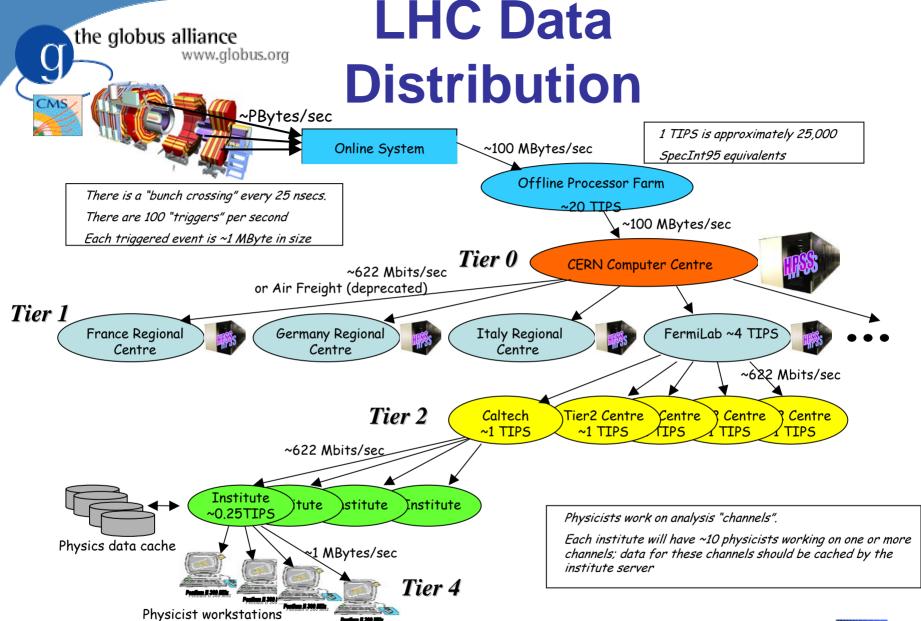
From simpler to more complex

Web-based Collaboration

- Users decide to collaborate
- One user creates a (e.g.) wiki
 - Single resource of interest
- Wiki creator hands out user names and password to all the users
 - This user is now the authority
- Users put usernames and passwords into their web browsers
 - The browser is their wallet

Web-based Community

- One organization brings together users from multiple organizations
 - E.g. IEEE, ACM, AMA
- Organization instantiates a web resource
- Organization creates and hands user names and passwords...
- And users add to their browser wallets



Previous examples

- Both had users from multiple institutions
- Both had only a single resource provider
- Ultimately all the policy was created and enforced in one place
- Moving on to a more complex example...

LHC VO Example

- Users and resources from multiple organizations
 - Resources are computers, scientific instruments, storage, datasets, etc.
 - Often non-web based
- With multiple resource providers there is no longer a single obvious authority

LHC (cont)

- VO picks (and/or establishes) authorities for identity and attributes
- Lots and lots of policy discussions and (hopefully) agreements
- All resources in VO trust authorities
- An attribute authority is established
 - Distributes attribute assertions or a list of member identities
 - All resources trust this attribute authority

- #1: Protocol and credentials
- Resource has to be able to recognize and authorize users
- Institutions have different credential formats and protocols
 - Passwords vs Kerberos vs LDAP vs Windows Domain
- Unlikely to have a ubiquitous solution any time soon

- #2: Naming
- Users don't have global, unique names
- Each institution and service provider has their own name for each user
 - But it's hard to leverage these things across institutions (lack of protocols, common credentials)
- Same name at different institutions may be different users
- Names vs Identities
 - Often it's what you are, not who that is important

- #3: Policy
- Expectation management
- How much effort must go into different operations?
 - How "secure" is "secure"?
- Who is responsible for what when things go wrong?
- How will the VO respond when things go wrong?

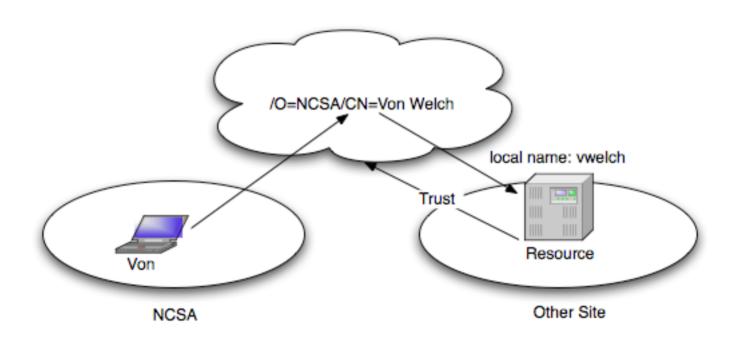
- #4: Scalability
- From the VO perspective:
 - With enough members, it will take professional staff to manage membership, credentials, security services
 - Not a big problem for large VOs
 - E.g. IEEE can afford to set up services, hire staff, etc. to establish and maintain the VO
 - However for smaller VOs, this sort of overhead is an issue
 - E.g. scientific project often do not have the skills and expertise to operate a VO.

- Scalability from the user perspective:
 - Each VO they are a part of means another name and set of credentials (e.g. username & password)
 - Browsers can solve a lot of this for the Web
 - Unless your disk crashes, you change computers, etc.
 - This is what the identity federation folks are targeting
 - E.g. Shibboleth, Liberty Alliance

Authentication in VOs

- Some history
 - Grids
 - Shibboleth
- GridShib Work To-Date
- Challenges ahead

Grids


- The Grid uses X509 for authentication and has a lot of experience
- Each user obtains an X509 certificate and identity
- Can be made to scale with enough effort. We have a world-wide trust federation.
 - http://www.gridpma.org
- This identity is that mapped to a local identity at each resource by the resource

X509 Global Namespace

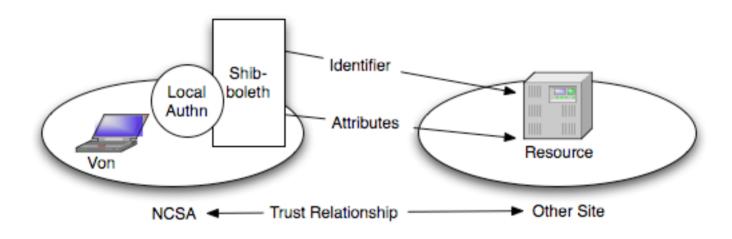
Grid X509 Global Namespace

Advantages to Grid X509 approach

- Lightweight in that it doesn't require sites-to-site agreements
 - Allows a few users from a number of sites to collaborate in VOs without complicated peering
 - Each resource can accept the X509 certificates it wants

Disadvantages to Grid approach

- Heavyweight in that it buts credential management burden on users
- Users are poor managers of X509 private keys
 - Too long to memorize or write down
- No good place to store keys
 - No ubiquitous support for hardware tokens across multiple organizations
- Lost keys are painful to replace
- Can be hard to tell if a key was compromised
 - Hacker broke in, what keys were on the system?



Shibboleth

- Uses identity federation approach
 - Very much aligned with Liberty Alliance
 - Identity == what you are, not necessarily who
- Site-to-site trust arrangements allow for expressing identifiers and attributes across sites
- Features for privacy
 - Resource knows only what you are, not who

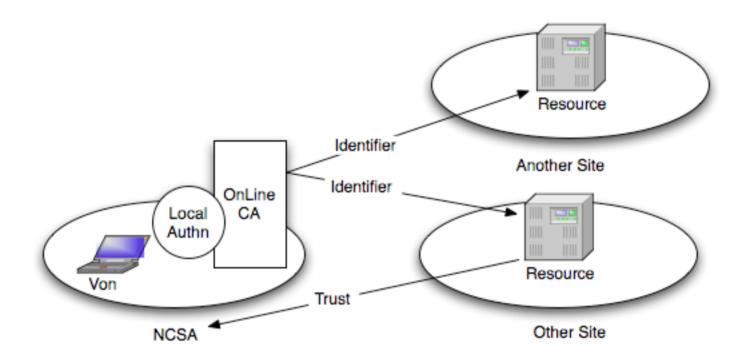
Shibboleth Id Federation

Advantages of Shibboleth

- Uses existing authentication system
 - No new credentials for the user to learn and manage
- Privacy
- XML-Buzzword-compliant
 - Might be an advantage, certainly hipper
- Flatter, simpler hierarchies than PKI
 - At least for now

Disadvantages of Shibboleth

- Identity federation requires institutions to agree
 - Slower than user-to-user trust
 - Requires high-level of motivation to ensure that it will happen
 - Lawyers
- Technology is currently focused on web browser applications
 - Lack of delegation
 - Protocol assumes lots of browser features
 - Redirection, auto-refresh of credentials, etc.


The online CA Approach

- An alternative to traditional PKIs
- Online CAs leveraging existing institutional authentication
 - E.g. KCA, MyProxy
 - Deployments at FNAL, NERSC
- User uses local authentication to obtain short-lived X509 credential (with persistent name)

Online CA

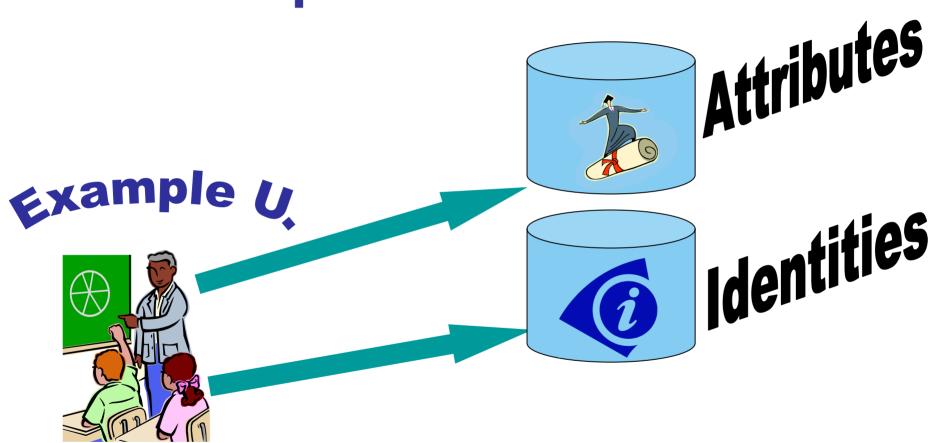
Online CA

- Advantages
 - No new passwords for the users
 - Works with existing Grid infrastructure
- Disadvantages
 - Still have short-lived credential. Is it short-lived enough we can ignore revocation?

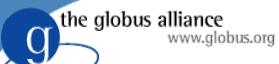
On to GridShib...

What is GridShib

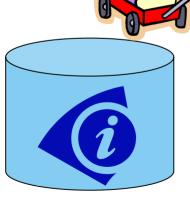
- NSF NMI project to allow the use of Shibboleth-issued attributes for authorization in NMI Grids built on the Globus Toolkit
 - Funded under NSF NMI program
- GridShib team: NCSA, U. Chicago, ANL
 - Tom Barton, David Champion, Tim Freemon, Kate Keahey,
 Tom Scavo, Frank Siebenlist, Von Welch
- Working in collaboration with Steven Carmody, Scott Cantor, Bob Morgan and the rest of the Internet2 Shibboleth Design team


Motivation

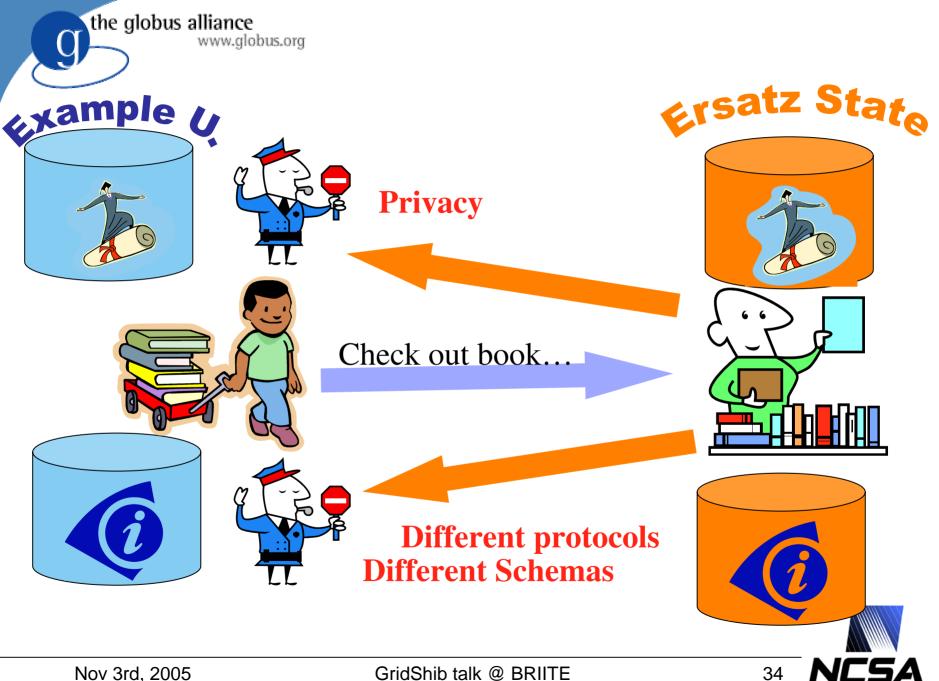
- Many Grid VOs are focused on science or business other than IT support
 - Don't have expertise or resources to run security services
- We have a strong infrastructure in place for authentication in the form of Grid PKIs
- Attribute authorities are emerging as the next important service



Campus Infrastructure



Student?

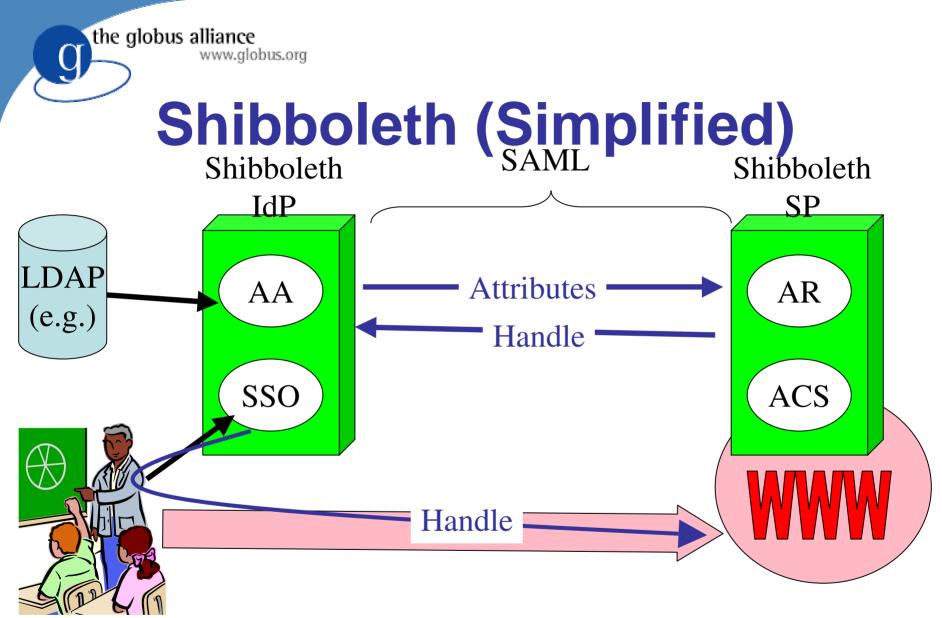


Access student records...

Is student John Smith?

Shibboleth

- http://shibboleth.internet2.edu/
- Internet2 project
- Allows for inter-institutional sharing of web resources (via browsers)
 - Provides attributes for authorization between institutions
- Allows for pseudonymity via temporary, meaningless identifiers called 'Handles'
- Standards-based (SAML)
- Being extended to non-web resources



Shibboleth

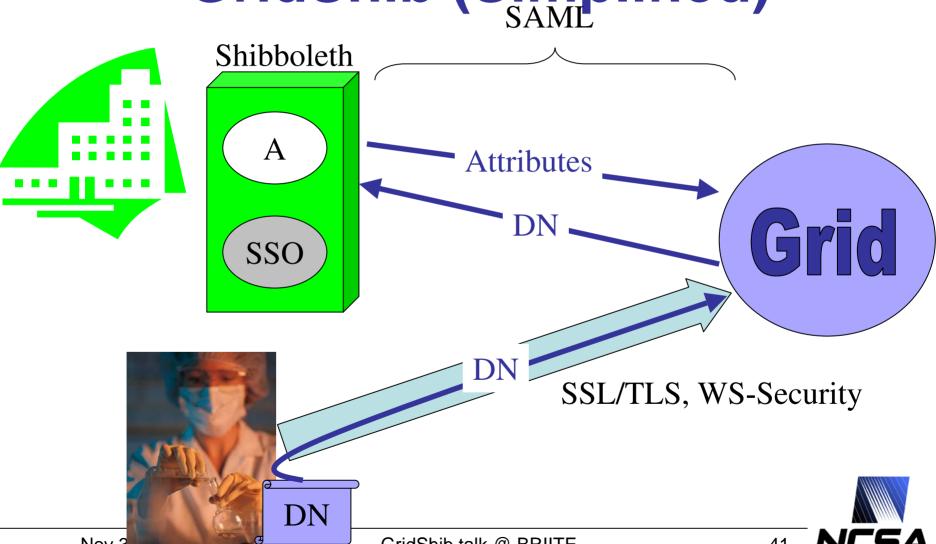
- Identity Provider composed of single sign-on (SSO) and attribute authority (AA) services
- SSO: authenticates user locally and issues authentication assertion with Handle
 - Assertion is short-lived bearer assertion
 - Handle is also short-lived and non-identifying
 - Handle is registered with AA
- Attribute Authority responds to queries regarding handle

Globus Toolkit

- http://www.globus.org
- Toolkit for Grid computing
 - Job submission, data movement, data management, resource management
- Based on Web Services and WSRF
- Security based on X.509 identity- and proxy-certificates
 - Maybe from conventional or on-line CAs
- Some initial attribute-based authorization

Grid PKI

- Large investment in PKI at the international level for Grids
 - http://www.gridpma.org
 - TAGPMA, GridPMA, APGridPMA
 - Dozens of CAs, thousands of users
- Really painful to establish
- But it's working...
 - And it's not going way easily


Integration Approach

- Conceptually, replace Shibboleth's handle-based authentication with X509
 - Provides stronger security for non-web browser apps
 - Works with existing PKI install base
- To allow leveraging of Shibboleth install base, require as few changes to Shibboleth AA as possible

GridShib (Simplified)

Authorization

- Delivering attributes is half the story...
- Currently have a simple authorization mechanisms
 - List of attributes required to use service or container
 - Mapping of attributes to local identity for job submission

Authorization Plans

- Develop authorization framework in Globus Toolkit
 - Siebenlist et. al. at Argonne
 - Pluggable modules for processing authentication, gathering and processing attributes and rendering decisions
- Work in OGSA-Authz WG to allow for callouts to third-party authorization services
 - E.G. PERMIS
- Convert Attributes (SAML or X509) into common format for policy evaluation
 - XACML-based

GridShib Status

- Beta release publicly available
- Drop-in addition to GT 4.0 and Shibboleth 1.3
- Project website:
 - http://gridshib.globus.org
- Very interested in feedback

Challenges Ahead...

Distributed Attribute Admin

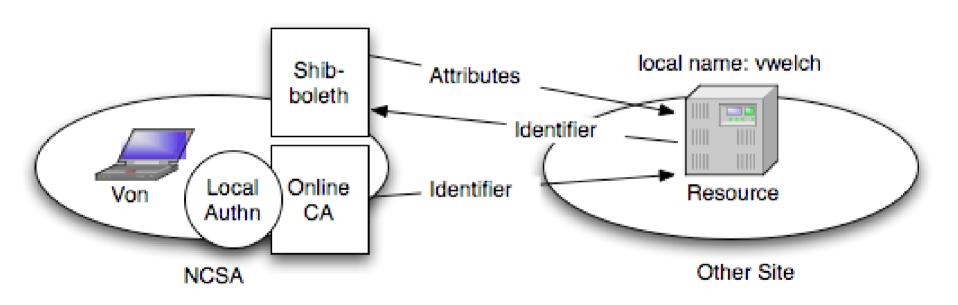
- The Problem...
- NCSA runs the attribute authority
- But lots of people issue attributes about me
 - IEEE, ACM, TeraGrid, GridShib, etc.
 - Every group I'm a member of is an attribute
 - Many of these group are their own authority
- Think of all the credentials in your purse or wallet...

Distributed Attribute Admin

- Many of these groups will simply set up their own attribute service
- Two issues:
 - Users need a way to manage this virtual wallet
 - What attribute authorities should be consulted when - what are my roles at the moment?
 - Some groups are too small to set up their own attribute services

Distributed Attribute Admin

- Need ways for a user to point at the attributes services they want to be consulted
 - Push attributes?
 - Push references to attribute authorities?
 - We exploring both of these paths
- Signet/Grouper integration for distributed attribute administration
 - Tom Barton @ U. of Chicago
 - Allow small groups to set attributes in your attribute server
 - Technical issues, probably bigger policy issues



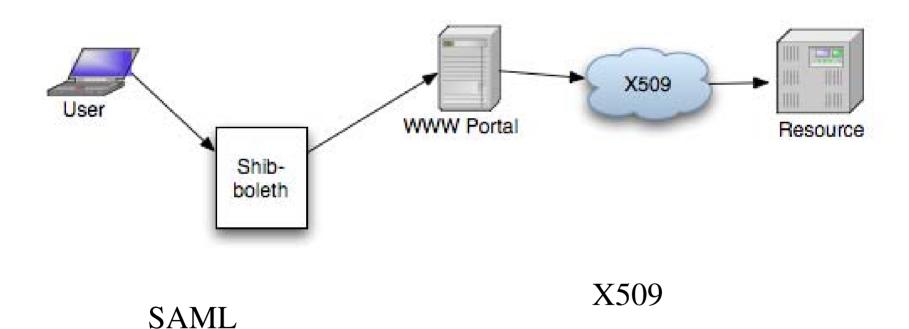
GridShib/Online CA Integration

- X509 Credentials still have large problem with user-managed credentials
 - See slide 21
- Use of online CA at campus to issue credentials helps with this
- If we integrate an online CA such that the identifiers it issues can then be used to get attributes from a Shibboleth AA we get a full attribute-based authorization system
- Collaboration with Jim Basney

GridShib/MyProxy Integration

GridShib/MyProxy Integration

- Challenge is one of name management
- User's local name must be mapped to X509 DN and then back to name meaningful to attribute authority
- Is algorithmic approach better or can we assume database of mappings?
- Who should do the mappings?


Grid Portals

- Web portals are important
 - Clients already installed, easily customized, users familiar with them
- But protocols are rather difficult to customize
 - There is a rich set of features, but adding new features (for security) or otherwise is difficult
 - Lots of portal developers to convince

Grid Portals

Thank You

- My email:
 - vwelch@ncsa.uiuc.edu
- GridShib
 - http://gridshib.globus.org
- Shibboleth
 - http://shibboleth.internet2.edu/
- Globus Toolkit
 - http://www.globus.org/
- MyProxy
 - http://myproxy.ncsa.uiuc.edu/

