Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: CRISPR-Cas

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 13 Jul 2019 at 01:37 Created: 


Clustered regularly interspaced short palindromic repeats (CRISPR, pronounced crisper) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to foreign DNA (e.g a virus or plasmid). The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as those present within plasmids and phages, and provides a form of acquired immunity. CRISPR associated proteins (Cas) use the CRISPR spacers to recognize and cut these exogenous genetic elements in a manner analogous to RNA interference in eukaryotic organisms. CRISPRs are found in approximately 40% of sequenced bacterial genomes and 90% of sequenced archaea. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added. The Cas9-gRNA complex corresponds with the CAS III crRNA complex in the above diagram. CRISPR/Cas genome editing techniques have many potential applications, including altering the germline of humans, animals, and food crops. The use of CRISPR Cas9-gRNA complex for genome editing was the AAAS's choice for breakthrough of the year in 2015.

Created with PubMed® Query: "CRISPR.CAS" OR "crispr/cas" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-07-12

Guo T, Zheng F, Zeng Z, et al (2019)

Cmr3 regulates the suppression on cyclic oligoadenylate synthesis by tag complementarity in a Type III-B CRISPR-Cas system.

RNA biology [Epub ahead of print].

Type III CRISPR-Cas systems code for a multi-subunit ribonucleoprotein (RNP) complex that mediates DNA cleavage and synthesizes cyclic oligoadenylate (cOA) second messenger to confer anti-viral immunity. Both immune activities are to be activated upon binding to target RNA transcripts by their complementarity to crRNA, and autoimmunity avoidance is determined by extended complementarity between the 5'-repeat tag of crRNA and 3'-flanking sequences of target transcripts (anti-tag). However, as to how the strategy could achieve stringent autoimmunity avoidance remained elusive. In this study, we systematically investigated how the complementarity of the crRNA 5'-tag and anti-tag (i.e., tag complementarity) could affect the interference activities (DNA cleavage activity and cOA synthesis activity) of Cmr-α, a type III-B system in Sulfolobus islandicus Rey15A. The results revealed an increasing suppression on both activities by increasing degrees of tag complementarity and a critical function of the 7th nucleotide of crRNA in avoiding autoimmunity. More importantly, mutagenesis of Cmr3α exerts either positive or negative effects on the cOA synthesis activity depending on the degrees of tag complementarity, suggesting that the subunit, coupling with the interaction between crRNA tag and anti-tag, function in facilitating immunity and avoiding autoimmunity in Type III-B systems.

RevDate: 2019-07-11

Abedon ST (2017)

Phage "delay" towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages.

AIMS microbiology, 3(2):186-226 pii:microbiol-03-02-186.

In exploring bacterial resistance to bacteriophages, emphasis typically is placed on those mechanisms which completely prevent phage replication. Such resistance can be detected as extensive reductions in phage ability to form plaques, that is, reduced efficiency of plating. Mechanisms include restriction-modification systems, CRISPR/Cas systems, and abortive infection systems. Alternatively, phages may be reduced in their "vigor" when infecting certain bacterial hosts, that is, with phages displaying smaller burst sizes or extended latent periods rather than being outright inactivated. It is well known, as well, that most phages poorly infect bacteria that are less metabolically active. Extracellular polymers such as biofilm matrix material also may at least slow phage penetration to bacterial surfaces. Here I suggest that such "less-robust" mechanisms of resistance to bacteriophages could serve bacteria by slowing phage propagation within bacterial biofilms, that is, delaying phage impact on multiple bacteria rather than necessarily outright preventing such impact. Related bacteria, ones that are relatively near to infected bacteria, e.g., roughly 10+ µm away, consequently may be able to escape from biofilms with greater likelihood via standard dissemination-initiating mechanisms including erosion from biofilm surfaces or seeding dispersal/central hollowing. That is, given localized areas of phage infection, so long as phage spread can be reduced in rate from initial points of contact with susceptible bacteria, then bacterial survival may be enhanced due to bacteria metaphorically "running away" to more phage-free locations. Delay mechanisms-to the extent that they are less specific in terms of what phages are targeted-collectively could represent broader bacterial strategies of phage resistance versus outright phage killing, the latter especially as require specific, evolved molecular recognition of phage presence. The potential for phage delay should be taken into account when developing protocols of phage-mediated biocontrol of biofilm bacteria, e.g., as during phage therapy of chronic bacterial infections.

RevDate: 2019-07-11

Gupta D, Bhattacharjee O, Mandal D, et al (2019)

CRISPR-Cas9 system: A new-fangled dawn in gene editing.

Life sciences pii:S0024-3205(19)30562-4 [Epub ahead of print].

Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector Molecules (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome editing approach into a more expedient and competent way, thus facilitating proficient genome editing through embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effectively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The execution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be addressed, the employment of CRISPR-Cas9-based genome engineering technologies will increase our understanding to disease processes and their treatment in the near future. In this review we have discussed the history of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites. Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been detailed here.

RevDate: 2019-07-11

Ashari KS, Roslan NS, Omar AR, et al (2019)

Genome sequencing and analysis of Salmonella enterica subsp. enterica serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates.

PeerJ, 7:e6948 pii:6948.

Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I-III restriction-modification sites and the CRISPR-Cas system of the Type I-E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.

RevDate: 2019-07-11

Lima R, Del Fiol FS, VM Balcão (2019)

Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria.

Frontiers in pharmacology, 10:692.

The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology. The use of these technologies, alone or in combination, is promising for solving a problem that humanity faces today and that could lead to human extinction: the domination of pathogenic bacteria resistant to artificial drugs. This prospective paper discusses the potential of bacteriophage particles, CRISPR-Cas, and nanotechnology for use in combating human (bacterial) infections.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Léger S, Costa MBW, D Tulpan (2019)

Pairwise visual comparison of small RNA secondary structures with base pair probabilities.

BMC bioinformatics, 20(1):293 pii:10.1186/s12859-019-2902-6.

BACKGROUND: Predicted RNA secondary structures are typically visualized using dot-plots for base pair binding probabilities and planar graphs for unique structures, such as the minimum free energy structure. These are however difficult to analyze simultaneously.

RESULTS: This work introduces a compact unified view of the most stable conformation of an RNA secondary structure and its base pair probabilities, which is called the Circular Secondary Structure Base Pairs Probabilities Plot (CS2BP2-Plot). Along with our design we provide access to a web server implementation of our solution that facilitates pairwise comparison of short RNA (and DNA) sequences up to 200 base pairs. The web server first calculates the minimum free energy secondary structure and the base pair probabilities for up to 10 RNA or DNA sequences using RNAfold and then provides a two panel comparative view that includes CS2BP2-Plots along with the traditional graph, planar and circular diagrams obtained with VARNA. The CS2BP2-Plots include highlighting of the nucleotide differences between two selected sequences using ClustalW local alignments. We also provide descriptive statistics, dot-bracket secondary structure representations and ClustalW local alignments for compared sequences.

CONCLUSIONS: Using circular diagrams and colour and weight-coded arcs, we demonstrate how a single image can replace the state-of-the-art dual representations (dot-plots and minimum free energy structures) for base-pair probabilities of RNA secondary structures while allowing efficient exploration and comparison of different RNA conformations via a web server front end. With that, we provide the community, especially the biologically oriented, with an intuitive tool for ncRNA visualization. Web-server:

RevDate: 2019-07-12
CmpDate: 2019-07-12

Huang JM, Chang YT, Shih MH, et al (2019)

Identification and characterization of a secreted M28 aminopeptidase protein in Acanthamoeba.

Parasitology research, 118(6):1865-1874.

Acanthamoeba is a free-living pathogenic protozoan that is distributed in different environmental reservoirs, including lakes and soil. Pathogenic Acanthamoeba can cause severe human diseases, such as blinding keratitis and granulomatous encephalitis. Therefore, it is important to understand the pathogenic relationship between humans and Acanthamoeba. By comparison of systemic analysis results for Acanthamoeba isolates, we identified a novel secreted protein of Acanthamoeba, an M28 aminopeptidase (M28AP), which targets of the human innate immune defense. We investigated the molecular functions and characteristics of the M28AP protein by anti-M28 antibodies and a M28AP mutant strain generated by the CRISPR/Cas9 system. Human complement proteins such as C3b and iC3b were degraded by Acanthamoeba M28AP. We believe that M28AP is an important factor in human innate immunity. This study provides new insight for the development of more efficient medicines to treat Acanthamoeba infection.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Mimitou EP, Cheng A, Montalbano A, et al (2019)

Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells.

Nature methods, 16(5):409-412.

Multimodal single-cell assays provide high-resolution snapshots of complex cell populations, but are mostly limited to transcriptome plus an additional modality. Here, we describe expanded CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing (ECCITE-seq) for the high-throughput characterization of at least five modalities of information from each single cell. We demonstrate application of ECCITE-seq to multimodal CRISPR screens with robust direct single-guide RNA capture and to clonotype-aware multimodal phenotyping of cancer samples.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Chow RD, Wang G, Ye L, et al (2019)

In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.

Nature methods, 16(5):405-408.

Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Sibbritt T, Osteil P, Fan X, et al (2019)

Gene Editing of Mouse Embryonic and Epiblast Stem Cells.

Methods in molecular biology (Clifton, N.J.), 1940:77-95.

Efficient and reliable methods for gene editing are critical for the generation of loss-of-gene function stem cells and genetically modified mice. Here, we outline the application of CRISPR-Cas9 technology for gene editing in mouse embryonic stem cells (mESCs) to generate knockout ESC chimeras for the fast-tracked analysis of gene function. Furthermore, we describe the application of gene editing directly to mouse epiblast stem cells (mEpiSCs) for modelling germ layer differentiation in vitro.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Burgess DJ (2019)

Genome editing for disease locus dissection.

Nature reviews. Genetics, 20(2):67.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Cloney R (2019)

The oracle of inDelphi predicts Cas9 repair outcomes.

Nature reviews. Genetics, 20(1):4-5.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Maguire JA, Cardenas-Diaz FL, Gadue P, et al (2019)

Highly Efficient CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells.

Current protocols in stem cell biology, 48(1):e64.

Human PSCs offer tremendous potential for both basic biology and cell-based therapies for a wide variety of diseases. The ability to manipulate the genome of these cells using the CRISPR-Cas9 technology has expanded this potential by providing a valuable tool for engineering or correcting disease-associated mutations. Because of the high efficiency with which CRISPR-Cas9 creates targeted double-strand breaks, a major challenge has been the introduction of precise genetic modifications on one allele, without indel formation on the non-targeted allele. To overcome this obstacle, we describe the use of two oligonucleotides, one expressing the sequence change, with the other maintaining the normal sequence. In addition, we have streamlined both the transfection and screening methodology to make this protocol efficient with small numbers of cells and to limit the amount of labor-intensive clone passaging. This protocol provides a streamlined and technically simple approach for generating valuable tools to model human disease in stem cells. © 2018 by John Wiley & Sons, Inc.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Yang Z, Wang H, Wang Y, et al (2018)

Manufacturing Multienzymatic Complex Reactors In Vivo by Self-Assembly To Improve the Biosynthesis of Itaconic Acid in Escherichia coli.

ACS synthetic biology, 7(5):1244-1250.

The self-assembly of multienzyme into bioreactors is of extensive interest to spatially regulate valuable reactions. Despite the important progresses achieved, methods to precisely manufacture multienzymatic complex reactors (MECRs) are still poorly proposed both in vivo and in vitro, particularly for more than three biocatalytically relevant enzymes. Here, we developed a sequential self-assembly system to form multitude MECRs involving three enzymes in the itaconic acid (IA) pathway with two pairs of protein-peptide interactions. The MECRs were identified as nanoscale particle-like structures when self-assembled in vitro and produced higher IA production than the unassembled and linearly assembled systems when applied in vivo coupling with CRISPR-Cas9 based metabolic engineering. This work provides novel insights into the construction of multifarious multienzyme complex into bioreactors by the self-assembly strategy for multistep cascades to sequentially control metabolic fluxes inside cells.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Agrawal DK, Tang X, Westbrook A, et al (2018)

Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

ACS synthetic biology, 7(5):1219-1228.

Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Li L, Hu S, X Chen (2018)

Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

Biomaterials, 171:207-218.

In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Wang W, Zheng W, Hu F, et al (2018)

Enhanced Biosynthesis Performance of Heterologous Proteins in CHO-K1 Cells Using CRISPR-Cas9.

ACS synthetic biology, 7(5):1259-1268.

Chinese hamster ovary (CHO) cells are the famous expression system for industrial production of recombinant proteins, such as therapeutic antibodies. However, there still remain bottlenecks in protein quality and weakness in expression efficiency because of the intrinsic genetic properties of the cell. Here we have enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9 by editing the genome precisely with two genes for improving ER microenvironment and reinforcing antiapoptotic ability. A linear donor plasmid harboring eGFP-HsQSOX1b and Survivin genes was knocked in specific locus in CHO-K1 genome by the CRISPR-Cas9 RNA guided nucleases via NHEJ with efficiencies of up to 3.85% in the CHO-K1 cell pools following FACS, and the hQSOX1 and hSurvivin genes were integrated into expected genome locus successfully. Compared with control, the antiapoptotic viability of edited CHO-K1 cells was increased by 6.40 times, and the yield has been raised by 5.55 times with GLuc as model protein. The possible molecular mechanisms and pathways of remarkable antiapoptotic ability and protein biosynthesis in modified CHO-K1 cells have been elucidated reasonably. In conclusion, the novel ideas and reliable techniques for obtaining foreign proteins more efficiently in engineered animal cells were very valuable to meet large clinical needs.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Gao W, Yin J, Bao L, et al (2018)

Engineering Extracellular Expression Systems in Escherichia coli Based on Transcriptome Analysis and Cell Growth State.

ACS synthetic biology, 7(5):1291-1302.

Escherichia coli extracellular expression systems have a number of advantages over other systems, such as lower pyrogen levels and a simple purification process. Various approaches, such as the generation of leaky mutants via chromosomal engineering, have been explored for this expression system. However, extracellular protein yields in leaky mutants are relatively low compared to that in intracellular expression systems and therefore need to be improved. In this work, we describe the construction, characterization, and mechanism of enhanced extracellular expression in Escherichia coli. On the basis of the localizations, functions, and transcription levels of cell envelope proteins, we systematically elucidated the effects of multiple gene deletions on cell growth and extracellular expression using modified CRISPR/Cas9-based genome editing and a FlAsH labeling assay. High extracellular yields of heterologous proteins of different sizes were obtained by screening multiple gene mutations. The enhancement of extracellular secretion was associated with the derepression of translation and translocation. This work utilized universal methods in the design of extracellular expression systems for genes not directly associated with protein synthesis that were used to generate strains with higher protein expression capability. We anticipate that extracellular expression systems may help to shed light on the poorly understood aspects of these secretion processes as well as to further assist in the construction of engineered prokaryotic cells for efficient extracellular production of heterologous proteins.

RevDate: 2019-07-11
CmpDate: 2019-07-11

Liu Y, Wei WP, BC Ye (2018)

High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea.

ACS synthetic biology, 7(5):1338-1348.

The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Wrighton KH (2018)

Genetic engineering: Expanding the reach of Cas9.

Nature reviews. Genetics, 19(5):250-251.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Burgess DJ (2018)

Translational genetics: CRISPR therapies - making the grade not the cut.

Nature reviews. Genetics, 19(2):63.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Zhao D, Feng X, Zhu X, et al (2017)

CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency.

Scientific reports, 7(1):16624.

The CRISPR/Cas9 system is a powerful, revolutionary tool for genome editing. However, it is not without limitations. There are PAM-free and CRISPR-tolerant regions that cannot be modified by the standard CRISPR/Cas9 system, and off-target activity impedes its broader applications. To avoid these drawbacks, we developed a very simple CRISPR/Cas9-assisted gRNA-free one-step (CAGO) genome editing technique which does not require the construction of a plasmid to express a specific gRNA. Instead, a universal N20 sequence with a very high targeting efficiency is inserted into the E. coli chromosome by homologous recombination, which in turn undergoes a double-stranded break by CRISPR/Cas9 and induces an intra-chromosomal recombination event to accomplish the editing process. This technique was shown to be able to edit PAM-free and CRISPR-tolerant regions with no off-target effects in Escherichia coli. When applied to multi-locus editing, CAGO was able to modify one locus in two days with a near 100% editing efficiency. Furthermore, modified CAGO was used to edit large regions of up to 100 kbp with at least 75% efficiency. Finally, genome editing by CAGO only requires a transformation procedure and the construction of a linear donor DNA cassette, which was further simplified by applying a modular design strategy. Although the technique was established in E. coli, it should be applicable to other organisms with only minor modifications.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Musunuru K, Lagor WR, JM Miano (2017)

What Do We Really Think About Human Germline Genome Editing, and What Does It Mean for Medicine?.

Circulation. Cardiovascular genetics, 10(5):.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Hennessy EJ (2017)

Cardiovascular Disease and Long Noncoding RNAs: Tools for Unraveling the Mystery Lnc-ing RNA and Phenotype.

Circulation. Cardiovascular genetics, 10(4):e001556.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Burgess DJ (2017)

Genetic screens: Combining CRISPR perturbations and RNA-seq.

Nature reviews. Genetics, 18(2):67.

RevDate: 2019-07-12
CmpDate: 2019-07-12

Cloney R (2017)

Genetic engineering: A genome-editing off switch.

Nature reviews. Genetics, 18(2):68-69.

RevDate: 2019-07-03
CmpDate: 2019-07-03

McMahon MA, DW Cleveland (2017)

Gene therapy: Gene-editing therapy for neurological disease.

Nature reviews. Neurology, 13(1):7-9.

RevDate: 2019-07-10

Steinecke A, Kurabayashi N, Hayano Y, et al (2019)

In Vivo Single-Cell Genotyping of Mouse Cortical Neurons Transfected with CRISPR/Cas9.

Cell reports, 28(2):325-331.e4.

CRISPR/Cas-based technologies have revolutionized genetic approaches to addressing a wide range of neurobiological questions. The ability of CRISPR/Cas to introduce mutations into target genes allows us to perform in vivo loss-of-function experiments without generating genetically engineered mice. However, the lack of a reliable method to determine genotypes of individual CRISPR/Cas-transfected cells has made it impossible to unambiguously identify the genetic cause of their phenotypes in vivo. Here, we report a strategy for single-cell genotyping in CRISPR/Cas-transfected neurons that were phenotypically characterized in vivo. We show that re-sectioning of cortical slices and subsequent laser microdissection allow us to isolate individual CRISPR/Cas-transfected neurons. Sequencing of PCR products containing a CRISPR/Cas-targeted genomic region in single reference neurons provided genotypes that completely correspond with those deduced from their target protein expression and phenotypes. Thus, our study establishes a powerful strategy to determine the causality between genotypes and phenotypes in CRISPR/Cas-transfected neurons.

RevDate: 2019-07-10

Jin M, Garreau de Loubresse N, Kim Y, et al (2019)

Programmable CRISPR-Cas Repression, Activation, and Computation with Sequence-Independent Targets and Triggers.

ACS synthetic biology [Epub ahead of print].

The programmability of CRISPR-derived Cas9 as a sequence-specific DNA-targeting protein has made it a powerful tool for genomic manipulation in biological research and translational applications. Cas9 activity can be programmably engineered to respond to nucleic acids, but these efforts have focused primarily on single-input control of Cas9, and until recently, they were limited by sequence dependence between parts of the guide RNA and the sequence to be detected. Here, we not only design and present DNA- and RNA-sensing conditional guide RNA (cgRNA) that have no such sequence constraints, but also demonstrate a complete set of logical computations using these designs on DNA and RNA sequence inputs, including AND, OR, NAND, and NOR. The development of sequence-independent nucleic acid-sensing CRISPR-Cas9 systems with multi-input logic computation capabilities could lead to improved genome engineering and regulation as well as the construction of synthetic circuits with broader functionality.

RevDate: 2019-07-10

Lam TJ, Y Ye (2019)

Long reads reveal the diversification and dynamics of CRISPR reservoir in microbiomes.

BMC genomics, 20(1):567 pii:10.1186/s12864-019-5922-8.

BACKGROUND: Sequencing of microbiomes has accelerated the characterization of the diversity of CRISPR-Cas immune systems. However, the utilization of next generation short read sequences for the characterization of CRISPR-Cas dynamics remains limited due to the repetitive nature of CRISPR arrays. CRISPR arrays are comprised of short spacer segments (derived from invaders' genomes) interspaced between flanking repeat sequences. The repetitive structure of CRISPR arrays poses a computational challenge for the accurate assembly of CRISPR arrays from short reads. In this paper we evaluate the use of long read sequences for the analysis of CRISPR-Cas system dynamics in microbiomes.

RESULTS: We analyzed a dataset of Illumina's TruSeq Synthetic Long-Reads (SLR) derived from a gut microbiome. We showed that long reads captured CRISPR spacers at a high degree of redundancy, which highlights the spacer conservation of spacer sharing CRISPR variants, enabling the study of CRISPR array dynamics in ways difficult to achieve though short read sequences. We introduce compressed spacer graphs, a visual abstraction of spacer sharing CRISPR arrays, to provide a simplified view of complex organizational structures present within CRISPR array dynamics. Utilizing compressed spacer graphs, several key defining characteristics of CRISPR-Cas system dynamics were observed including spacer acquisition and loss events, conservation of the trailer end spacers, and CRISPR arrays' directionality (transcription orientation). Other result highlights include the observation of intense array contraction and expansion events, and reconstruction of a full-length genome for a potential invader (Faecalibacterium phage) based on identified spacers.

CONCLUSION: We demonstrate in an in silico system that long reads provide the necessary context for characterizing the organization of CRISPR arrays in a microbiome, and reveal dynamic and evolutionary features of CRISPR-Cas systems in a microbial population.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Hou Z, Y Zhang (2019)

Inserting DNA with CRISPR.

Science (New York, N.Y.), 365(6448):25-26.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Pei W, Wang X, Rössler J, et al (2019)

Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice.

Nature protocols, 14(6):1820-1840.

Fate mapping is a powerful genetic tool for linking stem or progenitor cells with their progeny, and hence for defining cell lineages in vivo. The resolution of fate mapping depends on the numbers of distinct markers that are introduced in the beginning into stem or progenitor cells; ideally, numbers should be sufficiently large to allow the tracing of output from individual cells. Highly diverse genetic barcodes can serve this purpose. We recently developed an endogenous genetic barcoding system, termed Polylox. In Polylox, random DNA recombination can be induced by transient activity of Cre recombinase in a 2.1-kb-long artificial recombination substrate that has been introduced into a defined locus in mice (Rosa26Polylox reporter mice). Here, we provide a step-by-step protocol for the use of Polylox, including barcode induction and estimation of induction efficiency, barcode retrieval with single-molecule real-time (SMRT) DNA sequencing followed by computational barcode identification, and the calculation of barcode-generation probabilities, which is key for estimations of single-cell labeling for a given number of stem cells. Thus, Polylox barcoding enables high-resolution fate mapping in essentially all tissues in mice for which inducible Cre driver lines are available. Alternative methods include ex vivo cell barcoding, inducible transposon insertion and CRISPR-Cas9-based barcoding; Polylox currently allows combining non-invasive and cell-type-specific labeling with high label diversity. The execution time of this protocol is ~2-3 weeks for experimental data generation and typically <2 d for computational Polylox decoding and downstream analysis.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Wu Y, Zeng J, Roscoe BP, et al (2019)

Highly efficient therapeutic gene editing of human hematopoietic stem cells.

Nature medicine, 25(5):776-783.

Re-expression of the paralogous γ-globin genes (HBG1/2) could be a universal strategy to ameliorate the severe β-globin disorders sickle cell disease (SCD) and β-thalassemia by induction of fetal hemoglobin (HbF, α2γ2)1. Previously, we and others have shown that core sequences at the BCL11A erythroid enhancer are required for repression of HbF in adult-stage erythroid cells but are dispensable in non-erythroid cells2-6. CRISPR-Cas9-mediated gene modification has demonstrated variable efficiency, specificity, and persistence in hematopoietic stem cells (HSCs). Here, we demonstrate that Cas9:sgRNA ribonucleoprotein (RNP)-mediated cleavage within a GATA1 binding site at the +58 BCL11A erythroid enhancer results in highly penetrant disruption of this motif, reduction of BCL11A expression, and induction of fetal γ-globin. We optimize conditions for selection-free on-target editing in patient-derived HSCs as a nearly complete reaction lacking detectable genotoxicity or deleterious impact on stem cell function. HSCs preferentially undergo non-homologous compared with microhomology-mediated end joining repair. Erythroid progeny of edited engrafting SCD HSCs express therapeutic levels of HbF and resist sickling, while those from patients with β-thalassemia show restored globin chain balance. Non-homologous end joining repair-based BCL11A enhancer editing approaching complete allelic disruption in HSCs is a practicable therapeutic strategy to produce durable HbF induction.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Rui Y, Wilson DR, Sanders K, et al (2019)

Reducible Branched Ester-Amine Quadpolymers (rBEAQs) Codelivering Plasmid DNA and RNA Oligonucleotides Enable CRISPR/Cas9 Genome Editing.

ACS applied materials & interfaces, 11(11):10472-10480.

Functional codelivery of plasmid DNA and RNA oligonucleotides in the same nanoparticle system is challenging due to differences in their physical properties as well as their intracellular locations of function. In this study, we synthesized a series of reducible branched ester-amine quadpolymers (rBEAQs) and investigated their ability to coencapsulate and deliver DNA plasmids and RNA oligos. The rBEAQs are designed to leverage polymer branching, reducibility, and hydrophobicity to successfully cocomplex DNA and RNA in nanoparticles at low polymer to nucleic acid w/w ratios and enable high delivery efficiency. We validate the synthesis of this new class of biodegradable polymers, characterize the self-assembled nanoparticles that these polymers form with diverse nucleic acids, and demonstrate that the nanoparticles enable safe, effective, and efficient DNA-siRNA codelivery as well as nonviral CRISPR-mediated gene editing utilizing Cas9 DNA and sgRNA codelivery.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Montaño A, Forero-Castro M, Hernández-Rivas JM, et al (2018)

Targeted genome editing in acute lymphoblastic leukemia: a review.

BMC biotechnology, 18(1):45.

BACKGROUND: Genome editing technologies offers new opportunities for tackling diseases such as acute lymphoblastic leukemia (ALL) that have been beyond the reach of previous therapies.

RESULTS: We show how the recent availability of genome-editing tools such as CRISPR-Cas9 are an important means of advancing functional studies of ALL through the incorporation, elimination and modification of somatic mutations and fusion genes in cell lines and mouse models. These tools not only broaden the understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials.

CONCLUSIONS: New approaches including CRISPR-Cas9 are crucial for functional studies of genetic aberrations driving cancer progression, and that may be responsible for treatment resistance and relapses. By using this approach, diseases can be more faithfully reproduced and new therapeutic targets and approaches found.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Bleijenberg A, E Dekker (2018)

Reverse-engineering the serrated neoplasia pathway using CRISPR-Cas9.

Nature reviews. Gastroenterology & hepatology, 15(9):522-524.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Paulo JA, SP Gygi (2018)

Isobaric Tag-Based Protein Profiling of a Nicotine-Treated Alpha7 Nicotinic Receptor-Null Human Haploid Cell Line.

Proteomics, 18(11):e1700475.

Nicotinic acetylcholine receptors (nAChR), the primary cell surface targets of nicotine, have implications in various neurological disorders. Here we investigate the proteome-wide effects of nicotine on human haploid cell lines (wildtype HAP1 and α7KO-HAP1) to address differences in nicotine-induced protein abundance profiles between these cell lines. We performed an SPS-MS3-based TMT10-plex experiment arranged in a 2-3-2-3 design with two replicates of the untreated samples and three of the treated samples for each cell line. We quantified 8775 proteins across all ten samples, of which several hundred differed significantly in abundance. Comparing α7KO-HAP1 and HAP1wt cell lines to each other revealed significant protein abundance alterations; however, we also measured differences resulting from nicotine treatment in both cell lines. Among proteins with increased abundance levels due to nicotine treatment included those previously identified: APP, APLP2, and ITM2B. The magnitude of these changes was greater in HAP1wt compared to the α7KO-HAP1 cell line, implying a potential role for the α7 nAChR in HAP1 cells. Moreover, the data revealed that membrane proteins and proteins commonly associated with neurons were predominant among those with altered abundance. This study, which is the first TMT-based proteome profiling of HAP1 cells, defines further the effects of nicotine on non-neuronal cellular proteomes.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Phan QV, Contzen J, Seemann P, et al (2017)

Site-specific chromosomal gene insertion: Flp recombinase versus Cas9 nuclease.

Scientific reports, 7(1):17771.

Site-specific recombination systems like those based on the Flp recombinase proved themselves as efficient tools for cell line engineering. The recent emergence of designer nucleases, especially RNA guided endonucleases like Cas9, has considerably broadened the available toolbox for applications like targeted transgene insertions. Here we established a recombinase-mediated cassette exchange (RMCE) protocol for the fast and effective, drug-free isolation of recombinant cells. Distinct fluorescent protein patterns identified the recombination status of individual cells. In derivatives of a CHO master cell line the expression of the introduced transgene of interest could be dramatically increased almost 20-fold by subsequent deletion of the fluorescent protein gene that provided the initial isolation principle. The same master cell line was employed in a comparative analysis using CRISPR/Cas9 for transgene integration in identical loci. Even though the overall targeting efficacy was comparable, multi-loci targeting was considerably more effective for Cas9-mediated transgene insertion when compared to RMCE. While Cas9 is inherently more flexible, our results also alert to the risk of aberrant recombination events around the cut site. Together, this study points at the individual strengths in performance of both systems and provides guidance for their appropriate use.

RevDate: 2019-07-10
CmpDate: 2019-07-10

Jacobs EZ, Warrier S, Volders PJ, et al (2017)

CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells.

Scientific reports, 7(1):16650.

The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naïve state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the CRISPR/Cas9 system in these naïve stem cells. Editing efficiencies of respectively 1.3-8.4% and 3.8-19% were generated with the Cas9 nuclease and the D10A Cas9 nickase mutant. Next to this, wildtype and genome-edited naïve hESCs were successfully differentiated to neural progenitor cells. As a proof-of-principle of our workflow, two monoclonal genome-edited naïve hESCs colonies were obtained for TUNA, a long non-coding RNA involved in pluripotency and neural differentiation. In these genome-edited hESCs, an effect was seen on expression of TUNA, although not on neural differentiation potential. In conclusion, we optimized a genome-editing workflow in naïve hESCs that can be used to study candidate genes involved in neural differentiation and/or functioning.

RevDate: 2019-07-09

Goulin EH, Galdeano DM, Granato LM, et al (2019)

RNA interference and CRISPR: Promising approaches to better understand and control citrus pathogens.

Microbiological research, 226:1-9.

Citrus crops have great economic importance worldwide. However, citrus production faces many diseases caused by different pathogens, such as bacteria, oomycetes, fungi and viruses. To overcome important plant diseases in general, new technologies have been developed and applied to crop protection, including RNA interference (RNAi) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. RNAi has been demonstrated to be a powerful tool for application in plant defence mechanisms against different pathogens as well as their respective vectors, and CRISPR/Cas system has become widely used in gene editing or reprogramming or knocking out any chosen DNA/RNA sequence. In this article, we provide an overview of the use of RNAi and CRISPR/Cas technologies in management strategies to control several plants diseases, and we discuss how these strategies can be potentially used against citrus pathogens.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Bell CC, Fennell KA, Chan YC, et al (2019)

Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia.

Nature communications, 10(1):2723 pii:10.1038/s41467-019-10652-9.

Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Naseri G, Behrend J, Rieper L, et al (2019)

COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors.

Nature communications, 10(1):2615 pii:10.1038/s41467-019-10224-x.

Balanced expression of multiple genes is central for establishing new biosynthetic pathways or multiprotein cellular complexes. Methods for efficient combinatorial assembly of regulatory sequences (promoters) and protein coding sequences are therefore highly wanted. Here, we report a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, COMPASS is equipped with multi-locus CRISPR/Cas9-mediated modification capacity. We demonstrate the application of COMPASS by generating cell libraries producing β-carotene and co-producing β-ionone and biosensor-responsive naringenin. COMPASS will have many applications in synthetic biology projects that require gene expression balancing.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Hojo MA, Masuda K, Hojo H, et al (2019)

Identification of a genomic enhancer that enforces proper apoptosis induction in thymic negative selection.

Nature communications, 10(1):2603 pii:10.1038/s41467-019-10525-1.

During thymic negative selection, autoreactive thymocytes carrying T cell receptor (TCR) with overtly strong affinity to self-MHC/self-peptide are removed by Bim-dependent apoptosis, but how Bim is specifically regulated to link TCR activation and apoptosis induction is unclear. Here we identify a murine T cell-specific genomic enhancer EBAB (Bub1-Acoxl-Bim), whose deletion leads to accumulation of thymocytes expressing high affinity TCRs. Consistently, EBAB knockout mice have defective negative selection and fail to delete autoreactive thymocytes in various settings, with this defect accompanied by reduced Bim expression and apoptosis induction. By contrast, EBAB is dispensable for maintaining peripheral T cell homeostasis via Bim-dependent pathways. Our data thus implicate EBAB as an important, developmental stage-specific regulator of Bim expression and apoptosis induction to enforce thymic negative selection and suppress autoimmunity. Our study unravels a part of genomic enhancer codes that underlie complex and context-dependent gene regulation in TCR signaling.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Chen Z, Y Zhang (2019)

Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development.

Nature genetics, 51(6):947-951.

How maternal factors in oocytes trigger zygotic genome activation (ZGA) is a long-standing question in developmental biology. Recent studies in 2-cell-like embryonic stem cells (2C-like cells) suggest that transcription factors of the DUX family are key regulators of ZGA in placental mammals1,2. To characterize the role of DUX in ZGA, we generated Dux cluster knockout (KO) mouse lines. Unexpectedly, we found that both Dux zygotic KO (Z-KO) and maternal and zygotic KO (MZ-KO) embryos can survive to adulthood despite showing reduced developmental potential. Furthermore, transcriptome profiling of the MZ-KO embryos revealed that loss of DUX has minimal effects on ZGA and most DUX targets in 2C-like cells are normally activated in MZ-KO embryos. Thus, contrary to the key function of DUX in inducing 2C-like cells, our data indicate that DUX has only a minor role in ZGA and that loss of DUX is compatible with mouse development.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Soriano V (2019)

Gene Editing for HIV Cure at the Edge.

AIDS reviews, 21(1):50a-51.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Yuan T, Zhong Y, Wang Y, et al (2019)

Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system.

Lipids in health and disease, 18(1):69 pii:10.1186/s12944-019-1013-8.

OBJECTIVE: To generate novel rabbit models with a large-fragment deletion of either LDL receptor (LDLR) and/or apolipoprotein (apoE) genes for the study of hyperlipidemic and atherosclerosis.

METHODS: CRISPR/Cas9 system directed by a multiple sgRNAs system was used in rabbit embryos to edit their LDLR and apoE genes. The LDLR and apoE genes of founder rabbits were sequenced, and their plasma lipids and lipoprotein profiles on a normal chow diet were analyzed, western blotting was also performed to evaluate the expression of apolipoprotein. Sudan IV and HE staining of aortic were performed to confirm the formation of atherosclerosis.

RESULTS: Six knockout (KO) rabbits by injection of both LDLR and apoE sgRNAs were obtained, including four LDLR KO rabbits and two LDLR/apoE double- KO rabbits. Sequence analysis of these KO rabbits revealed that they contained multiple mutations including indels, deletions, and substitutions, as well as two rabbit lines containing biallelic large fragment deletion in the LDLR region. Analysis of their plasma lipids and lipoprotein profiles of these rabbits fed on a normal chow diet revealed that all of these KO rabbits exhibited remarkable hyperlipidemia with total cholesterol levels increased by up to 10-fold over those of wild-type rabbits. Pathological examinations of two founder rabbits showed that KO rabbits developed prominent aortic and coronary atherosclerosis.

CONCLUSION: Large fragment deletions can be achieved in rabbits using Cas9 mRNA and multiple sgRNAs. LDLR KO along with LDLR/apoE double KO rabbits should provide a novel means for translational investigations of human hyperlipidemia and atherosclerosis.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Çiçek YA, Luther DC, Kretzmann JA, et al (2019)

Advances in CRISPR/Cas9 Technology for in Vivo Translation.

Biological & pharmaceutical bulletin, 42(3):304-311.

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized therapeutic gene editing by providing researchers with a new method to study and cure diseases previously considered untreatable. While the full range and power of CRISPR technology for therapeutics is being elucidated through in vitro studies, translation to in vivo studies is slow. To date there is no totally effective delivery strategy to carry CRISPR components to the target site in vivo. The complexity of in vivo delivery is furthered by the number of potential delivery methods, the different forms in which CRISPR can be delivered as a therapeutic, and the disease target and tissue type in question. There are major challenges and limitations to delivery strategies, and it is imperative that future directions are guided by well-conducted studies that consider the full effect these variables have on the eventual outcome. In this review we will discuss the advances of the latest in vivo CRISPR/Cas9 delivery strategies and highlight the challenges yet to be overcome.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Malzahn AA, Tang X, Lee K, et al (2019)

Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis.

BMC biology, 17(1):9 pii:10.1186/s12915-019-0629-5.

BACKGROUND: CRISPR-Cas12a (formerly Cpf1) is an RNA-guided endonuclease with distinct features that have expanded genome editing capabilities. Cas12a-mediated genome editing is temperature sensitive in plants, but a lack of a comprehensive understanding on Cas12a temperature sensitivity in plant cells has hampered effective application of Cas12a nucleases in plant genome editing.

RESULTS: We compared AsCas12a, FnCas12a, and LbCas12a for their editing efficiencies and non-homologous end joining (NHEJ) repair profiles at four different temperatures in rice. We found that AsCas12a is more sensitive to temperature and that it requires a temperature of over 28 °C for high activity. Each Cas12a nuclease exhibited distinct indel mutation profiles which were not affected by temperatures. For the first time, we successfully applied AsCas12a for generating rice mutants with high frequencies up to 93% among T0 lines. We next pursued editing in the dicot model plant Arabidopsis, for which Cas12a-based genome editing has not been previously demonstrated. While LbCas12a barely showed any editing activity at 22 °C, its editing activity was rescued by growing the transgenic plants at 29 °C. With an early high-temperature treatment regime, we successfully achieved germline editing at the two target genes, GL2 and TT4, in Arabidopsis transgenic lines. We then used high-temperature treatment to improve Cas12a-mediated genome editing in maize. By growing LbCas12a T0 maize lines at 28 °C, we obtained Cas12a-edited mutants at frequencies up to 100% in the T1 generation. Finally, we demonstrated DNA binding of Cas12a was not abolished at lower temperatures by using a dCas12a-SRDX-based transcriptional repression system in Arabidopsis.

CONCLUSION: Our study demonstrates the use of high-temperature regimes to achieve high editing efficiencies with Cas12a systems in rice, Arabidopsis, and maize and sheds light on the mechanism of temperature sensitivity for Cas12a in plants.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Slipek NJ, Varshney J, DA Largaespada (2019)

CRISPR/Cas9-Based Positive Screens for Cancer-Related Traits.

Methods in molecular biology (Clifton, N.J.), 1907:137-144.

Since the advent of large-scale, detailed descriptive cancer genomics studies at the beginning of the century, such as The Cancer Genome Atlas (TCGA), labs around the world have been working to make this data useful. Data like these can be made more useful by comparison with complementary functional genomic data. One new example is the application of CRISPR/Cas9-based library screening for cancer-related traits in cell lines. Such screens can reveal genome-wide suppressors of tumorigenesis and metastasis. Here we describe the use of widely available lentiviral libraries for such screens in cultured cell lines.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Adelmann CH, Wang T, Sabatini DM, et al (2019)

Genome-Wide CRISPR/Cas9 Screening for Identification of Cancer Genes in Cell Lines.

Methods in molecular biology (Clifton, N.J.), 1907:125-136.

In this protocol, pooled sgRNA libraries targeting thousands of genes are computationally designed, generated using microarray-based synthesis techniques, and packaged into lentiviral particles. Target cells of interest are transduced with the lentiviral sgRNA pools to generate a collection of knockout mutants-via Cas9-mediated genomic cleavage-and screened for a phenotype of interest. The relative abundance of each mutant in the population can be monitored over time through high-throughput sequencing of the integrated sgRNA expression cassettes. Using this technique, we outline strategies for the identification of cancer driver genes and genes mediating drug response.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Zhang S, CA Voigt (2018)

Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design.

Nucleic acids research, 46(20):11115-11125.

Large synthetic genetic circuits require the simultaneous expression of many regulators. Deactivated Cas9 (dCas9) can serve as a repressor by having a small guide RNA (sgRNA) direct it to bind a promoter. The programmability and specificity of RNA:DNA basepairing simplifies the generation of many orthogonal sgRNAs that, in theory, could serve as a large set of regulators in a circuit. However, dCas9 is toxic in many bacteria, thus limiting how high it can be expressed, and low concentrations are quickly sequestered by multiple sgRNAs. Here, we construct a non-toxic version of dCas9 by eliminating PAM (protospacer adjacent motif) binding with a R1335K mutation (dCas9*) and recovering DNA binding by fusing it to the PhlF repressor (dCas9*_PhlF). Both the 30 bp PhlF operator and 20 bp sgRNA binding site are required to repress a promoter. The larger region required for recognition mitigates toxicity in Escherichia coli, allowing up to 9600 ± 800 molecules of dCas9*_PhlF per cell before growth or morphology are impacted, as compared to 530 ± 40 molecules of dCas9. Further, PhlF multimerization leads to an increase in average cooperativity from n = 0.9 (dCas9) to 1.6 (dCas9*_PhlF). A set of 30 orthogonal sgRNA-promoter pairs are characterized as NOT gates; however, the simultaneous use of multiple sgRNAs leads to a monotonic decline in repression and after 15 are co-expressed the dynamic range is <10-fold. This work introduces a non-toxic variant of dCas9, critical for its use in applications in metabolic engineering and synthetic biology, and exposes a limitation in the number of regulators that can be used in one cell when they rely on a shared resource.

RevDate: 2019-07-08
CmpDate: 2019-07-08

van den Berg J, G Manjón A, Kielbassa K, et al (2018)

A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression.

Nucleic acids research, 46(19):10132-10144.

DNA damaging agents cause a variety of lesions, of which DNA double-strand breaks (DSBs) are the most genotoxic. Unbiased approaches aimed at investigating the relationship between the number of DSBs and outcome of the DNA damage response have been challenging due to the random nature in which damage is induced by classical DNA damaging agents. Here, we describe a CRISPR/Cas9-based system that permits us to efficiently introduce DSBs at defined sites in the genome. Using this system, we show that a guide RNA targeting only a single site in the human genome can trigger a checkpoint response that is potent enough to delay cell cycle progression. Abrogation of this checkpoint leads to DNA breaks in mitosis which gives rise to aneuploid progeny.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Cai C, Sang C, Du J, et al (2019)

Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(1):696-710.

The proper development of atrioventricular (AV) valves is critical for heart morphogenesis and for the formation of the cardiac conduction system. Defects in AV valve development are the most common type of congenital heart defect. Cardiac troponin I (ctnni), a structural and regulatory protein involved in cardiac muscle contraction, is a subunit of the troponin complex, but the functions and molecular mechanisms of ctnni during early heart development remain unclear. We created a knockout zebrafish model in which troponin I type 1b (tnni1b) (Tnni-HC, heart and craniofacial) was deleted using the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein system. In the homozygous mutant, the embryos showed severe pericardial edema, malformation of the heart tube, reduction of heart rate without contraction and with almost no blood flow, heart cavity congestion, and lack of an endocardial ring or valve leaflet, resulting in 88.8 ± 6.0% lethality at 7 d postfertilization. Deletion of tnni1b caused the abnormal expression of several markers involved in AV valve development, including bmp4, cspg2, has2, notch1b, spp1, and Alcam. Myocardial re-expression of tnni1b in mutants partially rescued the pericardial edema phenotype and AV canal (AVC) developmental defects. We further showed that tnni1b knockout in zebrafish and ctnni knockdown in rat h9c2 myocardial cells inhibited cardiac wnt signaling and that myocardial reactivation of wnt signaling partially rescued the abnormal expression of AVC markers caused by the tnni1b deletion. Taken together, our data suggest that tnni1b plays a vital role in zebrafish AV valve development by regulating the myocardial wnt signaling pathway.-Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of myocardial wnt signaling pathway.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Clements KE, Thakar T, Nicolae CM, et al (2018)

Loss of E2F7 confers resistance to poly-ADP-ribose polymerase (PARP) inhibitors in BRCA2-deficient cells.

Nucleic acids research, 46(17):8898-8907.

BRCA proteins are essential for homologous recombination (HR) DNA repair, and their germline or somatic inactivation is frequently observed in human tumors. Understanding the molecular mechanisms underlying the response of BRCA-deficient tumors to chemotherapy is paramount for developing improved personalized cancer therapies. While PARP inhibitors have been recently approved for treatment of BRCA-mutant breast and ovarian cancers, not all patients respond to this therapy, and resistance to these novel drugs remains a major clinical problem. Several mechanisms of chemoresistance in BRCA2-deficient cells have been identified. Rather than restoring normal recombination, these mechanisms result in stabilization of stalled replication forks, which can be subjected to degradation in BRCA2-mutated cells. Here, we show that the transcriptional repressor E2F7 modulates the chemosensitivity of BRCA2-deficient cells. We found that BRCA2-deficient cells are less sensitive to PARP inhibitor and cisplatin treatment after E2F7 depletion. Moreover, we show that the mechanism underlying this activity involves increased expression of RAD51, a target for E2F7-mediated transcriptional repression, which enhances both HR DNA repair, and replication fork stability in BRCA2-deficient cells. Our work describes a new mechanism of therapy resistance in BRCA2-deficient cells, and identifies E2F7 as a putative biomarker for tumor response to PARP inhibitor therapy.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Schleicher EM, Galvan AM, Imamura-Kawasawa Y, et al (2018)

PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress.

Nucleic acids research, 46(17):8908-8916.

During carcinogenesis, cells are exposed to increased replication stress due to replication fork arrest at sites of DNA lesions and difficult to replicate genomic regions. Efficient fork restart and DNA repair are important for cancer cell proliferation. We previously showed that the ADP-ribosyltransferase PARP10 interacts with the replication protein proliferating cell nuclear antigen and promotes lesion bypass by recruiting specialized, non-replicative DNA polymerases. Here, we show that PARP10 is overexpressed in a large proportion of human tumors. To understand the role of PARP10 in cellular transformation, we inactivated PARP10 in HeLa cancer cells by CRISPR/Cas9-mediated gene knockout, and overexpressed it in non-transformed RPE-1 cells. We found that PARP10 promotes cellular proliferation, and its overexpression alleviates cellular sensitivity to replication stress and fosters the restart of stalled replication forks. Importantly, mouse xenograft studies showed that loss of PARP10 reduces the tumorigenesis activity of HeLa cells, while its overexpression results in tumor formation by non-transformed RPE-1 cells. Our findings indicate that PARP10 promotes cellular transformation, potentially by alleviating replication stress and suggest that targeting PARP10 may represent a novel therapeutic approach.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Du J, Kirk B, Zeng J, et al (2018)

Three classes of response elements for human PRC2 and MLL1/2-Trithorax complexes.

Nucleic acids research, 46(17):8848-8864.

Polycomb group (PcG) and Trithorax group (TrxG) proteins are essential for maintaining epigenetic memory in both embryonic stem cells and differentiated cells. To date, how they are localized to hundreds of specific target genes within a vertebrate genome had remained elusive. Here, by focusing on short cis-acting DNA elements of single functions, we discovered three classes of response elements in human genome: Polycomb response elements (PREs), Trithorax response elements (TREs) and Polycomb/Trithorax response elements (P/TREs). In particular, the four PREs (PRE14, 29, 39 and 48) are the first set of, to our knowledge, bona fide vertebrate PREs ever discovered, while many previously reported Drosophila or vertebrate PREs are likely P/TREs. We further demonstrated that YY1 and CpG islands are specifically enriched in the four TREs (PRE30, 41, 44 and 55), but not in the PREs. The three classes of response elements as unraveled in this study should guide further global investigation and open new doors for a deeper understanding of PcG and TrxG mechanisms in vertebrates.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Schoenauer R, Larpin Y, Babiychuk EB, et al (2019)

Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(1):275-285.

Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.-Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drücker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Köffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Robert A, Tian P, Adam SA, et al (2019)

Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(1):388-399.

Keratin intermediate filaments (IFs) are the major cytoskeletal component in epithelial cells. The dynamics of keratin IFs have been described to depend mostly on the actin cytoskeleton, but the rapid transport of fully polymerized keratin filaments has not been reported. In this work, we used a combination of photoconversion experiments and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing to study the role of microtubules and microtubule motors in keratin filament transport. We found that long keratin filaments, like other types of IFs, are transported along microtubules by kinesin-1. Our data revealed that keratin and vimentin are nonconventional kinesin-1 cargoes because their transport did not require kinesin light chains, which are a typical adapter for kinesin-dependent cargo transport. Furthermore, we found that the same domain of the kinesin heavy chain tail is involved in keratin and vimentin IF transport, strongly suggesting that multiple types of IFs move along microtubules using an identical mechanism.-Robert, A., Tian, P., Adam, S. A., Kittisopikul, M., Jaqaman, K., Goldman, R. D., Gelfand, V. I. Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Mikkelsen JG (2018)

Viral delivery of genome-modifying proteins for cellular reprogramming.

Current opinion in genetics & development, 52:92-99.

Following the successful development of virus-based gene vehicles for genetic therapies, exploitation of viruses as carriers of genetic tools for cellular reprogramming and genome editing should be right up the street. However, whereas persistent, potentially life-long gene expression is the main goal of conventional genetic therapies, tools and bits for genome engineering should ideally be short-lived and active only for a limited time. Although viral vector systems have already been adapted for potent genome editing both in vitro and in vivo, regulatable gene expression systems or self-limiting expression circuits need to be implemented limiting exposure of chromatin to genome-modifying enzymes. As an alternative approach, emerging virus-based protein delivery technologies support direct protein delivery, providing a short, robust boost of enzymatic activity in transduced cells. Is this potentially the perfect way of shipping loads of cargo to many recipients and still maintain short-term activity?

RevDate: 2019-07-09
CmpDate: 2019-07-09

Shukla A, D Huangfu (2018)

Decoding the noncoding genome via large-scale CRISPR screens.

Current opinion in genetics & development, 52:70-76.

Large portions of the human genome harbor functional noncoding elements, which can regulate a variety of biological processes and have important implications for disease risk and therapeutic outcomes. However, assigning specific functions to noncoding sequences remains a major challenge. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) systems have emerged as a powerful approach for targeted genome and epigenome perturbation. CRISPR systems are now harnessed for high-throughput screening of the noncoding genome to uncover functional regulatory elements and to define their precise functions with superior speed. Here, we summarize the various tools developed for such screens in mammalian systems and discuss screening methods and technical considerations. We further highlight screens that are already transforming our understanding of gene regulation and disease mechanisms, consider the impact of such discoveries on the development of new therapeutics, and provide our viewpoint on the challenges for future development of the field.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Urnov FD (2018)

Ctrl-Alt-inDel: genome editing to reprogram a cell in the clinic.

Current opinion in genetics & development, 52:48-56.

Genome editing with engineered nucleases (zinc finger, TAL effector, or CRISPR/Cas9-based) enables `write' access to regulatory programs executed by primary human cells. A decade of its clinical development, along with a reduction of conventional gene therapy to medical and commercial practice, has made cell reprogramming via editing a viable clinical modality. Reviewed here are the first examples of this to enter the clinic: ex vivo edited T cells for infectious disease and cancer, and hematopoietic stem/progenitor cells for the hemoglobinopathies. Three ongoing developments will ensure that the range of edited and reprogrammed cells to enter the clinic, and the scope of target indications, will grow markedly in the next five years: our ability to identify disease-relevant targets in noncoding regulatory DNA, which is uniquely suited for editing-based cell program control; recent reduction to clinical practice of in vivo editing; and progress in engineering and manufacture of differentiated cells from pluripotent progenitors.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Byrne FL, Olzomer EM, Brink R, et al (2018)

Knockout of glucose transporter GLUT6 has minimal effects on whole body metabolic physiology in mice.

American journal of physiology. Endocrinology and metabolism, 315(2):E286-E293.

Glucose transporter 6 (GLUT6) is a member of the facilitative glucose transporter family. GLUT6 is upregulated in several cancers but is not widely expressed in normal tissues. Previous studies have shown that GLUT6 knockdown kills endometrial cancer cells that express elevated levels of the protein. However, whether GLUT6 represents a viable anticancer drug target is unclear because the role of GLUT6 in normal metabolic physiology is unknown. Herein we generated GLUT6 knockout mice to determine how loss of GLUT6 affected whole body glucose homeostasis and metabolic physiology. We found that the mouse GLUT6 (Slc2a6) gene expression pattern was similar to humans with mRNA found primarily in brain and spleen. CRISPR-Cas9-mediated deletion of Slc2a6 did not alter mouse development, growth, or whole body glucose metabolism in male or female mice fed either a chow diet or Western diet. GLUT6 deletion did not impact glucose tolerance or blood glucose and insulin levels in male or female mice fed either diet. However, compared with wild-type littermate controls, GLUT6 null female mice had a relatively minor decrease in fat accumulation when fed Western diet and had a lower respiratory exchange ratio when fed chow diet. Collectively, these data show that GLUT6 is not a major regulator of whole body metabolic physiology; therefore, GLUT6 inhibition may have minimal adverse effects if targeted for cancer therapy.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Adeosun SO, Gordon DM, Weeks MF, et al (2018)

Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells.

American journal of physiology. Renal physiology, 315(2):F323-F331.

Obesity and increased lipid availability have been implicated in the development and progression of chronic kidney disease. One of the major sites of renal lipid accumulation is in the proximal tubule cells of the kidney, suggesting that these cells may be susceptible to lipotoxicity. We previously demonstrated that loss of hepatic biliverdin reductase A (BVRA) causes fat accumulation in livers of mice on a high-fat diet. To determine the role of BVRA in mouse proximal tubule cells, we generated a CRISPR targeting BVRA for a knockout in mouse proximal tubule cells (BVRA KO). The BVRA KO cells had significantly less metabolic potential and mitochondrial respiration, which was exacerbated by treatment with palmitic acid, a saturated fatty acid. The BVRA KO cells also showed increased intracellular triglycerides which were associated with higher fatty acid uptake gene cluster of differentiation 36 as well as increased de novo lipogenesis as measured by higher neutral lipids. Additionally, neutrophil gelatinase-associated lipocalin 1 expression, annexin-V FITC staining, and lactate dehydrogenase assays all demonstrated that BVRA KO cells are more sensitive to palmitic acid-induced lipotoxicity than wild-type cells. Phosphorylation of BAD which plays a role in cell survival pathways, was significantly reduced in palmitic acid-treated BVRA KO cells. These data demonstrate the protective role of BVRA in proximal tubule cells against saturated fatty acid-induced lipotoxicity and suggest that activating BVRA could provide a benefit in protecting from obesity-induced kidney injury.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Alonso-Gutierrez J, Koma D, Hu Q, et al (2018)

Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway.

Biotechnology and bioengineering, 115(4):1000-1013.

Escherichia coli has been the organism of choice for the production of different chemicals by engineering native and heterologous pathways. In the present study, we simultaneously address some of the main issues associated with E. coli as an industrial platform for isoprenoids, including an inability to grow on sucrose, a lack of endogenous control over toxic mevalonate (MVA) pathway intermediates, and the limited pathway engineering into the chromosome. As a proof of concept, we generated an E. coli DH1 strain able to produce the isoprenoid bisabolene from sucrose by integrating the cscAKB operon into the chromosome and by expressing a heterologous MVA pathway under stress-responsive control. Production levels dropped dramatically relative to plasmid-mediated expression when the entire pathway was integrated into the chromosome. In order to optimize the chromosomally integrated MVA pathway, we established a CRISPR-Cas9 system to rapidly and systematically replace promoter sequences. This strategy led to higher pathway expression and a fivefold improvement in bisabolene production. More interestingly, we analyzed proteomics data sets to understand and address some of the challenges associated with metabolic engineering of the chromosomally integrated pathway. This report shows that integrating plasmid-optimized operons into the genome and making them work optimally is not a straightforward task and any poor engineering choices on the chromosome may lead to cell death rather than just resulting in low titers. Based on these results, we also propose directions for chromosomal metabolic engineering.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Kanda N, Ichikawa M, Ono A, et al (2017)

CRISPR/Cas9-based knockouts reveal that CpRLP1 is a negative regulator of the sex pheromone PR-IP in the Closterium peracerosum-strigosum-littorale complex.

Scientific reports, 7(1):17873.

Heterothallic strains of the Closterium peracerosum-strigosum-littorale (C. psl.) complex have two sexes, mating-type plus (mt+) and mating-type minus (mt-). Conjugation between these two sexes is regulated by two sex pheromones, protoplast-release-inducing protein (PR-IP) and PR-IP Inducer, which are produced by mt+ and mt- cells, respectively. PR-IP mediates the release of protoplasts from mt- cells during mating. In this study, we examined the mechanism of action of CpRLP1 (receptor-like protein 1), which was previously identified in a cDNA microarray analysis as one of the PR-IP-inducible genes. Using CRISPR/Cas9 technology, we generated CpRLP1 knockout mutants in mt- cells of the C. psl. complex. When the knockout mt- cells were mixed with wild-type mt+ cells, conjugation was severely reduced. Many cells released protoplasts without pairing, suggesting a loss of synchronization between the two mating partners. Furthermore, the knockout mutants were hypersensitive to PR-IP. We conclude that CpRLP1 is a negative regulator of PR-IP that regulates the timing of protoplast release in conjugating C. psl. cells. As the first report of successful gene knockout in the class Charophyceae, this study provides a basis for research aimed at understanding the ancestral roles of genes that are indispensable for the development of land plants.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Ehrke-Schulz E, Schiwon M, Leitner T, et al (2017)

CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.

Scientific reports, 7(1):17113.

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Christie KA, Courtney DG, DeDionisio LA, et al (2017)

Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders.

Scientific reports, 7(1):16174.

CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S. pyogenes Cas9 and sgRNA to the corneal epithelium by intrastromal injection and acheived long-term knockdown of a corneal epithelial reporter gene, demonstrating gene disruption via NHEJ in vivo. In addition, we used TGFBI corneal dystrophies as a model of autosomal dominant disease to assess the use of CRISPR/Cas9 in two allele-specific systems, comparing cleavage using a SNP-derived PAM to a guide specific approach. In vitro, cleavage via a SNP-derived PAM was found to confer stringent allele-specific cleavage, while a guide-specific approach lacked the ability to distinguish between the wild-type and mutant alleles. The failings of the guide-specific approach highlights the necessity for meticulous guide design and assessment, as various degrees of allele-specificity are achieved depending on the guide sequence employed. A major concern for the use of CRISPR/Cas9 is its tendency to cleave DNA non-specifically at "off-target" sites. Confirmation that S. pyogenes Cas9 lacks the specificity to discriminate between alleles differing by a single base-pair regardless of the position in the guide is demonstrated.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Feng X, Peng C, Chen Y, et al (2017)

Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging.

Scientific reports, 7(1):15934.

Identifying individuals with target mutant phenotypes is a significant procedure in mutant exploitation for implementing genome editing technology in a crop breeding programme. In the present study, a rapid and non-invasive method was proposed to identify CRISPR/Cas9-induced rice mutants from their acceptor lines (huaidao-1 and nanjing46) using hyperspectral imaging in the near-infrared (NIR) range (874.41-1733.91 nm) combined with chemometric analysis. The hyperspectral imaging data were analysed using principal component analysis (PCA) for exploratory purposes, and a support vector machine (SVM) and an extreme learning machine (ELM) were applied to build discrimination models for classification. Meanwhile, PCA loadings and a successive projections algorithm (SPA) were used for extracting optimal spectral wavelengths. The SVM-SPA model achieved best performance, with classification accuracies of 93% and 92.75% being observed for calibration and prediction sets for huaidao-1 and 91.25% and 89.50% for nanjing46, respectively. Furthermore, the classification of mutant seeds was visualized on prediction maps by predicting the features of each pixel on individual hyperspectral images based on the SPA-SVM model. The above results indicated that NIR hyperspectral imaging together with chemometric data analysis could be a reliable tool for identifying CRISPR/Cas9-induced rice mutants, which would help to accelerate selection and crop breeding processes.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Zeng Y, Cui Y, Zhang Y, et al (2018)

The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.

Nucleic acids research, 46(1):350-361.

CRISPR-Cas9 system has been widely used for efficient genome editing. Although the structures of Cas9 protein in complex with single-guided RNA (sgRNA) and target DNA have been resolved, the molecular details about the formation of Cas9 endonuclease R-loop structure remain elusive. Here we examine the DNA cleavage activities of Streptococcus pyogenes Cas9 (SpyCas9) and its mutants using various target sequences and study the conformational dynamics of R-loop structure during target binding using single-molecule fluorescence energy transfer (smFRET) technique. Our results show that Cas9-sgRNA complex divides the target DNA into several distinct domains: protospacer adjacent motif, linker, Seed, Middle and Tail. After seed pairing, the Cas9 transiently retains a semi-active conformation and induces the cleavage of either target or non-target strand. smFRET studies demonstrate that an intermediate state exists in prior to the formation of the fully stable R-loop complex. Kinetics analysis of this new intermediate state indicates that the lifetime of this state increases when the base-pairing length of guide-DNA hybrid duplex increases and reaches the maximum at the size of 18 bp. These data provide new insights into the process of R-loop formation and reveal the source of off-targeting in CRISPR/Cas9 system.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Coggins NB, Stultz J, O'Geen H, et al (2017)

Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance.

Scientific reports, 7(1):15044.

With the continued emergence of risk loci from Genome-Wide Association studies and variants of uncertain significance identified from patient sequencing, better methods are required to translate these human genetic findings into improvements in public health. Here we combine CRISPR/Cas9 gene editing with an innovative high-throughput genotyping pipeline utilizing KASP (Kompetitive Allele-Specific PCR) genotyping technology to create scarless isogenic cell models of cancer variants in ~1 month. We successfully modeled two novel variants previously identified by our lab in the PALB2 gene in HEK239 cells, resulting in isogenic cells representing all three genotypes for both variants. We also modeled a known functional risk SNP of colorectal cancer, rs6983267, in HCT-116 cells. Cells with extremely low levels of gene editing could still be identified and isolated using this approach. We also introduce a novel molecular assay, ChIPnQASO (Chromatin Immunoprecipitation and Quantitative Allele-Specific Occupation), which uses the same technology to reveal allele-specific function of these variants at the DNA-protein interaction level. We demonstrated preferential binding of the transcription factor TCF7L2 to the rs6983267 risk allele over the non-risk. Our pipeline provides a platform for functional variant discovery and validation that is accessible and broadly applicable for the progression of efforts towards precision medicine.

RevDate: 2019-07-08
CmpDate: 2019-07-08

Hong SN, Dunn JC, Stelzner M, et al (2017)

Concise Review: The Potential Use of Intestinal Stem Cells to Treat Patients with Intestinal Failure.

Stem cells translational medicine, 6(2):666-676.

Intestinal failure is a rare life-threatening condition that results in the inability to maintain normal growth and hydration status by enteral nutrition alone. Although parenteral nutrition and whole organ allogeneic transplantation have improved the survival of these patients, current therapies are associated with a high risk for morbidity and mortality. Development of methods to propagate adult human intestinal stem cells (ISCs) and pluripotent stem cells raises the possibility of using stem cell-based therapy for patients with monogenic and polygenic forms of intestinal failure. Organoids have demonstrated the capacity to proliferate indefinitely and differentiate into the various cellular lineages of the gut. Genome-editing techniques, including the overexpression of the corrected form of the defective gene, or the use of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to selectively correct the monogenic disease-causing variant within the stem cell, make autologous ISC transplantation a feasible approach. However, numerous techniques still need to be further optimized, including more robust ex vivo ISC expansion, native ISC ablation, and engraftment protocols. Large-animal models can to be used to develop such techniques and protocols and to establish the safety of autologous ISC transplantation because outcomes in such models can be extrapolated more readily to humans. Stem Cells Translational Medicine 2017;6:666-676.

RevDate: 2019-07-07

Mitsui R, Yamada R, H Ogino (2019)

CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.

World journal of microbiology & biotechnology, 35(7):111 pii:10.1007/s11274-019-2688-8.

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) immune systems in bacteria have been used as tools for genome engineering. Thus far, the CRISPR-Cas system has been used in various yeast, bacterial, and mammalian cells. Saccharomyces cerevisiae is a nonpathogenic yeast, classified under "generally recognized as safe", and has long been used to produce consumables such as alcohol or bread. Additionally, recombinant cells of S. cerevisiae have been constructed and used to produce various bio-based chemicals. Some types of CRISPR-Cas system for genetic manipulation have been constructed during the early developmental stages of the CRISPR-Cas system and have been mainly used for gene knock-in and knock-out manipulations. Thereafter, these systems have been used for various novel purposes such as metabolic engineering and tolerance engineering. In this review, we have summarized different aspects of the CRISPR-Cas in the yeast S. cerevisiae, from its basic principles to various applications. This review describes the CRISPR system in S. cerevisiae based on the differences in its origin and efficiency followed by its basic applications; for example, its involvement in gene knock-in and knock-out has been outlined. Finally, advanced applications of the CRISPR system in the bioproduction of useful chemicals have been summarized.

RevDate: 2019-07-07

Selle K, Andersen JM, R Barrangou (2019)

Short communication: Transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus.

Journal of dairy science pii:S0022-0302(19)30572-7 [Epub ahead of print].

Streptococcus thermophilus is a lactic acid bacterium widely used in the syntrophic fermentation of milk into yogurt and cheese. Streptococcus thermophilus has adapted to ferment milk primarily through reductive genome evolution but also through acquisition of genes conferring proto-cooperation with Lactobacillus bulgaricus and efficient metabolism of milk macronutrients. Genomic analysis of Strep. thermophilus strains suggests that mobile genetic elements have contributed to genomic evolution through horizontal gene transfer and genomic plasticity. We previously used the endogenous type II CRISPR-Cas [clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated sequences (Cas)] system in Strep. thermophilus to isolate derivatives lacking the chromosomal mobile genetic element and expandable island that display decreased fitness under routine culturing conditions. Of note, the Lac operon and Leloir pathway genes were deleted in the largest expendable genomic island (102 kbp), rendering the strain incapable of acidifying milk. However, the removal of other open reading frames in the same island had unclear effects on the fitness and regulatory networks of Strep. thermophilus. To uncover the physiological basis for the observed phenotypic changes and underlying regulatory networks affected by deletion of the 102-kbp genomic island in Strep. thermophilus, we analyzed the transcriptome of the mutant that lacked ~5% of its genome. In addition to the loss of transcripts encoded by the deleted material, we detected a total of 56 genes that were differentially expressed, primarily encompassing 10 select operons. Several predicted metabolic pathways were affected, including amino acid and purine metabolism, oligopeptide transport, and iron transport. Collectively, these results suggest that deletion of a 102-kb genomic island in Strep. thermophilus influences compensatory transcription of starvation stress response genes and metabolic pathways involved in important niche-related adaptation.

RevDate: 2019-07-06

Mion S, Plener L, Rémy B, et al (2019)

Lactonase SsoPox modulates CRISPR-Cas expression in Gram-negative proteobacteria using AHL-based Quorum Sensing systems.

Research in microbiology pii:S0923-2508(19)30061-0 [Epub ahead of print].

Quorum sensing (QS) is a molecular communication system that bacteria use to harmonize the regulation of genes in a cell density-dependent manner. In proteobacteria, QS is involved, among others, in virulence, biofilm formation or CRISPR-Cas gene regulation. Here, we report for the first time the effect of a QS-interfering enzyme to alter the regulation of CRISPR-Cas systems in model and clinical strains of Pseudomonas aeruginosa, as well as in the marine bacterium Chromobacterium violaceum CV12472. The expression of CRISPR-Cas genes decreased in most cases suggesting that enzymatic disruption of QS is promising for modulating phage-bacteria interactions.

RevDate: 2019-07-06

Liu TY, Liu JJ, Aditham AJ, et al (2019)

Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble.

Nature communications, 10(1):3001 pii:10.1038/s41467-019-10780-2.

Type III-A CRISPR-Cas systems are prokaryotic RNA-guided adaptive immune systems that use a protein-RNA complex, Csm, for transcription-dependent immunity against foreign DNA. Csm can cleave RNA and single-stranded DNA (ssDNA), but whether it targets one or both nucleic acids during transcription elongation is unknown. Here, we show that binding of a Thermus thermophilus (T. thermophilus) Csm (TthCsm) to a nascent transcript in a transcription elongation complex (TEC) promotes tethering but not direct contact of TthCsm with RNA polymerase (RNAP). Biochemical experiments show that both TthCsm and Staphylococcus epidermidis (S. epidermidis) Csm (SepCsm) cleave RNA transcripts, but not ssDNA, at the transcription bubble. Taken together, these results suggest that Type III systems primarily target transcripts, instead of unwound ssDNA in TECs, for immunity against double-stranded DNA (dsDNA) phages and plasmids. This reveals similarities between Csm and eukaryotic RNA interference, which also uses RNA-guided RNA targeting to silence actively transcribed genes.

RevDate: 2019-07-06

Shabbir MAB, Shabbir MZ, Wu Q, et al (2019)

CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens.

Annals of clinical microbiology and antimicrobials, 18(1):21 pii:10.1186/s12941-019-0317-x.

The development of antibiotic resistance in bacteria is a major public health threat. Infection rates of resistant pathogens continue to rise against nearly all antimicrobials, which has led to development of different strategies to combat the antimicrobial resistance. In this review, we discuss how the newly popular CRISPR-cas system has been applied to combat antibiotic resistance in both extracellular and intracellular pathogens. We also review a recently developed method in which nano-size CRISPR complex was used without any phage to target the mecA gene. However, there is still challenge to practice these methods in field against emerging antimicrobial resistant pathogens.

RevDate: 2019-07-05

Toro N, Martínez-Abarca F, Mestre MR, et al (2019)

Multiple origins of reverse transcriptases linked to CRISPR-Cas systems.

RNA biology [Epub ahead of print].

Prokaryotic genomes harbor a plethora of uncharacterized reverse transcriptases (RTs). RTs phylogenetically related to those encoded by group II introns have been found associated with type III CRISPR-Cas systems, adjacent or fused at the C-terminus to Cas1. It is thought that these RTs may have a relevant function in the CRISPR immune response mediating spacer acquisition from RNA molecules. The origin and relationships of these RTs and the ways in which the various protein domains evolved remain matters of debate. We carried out a large survey of annotated RTs in databases (198,760 sequences), and constructed a large dataset of unique representative sequences (9,141). The combined phylogenetic reconstruction and identification of the RTs and their various protein domains in the vicinity of CRISPR adaptation and effector modules revealed three different origins for these RTs, consistent with their emergence on multiple occasions: a larger group that have evolved from group II intron RTs, and two minor lineages that may have arisen more recently from retron/retron-like sequences and Abi-P2 RTs, the latter associated with type I-C systems. We also identified a particular group of RTs associated with CRISPR-cas loci in clade 12, fused C-terminally to an archaeo-eukaryotic primase (AEP), a protein domain (AE-Prim_S_like) forming a particular family within the AEP proper clade. Together, these data provide new insight into the evolution of CRISPR-Cas/RT systems.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Gruffaz M, Yuan H, Meng W, et al (2019)

CRISPR-Cas9 Screening of Kaposi's Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells.

mBio, 10(3): pii:mBio.00866-19.

The abnormal proliferation of cancer cells is driven by deregulated oncogenes or tumor suppressors, among which the cancer-vulnerable genes are attractive therapeutic targets. Targeting mislocalization of oncogenes and tumor suppressors resulting from aberrant nuclear export is effective for inhibiting growth transformation of cancer cells. We performed a clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) screening in a unique model of matched primary and oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells and identified genes that were growth promoting and growth suppressive for both types of cells, among which exportin XPO1 was demonstrated to be critical for the survival of transformed cells. Using XPO1 inhibitor KPT-8602 and by small interfering RNA (siRNA) knockdown, we confirmed the essential role of XPO1 in cell proliferation and growth transformation of KSHV-transformed cells and in cell lines of other cancers, including gastric cancer and liver cancer. XPO1 inhibition induced cell cycle arrest through p53 activation, but the mechanisms of p53 activation differed among the different types of cancer cells. p53 activation depended on the formation of promyelocytic leukemia (PML) nuclear bodies in gastric cancer and liver cancer cells. Mechanistically, XPO1 inhibition induced relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. Taken the data together, we have identified novel growth-promoting and growth-suppressive genes of primary and cancer cells and have demonstrated that XPO1 is a vulnerable target of cancer cells. XPO1 inhibition induces cell arrest through a novel PML- and p62-dependent mechanism of p53 activation in some types of cancer cells.IMPORTANCE Using a model of oncogenic virus KSHV-driven cellular transformation of primary cells, we have performed a genome-wide CRISPR-Cas9 screening to identify vulnerable genes of cancer cells. This screening is unique in that this virus-induced oncogenesis model does not depend on any cellular genetic alterations and has matched primary and KSHV-transformed cells, which are not available for similar screenings in other types of cancer. We have identified genes that are both growth promoting and growth suppressive in primary and transformed cells, some of which could represent novel proto-oncogenes and tumor suppressors. In particular, we have demonstrated that the exportin XPO1 is a critical factor for the survival of transformed cells. Using a XPO1 inhibitor (KPT-8602) and siRNA-mediated knockdown, we have confirmed the essential role of XPO1 in cell proliferation and in growth transformation of KSHV-transformed cells, as well as of gastric and liver cancer cells. XPO1 inhibition induces cell cycle arrest by activating p53, but the mechanisms of p53 activation differed among different types of cancer cells. p53 activation is dependent on the formation of PML nuclear bodies in gastric and liver cancer cells. Mechanistically, XPO1 inhibition induces relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. These results illustrate that XPO1 is a vulnerable target of cancer cells and reveal a novel mechanism for blocking cancer cell proliferation by XPO1 inhibition as well as a novel PML- and p62-mediated mechanism of p53 activation in some types of cancer cells.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Xiang X, Luo L, Nodzyński M, et al (2019)

LION: a simple and rapid method to achieve CRISPR gene editing.

Cellular and molecular life sciences : CMLS, 76(13):2633-2645.

The RNA-guided CRISPR-Cas9 technology has paved the way for rapid and cost-effective gene editing. However, there is still a great need for effective methods for rapid generation and validation of CRISPR/Cas9 gRNAs. Previously, we have demonstrated that highly efficient generation of multiplexed CRISPR guide RNA (gRNA) expression array can be achieved with Golden Gate Assembly (GGA). Here, we present an optimized and rapid method for generation and validation in less than 1 day of CRISPR gene targeting vectors. The method (LION) is based on ligation of double-stranded gRNA oligos into CRISPR vectors with GGA followed by nucleic acid purification. Using a dual-fluorescent reporter vector (C-Check), T7E1 assay, TIDE assay and a traffic light reporter assay, we proved that the LION-based generation of CRISPR vectors are functionally active, and equivalent to CRISPR plasmids generated by traditional methods. We also tested the activity of LION CRISPR vectors in different human cell types. The LION method presented here advances the rapid functional validation and application of CRISPR system for gene editing and simplified the CRISPR gene-editing procedures.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Li SY, Liu JK, Zhao GP, et al (2018)

CADS: CRISPR/Cas12a-Assisted DNA Steganography for Securing the Storage and Transfer of DNA-Encoded Information.

ACS synthetic biology, 7(4):1174-1178.

Because DNA has the merit of high capacity and complexity, DNA steganography, which conceals DNA-encoded messages, is very promising in information storage. The classical DNA steganography method hides DNA with a "secret message" in a mount of junk DNA, and the message can be extracted by polymerase chain reaction (PCR) using specific primers (key), followed by DNA sequencing and sequence decoding. As leakage of the primer information may result in message insecurity, new methods are needed to better secure the DNA information. Here, we develop a pre-key by either mixing specific primers (real key) with nonspecific primers (fake key) or linking a real key with 3'-end redundant sequences. Then, the single-stranded DNA (ssDNA) trans cleavage activity of CRISPR/Cas12a is employed to cut a fake key or remove the 3'-end redundant sequences, generating a real key for further information extraction. Therefore, with the Cas12a-assisted DNA steganography method, both storage and transfer of DNA-encoding data can be better protected.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Morse NJ, Wagner JM, Reed KB, et al (2018)

T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.

ACS synthetic biology, 7(4):1075-1084.

Efficient guide RNA expression often limits CRISPR-Cas9 implementation in new hosts. To address this limitation in fungal systems, we demonstrate the utility of a T7 polymerase system to effectively express sgRNAs. Initially, we developed a methodology in Saccharomyces cerevisiae using a modified version of the T7 P266L mutant polymerase with an SV40 nuclear localization signal to allow guide RNA expression immediately downstream of a T7 promoter. To improve targeting efficiency, guide RNA design was found to be tolerant to three mismatches or up to three additional bases appended to the 5' end. The addition of three guanines to a T7-based guide RNA improved guide RNA expression 80-fold and achieved transcriptional output similar to the strong Pol III snr52 promoter. Resulting gene editing and dCas9-guided gene regulation with a T7-based guide RNA was on par with the commonly used snr52 system in S. cerevisiae. Finally, 96% and 60% genome editing efficiencies were achieved in Kluyveromyces lactis and Yarrowia lipolytica respectively with minimal optimization of this system. Thus, T7-based expression of sgRNAs offers an orthogonal method for implementing CRISPR systems in fungal systems.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Poliner E, Takeuchi T, Du ZY, et al (2018)

Nontransgenic Marker-Free Gene Disruption by an Episomal CRISPR System in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779.

ACS synthetic biology, 7(4):962-968.

Utilization of microalgae has been hampered by limited tools for creating loss-of-function mutants. Furthermore, modified strains for deployment into the field must be free of antibiotic resistance genes and face fewer regulatory hurdles if they are transgene free. The oleaginous microalga, Nannochloropsis oceanica CCMP1779, is an emerging model for microalgal lipid metabolism. We present a one-vector episomal CRISPR/Cas9 system for N. oceanica that enables the generation of marker-free mutant lines. The CEN/ARS6 region from Saccharomyces cerevisiae was included in the vector to facilitate its maintenance as circular extrachromosal DNA. The vector utilizes a bidirectional promoter to produce both Cas9 and a ribozyme flanked sgRNA. This system efficiently generates targeted mutations, and allows the loss of episomal DNA after the removal of selection pressure, resulting in marker-free nontransgenic engineered lines. To test this system, we disrupted the nitrate reductase gene (NR) and subsequently removed the CRISPR episome to generate nontransgenic marker-free nitrate reductase knockout lines (NR-KO).

RevDate: 2019-07-05
CmpDate: 2019-07-05

Zhang X, Xu G, Shi J, et al (2018)

Microbial Production of l-Serine from Renewable Feedstocks.

Trends in biotechnology, 36(7):700-712.

l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Chira S, Gulei D, Hajitou A, et al (2018)

Restoring the p53 'Guardian' Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9.

Trends in biotechnology, 36(7):653-660.

With an increasing prevalence in the human population, cancer has become one of the most investigated fields of medicine. Among the potential targets for cancer therapy is the tumor suppressor gene TP53, which is found in a mutated state in approximately 50% of human cancers and is often associated with poor prognosis. We propose a novel, highly tumor-specific delivery system for TP53, based on the CRISPR/Cas9 genome editing technology. This system will restore the normal p53 phenotype in tumor cells by replacing the mutant TP53 gene with a functional copy, leading to sustained expression of p53 protein and tumor regression.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Daniels MJD, Adamson AD, Humphreys N, et al (2017)

CRISPR/Cas9 mediated mutation of mouse IL-1α nuclear localisation sequence abolishes expression.

Scientific reports, 7(1):17077.

Inflammation is a host defense process against infection. Inflammatory mediators include cytokines of the interleukin-1 family, such as IL-1α and IL-1β. Unlike IL-1β, IL-1α carries an N-terminal nuclear localisation sequence (NLS) and is trafficked to the nucleus. The importance of IL-1α nuclear localisation is poorly understood. Here, we used CRISPR/Cas9 to make inactivating mutations to the NLS on the Il1a gene. A colony of NLS mutant mice was successfully generated with precise knock-in mutations to incapacitate NLS function. NLS mutant mice had no gross changes in immunophenotype or inflammatory response but, surprisingly, failed to express IL-1α. We deduced that, in making specific mutations in the Il1a gene, we also mutated a long-noncoding (lnc)RNA in the complementary strand which has cis-regulatory transcriptional control of the Il1a gene itself. The mutations generated in the Il1a gene also result in mutation of the lncRNA sequence and a predicted alteration of its secondary structure, potentially explaining a subsequent failure to function as a transcriptional activator of Il1a expression. Thus, lncRNA secondary structure may regulate IL-1α expression. Our results serve as a cautionary note that CRISPR -mediated genome editing without full knowledge of genomic context can result in unexpected, yet potentially informative observations.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Spencer JM, X Zhang (2017)

Deep mutational scanning of S. pyogenes Cas9 reveals important functional domains.

Scientific reports, 7(1):16836.

RNA-guided endonucleases (RGENs) have invigorated the field of site-specific nucleases. The success of Streptococcus pyogenes Cas9 (SpCas9) has led to the discovery of several other CRISPR-associated RGENs. As more RGENs become available, it will be necessary to refine their activity before they can be translated into the clinic. With this in mind, we sought to demonstrate how deep mutational scanning (DMS) could provide details about important functional regions in SpCas9 and speed engineering efforts. Consequently, we developed a nuclease screening platform which could distinguish active Cas9 mutants. We screened a library of 1.9 × 107 with over 8500 possible non-synonymous mutations and inferred the effects of each mutation using DMS. We demonstrate that the RuvC and HNH domains are the least tolerant regions to mutation. In contrast, the Rec2 and PI domains tolerate mutation better than other regions. The mutation information defined in this work provides a foundation for further SpCas9 engineering. Together, our results demonstrate how DMS can be a powerful tool to uncover features important to RGEN function. Application of this approach to emerging RGENs should enhance their engineering and optimization for therapeutic and other applications.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Walton JB, Farquharson M, Mason S, et al (2017)

CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity.

Scientific reports, 7(1):16827.

Transplantable murine models of ovarian high grade serous carcinoma (HGSC) remain an important research tool. We previously showed that ID8, a widely-used syngeneic model of ovarian cancer, lacked any of the frequent mutations in HGSC, and used CRISPR/Cas9 gene editing to generate derivatives with deletions in Trp53 and Brca2. Here we have used one ID8 Trp53 -/- clone to generate further mutants, with additional mutations in Brca1, Pten and Nf1, all of which are frequently mutated or deleted in HGSC. We have also generated clones with triple deletions in Trp53, Brca2 and Pten. We show that ID8 Trp53 -/-;Brca1 -/- and Trp53 -/-;Brca2 -/- cells have defective homologous recombination and increased sensitivity to both platinum and PARP inhibitor chemotherapy compared to Trp53 -/-. By contrast, loss of Pten or Nf1 increases growth rate in vivo, and reduces survival following cisplatin chemotherapy in vivo. Finally, we have also targeted Trp53 in cells isolated from a previous transgenic murine fallopian tube carcinoma model, and confirmed that loss of p53 expression in this second model accelerates intraperitoneal growth. Together, these CRISPR-generated models represent a new and simple tool to investigate the biology of HGSC, and the ID8 cell lines are freely available to researchers.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Taketani Y, Kitamoto K, Sakisaka T, et al (2017)

Repair of the TGFBI gene in human corneal keratocytes derived from a granular corneal dystrophy patient via CRISPR/Cas9-induced homology-directed repair.

Scientific reports, 7(1):16713.

Granular corneal dystrophy (GCD) is an autosomal dominant hereditary disease in which multiple discrete and irregularly shaped granular opacities are deposited in the corneal stroma. GCD is caused by a point mutation in the transforming growth factor-β-induced (TGFBI) gene, located on chromosome 5q31. Here, we report the first successful application of CRISPR-Cas9-mediated genome editing for the correction of a TGFBI mutation in GCD patient-derived primary corneal keratocytes via homology-directed repair (HDR). To correct genetic defects in GCD patient cells, we designed a disease-specific guide RNA (gRNA) targeting the R124H mutation of TGFBI, which causes GCD type 2 (GCD2). An R124H mutation in primary human corneal keratocytes derived from a GCD2 patient was corrected by delivering a CRISPR plasmid expressing Cas9/gRNA and a single-stranded oligodeoxynucleotide HDR donor template in vitro. The gene correction efficiency was 20.6% in heterozygous cells and 41.3% in homozygous cells. No off-target effects were detected. These results reveal a new therapeutic strategy for GCD2; this method may also be applicable to other heredity corneal diseases.

RevDate: 2019-07-05
CmpDate: 2019-07-05

Bell S, Peng H, Crapper L, et al (2017)

A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing.

Stem cells translational medicine, 6(3):886-896.

The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here, we illustrate a rapid, simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution, which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology, allows for the development of appropriate control lines for use in rare neurodevelopmental disease research, and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.

RevDate: 2019-07-04

Liao C, Ttofali F, Slotkowski RA, et al (2019)

Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis.

Nature communications, 10(1):2948 pii:10.1038/s41467-019-10747-3.

CRISPR-Cas systems inherently multiplex through CRISPR arrays-whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis.

RevDate: 2019-07-03

Hirosawa M, Fujita Y, H Saito (2019)

Cell-type-specific CRISPR activation with microRNA-responsive AcrllA4 switch.

ACS synthetic biology [Epub ahead of print].

Anti-CRISPR proteins have the potential to regulate CRISPR-Cas systems in a cell-type-specific manner. To selectively edit the genome in target cells, we controlled the expression of AcrllA4, a Streptococcus pyogenes Cas9 inhibitor, based on endogenous microRNA (miRNA) activity. We designed a miRNA-responsive AcrllA4 switch, which is a synthetic mRNA that contains a completely complementary sequence to an arbitrary miRNA at the 5'-UTR region and encodes AcrllA4. Together with the Cas9- or dCas9-VPR-guide RNA complex, this switch functions as a cell-specific Cas9 or dCas9-VPR activator that induces gene knockout or activation depending on the target miRNA. By sensing intracellular miRNAs, the conditional CRISPR-Cas9 ON system we report could provide a powerful tool for future therapeutic applications and genome engineering.

RevDate: 2019-07-03

Yosef I, Edry-Botzer L, Globus R, et al (2019)

A genetic system for biasing the sex ratio in mice.

EMBO reports [Epub ahead of print].

Biasing the sex ratio of populations of different organisms, including plants, insects, crustacean, and fish, has been demonstrated by genetic and non-genetic approaches. However, biasing the sex ratio of mammalian populations has not been demonstrated genetically. Here, we provide a first proof of concept for such a genetic system in mammals by crossing two genetically engineered mouse lines. The maternal line encodes a functional Cas9 protein on an autosomal chromosome, whereas the paternal line encodes guide RNAs on the Y chromosome targeting vital mouse genes. After fertilization, the presence of both the Y-encoded guide RNAs from the paternal sperm and the Cas9 protein from the maternal egg targets the vital genes in males. We show that these genes are specifically targeted in males and that this breeding consequently self-destructs solely males. Our results pave the way for a genetic system that allows biased sex production of livestock.

RevDate: 2019-07-03

Paulitschke V, Eichhoff O, Gerner C, et al (2019)

Proteomic identification of a marker signature for MAPKi resistance in melanoma.

The EMBO journal [Epub ahead of print].

MAPK inhibitors (MAPKi) show outstanding clinical response rates in melanoma patients harbouring BRAF mutations, but resistance is common. The ability of melanoma cells to switch from melanocytic to mesenchymal phenotypes appears to be associated with therapeutic resistance. High-throughput, subcellular proteome analyses and RNAseq on two panels of primary melanoma cells that were either sensitive or resistant to MAPKi revealed that only 15 proteins were sufficient to distinguish between these phenotypes. The two proteins with the highest discriminatory power were PTRF and IGFBP7, which were both highly upregulated in the mesenchymal-resistant cells. Proteomic analysis of CRISPR/Cas-derived PTRF knockouts revealed targets involved in lysosomal activation, endocytosis, pH regulation, EMT, TGFβ signalling and cell migration and adhesion, as well as a significantly reduced invasive index and ability to form spheres in 3D culture. Overexpression of PTRF led to MAPKi resistance, increased cell adhesion and sphere formation. In addition, immunohistochemistry of patient samples showed that PTRF expression levels were a significant biomarker of poor progression-free survival, and IGFBP7 levels in patient sera were shown to be higher after relapse.

RevDate: 2019-07-03

Talbot BE, Vandorpe DH, Stotter BR, et al (2019)

Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking and activity of the nonselective cation channel TRPC6.

The Journal of biological chemistry pii:RA119.008299 [Epub ahead of print].

Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex (EMC) transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle (SRP)-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase (ERK) activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6, and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multi-pass transmembrane proteins, and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.

RevDate: 2019-07-03
CmpDate: 2019-07-03

Hahn WC (2019)

A CRISPR Way to Identify Cancer Targets.

The New England journal of medicine, 380(25):2475-2477.

RevDate: 2019-07-03
CmpDate: 2019-07-03

Martin-Laffon J, Kuntz M, AE Ricroch (2019)

Worldwide CRISPR patent landscape shows strong geographical biases.

Nature biotechnology, 37(6):613-620.

RevDate: 2019-07-03
CmpDate: 2019-07-03

Huang TP, Zhao KT, Miller SM, et al (2019)

Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.

Nature biotechnology, 37(6):626-631.

Base editing requires that the target sequence satisfy the protospacer adjacent motif requirement of the Cas9 domain and that the target nucleotide be located within the editing window of the base editor. To increase the targeting scope of base editors, we engineered six optimized adenine base editors (ABEmax variants) that use SpCas9 variants compatible with non-NGG protospacer adjacent motifs. To increase the range of target bases that can be modified within the protospacer, we use circularly permuted Cas9 variants to produce four cytosine and four adenine base editors with an editing window expanded from ~4-5 nucleotides to up to ~8-9 nucleotides and reduced byproduct formation. This set of base editors improves the targeting scope of cytosine and adenine base editing.

RevDate: 2019-07-03
CmpDate: 2019-07-03

Atlasi Y, Megchelenbrink W, Peng T, et al (2019)

Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency.

Nature cell biology, 21(5):568-578.

The mechanisms underlying enhancer activation and the extent to which enhancer-promoter rewiring contributes to spatiotemporal gene expression are not well understood. Using integrative and time-resolved analyses we show that the extensive transcriptome and epigenome resetting during the conversion between 'serum' and '2i' states of mouse embryonic stem cells (ESCs) takes place with minimal enhancer-promoter rewiring that becomes more evident in primed-state pluripotency. Instead, differential gene expression is strongly linked to enhancer activation via H3K27ac. Conditional depletion of transcription factors and allele-specific enhancer analysis reveal an essential role for Esrrb in H3K27 acetylation and activation of 2i-specific enhancers. Restoration of a polymorphic ESRRB motif using CRISPR-Cas9 in a hybrid ESC line restores ESRRB binding and enhancer H3K27ac in an allele-specific manner but has no effect on chromatin interactions. Our study shows that enhancer activation in serum- and 2i-ESCs is largely driven by transcription factor binding and epigenetic marking in a hardwired network of chromatin interactions.

RevDate: 2019-07-03
CmpDate: 2019-07-03

Kocak DD, Josephs EA, Bhandarkar V, et al (2019)

Increasing the specificity of CRISPR systems with engineered RNA secondary structures.

Nature biotechnology, 37(6):657-666.

CRISPR (clustered regularly interspaced short palindromic repeat) systems have been broadly adopted for basic science, biotechnology, and gene and cell therapy. In some cases, these bacterial nucleases have demonstrated off-target activity. This creates a potential hazard for therapeutic applications and could confound results in biological research. Therefore, improving the precision of these nucleases is of broad interest. Here we show that engineering a hairpin secondary structure onto the spacer region of single guide RNAs (hp-sgRNAs) can increase specificity by several orders of magnitude when combined with various CRISPR effectors. We first demonstrate that designed hp-sgRNAs can tune the activity of a transactivator based on Cas9 from Streptococcus pyogenes (SpCas9). We then show that hp-sgRNAs increase the specificity of gene editing using five different Cas9 or Cas12a variants. Our results demonstrate that RNA secondary structure is a fundamental parameter that can tune the activity of diverse CRISPR systems.

RevDate: 2019-07-03
CmpDate: 2019-07-03

Zeng W, Dai X, Sun J, et al (2019)

Modulation of Auxin Signaling and Development by Polyadenylation Machinery.

Plant physiology, 179(2):686-699.

Polyadenylation influences gene expression by affecting mRNA stability, transport, and translatability. Here, we report that Cleavage stimulation Factor 77 (AtCstF77), a component of the pre-mRNA 3'-end polyadenylation machinery, affects polyadenylation site (PAS) selection in transcripts of some auxin signaling genes in Arabidopsis (Arabidopsis thaliana). Disruption of AtCstF77 reduced auxin sensitivity and decreased the expression of the auxin reporter DR5-GFP Null mutations of cstf77 caused severe developmental defects, but were not lethal as previously reported. cstf77-2 genetically interacted with transport inhibitor response 1 auxin signaling f-box 2 auxin receptor double mutants, further supporting that polyadenylation affects auxin signaling. AtCstF77 was ubiquitously expressed in embryos, seedlings, and adult plants. The AtCstF77 protein was localized in the nucleus, which is consistent with its function in pre-mRNA processing. We observed that PASs in transcripts from approximately 2,400 genes were shifted in the cstf77-2 mutant. Moreover, most of the PAS shifts were from proximal to distal sites. Auxin treatment also caused PAS shifts in transcripts from a small number of genes. Several auxin signaling or homeostasis genes had different PASs in their transcripts in the cstf77-2 mutant. The expression levels of AUXIN RESISTANT 2/INDOLE-3-ACETIC ACID 7 were significantly increased in the cstf77-2 mutant, which can partially account for the auxin resistance phenotype of this mutant. Our results demonstrate that AtCstF77 plays pleiotropic and critical roles in Arabidopsis development. Moreover, disruption of AtCstF64, another component of the polyadenylation machinery, led to developmental defects and reduced auxin response, similar to those of the cstf77-2 mutant. We conclude that AtCstF77 affects auxin responses, likely by controlling PAS selection of transcripts of some auxin signaling components.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Click Covers to Order from Amazon


By delivering the Cas9 nuclease, complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be precisely cut at any desired location, allowing existing genes to be removed and/or new ones added. That is, the CRISPR-Cas system provides a tool for the cut-and-paste editing of genomes. Welcome to the brave new world of genome editing. R. Robbins

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )