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Abstract

Over the next few years, the relentless exponential effect of Moorg:s
Law will profoundly affect nearly all areas of science and technology:
By 2005, analytical power previously available only at supercomputer
centers will exist on every desktop and the volume of electronic data
will be enormous. Even now, a standard Intel computer delivers more
computational power than the first supercomputer and GenBank
acquires more data every ten weeks than it did in its first ten years.

Advanced biomedical research of the 21st Century will require an
adequate information infrastructure and a mastery of logistics. Those
with access will participate in the transformation of biomedical
science; those without may become irrelevant. If public support fof
Information infrastructure is inadequate, some types of research may
only be possible in the private sector.
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Cancer is a pathology of the genetic system.

Moore’s Law constantly transforms IT (and everythi
else).

Information Technology (IT) has a special relations )
with biology, especially genetics and genomics.

21st-Century biology will be based on bioinformatic
and powered by logistics skills.

Bioinformatics is emerging as an independent
discipline.

Currently, support for public bio-information
Infrastructure seems inadequate.

In the future, much current public research may mo
Into the private sector.
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Moore's Law

Transforms InfoTech
(and everything else)




Moore’s Law: The Statement

Every eighteen months, the
number of transistors that can
be placed on a chip doubles|

{ Gordon Moore, co-founder of Intel...}
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Moore’s Law: The Effect
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Moore’s Law: The Effect

Three Phases of Novel IT Applications

® It’s Impossible
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Moore’s Law: The Effect

Three Phases of Novel IT Applications

® It's Impractical
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Moore’s Law: The Effect

Three Phases of Novel IT Applications

® |t's Overdue
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Moore’s Law: The Effect
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Moore’s Law: The Effect
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Cost (constant performance)
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IT-Blology
Synemism




IT Is Special

Information Technology:

¢ affects the performanand the
management of tasks
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IT Is Special

Information Technology:

® affects the performanand the
management of tasks

® allows the manipulation of huge
amounts of highly complex data

® s incredibly plastic

(programming and poetry are both exercises in pure thought)

® Improves exponentiallymoore's Law)




Biology Is Special

Life is Characterized by:

® Individuality
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Biology Is Special

Life is Characterized by:
® Individuality
® historicity
® contingency

® high (digital) information content

fNo law of large numbers, since every
Uiving thing is genuinely unique.

}_
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IT-Biology Synergism

® Physics needs calculus, the method for
manipulating information about
statistically large numbers of vanishingly
small, independent, equivalent things.
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IT-Biology Synergism

® Biology needs information technology, the

method for manipulating information
about large numbers of dependent,
historically contingent, individual things.
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Biology Is Special

For it Is In relation to the statistical point of view
that the structure of the vital parts of living
organisms differs so entirely from that of any
piece of matter that we physicists and chemists
have ever handled in our laboratories or
mentally at our writing desks.

{ Erwin Schrodinger. 1944What is Life ]—
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Genetics as Code

[The] chromosomes ... contain in some kind of code-
script the entire pattern of the individual's future
development and of its functioning in the mature state.
... [By] code-script we mean that the all-penetrating
mind, once conceived by Laplace, to which every
causal connection lay immediately open, could tell
from their structure whether [an egg carrying them]
would develop, under suitable conditions, into a black
cock or into a speckled hen, into a fly or a maize plant,
a rhodo-dendron, a beetle, a mouse, or a woman.

{ Erwin Schrodinger. 1944What is Life ]—
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One Human Sequence

o

e
We now know that
Schrodinger's mysterious
human “code-script”
consists of 3.3 billion
base pairs of DNA.

A4
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One Human Sequence

We now know that
Schrodinger’s mysterious
human “code-script”
consists of 3.3 billion
base pairs of DNA.

- /

A4

Typed in 10-pitch font, one human sequence would stretch for
than 5,000 miles. Digitally formatted, it could be stored on one
ROM. Biologically encoded, it fits easily within a single cell.

ore
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Bio-digital Information

DNA is a highly efficient digital storage device:
® There Is more mass-storage capacity in the

of all the world’s computers.

DNA of a side of beef than In all the hard drives
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Bio-digital Information

DNA Is a highly efficient digital storage device:

® Storing all of the (redundant) information in all
of the world’s DNA on computer hard disks
would require that the entire surface of the Earth
be covered to a depth of three miles in Conney,
1.0 gB drives.
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Genomics:
An Exanple




Human Genome Project - Goals

— construction of a high-resolution genetic map of the human
genome;

(USDOE. 1990.Understanding Our Genetic Inheritance. |l |
LThe U.S. Human Genome Project: The First Five Years
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Human Genome Project - Goals

— production of a variety of physical maps of all human
chromosomes and of the DNA of selected model
organisms;

(USDOE. 1990.Understanding Our Genetic Inheritance. |l |
LThe U.S. Human Genome Project: The First Five Years
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Human Genome Project - Goals

— determination of the complete sequence of human DNA and
of the DNA of selected model organisms;

(USDOE. 1990.Understanding Our Genetic Inheritance. |l |
LThe U.S. Human Genome Project: The First Five Years
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Human Genome Project - Goals

construction of a high-resolution genetic map of the human
genome;

production of a variety of physical maps of all human
chromosomes and of the DNA of selected model
organisms;

determination of the complete sequence of human DNA and
of the DNA of selected model organisms;

development of capabilities for collecting, storing,
distributing, and analyzing the data produced,;

USDOE. 1990.Understanding Our Genetic Inheritance.
The U.S. Human Genome Project: The First Five Years
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Human Genome Project - Goals

construction of a high-resolution genetic map of the human
genome;

production of a variety of physical maps of all human
chromosomes and of the DNA of selected model
organisms;

determination of the complete sequence of human DNA and
of the DNA of selected model organisms;

development of capabilities for collecting, storing,
distributing, and analyzing the data produced,

creation of appropriate technologies necessary to achieve
these objectives.

USDOE. 1990.Understanding Our Genetic Inheritance.
The U.S. Human Genome Project: The First Five Years
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Infrastructure and the HGP

Progress towards all of the [Genome Project]
goals will require the establishment of well-
funded centralized facilities, including a stock
center for the cloned DNA fragments

generated in the mapping and sequencing
effort and a data center for the computer-based
collection and distribution of large amounts of
DNA sequence information.

(National Research Council. 198Blapping and Sequencing the
LHuman Genomeé~Nashington, DC: National Academy Press. p.|3
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GenBank Totals(release 103)

DIVISION Entries Per Cent Base Pairs Per Cent

Phage Sequences (PHG) 1,313 0.074% 2,138,810 0.184%

Viral Sequences (VRL) 45,355 2.568% 44,484,848 3.834%

Bacteria (BCT) 38,023 2.153% 88,576,641 7.634%

Plant, Fungal, and Algal Sequences (PLN) 44,553 2.523% 92,259,434 7.951%
Invertebrate Sequences (INV) 29,657 1.679% 105,703,550 9.110%

Rodent Sequences (ROD) 36,967 2.093% 45,437,309 3.916%

Primate Sequences (PRI1-2) 75,587 4.280% 134,944,314 11.630%

Other Mammals (MAM) 12,744 0.722% 12,358,310 1.065%

Other Vertebrate Sequences (VRT) 17,713 1.003% 17,040,159 1.469%
High-Throughput Genome Sequences (HTG) 1,120 0.063% 72,064,395 6.211%
Genome Survey Sequences (GSS) 42,628 2.414% 22,783,326 1.964%
Structural RNA Sequences (RNA) 4,802 0.272% 2,487,397 0.214%
Sequence Tagged Sites Sequences (STS) 52,824 2.991% 18,161,532 1.565%
Patent Sequences (PAT) 87,767 4.970% 27,593,724 2.378%

Synthetic Sequences (SYN) 2,577 0.146% 5,698,945 0.491%

Unannotated Sequences (UNA) 2,480 0.140% 1,933,676 0.167%

EST1-17 1,269,737 71.905% 466,634,317 40.217%

TOTALS 1,765,847  100.000% 1,160,300,687  100.000%




Base Pairs in GenBank
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Base Pairs in GenBank
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Base Pairs in GenBank
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'GCGCATCGCGTATCGATI’A@

[In with the sample, out with the sequence]r
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What's Really Next

The post-genome era In biological
research will take for granted ready
access to huge amounts of genomic
data.

The challenge will benderstanding
those data and using the understand
to solve real-world problems...

INg
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Base Pairs in GenBankprercent Increage
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Projected Base Pairs
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Projected Base Pairs
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Projected Base Pairs
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The Post-Genome Era

Post-genome research involves:

® applying genomic tools and knowledge to mor
general problems

® asking new questions, tractable only to genom
or post-genomic analysis

® moving beyond the structural genomics of the
human genome project and into the functional
genomics of the post-genome era

—

&
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The Post-Genome Era

Suggested definition:

® functional genomics = biology
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The Post-Genome Era

An early analysis:

éa )

Walter Gilbert. 1991. Towards a paradig

shift in biology. Nature 349:99.

N J/
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Paradigm Shift in Biology

To use [the] flood of knowledge, which will pour
across the computer networks of the world,
niologists not only must become computer
iterate, but also change their approach to the
problem of understanding life.

—[ Walter Gilbert. 1991. Towards a paradigm shift in biolobature 349:99. }
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Paradigm Shift in Biology

The new paradigm, now emerging, is that all the
‘genes’ will be known (in the sense of being
resident in databases available electronically),
and that the starting point of a biological
iInvestigation will be theoretical. An individual
scientist will begin with a theoretical conjecture,
only then turning to experiment to follow or test
that hypothesis.

-

Walter Gilbert. 1991. Towards a paradigm shift in biolobature 349:99. }—
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Paradigm Shift in Biology

4[ Case of Microbiology ]7

<5000 known and described bacteria

5,000,000 base pairs per genome

25,000,000,000 TOTAL base pairs

ice

( If a full, annotated sequence were available for all known bacteria, the prqct
L of microbiology would match Gilbert’s prediction.
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Fundamental Dogma

proteins, to interactions among proteins

and ultimately to phenotypes.

Collections of individual phenotypes, of
Qourse, constitute a population.

fThe fundamental dogma of molecular bioho‘
IS that genes act to create phenotypes throl
a flow of information from DNA to RNA to

(regulatory circuits and metabolic pathways

)%
Igh
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Fundamental Dogma

Although a few databases already
to distribute molecular information,

equt

Map

Database$

DNA GenBank

PDB
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RNA
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Fundamental Dogma

Map

Database$

DNA

v

RNA

p |

Although a few databases already exist
to distribute molecular information,  Gene Expressio

PDB

the post-genomic era will need man

Proteins

'

Circuits

more to collect, manage, and publis (Regulatory Pathways? i

the coming flood of new findings.

Phenotypes

[Clinical Data ?] i

[ Biodiversity?]

GenBank
EMBL
DDBJ

[ Development }?

SwissPROT
PIR

[ Metabolism'ﬂ

[ Neuroanatomy}’

Populations

[ Molecular Epidemiologyj?

[Comparative Genomic%?
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Human Resources Issues

® Reduction in need for non-IT staff
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Human Resources Issues

Increase in need for IT staff, especial
“Information engineers”
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Human Resources Issues

/In modern biology, a general trend is to

convert expert work into staff work and
finally into computation. New expertise

ntinuing work.
kCOt uing wo

~

19

required to design, carry out, and interpre

J

A4
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Human Resources Issues

Elbert Branscomb: “You must recognize that
some day you may need as many comput
scientists as biologists in your labs.”

el
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Human Resources Issues

Craig Venter: “At TIGR, we already have
twice as many computer scientists on our
staff.”

Exchange at DOE workshop on high
Lthroughput sequencing.
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New Discpline
of Informatics




What Is Informatics?

Computer

Science |
Research - Informatics -

Biological
Application
Programs
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What Is Informatics?

Informatics combines expertise from:
® domain science (e.g., biology)
® computer science
® library science

® management science

{ All tempered with an engineering mindset}..—
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What Is Informatics?

Library | Dovrya‘” )

{ Science J | Knowledge
Computer

{ Science ‘@

: Englneerlng
Sclence PrlnC|pIes

|

Medical
Informatics

‘ Bio
Informatics

|

Other
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Engineering Mindset

Engineering is often defined as the use of
scientific knowledge and principles for practical
purposes. While the original usage restricted
the word to the building of roads, bridges, and
objects of military use, today's usage Is more
general and includes chemical, electronic, and
even mathematical engineering.

{Parnas, David Lorge. 199(030mputer23(1):17-22.] —
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Engineering Mindset

Engineering is often defined as the use of
scientific knowledge and principles for practical
purposes. While the original usage restricted
the word to the building of roads, bridges, and
objects of military use, today's usage Is more
general and includes chemical, electronic, and
even mathematical engineering.

{Parnas, David Lorge. 199(030mputer23(1):17-22.] —

... or even information engineering.
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Engineering Mindset

Engineering education ... stresses finding
good, as contrasted with workable, designs.
Where a scientist may be happy with a device
that validates his theory, an engineer is taught
to make sure that the device is efficient,
reliable, safe, easy to use, and robust.

{Parnas, David Lorge. 199(030mputer23(1):17-22.] —
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Engineering Mindset

Engineering education ... stresses finding
good, as contrasted with workable, designs.
Where a scientist may be happy with a device
that validates his theory, an engineer is taught
to make sure that the device Is efficient,
reliable, safe, easy to use, and robust.

{ Parnas, David Lorge. 199@omputey 23(1):17-22.]—

The assembly of working, robust systems, on time and on
budget, is the key requirement for a federated information

Infrastructure for biology.
93
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Infrastructure




Call for Change

U)
fT"

Among the many new tools that are or will be needed (for 21!
century biology), some of those having the highest priority are:

D

® bioinformatics

® computational biology
® functional imaging tools using biosensors and biomarKers
® transformation and transient expression technologies

® nanotechnologies

Impact of Emerging Technologies on the Biological Sciences: Report of aj |
WorkshopNSF-supported workshop, held 26-27 June 1995, Washington, |DC:
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The Problem

IT moves at “Internet Speed” and responds
rapidly to market forces.
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® IT will play a central role in 21st Century
biology.
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® Current levels of support for public bio-
Information infrastructure are too low.
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The Problem

® |IT moves at “Internet Speed” and respond
rapidly to market forces.

® |IT will play a central role in 21st Century
biology.

® Current levels of support for public bio-
iInformation infrastructure are too low.

® Reallocation of federal funding is difficult,
and subject to political pressures.
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The Problem

IT moves at “Internet Speed” and respond
rapidly to market forces.

IT will play a central role in 21st Century
biology.

Current levels of support for public bio-
iInformation infrastructure are too low.

Reallocation of federal funding is difficult,
and subject to political pressures.

Federal-funding decision processes are
ponderously slow and inefficient.
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Federal Funding of Bio-Databases

The challenges:
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Federal Funding of Bio-Databases

The challenges:

® providing adequate funding levels
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Federal Funding of Bio-Databases

The challenges:

® making timely, efficient decisions
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I'T Budgets

A Reality Check




Rhetorical Question

Which is likely to be more complex:

® identifying, documenting, and tracking the
whereabouts ddll parcelsin transit in the US at
one time
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Rhetorical Question

Which is likely to be more complex:

® identifying, documenting, and analyzing the
structure and function @l individual genes In
all economically significant organismsthen
analyzingall significant gene-gene and gene-
environment interactionsin those organisms
and their environments
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Business Factoids

United Parcel Service:

® uses two redundant 3 Terabyte (yes, 3000 GB))
databases to track all packages in transit.

® has 4,000 full-time employees dedicated to IT
® spends one billion dollars per year on IT

® has an income of 1.1 billion dollars, against
revenues of 22.4 billion dollars
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Business Comparisons

Company Revenues IT Budget Pct

Chase-Manhattan | 16,431,000,000 1,800,000,000 | 10.95 %
AMR Corporation| 17,753,000,000 1,368,000,000 7.71 %
Nation’s Bank | 17,509,000,000 1,130,000,000 6.45 %
Sprint| 14,235,000,000 873,000,000 6.13 %

IBM | 75,947,000,000 4,400,000,000 5.79 %

MCI| 18,500,000,000 1,000,000,000 5.41 %

Microsoft | 11,360,000,000 510,000,000 4.49 %

United Parcel | 22,400,000,000 1,000,000,000 4.46 %
Bristol-Myers Squibb | 15,065,000,000 440,000,000 2.92 %
Pfizer| 11,306,000,000 300,000,000 2.65 %

Pacific Gas & Electric| 10,000,000,000 250,000,000 2.50 %
Wal-Mart | 104,859,000,000 550,000,000 0.52 %

K-Mart| 31,437,000,000 130,000,000 0.41 %
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Federal Funding of Biomedical-IT

Appropriate funding level:
® approx. 5-10% of research funding

® l.e, 1- 2Dbillion dollars per year
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Federal Funding of Biomedical-IT

Appropriate funding level:
® approx. 5-10% of research funding

® i.e, 1 - 2billion dollars per year

/Source of estimate: -
- Experience of IT-transformed industries.
- Current support for IT-rich biological research.

N _/
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Who is this man?

DNA 1Is'His Pay Dirt
He's a Meloglsi who has made milllons, asd Be's raciug the Gevernment 1o be firek ta map th
hnman genanis. IE I. Craly Vonilor wing; doos sciencs losa? Ey Liza Balkin

AR KINE OF BAKIEL GRTEGN By Franolaps Goldnas « THE HOLLYWO0OD BLOCERUSTER RESEMBLY LINE Ry Tainw

And why should you care



Craig Venter

Accomplishments - cDNA:

Early in the genome project, Venter argued that cDNA daie
held much of the economically significant content of
genomic information.
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Craig Venter

Accomplishments - cDNA:

Although most genome researchers scoffed, Venter
persevered and ultimately the importance of cDNA datg
was recognized, both by the scientific community (more
than 70% of the sequences in GenBank are now cDNA
seguences) and by the financial community (Venter

received millions in private sector funding to create TIGR -
The Institute for Genomic Research).

! ot
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Craig Venter

Accomplishments - prokaryotic sequencing:

At TIGR, Venter recognized that sophisticated application
of computer technology should allow whole-genome
shotgun sequencing, thereby eliminating the time-

consuming step of creating a physical map prior to
sequencing.
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Craig Venter

Accomplishments - prokaryotic sequencing:

Although an NIH review panel rejected his idea as
Impossible, Venter persevered and soon produced the first
whole-organism genomic sequence -- thatdaémophilus
Influenzae Now TIGR has produced more whole-genome
microbial sequences than any other organization.
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Craig Venter

Audacious Goal- eukaryotic sequencing:

In collaboration with Perkin-Elmer, Venter has now
formed a new organization, Celera, with the goal of
becoming the world’s leading source of whole-genome

sequence data from eukaryotes.
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Craig Venter

Audacious Goal- eukaryotic sequencing:

discounting Venter’s likelihood of success, his track recprd
IS two for two when it comes to applying a clear vision f

the application of advanced technology to genomic
research.

Although the genome research community is once agaiE

f
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Craig Venter

Audacious Goal- eukaryotic sequencing:

Of course, Venter may fail this time. But, if he doesn't,
what is the likely implication of the success of Celera fof;
say, biomedical research?
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Craig Venter

Audacious Goal- eukaryotic sequencing:

Of course, Venter may fall this time. But, if he doesn't,
what is the likely implication of the success of Celera fo
say, biomedical research?

Let’s take a look at Celera’s official, publicly announce
goals...
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Celera

We want this new company to tee definitive source of
genomic and related medical information, which scientists cah

use to better understand human biology and to deliver improyed
healthcare options.

(Tony White, chief executive officer of Perkin-Elmer,
kTeIeconference, May 11, 1998
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Celera

We want this new company to tee definitive source of
genomic and related medical information, which scientists cah
use to better understand human biology and to deliver improyed
healthcare options. We believe that this company combines
compelling technology with unigue sequencing strategies,

resulting in a genomics sequencing facility with an expected
capacity ...

(Tony White, chief executive officer of Perkin-Elmer,
kTeIeconference, May 11, 1998
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Celera

We want this new company to tee definitive source of
genomic and related medical information, which scientists cah
use to better understand human biology and to deliver improyed
healthcare options. We believe that this company combines
compelling technology with unigue sequencing strategies,

resulting in a genomics sequencing facility with an expected
capacitygreater than that of the current combined world outpuit.

(Tony White, chief executive officer of Perkin-Elmer,
kTeIeconference, May 11, 1998
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Celera

We are not a philanthropic organisation, we
have a revenue model for this. We are sure
people will want to buy the information.

(Tony White, chief executive officer of Perkin-Elmer,
kquoted InThe Guardian13 May 1998
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Logistics Mastery

What role does mastery of logistics and
process control play in successful
biotechnology ventures?
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Logistics Mastery

What role does mastery of logistics an

process control play in successful
biotechnology ventures?

ConsidemMillennium Pharmaceuticals.
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fg Press Releazes - Microsoft Internet Explorer
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Millennium recently
signed one of the
most lucrative deals
in the biotechnology
industry.

Haome Search avorik Charnelz

Millennium and Bayer Form World's Largest
Drug Discovery Alliance in the Pharmaceutical

Releases

Press
/AVAN
The Platform
The Company

Mlllennlum Reaches Over $1 Billion in Total
Pharmaceutical Alllance Fundlng

Investor Relations r 1|II|-r|r||urr| Phs

Millennium Careers

Millennium Subsidiaries As documented iiThe

Economistmuch of
Millennium’s success
traces to its expertise in
logistics and process

control...



Millenium Pharmaceuticals

Millenium’s bugs

Mark Levin is an engineer. That makes him ideally qualifie
to be a successful biotechnology entrepreneur

The
Economist

SEPTEMBER 26TH - OCTOBER 2ND 1998

132



Millenium Pharmaceuticals

Many other biotech firms, increasingly desperate for cash as
Investors have shied away from their shares, have queued up,to
do deals with the pharmaceutical industry at almost any price. Mr
Levin, though, has been able to dictate his own terms. Uniqugly
among biotechnologists, he seems to have mastered the art pf
having his cake and eating it.

Except that Mr Levin is not really a biotechnologist at all;

thinks hard about the technology.
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Millenium Pharmaceuticals

Mr Levin focuses on trying to make each link in the discovery
chain as efficient as possible. He has assembled an impress|ve
array of technologies -- including robotics and information
systems as well as molecular biology. He then enhances them
and links them together in novel ways to create what the engineer
In him likes to call "technology platforms". The idea is that these
platforms should help drug searchers to travel rapidly on thei
long and tortuous journey from gene to treatment. Mr Levin's
goal is to boost the productivity of drug discovery by 50%,
which would lead to many more new drugs coming on to the
market each year.

|74

N
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21st Century Research

We have argued that mastery of information technology and
logistics may transform future biomedical research.
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21st Century Research

The examples of Celera and Millennium Pharmaceuticals
suggest that the 21st Century may already have arrived.
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21st Century Research

We have argued that mastery of information technology
logistics may transform future biomedical research.

The examples of Celera and Millennium Pharmaceuticals
suggest that the 21st Century may already have arrived.

If public sector funding cannot provide public-sector
researchers with access to data of the sort that Celera ho

accumulate, what will be the effects on public sector
research?
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21st Centu

'y Research

The examples o
suggest that the

research?

Possibly, many
entirely into the
access essentia

We have argued that mastery of information technology
logistics may transform future biomedical research.

f Celera and Millennium Pharmaceuticals
21st Century may already have arrived.

If public sector funding cannot provide public-sector
researchers with access to data of the sort that Celera ho
accumulate, what will be the effects on public sector

piomedical research fields may disappear
orivate sector, when it becomes impossib

resources with public-sector support.
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Slides:

http://www.esp.org/rjr/ccaf.pdf
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