DNA as a Mass-Storage Device

Robert J. Robbins

Johns Hopkins University rrobbins@gdb.org

File: N_drive:\jhu\class\1995\DNA.ppt

© 1994, 1995 Robert Robbins

Goals of the Genome Project

Sequence the Genome

• equivalent to obtaining an image of a mass-storage device

Map the Genome

 equivalent to developing a fileallocation table for the mass-storage device

Understand the Genome

• equivalent to reverse engineering the files on the mass-storage device all the way back to design and maintenance specifications

Sequencing the Genome

© 1994, 1995 Robert Robbins

Getting the Sequence

Obtaining one full human sequence will be a technical challenge. If the DNA sequence from a single human sperm cell were typed on a continuous ribbon in ten-pitch type, that ribbon could be stretched from San Francisco to Chicago to Washington to Houston to Los Angeles, and back to San Francisco, with about 60 miles of ribbon left over.

The amount of human sequence currently sequenced is equal to less than onethird of that left-over 60-mile fragment. We have a long way to go, and getting there will be expensive. Computers will play a crucial role in the entire process, from robotics to control experimental equipment to complex analytical methods for assembling sequence fragments.

year	per base cost	budget	year	cumulative	percent completed
1995	\$0.50	16,000,000	10,774,411	10,774,411	0.33%
1996	\$0.40	25,000,000	21,043,771	31,818,182	0.96%
1997	\$0.30	35,000,000	39,281,706	71,099,888	2.15%
1998	\$0.20	50,000,000	84,175,084	155,274,972	4.71%
1999	\$0.15	75,000,000	168,350,168	323,625,140	9.81%
2000	\$0.10	100,000,000	336,700,337	660,325,477	20.01%
2001	\$0.05	100,000,000	673,400,673	1,333,726,150	40.42%
2002	\$0.05	100,000,000	673,400,673	2,007,126,824	60.82%
2003	\$0.05	100,000,000	673,400,673	2,680,527,497	81.23%
2004	\$0.05	100,000,000	673,400,673	3,353,928,171	101.63%

File: N_drive:\jhu\class\1995\DNA.ppt

Understanding the Genome

© 1994, 1995 Robert Robbins

Understanding th	he go	enome	involves	the	equivalent	of	reverse	engineering
binary codes for	an ur	nknown	computer	r sys	tem. This is	s nea	arly imp	ossible for a
single program, b	out co	ompariv	e analyses	s of s	imilar prog	ram	s can pro	ovide a start.

Suppose you had two programs, one of which caused a computer to undergo a cold boot, the other a warm boot. A comparison of these programs would give some small insights into the workings of that computer.

WARMBOOT:

BA 40 00 8E DA BB 72 00 C7 07 00 00 EA 00 00 FF FF

BA	40	00	8E	DA	BB	72	00	C7	07	34	12	EA	00	00	FF	FF

Alignments of the codes can provide insights into regions of common function:

WARMBOOT:	BA	40	00	8E	DA	BB	72	00	C7	07	00	00	EA	00	00	FF	FF	
COLDBOOT:	BA	40	00	8E	DA	BB	72	00	C7	07	34	12	EA	00	00	FF	FF	כ

Similar methods could be used to analyze programs that caused messages to be displayed on screen.

Assume that you have the sources for four short programs, each of which causes a short message to be written to the screen:

- 1 = Hello world
- 2 = Hi world
- **3** = Goodbye world
- 4 = Hello

Aligning the sequences (inserting blanks where necessary) allows the detection of common features:

Now, suppose you get a fifth program, that writes the same "Hello world" message as the first program, but which has different binaries.

At first, the sequences appear fairly different:

Again, sequence similarities can provide clues...

This kind of comparative technique is used in biology.

gene name DNA sequence near transcription initiation site

					1 1
lacZ	ccaggc	TTŁACA	ctttatgcttccggctcg-	FATgtT	gtgtgga
malT	tcatcgc	TTGcat	tagaaaggtttctggcc	JACCT	ataacca
araC	atccatg	TgGACt	tttctgccgtgattata	JACACT	tttgttacg
galP1	catgt	cacACt	tttcgcatctttgttatgc	FATggT	tatttca
deoP2	gtgta	TcGAag	tgtgttgcggagtagatgt	FAgAAT	actaaca
cat	gatcggcac	gtaAgA	ggttccaactttcac	CATAAT	-gaaataag
tnaA	-tttcagaa	TaGACA	aaaactctgagtgtaa	FAatgT	agcctcg
araE	ccgac	CTGACA	cctgcgtgagttgttcacg	FATttT	ttcactatg
consensus		TTGACA		ГАТААТ	
			- 35		- 10

Mapping the Genome

File: N_drive:\jhu\class\1995\DNA.ppt

© 1994, 1995 Robert Robbins

The Simplistic View of a Gene

Genes are sequences of DNA. Mapping the genome involves identifying and locating specific functional regions of DNA.

© 1994, 1995 Robert Robbins

DNA as a Mass-Storage Device

Mass Storage System:

- Underlying primitive structure is linked list, not physical medium
- List has polarity
- Addressing is associative, not physical
- No content restriction on linear order of data

Understanding how DNA is constructed is necessary for understanding how it functions.

DNA as a Mass-Storage Device

Redundant Mass Storage System:

- Full structure is dual linked list
- Lists have opposite polarity
- Total content restriction on paired data
- Either list can be data, the other redundant

DNA has much in common with a mass-storage device, but a mass-storage device based on an underlying linked list, not a physical system with spatial addresses independent of what is being addressed.

RNA->Protein: Orchestration by a single complex operon, *BioEssays*, 10:152-157.

In practice, many genomic regions exhibit considerable complexity.

The Gart/Lcp Locus

Drosophila melanogaster

Henikoff, S., Keene, M.A., Fechtel, K., and Fristrom, J.W., 1986, Gene within a gene: Nested *Drosophila* genes encode unrelated proteins on opposite strands, *Cell* 44:33.

Genes can be broken up with non-coding sub-sequences (introns) interspersed among coding sub-sequences (exons). An entire gene may lie within an intro of another gene.

File: N_drive:\jhu\class\1995\DNA.ppt

© 1994, 1995 Robert Robbins

The POMC Locus Products

Homo sapiens

Some regions of the genome produce multiple proteins from a single polypeptide precursor.

Complex interactions among transcipts from different genomic locations may be required to produce a single protein.

Some regions of the genome are characterized by multiple tandem repeats of the "same" gene.

D14S1 is a VNTR Locus

Frequency of PstI fragment sizes (kb)

Balazs, I., Neuweiler, J., Gunn, P., Kidd, J., Kidd, K.K., Kuhl, J., and Mingjun, L., 1992, Human population genetic studies using hypervariable loci, *Genetics*, 131:191-198.

Regions of the genome may differ in length among normal individuals.