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INTRODUCTION 

Investigations on the mechanism of heredity have progressed to such a 
point that there need be little hesitation in accepting the recent statement 
of EAST and JONES (1919), that "Mendelian heredity has proved to be 
the heredity of sexual reproduction; the heredity of sexual reproduction is 
Mendelian." 

I t  has also become clear, however, that most cases of inheritance are 
far from exhibiting the simplicity which MENDEL was fortunate enough to 
find in certain variations of the pea. Among our domestic animals, for 
example, specific Mendelian factors have only been demonstrated in the 
case of a few color variations and a very small number of morphological 
differences. The great bulk of the variations both in .characters of eco- 
nomic importance and in fancy points can only be interpreted as Men- 
delian on the assumption that each character is affected by a number of 
independent unit factors. The same is probably true of most varietal and 
specific differences in nature. The results of SUMNER'S (1918) experiments 
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with geographic races of Peromyscus are a good illustration. Moreover, 
even where there is simplicity on the genetic side, it may be obscured by 
variation due to external conditions. 

I t  is thus important to understand the consequences to be expected from 
the Mendelian mechanism when various systems of mating are followed 
in a population in which the varying characters are determined by factors 
which are individually beyond control. 

CONDITIONS FOR EQUILIBRIUM 

It has been shown by PEARSON (1904) that an F2 population, composed of 
25 percent AA, 50 percent Aa and 25 percent aa, remains true to these 
proportions under random mating. HARDY (1908) showed that there is 
equilibrium under random mating if the number of heterozygotes is twice 
the square root of the product of the two homozygous classes, i.e., if the 
three classes are in the proportions x2AA : 2xy Aa : y2aa. Here x and y 
are the relative proportions of gametes A and a in the whole population. 
Where triple allelomorphs are present in the proportions x, y and z ,  the 
proportion of the zygotes, when in equilibrium, can be found from the 
expansion of (x + y + z)~, and so on for larger numbers of allelomorphs. 
In  cases involving multiple factors, the above formulae hold true of course 
for each separate factor. As there can be no equilibrium until all of the 
factors are combined at  random (assuming random mating), whether there 
is linkage or not, the proportions of the various combinations of factors 
under equilibrium can easily be calculated. Wi.th three factors, for 
example, the proportions of the various zygotic formulae can be found 
from the expansion of (x + Y ) ~  (x' + Y')~  (x" + Y")~. 

In the case of one factor, equilibrium is reached in the first generation 
after random mating commences, regardless of the initial composition of 
the population (WENTWORTH and REMICK 1916). This is not the case 
with combinations of two or more factors. Here there is in general a con- 
stant approach toward an equilibrium point which theoretically is never 
reached. The approach is naturally slower in the presence of linkage than 
with independent factors. JENNINGS (1917) gave formulae for deriving 
the composition of successive generations in the two-factor case. ROB- 
BINS (1918 a) expressed the results in a simpler form, from which the 
composition of any required generation can be found immediately. He 
uses p,, q,, s,, and t ,  for the proportions of the gametes AB, Ab, aB and 
ab, respectively. He assumes a gametic ratio of r : 1 : 1 : r due to linkage. 



Letting A, = q,s, - pnt, he obtains the formulae: 

The zygotic composition can be derived at once from the gametic com- 
position on the basis of random mating of the gametes as shown by JEN- 

NINGS. The more complicated formulae for unequal linkage in the two 
sexes are also given by ROBBINS. 

In the problems to be dealt with in the present series of papers, we will 
assume that the original population is already in equilibrium under random 
mating. The question to be investigated in each case is the change in 
composition of the population brought about by a given system of mating. 
In some cases a new equilibrium point is approached, in others there is no 
equilibrium until complete homozygosis is reached. 

SYSTEMS OF MATING 

The primary classification of systems of mating depends on whether we 
are dealing with material that is known or unknown genetically. Under 
the former head come all cases in which it has been possible to isolate 
specific Mendelian factors. Cases can also be included in which, while 
the individual factors are not known, it is known that they are homo- 
zygous. Thus each of the pure breeds of live stock is doubtless homo- 
zygous, or nearly so, in many factors. Pure-breeding and the crossing of 
pure breeds for one generation are systems of mating which give uniform 
results within limits. 

In dealing with material which is unknown genetically, the two most 
important methods of control are the mating of animals which for one 
reason or another are l i e  (or unlike) each other, and the bringing about of 
a differential productivity among the classes. 

The similarity between mated animals may be primarily genetic and 
only incidentally, if at  all, somatic, as in the mating of near relatives or 
mating within local races. On the other hand there may be assortative 
mating based on somatic resemblance, in which case there is only inciden- 
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tally, if at  all, genetic similarity. Differential productivity may be due to 
intentional elimination of certain classes, differential death rate, mating 
rate or fertility. 

The effects of continuous self-fertilization were given by JENNINGS 

(1912). The results of continued brother-sister mating have been inves- 
tigated by PEARL (1913, 1914 a, 1914 b), FISH (1914), JENNINGS (1914) 
and ROBBINS (1917). JENNINGS (1916) has also given formulae for vari- 
ous forms of parent-offspring mating. Simple cases of assortative mating 
and selection have been discussed by JENNINGS (1916) and by WENTWORTH 
and REMICK (1916). ROBBINS (1918 c )  has discussed a form of disassor- 
tative mating in which brother-sister matings are avoided. 

The usual method of attack has been to write out the different zygotic 
formulae, or in some cases the gametes, involved in the population, deter- 
mine the changes in the relative proportions of the different classes during 
a number of generations under the given system of mating and attempt to 
deduce from this a general formula. I t  is evident that this method becomes 
very cumbersome in dealing with more than two factors. It is also diffi- 
cult to deal with assortative mating which is not perfect or with the effects 
of consanguine matings which are more remote than between brother and 
sister. 

ANALYSIS BY PATH COEFFICIENTS 

These difficulties, however, can be met in part by a different method of 
attack. The method to be used here is that of path coefficients. This 
method which is described in detail in another paper (WRIGHT 1921), 
gives a means of calculating the degree to which a given effect is deter- 
mined by each of a number of causes in a complex system of correlated 
variables. I t  depends on the combination of knowledge of the degrees of 
correlation among the variables with such knowledge as may be possessed 
of the causal relation. 

Figure 1 is meant to illustrate a system in which the variations of two 
quantities.X and Y are determined in part by independent causes, such as 
A and D, and in part by common causes, such as B and C. These com- 
mon causes may be correlated with each other through more remote causes 
which are not represented in the figure. We will assume that all of the 
relations are approximately linear and that the influences of the various 
causes are combined approximately by addition. The path coefficient, 
measuring the importance of a given path of influence from cause to effect, 
is defined as the ratio of the standard deviation of the effect when all 
causes are constant except the one in question, the variability of which is 
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kept unchanged, to the , total standard deviation. A path coefficient 
differs from a coefficient of correlation in having direction. 

The symbol px., means the coefficient for the path of influence from A 
to X. In most cases in the present paper, however, it will be more con- 
venient to represent the path coefficients by single letters. 

I t  can be shown that the squares of the path coefficients measure the 
degree of determination by each cause. 
each other, the sum of the squared path 
coefficients is unity. If the causes are 
correlated, terms representing joint de- 
termination must be recognized. The 
complete determination of X in figure 1 
by factor A and the correlated factors 
B and C can be expressed by the 
equation : 

The squared path coefficients and the 
expressions for joint determination meas- 
ure the portion of the squared standard 
deviation of the effect due to the causes 
singly and jointly, respectively. 

The correlation between two variables 
can be shown to equal the sum of the 
products of the chains of path coefficients 
along all of the paths by which the vari- 
ables are connected. In figure 1, X and 
Y are connected by four paths. 

If the causes are independent of 

FIGURE 1.-A diagram illustrating the 
case of 'two tariables ( X  and Y) deter- 
mined in part \by causes in common (B 
and C) which are correlated with each 
other. 

The mode of analysis of systems of mating, which is to be used here, 
consists in the main in representing each system by a diagram and apply- 
ing the two equations given above, one expressing the complete deter- 
mination of each variable by others, and the other expressing the correla- 
tions in terms of path coefficients. 

HEREDITY AND ENVIRONMENT 
0 

The characteristics of an individual may be looked upon as determined 
by two classes of factors-those which are internal or hereditary and those 
which are external or environmental in a broad sense. In figure 2, H 
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represents the constitution of the fertilized egg and hence all that is received 
by the individual by inheritance. The environmental factors are sepa- 
rated into two elements, tangible environment (E) and the intangible 
factors (D) which are not common even to litter mates, and yet appear to 
be responsible for much variation in early development. The path coeffi- 
cients Po.,, Po., and p,., are represented by h, e and d respectively. From 
equation (1) we have the following equation which is of use in calculating 
the relative importance of heredity and environment: 

h2 + d2 + e2 = 1 

FIGURE 2.-A diagram illustrating the relations between two mated individuals and their 
progeny. H, HI, H" and 11"' are the genetic constitutions of the four individuals. G, G', G" 
and G"' are four gem-cells. E and D represent tangible external conditions and chance irregu- 
larities as factors in development. C represents chance a t  segregation as a factor in determining 
the composition of the germ-cells. Path coefficients are represented by small letters. 

T H E  GRADING OF GAMETIC AND ZYGOTIC FORMULAE 

In applying the methods of correlation and of path coefficients to Men- 
delian inheritance, we must adopt scales of measurement for gametic and 
zygotic formulae, as well as for the physical characters in question. This 
would be easy to do if the effects of factors were always combined simply 
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by addition. This, however, is by no means the case. It is probably 
more typical for the effects to be combined by multiplication, i.e., each 
factor increases the effect by a certain percentage. This, however, is not a 
serious difficulty, since it can be met by the use of logarithmic scales if 
necessary. Cases in which factors produce no effect except in the presence 
of others are more serious. I t  seems necessary to ignore them for the 
present. The most important remaining difficulty is that of dominance. 
If we assign values to each factor, we get a scale for measuring gametes 
and zygotes, but the latter represents the effect of the combination in 
development only if dominance is lacking. For example, if A and B are 
factors of equal importance, our scale would bring the zygotes AAbb, 
AaBb and aaBB into the same class, while if A and B are dominant, AaBb 
would show twice as great an effect as the others. 

DOMINANCE 

This difficulty can be met by using two methods of grading the consti- 
tution of the fertilized egg, one which is simply the sum of the values 
assigned to the various factors and one which measures the effect on devel- 
opment, i.e., allows for dominance. We can find the correlation between 
these two sets of grades. The diagram below shows the relations in the 
case of one factor in a population composed of u AA .+ p Aa + v aa. 
The coefficient of correlation (product-moment method) comes out: 

It is easy to show that this formula applies to any number of factors in 
which the three classes are distributed as above, regardless of whether the 
dominants act in the same or opposite sense on development. 

There are two cases which are of special interest in which the formula 
simplifies considerably. If the population is in equilibrium under random 

- 
mating, p = d u v  and the correlation comes out d, :>,. Table 1 

gives examples of this case: 
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TABLE 1 

GAMETES POPULATION CORRELATION BETWEEN 
ZYGOTIC FORMULAE WITH 
DOMINANCE AND WITHOUT 

DOMINANCE 

- 
d\ITaT = 0.426 
47 = 0 632 
dT  = 0.817 
d\lq = 0.926 
d$j = 0.970 

By assuming that there are an equal number of dominant and recessive 
gametes, i.e., that u = v, the general formula becomes much simplified 
even without assuming that there is equilibrium, the correlation becoming 

. If there is equilibrium, the value of p must be b in this case, 

giving as before, dc 

RELATIONS BETWEEN ZYGOTE AND GAMETE 

The genetic constitution (8) is determined completely by that of the 
egg and of the sperm which unite at  fertilization. There is in general 
equal inheritance from the parents. Let a be the path coefficient from 
gamete to zygote. If there is assortative mating from any cause, there 
will be some correlation between the gametes which unite. Represent 
this correlation by f.  By application of equation (1) : 

This equation does not of course apply in a case in which there is unequal 
inheritance from the sexes, as where sex linkage is involved. Caution 
must also be used in applying it where the mated individuals belong to 
different generations in a system of consanguine mating. 

The constitution of the germ-cells is in part determined by that of the 
parent, but only in part, since the same parent can produce numerous 
different kinds of germ-cells. The other factor is chance a t  segregation. 
In order to find the value of the path coefficient from zygote to germ-cell, 
it is necessary to know the relation between the germ-cells produced by 
gametogenesis from a single gametocyte. Let this correlation be repre- 
sented by g, and let 

=reg" = 6 
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So far as one pair of allelomorphs is concerned, it is obvious that the 
relation between the products of gametogenesis must be the same as that 
between the egg and sperm which united to produce the parent. If the 
parents are a random sample from the preceding gegeration, an important 
assumption, we have: g = f'. 

The prime in the symbol j' is used to indicate the preceding generation. 
The nomenclature j', j", j"' will be used for the first, second and third 
generations preceding the one in question. 

In the case of multiple factors, the same formula applies, provided that 
the factors of different sets of allelomorphs combine with each other a t  
random at fertilization. This rules out assortative mating based on somatic 
resemblance. It does not rule out linkage in a population which is in 
equilibrium or has departed from equilibrium through consanguine mat- 
ings. Assortative mating and selection (parents not a random sample of 
preceding generation) will be considered later. 

We have considered the constitution of a germ-cell as in part determined 
by that of the parent and in part by chance at  fertilization. In  a sense, it 
is legitimate to reverse the arrows from parental constitution to germ-cell, 
and consider the former as completely determined by two gametes pro- 
duced by gametogenesis. The path coefficient p,,,., is, of course, not the 
same as that for the reverse direction PG.,.,. 

2 &3r.G + 2 ~ & . ~ g  = 1 (from equation (1) ) 
T H ~ ~ G  = p , , , . ~  (1 + g) = b (from equation (2) ) 

By elimination of we obtain 

b2 = q (1 + g) 

The correlation between the egg and sperm depends on that between 
the parental formulae which we will represent by m. 

j=  b2m 

The correlation between the parents is greater or less than that between 
their genetic constitutions, depending on whether the assortative mating 
is based on somatic resemblance or consanguinity. In  the former case, 

m m 
it is obviously - in the absence of dominance, -- (1 + p)  with perfect 

h'2 hJ2 
dominance and an equal number of dominant and recessive factors. In  
the case of consanguine mating the correlation between the parents is 

mh'2 with dominance and an equal number mhI2 without dominance, and --- 
l + P  

of dominant and recessive factors. 
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CORRELATIONS BETWEEN RELATIVES 

Parent and offspring are connected by two chains of path coefficients, 
the direct path and the path through the other parent. 

r,, = abhh' (1 + m) (no dominance) 

(1 + m) (typical case of dominance) Yfio = - 
l + P  

Two brothers or sisters are connected by five chains of path coefficients, 
including common environmental influences. 

roo< = 2 habbah + 2 habmbah + e2 
= 2 a2b2h2 (1 + m) + e2 (no dominance) 

(1 + m) + e2 (typical case of dominance) Yo,# = - 
l + P  

The correlation between any pair of relatives can easily be found by 
extension of this method. 

TRE DEGREE OF HOMOZYGOSIS AND HETEROZYGOSIS 

In  a population which is in equilibrium, under random mating, the 
percentage of homozygosis depends on the relative proportion of domi- 
nants and recessives. In a population composed of x2 AA + 2xy Aa + 
y2 aa the percentage of homozygosis is of course x2 + Y2 . This equals 

(x + yI2 
50 percent only if there are an equal number of dominants and recessives. 

Where there is not random mating, the percentage of homozygosis can 
be found from the correlation between gametes which unite at  fertilization. 
Assume that there are x cases in which A unites with A ,  an equal number 
in which a unites with a, and 1 - 22 cases in which A unites with a.  The 
product-moment correlation between the gametes, which we have called 
f ,  comes out 4x - 1. Thus for the percentage of heterozygosis we have: 

This formula applies to any number of factors in the absence of assorta- 
tive mating based on somatic resemblance. The squared standard devia- 
tion for the variation due to a single Mendelian factor is obviously 1 - p, 
and for rt factors, combined at  random, is ~ ( 1 -  p ) ,  where the effect of 
one factor is the unit. The genetic variation of the population thus 
increases with the percentage of homozygosis. As the variation due to 
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other causes, not genetic, remains constant, the degree of determination 
by heredity, h2, also increases unless there has been complete determina- 
tion by heredity from the first. 

h2 = 2 h2, (1 - P) where hi is the initial value of h2 
hi (1 - 2 p) + 1 

From the foregoing formulae, it is possible to express the correlations and 
path coefficients in each generation in terms of those in the preceding 
generation, provided that an expression can be found for m, the correla- 
tion between the genetic constitutions of the parents. This can easily be 
done for many systems of consanguine mating as will be brought out in a 
subsequent paper. 

SUMMARY OF FORMULAE 

The table below shows these equations, and the form which they take 
if it is assumed that the population is in equilibrium (m, g, f, a2, b2 con- 
stant) and in the case of random mating (m = 0). 

TABLE 2 

General formulae. 

CONSANGUINE MATING 

rpp = mh'p 
rpo = abhh' (1 + m )  
roo = 2 a2b2h2 (1 + m) + e2 

EQUILIBRIUM 

h2 + d2 + e2 = 1 
m = constant 

RANDOM MATING 

h2 + d2 + e2 = 1 
m = O  

g = f l = f = O  

b2 = f  

f = o  

a2 = f 

ab = ) 

P = )  

h2 = h2 , 

r** = 0 
rpo = f he 
roo = f h2 + e2 

To allow for dominance (assuming equal number of dominant and 
recessive factors as in case of p)  multiply the formulae for r,,, r,, and roo 
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I t  will be seen that if it is assumed that equilibrium is reached the for- 
mulae become very simple and still more so in the case of random mating. 
In  this case, the degree of determination by heredity can be found directly 
from the correlation between parent and offspring. The correlation 
between parent and offspring and between brothers differs only in common 
influence of environmental factors on the latter. If these are assumed to 
be litter-mates for whom all or nearly all tangible environmental factors 
may be assumed to be in common, we can distinguish this class of factor 
from the chance variations in development which are not due to tangible 
external conditions. 

ILLUSTRATION OF METHOD 

A good illustration of these last points has been found in data on the 
inheritance of the piebald pattern in guinea-pigs, a case discussed in more 
detail elsewhere (WRIGHT 1920). The correlation between mated animals 
in a stock which had been bred at random was found to be + 0.019, indi- 
cating that there had been no unconscious assortative mating. The 
correlation between parent and offspring was +0.211, between litter mates 

The standard deviation of the spotting in this stock was 0.802 in the 
units used. This means about 20 percent of the coat. The squared 
standard deviation can be broken into three parts, by multiplying by 
h2, e2, and d2 giving the portions due respectively to heredity, tangible 
environment and chance in development. We find 0.271 due to heredity 
and 0.372 due to other causes. On inbreeding brother with sister for a 
dozen generations, one would expect to find the portion of the squared 
standard deviation due to heredity eliminated, leaving merely that due to 
other causes. Such a stock was actually on hand. Its standard deviation 
was found to be 0.603, giving a squared standard deviation of 0.364 in close 
agreement with expectation (0.372), (on the assumption that dominance is 
lacking, an assumption justified by the results of crosses between inbred 
families at opposite extremes in amount of white). The correlation between 
parent and offspring in the inbred family was only 0.014 and that between 
litter mates 0.069, indicating that heredity actually had been virtually 
eliminated by the inbreeding. 
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