Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Neanderthals

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 25 Sep 2018 at 01:39 Created: 

Neanderthals

Wikipedia: Neanderthals or Neandertals — named for the Neandertal region in Germany — were a species or subspecies of archaic human, in the genus Homo. Neanderthals became extinct around 40,000 years ago. They were closely related to modern humans, sharing 99.7% of DNA. Remains left by Neanderthals include bone and stone tools, which are found in Eurasia, from Western Europe to Central and Northern Asia. Neanderthals are generally classified by paleontologists as the species Homo neanderthalensis, having separated from the Homo sapiens lineage 600,000 years ago, but a minority consider them to be a subspecies of Homo sapiens (Homo sapiens neanderthalensis). Several cultural assemblages have been linked to the Neanderthals in Europe. The earliest, the Mousterian stone tool culture, dates to about 160,000 years ago. Late Mousterian artifacts were found in Gorham's Cave on the south-facing coast of Gibraltar. Compared to Homo sapiens, Neanderthals had a lower surface-to-volume ratio, with shorter legs and a bigger body, in conformance with Bergmann's rule, as an energy-loss reduction adaptation to life in a high-latitude (i.e. seasonally cold) climate. Their average cranial capacity was notably larger than typical for modern humans: 1600 cm3 vs. 1250-1400 cm3. The Neanderthal genome project published papers in 2010 and 2014 stating that Neanderthals contributed to the DNA of modern humans, including most humans outside sub-Saharan Africa, as well as a few populations in sub-Saharan Africa, through interbreeding, likely between 50,000 and 60,000 years ago.

Created with PubMed® Query: Neanderthal OR Neandertal NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-09-21

Slimak L, Fietzke J, Geneste JM, et al (2018)

Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art".

Science (New York, N.Y.), 361(6408):.

Hoffmann et al (Reports, 23 February 2018, p. 912) report the discovery of parietal art older than 64,800 years and attributed to Neanderthals, at least 25 millennia before the oldest parietal art ever found. Instead, critical evaluation of their geochronological data seems to provide stronger support for an age of 47,000 years, which is much more consistent with the archaeological background in hand.

RevDate: 2018-09-19

Charlier P, Coppens Y, Héry-Arnaud G, et al (2018)

[A biological anthropology of the disappearance of the Neandertal Man: recent data].

Medecine sciences : M/S, 34(8-9):745-748.

What could have been the causes of the disappearance of Neanderthals? We will try here to make a synthesis between one of the fundamental questions of biological anthropology relating to human evolution (hypotheses on the causes of the extinction of Neanderthals) and evolutionary bio-medical concepts, some of which have recently been reformulated thanks to the progress of paleogenomics (ancestral inheritance of the current human immune system, paleo-microbiology, host-pathogen relationship…).

RevDate: 2018-09-18

Skov L, Hui R, Shchur V, et al (2018)

Detecting archaic introgression using an unadmixed outgroup.

PLoS genetics, 14(9):e1007641 pii:PGENETICS-D-18-00624 [Epub ahead of print].

Human populations outside of Africa have experienced at least two bouts of introgression from archaic humans, from Neanderthals and Denisovans. In Papuans there is prior evidence of both these introgressions. Here we present a new approach to detect segments of individual genomes of archaic origin without using an archaic reference genome. The approach is based on a hidden Markov model that identifies genomic regions with a high density of single nucleotide variants (SNVs) not seen in unadmixed populations. We show using simulations that this provides a powerful approach to identifying segments of archaic introgression with a low rate of false detection, given data from a suitable outgroup population is available, without the archaic introgression but containing a majority of the variation that arose since initial separation from the archaic lineage. Furthermore our approach is able to infer admixture proportions and the times both of admixture and of initial divergence between the human and archaic populations. We apply the model to detect archaic introgression in 89 Papuans and show how the identified segments can be assigned to likely Neanderthal or Denisovan origin. We report more Denisovan admixture than previous studies and find a shift in size distribution of fragments of Neanderthal and Denisovan origin that is compatible with a difference in admixture time. Furthermore, we identify small amounts of Denisova ancestry in South East Asians and South Asians.

RevDate: 2018-09-13

Clyde D (2018)

The girl with Neanderthal and Denisovan parents.

Nature reviews. Genetics pii:10.1038/s41576-018-0054-6 [Epub ahead of print].

RevDate: 2018-09-11

Conde-Valverde M, Quam R, Martínez I, et al (2018)

The bony labyrinth in the Aroeira 3 Middle Pleistocene cranium.

Journal of human evolution pii:S0047-2484(18)30145-3 [Epub ahead of print].

The discovery of a partial cranium at the site of Aroeira (Portugal) dating to 389-436 ka augments the current sample of Middle Pleistocene European crania and makes this specimen penecontemporaneous with the fossils from the geographically close Atapuerca Sima de los Huesos (SH) and Arago sites. A recent study of the cranium documented a unique combination of primitive and derived features. The Aroeira 3 cranium preserves the right temporal bone, including the petrosal portion. Virtual reconstruction of the bony labyrinth from μCT scans provides an opportunity to examine its morphology. A series of standard linear and angular measures of the semicircular canals and cochlea in Aroeira 3 were compared with other fossil hominins and recent humans. Our analysis has revealed the absence of derived Neandertal features in Aroeira 3. In particular, the specimen lacks both the derived canal proportions and the low position of the posterior canal, two of the most diagnostic features of the Neandertal bony labyrinth, and Aroeira 3 is more primitive in these features than the Atapuerca (SH) sample. One potentially derived feature (low shape index of the cochlear basal turn) is shared between Aroeira 3 and the Atapuerca (SH) hominins, but is absent in Neandertals. The results of our study provide new insights into Middle Pleistocene population dynamics close to the origin of the Neandertal clade. In particular, the contrasting inner ear morphology between Aroeira 3 and the Atapuerca (SH) hominins suggests a degree of demographic isolation, despite the close geographic proximity and similar age of these two sites.

RevDate: 2018-09-04

Goldfield AE, Booton R, JM Marston (2018)

Modeling the role of fire and cooking in the competitive exclusion of Neanderthals.

Journal of human evolution pii:S0047-2484(17)30081-7 [Epub ahead of print].

The Neanderthal body was more robust and energetically costly than the bodies of anatomically modern humans (AMH). Different metabolic budgets between competing populations of Neanderthals and AMH may have been a factor in the varied ranges of behavior and timelines for Neanderthal extinction that we see in the Paleolithic archaeological record. This paper uses an adaptation of the Lotka-Volterra model to determine whether metabolic differences alone could have accounted for Neanderthal extinction. In addition, we use a modeling approach to investigate Neanderthal fire use, evidence for which is much debated and is variable throughout different climatic phases of the Middle Paleolithic. The increased caloric yield from a cooked versus a raw diet may have played an important role in population competition between Neanderthals and AMH. We arrive at two key conclusions. First, given differences in metabolic budget between Neanderthals and AMH and their dependence on similar or overlapping food resources, Neanderthal extinction is likely inevitable over the long term. Second, the rate of Neanderthal extinction increases as the frequency of AMH fire use increases. Results highlight the importance of understanding the variable behaviors at play on a regional scale in order to understand global Neanderthal extinction. We also emphasize the importance of understanding the role of fire use in the Middle to Upper Paleolithic transition.

RevDate: 2018-09-03

Aubert M, Brumm A, J Huntley (2018)

Early dates for 'Neanderthal cave art' may be wrong.

Journal of human evolution pii:S0047-2484(18)30091-5 [Epub ahead of print].

RevDate: 2018-08-28

Delpiano D, Heasley K, M Peresani (2018)

Assessing Neanderthal land use and lithic raw material management in Discoid technology.

Journal of anthropological sciences = Rivista di antropologia : JASS, 96: [Epub ahead of print].

Neanderthal groups developed different models of mobility and exploitation of resources across their territory: these differences can be linked to various knapping methods and are probably related to adaptative strategies and responses at many ecological and cultural levels. Neanderthals associated with Discoid knapping are known to depend on an opportunistic exploitation of lithic raw materials for daily food procurement and be more mobile than others using different technologies. However, we have no defined data for most of the geographical contexts where this technocomplex was found. This study analyzes the southern Alpine site of Grotta di Fumane, where the final Mousterian is characterized by the succession of well defined cultural entities. Unit A9 presents with entirely Discoid technology and is embedded between fully Levallois levels. The level was recently extensively investigated for almost 68m² on 9,000 lithic pieces. To study the lithic assemblage of Unit A9 we applied a techno-economical analysis designed to infer the spatial fragmentation of the reduction sequences, and results were corroborated through the characterization of cortex and raw materials based on geological surveys and experimental comparisons. Results show that raw materials collected within a radius of 5km, by far the most frequently used, exhibit complete and ordinary reduction sequences, which were further attested by multiple refittings. Beyond this area, semi-local raw materials (5-10 km) are introduced to perform specific tasks, and are reduced according to their different physical qualities. These data, combined with the presence of lithotypes and fossils collected from longer distances (ten to hundreds of kilometers), and to the recycling of old patinated artifacts, indicate a complex and diversified behavior encompassing both: a) opportunistic and daily residential exploitation within a local territory; b) logistical planning of the economical organization in the semi-local to exotic territory according to quality and distance of available raw materials sources.

RevDate: 2018-08-28

Staubwasser M, Drăgușin V, Onac BP, et al (2018)

Impact of climate change on the transition of Neanderthals to modern humans in Europe.

Proceedings of the National Academy of Sciences of the United States of America pii:1808647115 [Epub ahead of print].

Two speleothem stable isotope records from East-Central Europe demonstrate that Greenland Stadial 12 (GS12) and GS10-at 44.3-43.3 and 40.8-40.2 ka-were prominent intervals of cold and arid conditions. GS12, GS11, and GS10 are coeval with a regional pattern of culturally (near-)sterile layers within Europe's diachronous archeologic transition from Neanderthals to modern human Aurignacian. Sterile layers coeval with GS12 precede the Aurignacian throughout the middle and upper Danube region. In some records from the northern Iberian Peninsula, such layers are coeval with GS11 and separate the Châtelperronian from the Aurignacian. Sterile layers preceding the Aurignacian in the remaining Châtelperronian domain are coeval with GS10 and the previously reported 40.0- to 40.8-ka cal BP [calendar years before present (1950)] time range of Neanderthals' disappearance from most of Europe. This suggests that ecologic stress during stadial expansion of steppe landscape caused a diachronous pattern of depopulation of Neanderthals, which facilitated repopulation by modern humans who appear to have been better adapted to this environment. Consecutive depopulation-repopulation cycles during severe stadials of the middle pleniglacial may principally explain the repeated replacement of Europe's population and its genetic composition.

RevDate: 2018-08-27

Guichard E, Peona V, Malagoli Tagliazucchi G, et al (2018)

Impact of non-LTR retrotransposons in the differentiation and evolution of anatomically modern humans.

Mobile DNA, 9:28 pii:133.

Background: Transposable elements are biologically important components of eukaryote genomes. In particular, non-LTR retrotransposons (N-LTRrs) played a key role in shaping the human genome throughout evolution. In this study, we compared retrotransposon insertions differentially present in the genomes of Anatomically Modern Humans, Neanderthals, Denisovans and Chimpanzees, in order to assess the possible impact of retrotransposition in the differentiation of the human lineage.

Results: We first identified species-specific N-LTRrs and established their distribution in present day human populations. These analyses shortlisted a group of N-LTRr insertions that were found exclusively in Anatomically Modern Humans. These insertions are associated with an increase in the number of transcriptional/splicing variants of those genes they inserted in. The analysis of the functionality of genes containing human-specific N-LTRr insertions reflects changes that occurred during human evolution. In particular, the expression of genes containing the most recent N-LTRr insertions is enriched in the brain, especially in undifferentiated neurons, and these genes associate in networks related to neuron maturation and migration. Additionally, we identified candidate N-LTRr insertions that have likely produced new functional variants exclusive to modern humans, whose genomic loci show traces of positive selection.

Conclusions: Our results strongly suggest that N-LTRr impacted our differentiation as a species, most likely inducing an increase in neural complexity, and have been a constant source of genomic variability all throughout the evolution of the human lineage.

RevDate: 2018-08-23

Slon V, Mafessoni F, Vernot B, et al (2018)

The genome of the offspring of a Neanderthal mother and a Denisovan father.

Nature pii:10.1038/s41586-018-0455-x [Epub ahead of print].

Neanderthals and Denisovans are extinct groups of hominins that separated from each other more than 390,000 years ago1,2. Here we present the genome of 'Denisova 11', a bone fragment from Denisova Cave (Russia)3 and show that it comes from an individual who had a Neanderthal mother and a Denisovan father. The father, whose genome bears traces of Neanderthal ancestry, came from a population related to a later Denisovan found in the cave4-6. The mother came from a population more closely related to Neanderthals who lived later in Europe2,7 than to an earlier Neanderthal found in Denisova Cave8, suggesting that migrations of Neanderthals between eastern and western Eurasia occurred sometime after 120,000 years ago. The finding of a first-generation Neanderthal-Denisovan offspring among the small number of archaic specimens sequenced to date suggests that mixing between Late Pleistocene hominin groups was common when they met.

RevDate: 2018-08-23

Srinivasan S, Bettella F, Frei O, et al (2018)

Enrichment of genetic markers of recent human evolution in educational and cognitive traits.

Scientific reports, 8(1):12585 pii:10.1038/s41598-018-30387-9.

Higher cognitive functions are regarded as one of the main distinctive traits of humans. Evidence for the cognitive evolution of human beings is mainly based on fossil records of an expanding cranium and an increasing complexity of material culture artefacts. However, the molecular genetic factors involved in the evolution are still relatively unexplored. Here, we investigated whether genomic regions that underwent positive selection in humans after divergence from Neanderthals are enriched for genetic association with phenotypes related to cognitive functions. We used genome wide association data from a study of college completion (N = 111,114), one of educational attainment (N = 293,623) and two different studies of general cognitive ability (N = 269,867 and 53,949). We found nominally significant polygenic enrichment of associations with college completion (p = 0.025), educational attainment (p = 0.043) and general cognitive ability (p = 0.015 and 0.025, respectively), suggesting that variants influencing these phenotypes are more prevalent in evolutionarily salient regions. The enrichment remained significant after controlling for other known genetic enrichment factors, and for affiliation to genes highly expressed in the brain. These findings support the notion that phenotypes related to higher order cognitive skills typical of humans have a recent genetic component that originated after the separation of the human and Neanderthal lineages.

RevDate: 2018-08-23

Warren M (2018)

Mum's a Neanderthal, Dad's a Denisovan: First discovery of an ancient-human hybrid.

Nature, 560(7719):417-418.

RevDate: 2018-08-22
CmpDate: 2018-08-22

Galway-Witham J, C Stringer (2018)

How did Homo sapiens evolve?.

Science (New York, N.Y.), 360(6395):1296-1298.

RevDate: 2018-08-11

Bruner E, Fedato A, Silva-Gago M, et al (2018)

Cognitive archeology, body cognition, and hand-tool interaction.

Progress in brain research, 238:325-345.

Body cognition and lateralization can be investigated in fossils by integrating anatomical and functional aspects. Paleoneurology cannot provide strong evidence in this sense, because hemispheric asymmetries are shared in all extinct human species, and motor cortical areas are difficult to delineate in endocranial casts. However, paleoneurological analyses also suggest that modern humans and Neanderthals underwent an expansion of parietal regions crucial for visuospatial integration and eye-hand-tool management. Because of our technological specialization, haptic cognition can be particularly targeted by evolutionary processes. Hand-tool relationships can be investigated through physical and physiological correlates. In terms of metrics, size is the main factor of hand morphological variation among adult humans, followed by the ratio between thumb length and palmar size. In modern humans, emotional changes during hand-tool contact can be measured by electrodermal activity. During tool manipulation, electrodermal response, which is a physiological correlate of emotional engagement, shows differences between males and females, and it is different for distinct Paleolithic technologies. Emotional engagement, hand management, and haptic cognition are part of a specialized prosthetic technological capacity of modern humans and can provide indirect evidence of cognitive discontinuities in the archeological record.

RevDate: 2018-08-06
CmpDate: 2018-08-06

Villa P, Pollarolo L, Conforti J, et al (2018)

From Neandertals to modern humans: New data on the Uluzzian.

PloS one, 13(5):e0196786 pii:PONE-D-17-39605.

Having thrived in Eurasia for 350,000 years Neandertals disappeared from the record around 40,000-37,000 years ago, after modern humans entered Europe. It was a complex process of population interactions that included cultural exchanges and admixture between Neandertals and dispersing groups of modern humans. In Europe Neandertals are always associated with the Mousterian while the Aurignacian is associated with modern humans only. The onset of the Aurignacian is preceded by "transitional" industries which show some similarities with the Mousterian but also contain modern tool forms. Information on these industries is often incomplete or disputed and this is true of the Uluzzian. We present the results of taphonomic, typological and technological analyses of two Uluzzian sites, Grotta La Fabbrica (Tuscany) and the newly discovered site of Colle Rotondo (Latium). Comparisons with Castelcivita and Grotta del Cavallo show that the Uluzzian is a coherent cultural unit lasting about five millennia, replaced by the Protoaurignacian before the eruption of the Campanian Ignimbrite. The lack of skeletal remains at our two sites and the controversy surrounding the stratigraphic position of modern human teeth at Cavallo makes it difficult to reach agreement about authorship of the Uluzzian, for which alternative hypotheses have been proposed. Pending the discovery of DNA or further human remains, these hypotheses can only be evaluated by archaeological arguments, i.e. evidence of continuities and discontinuities between the Uluzzian and the preceding and succeeding culture units in Italy. However, in the context of "transitional" industries with disputed dates for the arrival of modern humans in Europe, and considering the case of the Châtelperronian, an Upper Paleolithic industry made by Neandertals, typo-technology used as an indicator of hominin authorship has limited predictive value. We corroborate previous suggestions that the Middle-to-Upper Paleolithic transition occurred as steps of rapid changes and geographically uneven rates of spread.

RevDate: 2018-08-03

Tucci S, Vohr SH, McCoy RC, et al (2018)

Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia.

Science (New York, N.Y.), 361(6401):511-516.

Flores Island, Indonesia, was inhabited by the small-bodied hominin species Homo floresiensis, which has an unknown evolutionary relationship to modern humans. This island is also home to an extant human pygmy population. Here we describe genome-scale single-nucleotide polymorphism data and whole-genome sequences from a contemporary human pygmy population living on Flores near the cave where H. floresiensis was found. The genomes of Flores pygmies reveal a complex history of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins. Modern individuals bear the signatures of recent positive selection encompassing the FADS (fatty acid desaturase) gene cluster, likely related to diet, and polygenic selection acting on standing variation that contributed to their short-stature phenotype. Thus, multiple independent instances of hominin insular dwarfism occurred on Flores.

RevDate: 2018-07-21

Charlier P, Gaultier F, G Héry-Arnaud (2018)

Interbreeding between Neanderthals and modern humans: Remarks and methodological dangers of a dental calculus microbiome analysis.

Journal of human evolution pii:S0047-2484(17)30512-2 [Epub ahead of print].

RevDate: 2018-07-20

Sorensen AC, Claud E, M Soressi (2018)

Neandertal fire-making technology inferred from microwear analysis.

Scientific reports, 8(1):10065 pii:10.1038/s41598-018-28342-9.

Fire use appears to have been relatively common among Neandertals in the Middle Palaeolithic. However, the means by which Neandertals procured their fire-either through the collection of natural fire, or by producing it themselves using tools-is still a matter of debate. We present here the first direct artefactual evidence for regular, systematic fire production by Neandertals. From archaeological layers attributed to late Mousterian industries at multiple sites throughout France, primarily to the Mousterian of Acheulean Tradition (MTA) technoculture (ca. 50,000 years BP), we identify using microwear analysis dozens of late Middle Palaeolithic bifacial tools that exhibit macroscopic and microscopic traces suggesting repeated percussion and/or forceful abrasion with a hard mineral material. Both the locations and nature of the polish and associated striations are comparable to those obtained experimentally by obliquely percussing fragments of pyrite (FeS2) against the flat/convex sides of a biface to make fire. The striations within these discrete use zones are always oriented roughly parallel to the longitudinal axis of the tool, allowing us to rule out taphonomic origins for these traces. We therefore suggest that the occasional use of bifaces as 'strike-a-lights' was a technocultural feature shared among the late Neandertals in France.

RevDate: 2018-07-19

Dolgova O, O Lao (2018)

Evolutionary and Medical Consequences of Archaic Introgression into Modern Human Genomes.

Genes, 9(7): pii:genes9070358.

The demographic history of anatomically modern humans (AMH) involves multiple migration events, population extinctions and genetic adaptations. As genome-wide data from complete genome sequencing becomes increasingly abundant and available even from extinct hominins, new insights of the evolutionary history of our species are discovered. It is currently known that AMH interbred with archaic hominins once they left the African continent. Current non-African human genomes carry fragments of archaic origin. This review focuses on the fitness consequences of archaic interbreeding in current human populations. We discuss new insights and challenges that researchers face when interpreting the potential impact of introgression on fitness and testing hypotheses about the role of selection within the context of health and disease.

RevDate: 2018-07-17

Gómez-Olivencia A, Sala N, Núñez-Lahuerta C, et al (2018)

First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula).

Scientific reports, 8(1):10551 pii:10.1038/s41598-018-28377-y.

Neandertals were top predators who basically relied on middle- to large-sized ungulates for dietary purposes, but there is growing evidence that supports their consumption of plants, leporids, tortoises, marine resources, carnivores and birds. The Iberian Peninsula has provided the most abundant record of bird exploitation for meat in Europe, starting in the Middle Pleistocene. However, the bird and carnivore exploitation record was hitherto limited to the Mediterranean area of the Iberian Peninsula. Here we present the first evidence of bird and carnivore exploitation by Neandertals in the Cantabrian region. We have found cut-marks in two golden eagles, one raven, one wolf and one lynx remain from the Mousterian levels of Axlor. The obtaining of meat was likely the primary purpose of the cut-marks on the golden eagle and lynx remains. Corvids, raptors, felids and canids in Axlor could have likely acted as commensals of the Neandertals, scavenging upon the carcasses left behind by these hunter-gatherers. This could have brought them closer to Neandertal groups who could have preyed upon them. These new results provide additional information on their dietary scope and indicate a more complex interaction between Neandertals and their environment.

RevDate: 2018-07-09

García-Martínez D, Radovčić D, Radovčić J, et al (2018)

Over 100 years of Krapina: New insights into the Neanderthal thorax from the study of rib cross-sectional morphology.

Journal of human evolution pii:S0047-2484(17)30442-6 [Epub ahead of print].

The Krapina costal sample was studied by Gorjanović-Kramberger in the early twentieth century. He pointed out unique features in the sample such as the rounder rib cross-section, which was recently confirmed in other Neanderthal specimens. Round rib cross-sections are characteristic of Homo ergaster, suggesting this may be plesiomorphic for Pleistocene Homo, but it is unknown whether Homo antecessor also had this rib shape. Furthermore, the influence of allometry on the cross-sectional shape of ribs is still unknown. The large costal sample from Krapina allows us to address these issues. We quantified cross-section morphology at the midshaft throughout a closed curve of one landmark and nine sliding semilandmarks in the Krapina costal remains (n = 7), as well as in other Neanderthals (n = 50), H. antecessor (n = 3) and modern humans, both fossil (n = 12) and recent (n = 160). We used principal components analysis and mean comparisons to explore interspecific differences, regression analysis to investigate allometry, and partial least squares analysis to examine covariation of cross-section shape and overall rib morphology. Neanderthal cross-sections tended to be larger than those of recent humans except for the Krapina and Tabun remains. Regarding shape, inter-group differences were found only in the diaphragmatic thorax, where Neanderthal and H. antecessor ribs were statistically significantly rounder than those of modern humans. Allometry accounted for covariation of size on shape, but the Neandertal and modern human trajectories had different slopes. While our results based on the Krapina costal sample are similar to previous findings, we also make several new insights: 1) the cross-section morphology observed in Neanderthals was probably present in H. antecessor, albeit less marked; 2) the distinct roundness of Neanderthal cross-sections is not related to size; 3) rounder cross-sections are correlated with ribs presenting less curvature in cranial view and a low degree of torsion in recent humans. These results are important for the interpretation of fragmentary Neanderthal costal remains, and the fact that the differences are marked only in the diaphragmatic thorax could have implications for breathing kinematics.

RevDate: 2018-06-28

Hoffmann DL, Standish CD, Pike AWG, et al (2018)

Dates for Neanderthal art and symbolic behaviour are reliable.

Nature ecology & evolution, 2(7):1044-1045.

RevDate: 2018-06-28

Gaudzinski-Windheuser S, Noack ES, Pop E, et al (2018)

Evidence for close-range hunting by last interglacial Neanderthals.

Nature ecology & evolution, 2(7):1087-1092.

Animal resources have been part of hominin diets since around 2.5 million years ago, with sharp-edged stone tools facilitating access to carcasses. How exactly hominins acquired animal prey and how hunting strategies varied through time and space is far from clear. The oldest possible hunting weapons known from the archaeological record are 300,000 to 400,000-year-old sharpened wooden staves. These may have been used as throwing and/or close-range thrusting spears, but actual data on how such objects were used are lacking, as unambiguous lesions caused by such weapon-like objects are unknown for most of human prehistory. Here, we report perforations observed on two fallow deer skeletons from Neumark-Nord, Germany, retrieved during excavations of 120,000-year-old lake shore deposits with abundant traces of Neanderthal presence. Detailed studies of the perforations, including micro-computed tomography imaging and ballistic experiments, demonstrate that they resulted from the close-range use of thrusting spears. Such confrontational ways of hunting require close cooperation between participants, and over time may have shaped important aspects of hominin biology and behaviour.

RevDate: 2018-07-11

Li J, Hong X, Mesiano S, et al (2018)

Natural Selection Has Differentiated the Progesterone Receptor among Human Populations.

American journal of human genetics, 103(1):45-57.

The progesterone receptor (PGR) plays a central role in maintaining pregnancy and is significantly associated with medical conditions such as preterm birth that affects 12.6% of all the births in U.S. PGR has been evolving rapidly since the common ancestor of human and chimpanzee, and we herein investigated evolutionary dynamics of PGR during recent human migration and population differentiation. Our study revealed substantial population differentiation at the PGR locus driven by natural selection, where very recent positive selection in East Asians has substantially decreased its genetic diversity by nearly fixing evolutionarily novel alleles. On the contrary, in European populations, the PGR locus has been promoted to a highly polymorphic state likely due to balancing selection. Integrating transcriptome data across multiple tissue types together with large-scale genome-wide association data for preterm birth, our study demonstrated the consequence of the selection event in East Asians on remodeling PGR expression specifically in the ovary and determined a significant association of early spontaneous preterm birth with the evolutionarily selected variants. To reconstruct its evolutionary trajectory on the human lineage, we observed substantial differentiation between modern and archaic humans at the PGR locus, including fixation of a deleterious missense allele in the Neanderthal genome that was later introgressed in modern human populations. Taken together, our study revealed substantial evolutionary innovation in PGR even during very recent human evolution, and its different forms among human populations likely result in differential susceptibility to progesterone-associated disease conditions including preterm birth.

RevDate: 2018-06-22

Prüfer K (2018)

snpAD: An ancient DNA genotype caller.

Bioinformatics (Oxford, England) pii:5042170 [Epub ahead of print].

Motivation: The study of ancient genomes can elucidate the evolutionary past. However, analyses are complicated by base-modifications in ancient DNA molecules that result in errors in DNA sequences. These errors are particularly common near the ends of sequences and pose a challenge for genotype calling.

Results: I describe an iterative method that estimates genotype frequencies and errors along sequences to allow for accurate genotype calling from ancient sequences. The implementation of this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity from several low-coverage Neandertals. These estimates show that low heterozygosity, compared to modern humans, was common among Neandertals.

Availability: The C ++ code of snpAD is freely available at http://bioinf.eva.mpg.de/snpAD/.

Supplementary information: Supplementary data are available at Bioinformatics online.

RevDate: 2018-06-25

Cohen J (2018)

Neanderthal brain organoids come to life.

Science (New York, N.Y.), 360(6395):1284.

RevDate: 2018-06-28

Cabrera VM, Marrero P, Abu-Amero KK, et al (2018)

Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago.

BMC evolutionary biology, 18(1):98 pii:10.1186/s12862-018-1211-4.

BACKGROUND: The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya.

RESULTS: The coalescence ages of all Eurasian (M,N) and African (L3) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers.

CONCLUSIONS: These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis.

RevDate: 2018-06-28

Cserhati MF, Mooter ME, Peterson L, et al (2018)

Motifome comparison between modern human, Neanderthal and Denisovan.

BMC genomics, 19(1):472 pii:10.1186/s12864-018-4710-1.

BACKGROUND: The availability of the genomes of two archaic humans, Neanderthal and Denisovan, and that of modern humans provides researchers an opportunity to investigate genetic differences between these three subspecies on a genome-wide scale. Here we describe an algorithm that predicts statistically significant motifs based on the difference between a given motif's actual and expected distributions. The algorithm was previously applied to plants but was modified for this work.

RESULTS: The result of applying the algorithm to the human, Neanderthal, and Denisovan genomes is a catalog of potential regulatory motifs in these three human subspecies. We examined the distributions of these motifs in genetic elements including human retroviruses, human accelerated regions, and human accelerated conserved noncoding sequences regions. Differences in these distributions could be the origin of differences in phenotype between the three subspecies. Twenty significant motifs common to all three genomes were found; thirty-three were found in endogenous retroviruses in Neanderthal and Denisovan. Ten of these motifs mapped to the 22 bp core of MiR-1304. The core of this genetic element regulates the ENAM and AMTN genes, which take part in odontogenesis and whose 3' UTRs contained significant motifs. The introns of 20 genes were found to contain a large number of significant motifs, which were also overrepresented in 49 human accelerated regions. These genes include NAV2, SorCS2, TRAPPC9, GRID1, PRDM16, CAMTA1, and ASIC which are all involved in neuroregulation. Further analysis of these genes using the GO database indicates that many are associated with neurodevelopment. Also, varying numbers of significant motifs were found to occur in regions of the Neanderthal and Denisovan genomes that are missing from the human genome, suggesting further functional differences between modern and archaic humans.

CONCLUSION: Although Neanderthal and Denisovan are now extinct, detailed examination of elements from their genomes can shed light on possible phenotypic and cognitive differences between these two archaic human subspecies and modern humans. Genetic similarities and differences between these three subspecies and other fossil hominids would also be of interest.

RevDate: 2018-06-29

Hublin JJ, Ben-Ncer A, Bailey SE, et al (2018)

Author Correction: New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens.

Nature, 558(7711):E6.

In the originally published version of this Letter, the x axis in Fig. 3a should have been: 'PC1: 26%' rather than 'PC1: 46%', and the y axis should have been: 'PC2: 16%' rather than 'PC2: 29%'. We also noticed an error in the numbering of the fossils from Qafzeh: Qafzeh 27 should be removed, and Qafzeh 26 is actually Qafzeh 25, following Tillier (2014)1 and Schuh et al. (2017)2 and personal communication with B. Vandermeersch and M. D. Garralda. The correct enumeration of Qafzeh samples in the 'Mandibular metric data' section of the Methods is therefore: 'Qafzeh (9, 25)' rather than 'Qafzeh (9, 26, 27)'. Owing to the removal of Qafzeh 27, the convex hull of early modern humans changes slightly in Extended Data Fig. 1c. The sample sizes in Extended Data Fig. 1c should have read: Middle Pleistocene archaic Homo n = 19 (instead of 11), Neanderthals n = 40 (instead of 41), early modern humans n = 12 (instead of 7), and recent modern humans n = 46 (instead of 48). In Extended Data Table 2, the mean and standard deviation of corpus height and breadth at mental foramen for early modern humans should have been: x̅ = 33.15, σ = 3.26 for height (rather than x̅ = 34.23, σ = 4.57); and x̅ = 16.25, σ = 1.28 for breadth (rather than x̅ = 16.04, σ = 1.75). Accordingly, n = 12 (rather than n = 13) for both breadth and height. These errors have been corrected in the Letter online (the original Extended Data Fig. 1 is shown in Supplementary Information to this Amendment). These changes do not alter any inferences drawn from the data.

RevDate: 2018-07-20

Dannemann M, F Racimo (2018)

Something old, something borrowed: admixture and adaptation in human evolution.

Current opinion in genetics & development, 53:1-8 pii:S0959-437X(17)30185-5 [Epub ahead of print].

The sequencing of ancient DNA from archaic humans-Neanderthals and Denisovans-has revealed that modern and archaic humans interbred at least twice during the Pleistocene. The field of human paleogenomics has now turned its attention towards understanding the nature of this genetic legacy in the gene pool of present-day humans. What exactly did modern humans obtain from interbreeding with Neanderthals and Denisovans? Was the introgressed genetic material beneficial, neutral or maladaptive? Can differences in phenotypes among present-day human populations be explained by archaic human introgression? These questions are of prime importance for our understanding of recent human evolution, but will require careful computational modeling and extensive functional assays before they can be answered in full. Here, we review the recent literature characterizing introgressed DNA and the likely biological consequences for their modern human carriers. We focus particularly on archaic human haplotypes that were beneficial to modern humans as they expanded across the globe, and on ways to understand how populations harboring these haplotypes evolved over time.

RevDate: 2018-05-14

García-Martínez D, Campo Martín M, González Martín A, et al (2018)

Reevaluation of 'endocostal ossifications' on the Kebara 2 Neanderthal ribs.

Journal of human evolution pii:S0047-2484(17)30486-4 [Epub ahead of print].

RevDate: 2018-05-15

Banerjee N, Polushina T, Bettella F, et al (2018)

Recently evolved human-specific methylated regions are enriched in schizophrenia signals.

BMC evolutionary biology, 18(1):63 pii:10.1186/s12862-018-1177-2.

BACKGROUND: One explanation for the persistence of schizophrenia despite the reduced fertility of patients is that it is a by-product of recent human evolution. This hypothesis is supported by evidence suggesting that recently-evolved genomic regions in humans are involved in the genetic risk for schizophrenia. Using summary statistics from genome-wide association studies (GWAS) of schizophrenia and 11 other phenotypes, we tested for enrichment of association with GWAS traits in regions that have undergone methylation changes in the human lineage compared to Neanderthals and Denisovans, i.e. human-specific differentially methylated regions (DMRs). We used analytical tools that evaluate polygenic enrichment of a subset of genomic variants against all variants.

RESULTS: Schizophrenia was the only trait in which DMR SNPs showed clear enrichment of association that passed the genome-wide significance threshold. The enrichment was not observed for Neanderthal or Denisovan DMRs. The enrichment seen in human DMRs is comparable to that for genomic regions tagged by Neanderthal Selective Sweep markers, and stronger than that for Human Accelerated Regions. The enrichment survives multiple testing performed through permutation (n = 10,000) and bootstrapping (n = 5000) in INRICH (p < 0.01). Some enrichment of association with height was observed at the gene level.

CONCLUSIONS: Regions where DNA methylation modifications have changed during recent human evolution show enrichment of association with schizophrenia and possibly with height. Our study further supports the hypothesis that genetic variants conferring risk of schizophrenia co-occur in genomic regions that have changed as the human species evolved. Since methylation is an epigenetic mark, potentially mediated by environmental changes, our results also suggest that interaction with the environment might have contributed to that association.

RevDate: 2018-05-09

Akkuratov EE, Gelfand MS, EE Khrameeva (2018)

Neanderthal and Denisovan ancestry in Papuans: A functional study.

Journal of bioinformatics and computational biology, 16(2):1840011.

Sequencing of complete nuclear genomes of Neanderthal and Denisovan stimulated studies about their relationship with modern humans demonstrating, in particular, that DNA alleles from both Neanderthal and Denisovan genomes are present in genomes of modern humans. The Papuan genome is a unique object because it contains both Neanderthal and Denisovan alleles. Here, we have shown that the Papuan genomes contain different gene functional groups inherited from each of the ancient people. The Papuan genomes demonstrate a relative prevalence of Neanderthal alleles in genes responsible for the regulation of transcription and neurogenesis. The enrichment of specific functional groups with Denisovan alleles is less pronounced; these groups are responsible for bone and tissue remodeling. This analysis shows that introgression of alleles from Neanderthals and Denisovans to Papuans occurred independently and retention of these alleles may carry specific adaptive advantages.

RevDate: 2018-05-11

Wolf D, Kolb T, Alcaraz-Castaño M, et al (2018)

Climate deteriorations and Neanderthal demise in interior Iberia.

Scientific reports, 8(1):7048 pii:10.1038/s41598-018-25343-6.

Time and circumstances for the disappearance of Neanderthals and its relationship with the advent of Modern Humans are not yet sufficiently resolved, especially in case of the Iberian Peninsula. Reconstructing palaeoenvironmental conditions during the last glacial period is crucial to clarifying whether climate deteriorations or competition and contacts with Modern Humans played the pivotal role in driving Neanderthals to extinction. A high-resolution loess record from the Upper Tagus Basin in central Spain demonstrates that the Neanderthal abandonment of inner Iberian territories 42 kyr ago coincided with the evolvement of hostile environmental conditions, while archaeological evidence testifies that this desertion took place regardless of modern humans' activities. According to stratigraphic findings and stable isotope analyses, this period corresponded to the driest environmental conditions of the last glacial apart from an even drier period linked to Heinrich Stadial 3. Our results show that during Marine Isotope Stages (MIS) 4 and 2 climate deteriorations in interior Iberia temporally coincided with northern hemisphere cold periods (Heinrich stadials). Solely during the middle MIS 3, in a period surrounding 42 kyr ago, this relation seems not straightforward, which may demonstrate the complexity of terrestrial climate conditions during glacial periods.

RevDate: 2018-05-13

Majkić A, d'Errico F, V Stepanchuk (2018)

Assessing the significance of Palaeolithic engraved cortexes. A case study from the Mousterian site of Kiik-Koba, Crimea.

PloS one, 13(5):e0195049 pii:PONE-D-17-43364.

Twenty-Seven Lower and Middle Paleolithic sites from Europe and the Middle East are reported in the literature to have yielded incised stones. At eleven of these sites incisions are present on flint cortexes. Even when it is possible to demonstrate that the engravings are ancient and human made, it is often difficult to distinguish incisions resulting from functional activities such as butchery or use as a cutting board, from those produced deliberately, and even more difficult to identify the scope of the latter. In this paper we present results of the analysis of an engraved cortical flint flake found at Kiik-Koba, a key Mousterian site from Crimea, and create an interpretative framework to guide the interpretation of incised cortexes. The frame of inference that we propose allows for a reasoned evaluation of the actions playing a role in the marking process and aims at narrowing down the interpretation of the evidence. The object comes from layer IV, the same layer in which a Neanderthal child burial was unearthed, which contains a para-Micoquian industry of Kiik-Koba type dated to between c.35 and 37 cal kyr BP. The microscopic analysis and 3D reconstruction of the grooves on the cortex of this small flint flake, demonstrate that the incisions represent a deliberate engraving made by a skilled craftsman, probably with two different points. The lines are nearly perfectly framed into the cortex, testifying of well controlled motions. This is especially the case considering the small size of the object, which makes this a difficult task. The production of the engraving required excellent neuromotor and volitional control, which implies focused attention. Evaluation of the Kiik-Koba evidence in the light of the proposed interpretative framework supports the view that the engraving was made with a representational intent.

RevDate: 2018-07-17

Terhune CE, Ritzman TB, CA Robinson (2018)

Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.

Journal of human evolution, 121:55-71.

As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis.

RevDate: 2018-05-03

Kochiyama T, Ogihara N, Tanabe HC, et al (2018)

Reconstructing the Neanderthal brain using computational anatomy.

Scientific reports, 8(1):6296 pii:10.1038/s41598-018-24331-0.

The present study attempted to reconstruct 3D brain shape of Neanderthals and early Homo sapiens based on computational neuroanatomy. We found that early Homo sapiens had relatively larger cerebellar hemispheres but a smaller occipital region in the cerebrum than Neanderthals long before the time that Neanderthals disappeared. Further, using behavioural and structural imaging data of living humans, the abilities such as cognitive flexibility, attention, the language processing, episodic and working memory capacity were positively correlated with size-adjusted cerebellar volume. As the cerebellar hemispheres are structured as a large array of uniform neural modules, a larger cerebellum may possess a larger capacity for cognitive information processing. Such a neuroanatomical difference in the cerebellum may have caused important differences in cognitive and social abilities between the two species and might have contributed to the replacement of Neanderthals by early Homo sapiens.

RevDate: 2018-06-27
CmpDate: 2018-06-27

Lawler A (2018)

Searching for a Stone Age Odysseus.

Science (New York, N.Y.), 360(6387):362-363.

RevDate: 2018-04-24

Power RC, Salazar-García DC, Rubini M, et al (2018)

Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche.

Journal of human evolution, 119:27-41.

The ecology of Neanderthals is a pressing question in the study of hominin evolution. Diet appears to have played a prominent role in their adaptation to Eurasia. Based on isotope and zooarchaeological studies, Neanderthal diet has been reconstructed as heavily meat-based and generally similar across different environments. This image persists, despite recent studies suggesting more plant use and more variation. However, we have only a fragmentary picture of their dietary ecology, and how it may have varied among habitats, because we lack broad and environmentally representative information about their use of plants and other foods. To address the problem, we examined the plant microremains in Neanderthal dental calculus from five archaeological sites representing a variety of environments from the northern Balkans, and the western, central and eastern Mediterranean. The recovered microremains revealed the consumption of a variety of non-animal foods, including starchy plants. Using a modeling approach, we explored the relationships among microremains and environment, while controlling for chronology. In the process, we compared the effectiveness of various diversity metrics and their shortcomings for studying microbotanical remains, which are often morphologically redundant for identification. We developed Minimum Botanical Units as a new way of estimating how many plant types or parts are present in a microbotanical sample. In contrast to some previous work, we found no evidence that plant use is confined to the southern-most areas of Neanderthal distribution. Although interpreting the ecogeographic variation is limited by the incomplete preservation of dietary microremains, it is clear that plant exploitation was a widespread and deeply rooted Neanderthal subsistence strategy, even if they were predominately game hunters. Given the limited dietary variation across Neanderthal range in time and space in both plant and animal food exploitation, we argue that vegetal consumption was a feature of a generally static dietary niche.

RevDate: 2018-04-22

Profico A, Schlager S, Valoriani V, et al (2018)

Reproducing the internal and external anatomy of fossil bones: Two new automatic digital tools.

American journal of physical anthropology [Epub ahead of print].

OBJECTIVES: We present two new automatic tools, developed under the R environment, to reproduce the internal and external structures of bony elements. The first method, Computer-Aided Laser Scanner Emulator (CA-LSE), provides the reconstruction of the external portions of a 3D mesh by simulating the action of a laser scanner. The second method, Automatic Segmentation Tool for 3D objects (AST-3D), performs the digital reconstruction of anatomical cavities.

MATERIALS AND METHODS: We present the application of CA-LSE and AST-3D methods to different anatomical remains, highly variable in terms of shape, size and structure: a modern human skull, a malleus bone, and a Neanderthal deciduous tooth. Both methods are developed in the R environment and embedded in the packages "Arothron" and "Morpho," where both the codes and the data are fully available.

RESULTS: The application of CA-LSE and AST-3D allows the isolation and manipulation of the internal and external components of the 3D virtual representation of complex bony elements. In particular, we present the output of the four case studies: a complete modern human endocast and the right maxillary sinus, the dental pulp of the Neanderthal tooth and the inner network of blood vessels of the malleus.

DISCUSSION: Both methods demonstrated to be much faster, cheaper, and more accurate than other conventional approaches. The tools we presented are available as add-ons in existing software within the R platform. Because of ease of application, and unrestrained availability of the methods proposed, these tools can be widely used by paleoanthropologists, paleontologists and anatomists.

RevDate: 2018-07-16
CmpDate: 2018-07-16

Marín-Arroyo AB, Rios-Garaizar J, Straus LG, et al (2018)

Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain.

PloS one, 13(4):e0194708 pii:PONE-D-17-29779.

Methodological advances in dating the Middle to Upper Paleolithic transition provide a better understanding of the replacement of local Neanderthal populations by Anatomically Modern Humans. Today we know that this replacement was not a single, pan-European event, but rather it took place at different times in different regions. Thus, local conditions could have played a role. Iberia represents a significant macro-region to study this process. Northern Atlantic Spain contains evidence of both Mousterian and Early Upper Paleolithic occupations, although most of them are not properly dated, thus hindering the chances of an adequate interpretation. Here we present 46 new radiocarbon dates conducted using ultrafiltration pre-treatment method of anthropogenically manipulated bones from 13 sites in the Cantabrian region containing Mousterian, Aurignacian and Gravettian levels, of which 30 are considered relevant. These dates, alongside previously reported ones, were integrated into a Bayesian age model to reconstruct an absolute timescale for the transitional period. According to it, the Mousterian disappeared in the region by 47.9-45.1ka cal BP, while the Châtelperronian lasted between 42.6k and 41.5ka cal BP. The Mousterian and Châtelperronian did not overlap, indicating that the latter might be either intrusive or an offshoot of the Mousterian. The new chronology also suggests that the Aurignacian appears between 43.3-40.5ka cal BP overlapping with the Châtelperronian, and ended around 34.6-33.1ka cal BP, after the Gravettian had already been established in the region. This evidence indicates that Neanderthals and AMH co-existed <1,000 years, with the caveat that no diagnostic human remains have been found with the latest Mousterian, Châtelperronian or earliest Aurignacian in Cantabrian Spain.

RevDate: 2018-04-17

Bible RC, AT Peterson (2018)

Compatible ecological niche signals between biological and archaeological datasets for late-surviving Neandertals.

American journal of physical anthropology [Epub ahead of print].

OBJECTIVES: To assess ecological niche similarity for biological and archaeological samples representing late-surviving Neandertals in Europe to evaluate the validity of combining these two types of data in ecological niche modeling analyses.

MATERIALS AND METHODS: Tests of niche conservatism were used to assess niche similarity and niche identity of samples of morphologically diagnostic Neandertal remains and Middle Paleolithic (MP) archaeological sites dating to the time period leading up to Neandertal extinction. Paleoenvironmental reconstructions for the Pre-H4 (43.3-40.2 ky cal BP) were used as environmental space analyses.

RESULTS: Null hypotheses of niche similarity and identity of the two types of samples could not be rejected.

CONCLUSIONS: As primary and secondary evidence of Neandertal occurrence during the Pre-H4 show high levels of niche similarity and identity, combining the two types of occurrence data to create larger samples for niche analyses is justified without the concern that different environmental signals could complicate future research.

RevDate: 2018-04-25

Viscardi LH, Paixão-Côrtes VR, Comas D, et al (2018)

Searching for ancient balanced polymorphisms shared between Neanderthals and Modern Humans.

Genetics and molecular biology, 41(1):67-81.

Hominin evolution is characterized by adaptive solutions often rooted in behavioral and cognitive changes. If balancing selection had an important and long-lasting impact on the evolution of these traits, it can be hypothesized that genes associated with them should carry an excess of shared polymorphisms (trans- SNPs) across recent Homo species. In this study, we investigate the role of balancing selection in human evolution using available exomes from modern (Homo sapiens) and archaic humans (H. neanderthalensis and Denisovan) for an excess of trans-SNP in two gene sets: one associated with the immune system (IMMS) and another one with behavioral system (BEHS). We identified a significant excess of trans-SNPs in IMMS (N=547), of which six of these located within genes previously associated with schizophrenia. No excess of trans-SNPs was found in BEHS, but five genes in this system harbor potential signals for balancing selection and are associated with psychiatric or neurodevelopmental disorders. Our approach evidenced recent Homo trans-SNPs that have been previously implicated in psychiatric diseases such as schizophrenia, suggesting that a genetic repertoire common to the immune and behavioral systems could have been maintained by balancing selection starting before the split between archaic and modern humans.

RevDate: 2018-06-05

García-Tabernero A, Peña-Melián A, A Rosas (2018)

Primary visual cortex in neandertals as revealed from the occipital remains from the El Sidrón site, with emphasis on the new SD-2300 specimen.

Journal of anatomy, 233(1):33-45.

The comparative analysis of the endocranial surface of the El Sidrón new occipital fragment SD-2300 shows meaningful differences in the configuration of the occipital pole region between neandertals and anatomically modern humans (AMH). The particular asymmetries found in neandertals in the venous sinus drainage and the petalial patterns are recognizable in this new specimen as well. In addition, the supra- and infracalcarine fossae of the occipital pole region appear to deviate obliquely from the mid-line when compared with sapiens. Due to the excellent preservation conditions of SD-2300, the main sulci and gyri of the occipital pole area have been identified, this degree of detail being uncommon in a fossil specimen; in general, the gyrification pattern is similar to AMH, but with some notable differences. Particularly interesting is the description of the lunate and the calcarine sulci. The lunate sulcus is located close to the occipital pole, in a similar posterior position to in other Homo species. Regarding the calcarine sulcus, there are significant differences in the primary visual cortex, with the V1 area, or Brodmann area 17, being larger in Homo neanderthalensis than in Homo sapiens. This may lead to greater visual acuity in neandertals than in sapiens.

RevDate: 2018-04-20

Wroe S, Parr WCH, Ledogar JA, et al (2018)

Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting.

Proceedings. Biological sciences, 285(1876):.

Three adaptive hypotheses have been forwarded to explain the distinctive Neanderthal face: (i) an improved ability to accommodate high anterior bite forces, (ii) more effective conditioning of cold and/or dry air and, (iii) adaptation to facilitate greater ventilatory demands. We test these hypotheses using three-dimensional models of Neanderthals, modern humans, and a close outgroup (Homo heidelbergensis), applying finite-element analysis (FEA) and computational fluid dynamics (CFD). This is the most comprehensive application of either approach applied to date and the first to include both. FEA reveals few differences between H. heidelbergensis, modern humans, and Neanderthals in their capacities to sustain high anterior tooth loadings. CFD shows that the nasal cavities of Neanderthals and especially modern humans condition air more efficiently than does that of H. heidelbergensis, suggesting that both evolved to better withstand cold and/or dry climates than less derived Homo We further find that Neanderthals could move considerably more air through the nasal pathway than could H. heidelbergensis or modern humans, consistent with the propositions that, relative to our outgroup Homo, Neanderthal facial morphology evolved to reflect improved capacities to better condition cold, dry air, and, to move greater air volumes in response to higher energetic requirements.

RevDate: 2018-05-11

Egeland CP, Domínguez-Rodrigo M, Pickering TR, et al (2018)

Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene.

Proceedings of the National Academy of Sciences of the United States of America, 115(18):4601-4606.

Humans are set apart from other organisms by the realization of their own mortality. Thus, determining the prehistoric emergence of this capacity is of significant interest to understanding the uniqueness of the human animal. Tracing that capacity chronologically is possible through archaeological investigations that focus on physical markers that reflect "mortality salience." Among these markers is the deliberate and culturally mediated disposal of corpses. Some Neandertal bone assemblages are among the earliest reasonable claims for the deliberate disposal of hominins, but even these are vigorously debated. More dramatic assertions center on the Middle Pleistocene sites of Sima de los Huesos (SH, Spain) and the Dinaledi Chamber (DC, South Africa), where the remains of multiple hominin individuals were found in deep caves, and under reported taphonomic circumstances that seem to discount the possibility that nonhominin actors and processes contributed to their formation. These claims, with significant implications for charting the evolution of the "human condition," deserve scrutiny. We test these assertions through machine-learning analyses of hominin skeletal part representation in the SH and DC assemblages. Our results indicate that nonanthropogenic agents and abiotic processes cannot yet be ruled out as significant contributors to the ultimate condition of both collections. This finding does not falsify hypotheses of deliberate disposal for the SH and DC corpses, but does indicate that the data also support partially or completely nonanthropogenic formational histories.

RevDate: 2018-06-07

Zehra R, AA Abbasi (2018)

Homo sapiens-Specific Binding Site Variants within Brain Exclusive Enhancers Are Subject to Accelerated Divergence across Human Population.

Genome biology and evolution, 10(3):956-966.

Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.

RevDate: 2018-07-16

Steinrücken M, Spence JP, Kamm JA, et al (2018)

Model-based detection and analysis of introgressed Neanderthal ancestry in modern humans.

Molecular ecology [Epub ahead of print].

Genetic evidence has revealed that the ancestors of modern human populations outside Africa and their hominin sister groups, notably Neanderthals, exchanged genetic material in the past. The distribution of these introgressed sequence tracts along modern-day human genomes provides insight into the selective forces acting on them and the role of introgression in the evolutionary history of hominins. Studying introgression patterns on the X-chromosome is of particular interest, as sex chromosomes are thought to play a special role in speciation. Recent studies have developed methods to localize introgressed ancestries, reporting long regions that are depleted of Neanderthal introgression and enriched in genes, suggesting negative selection against the Neanderthal variants. On the other hand, enriched Neanderthal ancestry in hair- and skin-related genes suggests that some introgressed variants facilitated adaptation to new environments. Here, we present a model-based introgression detection method called dical-admix. We demonstrate its efficiency and accuracy through extensive simulations and apply it to detect tracts of Neanderthal introgression in modern human individuals from the 1000 Genomes Project. Our findings are largely concordant with previous studies, consistent with weak selection against Neanderthal ancestry. We find evidence that selection against Neanderthal ancestry was due to higher genetic load in Neanderthals resulting from small effective population size, rather than widespread Dobzhansky-Müller incompatibilities (DMIs) that could contribute to reproductive isolation. Moreover, we confirm the previously reported low level of introgression on the X-chromosome, but find little evidence that DMIs contributed to this pattern.

RevDate: 2018-06-30

Rios-Garaizar J, López-Bultó O, Iriarte E, et al (2018)

A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain.

PloS one, 13(3):e0195044 pii:PONE-D-17-36262.

Aranbaltza is an archaeological complex formed by at least three open-air sites. Between 2014 and 2015 a test excavation carried out in Aranbaltza III revealed the presence of a sand and clay sedimentary sequence formed in floodplain environments, within which six sedimentary units have been identified. This sequence was formed between 137-50 ka, and includes several archaeological horizons, attesting to the long-term presence of Neanderthal communities in this area. One of these horizons, corresponding with Unit 4, yielded two wooden tools. One of these tools is a beveled pointed tool that was shaped through a complex operational sequence involving branch shaping, bark peeling, twig removal, shaping, polishing, thermal exposition and chopping. A use-wear analysis of the tool shows it to have traces related with digging soil so it has been interpreted as representing a digging stick. This is the first time such a tool has been identified in a European Late Middle Palaeolithic context; it also represents one of the first well-preserved Middle Palaeolithic wooden tool found in southern Europe. This artefact represents one of the few examples available of wooden tool preservation for the European Palaeolithic, allowing us to further explore the role wooden technologies played in Neanderthal communities.

RevDate: 2018-04-03
CmpDate: 2018-04-03

Rosas A, Ríos L, Estalrrich A, et al (2018)

Response to Comment on "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)".

Science (New York, N.Y.), 359(6380):.

The comment by DeSilva challenges our suggestion that brain growth of the El Sidrón J1 Neandertal was still incomplete at 7.7 years of age. Evidence suggests that endocranial volume is likely to represent less than 90% adult size at El Sidrón as well as Neandertal male plus Krapina samples, in line with further evidence from endocranial surface histology and dural sinus groove size.

RevDate: 2018-04-03
CmpDate: 2018-04-03

DeSilva JM (2018)

Comment on "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)".

Science (New York, N.Y.), 359(6380):.

Rosas et al (Reports, 22 September 2017, p. 1282) calculate El Sidrón J1 to have reached only 87.5% of its adult brain size. This finding is based on an overestimation of Neandertal brain size. Pairwise comparisons with a larger sample of Neandertal fossils reveal that it is unlikely that the brain of El Sidrón would have grown appreciably larger.

RevDate: 2018-03-23

Vernot B, S Pääbo (2018)

The Predecessors Within . . .

Cell, 173(1):6-7.

By examining the genomes of present-day people from Asia, researchers show that modern humans met and interbred with Denisovans, distant relatives to Neanderthals, on at least two occasions. As a result, people today carry DNA from two different Denisovan populations.

RevDate: 2018-04-10

Hajdinjak M, Fu Q, Hübner A, et al (2018)

Reconstructing the genetic history of late Neanderthals.

Nature, 555(7698):652-656.

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.

RevDate: 2018-06-22
CmpDate: 2018-06-22

Schlager S, Profico A, Di Vincenzo F, et al (2018)

Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package "Morpho".

PloS one, 13(3):e0194073 pii:PONE-D-17-26871.

Many fossil specimens exhibit deformations caused by taphonomic processes. Due to these deformations, even important specimens have to be excluded from morphometric analyses, impoverishing an already poor paleontological record. Techniques to retrodeform and virtually restore damaged (i.e. deformed) specimens are available, but these methods genenerally imply the use of a sparse set of bilateral landmarks, ignoring the fact that the distribution and amount of control points directly affects the result of the retrodeformation. We propose a method developed in the R environment and available in the R-package "Morpho" that, in addition to the landmark configurations, also allows using a set of semi-landmarks homogeneously distributed along curves and on surfaces. We evaluated the outcome of the retrodeformation, regarding the number of semi-landmarks used and its robustness against asymmetric noise, based on simulations using a virtually deformed gorilla cranium. Finally, we applied the method to a well-known Neanderthal cranium that exhibits signs of taphonomically induced asymmetry.

RevDate: 2018-03-25

Browning SR, Browning BL, Zhou Y, et al (2018)

Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture.

Cell, 173(1):53-61.e9.

Anatomically modern humans interbred with Neanderthals and with a related archaic population known as Denisovans. Genomes of several Neanderthals and one Denisovan have been sequenced, and these reference genomes have been used to detect introgressed genetic material in present-day human genomes. Segments of introgression also can be detected without use of reference genomes, and doing so can be advantageous for finding introgressed segments that are less closely related to the sequenced archaic genomes. We apply a new reference-free method for detecting archaic introgression to 5,639 whole-genome sequences from Eurasia and Oceania. We find Denisovan ancestry in populations from East and South Asia and Papuans. Denisovan ancestry comprises two components with differing similarity to the sequenced Altai Denisovan individual. This indicates that at least two distinct instances of Denisovan admixture into modern humans occurred, involving Denisovan populations that had different levels of relatedness to the sequenced Altai Denisovan. VIDEO ABSTRACT.

RevDate: 2018-03-16

Gómez-Olivencia A, Quam R, Sala N, et al (2018)

La Ferrassie 1: New perspectives on a "classic" Neandertal.

Journal of human evolution, 117:13-32.

The La Ferrassie 1 (LF1) skeleton, discovered over a century ago, is one of the most important Neandertal individuals both for its completeness and due to the role it has played historically in the interpretation of Neandertal anatomy and lifeways. Here we present new skeletal remains from this individual, which include a complete right middle ear ossicular chain (malleus, incus, and stapes), three vertebral fragments, and two costal remains. Additionally, the study of the skeleton has allowed us to identify new pathological lesions, including a congenital variant in the atlas, a greenstick fracture of the left clavicle, and a lesion in a mid-thoracic rib of unknown etiology. In addition, we have quantified the amount of vertebral pathology, which is greater than previously appreciated. We have complemented the paleopathological analysis with a taphonomic analysis to identify any potential perimortem fractures. The taphonomic analysis indicates that no surface alteration is present in the LF1 skeleton and that the breakage pattern is that of bone that has lost collagen, which would be consistent with the intentional burial of this individual proposed by previous researchers. In this study, we used CT and microCT scans in order to discover new skeletal elements to better characterize the pathological lesions and to quantify the fracture orientation of those bones in which the current plaster reconstruction did not allow its direct visualization, which underlines the broad potential of imaging technologies in paleoanthropological research. A century after its discovery, LF1 is still providing new insights into Neandertal anatomy and behavior.

RevDate: 2018-03-16

Rodríguez L, Carretero JM, García-González R, et al (2018)

Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain).

Journal of human evolution, 117:1-12.

The recovery to date of three complete and five partial femora, seven complete tibiae, and four complete fibulae from the Atapuerca Sima de los Huesos site provides an opportunity to analyze the biomechanical cross-sectional properties in this Middle Pleistocene population and to compare them with those of other fossil hominins and recent modern humans. We have performed direct comparisons of the cross-sectional geometric parameters and reduced major axis (RMA) regression lines among different samples. We have determined that Atapuerca Sima de los Huesos (SH) fossils have significantly thicker cortices than those of recent modern humans for the three leg bones at all diaphyseal levels, except that of the femur at 35% of biomechanical length. The SH bones are similar to those of Neandertals and Middle Pleistocene humans and different from Homo sapiens in their diaphyseal cross-sectional shape and strength parameters. When standardized by estimated body size, both the SH and Neandertal leg bones have in general greater strength than those of H. sapiens from the early modern (EMH), Upper Paleolithic (UP), and recent populations (RH). The Sima de los Huesos human leg bones have, in general terms, an ancestral pattern similar to that of Pleistocene humans and differing from H. sapiens.

RevDate: 2018-04-04

Anonymous (2018)

Correction for Hoffecker, The complexity of Neanderthal technology.

Proceedings of the National Academy of Sciences of the United States of America, 115(13):E3066.

RevDate: 2018-03-09

Hoffmann DL, Angelucci DE, Villaverde V, et al (2018)

Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago.

Science advances, 4(2):eaar5255 pii:aar5255.

Cueva de los Aviones (southeast Spain) is a site of the Neandertal-associated Middle Paleolithic of Europe. It has yielded ochred and perforated marine shells, red and yellow colorants, and shell containers that feature residues of complex pigmentatious mixtures. Similar finds from the Middle Stone Age of South Africa have been widely accepted as archaeological proxies for symbolic behavior. U-series dating of the flowstone capping the Cueva de los Aviones deposit shows that the symbolic finds made therein are 115,000 to 120,000 years old and predate the earliest known comparable evidence associated with modern humans by 20,000 to 40,000 years. Given our findings, it is possible that the roots of symbolic material culture may be found among the common ancestor of Neandertals and modern humans, more than half-a-million years ago.

RevDate: 2018-03-02

Gómez-Olivencia A, Holliday T, Madelaine S, et al (2018)

The costal skeleton of the Regourdou 1 Neandertal.

Journal of human evolution pii:S0047-2484(17)30305-6 [Epub ahead of print].

The morphology and size of the Neandertal thorax is a subject of growing interest due to its link to general aspects of body size and shape, including physiological aspects related to bioenergetics and activity budgets. However, the number of well-preserved adult Neandertal costal remains is still low. The recent finding of new additional costal remains from the Regourdou 1 (R1) skeleton has rendered this skeleton as one of the most complete Neandertal costal skeletons with a minimum of 18 ribs represented, five of which are complete or virtually complete. Here we describe for the first time all the rib remains from R1 and compare them to a large modern Euroamerican male sample as well as to other published Neandertal individuals. The costal skeleton of this individual shows significant metric and morphological differences from our modern human male comparative sample. The perceived differences include: dorsoventrally large 1st and 2nd ribs, 3rd ribs with a very closed dorsal curvature and large maximum diameters at the posterior angle, a large tubercle-iliocostal line distance in the 4th rib, thick shafts at the dorsal end of its 6th ribs, thick mid-shafts of the 8th ribs, large articular tubercles at the 9th ribs, and thick shafts of the 11th and 12th ribs. Here we also describe a new mesosternal fragment: the left lateral half of sternebral segments 4 and 5. This portion reveals that the mesosternum of R1 had a sternal foramen in its inferiormost preserved sternal segment and supports previous estimation of the total length of this mesosternum. The new costal remains from R1 support the view that Neandertals, when compared with modern humans, show a significantly different thorax, consistent with differences found in other anatomical regions such as the vertebral column and pelvis.

RevDate: 2018-02-25

Warren KA, Ritzman TB, Humphreys RA, et al (2018)

Craniomandibular form and body size variation of first generation mouse hybrids: A model for hominin hybridization.

Journal of human evolution, 116:57-74.

Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F1) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record.

RevDate: 2018-04-17
CmpDate: 2018-04-17

Hoffmann DL, Standish CD, García-Diez M, et al (2018)

U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art.

Science (New York, N.Y.), 359(6378):912-915.

The extent and nature of symbolic behavior among Neandertals are obscure. Although evidence for Neandertal body ornamentation has been proposed, all cave painting has been attributed to modern humans. Here we present dating results for three sites in Spain that show that cave art emerged in Iberia substantially earlier than previously thought. Uranium-thorium (U-Th) dates on carbonate crusts overlying paintings provide minimum ages for a red linear motif in La Pasiega (Cantabria), a hand stencil in Maltravieso (Extremadura), and red-painted speleothems in Ardales (Andalucía). Collectively, these results show that cave art in Iberia is older than 64.8 thousand years (ka). This cave art is the earliest dated so far and predates, by at least 20 ka, the arrival of modern humans in Europe, which implies Neandertal authorship.

RevDate: 2018-04-17
CmpDate: 2018-04-17

Appenzeller T (2018)

Europe's first artists were Neandertals.

Science (New York, N.Y.), 359(6378):852-853.

RevDate: 2018-02-15

Li F, Kuhn SL, Chen F, et al (2018)

The easternmost Middle Paleolithic (Mousterian) from Jinsitai Cave, North China.

Journal of human evolution, 114:76-84.

The dispersal of Neanderthals and their genetic and cultural interactions with anatomically modern humans and other hominin populations in Eurasia are critical issues in human evolution research. Neither Neanderthal fossils nor typical Mousterian assemblages have been reported in East Asia to date. Here we report on artifact assemblages comparable to western Eurasian Middle Paleolithic (Mousterian) at Jinsitai, a cave site in North China. The lithic industry at Jinsitai appeared at least 47-42 ka and persisted until around 40-37 ka. These findings expand the geographic range of the Mousterian-like industries at least 2000 km further to the east than what has been previously recognized. This discovery supplies a missing part of the picture of Middle Paleolithic distribution in Eurasia and also demonstrates the makers' capacity to adapt to diverse geographic regions and habitats of Eurasia.

RevDate: 2018-02-15

Kivell TL, Rosas A, Estalrrich A, et al (2018)

New Neandertal wrist bones from El Sidrón, Spain (1994-2009).

Journal of human evolution, 114:45-75.

Twenty-nine carpal bones of Homo neanderthalensis have been recovered from the site of El Sidrón (Asturias, Spain) during excavations between 1994 and 2009, alongside ∼2500 other Neandertal skeletal elements dated to ∼49,000 years ago. All bones of the wrist are represented, including adult scaphoids (n = 6), lunates (n = 2), triquetra (n = 4), pisiforms (n = 2), trapezia (n = 2), trapezoids (n = 5), capitates (n = 5), and hamates (n = 2), as well as one fragmentary and possibly juvenile scaphoid. Several of these carpals appear to belong to the complete right wrist of a single individual. Here we provide qualitative and quantitative morphological descriptions of these carpals, within a comparative context of other European and Near Eastern Neandertals, early and recent Homo sapiens, and other fossil hominins, including Homo antecessor, Homo naledi, and australopiths. Overall, the El Sidrón carpals show characteristics that typically distinguish Neandertals from H. sapiens, such as a relatively flat first metacarpal facet on the trapezium and a more laterally oriented second metacarpal facet on the capitate. However, there are some distinctive features of the El Sidrón carpals compared with most other Neandertals. For example, the tubercle of the trapezium is small with limited projection, while the scaphoid tubercle and hamate hamulus are among the largest seen in other Neandertals. Furthermore, three of the six adult scaphoids show a distinctive os-centrale portion, while another is a bipartite scaphoid with a truncated tubercle. The high frequency of rare carpal morphologies supports other evidence of a close genetic relationship among the Neandertals found at El Sidrón.

RevDate: 2018-03-02
CmpDate: 2018-03-02

O'Driscoll CA, JC Thompson (2018)

The origins and early elaboration of projectile technology.

Evolutionary anthropology, 27(1):30-45.

The ability of Homo sapiens to kill prey at a distance is arguably one of the catalysts for our current ecological dominance. Many researchers have suggested its origins lie in the African Middle Stone Age or the European Middle Palaeolithic (∼300-30 thousand years ago), but the perishable components of armatures rarely preserve. Most research on this subject therefore emphasises analysis of armature tip size, shape, and diagnostic impacts or residues. Other lines of evidence have included human skeletal anatomy or analyses of the species composition of faunal assemblages. Projectile Impact Marks (PIMs) on archaeofaunal remains offer an ideal complement to this work, but their potential has been restricted mainly to the later Eurasian zooarchaeological record. A review of current evidence and approaches shows that systematic PIM research could add much to our understanding of early projectile technology, especially in Africa.

RevDate: 2018-05-31

Marom A, Y Rak (2018)

Mechanical implications of the mandibular coronoid process morphology in Neandertals.

American journal of physical anthropology, 166(2):401-407.

OBJECTIVES: Among the diagnostic features of the Neandertal mandible are the broad base of the coronoid process and its straight posterior margin. The adaptive value of these (and other) anatomical features has been linked to the Neandertal's need to cope with a large gape. The present study aims to test this hypothesis with regard to the morphology of the coronoid process.

MATERIALS AND METHODS: This admittedly simple, intuitive hypothesis was tested here via a comparative finite-element study of the primitive versus modified state of the coronoid process, using two-dimensional models of the mandible.

RESULTS: Our simulations demonstrate that a large gape has an unfavorable effect on the primitive state of the coronoid process: the diagonal, almost horizontal, component of the temporalis muscle resultant (relative to the long axis of the coronoid process) bends the process in the sagittal plane. Furthermore, we show that the modification of the coronoid process morphology alone reduces the process' bending in a wide gape increasing the compression to tension ratio.

DISCUSSION: These results provide indirect evidence in support of the hypothesis that the modification of the coronoid process in Neandertals is necessary for enabling their mandible to cope with a large gape.

RevDate: 2018-07-17
CmpDate: 2018-07-17

Hoffecker JF (2018)

The complexity of Neanderthal technology.

Proceedings of the National Academy of Sciences of the United States of America, 115(9):1959-1961.

RevDate: 2018-07-16
CmpDate: 2018-07-16

Aranguren B, Revedin A, Amico N, et al (2018)

Wooden tools and fire technology in the early Neanderthal site of Poggetti Vecchi (Italy).

Proceedings of the National Academy of Sciences of the United States of America, 115(9):2054-2059.

Excavations for the construction of thermal pools at Poggetti Vecchi (Grosseto, Tuscany, central Italy) exposed a series of wooden tools in an open-air stratified site referable to late Middle Pleistocene. The wooden artifacts were uncovered, together with stone tools and fossil bones, largely belonging to the straight-tusked elephant Paleoloxodon antiquus The site is radiometrically dated to around 171,000 y B.P., and hence correlated with the early marine isotope stage 6 [Benvenuti M, et al. (2017) Quat Res 88:327-344]. The sticks, all fragmentary, are made from boxwood (Buxus sempervirens) and were over 1 m long, rounded at one end and pointed at the other. They have been partially charred, possibly to lessen the labor of scraping boxwood, using a technique so far not documented at the time. The wooden artifacts have the size and features of multipurpose tools known as "digging sticks," which are quite commonly used by foragers. This discovery from Poggetti Vecchi provides evidence of the processing and use of wood by early Neanderthals, showing their ability to use fire in tool making from very tough wood.

RevDate: 2018-05-31

Hanegraef H, Martinón-Torres M, Martínez de Pinillos M, et al (2018)

Dentine morphology of Atapuerca-Sima de los Huesos lower molars: Evolutionary implications through three-dimensional geometric morphometric analysis.

American journal of physical anthropology, 166(2):276-295.

OBJECTIVES: This study aims to explore the affinities of the Sima de los Huesos (SH) population in relation to Homo neanderthalensis, Arago, and early and contemporary Homo sapiens. By characterizing SH intra-population variation, we test current models to explain the Neanderthal origins.

MATERIALS AND METHODS: Three-dimensional reconstructions of dentine surfaces of lower first and second molars were produced by micro-computed tomography. Landmarks and sliding semilandmarks were subjected to generalized Procrustes analysis and principal components analysis.

RESULTS: SH is often similar in shape to Neanderthals, and both groups are generally discernible from Homo sapiens. For example, the crown height of SH and Neanderthals is lower than for modern humans. Differences in the presence of a mid-trigonid crest are also observed, with contemporary Homo sapiens usually lacking this feature. Although SH and Neanderthals show strong affinities, they can be discriminated based on certain traits. SH individuals are characterized by a lower intra-population variability, and show a derived dental reduction in lower second molars compared to Neanderthals. SH also differs in morphological features from specimens that are often classified as Homo heidelbergensis, such as a lower crown height and less pronounced mid-trigonid crest in the Arago fossils.

DISCUSSION: Our results are compatible with the idea that multiple evolutionary lineages or populations coexisted in Europe during the Middle Pleistocene, with the SH paradigm phylogenetically closer to Homo neanderthalensis. Further research could support the possibility of SH as a separate taxon. Alternatively, SH could be a subspecies of Neanderthals, with the variability of this clade being remarkably higher than previously thought.

RevDate: 2018-03-07

Naskar T, Faruq M, Banerjee P, et al (2018)

Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family.

EBioMedicine, 28:168-179.

Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A>C [p.Ile154Leu], c.541G>A [p.Ala181Thr], c.2036G>C [p.Arg679Pro] and c.2059A>G [p.Lys687Glu]) result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading.

RevDate: 2018-03-22
CmpDate: 2018-03-22

Callaway E (2018)

Israeli fossils are the oldest modern humans ever found outside of Africa.

Nature, 554(7690):15-16.

RevDate: 2018-02-19

Yew CW, Lu D, Deng L, et al (2018)

Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia.

Human genetics, 137(2):161-173.

Southeast Asia (SEA) is enriched with a complex history of peopling. Malaysia, which is located at the crossroads of SEA, has been recognized as one of the hubs for early human migration. To unravel the genomic complexity of the native inhabitants of Malaysia, we sequenced 12 samples from 3 indigenous populations from Peninsular Malaysia and 4 native populations from North Borneo to a high coverage of 28-37×. We showed that the Negritos from Peninsular Malaysia shared a common ancestor with the East Asians, but exhibited some level of gene flow from South Asia, while the North Borneo populations exhibited closer genetic affinity towards East Asians than the Malays. The analysis of time of divergence suggested that ancestors of Negrito were the earliest settlers in the Malay Peninsula, whom first separated from the Papuans ~ 50-33 thousand years ago (kya), followed by East Asian (~ 40-15 kya), while the divergence time frame between North Borneo and East Asia populations predates the Austronesian expansion period implies a possible pre-Neolithic colonization. Substantial Neanderthal ancestry was confirmed in our genomes, as was observed in other East Asians. However, no significant difference was observed, in terms of the proportion of Denisovan gene flow into these native inhabitants from Malaysia. Judging from the similar amount of introgression in the Southeast Asians and East Asians, our findings suggest that the Denisovan gene flow may have occurred before the divergence of these populations and that the shared similarities are likely an ancestral component.

RevDate: 2018-01-28

Xing S, Carlson KJ, Wei P, et al (2018)

Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1.

PeerJ, 6:e4279 pii:4279.

Background: Regional diversity in the morphology of the H. erectus postcranium is not broadly documented, in part, because of the paucity of Asian sites preserving postcranial fossils. Yet, such an understanding of the initial hominin taxon to spread throughout multiple regions of the world is fundamental to documenting the adaptive responses to selective forces operating during this period of human evolution.

Methods: The current study reports the first humeral rigidity and strength properties of East Asian H. erectus and places its diaphyseal robusticity into broader regional and temporal contexts. We estimate true cross-sectional properties of Zhoukoudian Humerus II and quantify new diaphyseal properties of Humerus III using high resolution computed tomography. Comparative data for African H. erectus and Eurasian Late Pleistocene H. sapiens were assembled, and new data were generated from two modern Chinese populations.

Results: Differences between East Asian and African H. erectus were inconsistently expressed in humeral cortical thickness. In contrast, East Asian H. erectus appears to exhibit greater humeral robusticity compared to African H. erectus when standardizing diaphyseal properties by the product of estimated body mass and humeral length. East Asian H. erectus humeri typically differed less in standardized properties from those of side-matched Late Pleistocene hominins (e.g., Neanderthals and more recent Upper Paleolithic modern humans) than did African H. erectus, and often fell in the lower range of Late Pleistocene humeral rigidity or strength properties.

Discussion: Quantitative comparisons indicate that regional variability in humeral midshaft robusticity may characterize H. erectus to a greater extent than presently recognized. This may suggest a temporal difference within H. erectus, or possibly different ecogeographical trends and/or upper limb loading patterns across the taxon. Both discovery and analysis of more adult H. erectus humeri are critical to further evaluating and potentially distinguishing between these possibilities.

RevDate: 2018-04-20

Relethford JH, FH Smith (2018)

Cranial measures and ancient DNA both show greater similarity of Neandertals to recent modern Eurasians than to recent modern sub-Saharan Africans.

American journal of physical anthropology, 166(1):170-178.

OBJECTIVES: Ancient DNA analysis has shown that present-day humans of Eurasian ancestry are more similar to Neandertals than are present-day humans of sub-Saharan African ancestry, reflecting interbreeding after modern humans first left Africa. We use craniometric data to test the hypothesis that the crania of recent modern humans show the same pattern.

MATERIALS AND METHODS: We computed Mahalanobis squared distances between a published Neandertal centroid based on 37 craniometric traits and each of 2,413 recent modern humans from the Howells global data set (N = 373 sub-Saharan Africans, N = 2,040 individuals of Eurasian descent).

RESULTS: The average distance to the Neandertal centroid is significantly lower for Eurasian crania than for sub-Saharan African crania as expected from the findings of ancient DNA (p < 0.001). This result holds when examining distances for separate geographic regions of humans of Eurasian descent (Europeans, Asians, Australasians, Native Americans, and Pacific Islanders). Most of these results are also seen when examining distances partitioning size and shape variation.

DISCUSSION: Our results show that the genetic difference in Neandertal ancestry seen in the DNA of present-day sub-Saharan Africans and Eurasians is also found in patterns of recent modern human craniometric variation.

RevDate: 2018-02-21
CmpDate: 2018-02-21

Cataldo DM, Migliano AB, L Vinicius (2018)

Speech, stone tool-making and the evolution of language.

PloS one, 13(1):e0191071 pii:PONE-D-17-21377.

The 'technological hypothesis' proposes that gestural language evolved in early hominins to enable the cultural transmission of stone tool-making skills, with speech appearing later in response to the complex lithic industries of more recent hominins. However, no flintknapping study has assessed the efficiency of speech alone (unassisted by gesture) as a tool-making transmission aid. Here we show that subjects instructed by speech alone underperform in stone tool-making experiments in comparison to subjects instructed through either gesture alone or 'full language' (gesture plus speech), and also report lower satisfaction with their received instruction. The results provide evidence that gesture was likely to be selected over speech as a teaching aid in the earliest hominin tool-makers; that speech could not have replaced gesturing as a tool-making teaching aid in later hominins, possibly explaining the functional retention of gesturing in the full language of modern humans; and that speech may have evolved for reasons unrelated to tool-making. We conclude that speech is unlikely to have evolved as tool-making teaching aid superior to gesture, as claimed by the technological hypothesis, and therefore alternative views should be considered. For example, gestural language may have evolved to enable tool-making in earlier hominins, while speech may have later emerged as a response to increased trade and more complex inter- and intra-group interactions in Middle Pleistocene ancestors of Neanderthals and Homo sapiens; or gesture and speech may have evolved in parallel rather than in sequence.

RevDate: 2018-07-17
CmpDate: 2018-07-17

d'Errico F, Doyon L, Colagé I, et al (2017)

From number sense to number symbols. An archaeological perspective.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1740):.

How and when did hominins move from the numerical cognition that we share with the rest of the animal world to number symbols? Objects with sequential markings have been used to store and retrieve numerical information since the beginning of the European Upper Palaeolithic (42 ka). An increase in the number of markings and complexity of coding is observed towards the end of this period. The application of new analytical techniques to a 44-42 ka old notched baboon fibula from Border Cave, South Africa, shows that notches were added to this bone at different times, suggesting that devices to store numerical information were in use before the Upper Palaeolithic. Analysis of a set of incisions on a 72-60 ka old hyena femur from the Les Pradelles Mousterian site, France, indicates, by comparison with markings produced by modern subjects under similar constraints, that the incisions on the Les Pradelles bone may have been produced to record, in a single session, homologous units of numerical information. This finding supports the view that numerical notations were in use among archaic hominins. Based on these findings, a testable five-stage scenario is proposed to establish how prehistoric cultures have moved from number sense to the use of number symbols.This article is part of a discussion meeting issue 'The origins of numerical abilities'.

RevDate: 2018-06-15

Berens AJ, Cooper TL, J Lachance (2017)

The Genomic Health of Ancient Hominins.

Human biology, 89(1):7-19.

The genomes of ancient humans, Neandertals, and Denisovans contain many alleles that influence disease risks. Using genotypes at 3,180 disease-associated loci, we estimated the disease burden of 147 ancient genomes. After correcting for missing data, genetic risk scores (GRS) were generated for nine disease categories and the set of all combined diseases. We used these genetic risk scores to examine the effects of different types of subsistence, geography, and sample age on the number of risk alleles in each ancient genome. On a broad scale, hereditary disease risks are similar for ancient hominins and modern-day humans, and the GRS percentiles of ancient individuals span the full range of what is observed in present-day individuals. In addition, there is evidence that ancient pastoralists may have had healthier genomes than hunter-gatherers and agriculturalists. We also observed a temporal trend whereby genomes from the recent past are more likely to be healthier than genomes from the deep past. This calls into question the idea that modern lifestyles have caused genetic load to increase over time. Focusing on individual genomes, we found that the overall genomic health of the Altai Neandertal is worse than 97% of present-day humans and that Ötzi, the Tyrolean Iceman, had a genetic predisposition for gastrointestinal and cardiovascular diseases. As demonstrated by this work, ancient genomes afford us new opportunities to diagnose past human health, which has previously been limited by the quality and completeness of remains.

RevDate: 2018-02-15
CmpDate: 2018-02-15

Frost P, Kleisner K, J Flegr (2017)

Health status by gender, hair color, and eye color: Red-haired women are the most divergent.

PloS one, 12(12):e0190238 pii:PONE-D-17-33002.

Red hair is associated in women with pain sensitivity. This medical condition, and perhaps others, seems facilitated by the combination of being red-haired and female. We tested this hypothesis by questioning a large sample of Czech and Slovak respondents about the natural redness and darkness of their hair, their natural eye color, their physical and mental health (24 categories), and other personal attributes (height, weight, number of children, lifelong number of sexual partners, frequency of smoking). Red-haired women did worse than other women in ten health categories and better in only three, being particularly prone to colorectal, cervical, uterine, and ovarian cancer. Red-haired men showed a balanced pattern, doing better than other men in three health categories and worse in three. Number of children was the only category where both male and female redheads did better than other respondents. We also confirmed earlier findings that red hair is naturally more frequent in women than in men. Of the 'new' hair and eye colors, red hair diverges the most from the ancestral state of black hair and brown eyes, being the most sexually dimorphic variant not only in population frequency but also in health status. This divergent health status may have one or more causes: direct effects of red hair pigments (pheomelanins) or their by-products; effects of other genes that show linkage with genes involved in pheomelanin production; excessive prenatal exposure to estrogen (which facilitates expression of red hair during fetal development and which, at high levels, may cause health problems later in life); evolutionary recentness of red hair and corresponding lack of time to correct negative side effects; or genetic incompatibilities associated with the allele Val92Met, which seems to be of Neanderthal origin and is one of the alleles that can cause red hair.

RevDate: 2018-01-08
CmpDate: 2018-01-08

Lozano M, Estalrrich A, Bondioli L, et al (2017)

Right-handed fossil humans.

Evolutionary anthropology, 26(6):313-324.

Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right- to 1 left-hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right-handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right-handed fossils come from Europe, but a single maxilla from a Homo habilis, OH-65, shows a predominance of right oblique scratches, thus extending right-handedness into the early Pleistocene of Africa. Other studies show right-handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non-European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right-handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens.

RevDate: 2018-03-07

Chikhi L, Rodríguez W, Grusea S, et al (2018)

The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice.

Heredity, 120(1):13-24.

Several inferential methods using genomic data have been proposed to quantify and date population size changes in the history of species. At the same time an increasing number of studies have shown that population structure can generate spurious signals of population size change. Recently, Mazet et al. (2016) introduced, for a sample size of two, a time-dependent parameter, which they called the IICR (inverse instantaneous coalescence rate). The IICR is equivalent to a population size in panmictic models, but not necessarily in structured models. It is characterised by a temporal trajectory that suggests population size changes, as a function of the sampling scheme, even when the total population size was constant. Here, we extend the work of Mazet et al. (2016) by (i) showing how the IICR can be computed for any demographic model of interest, under the coalescent, (ii) applying this approach to models of population structure (1D and 2D stepping stone, split models, two- and three-island asymmetric gene flow, continent-island models), (iii) stressing the importance of the sampling strategy in generating different histories, (iv) arguing that IICR plots can be seen as summaries of genomic information that can thus be used for model choice or model exclusion (v) applying this approach to the question of admixture between humans and Neanderthals. Altogether these results are potentially important given that the widely used PSMC (pairwise sequentially Markovian coalescent) method of Li and Durbin (2011) estimates the IICR of the sample, not necessarily the history of the populations.

RevDate: 2018-01-22
CmpDate: 2018-01-22

Falcucci A, Conard NJ, M Peresani (2017)

A critical assessment of the Protoaurignacian lithic technology at Fumane Cave and its implications for the definition of the earliest Aurignacian.

PloS one, 12(12):e0189241 pii:PONE-D-17-33887.

In the scenario of the spread of the anatomically modern humans (AMHs) into Europe, the techno-complex known as Protoaurignacian is defined by the production of blades and bladelets within a single and continuous stone knapping sequence from the same core as the result of its progressive reduction. However, the growing re-evaluation of some assemblages is revealing that bladelets are frequently obtained from independent reduction sequences, hence discouraging the direct application of the model developed in southwestern France. High-resolution regional signatures are thus needed to reconstruct a more accurate portrait of the AMH colonization dynamic. Northeastern Italy, with the key site of Fumane Cave, is one among the regions of Mediterranean Europe worthy of consideration for reconstructing this colonization process and its cultural dynamics. Within the framework of a critical discussion of the technological definition of the Protoaurignacian and its relationship with contemporaneous industries on a regional and supra-regional scale, we present the results of a detailed analysis of the lithic technology from units A2-A1 based on reduction sequence and attribute analyses. Results show that bladelets are the first goal of production and they do not originate from reduced blade cores but from a broad range of independent and simultaneous core reduction strategies. One implication is that the most commonly used technological trait that is said to define the Protoaurignacian has been over-emphasized and that the Protoaurignacian is technologically consistent across its geographical extent. Additional data based on carinated core technology imply that this techno-complex shares a common technological background with the Early Aurignacian and that no features are restricted to one of the two facies. Furthermore, the major difference between the Protoaurignacian and Early Aurignacian appears to be more typological in nature, with retouched bladelets being less common in the Early Aurignacian.

RevDate: 2017-12-19

Zilhão J, Anesin D, Aubry T, et al (2017)

Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia.

Heliyon, 3(11):e00435 pii:e00435.

The late persistence in Southern Iberia of a Neandertal-associated Middle Paleolithic is supported by the archeological stratigraphy and the radiocarbon and luminescence dating of three newly excavated localities in the Mula basin of Murcia (Spain). At Cueva Antón, Mousterian layer I-k can be no more than 37,100 years-old. At La Boja, the basal Aurignacian can be no less than 36,500 years-old. The regional Middle-to-Upper Paleolithic transition process is thereby bounded to the first half of the 37th millennium Before Present, in agreement with evidence from Andalusia, Gibraltar and Portugal. This chronology represents a lag of minimally 3000 years with the rest of Europe, where that transition and the associated process of Neandertal/modern human admixture took place between 40,000 and 42,000 years ago. The lag implies the presence of an effective barrier to migration and diffusion across the Ebro river depression, which, based on available paleoenvironmental indicators, would at that time have represented a major biogeographical divide. In addition, (a) the Phlegraean Fields caldera explosion, which occurred 39,850 years ago, would have stalled the Neandertal/modern human admixture front because of the population sink it generated in Central and Eastern Europe, and (b) the long period of ameliorated climate that came soon after (Greenland Interstadial 8, during which forests underwent a marked expansion in Iberian regions south of 40°N) would have enhanced the "Ebro Frontier" effect. These findings have two broader paleoanthropological implications: firstly, that, below the Ebro, the archeological record made prior to 37,000 years ago must be attributed, in all its aspects and components, to the Neandertals (or their ancestors); secondly, that modern human emergence is best seen as an uneven, punctuated process during which long-lasting barriers to gene flow and cultural diffusion could have existed across rather short distances, with attendant consequences for ancient genetics and models of human population history.

RevDate: 2018-02-25

Young M, Johannesdottir F, Poole K, et al (2018)

Assessing the accuracy of body mass estimation equations from pelvic and femoral variables among modern British women of known mass.

Journal of human evolution, 115:130-139.

Femoral head diameter is commonly used to estimate body mass from the skeleton. The three most frequently employed methods, designed by Ruff, Grine, and McHenry, were developed using different populations to address different research questions. They were not specifically designed for application to female remains, and their accuracy for this purpose has rarely been assessed or compared in living populations. This study analyzes the accuracy of these methods using a sample of modern British women through the use of pelvic CT scans (n = 97) and corresponding information about the individuals' known height and weight. Results showed that all methods provided reasonably accurate body mass estimates (average percent prediction errors under 20%) for the normal weight and overweight subsamples, but were inaccurate for the obese and underweight subsamples (average percent prediction errors over 20%). When women of all body mass categories were combined, the methods provided reasonable estimates (average percent prediction errors between 16 and 18%). The results demonstrate that different methods provide more accurate results within specific body mass index (BMI) ranges. The McHenry Equation provided the most accurate estimation for women of small body size, while the original Ruff Equation is most likely to be accurate if the individual was obese or severely obese. The refined Ruff Equation was the most accurate predictor of body mass on average for the entire sample, indicating that it should be utilized when there is no knowledge of the individual's body size or if the individual is assumed to be of a normal body size. The study also revealed a correlation between pubis length and body mass, and an equation for body mass estimation using pubis length was accurate in a dummy sample, suggesting that pubis length can also be used to acquire reliable body mass estimates. This has implications for how we interpret body mass in fossil hominins and has particular relevance to the interpretation of the long pubic ramus that is characteristic of Neandertals.

RevDate: 2017-12-19
CmpDate: 2017-12-11

Marín J, Saladié P, Rodríguez-Hidalgo A, et al (2017)

Neanderthal hunting strategies inferred from mortality profiles within the Abric Romaní sequence.

PloS one, 12(11):e0186970 pii:PONE-D-17-21977.

Ungulate mortality profiles are commonly used to study Neanderthal subsistence strategies. To assess the hunting strategies used by Neanderthals, we studied the ages at death of the cervids and equids found in levels E, H, I, Ja, Jb, K, L and M of the Abric Romaní sequence. These levels date between 43.2 ± 1.1 ka BP (14C AMS) and 54.5 ± 1.7 ka BP (U-series). The degree of eruption and development of the teeth and their wear stages were used to determine the ages of these animals at death, and mortality profiles were constructed using these data. The equids display prime dominated profiles in all of the analyzed levels, whereas the cervids display variable profiles. These results suggest that the Neanderthals of Abric Romaní employed both selective and non-selective hunting strategies. The selective strategy focused on the hunting of prime adults and generated prime dominated profiles. On the other hand, non-selective strategies, involved the consumption of animals of variable ages, resulting in catastrophic profiles. It is likely that in the selective hunting events were conducted using selective ambushes in which it was possible to select specific prey animals. On the other hand, encounter hunting or non-selective ambush hunting may have also been used at times, based on the abundances of prey animals and encounter rates. Specific hunting strategies would have been developed accordance with the taxa and the age of the individual to be hunted. The hunting groups most likely employed cooperative hunting techniques, especially in the capture of large animals. Thus, it is not possible to uniquely associate a single mortality profile with the predation tactics of Neanderthals at Abric Romaní.

RevDate: 2018-03-31

Novakowski KE, Yap NVL, Yin C, et al (2018)

Human-Specific Mutations and Positively Selected Sites in MARCO Confer Functional Changes.

Molecular biology and evolution, 35(2):440-450.

Macrophage Receptor with COllagenous structure (MARCO) is a class A scavenger receptor that binds, phagocytoses, and modifies inflammatory responses to bacterial pathogens. Multiple candidate gene approach studies have shown that polymorphisms in MARCO are associated with susceptibility or resistance to Mycobacterium tuberculosis infection, but how these variants alter function is not known. To complement candidate gene approach studies, we previously used phylogenetic analyses to identify a residue, glutamine 452 (Q452), within the ligand-binding Scavenger Receptor Cysteine Rich domain as undergoing positive selection in humans. Herein, we show that Q452 is found in Denisovans, Neanderthals, and extant humans, but all other nonprimate, terrestrial, and aquatic mammals possess an aspartic acid (D452) residue. Further analysis of hominoid sequences of MARCO identified an additional human-specific mutation, phenylalanine 282 (F282), within the collagenous domain. We show that residue 282 is polymorphic in humans, but only 17% of individuals (rs6761637) possess the ancestral serine residue at position 282. We show that rs6761637 is in linkage disequilibrium with MARCO polymorphisms that have been previously linked to susceptibility to pulmonary tuberculosis. To assess the functional importance of sites Q452 and F282 in humans, we cloned the ancestral residues and loss-of-function mutations and investigated the role of these residues in binding and internalizing polystyrene microspheres and Escherichia coli. Herein, we show that the residues at sites 452 and 282 enhance receptor function.

RevDate: 2018-06-18
CmpDate: 2018-06-18

Mafessoni F, K Prüfer (2017)

Better support for a small effective population size of Neandertals and a long shared history of Neandertals and Denisovans.

Proceedings of the National Academy of Sciences of the United States of America, 114(48):E10256-E10257.

RevDate: 2018-04-19
CmpDate: 2018-04-19

Kolodny O, MW Feldman (2017)

A parsimonious neutral model suggests Neanderthal replacement was determined by migration and random species drift.

Nature communications, 8(1):1040 pii:10.1038/s41467-017-01043-z.

Most hypotheses in the heated debate about the Neanderthals' replacement by modern humans highlight the role of environmental pressures or attribute the Neanderthals' demise to competition with modern humans, who occupied the same ecological niche. The latter assume that modern humans benefited from some selective advantage over Neanderthals, which led to the their extinction. Here we show that a scenario of migration and selectively neutral species drift predicts the Neanderthals' replacement. Our model offers a parsimonious alternative to those that invoke external factors or selective advantage, and represents a null hypothesis for assessing such alternatives. For a wide range of parameters, this hypothesis cannot be rejected. Moreover, we suggest that although selection and environmental factors may or may not have played a role in the inter-species dynamics of Neanderthals and modern humans, the eventual replacement of the Neanderthals was determined by the repeated migration of modern humans from Africa into Eurasia.

RevDate: 2018-06-21
CmpDate: 2018-06-21

de Azevedo S, González MF, Cintas C, et al (2017)

Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans.

Proceedings of the National Academy of Sciences of the United States of America, 114(47):12442-12447.

Both modern humans (MHs) and Neanderthals successfully settled across western Eurasian cold-climate landscapes. Among the many adaptations considered as essential to survival in such landscapes, changes in the nasal morphology and/or function aimed to humidify and warm the air before it reaches the lungs are of key importance. Unfortunately, the lack of soft-tissue evidence in the fossil record turns difficult any comparative study of respiratory performance. Here, we reconstruct the internal nasal cavity of a Neanderthal plus two representatives of climatically divergent MH populations (southwestern Europeans and northeastern Asians). The reconstruction includes mucosa distribution enabling a realistic simulation of the breathing cycle in different climatic conditions via computational fluid dynamics. Striking across-specimens differences in fluid residence times affecting humidification and warming performance at the anterior tract were found under cold/dry climate simulations. Specifically, the Asian model achieves a rapid air conditioning, followed by the Neanderthals, whereas the European model attains a proper conditioning only around the medium-posterior tract. In addition, quantitative-genetic evolutionary analyses of nasal morphology provided signals of stabilizing selection for MH populations, with the removal of Arctic populations turning covariation patterns compatible with evolution by genetic drift. Both results indicate that, departing from important craniofacial differences existing among Neanderthals and MHs, an advantageous species-specific respiratory performance in cold climates may have occurred in both species. Fluid dynamics and evolutionary biology independently provided evidence of nasal evolution, suggesting that adaptive explanations regarding complex functional phenotypes require interdisciplinary approaches aimed to quantify both performance and evolutionary signals on covariation patterns.

RevDate: 2018-04-13
CmpDate: 2018-04-13

Gibbons A (2017)

Neandertals gave 'lost' African DNA back to moderns.

Science (New York, N.Y.), 358(6362):431.

RevDate: 2018-03-24
CmpDate: 2017-12-21

Buti L, Le Cabec A, Panetta D, et al (2017)

3D enamel thickness in Neandertal and modern human permanent canines.

Journal of human evolution, 113:162-172.

Enamel thickness figures prominently in studies of human evolution, particularly for taxonomy, phylogeny, and paleodietary reconstruction. Attention has focused on molar teeth, through the use of advanced imaging technologies and novel protocols. Despite the important results achieved thus far, further work is needed to investigate all tooth classes. We apply a recent approach developed for anterior teeth to investigate the 3D enamel thickness of Neandertal and modern human (MH) canines. In terms of crown size, the values obtained for both upper and lower unworn/slightly worn canines are significantly greater in Neandertals than in Upper Paleolithic and recent MH. The 3D relative enamel thickness (RET) is significantly lower in Neandertals than in MH. Moreover, differences in 3D RET values between the two groups appear to decrease in worn canines beginning from wear stage 3, suggesting that both the pattern and the stage of wear may have important effects on the 3D RET value. Nevertheless, the 3D average enamel thickness (AET) does not differ between the two groups. In both groups, 3D AET and 3D RET indices are greater in upper canines than in lower canines, and overall the enamel is thicker on the occlusal half of the labial aspect of the crown, particularly in MH. By contrast, the few early modern humans investigated show the highest volumes of enamel while for all other components of 3D enamel, thickness this group holds an intermediate position between Neandertals and recent MH. Overall, our study supports the general findings that Neandertals have relatively thinner enamel than MH (as also observed in molars), indicating that unworn/slightly worn canines can be successfully used to discriminate between the two groups. Further studies, however, are needed to understand whether these differences are functionally related or are the result of pleiotropic or genetic drift effects.

RevDate: 2017-12-19
CmpDate: 2017-11-13

Trinkaus E, S Villotte (2017)

External auditory exostoses and hearing loss in the Shanidar 1 Neandertal.

PloS one, 12(10):e0186684 pii:PONE-D-17-21979.

The Late Pleistocene Shanidar 1 older adult male Neandertal is known for the crushing fracture of his left orbit with a probable reduction in vision, the loss of his right forearm and hand, and evidence of an abnormal gait, as well as probable diffuse idiopathic skeletal hyperostosis. He also exhibits advanced external auditory exostoses in his left auditory meatus and larger ones with complete bridging across the porus in the right meatus (both Grade 3). These growths indicate at least unilateral conductive hearing (CHL) loss, a serious sensory deprivation for a Pleistocene hunter-gatherer. This condition joins the meatal atresia of the Middle Pleistocene Atapuerca-SH Cr.4 in providing evidence of survival with conductive hearing loss (and hence serious sensory deprivation) among these Pleistocene humans. The presence of CHL in these fossils thereby reinforces the paleobiological and archeological evidence for supporting social matrices among these Pleistocene foraging peoples.

RevDate: 2017-12-19
CmpDate: 2017-11-21

Soriano S, P Villa (2017)

Early Levallois and the beginning of the Middle Paleolithic in central Italy.

PloS one, 12(10):e0186082 pii:PONE-D-17-27880.

In the second half of the 19th century Pleistocene faunas were discovered in two sites, Sedia del Diavolo and Monte delle Gioie, contained in deposits of the Aniene River in the area of Rome (Latium, Italy). Fieldwork by A.C. Blanc in the late 1930's proved the association of fauna and lithic industry within fluvial deposits interbedded with volcanoclastic layers. A human femoral diaphysis and a metatarsal were later identified in the faunal assemblage from Sedia del Diavolo and evaluated as Neandertal. The lithic assemblages from these two sites were the basis of the definition of the Protopontinian by M. Taschini, which she viewed as a late Middle Pleistocene industry very similar to the later, Upper Pleistocene Pontinian industries, thought to be characteristic of the Latium Mousterian. The chronostratigraphic framework of the Aniene river deposits has been recently updated and the lithic assemblages from these two sites are now confidently dated between 295 and 290 ka, close to the transition from MIS 9 to MIS 8. They fit chronologically between the industries of layers m and d from Torre in Pietra, a site 26 km northwest of Rome. The presence of the Levallois debitage is indisputable yet it occurs within an original technical context, different from what is known in other early occurrences of the Levallois. The date confirms the proposed chronology for the early Levallois in Europe. More importantly these two assemblages demonstrate that this technology can emerge in more diversified contexts than usually described. This suggests that its dispersal in Europe may have been rapid.

RevDate: 2018-06-07

Taskent RO, Alioglu ND, Fer E, et al (2017)

Variation and Functional Impact of Neanderthal Ancestry in Western Asia.

Genome biology and evolution, 9(12):3516-3524.

Neanderthals contributed genetic material to modern humans via multiple admixture events. Initial admixture events presumably occurred in Western Asia shortly after humans migrated out of Africa. Despite being a focal point of admixture, earlier studies indicate lower Neanderthal introgression rates in some Western Asian populations as compared with other Eurasian populations. To better understand the genome-wide and phenotypic impact of Neanderthal introgression in the region, we sequenced whole genomes of nine present-day Europeans, Africans, and the Western Asian Druze at high depth, and analyzed available whole genome data from various other populations, including 16 genomes from present-day Turkey. Our results confirmed previous observations that contemporary Western Asian populations, on an average, have lower levels of Neanderthal-introgressed DNA relative to other Eurasian populations. Modern Western Asians also show comparatively high variability in Neanderthal ancestry, which may be attributed to the complex demographic history of the region. We further replicated the previously described depletion of putatively functional sequences among Neanderthal-introgressed haplotypes. Still, we find dozens of common Neanderthal-introgressed haplotypes in the Turkish sample associated with human phenotypes, including anthropometric and metabolic traits, as well as the immune response. One of these haplotypes is unusually long and harbors variants that affect the expression of members of the CCR gene family and are associated with celiac disease. Overall, our results paint a complex first picture of the genomic impact of Neanderthal introgression in the Western Asian populations.

RevDate: 2018-02-06

Wakano JY, Gilpin W, Kadowaki S, et al (2018)

Ecocultural range-expansion scenarios for the replacement or assimilation of Neanderthals by modern humans.

Theoretical population biology, 119:3-14.

Recent archaeological records no longer support a simple dichotomous characterization of the cultures/behaviors of Neanderthals and modern humans, but indicate much cultural/behavioral variability over time and space. Thus, in modeling the replacement or assimilation of Neanderthals by modern humans, it is of interest to consider cultural dynamics and their relation to demographic change. The ecocultural framework for the competition between hominid species allows their carrying capacities to depend on some measure of the levels of culture they possess. In the present study both population densities and the densities of skilled individuals in Neanderthals and modern humans are spatially distributed and subject to change by spatial diffusion, ecological competition, and cultural transmission within each species. We analyze the resulting range expansions in terms of the demographic, ecological and cultural parameters that determine how the carrying capacities relate to the local densities of skilled individuals in each species. Of special interest is the case of cognitive and intrinsic-demographic equivalence of the two species. The range expansion dynamics may consist of multiple wave fronts of different speeds, each of which originates from a traveling wave solution. Properties of these traveling wave solutions are mathematically derived. Depending on the parameters, these traveling waves can result in replacement of Neanderthals by modern humans, or assimilation of the former by the latter. In both the replacement and assimilation scenarios, the first wave of intrusive modern humans is characterized by a low population density and a low density of skilled individuals, with implications for archaeological visibility. The first invasion is due to weak interspecific competition. A second wave of invasion may be induced by cultural differences between moderns and Neanderthals. Spatially and temporally extended coexistence of the two species, which would have facilitated the transfer of genes from Neanderthal into modern humans and vice versa, is observed in the traveling waves, except when niche overlap between the two species is extremely high. Archaeological findings on the spatial and temporal distributions of the Initial Upper Palaeolithic and the Early Upper Palaeolithic and of the coexistence of Neanderthals and modern humans are discussed.

RevDate: 2018-03-16

Naito YI, Chikaraishi Y, Drucker DG, et al (2018)

Reply to "Comment on "Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen." [J. Hum. Evol. 93 (2016) 82-90]" [J. Hum. Evol. 117 (2018) 53-55].

Journal of human evolution, 117:56-60.

RevDate: 2018-02-14
CmpDate: 2018-01-02

Chapman T, Sholukha V, Semal P, et al (2018)

Further consideration of the curvature of the Neandertal Femur.

American journal of physical anthropology, 165(1):94-107.

OBJECTIVES: Neandertal femora are particularly known for having a marked sagittal femoral curvature. This study examined femoral curvature in Neandertals in comparison to a modern human population from Belgium by the use of three-dimensional (3D) quadric surfaces modeled from the bone surface. 3D models provide detailed information and enabled femoral curvature to be analyzed in conjunction with other morphological parameters.

MATERIALS AND METHODS: 3D models were created from CT scans of 75 modern human femora and 7 Neandertal femora. Quadric surfaces (QS) were created from the triangulated surface vertices in all areas of interest (neck, head, diaphyseal shaft, condyles) extracted from previously placed anatomical landmarks. The diaphyseal shaft was divided into five QS shapes and curvature was measured by degrees of difference between QS shapes. Each bone was placed in a local coordinate system enabling each bone to be analyzed in the same way.

RESULTS: The use of 3D quadric surface fitting allowed the distribution of curvature with similarly curved femora to be analyzed and the different patterns of curvature between the two groups to be determined. The Neandertals were shown to have a higher degree of femoral curvature and a more distal point of femoral curvature than the modern human population from Belgium.

CONCLUSIONS: Morphological aspects of the Neandertal femur are different from this modern human population although mainly seem unrelated to femoral curvature. The relative lack of correlations with other femoral bony morphological factors suggests femoral curvature variations may be related to other aspects.

RevDate: 2018-04-05
CmpDate: 2017-10-16

Dannemann M, J Kelso (2017)

The Contribution of Neanderthals to Phenotypic Variation in Modern Humans.

American journal of human genetics, 101(4):578-589.

Assessing the genetic contribution of Neanderthals to non-disease phenotypes in modern humans has been difficult because of the absence of large cohorts for which common phenotype information is available. Using baseline phenotypes collected for 112,000 individuals by the UK Biobank, we can now elaborate on previous findings that identified associations between signatures of positive selection on Neanderthal DNA and various modern human traits but not any specific phenotypic consequences. Here, we show that Neanderthal DNA affects skin tone and hair color, height, sleeping patterns, mood, and smoking status in present-day Europeans. Interestingly, multiple Neanderthal alleles at different loci contribute to skin and hair color in present-day Europeans, and these Neanderthal alleles contribute to both lighter and darker skin tones and hair color, suggesting that Neanderthals themselves were most likely variable in these traits.

RevDate: 2018-01-31
CmpDate: 2018-01-31

Gibbons A (2017)

Neandertal genome reveals greater legacy in the living.

Science (New York, N.Y.), 358(6359):21.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Click Covers to Order from Amazon

Neanderthals

The first fossil recognized to be an ancestral human was found in the Neander Valley (thal in German) in 1856. William King suggested Homo neanderthalensis (human from the Neander Valley) as the scientific name for the specimen — hence Neanderthal became the common name by which this early human became known. Now Neanderthal genomes have been sequenced, more is known about their path to extinction, and the existence of Neanderthal culture, including music, has been established. To understand the evolutionary path of the hominid line, one must be familiar with Homo neanderthalensis. These books are highly recommended. R. Robbins

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )