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THE PROBLEM 

CCORDING to the theory of the chiasmatype as originally formu- A lated by JANSSENS (1909), interchange between homologous chromo- 
somes takes place when each is already split longitudinally, but at  any 
level only two of the four strands exchange parts. It was pointed out by 
MULLER (1916) and BRIDGES (1916) that the theory could be demon- 
strated genetically if it  could be shown that in eggs which have retained 
two maternal strands, one strand may be a crossover and the other a 
non-crossover, or both crossovers but not a t  the same level. Such indi- 
viduals were obtained by MULLER and BRIDGES; and although in these 
cases there was, as MULLER pointed out, the possibility that the extra 
strands had arisen by non-disjunction prior to maturation, the correctness 
of JANSSENS’S theory has since been demonstrated by the regular occur- 
rence of such individuals in races with attached X’s or high non-disjunc- 
tion and in triploids (ANDERSON 1925b, BRIDGES AND ANDERSON 1925, 
L. V. MORGAN 1925, REDFIELD 1930, STURTEVANT 1931). 

If crossing over occurred at  a two-strand stage, each chromatid would 
be identical with one of the other chromatids of the tetrad and the com- 
plement of the remaining two; hence the enumeration of the strands and 
the determination of how they are combined in the tetrad would be a 
simple matter. In four-strand crossing over, the strands recovered are 
presumably still a random sample of all the strands; but there are two 
complications. (1) Each of the missing strands is not necessarily either 
identical with or the complement of the strand recovered. (2) There is 
the possibility that crossing over may have occurred between sister strands; 
and this would not be directly detectable. 

A complete theory of crossing over must take into account the missing 
strands in each tetrad and the unrecognizable crossings over. At first 
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sight this may seem like a search for the substance of things hoped for, 
the evidence of things not seen; nevertheless the nature of the strands 
and tetrads can be deduced by calculation from the experimental data. 

MATHEMATICAL METHOD 

Definitions 

Rank .  The number of levels a t  which crossing over occurs in a strand 
or tetrad will be termed its rank. Non-crossovers are of rank 0, singles of 
rank 1, and so forth. 
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FIGURE 1. Types of single crossing over. A, lateral, involving homologous strands; B, lateral, 

involving sister strands; C, diagonal, involving homologous strands. 

Types  of sircgle crossing over. A distinction must be made between homolo- 
gous and sister-strand crossing over; also between lateral and diagonal 
crossing over if the strands of a tetrad are arranged along the edges of a 
quadrilateral prism (figure 1). 

Types  of multiple crossing over. In tetrads of rank 2 ,  crossing over will 
be termed regressive, progressive, or digressive according to whether both 
or' one or neither of the strands that cross over at  the first level is involved 
in the crossing over at  the second level (figure 2 ) .  A tetrad of higher rank 
than 2 may be mixed in type. In figure 3 are shown the various types of 
tetrads of ranks 2 and 3, but no distinction is made between lateral and 
diagonal crossing over. 

A tetrad can give rise to strands of its own rank or of lower ranks but 
not to strands of higher rank. The rank of an emerging strand may however 
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be greater than the number of levels a t  which any one of the original 
strands that enter the tetrad crosses over (figure 3, tetrad G6). 

Association of chromatids. Completely random association of chromatids 
in crossing over implies (1) that a t  any given level any two chromatids 
of a tetrad are equally likely to cross over (this may be termed random 
local association, or random occurrence of crossing over) ; (2) that the two 
chromatids which cross over a t  one level do not determine which shall 
cross over a t  other levels (random recurrence of crossing over). 

A C 
FIGURE 2. Types of double crossing over. A, regressive; B, progressive; C, digressive. 

We shall first work out the theory of crossing over for completely ran- 
dom association ; and then generalize it for cases where either occurrence, 
or recurrence, or both are not random. 

Case 1. Recurrence random, chance of detecting crossing over constant. 
A. Random occurrence (free sister-strand crossing over) 

A tetrad of rank 0 can give rise only to non-crossover strands. In  a 
tetrad of rank 1, half the strands will be crossovers and half non-cross- 
overs, so that the chance of obtaining a strand of rank 1 will be 1/2, if 
elimination into polar bodies is a random matter. But not all the cross- 
over strands will be recognizable as such: those resulting from crossing 
over between sister strands will remain unaltered. Since on a random 
basis one-third of the exchanges at  a given level will be between sister 



A x 0 1 
K :  I 

4 

4 

ALEXANDER WELNSTEIN 

B c 

2 

4 

D nx 
2 

2 

2 

5 

6 

FIGURE 3. Types of double and triple crossing over. In the uppermost horizontal row (marked 
0) are shown the types of tetrads of rank 2; the figure beneath each tetrad indicates its relative 
frequency. Beneath each tetrad of rank 2 are shown (rows 1-6) the tetrads that result when cross- 
ing over occurs in a third region. The numeral under each tetrad of rank 3 indicates its relative 
frequency among tetrads of rank 3 in the same vertical column; its frequency among all tetrads 
of rank 3 is the product of this number by the frequency of the tetrad of rank 2 from which 
it is derived. Where no number is indicated, 1 is understood. All frequencies in this figure are 
based on the assumption of random occurrence and recurrence. 
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strands, only the other two-thirds will be recognizable. Hence the chance 
that a tetrad of rank 1 will give rise to a chromatid recognizable as a 
single crossover will be 1/2.2/3 = 1/3; that is, the observed frequency of 
crossing over in any region short enough to have only one crossing over 
a t  a time will be one-third of the true frequency. 

If recurrence is random, the chances of detecting crossing over a t  dif- 
ferent levels are independent. Hence the chance that a tetrad of rank 2 
will result in an individual recognizable as a double crossover will be 
1/3.1/3 = 1/9; the chance that a tetrad of rank 3 will result in an indi- 
vidual recognizable as a triple crossover will be (1/3)3 = 1/27 ; and in gen- 
eral the chance that a tetrad of rank r will result in an individual recogniza- 
ble as an r-ple crossover will be (1/3)r. 

The chance that a tetrad of rank 2 will result in an individual which is a 
recognizable crossover only in the first region is 1/3.2/3 = 2/9; and this 
is also the chance that the tetrad will give rise to an individual which is 
a recognizable crossover in the second region only. The chance that an 
individual will emerge which is a non-crossover or an apparent non-cross- 
over will be 2/3.2/3 = 4/9. 

Of strands derived from tetrads of rank 3, those that are recognizable 
as triple crossovers will be (1/3)3 = 1/27; those that are recognizable as 
crossovers in the first two regions only will be (1/3)2 2/3 = 2/27, and this 
will also be the frequency of strands that are recognizable crossovers in 
regions 1 and 3 only, or in 2 and 3 only. The frequency of recognizable 
crossovers in region 1 only will be 1/3 (2/3)2; and this will also be the fre- 
quency of recognizable crossovers in region 2 only, or in region 3 only. 
Finally, the frequency of non-crossovers and apparent non-crossovers to- 
gether will be (2/3)3 =8/27. 

In general, if a tetrad is of rank r, the chance that it will give rise to 
a chromatid which is a recognizable crossover in some specified k of the r 
regions will be (1/3)k (2/3)r-k. 

By this method we can deduce from a set of crossover data the fre- 
quencies of tetrads of different classes. In table 1, the experimental data 
in the first line are taken from a cross of BRIDGES (cited by WEINSTEIN 
1918). Since each individual must have been derived from a tetrad of a t  
least its own rank, the triples must be derived from tetrads of rank 3; for 
there were probably no tetrads of higher rank, because each of the three 
regions is too short to allow more than single crossing over within 
itself. 

The one triple in the experimental data must represent 27 tetrads of 
rank 3. These tetrads must have produced in addition to the 1 triple, 2 in- 
dividuals in each of the three rank-2 classes, 4 individuals in each class 
of rank 1, and 8 non-crossovers. If we subtract each of these from the total 
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in the corresponding class, the remainder represents those individuals in 
that class derived from tetrads of rank lower than 3 .  

We now turn to the 2, 3 class. The remainder in this class must be de- 
rived from tetrads that were crossovers in regions 2 and 3 only. From 
these tetrads emerged 41 individuals of class 2, 3 ;  82 that were cross- 
overs in region 3 only, 82 that were crossovers in region 2 only, and 164 
non-crossovers. In a similar way, we can calculate the individuals de- 
rived from the l, 3 and the l ,  2 tetrads; and if we subtract all the individu- 
als derived from tetrads of rank 2, the remainders represent the individu- 
als derived from tetrads of lower ranks. The individuals in each crossover 
class of rank 1 constitute only 1/3 of those derived from the tetrads of the 
same class; the other 2/3 must have been non-crossovers and must be 
subtracted from the observed non-crossovers. 

TABLE 1 
Frequencies of tetrads calculated fo r  random association including sister-strand crossing over. 

REGIONS OF CROSSINQ OVER 0 1 2 3 12 13 23 123 

Observed frequencies 9927 1949 1664 1651 88 207 43 1 
Frequencies and distribution of tetrads 

of rank 3 8 4 4 4 2  2 2 1 
Remainders 9919 1945 1660 1647 86 205 41 

Frequencies and distribution of tetrads 164 82 82 41 
of rank 2 820 410 410 205 

344 172 172 86 
Remainders 8591 1363 1406 1155 

Frequencies and distribution of tetrads 2310 1 1 3  
of rank 1 2812 1406 

2726 1363 
Remainder 743 

Corrected frequencies cf tetrads 743 4059 4218 3465 774 1845 369 27 

Thus we arrive at the italicized figures along the diagonal, which give 
the number of individuals of each class derived from tetrads of the same 
class. 

These frequencies however are not the frequencies of the tetrads of each 
class; for, as we have seen, in a tetrad of rank r, only (1/3)r of the emerging 
strands are of the same rank, r. Hence it is necessary to multiply the re- 
mainder in each single crossover class by 3, in each double crossover class 
by 9, in each triple crossover class by 27. The results, in the lowest hori- 
zontal line, give the true number of tetrads in each class on the assumption 
of random occurrence and recurrence with sister-strand crossing over. 
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B. No sister-strand crossing over 
If we assume that there is no crossing over between sister strands but 

that otherwise association of strands is random, crossing over may occur 
in one of four ways a t  any level (ab, ab’, a’b, a’b’, where a is thesister 
strand of a’ and b of b’). The chance that the strand recovered is a cross- 
over is 1/2, and this is also the chance of detecting the crossing over a t  
that level in the tetrad, since every crossing over is recognizable once it is 
obtained. 

Of the strands derived from a tetrad of rank r, those that are also of 
rank r will be (1/2)r, those that are crossovers in any (r- 1) specified re- 
gions will be (1/2)r-1. 1/2, and so forth. In general the chance that a tetrad 
of rank r will give rise to a strand which is a crossover in some specified k 
of the r regions will be (1/2)k (1/2)r-k=(1/2)r .  That is, all the classes 
derived from tetrads of a given kind occur with equal frequency; since 
the frequency is independent of k, the number of regions in which the 
strands are crossovers. 

This procedure is illustrated in table 2.  

TABLE 2 
Frequencies of tetrads calculated jor  random associatioit w.thout sister-strand crossing over. 

REQIONB OF CR088INQ OVER 0 1 2 3 12 13 23 123 

Observed frequencies 9927 1949 1664 1651 88 207 43 1 
Frequencies and distribution of tetrads of 

rank 3 1 1 1 1 1 1 1 1  
Remainders 9926 1948 1663 1650 87 206 42 

Frequencies and distribution of tetrads 42 42 42 42 
- _ _ _ _ ~  -__- 

of rank 2 206 206 206 206 
87 87 87 87 

Remainders 9591 1655 1534 1402 

Frequencies and distribution of tetrads 1402 1402 
~- - 

of rank 1 1534 1534 
1655 1655 

Remainder 5000 

Corrected frequencies of tetrads SO00 3310 3068 2804 348 824 165 8 

The remainder in each class will now have to be multiplied by 2‘, 
where r is the rank of the class, to give the number of tetrads of that 
class. 

C. The general case 
It is conceivable that sister chromatids cross over with a frequency 

which differs from what it would be on a random basis but is not 0. The 
chance of detecting a crossing over in a region would then be neither 1/3 
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nor 1/2; let it be designated by p. Then if p has the same value in every 
region of the chromosome, the frequencies of tetrads can still be calculated 
by the method explained above. 

A formula for this procedure can be derived as follows. 
Let the chromosome be divided into regions so short that no crossing 

over of rank higher than 1 occurs within each. Let ao, al, a2, . . . a, be the 
observed frequencies of individuals that are crossovers in 0, 1, 2, . . . n 
regions. It should be noted that each subscript represents the cardinal 
number of crossings over, not the ordinal number of the region in which 
crossing over takes place. Let xo, xl, x2, . . . x, represent the number of 
tetrads that are crossovers in 0, 1, 2, . . . n regions. 

The chance that a tetrad of rank r will give rise to a strand which is a 
crossover in some specified k of these r regions is pk (1 -P)'-~, or pk qr-k 
where q = 1 -p. The number of ways in which these k regions can be speci- 
fied is [r(r-l)(r-2) . . . ( r -k+l)] / ( l .2 .3 .  . . . k). Hence the total 
chance of obtaining a crossover strand of rank k from a tetrad of rank r 
is the product of these two expressions. 

We can now form the following equations. 

ao=xo+qxl+ q2x2+ q3x3+ q4x4+ q5x5+ ' . + qnxn 
a1= px1+2pqx~+3pq~x~+ 4pq3x4+ 5pq4x5+ . . . + npqn-'xn 

a2 = p2x2+3p2qx3+6p2q2x4+ 10p2q3x6+ . . . + C2np2qn-axn 

a3 = p3x3+ 4p3qx4+1op3q2x5+ ' ' . + C3np3qn--Rxn 
a4 = p4x4+ 5p4qx5+ . ' ' + C4np4qn-4xn 

p5xs + . ' ' + C5np5qn--Sxn' a5 = 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a, = pnxn 

In these (n+l) equations there are (n+l )  unknowns, the x's; for the 
a's are observed frequencies and p is determined by the assumptions as to 
the chance of detecting a crossing over within a region. Hence if the equa- 
tions are solved simultaneously, the x's can be evaluated. 

But the value of xo can be obtained without solving for the other x's. 
For if the equations are multiplied respectively by 1, -q/p, q2/p2, 
-qyp3, . . . (-q/p)", and then added together, the coefficients of every 
x except xo will add up to 0. Hence 

xo=ao--a1+ q (:)' - a2- (:)'a3+ . . . + ( -- :Y a,,. (1) 
P 

In this procedure a. has been used to represent the frequency of the 
non-crossovers. But it may be used for the frequency of any class; for ex- 
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ample, the crossovers in region 1, or the crossovers in regions 1 and 3, 
provided that the classes which are not crossovers in these regions are ex- 
cluded. Then in the data so selected, al, a2, a3, . . . an represent the fre- 
quencies of the classes that are crossovers in the same region or regions as 
the a. class and in 1 ,2 ,3 ,  . . . n additional regions; and xo, xl, xz, x3, . . . xn 
are the frequencies of the tetrads which are crossovers in the same regions 
as the a. class and in 0, 1, 2, 3, . . . n additional regions. 

The solution for xo will now give the number of tetrads of any specified 
class that gave rise to strands of the same class. But (unless this class is 
the non-crossovers) xo is not the total number of tetrads of the class; for 
there must have been others that gave rise to strands of lower rank and 
these have been excluded from the calculations. Since the proportion of 
tetrads of rank r that give rise to strands of the same rank is p', it is neces- 
sary to multiply xo by l/pr to get the number of all the tetrads of the class 
in question. This frequency is therefore 

= '[a - ( y)  al + ( y y a z  
P' 

-(T) 1-p a3+ . . . +(-?>'an]. 

where a. is the observed frequency of the class in question, 
a3, . . . a, the observed frequencies of classes of additional 
3, . . . n (WEINSTEIN 1928, 1932a). 

(2) 

and a1, a2, 
rank 1, 2, 

For random occurrence and recurrence with sister strand crossing over, 
p = 1/3 and the formula becomes 

X =  3'xO = 3' [ao- 2a1+4az- 8a3+ . . . +( - 2)nan]. ( 2 4  

If sister-strand crossing over is entirely excluded but occurrence and 

(2b) 

recurrence are otherwise random p = 1/2  and the formula becomes 

x = 2'x0 = 2' [ao - al+az- a3+ . . . + (- 1)nan]. 

Case 2. Recurrence random, chance of detecting crossing over variable. 
In case 1, it was assumed that p, the chance of detecting crossing over, 

is the same for all regions. It is theoretically possible however that the 
chance is not invariant, for sister chromatids might cross over in some re- 
gions and not in others, or more frequently in some regions than in others. 
Such differences might be caused by local conditions like proximity to the 
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end of the chromosome or to the spindle fibre or to inert regions or perhaps 
to particular genes. 

I n  such cases we may designate the chance of detecting crossing over 
in regions 1, 2, 3 ,  . . . n as pl, pz, p3, . . . pn. Let q l =  1 -pl, 9 2  = 1 -pz, 

If recurrence is random, the chance that a tetrad of rank r will give rise 
to a strand which is a crossover in some specified k of the r regions is the 
product of the p’s for the k regions and the q’s for the remaining regions. 
Thus the chance that a tetrad which is a crossover in regions 1, 2, and 3 
will give rise to a strand which is a crossover only in regions 1 and 3 is 
PI P3 92. 

qs=l-p3, . . . qn=l -p , , .  

The frequencies of tetrads can now be calculated as in table 3 .  

TABLE 3 

Frequencies of tetrads calculated for  random association except that sister strands cross over only 
in region 1. 

REGIONS OF CROSSING OVER 0 1 2 3 12 13 23 123 
___ _____________I________ 

Observed frequencies 9927 1949 1664 1651 88 207 43 1 
Frequencies and distribution of tetrads of 

rank 3 2 1 2 2 1 1 2 1  
Remainders 9925 1948 1662 1649 87 206 41 

Frequencies and distribution of tetrads 41 41 41 41 
of rank 2 412 206 412 206 

174 87 174 87 
Remainders 9298 1655 1447 1196 

Frequencies and distribution of tetrads 1196 1196 
of rank 1 1447 1447 

3310 1655 
Remainder 3345 

Corrected frequencies of tetrads 3345 4965 2894 2392 522 1236 164 12 

A formula for this procedure can also be deduced. 
Let the observed frequency of the non-crossovers be represented by bo; 

of the singles by bl, bz, bS, . . . b,; of the doubles by b12, b13, . . . b23, 
b24, . . . b34, . . . b(n-l),,; and similarly for the remaining classes. Each sub- 
script now represents not, as before, the cardinal number of crossings over, 
but the ordinal numbers of the regions in which crossing over occurs. The 
frequencies of tetrads of various classes can be denoted by y with corre- 
sponding subscripts; thus yo is the frequency of non-crossover tetrads, yl of 
tetrads that are crossovers in region 1 only, and so forth. 

We can now form a set of equations analogous to those in case 1. For 
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the sake of simplicity the equations will be given for only three regions; 
but the method is applicable to any number of regions. 

bo = yo+qiyi+qzyz+q3~3+qiq2yi2+qiq3~ia+q2q3~23+qiq2q3yi23 

bi = piyi + p1qzy12 + p1q3y13 +p1qzq3y123 
bz = PZYZ + p2q1y12 +p2q3y23+p2qiq3y123 
b3 = P3Y3 +p3qly13+p3q2y23+p3qlq2y123 

biz = PlP2Y12 +pip2q3y123 
b13 = PlP3Y13 +p1p3q2y123 
b23 = p2p3y23+ p2p3q1y123 
b123 = pip2p3y123 

These equations can now be solved for the y’s. But again it is possible to 
obtain the value of yo without solving for the other y’s; for if the equations 
are multiplied respectively by 

91 q2 q3 qlqz q1q3 q2q3 qlq2q3 
PI P2 P3 PIP2 PIP3 PZP3 PlP2P3 

7 -  1 -, - 1 - -1  1, - - , - - , - - 

and then added together, the coefficients of the y’s in every column, ex- 
cept yo will add up to 0. Hence 

qmq3 
PlP2P3 

b123. -- 

If the bo class is of rank 0, then yo is the number of non-crossover tetrads. 
But as in case 1, the method can be applied to part of the data: then bo 
is the frequency of a crossover class and yo is the number of tetrads of this 
class that gave rise to chromatids of the same class. Hence yo must be 
divided by the product of the p’s for the regions in which the class is a 
crossover. These regions are not any of those numbered from 1 to 3, for 
the bo or yo class is not a crossover in 1 or 2 or 3. Hence the regions in which 
the class is a crossover can be numbered separately from 1 to r, where r 
is the rank of the class. The chance of detecting crossing over in each of 
these r regions may be denoted by p’ with the proper subscript; and the 
total number of tetrads of the class now becomes 

If the equations had included n regions, the general formula for the 
number of tetrads of any class would be 
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1 q1 92 

X =  p1lp2lp3' . . . pr l[b~-(- Pl bl+-b2+ P2 . . . +%bn) Pn 

Case 3. Recurrence not random, chance of detecting crossing over constant. 
The frequencies of regressive, progressive, and digressive crossing over 

are not necessarily determined by chance alone : it is conceivable that they 
may vary with the nature of the crossings over (whether homologous or 
sister strand, lateral or diagonal), with their distance apart, and with the 
particular regions involved. They might also depend on other crossings 
over: their number, their distance away, the regions in which they occur, 
and their nature (including now not only whether they are homologous or 
sister-strand, and lateral or diagonal, but also whether they are regressive, 
progressive, or digressive with respect to the crossings over under con- 
sideration). 

In making a table like tables 1 and 2, we may therefore subdivide each 
class of tetrad into its different types (such as are shown in figure 3) and 
distribute separately the chromatids emerging from each type. 

If when we are considering tetrads of a given class we add together all 
the emerging strands that are crossovers in some specified k of the r re- 
gions, the proportion of such strands is no longer p' qr-k. The ratio of the 
actual proportion to the proportion expected on random recurrence may 
be designated by t ;  its value will in the most general case vary with the 
regions of crossing over in the tetrad and in the emerging chromatid; 
these regions may therefore be indicated by numerical subscripts, positive 
if the crossing over of the tetrad appears in the chromatid, negative if it 
does not. For example, the chance that a tetrad which is a crossover in 
regions 1, 2, and 3 will give rise to a chromatid which is a crossover in 
regions 1 and 3 only may be written as tl-2+3 p2 q. 

In  a table like table 1 the proper value of t will enter into the frequency 
of each class if recurrence is not random; for example, the distribution of 
tetrads of rank 3 will be as follows: 
Regions of crossing over 0 1 2 3 12 13 23 123 

Frequencies and distri- 
bution of tetrads of 

The xo values (the figures on the diagonal) for classes of rank 2 or more 
must be divided not merely by p' but by the product of p' and the ap- 

rank 3 8t--1-2-3 4t1--2-3 4t--1+2-3 4t-1-2+3 2tif2-3 2tl-2+3 2t-1+2+3 t1+2+3 
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propriate t:  the remainder in the 123 column must be divided by t1+2+3p3, 

that in the 23 column by tZt3p2, and so on. 
The t's will also enter into the equations corresponding to those on page 

163; this will be considered in connection with the next case. The general 
formula derived from the equations will now be more complicated; but if 
ranks above 2 are absent, the frequency of tetrads of rank 0 is 

q tlN+ t-,+z - t-1-2 qz 

P t1+z P2 
yo = ao-- al+ - a2. (6) 

Case 4. Recurrence not random, chance of detecting crossing over variable. 

The same considerations apply to this case as to case 3 and the t fac- 
tors enter into it in the same way. Thus the chance that a tetrad of rank 3 
will give rise to a strand which is a recognizable crossover in regions 1 and 3 
only will be tl-2+3plp3q2. 

With non-random recurrence, the distribution of tetrads of rank 3 in 
table 3 would be as follows: 
Regions of crossing over 0 1 2 3 12 13 23 123 

Frequencies and distri- 
bution of tetrads of 
rank 3 2t-1-2-$ ti--2-3 2t-1+2-3 2t-1-2~3 t1+2-3 tl-2+3 2t-1+2+3 t1+2+S 

and each xo value must be divided by the product of pl'pz' . . . pr' and the 
appropriate t.  

The equations on page 166 will now become as follows. 
bo =yo+q1y~+q~~2+q3~3+t-1-zq~q~y1~+t1--3qiq3y13+t-l-3q~q3~23+t-1--l--~qlqzq~~1~~ 
bl = PIYI +tl-2plqZY12 +t1-3p1q3y13 + tl-L3plq2q3Y125 
bz = p2y2 +t-l+2PZqlY12 + tl-3P2qSY23 + t-l+2-3P2qlq3Y12S 
b3 P3Y3 + t--1+3p3(11y13+ ts+sp3qzy23+ t-l-2+3PSqlq2Y12S 
biz = t1+2p1pzylZ + t1+2-3PlP2q3Y123 
bl3 = tl+3PlP3Y13 + tl-2+3plP3q2Y12J 
b23 = 

b123= tl+Zt3plp2p3y123 
t2+3p2p3y23 + t-l+Z+SP2PBqlY 123 

The formula for yo is now still more complicated; but if crossovers of 
ranks above 2 are absent or neglected, 

L Z +  t 4 + z -  t--1-2 9 1 4 2  tl-3 + t--1+3 - t-1-3 q l q 3  + biz + b 1 3  (7) 
t1+2 PlPZ t1+3 P I P 3  

t (n-l)-n + t- (n-l)+n - t- (n-l)-n q (n-1) q n  + . . .  + b (n-1 )n.  
t ( n - l ) + n  P ( n - l ) P n  

In this formula, as in the equations from which it is derived, yo and bo 
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represent respectively the number of tetrads and of chromatids of rank 0. 
If bo is used for a class of higher rank, the equations must be modified by 
omitting every term in which the y is not a crossover in at least the same 
regions as the bo class. The y’s can then be renumbered so that the class 
of lowest rank is yo, and a general formula can be derived as in cases 1 
and 2. This, however, is complicated; and the frequencies of tetrads of 
classes ranking above 0 can be obtained by solving for the y’s in the equa- 
tions as they stand. 

The frequency of chromatids 

The observed frequency of any class includes of course only the chro- 
matids that are homologous-strand crossovers in the specified regions. The 
true frequency of chromatids of the class would include sister-strand cross- 
overs as well. 

The relations between tetrad frequencies and true frequencies of chro- 
matids are given by the sets of equations on pages 163, 166, and 168, and 
by equations 1-7 if the x’s and y’s retain their original meanings, but in 
the definitions of the a’s, b’s, p’s, and t’s the true frequencies of chromatids 
are substituted for the observed frequencies. The value of p will now vary 
from 1/2 when a t  any level of crossing over only two strands are involved 
to 1 when four strands are always involved in pairs. 

The sets of equations on pages 163, 166, and 168, and equations 1-7 also 
express the relations between the observed and the true frequencies of 
chromatids if the a’s and b’s denote observed frequencies, the x’s and y’s 
the true frequencies of chromatids (not of tetrads), if each p denotes what 
proportion of exchanges are between homologous strands, and if the t’s 
are modified accordingly (WEINSTEIN 1928, 1932a). 

Each p as originally defined is of course the product of the p’s of the 
two preceding paragraphs. 

ORDINARY DIPLOIDS 

The results of applying the multiple-strand method to ordinary diploids 
are illustrated in tables 4 and 8. 

Table 4 is based on a cross involving almost the entire length of the 
X chromosome of Drosophila melanogaster (SC ec cv ct v g f ) .  The experi- 
mental data (column A) comprise 28239 individuals, including 24031 from 
BRIDGES and OLBRYCHT (1926), 2047 from ANDERSON (1925a, table IV),and 
2158 from an experiment (hitherto unpublished) by the writer. In  the other 
columns are given tetrad frequencies calculated on the assumption of ran- 
dom recurrence for various values of p. The column headed p=1 /2  is 
based on the assumption that sister chromatids do not cross over (formula 
2b); that headed p = 1/3 on the assumption that they cross over as freely 
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TABLE 4 

Crossing over involving sc ec cv ct v g f (28239 individicals). 

TETRAD FREQUENCIES CALCULATED FOR RANDOM RECURRENCE 
~- REQlONB OBSERVED 

OF CEROMATID p=1/3 INREQION8INDICATED, 112 IN OTEER REQlONS 
p = 1 / 3  CBOBBINQ FREQUENCIES* 

OYER p=2,3 ~ = 2 / 3  p = l l 2  
1 12 123 1234 12345 

A B t  C D E P Q A 1 

0 12776 6716 1709 837 -459 -2007 -4392 -5305 -5316 
1 1407 1696 1744 2616 2601 2577 2220 1707 1203 
2 2018 2483 2602 2592 3888 3864 3492 2724 1836 
3 1976 2649 3130 3112 3096 4644 4527 4116 3546 
4 3378 4515 5328 5094 4848 4770 7155 6861 6102 
5 2356 2951 3180 2812 2296 2022 1826 2739 2610 
6 2067 2284 1998 1626 1016 616 108 22 33 

12 9 15 20 30 45 36 45 45 45 
13 16 27 36 54 48 72 90 63 54 
14 142 291 468 702 702 714 1071 981 846 
15 198 430 736 1104 1104 1086 1026 1539 1530 
16 206 440 744 1116 1110 1104 1014 1008 1512 
23 11 21 36 32 48 72 81 81 99 
24 136 291 492 492 738 744 1116 1098 1008 
25 261 584 1032 1032 1548 1548 1536 2304 2295 
26 318 701 1224 1220 1830 1842 1782 1776 2664 
34 42 88 148 152 156 234 351 351 306 
35 148 324 560 548 548 822 822 1233 1188 
36 212 463 800 792 800 1200 1170 1140 1710 
45 123 262 440 400 392 392 588 882 873 
46 315 674 1136 1076 1036 1016 1524 1518 2277 
56 59 124 204 200 196 176 172 258 387 

123 3 7 8 12 18 27 -27 
124 1 2 -18 -27 -27 -27 
126 2 5 8 12 18 

135 3 10 24 36 36 54 54 81 81 
136 3 8 16 24 12 18 18 18 27 
145 10 34 80 120 120 120 180 270 270 
146 15 51 120 180 180 180 270 270 405 

12 12 12 12 18 27 156 1 3 8 
234 1 2 -8 -12 -18 -27 -27 -27  
236 -2 -8 -16 -24 -36 -36 -36 -54 
245 2 7 16 16 24 24 36 54 54 
246 10 34 80 80 120 120 180 180 270 
256 1 3 8 8 12 12 12 18 27 
346 5 17 40 40 40 60 90 90 135 
356 5 17 40 40 40 60 60 90 135 
456 1 3 8 8 8 8 12 18 27 

1234 1 5 16 24 36 54 81 81 81 
1236 1 5 16 24 36 54 54 54 81 

t In  the p =  2/3 column, the only one in which fractional values occur, they are given to the 
nearest unit. The values in the p=2/3 column also represent the true frequencies of chromatids 
when p =  1/3. 

134 -2 -8 -12 -24 -36 -54 -54 -54 

* From BRIDGES and OLBRYCHT 1926, ANDERSON 1925a, and WEINSTEIN. 
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as other chromatids (formula 2a). In the latter column the frequency of 
the non-crossover class is negative; and since this is impossible, it follows 
that there cannot be random association of chromatids with free crossing 
over between sister strands. 

The results are of course subject to errors of sampling as well as errors 
due to differential viability and other causes. These errors may become 
exaggerated in the course of the calculations because the observed fre- 
quencies of the crossovers of higher rank are small and are multiplied by 
relatively large factors, so that slight differences may be magnified. For 
this reason the negative frequencies among the crossovers (they are all 
among the triples) are obviously not significant, for they would become 0 
or positive with small changes in the observed numbers of triples or quad- 
ruples, or in some cases if the quadruples were derived from tetrads of 
rank 5 .  

The errors of sampling may be calculated by the formula for the stand- 
ard error of a function of several variables, which may be written 

where F is a function of the v's, E its standard error, and the e's are the 
standard errors of the respective v's. This formula holds for all cases where 
the distribution of errors is Gaussian (SCARBOROUGH 1930, pp. 337-338). 
For F we may substitute the tetrad frequency X; and for the v's we may 
substitute the a's of formula 2 or 2a or 2b, or the b's of formula 5 .  

The frequency of the non-crossovers in the p = 1/3 column is approxi- 
mately 20 times its standard error, which is 268. The result cannot there- 
fore be due to errors of sampling. Nor can it be due to differential viability, 
for viability was good in the experiments on which the calculations are 
based. 

We may conclude that sister strands do not cross over as freely as homolo- 
gous strands if the association of chromatids in crossing over is otherwise 
random. It does not follow however that they do not cross over a t  all: 
they might cross over only in some regions, or throughout the chromosome 
but to a smaller extent than homologous strands. 

To test the first of these alternatives, tetrad frequencies were calculated 
by means of formula 5 for p = 1/3 (free sister-strand crossing over) in some 
regions and p = 1/2 (no sister-strand crossing over) in others. The results 
are given in columns D-H of table 4. As sister-strand crossing over is re- 
stricted to a shorter'and shorter region a t  the left of the X chromosome, 
the negative frequencies approach 0 and finally become positive. The nega- 
tive frequencies are from about 10 to about 20 times their standard errors, 
except -459, which is about 2.5 times its standard error. Thus it is shown 
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that free crossing over between sister chromatids, if it occurs a t  all, must 
be limited to a short region. This is not necessarily a t  the left end of the X, 
for the results are similar if we postulate sister-strand crossing over in 
other regions. 

There remains the possibility that recurrence is not random. This can 
be tested by seeing whether the relative frequencies of tetrads can be 
altered without changing the frequencies of strands as given by experi- 
ment. 

TABLE 5 
Frequencies of tetrads of ranks 0, I ,  and 2 and of strands derivedfrom them, on the assumption of ran- 

dom association without sister-strand crossing over ( p =  1/2).  

RANK AND TYPF FREQUENCY FREQUENCIES OF STRANDS 

OF TETRAD OF TETRAD NONCROSSOVERS SINQLES DOUBLES 

0 1709 1709 
1 17982 1/2=8991 1/2 = 8991 
2 

1/4= regressives 2019 1/2 = 1009.5 1/2= lOO9.5 
1/2 =progressives 4038 1/4= 1009.5 1/2- 2019 1/4= 1009.5 
1/4=digressives 2019 2019 

Table 5 gives the frequencies of tetrads of ranks 0, 1, and 2 and of 
strands derived from them on the assumption of random association with- 
out sister-strand crossing over. The following equations indicate what com- 
binations of tetrads are equivalent with respect to the strands derived from 
them: 

1 non-crossover + 1 digressive = 2 singles. (8) 
(9) 

1 non-crossover +2 progressives = 1 regressive + 2  singles. (10) 

Still other substitutions are possible if ranks above 2 are included; for ex- 
ample, 

1 single +1 regressive = 1 non-crossover +1 digressive 

By a rank-3 digressive is meant a tetrad like D1 in figure 3;  by a rank-3 
regressive-digressive is meant one like D2 or B2. 

In making these substitutions, it is necessary to consider the regions of 
crossing over, so that the proper classes and frequencies of strands may 
result; also in order to avoid digressives with two crossings over in the 
same region, unless it is desired to test the possibility of such digressives. 
The substitutions are also limited by the frequencies of tetrads to be re- 
placed; hence it follows that deviations from random recurrence will, if 
too great, lead to negative frequencies of tetrads. Nevertheless considera- 
ble deviations are possible without changes in the frequencies of strands; 

1 regressive + 1 digressive = 2 progressives. 

(or regressive-digressive) of rank 3. (1 1) 
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but coincidence of tetrads will be altered, as will also the frequencies of 
progeny of attached X’s. These results will be considered below. 

Equations 8 and 11 hold when sister strands cross over freely; the other 
equations now assume the following forms: 

1 regressive +3 digressives = 4 progressives. (12) 
3 non-crossovers +4 progressives = 1 regressive +6 singles (13) 

If sister strands cross over freely, then as can be seen from table 6, 
random recurrence results in an excess of tetrads of ranks higher than 0 
and of non-crossover strands derived from them, so that a negative fre- 
quency of tetrads of rank 0 must be postulated to bring the total number 
of tetrads and of non-crossover strands down to the observed figure. The 
negative frequency will disappear if non-random recurrence can reduce by 
5316 the number of those tetrads of ranks higher than 0 that give rise to 
non-crossover strands. The simplest way to do this is to replace 10632 
tetrads of rank 1 by their equivalent 5316 non-crossover tetrads and 5316 
digressives, in accordance with equation 8. 

TABLE 6 
Frequencies of tetrads of ranks 0, 1, and 2 and of strands derived from them on the assumption of ran- 

dom essociation including sister-strand crossing over ( p  = 1/31, 

RANK A N D  TYPE FREQUENCY FREQUENCIES OF STRANDS 

OF TETRAD OP TETRAD NON-CROSSOVERS SINQLES DOUBLE3 

0 -5316 -5316 
1 15330 2/3=10220 1/3=5110 
2 

1/6 = regressive 2799 2/3= 1866 1/3 =933 
2/3 =progressive 11 196 5/12= 4665 1/2=5598 1/12=933 
1/6 = digressive 2799 1/3= 933 2/3=1866 

TABLE 7 
Frequencies of tetrads of ranks 0,1, and 2 and of strands derived from them on the assumption of non- 

random association with sister strand crossing over ( p = l / 3 ) .  (For explanation see text.) 

RANK AND TYPE FREQUENCY FREQUENCIES OF STRANDS 

OW TETRAD OP TETRAD NON-CR0880VER8 SINQLES DOUBLES 

0 0 0 
1 4698 3132 1566 
2 

regressive 2799 1866 933 
progressive 11196 4665 5598 933 
digressive 8115 2705 5410 

The tetrad and strand frequencies as revised by this method are given 
in Table 7. They may be modified by other substitutions. 
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TABLE 8 

Crossing over involving sc ec cv et v s j  car bb (16136 indididlmls). 

TETRAD FREQUENCIES CALCULATED FOR RANDOM RECURRENCE 
_____ OBSERVED 

CBROMATIN 

FRE- 
p = 1/3 in regions indicated, 112 in other regions 

REGIONS 

OP 

p=1/3 -- CROBSINQ OmNCIEs* ~ = 2 . ' 3  ~ = 1 / 2  - 
OVER 1 12 123 1234 12345 123456 1234567 

A B t  C n E F Q E 1 I K 

0 

1 
2 
3 
4 
5 
6 
7 
8 

12 
13 
14 
15 
16 
17 
18 

23 
24 
25 
26 
27 
28 

34 
35 
36 
37 
38 

45 
46 
47 
48 

56 
57 
58 

67 
68 
78 

~ 

6607 

506 
1049 
855 

1499 
93 7 

1647 
683 
379 

3 
6 

41 
55 

118 
54 
34 

3 
38 
85 

237 
123 
70 

22 
55 

177 
88 
38 

41 
198 
159 
91 

35 
49 
40 

21 
30 

2 

3300 

530 
1167 
996 

1817 
1143 
1867 
66 1 
350 

4 
11 
87 

118 
2 62 
117 
73 

4 
69 

182 
517 
262 
144 

46 
116 
394 
192 
80 

90 
435 
346 
189 

73 
101 
82 

44 
56 

1 

904 697 

414 621 
1046 1044 
960 952 

1876 1804 
1196 1096 
1710 1480 
420 320 
202 140 

4 6  
16 24 

144 216 
200 300 
460 690 
200 300 
124 186 

4 0  
92 92 

308 308 
892 888 
440 440 
232 232 

76 76 
192 188 
692 692 
332 332 
132 132 

156 152 
756 752 
596 588 
308 304 

120 120 
164 156 
132 128 

72 72 
80 76 

-4 -4 

175 

618 
1566 
952 

1758 
942 

1036 
100 
24 

9 
18 

216 
300 
684 
300 
186 

0 
138 
462 

1332 
660 
348 

76 
188 
688 
332 
132 

152 
736 
568 
280 

108 
140 
124 

64 
64 

- 12 

- 301 

609 
1566 
1428 
1720 
848 
692 
- 66 
- 42 

0 
27 

216 
294 
684 
300 
186 

0 
138 
462 

1326 
660 
348 

114 
282 

1032 
498 
198 

152 
736 
560 
276 

104 
132 
112 

60 
60 

- 12 

- 1161 

50 1 
1497 
1371 
2580 

772 
324 

- 346 
- 180 

0 
27 

324 
288 
678 
288 
180 

0 
207 
462 

1302 
630 
312 

171 
282 

1032 
486 
192 

228 
1104 
840 
414 

104 
132 
108 

60 
44 

- 16 

- 1547 

357 
1266 
1230 
2466 
1158 
272 

-412 
- 234 

0 
18 

315 
432 
678 
276 
174 

0 
207 
693 

1284 
606 
306 

171 
423 

1026 
474 
174 

342 
1104 
840 
408 

156 
198 
162 

60 
40 

- 16 

- 1683 

18 
624 
717 

1914 
1080 
408 

- 442 
- 254 

-9 
18 

306 
432 

1017 
276 
168 

-9 
171 
666 

1926 
594 
288 

171 
414 

1539 
468 
168 

342 
1656 
840 
384 

234 
198 
156 

90 
60 

- 16 

- 1462 

- 120 
327 
483 

1494 
98 1 
363 

- 663 
- 246 

-9 
18 

288 
414 

1017 
414 
168 

-9 
126 
630 

1908 
89 1 
276 

153 
396 

1530 
702 
168 

342 
1656 
1260 
378 

234 
297 
156 

135 
60 

- 24 

- 1339 

- 204 
189 
399 

1305 
903 
333 

-651 
- 369 

-9 
18 

279 
405 

1008 
414 
252 

-9 
72 

62 1 
1881 
873 
414 

144 
369 

1521 
702 
252 

333 
1620 
1251 
567 

225 
297 
234 

135 
90 

- 36 

* From BRIDGES. t See footnote to table 4. 


