THE CYTOLOGICAL IDENTIFICATION OF THE CHROMOSOME ASSOCIATED WITH THE $R-G$ LINKAGE GROUP IN ZEA MAYS
 BARBARA McCLINTOCK AND HENRYE. HILL
 Cornell University, Ithaca, New York

Received March 1, 1930
TABLE OF CONTENTS

	PAGE
Introduction.	175
Methods.	176
Observations on trisomic inheritance of R.	176
Independence of the $R-G$ linkage group	186
Summary..	
Acknowledgments.	
Literature cited.	
Appendix.	190

INTRODUCTION

Genetic investigations with Zea mays have established ten linkage groups. Likewise, cytological investigations have revealed the presence of ten morphologically identifiable chromosomes composing the haploid complement (McCintock 1929b). It is the aim of the present investigation to correlate a particular linkage group with a particular chromosome.

The method employed has been to obtain $2 \mathrm{n}+1$ plants trisomic for different members of the haploid complement, and then, by means of trisomic inheritance, to determine which chromosome carries a particular group of genes.

The $2 \mathrm{n}+1$ plants have been obtained from the progeny of one original triploid (McClintock 1929a). The chromosome number in the female gametes of a triploid varies from ten to twenty. Trisomic individuals were obtained directly from the F_{1} of a cross triploid \times diploid and from the $2 \mathrm{n}+1$ progenies of F_{1} individuals with more than one extra chromosome.

Inheritance data obtained from the $2 \mathrm{n}+1$ plants of culture 131 suggested that in this culture the r - g carrying chromosome was present in triplicate. An effort was therefore made to test the validity of this interpretation and to verify the genetic inference that the nine other linkage groups are independent of the $r-g$ chromosome.

The evidence indicates that the smallest chromosome of the haploid complement carries the genes of the $r-g$ linkage group. Thus, $2 \mathrm{n}+1$ plants of culture 131 showing trisomic inheritance for r have the smallest chromosome in duplicate in their 11 -chromosome microspores. Likewise, $2 \mathrm{n}+1$
plants of other cultures which show the smallest chromosome in duplicate in 11-chromosome microspores have given trisomic inheritance for r in later genetic investigations.

METHODS

Root-tips were fixed in a chromic-acetic-formalin mixture and sectioned in paraffin. The aceto-carmine smear method was used for sporocytes which previously had been fixed in an acetic-absolute alcohol mixture. The microspores were fixed in an acetic-absolute alcohol mixture, stained with carmine and cleared with chloral hydrate.

For morphological studies of the chromosomes; late prophase stages of the division of the microspore nucleus were found most valuable, since the chromosomes at this stage are longer, their constrictions are more obvious and the relative length of their arms is more readily determined than in the contracted metaphase stage. From comparative studies of the most easily distinguishable chromosomes of the complement it is clear that the morphology as shown by the prophase and metaphase microspore figures is essentially similar to that shown in the root tips. The presence of only the haploid complement and the ease of observation in the microspore favored the use of this stage for cytological studies,

OBSERVATIONS ON TMISOMIC INHERTTANCE FOR R

As has been stated, the $2 \mathrm{n}+1$ individuals of culture 131 were trisomic for the $r-g$ chromosome. This culture arose from a $2 n+1$ plant which had been selfed. Of 61 individuals examined, 39 (or 63.7 percent) were 2 n , 21 (or 34.4 percent) were $2 n+1$ and 1 (or 1.6 percent) was $2 n+2$. It can be safely assumed that all the $2 n+1$ plants of this culture were trisomic for the same chromosome, since the normal rate of non-disjunction in Zea mays is very low.

As a result of the distribution of the members of the trivalent at meiosis, 11 -chromosome carrying and 10 -chromosome carrying gametes are formed. In a normal pollination, the extra chromosome carrying pollen grains do not function well in competition with the n-carrying pollen grains (see table 1). For genetic investigations, therefore, it is necessary to Table 1
Percent of $2 n+1$ individuals resuling from the cross $2 n 9 \times 2 n+1 \sigma^{7}$.

$\therefore 209 \times 2 n+10^{2}$	$2_{2}+\cdots \because$	$\therefore 2 \mathrm{C}+1$	Percent $2 \mathrm{n}+1$,
$\begin{aligned} & 192_{1} \times 224_{3} \\ & 192_{3} \times 225_{3} \end{aligned}$	$\because \frac{261}{83}$	$\left\|\begin{array}{ccccc}\because & & 3 & \cdots & \\ \hdashline & \cdots & \cdots & 2 & \cdots\end{array}\right\|$	$\begin{array}{r} 1.13 \\ 2.35 \end{array}$

consider the functioning of 11 -chromosome carrying gametes only in the case of the female. On the basis of random distribution of the three similar chromosomes at meiosis one should expect half of the eggs to carry the extra chromosome, but actually only about one-third of the eggs carried it (see above and table 2). This discrepancy can be explained on the basis of irregularities at meiosis. Nine bivalents and one trivalent are found at metaphase I only in approximately two-thirds of the sporocytes; in the other sporocytes there are ten bivalents and one univalent. When the extra chromosome appears thus as a univalent its

Table 2
Number $2 n+1: 2 n$ individuals from the cross $2 n+1 \circ \times 2 n \sigma^{7}$.

cutrus	$2 n$	$2 \mathrm{n}+1$
166	11	4
168	1	1
176	5	2
224	2	2
225	14	5
229	10	10
230	14	4
231	9	2
232	83	11
Totals		41
		33.06 percent
$2 n+1$		

behavior is very irregular (McCinstock 1929a). It may not go into the spindle figure but remain in the cytoplasm. It may be found in an abnormal position in the spindle. Again, the univalent may lag in the central part of the spindle with or without showing evidence of a separation of its split halves. If the halves should be included in the two telophase I nuclei, they would probably lag in the second meiotic mitosis. In all of these cases a loss of the univalent will occur in meiosis, with the formation of all n-carrying nuclei instead of half n-carrying and half $n+1$. This phenomenon could account for the increased ratio of n to $n+1$ gametes. The difference in many cases is probably not due to lack of viability of $\mathrm{n}+1$ gametes or $2 \mathrm{n}+1$ plants, since in many ears of Zea mays the regularity of row and kernel position allows undeveloped kernels to be readily detected. Some $2 \mathrm{n}+1$ plants bore almost perfectly filled ears. It is possible, also, that the lowest megaspore, if it contains the extra chromosome, does not function to produce the embryosac but, in a certain percent of the
cases, one of the megaspores that contains the haploid complement functions instead.

The trisomic individuals of culture 131 were crossed so that their progenies were heterozygous for at least one factor of every linkage group. Backcross and F_{2} ratios were obtained to determine which factors were inherited on a trisomic and which on a disomic basis. Abundant evidence for trisomic inheritance of r in the $2 \mathrm{n}+1$ progenies of culture 131 (cultures $189,209,224,225,229,231$) was obtained.

Simple ratios may best be considered first. When the R factor for red aleurone is duplex ($R R r$) the gametic ratio expected from random distribution of the extra chromosome is $2 R: 2 R r: 1 R R: 1 r$, or a total of $5 R: 1 r$. Since only the n-carrying pollen grains need be considered, the functioning male gametic ratio is $2 R: 1 r$. In the $2 \mathrm{n}+1$ progenies of culture 131 duplex for R the backcross ratios through the pollen were 646R:355r (table 3),

Table 3

$r \neq \times R R \sigma^{7}$	COLORED	coLorless
$192_{8} \times 225_{3}$	240	91
$192_{9} \times 209_{49}$	198	141
$192_{10} \times 224_{2}$	208	123
Totals	646	355

a fair approximation to 2:1. On the same basis, crosses of $2 \mathrm{n} \mathrm{Rr} \circ \times 2 \mathrm{n}$ $+1 R R r \sigma^{7}$ should give $5 R: 1 r$. Table 4 shows a total count of $2102 R: 435 r$. A sib cross between two heterozygous 2 n individuals gave $290 \mathrm{R}: 88 \mathrm{r}$, or the expected 3:1 ratio (table 7).

Table 4

Rro $\times R R$ ro $^{\top}$	colored	colorless
$225_{11} \times 224_{2}$	265	74
$225_{14} \times 224_{2}$	235	49
$231_{7} \times 231_{9}$	382	61
$231_{14} \times 231_{9}$	419	82
$231_{16} \times 231_{9}$	357	82
$231_{17} \times 231_{9}$	444	87
Totals	2102	435

When R is simplex ($R r r$) the expected gametic ratio is $1 R: 2 R r: 1 r r: 2 r$. With elimination of the $\mathrm{n}+1$ carrying pollen grains the functioning male
gametic ratio is $1 R: 2 r$. In the progenies of culture 131 only one individual tested was so constituted and gave a backcross ratio through the pollen of 110R:234r (table 5). Conversely a $2: 1$ ratio is expected in crossing a 2n $R r$ with this $2 \mathrm{n}+1$ of constitution $R r r$; actual counts showed $348 R: 182 r$ (table 5).

Table 5
Crosses involving the simplex (Rrr) individual, 2243.

$r \mathrm{~F} \% \times \mathrm{Rrr} \sigma^{\prime}$	colored	colorless
$192{ }_{1} \times 224_{3}$	110	234
$\begin{aligned} & R r \div \times R r r \sigma^{r} \\ & 224_{4} \times 224_{3} \\ & 224_{4} \times 224_{3} \text { second ear } \end{aligned}$	$\begin{aligned} & 182 \\ & 166 \end{aligned}$	$\begin{aligned} & 97 \\ & 85 \end{aligned}$
Totals	348	182
$\begin{array}{r} R r r \circ \times R r \sigma^{7} \\ 224_{3} \times 224_{4} \end{array}$	160	57

The extra chromosome having thus been shown to carry a factor for the r-a linkage group, cytological examinations were made in order to determine which of the ten chromosomes of the haploid complement it was. Since the ten chromosomes are all morphologically distinguishable, it was only necessary to examine the 11-chromosome carrying microspores and see which chromosome was present in duplicate. Observations on diakinesis had already indicated that the chromosome involved was either the smallest or the next to the smallest.

The methods devised at the time of the investigation for the observation of the late prophase chromosome made it somewhat difficult to obtain figures with all of the chromosomes lying perpendicular to the optical axis. Some good figures were obtained, however (figure 1). Many figures were found with all but one or two chromosomes lying flat. Since the differences in size between the four smallest and the six largest chromosomes are obvious in the later prophase stage almost regardless of the position of the chromosomes in the nucleus, it is comparatively easy to know when the four smallest chromosomes are lying flat, and hence to obtain accurate figures (figure 2). In the 11-chromosome microspores in which one chromosome is present in duplicate it is easy to determine whether it belongs to the group of four small chromosomes or to the group of six large ones. When it belongs to the former group one observes five small
instead of four small chromosomes, and the frequency of figures with all five chromosomes lying in the desired plane is sufficiently high to make accurate comparisons of the chromosomes for the purpose of determining which of them is present in duplicate. Such a case is shown in figure 3.

Figure 1.-Late prophase chromosomes in an 11-chromosome ($n+1$) microspore. The atrows indicate the duplicated chromosomes of the haploid complement; these are the r-g carrying chromosomes. At this stage the chromosomes are frequently very angular. $\times 2150$.

Figure 2.-The four smallest chromosomes from a normal (n) microspore; late prophase $\times 2150$.

Figure 3.-The five smallest chromosomes from an 11 -chromosome ($n+1$) microspore. Note that the chromosome in duplicate is the smallest chromosome of the set. Compare with figure 2. $\times 2150$.

It is clear that the extra chromosome which carries the genes for the $r-g$ linkage group is the smallest chromosome of the haploid complement.
The presence in triplicate of the smallest chromosome does not markedly affect the growth or appearance of the plant. One is unable to detect even a moderate difference in comparing $2 n+1$ with $2 n$ individuals. On
the average, the $2 \mathrm{n}+1$ individuals are somewhat weaker than the 2 n individuals. Since genetic material of Zea mays is very heterozygous for growth and morphological characters, it is possible that the morphological changes produced by the presence of this extra chromosome would be recognizable only in fairly homozygous material. In consequence of the inability to recognize $2 n+1$ plants with certainty in the field, every plant must be examined cytologically or tested genetically to detect the presence of the extra chromosome.

Figure 4.- Photomicrograph of microspore showing late prophase chromosomes of first nuclear division. The smallest chromosome of the complement, that which carries the genes of the R - G linkage group, is the second chromosome from the left. It is the only chromosome in focus throughout its entire length. $\times 1800$.

Another $2 \mathrm{n}+1$ plant $\left(144_{1}\right)$ not directly related to culture 131 , an F_{2} individual from the cross triploid \times diploid, was examined cytologically. The examination showed clearly the presence of the smallest chromosome in triplicate. It was therefore necessary to prove that this plant or its $2 \mathrm{n}+1$ progeny would show trisomic inheritance for r. Colored kernels from the cross $144_{1}(2 n+1) \times A C r(2 n)$ were grown. The $2 n$ and $2 n+1 F_{1}$ individuals were backcrossed to r testers $(A C r)$. Pollen of $2 \mathrm{n}+1$ plants placed on r testers gave a total count of 1282 colored to 2451 colorless kernels, a simple trisomic ratio of 1:2 (table 6). Plant 144_{1} probably had the constitution $R r r$, since each of the $2 \mathrm{n}+1$ offspring was $R r r$. The 2 n sibs (culture 232, table 7) showed, in contrast, a good disomic 1:1 ratio.

Table 6

$r \circ \times$ Rrro	coLored	coLorLess
$194_{12} \times 232_{2}$	99	178
$194_{14} \times 232_{2}$	33	75
$194_{3 a} \times 232_{4}$	82	153
$194_{15} \times 232_{4}$	79	184
$194_{3} \times 232_{6}$	97	140
$194_{13} \times 232_{6}$	78	174
$194_{7} \times 232_{8}$	82	167
$194_{1} \times 232_{11}$	69	132
$194_{5} \times 232_{11}$	104	154
$192_{12} \times 232_{12}$	89	199
$194_{4} \times 232_{12}$	98	202
$194_{16} \times 232_{13}$	52	100
$194_{19} \times 232_{13}$	99	195
$193_{2} \times 232_{16}$	27	55
$193_{3} \times 232_{16}$	79	143
$193_{6} \times 232_{16}$	115	200
Totals	1282	2451

Table 7
Crosses involving $2 n \mathrm{Rr}$ individuals of cultures 189, 225, 231 and 232.

Rr selued	colored	colorless
22510	274	99
$231{ }_{16}$	334	105
Totals	608	204
$R r ¢ \times R r \sigma^{T}$		
$225_{17} \times 225_{16}$	290	88
$R r$ 아 $\times r r{ }^{\text {r }}$		
$225_{12} \times 1924$	184	219
$225{ }_{13} \times 192_{4}$	177	187
$232_{1} \times 194_{15}$	172	195
$232{ }_{5} \times 192_{6}$	113	104
$232_{7} \times 192_{6}$	221	198
$232_{14} \times 192_{6}$	182	168
$232_{3} \times 192_{6}$	70	73
$232_{10} \times 194_{13}$	20	30
23218×1926	22	22
Totals	1161	1196
$r \mathrm{~F} \% \mathrm{Rr} \mathrm{O}^{7}$		
$192{ }_{7} \times 189 \mathrm{~A}_{60}$	132	135

Still another unrelated trisomic plant ($219 \mathrm{~A}_{5}$) was found which possessed the smallest chromosome in triplicate. Its genic constitution with respect to r was unknown, but its pollen was used on r testers with the thought that it might be heterozygous. The total backcross ratio from the three ears obtained (table 8) was $295 R$:131r, indicating a duplex ($R R r$) condition in this plant.

Table 8

$r \not \% \times R R r^{7}$	coLored	coLorLMss
$192_{12} \times 219 \mathrm{~A}_{5}$	192	94
$193_{1} \times 219 \mathrm{~A}_{5}$	15	11
$194_{11} \times 219 \mathrm{~A}_{5}$	88	26
Totals	295	131

Thus far only ratios through the pollen have been considered. The ratios are simple and agree with the expectations. The trisomic ratios as expressed through the female resulting from the cross $2 \mathrm{n}+1 \circ \times 2 \mathrm{n} \circ^{7}$ are complicated by the presence of an excess of 2 n over $2 \mathrm{n}+1$ individuals. Possible explanations for this have been given on page 177. As was stated there, if there were random assortment of the three homologous chromosomes at meiosis 50 percent of the gametes should be n and 50 percent $\mathrm{n}+1$. Actually, only about one-third of the eggs carry the extra chromosome. This condition materially changes the expected ratio.

In a simplex plant ($R r r$) the gametic ratio, on the basis of random assortment of the three homologous chromosomes would be $1 R: 2 R r: 1 r r: 2 r$ which would give on backcrossing to $r r$ plants, a phenotypic ratio of $1 R: 1 r$. If, however, lagging and loss of one of the three chromosomes occur and at random (or if there is also some selection against $n+1$ megaspores in favor of \mathbf{n}) the gametic ratio produced as a result of these occurrences would be $1 R: 2 r$ and all the gametes would be n. The total gametic ratio, therefore should fluctuate between these two extremes depending upon the relative amounts of random distribution of the three homologous chromosomes as compared to lagging and loss that have occurred. It is therefore necessary to know what proportion of the female gametes were produced after random assortment and what proportion after loss.

If a $2 \mathrm{n}+1$ simplex plant ($R r r$) is pollinated with pollen from a $2 \mathrm{n} r r$ plant the proportion of R-carrying and r-carrying gametes may be directly determined. The amount of lagging, or of lagging plus mega-
spore selection, then, may be computed from the distortion of the $1: 1$ ratio (expected with no lagging) in the direction of a $1: 2$ ratio (expected with 100 percent lagging). An approximate measure of the total amount of lagging and loss that has occurred during megasporogenesis in the ovules of the $2 n+1$ plants of culture 232 (table 9) has been obtained in this man-

Table 9

Rrro \times rro	colored	colorless
$232_{4} \times 192_{4}$	137	178
$232_{6} \times 194_{15}$	130	149
$232_{8} \times 192_{6}$	115	150
$232_{9} \times 192_{6}$	137	178
$232_{16} \times 192_{6}$	160	181
Totals	679	836

ner. The $2 \mathrm{n}+1$ plants of culture 232 were all Rrr (see table 6). They were pollinated with pollen from $2 \mathrm{n} r$-testers ($A C r$). Each ear obtained showed a deviation from a $1: 1$ ratio expected with random assortment of the three homologous chromosomes toward the 1:2 ratio expected from lagging and loss, or from lagging and loss plus megaspore selection. Of the 1515 kernels obtained 679 were colored (dominant) and 836 were colorless (recessive).
$1 R: 1 r=$ gametic ratio due to random assortment of three homologous chromosomes.
$1 R: 1 r: 1 r=$ gametic ratio due to lagging and loss.
When these two gametic ratios are placed one above the other, it is seen that 679 represents the number of R-carrying gametes produced by both types of distribution, and similarly, 836 the number of r-carrying gametes produced: If 679 represents the number of R-carrying gametes produced, then 679 can be given to a similar proportion of r-carrying gametes. The total number $(679+679)$ is 1358 . The difference between 1515 , the total number of gametes, and 1358 is 157 , which is the number of the remaining recesives gametes (or kernels). It is easy to see by this method that this number (157) represents one-third of the total number of gametes produced as the result of lagging and loss (or lagging and loss plus megaspore selection). The number 157 is also the amount by which the recessives exceed the dominants. Thus, in a population composed of individuals, some of which, taken as a group, represent a $1: 1$ ratio and others
of which, similarly, represent a $1: 2$ ratio; the number by which the recessives in the total population exceed the dominants should equal onethird of the individuals representing the $1: 2$ ratio, or, in the present instance, one-third of the individuals produced as a result of lagging.

The number of colorless kernels (recessives) exceeds the number of colored kernels (dominants) by 157; hence, the total number of gametes produced after loss should be three times 157 , or 471 . This number represents approximately 30 percent of the total number of kernels. Assuming that the data represent a sufficiently uniform random sample, it can be concluded that approximately 30 percent of the gametes were produced after loss of the extra chromosome through lagging at the first or second meiotic mitosis, or possibly through lagging and loss plus any loss that may have occurred through selective viability of megaspores.

If 30 percent of the gametes were produced through such loss, then loss occurred in 30 percent of the ovules. From the remaining 70 percent of the ovules half, or 35 percent, should possess $n+1$ female gametes and consequently 35 percent of the plants from the cross $2 \mathrm{n}+1 \% \times 2 \mathrm{n} \boldsymbol{o}^{\text {t }}$ should carry the extra chromosome. This, in turn, can well explain the deviation from the expected ratio of $2 \mathrm{n}+1$ to 2 n individuals in the cross $2 \mathrm{n}+1 \times 2 \mathrm{n}$ (see page 177 and table 2). It is expected that both cytological and genetical evidence will be obtained which will indicate more definitely how much of the deviation is actually due to lagging and loss, and how much may be due to a possible selective viability of $n+1$ gametes or $2 \mathrm{n}+1$ embryos.

Assuming this same amount of loss, deviations from the $5 R: 1 r$ ratio expected in the cross $R R r \times r r$ (table 10) can be interpreted. Each in-

Table 10

$R R r q \times$ rror	colored	colopless
$209_{41} \times 192_{9}$ (first ear)	130	33
$209_{41} \times 192_{8}$ (second ear)	207	56
$209_{41} \times 193_{3}$ (tiller ear)	193	52
$209_{58} \times 192_{6}$	289	72
Totals	819	213

dividual cross shows a deviation from the 5:1 ratio in an increase in the number of colorless kernels over expectancy. The total count of 819 colored: 213 colorless represents a ratio of $3.84: 1$ instead of $5: 1$. A ratio
of $3.61: 1$ would be expected if it were assumed that 30 percent of the female gametes were produced as the result of loss. The ratio due to loss is $2 R: 1 r$, as contrasted with the ratio of $5 R: 1 r$ produced through random assortment of the three homologous chromosomes.

These same assumptions are utilized in explaining the deviations observed in selfing an individual of the constitution $R R r$. On the basis of random assortment and no lagging of the three homologous chromosomes, the female gametic ratio should be $2 R: 2 R r: 1 R R: 1 r$, the male, because of the elimination of the extra chromosome carrying pollen, $2 R: 1 r$. One would expect, therefore, a $17: 1$ ratio in F_{2}. On the basis of 30 percent of the gametes being produced as the result of loss of the extra chromosome a 12.8:1 ratio would be expected instead. Table 11 shows the results obtained.

Table 11

AACCRRr selfed	colored	colorless
2319 frst ear	396	$41 \quad \mathrm{X}^{2}=2.47, \mathrm{P}=0.10+$
2319 second ear	188	24
Totals	584	$65 \mathrm{X}^{2}=7.42, \mathrm{P}=>0.01$

Determinations of goodness of fit by means of the χ^{2} method indicate a significant deviation on the total counts. A full ear of well developed kernels of unmistakable classification resulted upon selfing the first ear. A χ^{2} determination on this ear alone gives a fit well within the probability. The second ear on this plant produced by selfing was poorly filled, with many kernels underdeveloped. It is possible that in this ear the color in some of the kernels did not develop. This possibility is supported by the fact that some kernels on this ear showed the presence of color by only a. slight degree of mottling. It is possible, also, that some $2 n+1$ embryos did not develop fully on this particular ear.

The description of trisomic inheritance of r given above shows the nature of trisomic inheritance in Zea mays with regard to the smallest chromosome of the haploid set.

INDEPENDENCE OF THE $R-G$ LINKAGE GROUP

The method of trisomic inheritance is a convenient means of determining with certainty the independence of linkage groups. Evidence obtained from both cytological and genetical observations indicates that the $r-g$ linkage group is independent of all the other nine linkage groups estab-
lished genetically. At least one factor of each linkage group has been tested (c and $w_{x}, s_{u}, b, y, g_{l 1}, p_{r}, f, d$ and a). $2 \mathrm{n}+1$ individuals heterozygous for these genes have been selfed and backcrossed.

Table 12
Results of crosses involving $c-w_{x}, s_{u}, b, y, g_{l 1}, p_{r}, d$ and a among $2 n+1$ individuals trisomic for the r-g chromosome. For explanation see page 189.
I. Disomic inheritance of c and w_{x} (see appendix).
$2 \mathrm{n}+1 C c[C$ or $c] \times 2 \mathrm{n} A c R$
$131_{33} \times{\mathrm{BB} 346_{1}}^{78} \quad 69$
$2 \mathrm{n} A c R \times 2 \mathrm{n}+1 C c[C$ or $c]$
$104_{2} \times 88_{1} 194$
149
B346 $\times 131_{5}$
184

	W_{x}	W_{x}
2n $+1 W_{x} w_{x}\left[W_{x}\right]$ pollen counts	535	549
2n $W_{x} w_{x}$ pollen counts	633	594
2n $w_{x} w_{x} \times 2 \mathrm{n}+1 W_{x} w_{x}\left[W_{x}\right]$		
$192_{8} \times 225_{3}$	152	179

II. Disomic inheritance of s_{u}.

$2 \mathrm{n}+1 S_{u} s_{u}\left[s_{u}\right]$ selfed	S_{u}	s_{u}
220_{3}	282	110
220_{14}	279	97
220_{14}	174	53
220_{15}	223	68
220_{17}	261	90
220_{17}	221	86
231_{9}	318	102
Totals	1758	586

$2 \mathrm{n} S_{u} s_{u} \times 2 \mathrm{n}+1 S_{u} s_{u}\left[s_{u}\right]$		
$220_{11} \times{ }_{18}$	228	98

$225_{14} \times_{2} \quad 208 \quad 73$
$2317 X_{9} \quad 324 \quad 112$
$231_{16} \times_{9} \quad 316 \quad 126$
$231_{17} \times_{9} \quad 359 \quad 139$

Totals 1495
$2 \mathrm{n} s_{u} s_{u} \times 2 \mathrm{n}+1 S_{u} s_{u}\left[s_{u}\right]$
$188 \times 189 \mathrm{~B}_{18} \quad 190 \quad 169$
2n $S_{u} s_{u}$ selfed
2205
99
$220_{8} \quad 269 \quad 77$
$220_{12} \quad 352 \quad 112$
$225_{10} \quad 278 \quad 95$
$231_{5} \quad 420 \quad 138$
$231_{15} \quad 327 \quad 112$

Totals $\quad 1934 \quad{ }_{633}$
Genetics 16: Mr 1931

Table 12-(continued)

III. Disomic inheritance of b (see page 189).

$2 \mathrm{n}+1 B b[b]$ selfed	B	b
88_{1}	54	19

IV. Disomic inheritance of y (see appendix).

$2 \mathrm{n}+1 Y y[Y$ or $y]$ selfed	Y	y
176_{6}	94	36

2n $Y y \times 2 \mathrm{n}+1$ Yy $[y]$
$194_{12} \times 232_{2} .139$. 37
$194_{3} \mathrm{a} \times 232_{4} \quad 113 \quad 40$
$194_{15} \times 232_{4} \quad 136 \quad 46$
$194_{3} \times 232_{6} \quad 102 \quad 38$
$194_{13} \times 232_{6} \quad 128 \quad 46$
$194_{7} \times 232_{8} \quad 127$. 40
$194_{19} \times 232_{13} \quad 143 \quad 52$
Totals $888 \quad 299$
$2 \mathrm{n} y y \times 2 \mathrm{n}+1 Y y[y]$
$194_{1} \times 232_{11} \quad 95 \quad 89$
$194_{5} \times 232_{11} \quad 85 \quad 63$
$194_{16} \times 232_{13} \quad 77 \quad 72$
$193_{3} \times 232_{16} \quad \therefore \quad \therefore \quad \vdots 66 \quad 74$
Totals
$323 \quad 298$
V. Disomic inheritance of $g_{l l}$.
$2 \mathrm{n}+1 G_{l 1 g_{l 1}}\left[G_{l 1}\right] \times 2 \mathrm{n} g_{l 1} g_{l 1} \quad G_{l 1} \quad g_{l 1}$
$229_{7} \times 201_{2}$
113
105
VI. Disomic inheritance of p_{r}.
$\begin{array}{crc}2 \mathrm{n}+1 & P_{r} p_{r}\left[P_{r}\right] \text { selfed } & P_{r} \\ 220_{3} & 149 & p_{r} \\ & 45\end{array}$
$220_{14} \quad 287 \quad 89$
$220_{14} \quad 170 \quad 57$
$\begin{array}{lll}220_{17} & 228 & 87\end{array}$

220_{17}	196	78
Totals	1030	356

$2 \mathrm{n}+1$	$P_{r} p_{r}\left[P_{r}\right] \times 2 \mathrm{n} p_{r} p_{r}$	129

$220_{19} \times 203_{\mathrm{s}}$	110	108
Totals	239	228
$2 \mathrm{n} P_{r} p_{r} \times 2 \mathrm{n}+1 P_{r} p_{r}\left[P_{r}\right]$	P_{r}	p_{r}
$220_{11} \times 220_{18}$	306	80
$2 \mathrm{n} P_{r} p_{r}$ selfed		
$220_{\bar{a}}$	271	116
220_{8}	249	97
220_{12}	362	102
Totals	882	315
$2 \mathrm{n} P_{r} p_{r} \times 2 \mathrm{n} p_{r} p_{r}$	194	207
$220_{13} \times 203$		

Table 12-(continued)
VII. Disomic inheritance of d (see appendix).
$\left.\begin{array}{ccc}2 \mathrm{n}+1 D d[D] \text { selfed } & D & d \\ 231_{9} \\ 2 \mathrm{n} d d \times 2 \mathrm{n}+1 D d[D] \\ 205 \times 231_{9}\end{array}\right)$

It is needless to discuss every cross represented in table 12, for the results are self explanatory. The crosses involving the recessive sugary gene $\left(s_{u}\right)$ can be used as a single example (see table 12 , section II). A $2 n+1$ plant of culture 131, homozygous for sugary, was crossed with pollen from a 2 n starchy plant $\left(S_{u} S_{u}\right)$. The $\mathrm{F}_{1} 2 \mathrm{n}$ and $2 \mathrm{n}+1$ individuals were selfed and backcrossed to test for trisomic or disomic inheritance. In each section the type of cross is indicated. The symbol of the gene placed in brackets indicates how the genic constitution of the $2 n+1$ individual would have differed had it been trisomic for this gene. On selfing $2 n+1$ plants heterozygous for sugary a total of $1758 S_{u}$ to $586 s_{u}$ kernels were obtained, precisely a $3: 1$ ratio. Diploid (2n) sibs upon selfing gave a total count of $1934 S_{u}: 633 s_{u}$ kernels. The two ratios are similar and disomic. If these $2 n+1$ plants were trisomic for sugary ($S_{u} s_{u} s_{u}$), an approach to a $2: 1$ ratio would be expected. Similarly, a $2: 1$ ratio would be expected in the sib crosses $2 \mathrm{n}\left(S_{u} s_{u}\right) \times 2 \mathrm{n}+1$. Here a ratio of $1495 S_{u}: 548$ s_{u} kernels was obtained, a $3: 1$ instead of a $2: 1$ ratio. It is therefore concluded that the linkage group including s_{i} is independent of the $r-g$ linkage group and must be associated with another chromosome. The data on factors $c, w_{x}, y, g_{n}, p_{r}$ and d are sufficiently numerous to need no further explanation.

In the case of b, genetic data are hardly necessary, since the $b-l_{g}$ linkage group has been associated with another chromosome.

The data on the a factor are few but indicate a disomic instead of a trisomic inheritance. In the case of a $2 \mathrm{n}+1$ heterozygous a plant selfed the results ($73 A: 19 a$) indicate neither a duplex ($A A a$) 17-:1 ratio nor a simplex (A aa) 2:1 ratio, but better, a disomic 3:1 ratio. Further, the cross of a heterozygous $2 \mathrm{n}+1$ plant $\times 2 \mathrm{n} a a$ would have given, if duplex, 5A:1a
or if simplex, $1 A: 1+a .80 A: 53 a$ probably represents a $1: 1$ disomic ratio. In the case of $2 \mathrm{n} a a \times 2 \mathrm{n}+1$ heterozygous a, a simplex constitution would have given a $1: 2$ ratio and a duplex constitution a $2: 1$ ratio. $144 A: 173 a$ approaches neither of these but probably represents a $1: 1$ disomic backcross ratio.

The factor for fine stripe (f) did not segregate sharply in the seedling stage so that backcross counts were not sufficiently reliable. Cytological evidence from Doctor Brink's material indicates that the $f-b_{r}$ linkage group is carried by a long chromosome.

SUMMARY

1. A $2 \mathrm{n}+1$ plant of Zea mays resulting from the cross diploid \times triploid and its $2 \mathrm{n}+1$ progenies were found to give trisomic inheritance for r.
2. In these plants the smallest chromosome is present in triplicate.
3. Two unrelated $2 \mathrm{n}+1$ individuals were found to be trisomic for the smallest chromosome of the haploid set. These plants, upon later testing, gave trisomic inheritance for r.
4. In $2 n+1$ individuals one-third of the eggs carry the extra chromosome. In a normal pollination the extra chromosome-carrying pollen grains function only in a small percentage of the cases.
5. Plants trisomic for the r-g linkage group have given disomic inheritance for $c, w_{x}, s_{u}, b, y, g_{l 1}, p_{r}, d$ and a.

ACKNOWLEDGMENTS

To Marcus M. Rhoades and George W. Beadle the authors wish to express sincere gratitude for their very generous cooperation in this investigation. Also to Lester W. Sharp, Rollins A. Emerson and Merle T. Jenkins many thanks are due for their careful reading and revision of the manuscript.

LITERATURE CITED

McClintock, B., 1929a A cytological and genetical study of triploid maize. Genetics 14: 180222.

1929b Chromosome morphology in Zea mays. Science 69: 629.

APPENDIX

During the time this paper was in press the following linkage groups were found to be associated with chromosomes other than the $r-g$ carrying chromosome: $C-s_{h}-w_{x}, Y-P_{l}, A-d_{1}-c_{r}$. By the method of association of linkage groups with particular chromosomes the independence of six of the ten linkage groups $\left(C-s_{h}-w_{x}, R-g, B-l_{g}, Y-P_{\imath}, P-b_{r}, A-d_{1}-c_{r}\right.$) has been definitely established.

