Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Archaea

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 08 Mar 2021 at 01:30 Created: 


In 1977, Carl Woese and George Fox applied molecular techniques to biodiversity and discovered that life on Earth consisted of three, not two (prokaryotes and eukaryotes), major lineages, tracing back nearly to the very origin of life on Earth. The third lineage has come to be known as the Archaea. Organisms now considered Archaea were originally thought to be a kind of prokaryote, but Woese and Fox showed that they were as different from prokaryotes as they were from eukaryotes. To understand life on Earth one must also understand the Archaea .

Created with PubMed® Query: archaea[TITLE] OR archaebacteria[TITLE] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-03-06

Mauerhofer LM, Zwirtmayr S, Pappenreiter P, et al (2021)

Hyperthermophilic methanogenic archaea act as high-pressure CH4 cell factories.

Communications biology, 4(1):289.

Bioprocesses converting carbon dioxide with molecular hydrogen to methane (CH4) are currently being developed to enable a transition to a renewable energy production system. In this study, we present a comprehensive physiological and biotechnological examination of 80 methanogenic archaea (methanogens) quantifying growth and CH4 production kinetics at hyperbaric pressures up to 50 bar with regard to media, macro-, and micro-nutrient supply, specific genomic features, and cell envelope architecture. Our analysis aimed to systematically prioritize high-pressure and high-performance methanogens. We found that the hyperthermophilic methanococci Methanotorris igneus and Methanocaldococcoccus jannaschii are high-pressure CH4 cell factories. Furthermore, our analysis revealed that high-performance methanogens are covered with an S-layer, and that they harbour the amino acid motif Tyrα444 Glyα445 Tyrα446 in the alpha subunit of the methyl-coenzyme M reductase. Thus, high-pressure biological CH4 production in pure culture could provide a purposeful route for the transition to a carbon-neutral bioenergy sector.

RevDate: 2021-02-27

Zheng M, He S, Feng Y, et al (2021)

Active ammonia-oxidizing bacteria and archaea in wastewater treatment systems.

Journal of environmental sciences (China), 102:273-282.

Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are two microbial groups mediating nitrification, yet little is presently known about their abundances and community structures at the transcriptional level in wastewater treatment systems (WWTSs). This is a significant issue, as the numerical abundance of AOA or AOB at the gene level may not necessarily represent their functional role in ammonia oxidation. Using amoA genes as molecular markers, this study investigated the transcriptional abundance and community structure of active AOA and AOB in 14 WWTSs. Quantitative PCR results indicated that the transcriptional abundances of AOB amoA (averaged: 1.6 × 108 copies g-1 dry sludge) were higher than those of AOA (averaged: 3.4 × 107 copies g-1 dry sludge) in all WWTSs despite several higher abundances of AOA amoA at the gene level. Moreover, phylogenetic analysis demonstrated that Nitrosomonas europaea and unknown clusters accounted for 37.66% and 49.96% of the total AOB amoA transcripts, respectively, suggesting their dominant role in driving ammonia oxidation. Meanwhile, AOA amoA transcripts were only successfully retrieved from 3 samples, and the Nitrosospaera sister cluster dominated, accounting for 83.46%. Finally, the substrate utilization kinetics of different AOA and AOB species might play a fundamental role in shaping their niche differentiation, community composition, and functional activity. This study provides a basis for evaluating the relative contributions of ammonia-oxidizing microorganisms (AOMs) to nitrogen conversions in WWTSs.

RevDate: 2021-02-24

Kim JG, Gazi KS, Awala SI, et al (2021)

Ammonia-oxidizing archaea in biological interactions.

Journal of microbiology (Seoul, Korea), 59(3):298-310.

The third domain Archaea was known to thrive in extreme or anoxic environments based on cultivation studies. Recent metagenomics-based approaches revealed a widespread abundance of archaea, including ammonia-oxidizing archaea (AOA) of Thaumarchaeota in non-extreme and oxic environments. AOA alter nitrogen species availability by mediating the first step of chemolithoautotrophic nitrification, ammonia oxidation to nitrite, and are important primary producers in ecosystems, which affects the distribution and activity of other organisms in ecosystems. Thus, information on the interactions of AOA with other cohabiting organisms is a crucial element in understanding nitrogen and carbon cycles in ecosystems as well as the functioning of whole ecosystems. AOA are self-nourishing, and thus interactions of AOA with other organisms can often be indirect and broad. Besides, there are possibilities of specific and obligate interactions. Mechanisms of interaction are often not clearly identified but only inferred due to limited knowledge on the interaction factors analyzed by current technologies. Here, we overviewed different types of AOA interactions with other cohabiting organisms, which contribute to understanding AOA functions in ecosystems.

RevDate: 2021-02-23

Sorokin DY, Roman P, TV Kolganova (2021)

Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration.

Extremophiles : life under extreme conditions [Epub ahead of print].

Dimethylsulfoxide (DMSO) has long been known to support anaerobic respiration in a few species of basically aerobic extremely halophilic euryarchaea living in hypersaline lakes. Recently, it has also been shown to be utilized as an additional electron acceptor in basically anaerobic sulfur-reducing haloarchaea. Here we investigated whether haloarchaea would be capable of anaerobic respiration with other two sulfoxides, methionine sulfoxide (MSO) and tetramethylene sulfoxide (TMSO). For this, anaerobic enrichment cultures were inoculated with sediments from hypersaline salt and soda lakes in southwestern Siberia and southern Russia. Positive enrichments were obtained for both MSO and TMSO with yeast extract but not with formate or acetate as the electron donor. Two pure cultures obtained from salt lakes, either with MSO or TMSO, were obligate anaerobes closely related to sulfur-reducing Halanaeroarchaeum sulfurireducens, although the type strain of this genus was unable to utilize any sulfoxides. Two pure cultures isolated from soda lakes were facultatively anaerobic alkaliphilic haloarchaea using O2, sulfur and sulfoxides as the electron acceptors. One isolate was identical to the previously described sulfur-reducing Natrarchaeobaculum sulfurireducens, while another one, enriched at lower alkalinity, is forming a new species in the genus Halobiforma. Since all isolates enriched with either MSO or TMSO were able to respire all three sulfoxides including DMSO and the corresponding activities were cross-induced, it suggest that a single enzyme of the DMSO-reductase family with a broad substrate specificity is responsible for various sulfoxide-dependent respiration in haloarchaea.

RevDate: 2021-02-20

Cai R, Zhang J, Liu R, et al (2021)

Metagenomic insights into the metabolic and ecological functions of abundant deep-sea hydrothermal vent DPANN archaea.

Applied and environmental microbiology pii:AEM.03009-20 [Epub ahead of print].

Due to their unique metabolism and important ecological roles, deep-sea hydrothermal archaea have attracted great scientific interests. Among these archaea, DPANN superphylum archaea are widely distributed in hydrothermal vent environments. However, DPANN metabolism and ecology remain largely unknown. In this study, we assembled 20 DPANN genomes among 43 reconstructed genomes obtained from deep-sea hydrothermal vent sediments. Phylogenetic analysis suggests 6 phyla, comprised of Aenigmarchaeota, Diapherotrites, Nanoarchaeota, Pacearchaeota, Woesearchaeota and a new candidate phylum we have designated Kexuearchaeota. These are included in the 20 DPANN archaeal members, indicating their broad diversity in this special environment. Analyses on their metabolism reveal deficiencies due to their reduced genome size, including gluconeogenesis and de novo nucleotide and amino acid biosynthesis. However, DPANN archaea possess alternate strategies to address these deficiencies. DPANN archaea also have potentials to assimilate nitrogen and sulfur compounds, indicating a potentially important ecological role in the hydrothermal vent system.IMPORTANCEDPANN archaea show high distribution in the hydrothermal system though they display small genome size and some incomplete biological processes. Exploring their metabolism is helpful to understand how such small forms of life adapt to this unique environment and what ecological roles they play. In this study, we obtained 20 high quality metagenome-assembled genomes (MAGs) corresponding to 6 phyla of the DPANN group (Aenigmarchaeota, Diapherotrites, Nanoarchaeota, Pacearchaeota, Woesearchaeota and a new candidate phylum designated Kexuearchaeota). Further metagenomic analyses provided insights on the metabolism and ecological functions of DPANN archaea to adapt to deep-sea hydrothermal environments. Our study contributes to gain a deeper understanding of their special lifestyles and should provide clues to cultivate this important archaeal group in the future.

RevDate: 2021-02-15

Distaso MA, Bargiela R, Brailsford FL, et al (2021)

Corrigendum: High Representation of Archaea Across All Depths in Oxic and Low-pH Sediment Layers Underlying an Acidic Stream.

Frontiers in microbiology, 12:633015.

[This corrects the article DOI: 10.3389/fmicb.2020.576520.].

RevDate: 2021-02-14

Starke R, Siles JA, Fernandes MLP, et al (2021)

The structure and function of soil archaea across biomes.

Journal of proteomics pii:S1874-3919(21)00046-4 [Epub ahead of print].

We lack a predictive understanding of the environmental drivers determining the structure and function of archaeal communities as well as the proteome associated with these important soil organisms. Here, we characterized the structure (by 16S rRNA gene sequencing) and function (by metaproteomics) of archaea from 32 soil samples across terrestrial ecosystems with contrasting climate and vegetation types. Our multi-"omics" approach unveiled that genes from Nitrosophaerales and Thermoplasmata dominated soils collected from four continents, and that archaea comprise 2.3 ± 0.3% of microbial proteins in these soils. Aridity positively correlated with the proportion of Nitrosophaerales genes and the number of archaeal proteins. The interaction of climate x vegetation shaped the functional profile of the archaeal community. Our study provides novel insights into the structure and function of soil archaea across climates, and highlights that these communities may be influenced by increasing global aridity.

RevDate: 2021-02-15

Shalvarjian KE, DD Nayak (2021)

Transcriptional regulation of methanogenic metabolism in archaea.

Current opinion in microbiology, 60:8-15 pii:S1369-5274(21)00011-4 [Epub ahead of print].

Methanogenesis is a widespread metabolism of evolutionary and environmental importance that is likely to have originated on early Earth. Microorganisms that perform methanogenesis, termed methanogens, belong exclusively to the domain Archaea. Despite maintaining eukaryotic transcription machinery and homologs of bacterial regulators, archaeal transcription and gene regulation appear to be distinct from either domain. While genes involved in methanogenic metabolism have been identified and characterized, their regulation in response to both extracellular and intracellular signals is less understood. Here, we review recent reports on transcriptional regulation of methanogenesis using two model methanogens, Methanococcus maripaludis and Methanosarcina acetivorans, and highlight directions for future research in this nascent field.

RevDate: 2021-02-09

Kuprat T, Ortjohann M, Johnsen U, et al (2021)

Glucose metabolism and acetate switch in archaea: Analysis of the enzymes involved in Haloferax volcanii.

Journal of bacteriology pii:JB.00690-20 [Epub ahead of print].

The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. Following our previous studies on key enzymes of this pathway, we now focus on the characterization of enzymes involved in 3-phosphoglycerate conversion to pyruvate, in anaplerosis and in acetyl-CoA formation from pyruvate. These enzymes include phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenolpyruvate carboxylase and pyruvate: ferredoxin oxidoreductase. The essential function of these enzymes were shown by transcript analyses and growth experiments with respective deletion mutants. Further, it is shown that H. volcanii - during aerobic growth on glucose - excreted significant amounts of acetate, which was consumed in the stationary phase (acetate switch). The enzyme catalyzing the conversion of acetyl-CoA to acetate as part of the acetate overflow mechanism, an ADP-forming acetyl-CoA synthetase (ACD), was characterized. The functional involvement of ACD in acetate formation and of AMP-forming acetyl-CoA synthetases (ACSs) in activation of excreted acetate was proven by using respective deletion mutants. Together, the data provide a comprehensive analysis of enzymes of the spED pathway, of anaplerosis, and report first genetic evidence of the functional involvement of enzymes of the acetate switch in archaea.Importance: In this work we provide a comprehensive analysis of glucose degradation via the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeal model organism Haloferax volcanii The study includes transcriptional analyses, growth experiments with deletion mutants and characterization of all enzymes involved in the conversion of 3-phosphoglycerate to acetyl-CoA and in anaplerosis. Phylogenetic analyses of several enzymes indicate various lateral gene transfer events from bacteria to haloarchaea. Further, we analyzed the key players involved in the acetate switch, i.e in the formation (overflow) and subsequent consumption of acetate during aerobic growth on glucose. Together, the data provide novel aspects on glucose degradation, anaplerosis and acetate switch in H. volcanii and thus expand our understanding of the unusual sugar metabolism in archaea.

RevDate: 2021-02-15

Du H, Sun T, Liu Y, et al (2021)

Bacteria and archaea involved in anaerobic mercury methylation and methane oxidation in anaerobic sulfate-rich reactors.

Chemosphere, 274:129773 pii:S0045-6535(21)00242-3 [Epub ahead of print].

The identification of dominant microbes in anaerobic mercury (Hg) methylation, methylmercury (MeHg) demethylation, and methane oxidation as sulfate-reducing bacteria, methanogens or, probably, anaerobic methanotrophic archaea (ANMEs) is of great interest. To date, however, the interrelationship of bacteria and archaea involved in these processes remains unclear. Here, we demonstrated the dynamics of microorganisms participating in these processes. Anaerobic fixed-bed reactors were operated with swine manure and sludge to produce methane stably, and then, sulfate (reactor C), sulfate and Hg(II) (reactor H), and sulfate and MeHg (reactor M) were added, and the reactors were operated for 120 d, divided equally into four periods, P1-P4. The bacterial compositions changed nonsignificantly, whereas Methanosaeta in reactors H and M decreased significantly, revealing that it was irrelevant for Hg transformation. The abundances of Syntrophomonadaceae, Methanoculleus, Candidatus Methanogranum and Candidatus Methanoplasma increased continuously with time; these species probably functioned in these processes, but further evidence is needed. Desulfocella and Desulfobacterium dominated first but eventually almost vanished, while the dominant archaeal genera Methanogenium, Methanoculleus and Methanocorpusculum were closely related to ANME-1 and ANME-2. PLS-DA results indicated that both bacteria and archaea in different periods in the three reactors were clustered separately, implying that the microbial compositions in the same periods were similar and changed markedly with time.

RevDate: 2021-02-11

Makarova KS, Wolf YI, Shmakov SA, et al (2020)

Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea.

The CRISPR journal, 3(3):156-163.

The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.

RevDate: 2021-02-08

Zhu D, Shen G, Wang Z, et al (2021)

Distinctive distributions of halophilic Archaea across hypersaline environments within the Qaidam Basin of China.

Archives of microbiology [Epub ahead of print].

Halophilic Archaea are widely distributed globally in hypersaline environments. However, little is known of how dominant halophilic archaeal genera are distributed across environments and how they may co-associate across ecosystems. Here, the archaeal community composition and diversity from hypersaline environments (> 300 g/L salinity; total of 33 samples) in the Qaidam Basin of China were investigated using high-throughput Illumina sequencing of 16S rRNA genes. The archaeal communities (total of 3,419 OTUs) were dominated by the class Halobacteria (31.7-99.6% relative abundances) within the phylum Euryarchaeota (90.8-99.9%). Five predominant taxa, including Halorubrum, Halobacterium, Halopenitus, Methanothrix, and Halomicrobium, were observed across most samples. However, several distinct genera were associated with individual samples and were inconsistently distributed across samples, which contrast with previous studies of hypersaline archaeal communities. Additionally, co-occurrence network analysis indicated that five network clusters were present and potentially reflective of interspecies interactions among the environments, including three clusters (clusters II, III, and IV) comprising halophilic archaeal taxa within the Halobacteriaceae and Haloferacaceae families. In addition, two other clusters (clusters I and V) were identified that comprised methanogens. Finally, salinity comprising ionic concentrations (in the order of Na+ > Ca2+ > Mg2+) and pH were most correlated with taxonomic distributions across sample sites.

RevDate: 2021-02-05

Wei H, X Lin (2021)

Shifts in the relative abundance and potential rates of sediment ammonia-oxidizing archaea and bacteria along environmental gradients of an urban river-estuary-adjacent sea continuum.

The Science of the total environment, 771:144824 pii:S0048-9697(20)38357-1 [Epub ahead of print].

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in N cycling in sediments globally. However, little is known about their ammonia oxidation rates along a river-estuary-sea continuum. In this study, we investigated how the potential ammonia oxidation rates (PARs) of AOA and AOB changed spatially along a continuum comprising three habitats: the Shanghai urban river network, the Yangtze Estuary, and the adjacent East China Sea, in summer and winter. The AOA and AOB PARs (0.53 ± 0.49 and 0.72 ± 0.69 μg N g-1 d-1, mean ± SD, respectively) and their amoA gene abundance (0.47 ± 0.85 × 106 and 2.4 ± 3.54 × 106 copies g-1, respectively) decreased along the continuum, particularly from the urban river to the estuary, driven by decreasing sediment total organic C and N and other correlated inorganic nutrients (e.g., NH4+) along the gradient of anthropogenic influences. These spatial patterns were consistent between the seasons. The urban river network, where the anthropogenic influences were strongest, saw the largest seasonal differences, as both AOA and AOB had higher PARs and abundance in summer than in winter. The ratios between AOA and AOB PARs (~0.87 ± 0.51) and gene abundances (~0.25 ± 0.24), however, were predominantly <1, indicating an AOB-dominated community. Comparing the different NH4+ consumption pathways, total aerobic oxidation accounted for 12-26% of the total consumption, with the largest proportion in the estuary, where the system was well oxygenated, and the lowest in the adjacent sea, where inorganic N was highly depleted. This study revealed the spatiotemporal patterns of AOA and AOB potential rates and gene abundance along gradients of human influences and identified organic matter and nutrients as key environmental factors that shaped the variation of AOA and AOB along the continuum.

RevDate: 2021-02-04

Wang Y, Qin W, Jiang X, et al (2021)

Seasonal Prevalence of Ammonia-Oxidizing Archaea in a Full-Scale Municipal Wastewater Treatment Plant Treating Saline Wastewater Revealed by a 6-Year Time-Series Analysis.

Environmental science & technology [Epub ahead of print].

Although several molecular-based studies have demonstrated the involvement of ammonia-oxidizing archaea (AOA) in ammonia oxidation in wastewater treatment plants (WWTPs), factors affecting the persistence and growth of AOA in these engineered systems have not been resolved. Here, we show a seasonal prevalence of AOA in a full-scale WWTP (Shatin, Hong Kong SAR) over a 6-year period of observation, even outnumbering ammonia-oxidizing bacteria in the seasonal peaks in 3 years, which may be due to the high bioavailable copper concentrations. Comparative analysis of three metagenome-assembled genomes of group I.1a AOA obtained from the activated sludge and 16S rRNA gene sequences recovered from marine sediments suggested that the seawater used for toilet flushing was the primary source of the WWTP AOA. A rare AOA population in the estuarine source water became transiently abundant in the WWTP with a metagenome-based relative abundance of up to 1.3% over three seasons of observation. Correlation-based network analysis revealed a robust co-occurrence relationship between these AOA and organisms potentially active in nitrite oxidation. Moreover, a strong correlation between the dominant AOA and an abundant proteobacterial organism suggested that capacity for extracellular polymeric substance production by the proteobacterium could provide a niche for AOA within bioaggregates. Together, the study highlights the importance of long-term observation in identifying biotic and abiotic factors governing population dynamics in open systems such as full-scale WWTPs.

RevDate: 2021-02-04

Sorokin DY, Messina E, Smedile F, et al (2021)

Carbohydrate-dependent sulfur respiration in halo(alkali)philic archaea.

Environmental microbiology [Epub ahead of print].

Archaea are environmentally ubiquitous on Earth, and their extremophilic and metabolically versatile phenotypes make them useful as model systems for astrobiology. Here, we reveal a new functional group of halo(natrono)archaea able to utilize alpha-D-glucans (amylopectin, amylose and glycogen), sugars, and glycerol as electron donors and carbon sources for sulfur respiration. They are facultative anaerobes enriched from hypersaline sediments with either amylopectin, glucose or glycerol as electron/carbon sources and elemental sulfur as the terminal electron acceptor. They include 10 strains of neutrophilic haloarchaea from circum pH-neutral lakes and one natronoarchaeon from soda-lake sediments. The neutrophilic isolates can grow by fermentation, although addition of S0 or dimethyl sulfoxide increased growth rate and biomass yield (with a concomitant decrease in H2). Natronoarchaeal isolate AArc-S grew only by respiration, either anaerobically with S0 or thiosulfate as the terminal electron acceptor, or aerobically. Via genome analysis of five representative strains, we detected the full set of enzymes required for the observed catabolic and respiratory phenotypes. These findings provide evidence that sulfur-respiring haloarchaea partake in biogeochemical sulfur cycling, linked to terminal anaerobic carbon mineralization in hypersaline anoxic habitats. We discuss the implications for life detection in analogue environments such as the polar subglacial brine-lakes of Mars. This article is protected by copyright. All rights reserved.

RevDate: 2021-02-02

Ali MM, Khanom A, Nahar K, et al (2021)

Effect of Manure Application on Net Nitrification Rates, Heavy Metal Concentrations and Nitrifying Archaea/Bacteria in Soils.

Bulletin of environmental contamination and toxicology [Epub ahead of print].

In this study, we determined the effect of manure application on net nitrification rates (NNRs), heavy metal concentrations (HMCs), and abundance of ammonia-oxidizing archaea (AOA)/bacteria (AOB), and nitrite-oxidizing bacteria (NOB) in soil. HMCs were measured by atomic absorption spectroscopy. Abundance of AOA, AOB, and NOB was enumerated by q-PCR. NNRs ranged from 2.8 to 14.7 mg kg-1 h-1 and were significantly (p < 0.05) increased in manure soils as compared to control soils. NNRs were affected by pH 7 and temperature 30°C. Cd, Fe and Pb concentrations were classified as excessively polluted, moderate contamination and slight pollution, respectively, in the manure soils. NNRs and concentrations of Fe and Pb were significantly (p < 0.00) positive correlated, but Cu and Cd were significantly (p < 0.00) negative correlated with NNRs. Application of manure significantly (p < 0.05) increased HMCs (Fe, Cu, and Pb), which have indirect and direct effects on NNRs and nitrifying bacteria.

RevDate: 2021-02-02

DeLong EF (2020)

Exploring Marine Planktonic Archaea: Then and Now.

Frontiers in microbiology, 11:616086.

In 1977, Woese and Fox leveraged molecular phylogenetic analyses of ribosomal RNAs and identified a new microbial domain of life on Earth, the Archaebacteria (now known as Archaea). At the time of their discovery, only one archaebacterial group, the strictly anaerobic methanogens, was known. But soon, other phenotypically unrelated microbial isolates were shown to belong to the Archaea, many originating from extreme habitats, including extreme halophiles, extreme thermophiles, and thermoacidophiles. Since most Archaea seemed to inhabit extreme or strictly anoxic habitats, it came as a surprise in 1992 when two new lineages of archaea were reported to be abundant in oxygen rich, temperate marine coastal waters and the deep ocean. Since that time, studies of marine planktonic archaea have revealed many more surprises, including their unexpected ubiquity, unusual symbiotic associations, unpredicted physiologies and biogeochemistry, and global abundance. In this Perspective, early work conducted on marine planktonic Archaea by my lab group and others is discussed in terms of the relevant historical context, some of the original research motivations, and surprises and discoveries encountered along the way.

RevDate: 2021-01-27

Mueller RC, Peach JT, Skorupa DJ, et al (2021)

An emerging view of the diversity, ecology and function of Archaea in alkaline hydrothermal environments.

FEMS microbiology ecology, 97(2):.

The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi-omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.

RevDate: 2021-02-15

Tittes C, Schwarzer S, TEF Quax (2021)

Viral Hijack of Filamentous Surface Structures in Archaea and Bacteria.

Viruses, 13(2): pii:v13020164.

The bacterial and archaeal cell surface is decorated with filamentous surface structures that are used for different functions, such as motility, DNA exchange and biofilm formation. Viruses hijack these structures and use them to ride to the cell surface for successful entry. In this review, we describe currently known mechanisms for viral attachment, translocation, and entry via filamentous surface structures. We describe the different mechanisms used to exploit various surface structures bacterial and archaeal viruses. This overview highlights the importance of filamentous structures at the cell surface for entry of prokaryotic viruses.

RevDate: 2021-01-26

He C, Keren R, Whittaker ML, et al (2021)

Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems.

Nature microbiology [Epub ahead of print].

Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproducibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health.

RevDate: 2021-01-21

Lewis AM, Recalde A, Bräsen C, et al (2021)

The biology of thermoacidophilic archaea from the order Sulfolobales.

FEMS microbiology reviews pii:6105345 [Epub ahead of print].

Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered more than 50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further the probe novel features of these microbes, but have also paved the way for potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes, and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.

RevDate: 2021-01-20

Lyu Z (2021)

Back to the Source: Molecular Identification of Methanogenic Archaea as Markers of Colonic Methane Production.

RevDate: 2021-01-19

Kevorkian RT, Callahan S, Winstead R, et al (2021)

ANME-1 archaea may drive methane accumulation and removal in estuarine sediments.

Environmental microbiology reports [Epub ahead of print].

ANME-1 archaea subsist on the very low energy of anaerobic oxidation of methane (AOM). Most marine sediments shift from net AOM in the sulfate methane transition zone (SMTZ) to methanogenesis in the methane zone (MZ) below it. In White Oak River estuarine sediments, ANME-1 comprised 99.5% of 16S rRNA genes from amplicons and 100% of 16S rRNA genes from metagenomes of the Methanomicrobia in the SMTZ and 99.9% and 98.3%, respectively, in the MZ. Each of the 16 ANME-1 OTUs (97% similarity) had peaks in the SMTZ that coincided with peaks of putative sulfate-reducing bacteria Desulfatiglans sp. and SEEP-SRB1. In the MZ, ANME-1, but none of the putative sulfate-reducing bacteria or cultured methanogens, increased with depth. Our meta-analysis of public data showed only ANME-1 expressed methanogenic genes during both net AOM and net methanogenesis in an enrichment culture. We conclude that ANME-1 perform AOM in the SMTZ and methanogenesis in the MZ of White Oak River sediments. This metabolic flexibility may expand habitable zones in extraterrestrial environments, since it enables greater energy yields in a fluctuating energetic landscape.

RevDate: 2021-01-26

Garg SG, Kapust N, Lin W, et al (2021)

Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea.

Genome biology and evolution, 13(1):.

Metagenomic studies permit the exploration of microbial diversity in a defined habitat, and binning procedures enable phylogenomic analyses, taxon description, and even phenotypic characterizations in the absence of morphological evidence. Such lineages include asgard archaea, which were initially reported to represent archaea with eukaryotic cell complexity, although the first images of such an archaeon show simple cells with prokaryotic characteristics. However, these metagenome-assembled genomes (MAGs) might suffer from data quality problems not encountered in sequences from cultured organisms due to two common analytical procedures of bioinformatics: assembly of metagenomic sequences and binning of assembled sequences on the basis of innate sequence properties and abundance across samples. Consequently, genomic sequences of distantly related taxa, or domains, can in principle be assigned to the same MAG and result in chimeric sequences. The impacts of low-quality or chimeric MAGs on phylogenomic and metabolic prediction remain unknown. Debates that asgard archaeal data are contaminated with eukaryotic sequences are overshadowed by the lack of evidence indicating that individual asgard MAGs stem from the same chromosome. Here, we show that universal proteins including ribosomal proteins of asgard archaeal MAGs fail to meet the basic phylogenetic criterion fulfilled by genome sequences of cultured archaea investigated to date: These proteins do not share common evolutionary histories to the same extent as pure culture genomes do, pointing to a chimeric nature of asgard archaeal MAGs. Our analysis suggests that some asgard archaeal MAGs represent unnatural constructs, genome-like patchworks of genes resulting from assembly and/or the binning process.

RevDate: 2021-02-15

Tao R, Li J, Hu B, et al (2021)

Mitigating N2O emission by synthetic inhibitors mixed with urea and cattle manure application via inhibiting ammonia-oxidizing bacteria, but not archaea, in a calcareous soil.

Environmental pollution (Barking, Essex : 1987), 273:116478 pii:S0269-7491(21)00056-7 [Epub ahead of print].

Synthetic inhibitors and organic amendment have been proposed for mitigating greenhouse gas N2O emissions. However, their combined effect on the N2O emissions and ammonia-oxidizer (ammonia-oxidizing bacteria and archaea, AOB and AOA) communities remains unclear in calcareous soils under climate warming. We conducted two incubation experiments (25 and 35 °C) to examine how N2O emissions and AOA and AOB communities responded to organic amendment (urea plus cattle manure, UCM), and in combination with urease (N-(n-butyl) thiophosphoric triamide, NBPT) and nitrification inhibitor (nitrapyrin). The treatments of UCM + nitrapyrin and UCM + nitrapyrin + NBPT significantly lowered total N2O emissions by average 64.5 and 71.05% at 25 and 35 °C, respectively, compared with UCM treatment. AOB gene abundance and α-diversity (Chao1 and Shannon indices) were significantly increased by the application of urea and manure (P < 0.05). However, relative to UCM treatment, nitrapyrin addition treatments decreased AOB gene abundance and Chao 1 index by average 115.4 and 30.4% at 25 and 35 °C, respectively. PCA analysis showed that UCM or UCM plus nitrapyrin notably shifted AOB structure at both temperatures. However, fertilization had little effects on AOA community (P > 0.05). Potential nitrification rate (PNR) was greatly decreased by nitrapyrin addition, and PNR significantly positively correlated with AOB gene abundance (P = 0.0179 at 25 °C and P = 0.0029 at 35 °C) rather than AOA (P > 0.05). Structural equation model analysis showed that temperature directly increased AOA abundance but decrease AOB abundance, while fertilization indirectly influenced AOB community by altering soil NH4+, pH and SOC. In conclusion, the combined application of organic amendment, NBPT and nitrapyrin significantly lowered N2O emissions via reducing AOB community in calcareous soil even at high temperature. Our findings provide a solid theoretical basis in mitigating N2O emissions from calcareous soil under climate warming.

RevDate: 2021-01-16

Zhang JW, Dong HP, Hou LJ, et al (2021)

Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway.

The ISME journal [Epub ahead of print].

Asgard archaea are widely distributed in anaerobic environments. Previous studies revealed the potential capability of Asgard archaea to utilize various organic substrates including proteins, carbohydrates, fatty acids, amino acids and hydrocarbons, suggesting that Asgard archaea play an important role in sediment carbon cycling. Here, we describe a previously unrecognized archaeal phylum, Hermodarchaeota, affiliated with the Asgard superphylum. The genomes of these archaea were recovered from metagenomes generated from mangrove sediments, and were found to encode alkyl/benzyl-succinate synthases and their activating enzymes that are similar to those identified in alkane-degrading sulfate-reducing bacteria. Hermodarchaeota also encode enzymes potentially involved in alkyl-coenzyme A and benzoyl-coenzyme A oxidation, the Wood-Ljungdahl pathway and nitrate reduction. These results indicate that members of this phylum have the potential to strictly anaerobically degrade alkanes and aromatic compounds, coupling the reduction of nitrate. By screening Sequence Read Archive, additional genes encoding 16S rRNA and alkyl/benzyl-succinate synthases analogous to those in Hermodarchaeota were identified in metagenomic datasets from a wide range of marine and freshwater sediments. These findings suggest that Asgard archaea capable of degrading alkanes and aromatics via formation of alkyl/benzyl-substituted succinates are ubiquitous in sediments.

RevDate: 2021-01-16

Aldridge J, Carr S, Weber KA, et al (2021)

Anaerobic production of isoprene by engineered Methanosarcina spp. archaea.

Applied and environmental microbiology pii:AEM.02417-20 [Epub ahead of print].

Isoprene is a valuable petrochemical used for a wide variety of consumer goods such as adhesives and synthetic rubber. We were able to achieve high yield of renewable isoprene by taking advantage of the naturally high-flux mevalonate lipid synthesis pathway in anaerobic methane-producing archaea (methanogens). Our study illustrates that by genetically manipulating Methanosarcina spp. methanogens it is possible to create organisms that grow by producing the hemiterpene isoprene. Mass balance measurements show engineered methanogens direct up to 4% total carbon flux to isoprene, demonstrating methanogens produce higher isoprene yields than engineered yeast, bacteria, or cyanobacteria from inexpensive feedstocks. Expression of isoprene synthase resulted in increased biomass and changes in gene expression that indicate isoprene synthesis depletes membrane precursors and redirects electron flux enabling isoprene to be a major metabolic product. Our results demonstrate methanogens are a promising engineering chassis for renewable isoprene synthesis.IMPORTANCE A significant barrier to implementing renewable chemical technologies is high production costs versus petroleum-derived products. Existing technologies using engineered organisms have difficulty competing with petroleum-derived chemicals due to the cost of feedstocks (such as glucose), product extraction, and purification. The hemiterpene monomer isoprene is one such chemical that cannot currently be produced using cost-competitive renewable biotechnologies. To reduce the cost of renewable isoprene, we have engineered methanogens to synthesize it from inexpensive feedstocks such as methane, methanol, acetate, and carbon dioxide. The "isoprenogen" strains we developed have potential to be used for industrial production of inexpensive renewable isoprene.

RevDate: 2021-02-02
CmpDate: 2021-02-02

Yang Y, Herbold CW, Jung MY, et al (2021)

Survival strategies of ammonia-oxidizing archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration.

Water research, 191:116798.

Recent studies indicate that ammonia-oxidizing archaea (AOA) may play an important role in nitrogen removal by wastewater treatment plants (WWTPs). However, our knowledge of the mechanisms employed by AOA for growth and survival in full-scale WWTPs is still limited. Here, metagenomic and metatranscriptomic analyses combined with a laboratory cultivation experiment revealed that three active AOAs (WS9, WS192, and WS208) belonging to family Nitrososphaeraceae were active in the deep oxidation ditch (DOD) of a full-scale WWTP treating landfill leachate, which is configured with three continuous aerobic-anoxic (OA) modules with low-intensity aeration (≤ 1.5 mg/L). AOA coexisted with AOB and complete ammonia oxidizers (Comammox), while the ammonia-oxidizing microbial (AOM) community was unexpectedly dominated by the novel AOA strain WS9. The low aeration, long retention time, and relatively high inputs of ammonium and copper might be responsible for the survival of AOA over AOB and Comammox, while the dominance of WS9, specifically may be enhanced by substrate preference and uniquely encoded retention strategies. The urease-negative WS9 is specifically adapted for ammonia acquisition as evidenced by the high expression of an ammonium transporter, whereas two metabolically versatile urease-positive AOA strains (WS192 and WS208) can likely supplement ammonia needs with urea. This study provides important information for the survival and application of the eutrophic Nitrososphaeraceae AOA and advances our understanding of archaea-dominated ammonia oxidation in a full-scale wastewater treatment system.

RevDate: 2021-01-12

Knüppel R, Trahan C, Kern M, et al (2021)

Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea.

Nucleic acids research pii:6090297 [Epub ahead of print].

Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.

RevDate: 2021-01-12

Wang YF, Gu JD, Dick RP, et al (2021)

Distribution of ammonia-oxidizing archaea and bacteria along an engineered coastal ecosystem in subtropical China.

Ecotoxicology (London, England) [Epub ahead of print].

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers.

RevDate: 2021-02-11
CmpDate: 2021-02-11

Zheng T, Li W, Ma Y, et al (2021)

Time-based succession existed in rural sewer biofilms: Bacterial communities, sulfate-reducing bacteria and methanogenic archaea, and sulfide and methane generation.

The Science of the total environment, 765:144397.

Rural sewers are applied widely to collect rural sewage and biofilm characteristics in rural sewers may be different with municipal sewers. The succession of bacteria communities, sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) need to be studied since rural sewers have a potential risk of sulfide and methane accumulation. In this study, lab-scale rural sewer facilities were established to analyze the characteristics of sewer biofilm and the generation of sulfide and methane. The results indicate that the variation tendency of biofilm thickness in rural sewers was different with municipal sewers. Time-based bacterial succession existed in rural sewer biofilms and the predominant genus was changed from Acinetobacter (approximately 19.10%) to Pseudomonas (approximately 12.61%). SRB (mean 1.49 × 106dsrA copies/cm2) were abundant than MA (mean 2.57 × 105mcrA copies/cm2) while MA were eliminated gradually in rural sewer biofilms. The tendency of sulfide and methane generation was similar with the number variation of SRB and MA, indicating sulfide accumulation might be more serious trouble than methane accumulation in a long-run rural sewer. Overall, this study deeply analyzed the succession of rural sewer biofilms and found that MA and methane were automatically inhibited in rural sewers.

RevDate: 2021-01-17

Laursen SP, Bowerman S, K Luger (2020)

Archaea: The Final Frontier of Chromatin.

Journal of molecular biology pii:S0022-2836(20)30716-6 [Epub ahead of print].

The three domains of life employ various strategies to organize their genomes. Archaea utilize features similar to those found in both eukaryotic and bacterial chromatin to organize their DNA. In this review, we discuss the current state of research regarding the structure-function relationships of several archaeal chromatin proteins (histones, Alba, Cren7, and Sul7d). We address individual structures as well as inferred models for higher-order chromatin formation. Each protein introduces a unique phenotype to chromatin organization, and these structures are put into the context of in vivo and in vitro data. We close by discussing the present gaps in knowledge that are preventing further studies of the organization of archaeal chromatin, on both the organismal and domain level.

RevDate: 2020-12-22

Kuprat T, Johnsen U, Ortjohann M, et al (2020)

Acetate Metabolism in Archaea: Characterization of an Acetate Transporter and of Enzymes Involved in Acetate Activation and Gluconeogenesis in Haloferax volcanii.

Frontiers in microbiology, 11:604926.

The haloarchaeon Haloferax volcanii grows on acetate as sole carbon and energy source. The genes and proteins involved in uptake and activation of acetate and in gluconeogenesis were identified and analyzed by characterization of enzymes and by growth experiments with the respective deletion mutants. (i) An acetate transporter of the sodium: solute-symporter family (SSF) was characterized by kinetic analyses of acetate uptake into H. volcanii cells. The functional involvement of the transporter was proven with a Δssf mutant. (ii) Four paralogous AMP-forming acetyl-CoA synthetases that belong to different phylogenetic clades were shown to be functionally involved in acetate activation. (iii) The essential involvement of the glyoxylate cycle as an anaplerotic sequence was concluded from growth experiments with an isocitrate lyase knock-out mutant excluding the operation of the methylaspartate cycle reported for Haloarcula species. (iv) Enzymes involved in phosphoenolpyruvate synthesis from acetate, namely two malic enzymes and a phosphoenolpyruvate synthetase, were identified and characterized. Phylogenetic analyses of haloarchaeal malic enzymes indicate a separate evolutionary line distinct from other archaeal homologs. The exclusive function of phosphoenolpyruvate synthetase in gluconeogenesis was proven by the respective knock-out mutant. Together, this is a comprehensive study of acetate metabolism in archaea.

RevDate: 2020-12-18

Skretas G, S Ventura (2020)

Editorial: Protein Aggregation and Solubility in Microorganisms (Archaea, Bacteria and Unicellular Eukaryotes): Implications and Applications.

Frontiers in microbiology, 11:620239.

RevDate: 2020-12-18

Schwarz TS, Berkemer SJ, Bernhart SH, et al (2020)

Splicing Endonuclease Is an Important Player in rRNA and tRNA Maturation in Archaea.

Frontiers in microbiology, 11:594838.

In all three domains of life, tRNA genes contain introns that must be removed to yield functional tRNA. In archaea and eukarya, the first step of this process is catalyzed by a splicing endonuclease. The consensus structure recognized by the splicing endonuclease is a bulge-helix-bulge (BHB) motif which is also found in rRNA precursors. So far, a systematic analysis to identify all biological substrates of the splicing endonuclease has not been carried out. In this study, we employed CRISPRi to repress expression of the splicing endonuclease in the archaeon Haloferax volcanii to identify all substrates of this enzyme. Expression of the splicing endonuclease was reduced to 1% of its normal level, resulting in a significant extension of lag phase in H. volcanii growth. In the repression strain, 41 genes were down-regulated and 102 were up-regulated. As an additional approach in identifying new substrates of the splicing endonuclease, we isolated and sequenced circular RNAs, which identified excised introns removed from tRNA and rRNA precursors as well as from the 5' UTR of the gene HVO_1309. In vitro processing assays showed that the BHB sites in the 5' UTR of HVO_1309 and in a 16S rRNA-like precursor are processed by the recombinant splicing endonuclease. The splicing endonuclease is therefore an important player in RNA maturation in archaea.

RevDate: 2021-02-15

Distaso MA, Bargiela R, Brailsford FL, et al (2020)

High Representation of Archaea Across All Depths in Oxic and Low-pH Sediment Layers Underlying an Acidic Stream.

Frontiers in microbiology, 11:576520.

Parys Mountain or Mynydd Parys (Isle of Anglesey, United Kingdom) is a mine-impacted environment, which accommodates a variety of acidophilic organisms. Our previous research of water and sediments from one of the surface acidic streams showed a high proportion of archaea in the total microbial community. To understand the spatial distribution of archaea, we sampled cores (0-20 cm) of sediment and conducted chemical analyses and taxonomic profiling of microbiomes using 16S rRNA gene amplicon sequencing in different core layers. The taxonomic affiliation of sequencing reads indicated that archaea represented between 6.2 and 54% of the microbial community at all sediment depths. Majority of archaea were associated with the order Thermoplasmatales, with the most abundant group of sequences being clustered closely with the phylotype B_DKE, followed by "E-plasma," "A-plasma," other yet uncultured Thermoplasmatales with Ferroplasma and Cuniculiplasma spp. represented in minor proportions. Thermoplasmatales were found at all depths and in the whole range of chemical conditions with their abundance correlating with sediment Fe, As, Cr, and Mn contents. The bacterial microbiome component was largely composed in all layers of sediment by members of the phyla Proteobacteria, Actinobacteria, Nitrospirae, Firmicutes, uncultured Chloroflexi (AD3 group), and Acidobacteria. This study has revealed a high abundance of Thermoplasmatales in acid mine drainage-affected sediment layers and pointed at these organisms being the main contributors to carbon, and probably to iron and sulfur cycles in this ecosystem.

RevDate: 2021-01-05

Stein LY, Klotz MG, Lancaster KM, et al (2021)

Comment on"A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea" by Lan Wu, Xueming Chen, Wei Wei, Yiwen Liu, Dongbo Wang, and Bing-Jie Ni.

Environmental science & technology, 55(1):797-798.

RevDate: 2021-01-05

Wu L, Wei W, BJ Ni (2021)

Response to Comment on "A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea".

Environmental science & technology, 55(1):799-800.

RevDate: 2021-02-15

Thomès L, A Lescure (2021)

Mosaic Evolution of the Phosphopantothenate Biosynthesis Pathway in Bacteria and Archaea.

Genome biology and evolution, 13(2):.

Phosphopantothenate is a precursor to synthesis of coenzyme A, a molecule essential to many metabolic pathways. Organisms of the archaeal phyla were shown to utilize a different phosphopantothenate biosynthetic pathway from the eukaryotic and bacterial one. In this study, we report that symbiotic bacteria from the group Candidatus poribacteria present enzymes of the archaeal pathway, namely pantoate kinase and phosphopantothenate synthetase, mirroring what was demonstrated for Picrophilus torridus, an archaea partially utilizing the bacterial pathway. Our results not only support the ancient origin of the coenzyme A pathway in the three domains of life but also highlight its complex and dynamic evolution. Importantly, this study helps to improve protein annotation for this pathway in the C. poribacteria group and other related organisms.

RevDate: 2021-01-06
CmpDate: 2021-01-06

Ding J, RJ Zeng (2021)

Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea.

The Science of the total environment, 757:143928.

Many properties of denitrifying anaerobic methane oxidation (DAMO) bacteria have been explored since their first discovery, while DAMO archaea have attracted less attention. Since nitrate is more abundant than nitrite not only in wastewater but also in the natural environment, in depth investigations of the nitrate-DAMO process should be conducted to determine its environmental significance in the global carbon and nitrogen cycles. This review summarizes the status of research on DAMO archaea and the catalyzed nitrate-dependent anaerobic methane oxidation, including such aspects as laboratory enrichment, environmental distribution, and metabolic mechanism. It is shown that appropriate inocula and enrichment parameters are important for the culture enrichment and thus the subsequent DAMO activity, but there are still relatively few studies on the environmental distribution and physiological metabolism of DAMO archaea. Finally, some hypotheses and directions for future research on DAMO archaea, anaerobic methanotrophic archaea, and even anaerobically metabolizing archaea are also discussed.

RevDate: 2021-02-10
CmpDate: 2021-02-10

Stevens KM, Swadling JB, Hocher A, et al (2020)

Histone variants in archaea and the evolution of combinatorial chromatin complexity.

Proceedings of the National Academy of Sciences of the United States of America, 117(52):33384-33395.

Nucleosomes in eukaryotes act as platforms for the dynamic integration of epigenetic information. Posttranslational modifications are reversibly added or removed and core histones exchanged for paralogous variants, in concert with changing demands on transcription and genome accessibility. Histones are also common in archaea. Their role in genome regulation, however, and the capacity of individual paralogs to assemble into histone-DNA complexes with distinct properties remain poorly understood. Here, we combine structural modeling with phylogenetic analysis to shed light on archaeal histone paralogs, their evolutionary history, and capacity to generate combinatorial chromatin states through hetero-oligomeric assembly. Focusing on the human commensal Methanosphaera stadtmanae as a model archaeal system, we show that the heteromeric complexes that can be assembled from its seven histone paralogs vary substantially in DNA binding affinity and tetramer stability. Using molecular dynamics simulations, we go on to identify unique paralogs in M. stadtmanae and Methanobrevibacter smithii that are characterized by unstable interfaces between dimers. We propose that these paralogs act as capstones that prevent stable tetramer formation and extension into longer oligomers characteristic of model archaeal histones. Importantly, we provide evidence from phylogeny and genome architecture that these capstones, as well as other paralogs in the Methanobacteriales, have been maintained for hundreds of millions of years following ancient duplication events. Taken together, our findings indicate that at least some archaeal histone paralogs have evolved to play distinct and conserved functional roles, reminiscent of eukaryotic histone variants. We conclude that combinatorially complex histone-based chromatin is not restricted to eukaryotes and likely predates their emergence.

RevDate: 2020-12-08

Pallen MJ, Telatin A, A Oren (2020)

The Next Million Names for Archaea and Bacteria.

Trends in microbiology pii:S0966-842X(20)30271-7 [Epub ahead of print].

Latin binomials, popularised in the 18th century by the Swedish naturalist Linnaeus, have stood the test of time in providing a stable, clear, and memorable system of nomenclature across biology. However, relentless and ever-deeper exploration and analysis of the microbial world has created an urgent need for huge numbers of new names for Archaea and Bacteria. Manual creation of such names remains difficult and slow and typically relies on expert-driven nomenclatural quality control. Keen to ensure that the legacy of Linnaeus lives on in the age of microbial genomics and metagenomics, we propose an automated approach, employing combinatorial concatenation of roots from Latin and Greek to create linguistically correct names for genera and species that can be used off the shelf as needed. As proof of principle, we document over a million new names for Bacteria and Archaea. We are confident that our approach provides a road map for how to create new names for decades to come.

RevDate: 2021-01-29

Urbonavičius J, D Tauraitė (2020)

Biochemical Pathways Leading to the Formation of Wyosine Derivatives in tRNA of Archaea.

Biomolecules, 10(12):.

Tricyclic wyosine derivatives are present at position 37 in tRNAPhe of both eukaryotes and archaea. In eukaryotes, five different enzymes are needed to form a final product, wybutosine (yW). In archaea, 4-demethylwyosine (imG-14) is an intermediate for the formation of three different wyosine derivatives, yW-72, imG, and mimG. In this review, current knowledge regarding the archaeal enzymes involved in this process and their reaction mechanisms are summarized. The experiments aimed to elucidate missing steps in biosynthesis pathways leading to the formation of wyosine derivatives are suggested. In addition, the chemical synthesis pathways of archaeal wyosine nucleosides are discussed, and the scheme for the formation of yW-86 and yW-72 is proposed. Recent data demonstrating that wyosine derivatives are present in the other tRNA species than those specific for phenylalanine are discussed.

RevDate: 2021-02-15

More KD, Wuchter C, Irigoien X, et al (2021)

Subseafloor Archaea reflect 139 kyrs of paleodepositional changes in the northern Red Sea.

Geobiology, 19(2):162-172.

The vertical distribution of subseafloor archaeal communities is thought to be primarily controlled by in situ conditions in sediments such as the availability of electron acceptors and donors, although sharp community shifts have also been observed at lithological boundaries suggesting that at least a subset of vertically stratified Archaea form a long-term genetic record of coinciding environmental conditions that occurred at the time of sediment deposition. To substantiate this possibility, we performed a highly resolved 16S rRNA gene survey of vertically stratified archaeal communities paired with paleo-oceanographic proxies in a sedimentary record from the northern Red Sea spanning the last glacial-interglacial cycle (i.e., marine isotope stages 1-6; MIS1-6). Our results show a strong significant correlation between subseafloor archaeal communities and drastic paleodepositional changes associated with glacial low vs. interglacial high stands (ANOSIM; R = .73; p = .001) and only a moderately strong correlation with lithological changes. Bathyarchaeota, Lokiarchaeota, MBGA, and DHVEG-1 were the most abundant identified archaeal groups. Whether they represented ancient cell lines from the time of deposition or migrated to the specific sedimentary horizons after deposition remains speculative. However, we show that the majority of sedimentary archaeal tetraether membrane lipids were of allochthonous origin and not produced in situ. Slow post-burial growth under energy-limited conditions would explain why the downcore distribution of these dominant archaeal groups still indirectly reflect changes in the paleodepositional environment that prevailed during the analyzed marine isotope stages. In addition, archaea seeded from the overlying water column such as Thaumarchaeota and group II and III Euryarchaeota, which were likely not have been able to subsist after burial, were identified from a lower abundance of preserved sedimentary DNA signatures, and represented direct markers of paleoenvironmental changes in the Red Sea spanning the last six marine isotope stages.

RevDate: 2020-12-04

Kumar V, Behl A, Shoaib R, et al (2020)

Comparative structural insight into prefoldin subunints of archaea and eukaryotes with special emphasis on unexplored prefoldin of Plasmodium falciparum.

Journal of biomolecular structure & dynamics [Epub ahead of print].

Prefoldin (PFD) is a heterohexameric molecular chaperone which bind unfolded proteins and subsequently deliver them to a group II chaperonin for correct folding. Although there is structural and functional information available for humans and archaea PFDs, their existence and functions in malaria parasite remains uncharacterized. In the present review, we have collected the available information on prefoldin family members of archaea and humans and attempted to analyze unexplored PFD subunits of Plasmodium falciparum (Pf). Our review enhances the understanding of probable functions, structure and mechanism of substrate binding of Pf prefoldin by comparing with the available information of its homologs in archaea and H. sapiens. Three PfPFD out of six and a Pf prefoldin-like protein are reported to be essential for parasite survival that signifies their importance in malaria parasite biology. Transcriptome analyses suggest that PfPFD subunits are up-regulated at the mRNA level during asexual and sexual stages of parasite life cycle. Our in silico analysis suggested several pivotal proteins like myosin E, cytoskeletal protein (tubulin), merozoite surface protein and ring exported protein 3 as their interacting partners. Based on structural information of archaeal and H. sapiens PFDs, P. falciparum counterparts have been modelled and key interface residues were identified that are critical for oligomerization of PfPFD subunits. We collated information on PFD-substrate binding and PFD-chaperonin interaction in detail to understand the mechanism of substrate delivery in archaea and humans. Overall, our review enables readers to view the PFD family comprehensively. Communicated by Ramaswamy H. Sarma Abbreviations: HSP: Heat shock proteins; CCT: Chaperonin containing TCP-1; PFD: Prefoldin; PFLP: Prefoldin like protein; PfPFD: Plasmodium falciparum prefoldin; Pf: Plasmodium falciparum; H. sapiens: Homo sapiens; M. thermoautotrophicus: Methanobacterium thermoautotrophicus; P. horikoshii: Pyrococcus horikoshii.

RevDate: 2021-01-25

Pfeifer K, Ergal İ, Koller M, et al (2020)

Archaea Biotechnology.

Biotechnology advances pii:S0734-9750(20)30170-1 [Epub ahead of print].

Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.

RevDate: 2020-12-03

Cai Y, Zheng Z, X Wang (2021)

Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion.

Journal of hazardous materials, 403:123938.

Anaerobic digestion (AD) is used to treat waste and produce bioenergy. However, toxicants, which originate from the substrate, can inhibit or damage the digestion process. Methanogenic archaea (MA), which are the executor in the methanogenesis stage, are more sensitive than bacteria to these toxicants. This review discusses the effects of substrate-driven toxicants, namely, antibiotics, H2S and sulfate, heavy metals (HMs), long-chain fatty acids (LCFAs), and ammonia nitrogen, on the activity of MAs, methanogenic pathways, and the inter-genus succession of MAs. The adverse effects of these five toxicants on MA include effects on pH, damages to cell membranes, the prevention of protein synthesis, changes in hydrogen partial pressure, a reduction in the bioavailability of trace elements, and hindrance of mass transfer. These effects cause a reduction in MA activity and the succession of MAs and methanogenic pathways, which affect AD performance. Under the stress of these toxicants, succession occurs among HA (hydrogenotrophic methanogen), AA (acetoclastic methanogen), and MM (methylotrophic methanogen), especially HA gradually replaces AA as the dominant MA. Simultaneously, the dominant methanogenic pathway also changes from the aceticlastic pathway to other methanogenic pathways. A comprehensive understanding of the impact of toxicants on MA permits more specific targeting when developing strategies to mitigate or eliminate the effects of these toxicants.

RevDate: 2020-12-15

Wilkens D, Meusinger R, Hein S, et al (2020)

Sequence analysis and specificity of distinct types of menaquinone methyltransferases indicate the widespread potential of methylmenaquinone production in bacteria and archaea.

Environmental microbiology [Epub ahead of print].

Menaquinone (MK) serves as an essential membranous redox mediator in various electron transport chains of aerobic and anaerobic respiration. In addition, the composition of the quinone/quinol pool has been widely used as a biomarker in microbial taxonomy. The HemN-like class C radical SAM methyltransferases (RSMTs) MqnK, MenK and MenK2 have recently been shown to facilitate specific menaquinone methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesize 8-methylmenaquinone, 7-methylmenaquinone and 7,8-dimethylmenaquinone. However, the vast majority of protein sequences from the MqnK/MenK/MenK2 family belong to organisms, whose capacity to produce methylated menaquinones has not been investigated biochemically. Here, representative putative menK and menK2 genes from Collinsella tanakaei and Ferrimonas marina were individually expressed in Escherichia coli (wild-type or ubiE deletion mutant) and the corresponding cells were found to produce methylated derivatives of the endogenous MK and 2-demethylmenaquinone. Cluster and phylogenetic analyses of 828 (methyl)menaquinone methyltransferase sequences revealed signature motifs that allowed to discriminate enzymes of the MqnK/MenK/MenK2 family from other radical SAM enzymes and to identify C-7-specific menaquinone methyltransferases of the MenK2 subfamily. This study will help to predict the methylation status of the quinone/quinol pool of a microbial species (or even a microbial community) from its (meta)genome and contribute to the future design of microbial quinone/quinol pools in a Synthetic Biology approach.

RevDate: 2021-02-11

Lahme S, Mand J, Longwell J, et al (2021)

Severe Corrosion of Carbon Steel in Oil Field Produced Water Can Be Linked to Methanogenic Archaea Containing a Special Type of [NiFe] Hydrogenase.

Applied and environmental microbiology, 87(3):.

Methanogenic archaea have long been implicated in microbially influenced corrosion (MIC) of oil and gas infrastructure, yet a first understanding of the underlying molecular mechanisms has only recently emerged. We surveyed pipeline-associated microbiomes from geographically distinct oil field facilities and found methanogens to account for 0.2 to 9.3% of the 16S rRNA gene sequencing reads. Neither the type nor the abundance of the detected methanogens was correlated with the perceived severity of MIC in these pipelines. Using fluids from one pipeline, MIC was reproduced in the laboratory, both under stagnant conditions and in customized corrosion reactors simulating pipeline flow. High corrosion rates (up to 2.43 mm Fe0 · yr-1) with macroscopic, localized corrosion features were attributed to lithotrophic, mesophilic microbial activity. Other laboratory tests with the same waters yielded negligible corrosion rates (<0.08 mm Fe0 · yr-1). Recently, a novel [NiFe] hydrogenase from Methanococcus maripaludis strain OS7 was demonstrated to accelerate corrosion. We developed a specific quantitative PCR (qPCR) assay and detected the gene encoding the large subunit of this hydrogenase (labeled micH) in corrosive (>0.15 mm Fe0 · yr-1) biofilms. The micH gene, on the other hand, was absent in noncorrosive biofilms, despite an abundance of methanogens. Reconstruction of a nearly complete Methanococcus maripaludis genome from a highly corrosive mixed biofilm revealed micH and associated genes in nearly identical genetic configuration to that in strain OS7, thereby supporting our hypothesis that the encoded molecular mechanism contributed to corrosion. Lastly, the proposed MIC biomarker was detected in multiple oil fields, indicating a geographically widespread involvement of this [NiFe] hydrogenase in MIC.IMPORTANCE Microorganisms can deteriorate built environments, which is particularly problematic in the case of pipelines transporting hydrocarbons to industrial end users. MIC is notoriously difficult to detect and monitor and, as a consequence, is a particularly difficult corrosion mechanism to manage. Despite the advent of molecular tools and improved microbial monitoring strategies for oil and gas operations, specific underlying MIC mechanisms in pipelines remain largely enigmatic. Emerging mechanistic understanding of methanogenic MIC derived from pure culture work allowed us to develop a qPCR assay that distinguishes technically problematic from benign methanogens in a West African oil field. Detection of the same gene in geographically diverse samples from North America hints at the widespread applicability of this assay. The research presented here offers a step toward a mechanistic understanding of biocorrosion in oil fields and introduces a binary marker for (methanogenic) MIC that can find application in corrosion management programs in industrial settings.

RevDate: 2020-12-16

Kasirajan L, JA Maupin-Furlow (2020)

Halophilic archaea and their potential to generate renewable fuels and chemicals.

Biotechnology and bioengineering [Epub ahead of print].

Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.

RevDate: 2021-01-05
CmpDate: 2021-01-05

Euler S, Jeffrey LC, Maher DT, et al (2020)

Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient.

PloS one, 15(11):e0242339.

In coastal aquatic ecosystems, prokaryotic communities play an important role in regulating the cycling of nutrients and greenhouse gases. In the coastal zone, estuaries are complex and delicately balanced systems containing a multitude of specific ecological niches for resident microbes. Anthropogenic influences (i.e. urban, industrial and agricultural land uses) along the estuarine continuum can invoke physical and biochemical changes that impact these niches. In this study, we investigate the relative abundance of methanogenic archaea and other prokaryotic communities, distributed along a land use gradient in the subtropical Burnett River Estuary, situated within the Great Barrier Reef catchment, Australia. Microbiological assemblages were compared to physicochemical, nutrient and greenhouse gas distributions in both pore and surface water. Pore water samples from within the most urbanised site showed a high relative abundance of methanogenic Euryarchaeota (7.8% of all detected prokaryotes), which coincided with elevated methane concentrations in the water column, ranging from 0.51 to 0.68 μM at the urban and sewage treatment plant (STP) sites, respectively. These sites also featured elevated dissolved organic carbon (DOC) concentrations (0.66 to 1.16 mM), potentially fuelling methanogenesis. At the upstream freshwater site, both methane and DOC concentrations were considerably higher (2.68 μM and 1.8 mM respectively) than at the estuarine sites (0.02 to 0.66 μM and 0.39 to 1.16 mM respectively) and corresponded to the highest relative abundance of methanotrophic bacteria. The proportion of sulfate reducing bacteria in the prokaryotic community was elevated within the urban and STP sites (relative abundances of 8.0%- 10.5%), consistent with electron acceptors with higher redox potentials (e.g. O2, NO3-) being scarce. Overall, this study showed that ecological niches in anthropogenically altered environments appear to give an advantage to specialized prokaryotes invoking a potential change in the thermodynamic landscape of the ecosystem and in turn facilitating the generation of methane-a potent greenhouse gas.

RevDate: 2021-01-25
CmpDate: 2021-01-25

Amin FR, Khalid H, El-Mashad HM, et al (2021)

Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production.

The Science of the total environment, 763:143007.

Anaerobic digestion (AD) is a widely applied technology for treating organic wastes to generate renewable energy in the form of biogas. The effectiveness of AD process depends on many factors, among which the most important is the presence of active and healthy microbial community in the anaerobic digesters, which needs to be explored. However, the deciphering of microbial populations and their functions during the AD process of different materials is still incomplete, which restricts the understanding of its long-term performance under different operational conditions. This review describes the type, morphology, functions, and specific growth conditions of commonly found hydrolytic, acidogenic, acetogenic bacteria, and archaea during the AD process. The effects of microbes on the performance and stability of the digestion process are also presented. Furthermore, the article offers a deep understanding of the AD management strategies for the enhancement of methane production and the efficiency of the energy conversion process of various organic wastes.

RevDate: 2020-12-04

Diaz PI (2021)

Subgingival fungi, Archaea, and viruses under the omics loupe.

Periodontology 2000, 85(1):82-89.

The microbial communities that inhabit the gingival crevice are responsible for the pathological processes that affect the periodontium. The changes in composition and function of subgingival bacteria as disease develops have been extensively studied. Subgingival communities, however, also contain fungi, Archaea, and viruses, which could contribute to the dysbiotic processes associated with periodontal diseases. High-throughput DNA sequencing has facilitated a better understanding of the mycobiome, archaeome, and virome. However, the number of studies available on the nonbacterial components of the subgingival microbiome remains limited in comparison with publications focusing on bacteria. Difficulties in characterizing fungal, archaeal, and viral populations arise from the small portion of the total metagenome mass they occupy and lack of comprehensive reference genome databases. In addition, specialized approaches potentially introducing bias are required to enrich for viral particles, while harsh methods of cell lysis are needed to recover nuclei acids from certain fungi. While the characterization of the subgingival diversity of fungi, Archaea and viruses is incomplete, emerging evidence suggests that they could contribute in different ways to subgingival dysbiosis. Certain fungi, such as Candida albicans are suggested to facilitate colonization of bacterial pathogens. Methanogenic Archaea are associated with periodontitis severity and are thought to partner synergistically with bacterial fermenters, while viruses may affect immune responses or shape microbial communities in ways incompletely understood. This review describes the manner in which omics approaches have improved our understanding of the diversity of fungi, Archaea, and viruses within subgingival communities. Further characterization of these understudied components of the subgingival microbiome is required, together with mechanistic studies to unravel their ecological role and potential contributions to dysbiosis.

RevDate: 2021-01-12
CmpDate: 2021-01-12

Cai M, Richter-Heitmann T, Yin X, et al (2021)

Ecological features and global distribution of Asgard archaea.

The Science of the total environment, 758:143581.

Asgard is a newly proposed archaeal superphylum, which has been suggested to hold the key to decipher the origin of Eukaryotes. However, their ecology remains largely unknown. Here, we conducted a meta-analysis of publicly available Asgard-associated 16S rRNA gene fragments, and found that just three previously proposed clades (Lokiarchaeota, Thorarchaeota, and Asgard clade 4) are widely distributed, whereas the other seven clades (phylum or class level) are restricted to the sediment biosphere. Asgard archaea, especially Loki- and Thorarchaeota, seem to adapt to marine sediments, and water depth (the depth of the sediment below water surface) and salinity might be crucial factors for the proportion of these microorganisms as revealed by multivariate regression analyses. However, the abundance of Asgard archaea exhibited distinct environmental drivers at the clade-level; for instance, the proportion of Asgard clade 4 was higher in less saline environments (salinity <6.35 psu), while higher for Heimdallarchaeota-AAG and Asgard clade 2 in more saline environment (salinity ≥35 psu). Furthermore, co-occurrence analysis allowed us to find a significant non-random association of different Asgard clades with other groups (e.g., Lokiarchaeota with Deltaproteobacteria and Anaerolineae; Odinarchaeota with Bathyarchaeota), suggesting different interaction potentials among these clades. Overall, these findings reveal Asgard archaea as a ubiquitous group worldwide and provide initial insights into their ecological features on a global scale.

RevDate: 2020-12-01

Diene SM, Pinault L, Armstrong N, et al (2020)

Dual RNase and β-lactamase Activity of a Single Enzyme Encoded in Archaea.

Life (Basel, Switzerland), 10(11):.

β-lactam antibiotics have a well-known activity which disturbs the bacterial cell wall biosynthesis and may be cleaved by β-lactamases. However, these drugs are not active on archaea microorganisms, which are naturally resistant because of the lack of β-lactam target in their cell wall. Here, we describe that annotation of genes as β-lactamases in Archaea on the basis of homologous genes is a remnant of identification of the original activities of this group of enzymes, which in fact have multiple functions, including nuclease, ribonuclease, β-lactamase, or glyoxalase, which may specialized over time. We expressed class B β-lactamase enzyme from Methanosarcina barkeri that digest penicillin G. Moreover, while weak glyoxalase activity was detected, a significant ribonuclease activity on bacterial and synthetic RNAs was demonstrated. The β-lactamase activity was inhibited by β-lactamase inhibitor (sulbactam), but its RNAse activity was not. This gene appears to have been transferred to the Flavobacteriaceae group especially the Elizabethkingia genus, in which the expressed gene shows a more specialized activity on thienamycin, but no glyoxalase activity. The expressed class C-like β-lactamase gene, from Methanosarcina sp., also shows hydrolysis activity on nitrocefin and is more closely related to DD-peptidase enzymes. Our findings highlight the need to redefine the nomenclature of β-lactamase enzymes and the specification of multipotent enzymes in different ways in Archaea and bacteria over time.

RevDate: 2020-11-17

Wang H, Bier R, Zgleszewski L, et al (2020)

Distinct Distribution of Archaea From Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments.

Frontiers in microbiology, 11:576661.

In addition to inhabiting extreme territories, Archaea are widely distributed in common environments spanning from terrestrial to aquatic environments. This study investigated and compared archaeal community structures from three different habitats (representing distinct environments): agriculture soils (from farming system trials FST, PA, United States), freshwater biofilms (from White Clay Creek, PA, United States), and estuary water (Chesapeake Bay, United States). High-throughput sequencing of 16S rRNA genes indicated that Thaumarchaeota, Euryarchaeota, Nanoarchaeota, Crenarchaeota, and Diapherotrites were the commonly found dominant phyla across these three environments. Similar to Bacteria, distinct community structure and distribution patterns for Archaea were observed in soils vs. freshwater vs. estuary. However, the abundance, richness, evenness, and diversity of archaeal communities were significantly greater in soils than it was in freshwater and estuarine environments. Indicator species (or amplicon sequence variants, ASVs) were identified from different nitrogen and carbon cycling archaeal groups in soils (Nitrososphaerales, Nitrosotaleales, Nitrosopumilales, Methanomassiliicoccales, Lainarchaeales), freshwater biofilms (Methanobacteria, Nitrososphaerales) and Chesapeake Bay (Marine Group II, Nitrosopumilales), suggesting the habitat-specificity of their biogeochemical contributions to different environments. Distinct functional aspects of Archaea were also confirmed by functional predictions (PICRUSt2 analysis). Further, co-occurrence network analysis indicated that only soil Archaea formed stable modules. Keystone species (ASVs) were identified mainly from Methanomassiliicoccales, Nitrososphaerales, Nitrosopumilales. Overall, these results indicate a strong habitat-dependent distribution of Archaea and their functional partitions within the local environments.

RevDate: 2020-12-30

Murray AE, Freudenstein J, Gribaldo S, et al (2021)

Author Correction: Roadmap for naming uncultivated Archaea and Bacteria.

Nature microbiology, 6(1):136.

RevDate: 2021-02-05

Zink IA, Wimmer E, C Schleper (2020)

Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales.

Biomolecules, 10(11):.

Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.

RevDate: 2020-11-10

Dong L, Gao Y, Guo H, et al (2020)

Pretreatments of Broussonetia papyrifera: In vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile.

Asian-Australasian journal of animal sciences pii:ajas.20.0503 [Epub ahead of print].

Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of the rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment.

Methods: Fresh B. papyrifera was collected and pretreated by ensiling or steam explosion, which was then fermented with ruminal fluids as ensiled B. papyrifera (BPS) group, steam-exploded B. papyrifera (BP-SE) group, and untreated B. papyrifera (BP) group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation.

Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production.

Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to the sustainable livestock production systems.

RevDate: 2021-01-29

Kajale S, Jani K, A Sharma (2021)

Contribution of archaea and bacteria in sustaining climate change by oxidizing ammonia and sulfur in an Arctic Fjord.

Genomics, 113(1 Pt 2):1272-1276.

The present study attempts to investigate the microbial communities and their potential to oxidize ammonia and sulfur at different sites of Arctic Fjord by targeted metagenomics. The high throughput sequencing revealed archaeal Thaumarchaeota (79.3%), Crenarchaeota (10.9%), Euryarchaeota (5.4%), and Woesearchaeota (2.9%) across different depths. In contrast, the bacterial communities depict predominance of Proteobacteria (52.6%), which comprises of dominant genera viz. Sulfurovum (11.2%) and Sulfurimonas (6.3%). Characterizing the metabolic potential of microbial communities with prime focus on the ammonia and sulfur cycling revealed the presence of amoABC and narGHYZ/ nxrAB genes encoding key enzymes. The ammonia cycling coupled with an augmentation of members of Nitrosopumilus belonging to the phylum Thaumarcheaota suggests the vital role of archaeal communities. Similarly, the persistence of chemolithoautotrophic members of Sulfurovum and Sulfurimonas along with the anaerobic genera Desulfocapsa and Desulfobulbus harboring SOX (sulfur-oxidation) system indicates the modulatory role of bacterial communities in sulfur cycling.

RevDate: 2020-12-15
CmpDate: 2020-12-15

Yang S, Li L, Peng X, et al (2021)

Leachate microbiome profile reveals bacteria, archaea and eukaryote dynamics and methanogenic function during solid waste decomposition.

Bioresource technology, 320(Pt A):124359.

Bacterial, archaeal, and eukaryotic community composition and dynamics in leachate during solid waste decomposition were investigated using Illumina MiSeq sequencing. The functional enzyme-encoding genes of methanogenic pathways were also predicted via PICRUSt. Succession of bacterial, archaeal, and eukaryotic community composition in aerobic phase (AP), anaerobic acid phase (ACP), and methanogenic phase (MP) was observed. The main representatives of microbial phyla, genera, and species significantly (p < 0.05) differed at least two phases. Protist Ciliophora occurred at ACP and was prevalent in MP, suggesting a short food chain establishment in the methanogenesis. Bacterial, archaeal, fungi and eukaryotic community structure were all pH and biochemical oxygen demand (BOD5) dependent patter. Acetoclastic and hydrogenotrophic methanogenesis pathways with associated functional genes differed during solid waste decomposition and were inhibited in ACP.

RevDate: 2020-12-23

Nußbaum P, Ithurbide S, Walsh JC, et al (2020)

An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea.

Current biology : CB, 30(24):4956-4972.e4.

MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.

RevDate: 2020-10-30

Liu X, Shao Y, Dong Y, et al (2020)

Response of ammonia-oxidizing archaea and bacteria to sulfadiazine and copper and their interaction in black soils.

Environmental science and pollution research international pii:10.1007/s11356-020-11356-0 [Epub ahead of print].

The large-scale development of animal husbandry and the wide agricultural application of livestock manure lead to more and more serious co-pollution of heavy metals and antibiotics in soil. In this study, two common feed additives, copper (Cu) and sulfadiazine (SDZ), were selected as target pollutants to evaluate the toxicity and interaction of antibiotics and heavy metals on ammonia oxidizers diversity, potential nitrification rate (PNR), and enzymatic activity in black soils. The results showed that soil enzyme activity was significantly inhibited by single Cu pollution, but the toxicity could be reduced by introducing low-concentration SDZ (5 mg · kg-1), which showed an antagonistic effect between Cu and SDZ (5 mg · kg-1), while the combined toxicity of high-concentration SDZ (10 mg · kg-1) and Cu were strengthened compared with the single Cu contamination on soil enzymes. In contrast, soil PNR was more sensitive to single Cu pollution and its combined pollution with SDZ than the enzyme activity. Real-time fluorescence quota PCR and Illumina Hiseq/Miseq sequencing results showed that ammonia-oxidizing archaea (AOA) was decreased in C2 (200 mg · kg-1 Cu treatment) and ammonia-oxidizing bacteria (AOB) was obviously stimulated in soil contaminated in C2, while in S5 (5 mg · kg-1 SDZ treatment), AOB was decreased; both AOA and AOB were significantly decreased at gene level in soils with combined pollutants (C2S5, 200 mg · kg-1 Cu combined with 5 mg · kg-1 SDZ). So, it can be concluded that combined pollution can cause more serious toxicity on the enzymatic activity, PNR, and ammonia-oxidizing microorganisms in soil through the synergistic effect between heavy metals and antibiotics pollutants.

RevDate: 2021-02-01

Jha P, Singh J, Vidyarthi AS, et al (2020)

Unveiling the Biodiversity of Hyperthermophilic Archaea in Jharia Coal Mines: Potential Threat to Methanogenesis?.

Current genomics, 21(5):363-371.

Aim: To examine the biodiversity of archaeal sulfate reducers and methanogens present in the underground coal mines of Jharia using metagenomics and pyrosequencing.

Objectives: 1) Bioinformatical analysis of the metagenomic data related to a taxonomic analysis obtained from the coal to investigate complete archaeal taxonomic features of the coal bed methane (CBM) microbiome. 2) Bioinformatical analysis of the metagenomic data related to a functional analysis obtained from the coal to investigate functional features relating to taxonomic diversity of the CBM microbiome. 3) The functional attributes have been examined specifically for ORFs related to sulfite reduction and methanogenesis.The taxonomic and functional biodiversity related to euryarchaeota will help in a better understanding of the obstacles associated with methane production imposed by the sulfate reducers.

Background: The microbial methanogenesis in the coal microbiome is a resultant of substrate utilization by primarily fermentative bacteria and methanogens. The present work reveals the biodiversity of archaeal sulfate reducers and methanogens present in the underground coal mines of Jharia using metagenomics and pyrosequencing.

Methodology: Bioinformatical analysis for structural and functional attributes was accomplished using MG-RAST. The structural analysis was accomplished using RefSeq database, whereas the functional analysis was done via CoG database with a cut off value, a sequence percent identity, and sequence alignment length cut off of 1e-5, 60% and 45, respectively.

Results: Attained communities revealed the dominance of hyperthermophilic archaea Pyrococcus furiosus along with Thermococcus kodakarensis in the coal metagenome.The obtained results also suggest the presence of dissimilatory sulfite reductase and formylmethanofuran dehydrogenase, formylmethanofuran: tetrahydromethanopterin formyltransferase involved in sulfite reduction and methanogenesis, respectively, in the microbiome.

Conclusion: This report is the first attempt to showcase the existence of specific euryarchaeal diversity and their related functional attributes from Jharia coal mines through high throughput sequencing. The study helps in developing a better understanding of the presence of indigenous microbes (archaea) and their functions in the coal microbiome, which can be utilized further to resolve the energy crisis.

RevDate: 2021-01-14

Chávez J, Devos DP, E Merino (2020)

Complementary Tendencies in the Use of Regulatory Elements (Transcription Factors, Sigma Factors, and Riboswitches) in Bacteria and Archaea.

Journal of bacteriology, 203(2):.

In prokaryotes, the key players in transcription initiation are sigma factors and transcription factors that bind to DNA to modulate the process, while premature transcription termination at the 5' end of the genes is regulated by attenuation and, in particular, by attenuation associated with riboswitches. In this study, we describe the distribution of these regulators across phylogenetic groups of bacteria and archaea and find that their abundance not only depends on the genome size, as previously described, but also varies according to the phylogeny of the organism. Furthermore, we observed a tendency for organisms to compensate for the low frequencies of a particular type of regulatory element (i.e., transcription factors) with a high frequency of other types of regulatory elements (i.e., sigma factors). This study provides a comprehensive description of the more abundant COG, KEGG, and Rfam families of transcriptional regulators present in prokaryotic genomes.IMPORTANCE In this study, we analyzed the relationship between the relative frequencies of the primary regulatory elements in bacteria and archaea, namely, transcription factors, sigma factors, and riboswitches. In bacteria, we reveal a compensatory behavior for transcription factors and sigma factors, meaning that in phylogenetic groups in which the relative number of transcription factors was low, we found a tendency for the number of sigma factors to be high and vice versa. For most of the phylogenetic groups analyzed here, except for Firmicutes and Tenericutes, a clear relationship with other mechanisms was not detected for transcriptional riboswitches, suggesting that their low frequency in most genomes does not constitute a significant impact on the global variety of transcriptional regulatory elements in prokaryotic organisms.

RevDate: 2020-11-06

L Bräuer S, Basiliko N, M P Siljanen H, et al (2020)

Methanogenic archaea in peatlands.

FEMS microbiology letters, 367(20):.

Methane emission feedbacks in wetlands are predicted to influence global climate under climate change and other anthropogenic stressors. Herein, we review the taxonomy and physiological ecology of the microorganisms responsible for methane production in peatlands. Common in peat soils are five of the eight described orders of methanogens spanning three phyla (Euryarchaeota, Halobacterota and Thermoplasmatota). The phylogenetic affiliation of sequences found in peat suggest that members of the thus-far-uncultivated group Candidatus Bathyarchaeota (representing a fourth phylum) may be involved in methane cycling, either anaerobic oxidation of methane and/or methanogenesis, as at least a few organisms within this group contain the essential gene, mcrA, according to metagenomic data. Methanogens in peatlands are notoriously challenging to enrich and isolate; thus, much remains unknown about their physiology and how methanogen communities will respond to environmental changes. Consistent patterns of changes in methanogen communities have been reported across studies in permafrost peatland thaw where the resulting degraded feature is thermokarst. However much remains to be understood regarding methanogen community feedbacks to altered hydrology and warming in other contexts, enhanced atmospheric pollution (N, S and metals) loading and direct anthropogenic disturbances to peatlands like drainage, horticultural peat extraction, forestry and agriculture, as well as post-disturbance reclamation.

RevDate: 2020-11-16

Abby SS, Kerou M, C Schleper (2020)

Ancestral Reconstructions Decipher Major Adaptations of Ammonia-Oxidizing Archaea upon Radiation into Moderate Terrestrial and Marine Environments.

mBio, 11(5):.

Unlike all other archaeal lineages, ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread and abundant in all moderate and oxic environments on Earth. The evolutionary adaptations that led to such unprecedented ecological success of a microbial clade characterized by highly conserved energy and carbon metabolisms have, however, remained underexplored. Here, we reconstructed the genomic content and growth temperature of the ancestor of all AOA, as well as the ancestors of the marine and soil lineages, based on 39 available complete or nearly complete genomes of AOA. Our evolutionary scenario depicts an extremely thermophilic, autotrophic, aerobic ancestor from which three independent lineages of a marine and two terrestrial groups radiated into moderate environments. Their emergence was paralleled by (i) a continuous acquisition of an extensive collection of stress tolerance genes mostly involved in redox maintenance and oxygen detoxification, (ii) an expansion of regulatory capacities in transcription and central metabolic functions, and (iii) an extended repertoire of cell appendages and modifications related to adherence and interactions with the environment. Our analysis provides insights into the evolutionary transitions and key processes that enabled the conquest of the diverse environments in which contemporary AOA are found.

RevDate: 2020-11-25
CmpDate: 2020-11-25

Park JG, Lee B, Heo TY, et al (2021)

Metagenomics approach and canonical correspondence analysis of novel nitrifiers and ammonia-oxidizing archaea in full scale anaerobic-anoxic-oxic (A2/O) and oxidation ditch processes.

Bioresource technology, 319:124205.

Various microorganisms are involved in nitrogen removal, and their group compositions depend closely on operating parameters. The structures and functions of nitrification microorganisms in full-scale anaerobic-anoxic-oxic (A2/O) and oxidation ditch processes were analyzed using metagenomics and canonical correspondence analysis. The community structure of ammonia-oxidizing archaea in the oxidation ditch was 3.8 (winter) - 6.3 (summer) times higher than in A2/O, and the complete ammonia oxidizer was only found in the oxidation ditch process. The canonical correspondence analysis of various environmental variables showed that Nitrosomonadales, Crenarchaeota, and Nitrospira inopinata correlate highly with nitrification, and Nitrospira was involved in NO2--N oxidation rather than Nitrobacter. The longer solid and hydraulic retention times in the oxidation ditch were more effective in achieving a wider range of novel nitrification than A2/O. This result indicates that microbial communities of novel nitrifiers and ammonia-oxidizing archaea improved in the oxidation ditch process, significantly contributing to stable nitrogen removal.

RevDate: 2020-10-12

Song W, C Sun (2020)

Diversity and distribution of bacteria and archaea in Tuosu Lake in Qaidam Basin.

Cellular and molecular biology (Noisy-le-Grand, France), 66(6):86-92.

Microbes in plateau lakes are important participants of material circulation and energy flow in plateau ecosystems. Knowledge of the microbiota, such as bacteria and archaea, community distribution and diversity in plateau lakes is the basis to understand the species succession, adaptation, maintenance and metabolic mechanisms of specific environmental microbial ecosystems. This work aimed to reveal the diversity and# succession of the microbiota in Tuosu Lake to provide a biological basis for the exploration and development of microbial resources in the plateau lakes. The distribution and diversity of microflora in Tuosu Lake, hypoxia, high altitude, alkaline, closed plateau lake with fresh water supply, was investigated. The total DNA was extracted from six samples with different salinity from different geographical locations of Tuosu Lake. The 16S rRNA gene of bacteria and archaea were determined by using high-throughput sequencing-based on an Illumina Miseq sequencing platform. The microbiota in Tuosu Lake has a high diversity and complexity and there are a large number of unclassified microbial species. The bacterial communities in Tuosu Lake are dominated by Proteobacteria (44.3%) and Actbacteria (17.2%). Among them, β-Proteobacteria is the dominant genus in the low-salt sample, while γ-Proteobacteria is more advantageous in the samples with higher salinity. The archaeal communities are dominated by Euryarchaeota (50%) and Woesearchaeota__DHVEG-6 (42.6%). The vast majority of the methanogenic archaea in Tuosu Lake samples belong to Methanomicrobia, and the methanogens in low-salinity samples are significantly more abundant than those in high-salt samples. Diversity and distribution appear to be highly influenced by water salinity and pH.

RevDate: 2021-01-27

Takamura E, Taki S, Sakamoto H, et al (2021)

Site-Directed Mutagenesis of Multicopper Oxidase from Hyperthermophilic Archaea for High-Voltage Biofuel Cells.

Applied biochemistry and biotechnology, 193(2):492-501.

Enzymes from hyperthermophilic archaea are potential candidates for industrial use because of their superior pH, thermal, and long-term stability, and are expected to improve the long-term stability of biofuel cells (BFCs). However, the reported multicopper oxidase (MCO) from hyperthermophilic archaea has lower redox potential than MCOs from other organisms, which leads to a decrease in the cell voltage of BFCs. In this study, we attempted to positively shift the redox potential of the MCO from hyperthermophilic archaeon Pyrobaculum aerophilum (McoP). Mutations (M470L and M470F) were introduced into the axial ligand of the T1 copper atom of McoP, and the enzymatic chemistry and redox potentials were compared with that of the parent (M470). The redox potentials of M470L and M470F shifted positively by about 0.07 V compared with that of M470. In addition, the catalytic activity of the mutants towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) increased 1.2-1.3-fold. The thermal stability of the mutants and the electrocatalytic performance for O2 reduction of M470F was slightly reduced compared with that of M470. This research provides useful enzymes for application as biocathode catalysts for high-voltage BFCs.

RevDate: 2020-10-20

Thiroux S, Dupont S, Nesbø CL, et al (2020)

The first head-tailed virus, MFTV1, infecting hyperthermophilic methanogenic deep-sea archaea.

Environmental microbiology [Epub ahead of print].

Deep-sea hydrothermal vents are inhabited by complex communities of microbes and their viruses. Despite the importance of viruses in controlling the diversity, adaptation and evolution of their microbial hosts, to date, only eight bacterial and two archaeal viruses isolated from abyssal ecosystems have been described. Thus, our efforts focused on gaining new insights into viruses associated with deep-sea autotrophic archaea. Here, we provide the first evidence of an infection of hyperthermophilic methanogenic archaea by a head-tailed virus, Methanocaldococcus fervens tailed virus 1 (MFTV1). MFTV1 has an isometric head of 50 nm in diameter and a 150 nm-long non-contractile tail. Virions are released continuously without causing a sudden drop in host growth. MFTV1 infects Methanocaldococcus species and is the first hyperthermophilic head-tailed virus described thus far. The viral genome is a double-stranded linear DNA of 31 kb. Interestingly, our results suggest potential strategies adopted by the plasmid pMEFER01, carried by M. fervens, to spread horizontally in hyperthermophilic methanogens. The data presented here open a new window of understanding on how the abyssal mobilome interacts with hyperthermophilic marine archaea.

RevDate: 2020-10-20

Wei D, Zeng S, Hou D, et al (2020)

Community diversity and abundance of ammonia-oxidizing archaea and bacteria in shrimp pond sediment at different culture stages.

Journal of applied microbiology [Epub ahead of print].

AIMS: Ammonia oxidation is a significant process of nitrogen cycles in a lot of ecosystems sediments while there are few studies in shrimp culture pond (SCP) sediments. This paper attempted to explore the community diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in SCP sediments at different culture stages.

METHODS AND RESULTS: We collected SCP sediments and analysed the community diversity and abundance of AOA and bacteria in shrimp pond sediment at different culture stages using the ammonia monooxygenase (amoA) gene with quantitative PCR (qPCR) and 16S rRNA gene sequencing. The AOB-amoA gene abundance was showed higher than AOA-amoA gene abundance in SCP sediments on Day 50 and Day 60 after shrimp larvae introducing into the pond, and the diversity of AOA in SCP sediments was higher than that of AOB. The phylogenetic tree revealed that the most of AOA were the member of Nitrosopumilus and Nitrososphaera, and the majority of AOB sequences were clustered into Nitrosospira, Nitrosomonas clusters 6a and 7. The AOA community has close relationship with total organic carbon (TOC), pH, total phosphorus (TP), nitrate reductase, urease, acid phosphatase and β-glucosidase. The AOB community was related to TOC, C/N and nitrate reductase.

CONCLUSIONS: AOA and AOB play the different ecological roles in SCP sediments at different culture stages.

Our results suggested that the different community diversity and abundance of AOA and AOB in SCP sediments, which may improve our ecological cognition of shrimp culture stages in SCP ecosystems.

RevDate: 2020-10-06

Mani K, Taib N, Hugoni M, et al (2020)

Transient Dynamics of Archaea and Bacteria in Sediments and Brine Across a Salinity Gradient in a Solar Saltern of Goa, India.

Frontiers in microbiology, 11:1891.

The microbial fluctuations along an increasing salinity gradient during two different salt production phases - initial salt harvesting (ISH) phase and peak salt harvesting (PSH) phase of Siridao solar salterns in Goa, India were examined through high-throughput sequencing of 16S rRNA genes on Illumina MiSeq platform. Elemental analysis of the brine samples showed high concentration of sodium (Na+) and chloride (Cl-) ions thereby indicating its thalassohaline nature. Comparison of relative abundance of sequences revealed that Archaea transited from sediment to brine while Bacteria transited from brine to sediment with increasing salinity. Frequency of Archaea was found to be significantly enriched even in low and moderate salinity sediments with their relative sequence abundance reaching as high as 85%. Euryarchaeota was found to be the dominant archaeal phylum containing 19 and 17 genera in sediments and brine, respectively. Phylotypes belonging to Halorubrum, Haloarcula, Halorhabdus, and Haloplanus were common in both sediments and brine. Occurence of Halobacterium and Natronomonas were exclusive to sediments while Halonotius was exclusive to brine. Among sediments, relative sequence frequency of Halorubrum, and Halorhabdus decreased while Haloarcula, Haloplanus, and Natronomonas increased with increasing salinity. Similarly, the relative abundance of Haloarcula and Halorubrum increased with increasing salinity in brine. Sediments and brine samples harbored about 20 and 17 bacterial phyla, respectively. Bacteroidetes, Proteobacteria, and Chloroflexi were the common bacterial phyla in both sediments and brine while Firmicutes were dominant albeit in sediments alone. Further, Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria were observed to be the abundant class within the Proteobacteria. Among the bacterial genera, phylotypes belonging to Rubricoccus and Halomonas were widely detected in both brine and sediment while Thioalkalispira, Desulfovermiculus, and Marinobacter were selectively present in sediments. This study suggests that Bacteria are more susceptible to salinity fluctuations than Archaea, with many bacterial genera being compartment and phase-specific. Our study further indicated that Archaea rather than Bacteria could withstand the wide salinity fluctuation and attain a stable community structure within a short time-frame.

RevDate: 2020-10-03

Jung J, Kim JS, Taffner J, et al (2020)

Archaea, tiny helpers of land plants.

Computational and structural biotechnology journal, 18:2494-2500.

Archaea are members of most microbiomes. While archaea are highly abundant in extreme environments, they are less abundant and diverse in association with eukaryotic hosts. Nevertheless, archaea are a substantial constituent of plant-associated ecosystems in the aboveground and belowground phytobiome. Only a few studies have investigated the role of archaea in plant health and its potential symbiosis in ecosystems. This review discusses recent progress in identifying how archaea contribute to plant traits such as growth, adaptation to abiotic stresses, and immune activation. We synthesized the most recent functional and molecular data on archaea, including root colonization and the volatile emission to activate plant systemic immunity. These data represent a paradigm shift in our understanding of plant-microbiota interactions.

RevDate: 2020-11-30

Berger S, Cabrera-Orefice A, Jetten MSM, et al (2021)

Investigation of central energy metabolism-related protein complexes of ANME-2d methanotrophic archaea by complexome profiling.

Biochimica et biophysica acta. Bioenergetics, 1862(1):148308.

The anaerobic oxidation of methane is important for mitigating emissions of this potent greenhouse gas to the atmosphere and is mediated by anaerobic methanotrophic archaea. In a 'Candidatus Methanoperedens BLZ2' enrichment culture used in this study, methane is oxidized to CO2 with nitrate being the terminal electron acceptor of an anaerobic respiratory chain. Energy conservation mechanisms of anaerobic methanotrophs have mostly been studied at metagenomic level and hardly any protein data is available at this point. To close this gap, we used complexome profiling to investigate the presence and subunit composition of protein complexes involved in energy conservation processes. All enzyme complexes and their subunit composition involved in reverse methanogenesis were identified. The membrane-bound enzymes of the respiratory chain, such as F420H2:quinone oxidoreductase, membrane-bound heterodisulfide reductase, nitrate reductases and Rieske cytochrome bc1 complex were all detected. Additional or putative subunits such as an octaheme subunit as part of the Rieske cytochrome bc1 complex were discovered that will be interesting targets for future studies. Furthermore, several soluble proteins were identified, which are potentially involved in oxidation of reduced ferredoxin produced during reverse methanogenesis leading to formation of small organic molecules. Taken together these findings provide an updated, refined picture of the energy metabolism of the environmentally important group of anaerobic methanotrophic archaea.

RevDate: 2021-01-25
CmpDate: 2021-01-25

Wolff P, Villette C, Zumsteg J, et al (2020)

Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea.

RNA (New York, N.Y.), 26(12):1957-1975.

To improve and complete our knowledge of archaeal tRNA modification patterns, we have identified and compared the modification pattern (type and location) in tRNAs of three very different archaeal species, Methanococcus maripaludis (a mesophilic methanogen), Pyrococcus furiosus (a hyperthermophile thermococcale), and Sulfolobus acidocaldarius (an acidophilic thermophilic sulfolobale). Most abundant isoacceptor tRNAs (79 in total) for each of the 20 amino acids were isolated by two-dimensional gel electrophoresis followed by in-gel RNase digestions. The resulting oligonucleotide fragments were separated by nanoLC and their nucleotide content analyzed by mass spectrometry (MS/MS). Analysis of total modified nucleosides obtained from complete digestion of bulk tRNAs was also performed. Distinct base- and/or ribose-methylations, cytidine acetylations, and thiolated pyrimidines were identified, some at new positions in tRNAs. Novel, some tentatively identified, modifications were also found. The least diversified modification landscape is observed in the mesophilic Methanococcus maripaludis and the most complex one in Sulfolobus acidocaldarius Notable observations are the frequent occurrence of ac4C nucleotides in thermophilic archaeal tRNAs, the presence of m7G at positions 1 and 10 in Pyrococcus furiosus tRNAs, and the use of wyosine derivatives at position 37 of tRNAs, especially those decoding U1- and C1-starting codons. These results complete those already obtained by others with sets of archaeal tRNAs from Methanocaldococcus jannaschii and Haloferax volcanii.

RevDate: 2020-09-29

Chen T, Hu W, He S, et al (2020)

Diversity and community structure of ammonia oxidizing archaea in rhizosphere soil of four plant groups in Ebinur Lake Wetland.

Canadian journal of microbiology [Epub ahead of print].

The aim of this study was to reveal the differences in the community structure of AOA between rhizosphere and non-rhizosphere soil, to provide a theoretical basis for further study on the relationship between halophyte rhizosphere soil microorganisms and salt tolerance. The results of diversity and community structure showed that the diversity of ammonia-oxidizing archaea community in rhizosphere soil of Reed was higher than that in non-rhizosphere soil in spring and lower than that in non-rhizosphere soil in summer and autumn; In summer, the diversity of rhizosphere soil was higher than that of non-rhizosphere soil of Karelinia caspica lower than that of non-rhizosphere soil in spring and autumn. The diversity of rhizosphere soil of Halocnemum strobilaceum in three seasons was lower than that in non-rhizosphere soil. The diversity of rhizosphere soil of Salicornia was higher than that in non-rhizosphere soil in three seasons. In addition, the relative abundance of AOA in rhizosphere soil of four plants was higher than that in non-rhizosphere soil. AOA community in all soil samples was mainly concentrated in Crenarchaeota and Thaumarchaeota. RDA results showed salinity (EC), soil water moisture (SM), pH and soil organic matter (SOM) were important factors affecting the differentiation of AOA communities.

RevDate: 2020-10-01

Zou D, Liu H, M Li (2020)

Community, Distribution, and Ecological Roles of Estuarine Archaea.

Frontiers in microbiology, 11:2060.

Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.

RevDate: 2021-01-11

Brázda V, Luo Y, Bartas M, et al (2020)

G-Quadruplexes in the Archaea Domain.

Biomolecules, 10(9):.

The importance of unusual DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes (G4s) have gained in popularity during the last decade, and their presence and functional relevance at the DNA and RNA level has been demonstrated in a number of viral, bacterial, and eukaryotic genomes, including humans. Here, we performed the first systematic search of G4-forming sequences in all archaeal genomes available in the NCBI database. In this article, we investigate the presence and locations of G-quadruplex forming sequences using the G4Hunter algorithm. G-quadruplex-prone sequences were identified in all archaeal species, with highly significant differences in frequency, from 0.037 to 15.31 potential quadruplex sequences per kb. While G4 forming sequences were extremely abundant in Hadesarchaea archeon (strikingly, more than 50% of the Hadesarchaea archaeon isolate WYZ-LMO6 genome is a potential part of a G4-motif), they were very rare in the Parvarchaeota phylum. The presence of G-quadruplex forming sequences does not follow a random distribution with an over-representation in non-coding RNA, suggesting possible roles for ncRNA regulation. These data illustrate the unique and non-random localization of G-quadruplexes in Archaea.

RevDate: 2020-12-07

Stahl DA (2020)

The path leading to the discovery of the ammoniaoxidizing archaea.

Environmental microbiology, 22(11):4507-4519.

RevDate: 2020-12-29
CmpDate: 2020-12-29

Yin XM, Yang XY, Hou J, et al (2020)

Natronomonas halophila sp. nov. and Natronomonas salina sp. nov., two novel halophilic archaea.

International journal of systematic and evolutionary microbiology, 70(11):5686-5692.

Two halophilic archaeal strains, C90T and YPL13T, were isolated from a salt lake and a salt mine in PR China. The two strains were found to form two clusters (97.5 and 89.5 % similarity between them, respectively) separating them from the three current members of the genus Natronomonas (95.4-97.0 % and 86.6-89.3 % similarity, respectively) on the basis of the 16S rRNA and rpoB' gene sequence similarities and phylogenetic analysis. Diverse phenotypic characteristics differentiate strains C90T and YPL13T from current Natronomonas members. The polar lipids of strain C90T were phosphatidic acid, phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulphate, two unidentified glycolipids, a major glycolipid and a minor glycolipid, while those of strain YPL13T were PG, PGP-Me, two unidentified phospholipids and a glycolipid. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between the two strains were 79.8 and 27.1 %, respectively, which were much lower than the threshold values proposed as a species boundaries (ANI 95-96 % and isDDH 70 %), which revealed that the two strains represent two novel species; these values (ANI 76.6-80.0 % and isDDH 21.6-27.0 %) of the strains examined in this study and the current members of Natronomonas are much lower than the recommended threshold values, suggesting that strains C90T and YPL13T represent two genomically different species of Natronomonas. These results showed that strains C90T (=CGMCC 1.13738T=JCM 32961T) and YPL13T (=CGMCC 1.13884T=JCM 31111T) represent two novel species of Natronomonas, for which the names Natronomonas halophila sp. nov. and Natronomonas salina sp. nov. are proposed.

RevDate: 2021-01-26

He Y, Zhou Y, Weng R, et al (2021)

Responses of Ammonia-Oxidizing Archaea and Bacteria in Malodorous River Sediments to Different Remediation Techniques.

Microbial ecology, 81(2):314-322.

In this study, the joint use of high throughput sequencing, real-time quantitative PCR, and ammonia-oxidizing bacteria (AOB)-inhibiting allylthiourea was used to differentiate between the contributions of ammonia-oxidizing archaea (AOA) vs AOB to ammonia oxidation and ascertain how AOA and AOB responded to two widely used river remediation techniques (aeration and Ca(NO3)2 injection). Results showed that ammonia oxidation was largely attributed to ATU-sensitive AOB rather than AOA and Nitrosomonas was the predominant AOB-related genus (53.86%) in the malodorous river. The contribution of AOB to ammonia oxidation in the context of aeration and Ca(NO3)2 injection was 75.51 ± 2.77% and 60.19 ± 10.44%, respectively. The peak of AOB/AOA ratio and the marked increase of relative abundances of Nitrosomonas and Nitrosospira in aeration runs further demonstrated aeration favored the ammonia oxidation of AOB. Comparatively, Ca(NO3)2 injection could increase the ammonia oxidation contribution of AOA from 31.32 ± 6.06 to 39.81 ± 10.44% and was significantly correlated with Nitrosococcus of AOB (r = 0.796, p < 0.05), Candidatus_Nitrosopelagicus of AOA (r = 0.986, p < 0.01), and AOA Simpson diversity (r = - 0.791, p < 0.05). Moreover, Candidatus_Nitrosopelagicus was only present in Ca(NO3)2 runs. Taken together, Ca(NO3)2 was recognized as an important factor in mediating the growth and ecological niches of ammonia oxidizers.Graphical abstract.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Aleksandrowicz P, Brzezińska-Błaszczyk E, Dudko A, et al (2020)

Archaea Occurrence in the Subgingival Biofilm in Patients with Peri-implantitis and Periodontitis.

The International journal of periodontics & restorative dentistry, 40(5):677-683.

This study aimed to determine the prevalence and diversity of archaea and select bacteria in the subgingival biofilm of patients with peri-implantitis in comparison to patients with unaffected implants and patients with periodontitis. Samples of subgingival biofilm from oral sites were collected for DNA extraction (n = 139). A 16S rRNA gene-based polymerase chain reaction assay was used to determine the presence of archaea and select bacteria. Seven samples were selected for direct sequencing. Archaea were detected in 10% of samples from peri-implantitis sites, but not in samples from the unaffected dental implant. Archaea were present in 53% and 64% of samples from mild and moderate/advanced periodontitis sites, respectively. The main representative of the Archaea domain found in biofilm from periodontitis and peri-implantitis sites was Methanobrevibacter oralis. The present results revealed that archaea are present in diseased but not healthy implants. It was also found that archaea were more abundant in periodontitis than in peri-implantitis sites. Hence, the potential role of archaea in peri-implantitis and periodontitis should be taken into consideration.

RevDate: 2020-11-30

Di Giulio M (2020)

LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life.

Bio Systems, 198:104239.

Here I use the rationale assuming that if of a certain trait that exerts its function in some aspect of the genetic code or, more generally, in protein synthesis, it is possible to identify the evolutionary stage of its origin then it would imply that this evolutionary moment would be characterized by a high translational noise because this trait would originate for the first time during that evolutionary stage. That is to say, if this trait had a non-marginal role in the realization of the genetic code, or in protein synthesis, then the origin of this trait would imply that, more generally, it was the genetic code itself that was still originating. But if the genetic code were still originating - at that precise evolutionary stage - then this would imply that there was a high translational noise which in turn would imply that it was in the presence of a protocell, i.e. a progenote that was by definition characterized by high translational noise. I apply this rationale to the mechanism of modification of the base 34 of the anticodon of an isoleucine tRNA that leads to the reading of AUA and AUG codons in archaea, bacteria and eukaryotes. The phylogenetic distribution of this mechanism in these phyletic lineages indicates that this mechanism originated only after the evolutionary stage of the last universal common ancestor (LUCA), namely, during the formation of cellular domains, i.e., at the stage of ancestors of these main phyletic lineages. Furthermore, given that this mechanism of modification of the base 34 of the anticodon of the isoleucine tRNA would result to emerge at a stage of the origin of the genetic code - despite in its terminal phases - then all this would imply that the ancestors of bacteria, archaea and eukaryotes were progenotes. If so, all the more so, the LUCA would also be a progenote since it preceded these ancestors temporally. A consequence of all this reasoning might be that since these three ancestors were of the progenotes that were different from each other, if at least one of them had evolved into at least two real and different cells - basically different from each other - then the number of cellular domains would not be three but it would be greater than three.

RevDate: 2020-11-18
CmpDate: 2020-11-18

Qi L, Ma Z, Chang SX, et al (2021)

Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil.

The Science of the total environment, 752:141958.

Biochar addition can reduce methane (CH4) emissions from paddy soils while the mechanisms involved are not entirely clear. Here, we studied the effect of biochar addition on CH4 emissions, and the abundance and community composition of methanogens and methanotrophs over two rice cultivation seasons. The experiment had the following five treatments: control (CK), chemical fertilizer application only (BC0), and 0.5% (w/w) (BC1), 1% (BC2), and 2% of biochar applied with chemical fertilizers (BC3). The season-wide CH4 emissions were decreased (P < 0.05) by 22.2-95.7% in biochar application compared with BC0 in the two rice seasons (2017 and 2018). In 2017, biochar application decreased methanogenic archaea (mcrA) but increased methanotrophic bacteria (pmoA) abundances, and decreased the ratio of mcrA/pmoA, as compared with BC0 (P < 0.05). In 2018, the abundance of mcrA was lower in BC2 and BC3 than in BC0 (P < 0.05) but was not different between BC0 and BC1, and the abundance of pmoA was lower in BC1, BC2 and BC3 than in BC0 (P < 0.05). The CH4 emissions were positively related to abundances of the mcrA gene (P < 0.01) but not to that of the pmoA gene in two rice seasons. Rice grain yield was increased by 62.2-94.1% in biochar addition treatments compared with BC0 in the first year (P < 0.01) and by 29.9-37.6% in BC2 and BC3 compared with BC0 in the second year (P < 0.05). Biochar application decreased CH4 emissions by reducing methanogenic archaea abundance in the studied flooded paddy soil.

RevDate: 2020-11-18
CmpDate: 2020-11-18

Niu M, Zhou F, Yang Y, et al (2021)

Abundance and composition of airborne archaea during springtime mixed dust and haze periods in Beijing, China.

The Science of the total environment, 752:141641.

Archaea have an important role in the elemental biogeochemical cycle and human health. However, characteristics of airborne archaea affected by anthropogenic and natural processes are unclear. In this study, we investigated the abundance, structures, influencing factors and assembly processes of the archaeal communities in the air samples collected from Beijing in springtime using quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology and statistical analysis. The concentrations of airborne archaea ranged from 101 to 103 copies m-3 (455 ± 211 copies m-3), accounting for 0.67% of the total prokaryote (sum of archaea and bacteria). An increase in airborne archaea was seen when the air quality shifted from clean to slightly polluted conditions. Sandstorm dust imported a large number of archaea to the local atmosphere. Euryarchaeota, Thaumarchaeota and Crenarchaeota were the dominant phyla, revealing the primary role of soil in releasing archaea to the ambient environment. Dispersal-related neutral processes play an important role in shaping the structure of airborne archaeal assembly. Of all phyla, methanogenic Euryarchaeota were most abundant in the air parcels come from the south of Beijing. Air masses from the west of Beijing, which brought sandstorm to Beijing, carried large amounts of ammonia oxidizing archaea Nitrososphaera. The results demonstrate the importance of air mass sources and local weather conditions in shaping the local airborne archaea community.

RevDate: 2021-01-13
CmpDate: 2021-01-13

Nikolayev S, Cohen-Rosenzweig C, J Eichler (2020)

Evolutionary considerations of the oligosaccharyltransferase AglB and other aspects of N-glycosylation across Archaea.

Molecular phylogenetics and evolution, 153:106951.

Various biological markers in members of the TACK and Asgard archaeal super-phyla show Eukarya-like traits. These include the oligosaccharyltransferase, responsible for transferring glycans from the lipid carrier upon which they are assembled onto selected asparagine residues of target proteins during N-glycosylation. In Archaea, oligosaccharyltransferase activity is catalyzed by AglB. To gain deeper insight into AglB and N-glycosylation across archaeal phylogeny, bioinformatics approaches were employed to address variability in AglB sequence motifs involved in enzyme activity, construct a phylogenetic tree based on AglB sequences, search for archaeal homologues of non-catalytic subunits of the multimeric eukaryal oligosaccharyltransferase complex and predict the presence of aglB-based clusters of glycosylation-related genes in the Euryarchaeota and the DPANN, TACK and Asgard super-phyla. In addition, site-directed mutagenesis and mass spectrometry were employed to study the natural variability in the WWDXG motif central to oligosaccharyltransferase activity seen in archaeal AglB. The results clearly distinguish AglB from members of the DPANN super-phylum and the Euryarchaeota from the same enzyme in members of the TACK and Asgard super-phyla, which showed considerable similarity to its eukaryal homologue Stt3. The results thus support the evolutionary proximity of Eukarya and the TACK and Asgard archaea.

RevDate: 2020-09-17

Parks DH, Chuvochina M, Chaumeil PA, et al (2020)

Author Correction: A complete domain-to-species taxonomy for Bacteria and Archaea.

Nature biotechnology, 38(9):1098.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2021-02-09

Reichart NJ, Jay ZJ, Krukenberg V, et al (2020)

Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment.

The ISME journal, 14(11):2851-2861.

Metagenomic studies have revolutionized our understanding of the metabolic potential of uncultured microorganisms in various ecosystems. However, many of these genomic predictions have yet to be experimentally tested, and the functional expression of genomic potential often remains unaddressed. In order to obtain a more thorough understanding of cell physiology, novel techniques capable of testing microbial metabolism under close to in situ conditions must be developed. Here, we provide a benchmark study to demonstrate that bioorthogonal non-canonical amino acid tagging (BONCAT) in combination with fluorescence-activated cell sorting (FACS) and 16S rRNA gene sequencing can be used to identify anabolically active members of a microbial community incubated in the presence of various growth substrates or under changing physicochemical conditions. We applied this approach to a hot spring sediment microbiome from Yellowstone National Park (Wyoming, USA) and identified several microbes that changed their activity levels in response to substrate addition, including uncultured members of the phyla Thaumarchaeota, Acidobacteria, and Fervidibacteria. Because shifts in activity in response to substrate amendment or headspace changes are indicative of microbial preferences for particular growth conditions, results from this and future BONCAT-FACS studies could inform the development of cultivation media to specifically enrich uncultured microbes. Most importantly, BONCAT-FACS is capable of providing information on the physiology of uncultured organisms at as close to in situ conditions as experimentally possible.

RevDate: 2020-11-10
CmpDate: 2020-11-10

Yue L, Li J, Zhang B, et al (2020)

The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode.

Nucleic acids research, 48(17):9589-9605.

Transcription termination defines accurate transcript 3'-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3'-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3'end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3'-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.

RevDate: 2020-09-07

Tang HM, Xiao XP, Li C, et al (2020)

Influences of different manure N input on soil ammonia-oxidizing archaea and bacterial activity and community structure in a double-cropping rice field.

Journal of applied microbiology [Epub ahead of print].

AIMS: The short-term effects of different organic manure nitrogen (N) input on soil ammonia-oxidizing archaea (AOA) and bacterial (AOB) activity and community structure at maturity stages of early rice and late rice were investigated in the present paper, in a double-cropping rice system in southern China.

METHODS AND RESULTS: A field experiment was done by applying five different organic and inorganic N input treatments: (i) 100% N of chemical fertilizer (M0), (ii) 30% N of organic manure and 70% N of chemical fertilizer (M30), (iii) 50% N of organic manure and 50% N of chemical fertilizer (M50), (iv) 100% N of organic manure (M100) and (v) without N fertilizer input as control (CK). Microbial community changes were assessed using fatty acid methyl esters, and ammonia oxidizer (AO) changes were followed using quantitative PCR. The results showed that AOA were higher than that of AOB based upon amoA gene copy at maturity stages of early rice and late rice. Also, the abundance of AOB and AOA with M30, M50 and M100 treatments was significantly higher than that of CK treatment. Manure N input treatments had significant effect on AOB and AOA abundance, and a higher correlation between AOB and manure N input was observed. AOB correlated moderately with soil organic carbon content, and AOA correlated moderately with water-filled pore space.

CONCLUSIONS: This study found that abundance of AOB and AOA was increased under the given organic N conditions, and the soil AOB and AOA community and diversity were changed by different short-term organic manure N input treatments.

Soil microbial community and specific N-utilizing microbial groups were affected by organic manure N input practices.

RevDate: 2020-11-13

Cendron F, Niero G, Carlino G, et al (2020)

Characterizing the fecal bacteria and archaea community of heifers and lactating cows through 16S rRNA next-generation sequencing.

Journal of applied genetics, 61(4):593-605.

The aim of this study was to describe the fecal bacteria and archaea composition of Holstein-Friesian and Simmental heifers and lactating cows, using 16S rRNA gene sequencing. Bacteria and archaea communities were characterized and compared between heifers and cows of the same breed. Two breeds from different farms were considered, just to speculate about the conservation of the microbiome differences between cows and heifers that undergo different management conditions. The two breeds were from two different herds. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most abundant phyla in all experimental groups. Alpha- and beta-diversity metrics showed significant differences between heifers and cows within the same breed, supported by principal coordinate analysis. The analysis of Holstein-Friesian fecal microbiome composition revealed 3 different bacteria families, 2 genera, and 2 species that differed between heifers and cows; on the other hand, Simmental heifers and cows differed only for one bacteria family, one archaeal genus, and one bacteria species. Results of the present study suggest that fecal communities of heifers and cows are different, and that fecal microbiome is maintained across experimental groups.

RevDate: 2020-09-28

Nagler M, Podmirseg SM, Mayr M, et al (2020)

Quantities of Intra- and Extracellular DNA Reveal Information About Activity and Physiological State of Methanogenic Archaea.

Frontiers in microbiology, 11:1894.

Although being a common aim of many microbial ecology studies, measuring individual physiological conditions of a microbial group or species within a complex consortium is still a challenge. Here, we propose a novel approach that is based on the quantification of sequentially extracted extracellular (exDNA) and intracellular DNA (iDNA) and reveals information about cell lysis and activity of methanogenic archaea within a biogas-producing microbial community. We monitored the methane production rates of differently treated batch anaerobic cultures and compared the concentrations of the alpha subunit of the methyl coenzyme M reductase gene of methanogenic archaea in extracellular and intracellular DNA fractions and in the classically extracted total DNA pool. Our results showed that this fine-tuned DNA approach coupled with the interpretation of the ratio between free exDNA and iDNA considerably improved microbial activity tracking compared to the classical extraction/quantification of total DNA. Additionally, it allowed to identify and quantify methanogenic populations that are inactive and those that are strongly influenced by cell lysis. We argue that despite the need of further studies, this method represents a novel approach to gain specific physiological information from a complex environmental sample and holds the potential to be applied to other microbes of interest.

RevDate: 2020-08-23

Silveira R, Silva MRSS, de Roure Bandeira de Mello T, et al (2020)

Bacteria and Archaea Communities in Cerrado Natural Pond Sediments.

Microbial ecology pii:10.1007/s00248-020-01574-x [Epub ahead of print].

Natural ponds in the Brazilian Cerrado harbor high biodiversity but are still poorly studied, especially their microbial assemblage. The characterization of the microbial community in aquatic environments is fundamental for understanding its functioning, particularly under the increasing pressure posed by land conversion and climate change. Here, we aim to characterize the structure (abundance, richness, and diversity) and composition of the Bacteria and Archaea in the sediment of two natural ponds belonging to different basins that primarily differ in size and depth in the Cerrado. Sediment samples were collected in the dry and rainy seasons and the transition periods between both. The structure and composition of Bacteria and Archaea were assessed by 16S rRNA gene pyrosequencing. We identified 45 bacterial and four archaeal groups. Proteobacteria and Acidobacteria dominated the bacterial community, while Euryarchaeota and Thaumarchaeota dominated the archaeal community. Seasonal fluctuations in the relative abundance of microbial taxa were observed, but pond characteristics were more determinant to community composition differences. Microbial communities are highly diverse, and local variability could partially explain the microbial structure's main differences. Functional predictions based in 16S rRNA gene accessed with Tax4Fun indicated an enriched abundance of predicted methane metabolism in the deeper pond, where higher abundance of methanogenic archaea Methanocella, Methanosaeta, and Methanomicrobiaceae was detected. Our dataset encompasses the more comprehensive survey of prokaryotic microbes in Cerrado's aquatic environments. Here, we present basic and essential information about composition and diversity, for initial insights into the ecology of Bacteria and Archaea in these environments.

RevDate: 2020-12-01
CmpDate: 2020-12-01

Dhamad AE, DJ Lessner (2020)

A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.

Applied and environmental microbiology, 86(21):.

CRISPR-based systems are emerging as the premier method to manipulate many cellular processes. In this study, a simple and efficient CRISPR interference (CRISPRi) system for targeted gene repression in archaea was developed. The Methanosarcina acetivorans CRISPR-Cas9 system was repurposed by replacing Cas9 with the catalytically dead Cas9 (dCas9) to generate a CRISPRi-dCas9 system for targeted gene repression. To test the utility of the system, genes involved in nitrogen (N2) fixation were targeted for dCas9-mediated repression. First, the nif operon (nifHI1I2DKEN) that encodes molybdenum nitrogenase was targeted by separate guide RNAs (gRNAs), one targeting the promoter and the other targeting nifD Remarkably, growth of M. acetivorans with N2 was abolished by dCas9-mediated repression of the nif operon with each gRNA. The abundance of nif transcripts was >90% reduced in both strains expressing the gRNAs, and NifD was not detected in cell lysate. Next, we targeted NifB, which is required for nitrogenase cofactor biogenesis. Expression of a gRNA targeting the coding sequence of NifB decreased nifB transcript abundance >85% and impaired but did not abolish growth of M. acetivorans with N2 Finally, to ascertain the ability to study gene regulation using CRISPRi-dCas9, nrpR1, encoding a subunit of the repressor of the nif operon, was targeted. The nrpR1 repression strain grew normally with N2 but had increased nif operon transcript abundance, consistent with NrpR1 acting as a repressor. These results highlight the utility of the system, whereby a single gRNA when expressed with dCas9 can block transcription of targeted genes and operons in M. acetivoransIMPORTANCE Genetic tools are needed to understand and manipulate the biology of archaea, which serve critical roles in the biosphere. Methanogenic archaea (methanogens) are essential for the biological production of methane, an intermediate in the global carbon cycle, an important greenhouse gas, and a biofuel. The CRISPRi-dCas9 system in the model methanogen Methanosarcina acetivorans is, to our knowledge, the first Cas9-based CRISPR interference system in archaea. Results demonstrate that the system is remarkably efficient in targeted gene repression and provide new insight into nitrogen fixation by methanogens, the only archaea with nitrogenase. Overall, the CRISPRi-dCas9 system provides a simple, yet powerful, genetic tool to control the expression of target genes and operons in methanogens.

RevDate: 2020-10-14
CmpDate: 2020-10-14

Flores-Bautista E, Hernandez-Guerrero R, Huerta-Saquero A, et al (2020)

Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms.

PloS one, 15(8):e0237135.

DNA-binding Transcription Factors (TFs) play a central role in regulation of gene expression in prokaryotic organisms, and similarities at the sequence level have been reported. These proteins are predicted with different abundances as a consequence of genome size, where small organisms contain a low proportion of TFs and large genomes contain a high proportion of TFs. In this work, we analyzed a collection of 668 experimentally validated TFs across 30 different species from diverse taxonomical classes, including Escherichia coli K-12, Bacillus subtilis 168, Corynebacterium glutamicum, and Streptomyces coelicolor, among others. This collection of TFs, together with 111 hidden Markov model profiles associated with DNA-binding TFs collected from diverse databases such as PFAM and DBD, was used to identify the repertoire of proteins putatively devoted to gene regulation in 1321 representative genomes of Archaea and Bacteria. The predicted regulatory proteins were posteriorly analyzed in terms of their genomic context, allowing the prediction of functions for TFs and their neighbor genes, such as genes involved in virulence, enzymatic functions, phosphorylation mechanisms, and antibiotic resistance. The functional analysis associated with PFAM groups showed diverse functional categories were significantly enriched in the collection of TFs and the proteins encoded by the neighbor genes, in particular, small-molecule binding and amino acid transmembrane transporter activities associated with the LysR family and proteins devoted to cellular aromatic compound metabolic processes or responses to drugs, stress, or abiotic stimuli in the MarR family. We consider that with the increasing data derived from new technologies, novel TFs can be identified and help improve the predictions for this class of proteins in complete genomes. The complete collection of experimentally characterized and predicted TFs is available at

RevDate: 2020-10-31

Fonseca DR, Halim MFA, Holten MP, et al (2020)

Type IV-Like Pili Facilitate Transformation in Naturally Competent Archaea.

Journal of bacteriology, 202(21):.

Naturally competent organisms are capable of DNA uptake directly from the environment through the process of transformation. Despite the importance of transformation to microbial evolution, DNA uptake remains poorly characterized outside of the bacterial domain. Here, we identify the pilus as a necessary component of the transformation machinery in archaea. We describe two naturally competent organisms, Methanococcus maripaludis and Methanoculleus thermophilus In M. maripaludis, replicative vectors were transferred with an average efficiency of 2.4 × 103 transformants μg-1 DNA. In M. thermophilus, integrative vectors were transferred with an average efficiency of 2.7 × 103 transformants μg-1 DNA. Additionally, natural transformation of M. thermophilus could be used to introduce chromosomal mutations. To our knowledge, this is the first demonstration of a method to introduce targeted mutations in a member of the order Methanomicrobiales For both organisms, mutants lacking structural components of the type IV-like pilus filament were defective for DNA uptake, demonstrating the importance of pili for natural transformation. Interestingly, competence could be induced in a noncompetent strain of M. maripaludis by expressing pilin genes from a replicative vector. These results expand the known natural competence pili to include examples from the archaeal domain and highlight the importance of pili for DNA uptake in diverse microbial organisms.IMPORTANCE Microbial organisms adapt and evolve by acquiring new genetic material through horizontal gene transfer. One way that this occurs is natural transformation, the direct uptake and genomic incorporation of environmental DNA by competent organisms. Archaea represent up to a third of the biodiversity on Earth, yet little is known about transformation in these organisms. Here, we provide the first characterization of a component of the archaeal DNA uptake machinery. We show that the type IV-like pilus is essential for natural transformation in two archaeal species. This suggests that pili are important for transformation across the tree of life and further expands our understanding of gene flow in archaea.

RevDate: 2020-09-15

Wang K, Yan H, Peng X, et al (2020)

Community assembly of bacteria and archaea in coastal waters governed by contrasting mechanisms: A seasonal perspective.

Molecular ecology [Epub ahead of print].

Marine planktonic bacteria and archaea commonly exhibit pronounced seasonal succession in community composition. But the existence of seasonality in their assembly processes and between-domain differences in underlying mechanism are largely unassessed. Using a high-coverage sampling strategy (including single sample for each station during four cruises in different seasons), 16S rRNA gene sequencing, and null models, we investigated seasonal patterns in the processes governing spatial turnover of bacteria and archaea in surface coastal waters across a sampling grid over ~300 km in the East China Sea. We found that archaea only bloomed in prokaryotic communities during autumn and winter cruises. Seasonality mostly overwhelmed spatial variability in the compositions of both domains. Bacterial and archaeal communities were dominantly governed by deterministic and stochastic assembly processes, respectively, in autumn cruise, probably due to the differences in niche breadths (bacteria < archaea) and relative abundance (bacteria > archaea). Stochasticity dominated assembly mechanisms of both domains but was driven by distinct processes in winter cruise. Determinism-dominated assembly mechanisms of bacteria rebounded in spring and summer cruises, reflecting seasonal variability in bacterial community assembly. This could be attributed to seasonal changes in bacterial niche breadths and habitat heterogeneity across the study area. There were seasonal changes in environmental factors mediating the determinism-stochasticity balance of bacterial community assembly, holding a probability of the existence of unmeasured mediators. Our results suggest contrasting assembly mechanisms of bacteria and archaea in terms of determinism-vs.-stochasticity pattern and its seasonality, highlighting the importance of seasonal perspective on microbial community assembly in marine ecosystems.

RevDate: 2020-09-15

Darnell CL, Zheng J, Wilson S, et al (2020)

The Ribbon-Helix-Helix Domain Protein CdrS Regulates the Tubulin Homolog ftsZ2 To Control Cell Division in Archaea.

mBio, 11(4):.

Precise control of the cell cycle is central to the physiology of all cells. In prior work we demonstrated that archaeal cells maintain a constant size; however, the regulatory mechanisms underlying the cell cycle remain unexplored in this domain of life. Here, we use genetics, functional genomics, and quantitative imaging to identify and characterize the novel CdrSL gene regulatory network in a model species of archaea. We demonstrate the central role of these ribbon-helix-helix family transcription factors in the regulation of cell division through specific transcriptional control of the gene encoding FtsZ2, a putative tubulin homolog. Using time-lapse fluorescence microscopy in live cells cultivated in microfluidics devices, we further demonstrate that FtsZ2 is required for cell division but not elongation. The cdrS-ftsZ2 locus is highly conserved throughout the archaeal domain, and the central function of CdrS in regulating cell division is conserved across hypersaline adapted archaea. We propose that the CdrSL-FtsZ2 transcriptional network coordinates cell division timing with cell growth in archaea.IMPORTANCE Healthy cell growth and division are critical for individual organism survival and species long-term viability. However, it remains unknown how cells of the domain Archaea maintain a healthy cell cycle. Understanding the archaeal cell cycle is of paramount evolutionary importance given that an archaeal cell was the host of the endosymbiotic event that gave rise to eukaryotes. Here, we identify and characterize novel molecular players needed for regulating cell division in archaea. These molecules dictate the timing of cell septation but are dispensable for growth between divisions. Timing is accomplished through transcriptional control of the cell division ring. Our results shed light on mechanisms underlying the archaeal cell cycle, which has thus far remained elusive.

RevDate: 2021-01-10

Penev PI, Fakhretaha-Aval S, Patel VJ, et al (2020)

Supersized Ribosomal RNA Expansion Segments in Asgard Archaea.

Genome biology and evolution, 12(10):1694-1710.

The ribosome's common core, comprised of ribosomal RNA (rRNA) and universal ribosomal proteins, connects all life back to a common ancestor and serves as a window to relationships among organisms. The rRNA of the common core is similar to rRNA of extant bacteria. In eukaryotes, the rRNA of the common core is decorated by expansion segments (ESs) that vastly increase its size. Supersized ESs have not been observed previously in Archaea, and the origin of eukaryotic ESs remains enigmatic. We discovered that the large ribosomal subunit (LSU) rRNA of two Asgard phyla, Lokiarchaeota and Heimdallarchaeota, considered to be the closest modern archaeal cell lineages to Eukarya, bridge the gap in size between prokaryotic and eukaryotic LSU rRNAs. The elongated LSU rRNAs in Lokiarchaeota and Heimdallarchaeota stem from two supersized ESs, called ES9 and ES39. We applied chemical footprinting experiments to study the structure of Lokiarchaeota ES39. Furthermore, we used covariation and sequence analysis to study the evolution of Asgard ES39s and ES9s. By defining the common eukaryotic ES39 signature fold, we found that Asgard ES39s have more and longer helices than eukaryotic ES39s. Although Asgard ES39s have sequences and structures distinct from eukaryotic ES39s, we found overall conservation of a three-way junction across the Asgard species that matches eukaryotic ES39 topology, a result consistent with the accretion model of ribosomal evolution.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.


SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

If you thought that the history of life could be organized into a simple tree and that genes only moved from parents to progeny, think again. Recent science has shown that sometimes genes move sideways, skipping the reproductive process, and the tree of life looks more like a tangled bush. David Quammen, a masterful science writer, explains these new findings and more. Read this book and you'll learn about the discovery of the archaea — an entirely different form of life, living right here on this planet, and not noticed until Carl Woese found them, by being among the first to use molecular tools to look at organismal relationships. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )