Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Holobiont

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 24 Jan 2021 at 01:30 Created: 


Holobionts are assemblages of different species that form ecological units. Lynn Margulis proposed that any physical association between individuals of different species for significant portions of their life history is a symbiosis. All participants in the symbiosis are bionts, and therefore the resulting assemblage was first coined a holobiont by Lynn Margulis in 1991 in the book Symbiosis as a Source of Evolutionary Innovation. Holo is derived from the Ancient Greek word ὅλος (hólos) for “whole”. The entire assemblage of genomes in the holobiont is termed a hologenome.

Created with PubMed® Query: holobiont OR hologenome NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-01-23

Eckert EM, Anicic N, D Fontaneto (2021)

Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment.

Molecular ecology [Epub ahead of print].

The association with microbes in plants and animals is known to be beneficial for the host's survival and fitness, but the generality of the effect of the microbiome is still debated. For some animals, similarities in microbiome composition reflect taxonomic relatedness of the hosts, a pattern termed phylosymbiosis. The mechanisms behind the pattern could be due to coevolution and/or to correlated ecological constraints. General conclusions are hampered by the fact that the available knowledge is highly dominated by microbiomes from model species. We addressed the issue of the generality of phylosymbiosis by analysing the species-specificity of microbiomes across different species of freshwater zooplankton, including rotifers, cladocerans, and copepods, coupling field surveys and experimental manipulations. We found that no signal of phylosymbiosis is present, and that the proportion of 'core' microbial taxa, stable and consistent within each species, is very low. Changes in food and temperature under laboratory experimental settings revealed that the microbiome of freshwater zooplankton is highly flexible and can be influenced by the external environment. Thus, the role of coevolution, strict association, and interaction with microbes within the holobiont concept highlighted for vertebrates, corals, sponges, and other animals does not seem to be supported for all animals, at least not for freshwater zooplankton. Zooplankton floats in the environment where both food and bacteria that can provide help in digesting such food are available. In addition, there is likely redundancy for beneficial bacterial functions in the environment, not allowing a strict host-microbiome association to originate and persist.

RevDate: 2021-01-22

Bonthond G, Bayer T, Krueger-Hadfield SA, et al (2021)

The role of host promiscuity in the invasion process of a seaweed holobiont.

The ISME journal [Epub ahead of print].

Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar -or more common- microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.

RevDate: 2021-01-14

Bredon M, Depuydt E, Brisson L, et al (2021)

Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod.

Microorganisms, 9(1): pii:microorganisms9010148.

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host's diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the "eco-holobiont" conceptualization of macroorganisms.

RevDate: 2021-01-13

Fagorzi C, Bacci G, Huang R, et al (2021)

Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis.

mSystems, 6(1):.

Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.

RevDate: 2021-01-13

Mannaa M, YS Seo (2021)

Plants under the Attack of Allies: Moving towards the Plant Pathobiome Paradigm.

Plants (Basel, Switzerland), 10(1): pii:plants10010125.

Plants are functional macrobes living in a close association with diverse communities of microbes and viruses as complex systems that continuously interact with the surrounding environment. The microbiota within the plant holobiont serves various essential and beneficial roles, such as in plant growth at different stages, starting from seed germination. Meanwhile, pathogenic microbes-differentiated from the rest of the plant microbiome based on their ability to damage the plant tissues through transient blooming under specific conditions-are also a part of the plant microbiome. Recent advances in multi-omics have furthered our understanding of the structure and functions of plant-associated microbes, and a pathobiome paradigm has emerged as a set of organisms (i.e., complex eukaryotic, microbial, and viral communities) within the plant's biotic environment which interact with the host to deteriorate its health status. Recent studies have demonstrated that the one pathogen-one disease hypothesis is insufficient to describe the disease process in many cases, particularly when complex organismic communities are involved. The present review discusses the plant holobiont and covers the steady transition of plant pathology from the one pathogen-one disease hypothesis to the pathobiome paradigm. Moreover, previous reports on model plant diseases, in which more than one pathogen or co-operative interaction amongst pathogenic microbes is implicated, are reviewed and discussed.

RevDate: 2021-01-12

Zhang Y, Yang Q, Zhang Y, et al (2021)

Shifts in abundance and network complexity of coral bacteria in response to elevated ammonium stress.

The Science of the total environment, 768:144631 pii:S0048-9697(20)38162-6 [Epub ahead of print].

Coral bacteria are highly dynamic and acutely affected by host health and environmental conditions. However, there is limited knowledge of how the dynamics of coral-associated bacterial communities and interactions among bacterial members change in response to dissolved inorganic nutrient stressors. Here, we used high-throughput sequencing of the 16S rRNA gene to examine dynamic changes in coral-associated bacterial communities under elevated ammonium stress. Short-term exposure to high levels of ammonium does not significantly harm coral holobiont. Physiological parameters such as carbohydrate, chlorophyll a, and lipid content of coral holobiont were not affected. After three weeks of elevated ammonium stress, however, the coral-associated bacterial community changed significantly. The abundance of certain bacterial populations increased significantly, with enrichment of pathogenic and opportunistic bacteria and a decrease in defensive and core bacteria. Keystone bacterial species in the co-occurrence network changed considerably. Under elevated ammonium stress, the abundance of keystone species associated with corals was lower and the complexity of keystone bacterial relationships decreased significantly. Our results indicate that bacteria respond to elevated ammonium stress through changes in abundance and co-occurrence among bacterial members. This precedes visual symptoms of changes in coral physiological conditions and could be used as an early warning indicator of elevated ammonium stress in coastal coral reef management.

RevDate: 2021-01-08

Bonacolta AM, Connelly MT, Rosales S, et al (2021)

The Starlet Sea Anemone, Nematostella vectensis, possesses body region-specific bacterial associations with spirochetes dominating the capitulum.

FEMS microbiology letters pii:6070651 [Epub ahead of print].

Sampling of different body regions can reveal highly specialized bacterial associations within the holobiont and facilitate identification of core microbial symbionts that would otherwise be overlooked by bulk sampling methods. Here we characterized compartment-specific associations present within the model cnidarian Nematostella vectensis by dividing its morphology into three distinct microhabitats. This sampling design allowed us to uncover a capitulum-specific dominance of spirochetes within N. vectensis. Bacteria from the family Spirochaetaceae made up 66% of the community in the capitulum, while only representing 1.2% and 0.1% of the communities in the mesenteries and physa, respectively. A phylogenetic analysis of the predominant spirochete sequence recovered from N. vectensis showed a close relation to spirochetes previously recovered from wild N. vectensis. These sequences clustered closer to the recently described genus Oceanispirochaeta, rather than Spirochaeta perfilievii, supporting them as members of this clade. This suggests a prevalent, and yet uncharacterized association between N. vectensis and spirochetes from the order Spirochaetales.

RevDate: 2021-01-07

Martinez S, Kolodny Y, Shemesh E, et al (2020)

Energy Sources of the Depth-Generalist Mixotrophic Coral Stylophora pistillata.

Frontiers in Marine Science, 7:988.

Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30-150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ15N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a, lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.

RevDate: 2021-01-04

Taulé C, Vaz-Jauri P, F Battistoni (2021)

Insights into the early stages of plant-endophytic bacteria interaction.

World journal of microbiology & biotechnology, 37(1):13.

The plant holobiont is a complex entity composed of the plant and the organisms that live in and on it including its microbiota. The plant microbiota includes, among other microorganisms, bacterial endophytes, which are bacteria that can invade living plant tissues without causing symptoms of disease. The interaction between the endophytic bacterial microbiota and their plant host has profound influences on their fitness and depends on biotic and abiotic factors. For these interactions to be established, the bacteria have to be present at the right time, in the right place either colonizing the soil or the seed. In this review we summarize the current knowledge regarding the sources of the bacterial endophytic microbiome and the processes involved in the assemblage of the resulting community during the initial stages of plant development. The adaptations that allow the spatial approximation of soil- and seed-borne bacteria towards infection and colonization of the internal tissues of plants will be addressed in this review.

RevDate: 2021-01-03

Miquel PA, SY Hwang (2021)

On biological individuation.

Theory in biosciences = Theorie in den Biowissenschaften [Epub ahead of print].

In this paper, we understand the emergence of life as a pure individuation process. Individuation already occurs in open thermodynamics systems near equilibrium. We understand such open systems, as already recursively characterized (R1) by the relation between their internal properties, and their boundary conditions. Second, global properties emerge in such physical systems. We interpret this change as the fact that their structure is the recursive result of their operations (R2). We propose a simulation of the emergence of life in Earth by a mapping (R) through which (R1R2) operators are applied to themselves, so that RN = (R1R2)N. We suggest that under specific thermodynamic (open systems out of equilibrium) and chemical conditions (autocatalysis, kinetic dynamic stability), this mapping can go up to a limit characterized by a fixed-point equation: [Formula: see text]. In this equation, ([Formula: see text]) symbolizes a regime of permanent resonance characterizing the biosphere, as open from inside, by the recursive differential relation between the biosphere and all its holobionts. As such the biosphere is closed on itself as a pure differential entity. ([Formula: see text]) symbolizes the regime of permanent change characterizing the emergence of evolution in the biosphere. As such the biosphere is closed on itself, by the principle of descent with modifications, and by the fact that every holobiont evolves in a niche, while evolving with it.

RevDate: 2020-12-21

Babbin AR, Tamasi T, Dumit D, et al (2020)

Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals.

The ISME journal [Epub ahead of print].

Coral reef health depends on an intricate relationship among the coral animal, photosynthetic algae, and a complex microbial community. The holobiont can impact the nutrient balance of their hosts amid an otherwise oligotrophic environment, including by cycling physiologically important nitrogen compounds. Here we use 15N-tracer experiments to produce the first simultaneous measurements of ammonium oxidation, nitrate reduction, and nitrous oxide (N2O) production among five iconic species of reef-building corals (Acropora palmata, Diploria labyrinthiformis, Orbicella faveolata, Porites astreoides, and Porites porites) in the highly protected Jardines de la Reina reefs of Cuba. Nitrate reduction is present in most species, but ammonium oxidation is low potentially due to photoinhibition and assimilatory competition. Coral-associated rates of N2O production indicate a widespread potential for denitrification, especially among D. labyrinthiformis, at rates of ~1 nmol cm-2 d-1. In contrast, A. palmata displays minimal active nitrogen metabolism. Enhanced rates of nitrate reduction and N2O production are observed coincident with dark net respiration periods. Genomes of bacterial cultures isolated from multiple coral species confirm that microorganisms with the ability to respire nitrate anaerobically to either dinitrogen gas or ammonium exist within the holobiont. This confirmation of anaerobic nitrogen metabolisms by coral-associated microorganisms sheds new light on coral and reef productivity.

RevDate: 2020-12-17

Menaa F, Wijesinghe PAUI, Thiripuranathar G, et al (2020)

Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions.

Marine drugs, 18(12): pii:md18120641.

Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)-microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.

RevDate: 2020-12-16

Mironov T, E Sabaneyeva (2020)

A Robust Symbiotic Relationship Between the Ciliate Paramecium multimicronucleatum and the Bacterium Ca. Trichorickettsia Mobilis.

Frontiers in microbiology, 11:603335.

Close reciprocal interactions in symbiotic systems have suggested the holobiont concept, in which the host and its microbiota are considered as a single entity. Ciliates are known for their ability to form symbiotic associations with prokaryotes. Relationships between the partners in such systems vary from mutualism to parasitism and differ significantly in their robustness. We assessed the viability of the ciliate Paramecium multimicronucleatum and its ability to maintain its intranuclear endosymbiont Ca. Trichorickettsia mobilis (Rickettsiaceae) after treatment with antibiotics characterized by different mode of action, such as ampicillin, streptomycin, chloramphenicol, tetracycline. The presence of endosymbionts in the host cell was determined by means of living cell observations made using differential interference contrast or fluorescence in situ hybridization with the species-specific oligonucleotide probe (FISH). Administration of antibiotics traditionally used in treatments of rickettsioses, tetracycline and chloramphenicol, depending on the concentration used and the ciliate strain treated, either caused death of both, infected and control cells, or did not affect the ability of the host to maintain the intranuclear endosymbiont. The surviving cells always manifested motile bacteria in the macronucleus. Streptomycin treatment never led to the loss of endosymbionts in any of the four infected strains, and nearly all ciliates remained viable. Ampicillin treatment never caused host cell death, but resulted in formation of filamentous and immobile oval bacterial forms. Under repeated ampicillin treatments, a part of endosymbionts was registered in the host cytoplasm, as evidenced both by FISH and transmission electron microscopy. Endosymbionts located in the host cytoplasm were enclosed in vacuoles, apparently, corresponding to autophagosomes. Nevertheless, the bacteria seemed to persist in this compartment and might cause relapse of the infection. Although the antibiotic sensitivity profile of Trichorickettsia seems to resemble that of other representatives of Rickettsiaceae, causative agents of severe diseases in humans, neither of the antibiotic treatments used in this study resulted in an aposymbiotic cell line, apparently, due to the protists' sensitivity to tetracyclines, the drugs of preference in rickettsiosis treatment. The observed robustness of this symbiotic system makes it a good model for further elaboration of the holobiont concept.

RevDate: 2020-12-16

Oliveira BFR, Lopes IR, Canellas ALB, et al (2020)

Not That Close to Mommy: Horizontal Transmission Seeds the Microbiome Associated with the Marine Sponge Plakina cyanorosea.

Microorganisms, 8(12): pii:microorganisms8121978.

Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.

RevDate: 2020-12-16

Bombin A, Cunneely O, Eickman K, et al (2020)

Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster.

Microorganisms, 8(12): pii:microorganisms8121972.

Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.

RevDate: 2020-12-14

Sukhoverkhov AV, N Gontier (2020)

Non-genetic inheritance: Evolution above the organismal level.

Bio Systems pii:S0303-2647(20)30197-0 [Epub ahead of print].

The article proposes to further develop the ideas of the Extended Evolutionary Synthesis by including into evolutionary research an analysis of phenomena that occur above the organismal level. We demonstrate that the current Extended Synthesis is focused more on individual traits (genetically or non-genetically inherited) and less on community system traits (synergetic/organizational traits) that characterize transgenerational biological, ecological, social, and cultural systems. In this regard, we will consider various communities that are made up of interacting populations that occupy the same place in time and space, and for which the individual members can belong as the same or different species. Examples of communities include biofilms, ant colonies, symbiotic associations resulting in holobiont formation, and human societies. The proposed model of evolution at the level of communities revises classic theorizing on the major transitions in evolution by analyzing the interplay between community/social traits and individual traits, and how this brings forth ideas of top-down regulations of bottom-up evolutionary processes (collaboration of downward and upward causation). The work demonstrates that such interplay also includes reticulate interactions and reticulate causation. In this regard, we exemplify how community systems provide various non-genetic 'scaffoldings', 'constraints, and 'affordances' for individual and sociocultural evolutionary development. Such research complements prevailing models that focus on the vertical transmission of heritable information, from parent to offspring, with research that instead focusses on horizontal, oblique and even reverse information transmission, going from offspring to parent. We call this reversed information transfer the 'offspring effect' to contrast it from the 'parental effect'. We argue that the proposed approach to inheritance is effective for modelling cumulative and distributed developmental process and for explaining the biological origins and evolution of language.

RevDate: 2020-12-14

Wang X, Feng H, Wang Y, et al (2020)

Mycorrhizal Symbiosis Modulates the Rhizosphere Microbiota to Promote Rhizobia-Legume Symbiosis.

Molecular plant pii:S1674-2052(20)30433-0 [Epub ahead of print].

Plants establish symbioses with mutualistic fungi, such as arbuscular mycorrhizal (AM) fungi, and bacteria, such as rhizobia, to exchange key nutrients and thrive. The plants and symbionts have coevolved and represent vital components of terrestrial ecosystems. Plants employ an ancestral AM signaling pathway to establish intracellular symbioses, including the legume-rhizobia symbiosis, in their roots. Nevertheless, the relationship between the AM and rhizobial symbioses in native soil is poorly understood. Here, we examined how these distinct symbioses affect root-associated bacterial communities in Medicago truncatula, by quantitative microbiota profiling (QMP) of 16S rRNA genes. We found that M. truncatula mutants that cannot establish AM or rhizobia symbiosis have an altered microbial load (quantitative abundance) in rhizosphere and roots, and in particular that AM symbiosis is required to assemble a normal quantitative root-associated microbiota in native soil. Moreover, quantitative microbial co-abundance network analyses revealed that the AM symbiosis impacts Rhizobiales-hubs among the plant microbiota and benefit the plant holobiont. Through QMP of rhizobial rpoB and AM fungal SSU rRNA genes, we revealed a new layer of interaction, whereby AM symbiosis promotes rhizobia accumulation in the rhizosphere of M. truncatula. We further showed that AM symbiosis-conditioned microbial communities within the M. truncatula rhizosphere could promote nodulation in different legume plants in native soil. Given that the AM and rhizobial symbioses are critical for crop growth, our findings might inform strategies to improve agricultural management. Moreover, our work sheds light on the co-evolution of these intracellular symbioses during plant adaptation to native soil conditions.

RevDate: 2020-12-07

Robinson JM, R Cameron (2020)

The Holobiont Blindspot: Relating Host-Microbiome Interactions to Cognitive Biases and the Concept of the "Umwelt".

Frontiers in psychology, 11:591071.

Cognitive biases can lead to misinterpretations of human and non-human biology and behavior. The concept of the Umwelt describes phylogenetic contrasts in the sensory realms of different species and has important implications for evolutionary studies of cognition (including biases) and social behavior. It has recently been suggested that the microbiome (the diverse network of microorganisms in a given environment, including those within a host organism such as humans) has an influential role in host behavior and health. In this paper, we discuss the host's microbiome in relation to cognitive biases and the concept of the Umwelt. Failing to consider the role of host-microbiome (collectively termed a "holobiont") interactions in a given behavior, may underpin a potentially important cognitive bias - which we refer to as the Holobiont Blindspot. We also suggest that microbially mediated behavioral responses could augment our understanding of the Umwelt. For example, the potential role of the microbiome in perception and action could be an important component of the system that gives rise to the Umwelt. We also discuss whether microbial symbionts could be considered in System 1 thinking - that is, decisions driven by perception, intuition and associative memory. Recognizing Holobiont Blindspots and considering the microbiome as a key factor in the Umwelt and System 1 thinking has the potential to advance studies of cognition. Furthermore, investigating Holobiont Blindspots could have important implications for our understanding of social behaviors and mental health. Indeed, the way we think about how we think may need to be revisited.

RevDate: 2020-12-04

Sharifi R, CM Ryu (2020)

Social networking in crop plants: Wired and wireless cross-plant communications.

Plant, cell & environment [Epub ahead of print].

The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores, and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signaling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions. This article is protected by copyright. All rights reserved.

RevDate: 2020-12-03

Saha M, Dove S, F Weinberger (2020)

Chemically Mediated Microbial "Gardening" Capacity of a Seaweed Holobiont Is Dynamic.

Microorganisms, 8(12): pii:microorganisms8121893.

Terrestrial plants are known to "garden" the microbiota of their rhizosphere via released metabolites (that can attract beneficial microbes and deter pathogenic microbes). Such a "gardening" capacity is also known to be dynamic in plants. Although microbial "gardening" has been recently demonstrated for seaweeds, we do not know whether this capacity is a dynamic property in any aquatic flora like in terrestrial plants. Here, we tested the dynamic microbial "gardening" capacity of seaweeds using the model invasive red seaweed Agarophyton vermiculophyllum. Following an initial extraction of surface-associated metabolites (immediately after field collection), we conducted a long-term mesocosm experiment for 5 months to test the effect of two different salinities (low = 8.5 and medium = 16.5) on the microbial "gardening" capacity of the alga over time. We tested "gardening" capacity of A. vermiculophyllum originating from two different salinity levels (after 5 months treatments) in settlement assays against three disease causing pathogenic bacteria and seven protective bacteria. We also compared the capacity of the alga with field-collected samples. Abiotic factors like low salinity significantly increased the capacity of the alga to deter colonization by pathogenic bacteria while medium salinity significantly decreased the capacity of the alga over time when compared to field-collected samples. However, capacity to attract beneficial bacteria significantly decreased at both tested salinity levels when compared to field-collected samples. Dynamic microbial "gardening" capacity of a seaweed to attract beneficial bacteria and deter pathogenic bacteria is demonstrated for the first time. Such a dynamic capacity as found in the current study could also be applicable to other aquatic host-microbe interactions. Our results may provide an attractive direction of research towards manipulation of salinity and other abiotic factors leading to better defended A. vermiculophyllum towards pathogenic bacteria thereby enhancing sustained production of healthy A. vermiculophyllum in farms.

RevDate: 2020-12-02

Ye S, E Siemann (2020)

Endosymbiont-Mediated Adaptive Responses to Stress in Holobionts.

Results and problems in cell differentiation, 69:559-580.

Endosymbiosis is found in all types of ecosystems and it can be sensitive to environmental changes due to the intimate interaction between the endosymbiont and the host. Indeed, global climate change disturbs the local ambient environment and threatens endosymbiotic species, and in some cases leads to local ecosystem collapse. Recent studies have revealed that the endosymbiont can affect holobiont (endosymbiont and host together) stress tolerance as much as the host does, and manipulation of the microbial partners in holobionts may mitigate the impacts of the environmental stress. Here, we first show how the endosymbiont presence affects holobiont stress tolerance by discussing three well-studied endosymbiotic systems, which include plant-fungi, aquatic organism-algae, and insect-bacteria systems. We then review how holobionts are able to alter their stress tolerance via associated endosymbionts by changing their endosymbiont composition, by adaptation of their endosymbionts, or by acclimation of their endosymbionts. Finally, we discuss how different transmission modes (vertical or horizontal transmission) might affect the adaptability of holobionts. We propose that the endosymbiont is a good target for modifying holobiont stress tolerance, which makes it critical to more fully investigate the role of endosymbionts in the adaptive responses of holobionts to stress.

RevDate: 2020-12-02

Huitzil S, Sandoval-Motta S, Frank A, et al (2020)

Phenotype Heritability in Holobionts: An Evolutionary Model.

Results and problems in cell differentiation, 69:199-223.

Many complex diseases are expressed with high incidence only in certain populations. Genealogy studies determine that these diseases are inherited with a high probability. However, genetic studies have been unable to identify the genomic signatures responsible for such heritability, as identifying the genetic variants that make a population prone to a given disease is not enough to explain its high occurrence within the population. This gap is known as the missing heritability problem. We know that the microbiota plays a very important role in determining many important phenotypic characteristics of its host, in particular the complex diseases for which the missing heritability occurs. Therefore, when computing the heritability of a phenotype, it is important to consider not only the genetic variation in the host but also in its microbiota. Here we test this hypothesis by studying an evolutionary model based on gene regulatory networks. Our results show that the holobiont (the host plus its microbiota) is capable of generating a much larger variability than the host alone, greatly reducing the missing heritability of the phenotype. This result strongly suggests that a considerably large part of the missing heritability can be attributed to the microbiome.

RevDate: 2020-11-29

Porro B, Zamoum T, Mallien C, et al (2020)

Horizontal acquisition of Symbiodiniaceae in the Anemonia viridis (Cnidaria, Anthozoa) species complex.

Molecular ecology [Epub ahead of print].

All metazoans are in fact holobionts, resulting from the association of several organisms, and organismal adaptation is then due to the composite response of this association to the environment. Deciphering the mechanisms of symbiont acquisition in a holobiont is therefore essential to understanding the extent of its adaptive capacities. In cnidarians, some species acquire their photosynthetic symbionts directly from their parents (vertical transmission) but may also acquire symbionts from the environment (horizontal acquisition) at the adult stage. The Mediterranean snakelocks sea anemone, Anemonia viridis (Forskål, 1775), passes down symbionts from one generation to the next by vertical transmission, but the capacity for such horizontal acquisition is still unexplored. To unravel the flexibility of the association between the different host lineages identified in A. viridis and its Symbiodiniaceae, we genotyped both the animal hosts and their symbiont communities in members of host clones in five different locations in the North Western Mediterranean Sea. The composition of within-host symbiont populations was more dependent on the geographical origin of the hosts than their membership to a given lineage or even to a given clone. Additionally, similarities in host symbiont communities were greater among genets (i.e. among different clones) than among ramets (i.e. among members of the same given clonal genotype). Taken together, our results demonstrate that A. viridis may form associations with a range of symbiotic dinoflagellates and suggest a capacity for horizontal acquisition. A mixed-mode transmission strategy in A. viridis, as we posit here, may help explain the large phenotypic plasticity that characterises this anemone.

RevDate: 2020-11-30

Cooke I, Ying H, Forêt S, et al (2020)

Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts.

Science advances, 6(48): pii:6/48/eabc6318.

Genetic signatures caused by demographic and adaptive processes during past climatic shifts can inform predictions of species' responses to anthropogenic climate change. To identify these signatures in Acropora tenuis, a reef-building coral threatened by global warming, we first assembled the genome from long reads and then used shallow whole-genome resequencing of 150 colonies from the central inshore Great Barrier Reef to inform population genomic analyses. We identify population structure in the host that reflects a Pleistocene split, whereas photosymbiont differences between reefs most likely reflect contemporary (Holocene) conditions. Signatures of selection in the host were associated with genes linked to diverse processes including osmotic regulation, skeletal development, and the establishment and maintenance of symbiosis. Our results suggest that adaptation to post-glacial climate change in A. tenuis has involved selection on many genes, while differences in symbiont specificity between reefs appear to be unrelated to host population structure.

RevDate: 2020-11-27

Calegario G, Freitas L, Appolinario LR, et al (2020)

Conserved rhodolith microbiomes across environmental gradients of the Great Amazon Reef.

The Science of the total environment pii:S0048-9697(20)36942-4 [Epub ahead of print].

The Great Amazon Reef System (GARS) covers an estimated area of 56,000 km2 off the mouth of the Amazon River. Living rhodolith holobionts are major benthic components of the GARS. However, it is unclear whether environmental conditions modulate the rhodolith microbiomes. Previous studies suggest that environmental parameters such as light, temperature, depth, and nutrients are drivers of rhodolith health. However, it is unclear whether rhodoliths from different sectors (northern, central, and southern) from the GARS have different microbiomes. We analysed metagenomes of rhodoliths (n = 10) and seawater (n = 6), obtained from the three sectors, by illumina shotgun sequencing (total read counts: 25.73 million). Suspended particulate material and isotopic composition of dissolved organic carbon (δ13C) indicated a strong influence of the Amazon river plume over the entire study area. However, photosynthetically active radiation at the bottom (PARb) was higher in the southern sector reefs, ranging from 10.1 to 14.3 E.m-2 day-1. The coralline calcareous red algae (CCA) Corallina caespitosa, Corallina officinalis, Lithophyllum cabiochiae, and Hapalidiales were present in the three sectors and in most rhodolith samples. Rhodolith microbiomes were very homogeneous across the studied area and differed significantly from seawater microbiomes. However, some subtle differences were found when comparing the rhodolith microbiomes from the northern and central sectors to the ones from the southern. Consistent with the higher light availability, two phyla were more abundant in rhodolith microbiomes from southern sites (Bacteroidetes, and Cyanobacteria). In addition, two functional categories were enhanced in southern rhodolith microbiomes (iron acquisition and metabolism, and photosynthesis). Phycobiliprotein-coding genes were also more abundant in southern locations, while the functional categories of respiration and sulfur metabolism were enhanced in northern and central rhodolith microbiomes, consistent with higher nutrient loads. The results confirm the conserved nature of rhodolith microbiomes even under pronounced environmental gradients. Subtle taxonomic and functional differences observed in rhodolith microbiomes may enable rhodoliths to thrive in changing environmental conditions.

RevDate: 2020-11-27

Aichelman HE, DJ Barshis (2020)

Adaptive divergence, neutral panmixia, and algal symbiont population structure in the temperate coral Astrangia poculata along the Mid-Atlantic United States.

PeerJ, 8:e10201.

Astrangia poculata is a temperate scleractinian coral that exists in facultative symbiosis with the dinoflagellate alga Breviolum psygmophilum across a range spanning the Gulf of Mexico to Cape Cod, Massachusetts. Our previous work on metabolic thermal performance of Virginia (VA) and Rhode Island (RI) populations of A. poculata revealed physiological signatures of cold (RI) and warm (VA) adaptation of these populations to their respective local thermal environments. Here, we used whole-transcriptome sequencing (mRNA-Seq) to evaluate genetic differences and identify potential loci involved in the adaptive signature of VA and RI populations. Sequencing data from 40 A. poculata individuals, including 10 colonies from each population and symbiotic state (VA-white, VA-brown, RI-white, and RI-brown), yielded a total of 1,808 host-associated and 59 algal symbiont-associated single nucleotide polymorphisms (SNPs) post filtration. Fst outlier analysis identified 66 putative high outlier SNPs in the coral host and 4 in the algal symbiont. Differentiation of VA and RI populations in the coral host was driven by putatively adaptive loci, not neutral divergence (Fst = 0.16, p = 0.001 and Fst = 0.002, p = 0.269 for outlier and neutral SNPs respectively). In contrast, we found evidence of neutral population differentiation in B. psygmophilum (Fst = 0.093, p = 0.001). Several putatively adaptive host loci occur on genes previously associated with the coral stress response. In the symbiont, three of four putatively adaptive loci are associated with photosystem proteins. The opposing pattern of neutral differentiation in B. psygmophilum, but not the A. poculata host, reflects the contrasting dynamics of coral host and algal symbiont population connectivity, dispersal, and gene by environment interactions.

RevDate: 2020-12-01

Garcias-Bonet N, Eguíluz VM, Díaz-Rúa R, et al (2020)

Host-association as major driver of microbiome structure and composition in Red Sea seagrass ecosystems.

Environmental microbiology [Epub ahead of print].

The role of the microbiome in sustaining seagrasses has recently been highlighted. However, our understanding of the seagrass microbiome lacks behind that of other organisms. Here, we analyse the endophytic and total bacterial communities of leaves, rhizomes, and roots of six Red Sea seagrass species and their sediments. The structure of seagrass bacterial communities revealed that the 1% most abundant OTUs accounted for 87.9% and 74.8% of the total numbers of reads in sediment and plant tissue samples, respectively. We found taxonomically distinct bacterial communities in vegetated and bare sediments. Yet, our results suggest that lifestyle (i.e. free-living or host-association) is the main driver of bacterial community composition. Seagrass bacterial communities were tissue- and species-specific and differed from those of surrounding sediments. We identified OTUs belonging to genera related to N and S cycles in roots, and members of Actinobacteria, Bacteroidetes, and Firmicutes phyla as particularly enriched in root endosphere. The finding of highly similar OTUs in well-defined sub-clusters by network analysis suggests the co-occurrence of highly connected key members within Red Sea seagrass bacterial communities. These results provide key information towards the understanding of the role of microorganisms in seagrass ecosystem functioning framed under the seagrass holobiont concept.

RevDate: 2020-11-22

Grottoli AG, Toonen RJ, van Woesik R, et al (2020)

Increasing comparability among coral bleaching experiments.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

Coral bleaching is the single largest global threat to coral reefs worldwide. Integrating the diverse body of work on coral bleaching is critical to understanding and combating this global problem. Yet investigating the drivers, patterns, and processes of coral bleaching poses a major challenge. A recent review of published experiments revealed a wide range of experimental variables used across studies. Such a wide range of approaches enhances discovery, but without full transparency in the experimental and analytical methods used, can also make comparisons among studies challenging. To increase comparability but not stifle innovation, we propose a common framework for coral bleaching experiments that includes consideration of coral provenance, experimental conditions, and husbandry. For example, reporting the number of genets used, collection site conditions, the experimental temperature offset(s) from the maximum monthly mean (MMM) of the collection site, experimental light conditions, flow, and the feeding regime will greatly facilitate comparability across studies. Similarly, quantifying common response variables of endosymbiont (Symbiodiniaceae) and holobiont phenotypes (i.e., color, chlorophyll, endosymbiont cell density, mortality, and skeletal growth) could further facilitate cross-study comparisons. While no single bleaching experiment can provide the data necessary to determine global coral responses of all corals to current and future ocean warming, linking studies through a common framework as outlined here, would help increase comparability among experiments, facilitate synthetic insights into the causes and underlying mechanisms of coral bleaching, and reveal unique bleaching responses among genets, species, and regions. Such a collaborative framework that fosters transparency in methods used would strengthen comparisons among studies that can help inform coral reef management and facilitate conservation strategies to mitigate coral bleaching worldwide.

RevDate: 2020-11-21

Song H, Hewitt OH, SM Degnan (2020)

Arginine Biosynthesis by a Bacterial Symbiont Enables Nitric Oxide Production and Facilitates Larval Settlement in the Marine-Sponge Host.

Current biology : CB pii:S0960-9822(20)31594-3 [Epub ahead of print].

Larval settlement and metamorphosis are regulated by nitric oxide (NO) signaling in a wide diversity of marine invertebrates.1-10 It is thus surprising that, in most invertebrates, the substrate for NO synthesis-arginine-cannot be biosynthesized but instead must be exogenously sourced.11 In the sponge Amphimedon queenslandica, vertically inherited proteobacterial symbionts in the larva are able to biosynthesize arginine.12,13 Here, we test the hypothesis that symbionts provide arginine to the sponge host so that nitric oxide synthase expressed in the larva can produce NO, which regulates metamorphosis,8 and the byproduct citrulline (Figure 1). First, we find support for an arginine-citrulline biosynthetic loop in this sponge larval holobiont by using stable isotope tracing. In symbionts, incorporated 13C-citrulline decreases as 13C-arginine increases, consistent with the use of exogenous citrulline for arginine synthesis. In contrast, 13C-citrulline accumulates in larvae as 13C-arginine decreases, demonstrating the uptake of exogenous arginine and its conversion to NO and citrulline. Second, we show that, although Amphimedon larvae can derive arginine directly from seawater, normal settlement and metamorphosis can occur in artificial sea water lacking arginine. Together, these results support holobiont complementation of the arginine-citrulline loop and NO biosynthesis in Amphimedon larvae, suggesting a critical role for bacterial symbionts in the development of this marine sponge. Given that NO regulates settlement and metamorphosis in diverse animal phyla1-10 and arginine is procured externally in most animals,11 we propose that symbionts might play an equally critical regulatory role in this essential life cycle transition in other metazoans.

RevDate: 2020-11-18

Kelly VW, Liang BK, SJ Sirk (2020)

Living Therapeutics: The Next Frontier of Precision Medicine.

ACS synthetic biology [Epub ahead of print].

Modern medicine has long studied the mechanism and impact of pathogenic microbes on human hosts, but has only recently shifted attention toward the complex and vital roles that commensal and probiotic microbes play in both health and dysbiosis. Fueled by an enhanced appreciation of the human-microbe holobiont, the past decade has yielded countless insights and established many new avenues of investigation in this area. In this review, we discuss advances, limitations, and emerging frontiers for microbes as agents of health maintenance, disease prevention, and cure. We highlight the flexibility of microbial therapeutics across disease states, with special consideration for the rational engineering of microbes toward precision medicine outcomes. As the field advances, we anticipate that tools of synthetic biology will be increasingly employed to engineer functional living therapeutics with the potential to address longstanding limitations of traditional drugs.

RevDate: 2020-11-17

Djemiel C, Goulas E, Badalato N, et al (2020)

Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota.

Frontiers in genetics, 11:581664.

The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.

RevDate: 2020-11-30

Parras-Moltó M, D Aguirre de Cárcer (2020)

A comprehensive human minimal gut metagenome extends the host's metabolic potential.

Microbial genomics, 6(11):.

Accumulating evidence suggests that humans could be considered as holobionts in which the gut microbiota play essential functions. Initial metagenomic studies reported a pattern of shared genes in the gut microbiome of different individuals, leading to the definition of the minimal gut metagenome as the set of microbial genes necessary for homeostasis and present in all healthy individuals. This study analyses the minimal gut metagenome of the most comprehensive dataset available, including individuals from agriculturalist and industrialist societies, also embodying highly diverse ethnic and geographical backgrounds. The outcome, based on metagenomic predictions for community composition data, resulted in a minimal metagenome comprising 3412 genes, mapping to 1856 reactions and 128 metabolic pathways predicted to occur across all individuals. These results were substantiated by the analysis of two additional datasets describing the microbial community compositions of larger Western cohorts, as well as a substantial shotgun metagenomics dataset. Subsequent analyses showed the plausible metabolic complementarity provided by the minimal gut metagenome to the human genome.

RevDate: 2020-11-03

Mote S, Gupta V, De K, et al (2020)

Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India.

Folia microbiologica pii:10.1007/s12223-020-00830-4 [Epub ahead of print].

The bacterial diversity associated with eroding sponges belonging to the Cliona viridis species complex is scarcely known. Cliona thomasi described from the West Coast of India is a new introduction to the viridis species complex. In this study, we determined the bacterial diversity associated with C. thomasi using next-generation sequencing. The results revealed the dominance of Proteobacteria followed by Cyanobacteria, Actinobacteria and Firmicutes. Among Proteobacteria, the Alphaproteobacteria were found to be the most dominant class. Furthermore, at the genus level, Rhodothalassium were highly abundant followed by Endozoicomonas in sponge samples. The beta-diversity and species richness measures showed remarkably lower diversity in Cliona thomasi than the ambient environment. The determined lower bacterial diversity in C. thomasi than the environmental samples, thus, categorized it as a low microbial abundance (LMA). Functional annotation of the C. thomasi-associated bacterial community indicates their possible role in photo-autotrophy, aerobic nitrification, coupling of sulphate reduction and sulphide oxidization. The present study unveils the bacterial diversity in bioeroding C. thomasi, which is a crucial step to determine the functions of the sponge holobiont in coral reef ecosystem.

RevDate: 2020-11-28

Boilard A, Dubé CE, Gruet C, et al (2020)

Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont.

Microorganisms, 8(11):.

Coral microbiomes are critical to holobiont health and functioning, but the stability of host-microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced breakdown of the symbiosis between the host and its dinoflagellate algae (that is, "bleaching"), is one of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in some coral species. This review provides an overview of the holobiont's diversity, explores coral thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate bleaching, and suggests new research avenues. More specifically, we define coral bleaching as the succession of three holobiont stages, where the microbiota can (i) maintain essential functions for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii) environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners leading to coral death.

RevDate: 2020-11-02

Panelli S, Corbella M, Gazzola A, et al (2020)

Tracking over time the developing gut microbiota in newborns admitted to a neonatal intensive care unit during an outbreak caused by ESBL-producing Klebsiella pneumoniae.

The new microbiologica, 43(4): pii:496N183 [Epub ahead of print].

The establishment of gut microbiota is reportedly aberrant in newborns admitted to neonatal intensive care units (NICUs), with detrimental long-term health impacts. Here, we vertically tracked the developing gut bacterial communities of newborns hosted in an NICU during an outbreak sustained by ESBL Klebsiella pneumoniae and compared colonized and noncolonized patients. Most communities were highly variable from one sampling point to the next, and dominated by few taxa, often Proteobacteria and Enterobacteriaceae, with marked interindividual variability. This picture was retrieved independently of colonization status or clinical covariates. Our data support the emerging idea of preterm infants as a population in which no defined microbial signatures are clearly associated to clinical status. Instead, the strong pressure of the nosocomial environment, antibiotics and, in this case, the ongoing outbreak, possibly drive the evolution of microbiota patterns according to individual conditions, also in non-colonized patients.

RevDate: 2020-10-31

Goddard-Dwyer M, López-Legentil S, PM Erwin (2020)

Microbiome variability across the native and invasive range of the ascidian Clavelina oblonga.

Applied and environmental microbiology pii:AEM.02233-20 [Epub ahead of print].

Ascidians are prolific colonisers of new environments and possess a range of well-studied features that contribute to their successful spread, but the role of their symbiotic microbial communities in their long-term establishment is mostly unknown. Here, we utilized next-generation amplicon sequencing to provide a comprehensive description of the microbiome in the colonial ascidian Clavelina oblonga, and examined differences in the composition, diversity, and structure of symbiont communities in the host's native and invasive ranges. To identify host haplotypes, we sequenced a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI). C. oblonga harboured a diverse microbiome spanning 42 bacterial and three archaeal phyla. Colonies in the invasive range hosted significantly less diverse symbiont communities and exhibited lower COI haplotype diversity compared to colonies in the native range. Differences in microbiome structure were also detected across colonies in the native and invasive range, driven largely by novel bacteria representing symbiont lineages with putative roles in nitrogen cycling. Variability in symbiont composition was also observed among sites within each range. Together, these data suggest that C. oblonga hosts a dynamic microbiome resulting from (1) reductions in symbiont diversity due to founder effects in host populations, and (2) environmental selection of symbiont taxa in response to new habitats within a range. Further investigation is required to document the mechanisms behind these changes and to determine how changes in microbiome structure relate to holobiont function and the successful establishment of C. oblonga worldwide.Importance Non-native species destabilize coastal ecosystems and microbial symbionts may facilitate their spread by enhancing host survival and fitness. However, we know little of the microorganisms that live inside invasive species and whether they change as the host spreads to new areas. In this study, we described the microbial communities of an introduced ascidian (Clavelina oblonga) and track symbiont changes across locations within the host's native and invasive ranges. Ascidians in the invasive range had lower diversity microbiomes, as well as lower host haplotype diversity, suggesting that specific colonies reach new locations and carry select symbionts from native populations (i.e. founder effects). Further, ascidians in the invasive range hosted a different composition of symbionts, including microbes with the potential to aid in processes related to invasion success (e.g. nutrient cycling). We conclude that the putative functionality and observed flexibility of this introduced ascidian microbiome may represent an underappreciated factor in the successful establishment of non-native species in new environments.

RevDate: 2020-10-31

van de Water JAJM, Coppari M, Enrichetti F, et al (2020)

Local Conditions Influence the Prokaryotic Communities Associated With the Mesophotic Black Coral Antipathella subpinnata.

Frontiers in microbiology, 11:537813.

Black corals are important habitat-forming species in the mesophotic and deep-sea zones of the world's oceans because of their arborescent colony structure and tendency to form animal forests. Although we have started unraveling the ecology of mesophotic black corals, the importance of the associated microbes to their health has remained unexplored. Here, we provide in-depth assessments of black coral-microbe symbioses by investigating the spatial and temporal stability of these associations, and make comparisons with a sympatric octocoral with similar colony structure. To this end, we collected samples of Antipathella subpinnata colonies from three mesophotic shoals situated along the Ligurian Coast of the Mediterranean Sea (Bordighera, Portofino, Savona) in the spring of 2017. At the Portofino shoal, samples of A. subpinnata and the gorgonian Eunicella cavolini were collected in November 2016 and May 2017. Bacterial communities were profiled using 16S rRNA gene amplicon sequencing. The bacterial community of E. cavolini was consistently dominated by Endozoicomonas. Contrastingly, the black coral microbiome was more diverse, and was primarily composed of numerous Bacteroidetes, Alpha- and Gammaproteobacterial taxa, putatively involved in all steps of the nitrogen and sulfur cycles. Compositional differences in the A. subpinnata microbiome existed between all locations and both time points, and no phylotypes were consistently associated with A. subpinnata. This highlights that local conditions may influence the bacterial community structure and potentially nutrient cycling within the A. subpinnata holobiont. But it also suggests that this coral holobiont possesses a high degree of microbiome flexibility, which may be a mechanism to acclimate to environmental change.

RevDate: 2020-11-12

Chakraborty A, Ashraf MZ, Modlinger R, et al (2020)

Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance.

Scientific reports, 10(1):18572.

Bark beetles often serve as forest damaging agents, causing landscape-level mortality. Understanding the biology and ecology of beetles are important for both, gathering knowledge about important forest insects and forest protection. Knowledge about the bark beetle gut-associated bacteria is one of the crucial yet surprisingly neglected areas of research with European tree-killing bark beetles. Hence, in this study, we survey the gut bacteriome from five Ips and one non-Ips bark beetles from Scolytinae. Results reveal 69 core bacterial genera among five Ips beetles that may perform conserved functions within the bark beetle holobiont. The most abundant bacterial genera from different bark beetle gut include Erwinia, Sodalis, Serratia, Tyzzerella, Raoultella, Rahnella, Wolbachia, Spiroplasma, Vibrio, and Pseudoxanthomonas. Notable differences in gut-associated bacterial community richness and diversity among the beetle species are observed. Furthermore, the impact of sampling location on the overall bark beetle gut bacterial community assemblage is also documented, which warrants further investigations. Nevertheless, our data expanded the current knowledge about core gut bacterial communities in Ips bark beetles and their putative function such as cellulose degradation, nitrogen fixation, detoxification of defensive plant compounds, and inhibition of pathogens, which could serve as a basis for further metatranscriptomics and metaproteomics investigations.

RevDate: 2020-12-01

da Silva Fonseca J, Mies M, Paranhos A, et al (2020)

Isolated and combined effects of thermal stress and copper exposure on the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii.

Environmental pollution (Barking, Essex : 1987), 268(Pt B):115892 pii:S0269-7491(20)36581-7 [Epub ahead of print].

Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 μg L-1). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.

RevDate: 2020-10-30

Cannicci S, Fratini S, Meriggi N, et al (2020)

To the Land and Beyond: Crab Microbiomes as a Paradigm for the Evolution of Terrestrialization.

Frontiers in microbiology, 11:575372.

The transition to terrestrial environments by formerly aquatic species has occurred repeatedly in many animal phyla and lead to the vast diversity of extant terrestrial species. The differences between aquatic and terrestrial habitats are enormous and involved remarkable morphological and physiological changes. Convergent evolution of various traits is evident among phylogenetically distant taxa, but almost no information is available about the role of symbiotic microbiota in such transition. Here, we suggest that intertidal and terrestrial brachyuran crabs are a perfect model to study the evolutionary pathways and the ecological role of animal-microbiome symbioses, since their transition to land is happening right now, through a number of independent lineages. The microorganisms colonizing the gut of intertidal and terrestrial crabs are expected to play a major role to conquer the land, by reducing water losses and permitting the utilization of novel food sources. Indeed, it has been shown that the microbiomes hosted in the digestive system of terrestrial isopods has been critical to digest plant items, but nothing is known about the microbiomes present in the gut of truly terrestrial crabs. Other important physiological regulations that could be facilitated by microbiomes are nitrogen excretion and osmoregulation in the new environment. We also advocate for advances in comparative and functional genomics to uncover physiological aspects of these ongoing evolutionary processes. We think that the multidisciplinary study of microorganisms associated with terrestrial crabs will shed a completely new light on the biological and physiological processes involved in the sea-land transition.

RevDate: 2020-10-30

Cárdenas A, Ye J, Ziegler M, et al (2020)

Coral-Associated Viral Assemblages From the Central Red Sea Align With Host Species and Contribute to Holobiont Genetic Diversity.

Frontiers in microbiology, 11:572534.

Coral reefs are highly diverse marine ecosystems increasingly threatened on a global scale. The foundation species of reef ecosystems are stony corals that depend on their symbiotic microalgae and bacteria for aspects of their metabolism, immunity, and environmental adaptation. Conversely, the function of viruses in coral biology is less well understood, and we are missing an understanding of the diversity and function of coral viruses, particularly in understudied regions such as the Red Sea. Here we characterized coral-associated viruses using a large metagenomic and metatranscriptomic survey across 101 cnidarian samples from the central Red Sea. While DNA and RNA viral composition was different across coral hosts, biological traits such as coral life history strategy correlated with patterns of viral diversity. Coral holobionts were broadly associated with Mimiviridae and Phycodnaviridae that presumably infect protists and algal cells, respectively. Further, Myoviridae and Siphoviridae presumably target members of the bacterial phyla Actinobacteria, Firmicutes, and Proteobacteria, whereas Hepadnaviridae and Retroviridae might infect the coral host. Genes involved in bacterial virulence and auxiliary metabolic genes were common among the viral sequences, corroborating a contribution of viruses to the holobiont's genetic diversity. Our work provides a first insight into Red Sea coral DNA and RNA viral assemblages and reveals that viral diversity is consistent with global coral virome patterns.

RevDate: 2020-10-22

Mason RAB, Wall CB, Cunning R, et al (2020)

High light alongside elevated PCO2 alleviates thermal depression of photosynthesis in a hard coral (Pocillopora acuta).

The Journal of experimental biology, 223(Pt 20): pii:223/20/jeb223198.

The absorbtion of human-emitted CO2 by the oceans (elevated PCO2) is projected to alter the physiological performance of coral reef organisms by perturbing seawater chemistry (i.e. ocean acidification). Simultaneously, greenhouse gas emissions are driving ocean warming and changes in irradiance (through turbidity and cloud cover), which have the potential to influence the effects of ocean acidification on coral reefs. Here, we explored whether physiological impacts of elevated PCO2 on a coral-algal symbiosis (Pocillopora acuta-Symbiodiniaceae) are mediated by light and/or temperature levels. In a 39 day experiment, elevated PCO2 (962 versus 431 µatm PCO2) had an interactive effect with midday light availability (400 versus 800 µmol photons m-2 s-1) and temperature (25 versus 29°C) on areal gross and net photosynthesis, for which a decline at 29°C was ameliorated under simultaneous high-PCO2 and high-light conditions. Light-enhanced dark respiration increased under elevated PCO2 and/or elevated temperature. Symbiont to host cell ratio and chlorophyll a per symbiont increased at elevated temperature, whilst symbiont areal density decreased. The ability of moderately strong light in the presence of elevated PCO2 to alleviate the temperature-induced decrease in photosynthesis suggests that higher substrate availability facilitates a greater ability for photochemical quenching, partially offsetting the impacts of high temperature on the photosynthetic apparatus. Future environmental changes that result in moderate increases in light levels could therefore assist the P. acuta holobiont to cope with the 'one-two punch' of rising temperatures in the presence of an acidifying ocean.

RevDate: 2020-10-30

Wojciech L, Tan KSW, NRJ Gascoigne (2020)

Taming the Sentinels: Microbiome-Derived Metabolites and Polarization of T Cells.

International journal of molecular sciences, 21(20):.

A global increase in the prevalence of metabolic syndromes and digestive tract disorders, like food allergy or inflammatory bowel disease (IBD), has become a severe problem in the modern world. Recent decades have brought a growing body of evidence that links the gut microbiome's complexity with host physiology. Hence, understanding the mechanistic aspects underlying the synergy between the host and its associated gut microbiome are among the most crucial questions. The functionally diversified adaptive immune system plays a central role in maintaining gut and systemic immune homeostasis. The character of the reciprocal interactions between immune components and host-dwelling microbes or microbial consortia determines the outcome of the organisms' coexistence within the holobiont structure. It has become apparent that metabolic by-products of the microbiome constitute crucial multimodal transmitters within the host-microbiome interactome and, as such, contribute to immune homeostasis by fine-tuning of the adaptive arm of immune system. In this review, we will present recent insights and discoveries regarding the broad landscape of microbiome-derived metabolites, highlighting the role of these small compounds in the context of the balance between pro- and anti-inflammatory mechanisms orchestrated by the host T cell compartment.

RevDate: 2020-10-22

Goulet TL, Erill I, Ascunce MS, et al (2020)

Conceptualization of the Holobiont Paradigm as It Pertains to Corals.

Frontiers in physiology, 11:566968.

Corals' obligate association with unicellular dinoflagellates, family Symbiodiniaceae form the foundation of coral reefs. For nearly a century, researchers have delved into understanding the coral-algal mutualism from multiple levels of resolution and perspectives, and the questions and scope have evolved with each iteration of new techniques. Advances in genetic technologies not only aided in distinguishing between the multitude of Symbiodiniaceae but also illuminated the existence and diversity of other organisms constituting the coral microbiome. The coral therefore is a meta-organism, often referred to as the coral holobiont. In this review, we address the importance of including a holistic perspective to understanding the coral holobiont. We also discuss the ramifications of how different genotypic combinations of the coral consortium affect the holobiont entity. We highlight the paucity of data on most of the coral microbiome. Using Symbiodiniaceae data, we present evidence that the holobiont properties are not necessarily the sum of its parts. We then discuss the consequences of the holobiont attributes to the fitness of the holobiont and the myriad of organisms that contribute to it. Considering the complexity of host-symbiont genotypic combinations will aid in our understanding of coral resilience, robustness, acclimation, and/or adaptation in the face of environmental change and increasing perturbations.

RevDate: 2020-10-19

Chen B, Yu K, Liao Z, et al (2020)

Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea.

The Science of the total environment pii:S0048-9697(20)36219-7 [Epub ahead of print].

Regional acclimatisation and microbial interactions significantly influence the resilience of reef-building corals facing anthropogenic climate change, allowing them to adapt to environmental stresses. However, the connections between community structure and microbial interactions of the endemic coral microbiome and holobiont acclimatisation remain unclear. Herein, we used generation sequencing of internal transcribed spacer (ITS2) and 16S rRNA genes to investigate the microbiome composition (Symbiodiniaceae and bacteria) and associated potential interactions of endemic dominant coral holobionts (Pocillopora verrucosa and Turbinaria peltata) in the South China Sea (SCS). We found that shifts in Symbiodiniaceae and bacterial communities of P. verrucosa were associated with latitudinal gradient and climate zone changes, respectively. The C1 sub-clade consistently dominated the Symbiodiniaceae community in T. peltata; yet, the bacterial community structure was spatially heterogeneous. The relative abundance of the core microbiome among P. verrucosa holobionts was reduced in the biogeographical transition zone, while bacterial taxa associated with anthropogenic activity (Escherichia coli and Sphingomonas) were identified in the core microbiomes. Symbiodiniaceae and bacteria potentially interact in microbial co-occurrence networks. Further, increased bacterial, and Symbiodiniaceae α-diversity was associated with increased and decreased network complexity, respectively. Hence, Symbiodiniaceae and bacteria demonstrated different flexibility in latitudinal or climatic environmental regimes, which correlated with holobiont acclimatisation. Core microbiome analysis has indicated that the function of core bacterial microbiota might have changed in distinct environmental regimes, implying potential human activity in the coral habitats. Increased bacterial α diversity may lead to a decline in the stability of coral-microorganism symbioses, whereas rare Symbiodiniaceae may help to retain symbioses. Cladocopium, γ-proteobacteria, while α-proteobacteria may have been the primary drivers in the Symbiodiniaceae-bacterial interactions (SBIs). Our study highlights the association between microbiome shift in distinct environmental regimes and holobiont acclimatisation, while providing insights into the impact of SBIs on holobiont health and acclimatisation during climate change.

RevDate: 2020-11-11

Vega de Luna F, Córdoba-Granados JJ, Dang KV, et al (2020)

In vivo assessment of mitochondrial respiratory alternative oxidase activity and cyclic electron flow around photosystem I on small coral fragments.

Scientific reports, 10(1):17514.

The mutualistic relationship existing between scleractinian corals and their photosynthetic endosymbionts involves a complex integration of the metabolic pathways within the holobiont. Respiration and photosynthesis are the most important of these processes and although they have been extensively studied, our understanding of their interactions and regulatory mechanisms is still limited. In this work we performed chlorophyll-a fluorescence, oxygen exchange and time-resolved absorption spectroscopy measurements on small and thin fragments (0.3 cm2) of the coral Stylophora pistillata. We showed that the capacity of mitochondrial alternative oxidase accounted for ca. 25% of total coral respiration, and that the high-light dependent oxygen uptake, commonly present in isolated Symbiodiniaceae, was negligible. The ratio between photosystem I (PSI) and photosystem II (PSII) active centers as well as their respective electron transport rates, indicated that PSI cyclic electron flow occurred in high light in S. pistillata and in some branching and lamellar coral species freshly collected in the field. Altogether, these results show the potential of applying advanced biophysical and spectroscopic methods on small coral fragments to understand the complex mechanisms of coral photosynthesis and respiration and their responses to environmental changes.

RevDate: 2020-11-03

Baquiran JIP, Nada MAL, Campos CLD, et al (2020)

The Prokaryotic Microbiome of Acropora digitifera is Stable under Short-Term Artificial Light Pollution.

Microorganisms, 8(10):.

Corals harbor a great diversity of symbiotic microorganisms that play pivotal roles in host nutrition, reproduction, and development. Changes in the ocean environment, such as increasing exposure to artificial light at night (ALAN), may alter these relationships and result in a decline in coral health. In this study, we examined the microbiome associated with gravid specimens of the reef-building coral Acropora digitifera. We also assessed the temporal effects of ALAN on the coral-associated microbial community using high-throughput sequencing of the 16S rRNA gene V4 hypervariable region. The A. digitifera microbial community was dominated by phyla Proteobacteria, Firmicutes, and Bacteroidetes. Exposure to ALAN had no large-scale effect on the coral microbiome, although taxa affiliated with Rhodobacteraceae, Caulobacteraceae, Burkholderiaceae, Lachnospiraceae, and Ruminococcaceae were significantly enriched in corals subjected to ALAN. We further noted an increase in the relative abundance of the family Endozoicomonadaceae (Endozoicomonas) as the spawning period approached, regardless of light treatment. These findings highlight the stability of the A. digitifera microbial community under short-term artificial light pollution and provide initial insights into the response of the collective holobiont to ALAN.

RevDate: 2020-10-26

de Oliveira BFR, Freitas-Silva J, Sánchez-Robinet C, et al (2020)

Transmission of the sponge microbiome: moving towards a unified model.

Environmental microbiology reports [Epub ahead of print].

Sponges have co-evolved for millions of years alongside several types of microorganisms, which aside from participating in the animal's diet, are mostly symbionts. Since most of the genetic repertoire in the holobiont genome is provided by microbes, it is expected that the host-associated microbiome will be at least partially heritable. Sponges can therefore acquire their symbionts in different ways. Both vertical transmission (VT) and horizontal transmission (HT) have different advantages and disadvantages in the life cycle of these invertebrates. However, a third mode of transmission, called leaky vertical transmission or mixed mode of transmission (MMT), which incorporates both VT and HT modes, has gained relevance and seems to be the most robust model. In that regard, the aim of this review is to present the evolving knowledge on these main modes of transmission of the sponge microbiome. Our conclusions lead us to suggest that MMT may be more common for all sponges, with its frequency varying across the transmission spectrum between species and the environment. This hybrid model supports the stable and specific transmission of these microbial partners and reinforces their assistance in the resilience of sponges over the years.

RevDate: 2020-10-13

Martino D, Johnson I, JF Leckman (2020)

What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders?.

Frontiers in neurology, 11:567407.

Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.

RevDate: 2020-10-10

Middleton H, Yergeau É, Monard C, et al (2020)

Rhizospheric Plant-Microbe Interactions: miRNAs as a Key Mediator.

Trends in plant science pii:S1360-1385(20)30272-7 [Epub ahead of print].

The importance of microorganisms in plant development, nutrition, and stress resistance is unquestioned and has led to a more holistic approach of plant-microbe interactions, under the holobiont concept. The structure of the plant microbiota is often described as host driven, especially in the rhizosphere, where microbial communities are shaped by diverse rhizodeposits. Gradually, this anthropogenic vision is fading and being replaced by the idea that plants and microorganisms co-shape the plant microbiota. Through coevolution, plants and microbes have developed cross-kingdom communication channels. Here, we propose that miRNAs are crucial mediators of plant-microbe interactions and microbiota shaping in the rhizosphere. Moreover, we suggest, as an alternative to generally unsuccessful strategies based on microbial inoculants, miRNAs as a promising tool for novel holobiont engineering.

RevDate: 2020-10-07

Clowez S, Renicke C, Pringle JR, et al (2020)

Impact of menthol on growth and photosynthetic function of Breviolum minutum (Dinoflagellata, Dinophyceae, Symbiodiniaceae) and interactions with its Aiptasia host.

Journal of phycology [Epub ahead of print].

Environmental change, including global warming and chemical pollution, can compromise cnidarian (e.g., coral) -dinoflagellate symbioses and cause coral bleaching. Understanding the mechanisms that regulate these symbioses will inform strategies for sustaining healthy coral-reef communities. A model system for corals is the symbiosis between the sea anemone Exaiptasia pallida (common name Aiptasia) and its dinoflagellate partners (family Symbiodiniaceae). To complement existing studies of the interactions between these organisms, we examined the impact of menthol, a reagent often used to render cnidarians aposymbiotic, on the dinoflagellate Breviolum minutum, both in culture and in hospite. In both environments, the growth and photosynthesis of this alga were compromised at either 100 or 300 µM menthol. We observed reduction of PSII and PSI functions, the abundances of reaction-center proteins, and, at 300 µM menthol, of total cellular proteins. Interestingly, for free-living algae exposed to 100 µM menthol, an initial decline in growth, photosynthetic activities, pigmentation, and protein abundances reversed after 5-15 d, eventually approaching control levels. This behavior was observed in cells maintained in continuous light, but not in cells experiencing a light-dark regimen, suggesting that B. minutum can detoxify menthol or acclimate and repair damaged photosynthetic complexes in a light- and/or energy-dependent manner. Extended exposures of cultured algae to 300 µM menthol ultimately resulted in algal death. Most symbiotic anemones were also unable to survive this menthol concentration for 30 d. Additionally, cells impaired for photosynthesis by pre-treatment with 300 µM menthol exhibited reduced efficiency in re-populating the anemone host.

RevDate: 2020-10-19

Riccio P, R Rossano (2020)

The human gut microbiota is neither an organ nor a commensal.

FEBS letters [Epub ahead of print].

The recent explosive increase in the number of works on gut microbiota has been accompanied by the spread of rather vague or improper definitions, chosen more for common use than for experimental evidence. Among them are those defining the human gut microbiota as an organ of our body or as a commensal. But, is the human gut microbiota an organ or a commensal? Here, we address this issue to spearhead a reflection on the real roles of the human gut microbiota in our life. Actually, the misuse of the vocabulary used to describe the properties and functions of the gut microbiota may generate confusion and cause misunderstandings both in the scientific community and among the general public.

RevDate: 2020-10-13

Massé A, Tribollet A, Meziane T, et al (2020)

Functional diversity of microboring Ostreobium algae isolated from corals.

Environmental microbiology [Epub ahead of print].

The filamentous chlorophyte Ostreobium sp. dominates shallow marine carbonate microboring communities, and is one of the major agents of reef bioerosion. While its large genetic diversity has emerged, its physiology remains little known, with unexplored relationship between genotypes and phenotypes (endolithic versus free-living growth forms). Here, we isolated nine strains affiliated to two lineages of Ostreobium (>8% sequence divergence of the plastid gene rbcL), one of which was assigned to the family Odoaceae, from the fast-growing coral host Pocillopora acuta Lamarck 1816. Free-living isolates maintained their bioerosive potential, colonizing pre-bleached coral carbonate skeletons. We compared phenotypes, highlighting shifts in pigment and fatty acid compositions, carbon to nitrogen ratios and stable isotope compositions (δ13 C and δ15 N). Our data show a pattern of higher chlorophyll b and lower arachidonic acid (20:4ω6) content in endolithic versus free-living Ostreobium. Photosynthetic carbon fixation and nitrate uptake, quantified via 8 h pulse-labeling with 13 C-bicarbonate and 15 N-nitrate, showed lower isotopic enrichment in endolithic compared to free-living filaments. Our results highlight the functional plasticity of Ostreobium phenotypes. The isotope tracer approach opens the way to further study the biogeochemical cycling and trophic ecology of these cryptic algae at coral holobiont and reef scales.

RevDate: 2020-10-30

Carradec Q, Poulain J, Boissin E, et al (2020)

A framework for in situ molecular characterization of coral holobionts using nanopore sequencing.

Scientific reports, 10(1):15893.

Molecular characterization of the coral host and the microbial assemblages associated with it (referred to as the coral holobiont) is currently undertaken via marker gene sequencing. This requires bulky instruments and controlled laboratory conditions which are impractical for environmental experiments in remote areas. Recent advances in sequencing technologies now permit rapid sequencing in the field; however, development of specific protocols and pipelines for the effective processing of complex microbial systems are currently lacking. Here, we used a combination of 3 marker genes targeting the coral animal host, its symbiotic alga, and the associated bacterial microbiome to characterize 60 coral colonies collected and processed in situ, during the Tara Pacific expedition. We used Oxford Nanopore Technologies to sequence marker gene amplicons and developed bioinformatics pipelines to analyze nanopore reads on a laptop, obtaining results in less than 24 h. Reef scale network analysis of coral-associated bacteria reveals broadly distributed taxa, as well as host-specific associations. Protocols and tools used in this work may be applicable for rapid coral holobiont surveys, immediate adaptation of sampling strategy in the field, and to make informed and timely decisions in the context of the current challenges affecting coral reefs worldwide.

RevDate: 2020-10-25

Schmidt R, M Saha (2020)

Infochemicals in terrestrial plants and seaweed holobionts: current and future trends.

The New phytologist [Epub ahead of print].

Since the holobiont concept came into the limelight ten years ago, we have become aware that responses of holobionts to climate change stressors may be driven by shifts in the microbiota. However, the complex interactions underlying holobiont responses across aquatic and terrestrial ecosystems remain largely unresolved. One of the key factors driving these responses is the infochemical-mediated communication in the holobiont. In order to come up with a holistic picture, in this Viewpoint we compare mechanisms and infochemicals in the rhizosphere of plants and the eco-chemosphere of seaweeds in response to climate change stressors and other environmental stressors, including drought, warming and nutrient stress. Furthermore, we discuss the inclusion of chemical ecology concepts that are of crucial importance in driving holobiont survival, adaptation and/or holobiont breakdown. Infochemicals can thus be regarded as a 'missing link' in our understanding of holobiont response to climate change and should be investigated while investigating the responses of plant and seaweed holobionts to climate change. This will set the basis for improving our understanding of holobiont responses to climate change stressors across terrestrial and aquatic ecosystems.

RevDate: 2020-10-19

Klinges G, Maher RL, Vega Thurber RL, et al (2020)

Parasitic 'Candidatus Aquarickettsia rohweri' is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress.

Environmental microbiology [Epub ahead of print].

Holobiont phenotype results from a combination of host and symbiont genotypes as well as from prevailing environmental conditions that alter the relationships among symbiotic members. Corals exemplify this concept, where shifts in the algal symbiont community can lead to some corals becoming more or less thermally tolerant. Despite linkage between coral bleaching and disease, the roles of symbiotic bacteria in holobiont resistance and susceptibility to disease remains less well understood. This study thus characterizes the microbiome of disease-resistant and -susceptible Acropora cervicornis coral genotypes (hereafter referred to simply as 'genotypes') before and after high temperature-mediated bleaching. We found that the intracellular bacterial parasite 'Ca. Aquarickettsia rohweri' was strikingly abundant in disease-susceptible genotypes. Disease-resistant genotypes, however, had notably more diverse and even communities, with correspondingly low abundances of 'Ca. Aquarickettsia'. Bleaching caused a dramatic reduction of 'Ca. Aquarickettsia' within disease-susceptible corals and led to an increase in bacterial community dispersion, as well as the proliferation of opportunists. Our data support the hypothesis that 'Ca. Aquarickettsia' species increase coral disease risk through two mechanisms: (i) the creation of host nutritional deficiencies leading to a compromised host-symbiont state and (ii) the opening of niche space for potential pathogens during thermal stress.

RevDate: 2020-11-18
CmpDate: 2020-11-18

Letourneau ML, Hopkinson BM, Fitt WK, et al (2020)

Molecular composition and biodegradation of loggerhead sponge Spheciospongia vesparium exhalent dissolved organic matter.

Marine environmental research, 162:105130.

Sponges are critical components of marine reefs due to their high filtering capacity, wide abundance, and alteration of biogeochemical cycling. Here, we characterized dissolved organic matter (DOM) composition in the sponge holobiont exhalent seawater of a loggerhead sponge (Spheciospongia vesparium) and in ambient seawater in Florida Bay (USA), as well as the microbial responses to each DOM pool through dark incubations. The sponge holobiont removed 6% of the seawater dissolved organic carbon (DOC), utilizing compounds that were low in carbon and oxygen, yet high in nitrogen content relative to the ambient seawater. The microbial community accessed 7% of DOC from the ambient seawater during a 5-day incubation but only 1% of DOC from the sponge exhalent seawater, suggesting a decrease in lability possibly due to holobiont removal of nitrogen-rich compounds. If this holds true for other sponges, it may have important implications for DOM lability and cycling in coastal environments.

RevDate: 2020-12-01

Cuffaro B, Assohoun ALW, Boutillier D, et al (2020)

In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice.

Cells, 9(9):.

Alterations in the gut microbiota composition and diversity seem to play a role in the development of chronic diseases, including inflammatory bowel disease (IBD), leading to gut barrier disruption and induction of proinflammatory immune responses. This opens the door for the use of novel health-promoting bacteria. We selected five Parabacteroides distasonis strains isolated from human adult and neonates gut microbiota. We evaluated in vitro their immunomodulation capacities and their ability to reinforce the gut barrier and characterized in vivo their protective effects in an acute murine model of colitis. The in vitro beneficial activities were highly strain dependent: two strains exhibited a potent anti-inflammatory potential and restored the gut barrier while a third strain reinstated the epithelial barrier. While their survival to in vitro gastric conditions was variable, the levels of P. distasonis DNA were higher in the stools of bacteria-treated animals. The strains that were positively scored in vitro displayed a strong ability to rescue mice from colitis. We further showed that two strains primed dendritic cells to induce regulatory T lymphocytes from naïve CD4+ T cells. This study provides better insights on the functionality of commensal bacteria and crucial clues to design live biotherapeutics able to target inflammatory chronic diseases such as IBD.

RevDate: 2020-11-10

Becker DM, NJ Silbiger (2020)

Nutrient and sediment loading affect multiple facets of functionality in a tropical branching coral.

The Journal of experimental biology, 223(Pt 21): pii:jeb.225045.

Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g. sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont percent nitrogen content, endosymbiont densities and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content per cell decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8°C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly in relation to the mediation of land-based inputs into coastal coral reef ecosystems.

RevDate: 2020-10-28

Parisi MG, Parrinello D, Stabili L, et al (2020)

Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans.

Biology, 9(9):.

Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.

RevDate: 2020-09-09

González-Dominici LI, Saati-Santamaría Z, P García-Fraile (2020)

Genome Analysis and Genomic Comparison of the Novel Species Arthrobacter ipsi Reveal Its Potential Protective Role in Its Bark Beetle Host.

Microbial ecology pii:10.1007/s00248-020-01593-8 [Epub ahead of print].

The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.

RevDate: 2020-09-16

Xie H, Feng X, Wang M, et al (2020)

Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights.

Bioengineered, 11(1):1001-1015.

Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host's growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world's three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources.

RevDate: 2020-09-28

Assefa S, G Köhler (2020)

Intestinal Microbiome and Metal Toxicity.

Current opinion in toxicology, 19:21-27.

The human gut microbiome is considered critical for establishing and maintaining intestinal function and homeostasis throughout life. Evidence for bidirectional communication with the immune and nervous systems has spawned interest in the microbiome as a key factor for human and animal health. Consequently, appreciation of the microbiome as a target of xenobiotics, including environmental pollutants such as heavy metals, has risen steadily because disruption of a healthy microbiome (dysbiosis) has been linked to unfavorable health outcomes. Thus, toxicology must consider toxicant effects on the host's microbiome as an integral part of the holobiont. We discuss current findings on the impact of toxic metals on the composition, diversity, and function of the gut microbiome as well as the modulation of metal toxicity by the microbiome. Present limitations and future needs in elucidating microbiome-metal interactions and the potential of harnessing beneficial traits of the microbiota to counteract metal toxicity are also considered.

RevDate: 2020-09-28

Lindsay EC, Metcalfe NB, MS Llewellyn (2020)

The potential role of the gut microbiota in shaping host energetics and metabolic rate.

The Journal of animal ecology [Epub ahead of print].

It is increasingly recognized that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here, we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterization of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. Whilst much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. Whilst it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterizing microbial community composition, but there is now a need for more experimental studies in both wild and laboratory-based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics.

RevDate: 2020-11-16

Kenkel CD, Mocellin VJL, LK Bay (2020)

Global gene expression patterns in Porites white patch syndrome: Disentangling symbiont loss from the thermal stress response in reef-building coral.

Molecular ecology, 29(20):3907-3920.

The mechanisms resulting in the breakdown of the coral symbiosis once the process of bleaching has been initiated remain unclear. Distinguishing the process of symbiont loss from the thermal stress response may shed light on the cellular and molecular pathways involved in each process. This study examined physiological changes and global gene expression patterns associated with white patch syndrome (WPS) in Porites lobata, which manifests in localized bleaching independent of thermal stress. In addition, a meta-analysis of global gene expression studies in other corals and anemones was used to contrast differential regulation as a result of disease and thermal stress from patterns correlated with symbiotic state. Symbiont density, chlorophyll a content, holobiont productivity, instant calcification rate, and total host protein content were uniformly reduced in WPS relative to healthy tissue. While expression patterns associated with WPS were secondary to fixed effects of source colony, specific functional enrichments combined with a lack of immune regulation suggest that the viral infection putatively giving rise to this condition affects symbiont rather than host cells. Expression in response to WPS also clustered independently of patterns in white syndrome impacted A. hyacinthus, further supporting a distinct aetiology of this syndrome. Expression patterns in WPS-affected tissues were significantly correlated with prior studies that examined short-term thermal stress responses independent of symbiotic state, suggesting that the majority of expression changes reflect a nonspecific stress response. Across studies, the magnitude and direction of expression change among particular functional enrichments suggests unique responses to stressor duration and highlights distinct responses to bleaching in an anemone model.

RevDate: 2020-09-28

Shiu JH, Yu SP, Fong CL, et al (2020)

Shifting in the Dominant Bacterial Group Endozoicomonas Is Independent of the Dissociation With Coral Symbiont Algae.

Frontiers in microbiology, 11:1791.

The coral-associated Endozoicomonas are dominant bacteria in the coral holobiont. Their relative abundance usually decreases with heat-induced coral bleaching and is proposed to be positively correlated with Symbiodiniaceae abundance. It remains unclear whether this phenomenon of decreased Endozoicomonas abundance is caused by temperature stress or a decreased abundance of Symbiodiniaceae. This study induced bleaching in the coral Euphyllia glabrescens using a dark treatment over 15 weeks. We examined shifts in Endozoicomonas abundance and experimentally reduced Symbiodiniaceae density. 16S rRNA gene amplicon sequencing was used to characterize the changes in bacterial community (incl. Endozoicomonas) over time, and the 16S rRNA gene copy number of Endozoicomonas was quantified by qPCR. We detected a high abundance of Endozoicomonas in E. glabrescens that underwent dark-induced bleaching. The results reveal that changes in the relative abundance of Endozoicomonas are unrelated to Symbiodiniaceae abundance, indicating that Endozoicomonas can be independent of Symbiodiniaceae in the coral holobiont.

RevDate: 2020-11-02

Wada N, Yuasa H, Kajitani R, et al (2020)

A ubiquitous subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the Indo-Pacific.

Microbiome, 8(1):123.

BACKGROUND: Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach.

METHODS: A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data.

RESULTS: We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces.

CONCLUSIONS: COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.

RevDate: 2020-09-04

de Oliveira BFR, Carr CM, Dobson ADW, et al (2020)

Harnessing the sponge microbiome for industrial biocatalysts.

Applied microbiology and biotechnology, 104(19):8131-8154.

Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.

RevDate: 2020-10-30

Zilius M, Bonaglia S, Broman E, et al (2020)

N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont.

Scientific reports, 10(1):13966.

Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fiddler crabs and their carapace-associated microbial biofilm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial biofilm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fixation was among the most commonly predicted process. Net N fluxes between the biofilm-covered crabs and the water and microbial N transformation rates in suspended biofilm slurries portray these holobionts as a net N2 sink, with N2 fixation exceeding N losses, and as a significant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fiddler crab carapace-associated biofilms were within the range expected for fixed N, further suggesting active microbial N2 fixation. These results extend our knowledge on the diversity of invertebrate-microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems.

RevDate: 2020-11-12
CmpDate: 2020-11-12

Dunaj SJ, Bettencourt BR, Garb JE, et al (2020)

Spider phylosymbiosis: divergence of widow spider species and their tissues' microbiomes.

BMC evolutionary biology, 20(1):104.

BACKGROUND: Microbiomes can have profound impacts on host biology and evolution, but to date, remain vastly understudied in spiders despite their unique and diverse predatory adaptations. This study evaluates closely related species of spiders and their host-microbe relationships in the context of phylosymbiosis, an eco-evolutionary pattern where the microbial community profile parallels the phylogeny of closely related host species. Using 16S rRNA gene amplicon sequencing, we characterized the microbiomes of five species with known phylogenetic relationships from the family Theridiidae, including multiple closely related widow spiders (L. hesperus, L. mactans, L. geometricus, S. grossa, and P. tepidariorum).

RESULTS: We compared whole animal and tissue-specific microbiomes (cephalothorax, fat bodies, venom glands, silk glands, and ovary) in the five species to better understand the relationship between spiders and their microbial symbionts. This showed a strong congruence of the microbiome beta-diversity of the whole spiders, cephalothorax, venom glands, and silk glands when compared to their host phylogeny. Our results support phylosymbiosis in these species and across their specialized tissues. The ovary tissue microbial dendrograms also parallel the widow phylogeny, suggesting vertical transfer of species-specific bacterial symbionts. By cross-validating with RNA sequencing data obtained from the venom glands, silk glands and ovaries of L. hesperus, L. geometricus, S. grossa, and P. tepidariorum we confirmed that several microbial symbionts of interest are viably active in the host.

CONCLUSION: Together these results provide evidence that supports the importance of host-microbe interactions and the significant role microbial communities may play in the evolution and adaptation of their hosts.

RevDate: 2020-09-28

Poquita-Du RC, Goh YL, Huang D, et al (2020)

Gene Expression and Photophysiological Changes in Pocillopora acuta Coral Holobiont Following Heat Stress and Recovery.

Microorganisms, 8(8):.

The ability of corals to withstand changes in their surroundings is a critical survival mechanism for coping with environmental stress. While many studies have examined responses of the coral holobiont to stressful conditions, its capacity to reverse responses and recover when the stressor is removed is not well-understood. In this study, we investigated among-colony responses of Pocillopora acuta from two sites with differing distance to the mainland (Kusu (closer to the mainland) and Raffles Lighthouse (further from the mainland)) to heat stress through differential expression analysis of target genes and quantification of photophysiological metrics. We then examined how these attributes were regulated after the stressor was removed to assess the recovery potential of P. acuta. The fragments that were subjected to heat stress (2 °C above ambient levels) generally exhibited significant reduction in their endosymbiont densities, but the extent of recovery following stress removal varied depending on natal site and colony. There were minimal changes in chl a concentration and maximum quantum yield (Fv/Fm, the proportion of variable fluorescence (Fv) to maximum fluorescence (Fm)) in heat-stressed corals, suggesting that the algal endosymbionts' Photosystem II was not severely compromised. Significant changes in gene expression levels of selected genes of interest (GOI) were observed following heat exposure and stress removal among sites and colonies, including Actin, calcium/calmodulin-dependent protein kinase type IV (Camk4), kinesin-like protein (KIF9), and small heat shock protein 16.1 (Hsp16.1). The most responsive GOIs were Actin, a major component of the cytoskeleton, and the adaptive immune-related Camk4 which both showed significant reduction following heat exposure and subsequent upregulation during the recovery phase. Our findings clearly demonstrate specific responses of P. acuta in both photophysiological attributes and gene expression levels, suggesting differential capacity of P. acuta corals to tolerate heat stress depending on the colony, so that certain colonies may be more resilient than others.

RevDate: 2020-11-02

Ronai I, Greslehner GP, Boem F, et al (2020)

"Microbiota, symbiosis and individuality summer school" meeting report.

Microbiome, 8(1):117.

How does microbiota research impact our understanding of biological individuality? We summarize the interdisciplinary summer school on "Microbiota, symbiosis and individuality: conceptual and philosophical issues" (July 2019), which was supported by a European Research Council starting grant project "Immunity, DEvelopment, and the Microbiota" (IDEM). The summer school centered around interdisciplinary group work on four facets of microbiota research: holobionts, individuality, causation, and human health. The conceptual discussion of cutting-edge empirical research provided new insights into microbiota and highlights the value of incorporating into meetings experts from other disciplines, such as philosophy and history of science. Video Abstract.

RevDate: 2020-10-05

Berlanga-Clavero MV, Molina-Santiago C, de Vicente A, et al (2020)

More than words: the chemistry behind the interactions in the plant holobiont.

Environmental microbiology [Epub ahead of print].

Plants and microbes have evolved sophisticated ways to communicate and coexist. The simplest interactions that occur in plant-associated habitats, i.e., those involved in disease detection, depend on the production of microbial pathogenic and virulence factors and the host's evolved immunological response. In contrast, microbes can also be beneficial for their host plants in a number of ways, including fighting pathogens and promoting plant growth. In order to clarify the mechanisms directly involved in these various plant-microbe interactions, we must still deepen our understanding of how these interkingdom communication systems, which are constantly modulated by resident microbial activity, are established and, most importantly, how their effects can span physically separated plant compartments. Efforts in this direction have revealed a complex and interconnected network of molecules and associated metabolic pathways that modulate plant-microbe and microbe-microbe communication pathways to regulate diverse ecological responses. Once sufficiently understood, these pathways will be biotechnologically exploitable, for example, in the use of beneficial microbes in sustainable agriculture. The aim of this review is to present the latest findings on the dazzlingly diverse arsenal of molecules that efficiently mediate specific microbe-microbe and microbe-plant communication pathways during plant development and on different plant organs.

RevDate: 2020-08-13

Triviño V, J Suárez (2020)

Holobionts: Ecological communities, hybrids, or biological individuals? A metaphysical perspective on multispecies systems.

Studies in history and philosophy of biological and biomedical sciences pii:S1369-8486(20)30134-5 [Epub ahead of print].

Holobionts are symbiotic assemblages composed by a macrobe host (animal or plant) plus its symbiotic microbiota. In recent years, the ontological status of holobionts has created a great amount of controversy among philosophers and biologists: are holobionts biological individuals or are they rather ecological communities of independent individuals that interact together? Chiu and Eberl have recently developed an eco-immunity account of the holobiont wherein holobionts are neither biological individuals nor ecological communities, but hybrids between a host and its microbiota. According to their account, the microbiota is not a proper part of the holobiont. Yet, it should be regarded as a set of scaffolds that support the individuality of the host. In this paper, we approach Chiu and Eberl's account from a metaphysical perspective and argue that, contrary to what the authors claim, the eco-immunity account entails that the microorganisms that compose the host's microbiota are proper parts of the holobiont. Second, we argue that by claiming that holobionts are hybrids, and therefore, not biological individuals, the authors seem to be assuming a controversial position about the ontology of hybrids, which are conventionally characterized as a type of biological individual. In doing so, our paper aligns with the contemporary tendency to incorporate metaphysical resources to shed light on current biological debates and builds on that to provide additional support to the consideration of holobionts as biological individuals from an eco-immunity perspective.

RevDate: 2020-10-02

Fontaine SS, KD Kohl (2020)

Optimal integration between host physiology and functions of the gut microbiome.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1808):20190594.

Host-associated microbial communities have profound impacts on animal physiological function, especially nutrition and metabolism. The hypothesis of 'symmorphosis', which posits that the physiological systems of animals are regulated precisely to meet, but not exceed, their imposed functional demands, has been used to understand the integration of physiological systems across levels of biological organization. Although this idea has been criticized, it is recognized as having important heuristic value, even as a null hypothesis, and may, therefore, be a useful tool in understanding how hosts evolve in response to the function of their microbiota. Here, through a hologenomic lens, we discuss how the idea of symmorphosis may be applied to host-microbe interactions. Specifically, we consider scenarios in which host physiology may have evolved to collaborate with the microbiota to perform important functions, and, on the other hand, situations in which services have been completely outsourced to the microbiota, resulting in relaxed selection on host pathways. Following this theoretical discussion, we finally suggest strategies by which these currently speculative ideas may be explicitly tested to further our understanding of host evolution in response to their associated microbial communities. This article is part of the theme issue 'The role of the microbiome in host evolution'.

RevDate: 2020-10-01

van Oppen MJH, M Medina (2020)

Coral evolutionary responses to microbial symbioses.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1808):20190591.

This review explores how microbial symbioses may have influenced and continue to influence the evolution of reef-building corals (Cnidaria; Scleractinia). The coral holobiont comprises a diverse microbiome including dinoflagellate algae (Dinophyceae; Symbiodiniaceae), bacteria, archaea, fungi and viruses, but here we focus on the Symbiodiniaceae as knowledge of the impact of other microbial symbionts on coral evolution is scant. Symbiosis with Symbiodiniaceae has extended the coral's metabolic capacity through metabolic handoffs and horizontal gene transfer (HGT) and has contributed to the ecological success of these iconic organisms. It necessitated the prior existence or the evolution of a series of adaptations of the host to attract and select the right symbionts, to provide them with a suitable environment and to remove disfunctional symbionts. Signatures of microbial symbiosis in the coral genome include HGT from Symbiodiniaceae and bacteria, gene family expansions, and a broad repertoire of oxidative stress response and innate immunity genes. Symbiosis with Symbiodiniaceae has permitted corals to occupy oligotrophic waters as the algae provide most corals with the majority of their nutrition. However, the coral-Symbiodiniaceae symbiosis is sensitive to climate warming, which disrupts this intimate relationship, causing coral bleaching, mortality and a worldwide decline of coral reefs. This article is part of the theme issue 'The role of the microbiome in host evolution'.

RevDate: 2020-10-02

Moeller AH, JG Sanders (2020)

Roles of the gut microbiota in the adaptive evolution of mammalian species.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1808):20190597.

Every mammalian species harbours a gut microbiota, and variation in the gut microbiota within mammalian species can have profound effects on host phenotypes. In this review, we summarize recent evidence that gut microbiotas have influenced the course of mammalian adaptation and diversification. Associations with gut microbiotas have: (i) promoted the diversification of mammalian species by enabling dietary transitions onto difficult-to-digest carbon sources and toxic food items; (ii) shaped the evolution of adaptive phenotypic plasticity in mammalian species through the amplification of signals from the external environment and from postnatal developmental processes; and (iii) generated selection for host mechanisms, including innate and adaptive immune mechanisms, to control the gut microbiota for the benefit of host fitness. The stability of specific gut microbiotas within host species lineages varies substantially across the mammalian phylogeny, and this variation may alter the ultimate evolutionary outcomes of relationships with gut microbiotas in different mammalian clades. In some mammalian species, including humans, relationships with host species-specific gut microbiotas appear to have led to the evolution of host dependence on the gut microbiota for certain functions. These studies implicate the gut microbiota as a significant environmental factor and selective agent shaping the adaptive evolution of mammalian diet, phenotypic plasticity, gastrointestinal morphology and immunity. This article is part of the theme issue 'The role of the microbiome in host evolution'.

RevDate: 2020-10-02

Koskella B, J Bergelson (2020)

The study of host-microbiome (co)evolution across levels of selection.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1808):20190604.

Microorganismal diversity can be explained in large part by selection imposed from both the abiotic and biotic environments, including-in the case of host-associated microbiomes-interactions with eukaryotes. As such, the diversity of host-associated microbiomes can be usefully studied across a variety of scales: within a single host over time, among host genotypes within a population, between populations and among host species. A plethora of recent studies across these scales and across diverse systems are: (i) exemplifying the importance of the host genetics in shaping microbiome composition; (ii) uncovering the role of the microbiome in shaping key host phenotypes; and (iii) highlighting the dynamic nature of the microbiome. They have also raised a critical question: do these complex associations fit within our existing understanding of evolution and coevolution, or do these often intimate and seemingly cross-generational interactions follow novel evolutionary rules from those previously identified? Herein, we describe the known importance of (co)evolution in host-microbiome systems, placing the existing data within extant frameworks that have been developed over decades of study, and ask whether there are unique properties of host-microbiome systems that require a paradigm shift. By examining when and how selection can act on the host and its microbiome as a unit (termed, the holobiont), we find that the existing conceptual framework, which focuses on individuals, as well as interactions among individuals and groups, is generally well suited for understanding (co)evolutionary change in these intimate assemblages. This article is part of the theme issue 'The role of the microbiome in host evolution'.

RevDate: 2020-09-30

Ravanbakhsh M, Kowalchuk GA, A Jousset (2020)

Targeted plant hologenome editing for plant trait enhancement.

The New phytologist [Epub ahead of print].

Breeding better crops is a cornerstone of global food security. While efforts in plant genetic improvement show promise, it is increasingly becoming apparent that the plant phenotype should be treated as a function of the holobiont, in which plant and microbial traits are deeply intertwined. Using a minimal holobiont model, we track ethylene production and plant nutritional value in response to alterations in plant ethylene synthesis (KO mutation in ETO1), which induces 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 5 (ACS5), or microbial degradation of ACC (KO mutation in microbial acdS), preventing the breakdown of the plant ACC pool, the product of ACS5. We demonstrate that similar plant phenotypes can be generated by either specific mutations of plant-associated microbes or alterations in the plant genome. Specifically, we could equally increase plant nutritional value by either altering the plant ethylene synthesis gene ETO1, or the microbial gene acdS. Both mutations yielded a similar plant phenotype with increased ethylene production and higher shoot micronutrient concentrations. Restoring bacterial AcdS enzyme activity also rescued the plant wild-t8yp phenotype in an eto1 background. Plant and bacterial genes build an integrated plant-microbe regulatory network amenable to genetic improvement from both the plant and microbial sides.

RevDate: 2020-08-08

Vargas S, Leiva L, G Wörheide (2020)

Short-Term Exposure to High-Temperature Water Causes a Shift in the Microbiome of the Common Aquarium Sponge Lendenfeldia chondrodes.

Microbial ecology pii:10.1007/s00248-020-01556-z [Epub ahead of print].

Marine sponges harbor diverse microbiomes that contribute to their energetic and metabolic needs. Although numerous studies on sponge microbial diversity exist, relatively few focused on sponge microbial community changes under different sources of environmental stress. In this study, we assess the impact of elevated seawater temperature on the microbiome of cultured Lendenfeldia chondrodes, a coral reef sponge commonly found in marine aquaria. Lendenfeldia chondrodes exhibits high thermal tolerance showing no evidence of tissue damage or bleaching at 5 °C above control water temperature (26 °C). High-throughput sequencing of the bacterial 16S rRNA V4 region revealed a response of the microbiome of L. chondrodes to short-term exposure to elevated seawater temperature. Shifts in abundance and richness of the dominant bacterial phyla found in the microbiome of this species, namely Proteobacteria, Cyanobacteria, Planctomycetes, and Bacteroidetes, characterized this response. The observed resilience of L. chondrodes and the responsiveness of its microbiome to short-term increases in seawater temperature suggest that this holobiont may be capable of acclimating to anthropogenic-driven sublethal environmental stress via a re-accommodation of its associated bacterial community. This sheds a new light on the potential for resilience of some sponges to increasing surface seawater temperatures and associated projected regime shifts in coral reefs.

RevDate: 2020-09-28

Friel AD, Neiswenter SA, Seymour CO, et al (2020)

Microbiome Shifts Associated With the Introduction of Wild Atlantic Horseshoe Crabs (Limulus polyphemus) Into a Touch-Tank Exhibit.

Frontiers in microbiology, 11:1398.

The Atlantic horseshoe crab (Limulus polyphemus) is a common marine aquarium species and model organism for research. There is potential monetary and conservation value in developing a stable captive population of horseshoe crabs, however, one major impediment to achieving captivity is a lack of knowledge regarding captive diseases. We utilized 16S rRNA gene amplicon sequencing to track changes in the microbiomes of four body locations in three wild-caught (tracked over 14 months in captivity) and three tank-acclimated (>2 years in captivity) adult L. polyphemus in a touch tank at Shark Reef Aquarium at Mandalay Bay in Las Vegas, NV. The wild population hosted diverse and distinct microbiomes on the carapace (260 ± 96 amplicon sequence variants or ASVs), cloaca (345 ± 77 ASVs), gills (309 ± 36 ASVs), and oral cavity (359 ± 37 ASVs), which were dominated by classes Gammaproteobacteria, Bacteroidia, and Alphaproteobacteria. A rapid decline in richness across all body locations was observed within 1 month of captivity, with tank-acclimated (>2 years) animals having <5% of the initial microbiome richness and a nearly completely restructured microbial community. Tank-acclimated horseshoe crabs possessed distinct microbiomes that were highly uneven and low in species richness on the carapace (31 ± 7 ASVs), cloaca (53 ± 19 ASVs), gills (17 ± 2 ASVs), and oral cavity (31 ± 13 ASVs). The carapace, oral cavity, and gills of the tank-acclimated animals hosted abundant populations of Aeromonas (>60%) and Pseudomonas (>20%), both of which are known opportunistic pathogens of aquatic animals and can express chitinases, providing a plausible mechanism for the development of the carapace lesion pathology observed in this and other studies. The cloaca of the tank-acclimated animals was slightly more diverse than the other body locations with Aeromonas, Enterococcus, Shewanella, and Vagococcus dominating the community. These results provide an important baseline on the microbiomes of both wild and tank-acclimated horseshoe crabs and underscore the need to continue to investigate how native microbial populations may protect animals from pathogens.

RevDate: 2020-08-07

Lousada MB, Lachnit T, Edelkamp J, et al (2020)

Exploring the human hair follicle microbiome.

The British journal of dermatology [Epub ahead of print].

Human hair follicles (HF) carry complex microbial communities that differ from skin surface microbiota. This likely reflects that the HF epithelium differs from the epidermal barrier in that it provides a moist, less acidic, and relatively UV-protected environment, part of which is immune-privileged, thus facilitating microbial survival. Here we review the current understanding of the human HF microbiome and its potential physiological and pathological functions, including in folliculitis, acne vulgaris, hidradenitis suppurativa, alopecia areata and cicatricial alopecias. While reviewing the main human HF bacteria, such as Propionibacteria, Corynebacteria, Staphylococci and Streptococci, viruses, fungi and parasites as human HF microbiome constituents, we advocate a broad view of the HF as an integral part of the human holobiont. Specifically, we explore how the human HF may manage its microbiome via the regulated production of antimicrobial peptides (such as cathelicidin, psoriasin, RNAse7 and dermcidin) by HF keratinocytes, how the microbiome may impact on cytokine and chemokine release from the HF, examine hair growth-modulatory effects of antibiotics, and ask whether the microbiome affects hair growth in turn. We highlight major open questions and potential novel approaches to the management of hair diseases by targeting the HF microbiome.

RevDate: 2020-10-09

Duarte CM, Ngugi DK, Alam I, et al (2020)

Sequencing effort dictates gene discovery in marine microbial metagenomes.

Environmental microbiology [Epub ahead of print].

Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of the ocean and host-associated microbes. Global expeditions conducted over the past 15 years have sampled the ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red Sea plankton community to uncover that the rate of gene discovery increases continuously with sequencing effort, with no indication that the retrieved 2.83 million non-redundant (complete) genes predicted from the experiment represented a nearly complete inventory of the genes present in the sampled community (i.e., no evidence of saturation). The underlying reason is the Pareto-like distribution of the abundance of genes in the plankton community, resulting in a very long tail of millions of genes present at remarkably low abundances, which can only be retrieved through massive sequencing. Microbial metagenomic projects retrieve a variable number of unique genes per Tera base-pair (Tbp), with a median value of 14.7 million unique genes per Tbp sequenced across projects. The increase in the rate of gene discovery in microbial metagenomes with sequencing effort implies that there is ample room for new gene discovery in further ocean and holobiont sequencing studies.

RevDate: 2020-10-02

Miller WB, Baluška F, JS Torday (2020)

Cellular senomic measurements in Cognition-Based Evolution.

Progress in biophysics and molecular biology, 156:20-33.

All living entities are cognitive and dependent on ambiguous information. Any assessment of that imprecision is necessarily a measuring function. Individual cells measure information to sustain self-referential homeostatic equipoise (self-identity) in juxtaposition to the external environment. The validity of that information is improved by its collective assessment. The reception of cellular information obliges thermodynamic reactions that initiate a self-reinforcing work channel. This expresses as natural cellular engineering and niche constructions which become the complex interrelated tissue ecologies of holobionts. Multicellularity is collaborative cellular information management directed towards the optimization of information quality through its collective measured assessment. Biology and its evolution can now be re-framed as the continuous process of self-referential cellular measurement in the perpetual defense of individual cellular self-identities through the collective form.

RevDate: 2020-09-28

Lifshitz N, Hazanov L, Fine M, et al (2020)

Seasonal Variations in the Culturable Mycobiome of Acropora loripes along a Depth Gradient.

Microorganisms, 8(8):.

Coral associated fungi are widespread, highly diverse and are part and parcel of the coral holobiont. To study how environmental conditions prevailing near the coral-host may affect fungal diversity, the culturable (isolated on potato dextrose agar) mycobiome associated with Acropora loripes colonies was seasonally sampled along a depth gradient in the Gulf of Aqaba. Fragments were sampled from both apparently healthy coral colonies as well as those exhibiting observable lesions. Based on phylogenetic analysis of 197 fungal sequences, Ascomycota were the most prevalent (91.9%). The abundance of fungi increased with increasing water depth, where corals sampled at 25 m yielded up to 70% more fungal colony forming units (CFUs) than those isolated at 6 m. Fungal diversity at 25 m was also markedly higher, with over 2-fold more fungal families represented. Diversity was also higher in lesioned coral samples, when compared to apparently healthy colonies. In winter, concurrent with water column mixing and increased levels of available nutrients, at the shallow depths, Saccharomytacea and Sporidiobolacea were more prevalent, while in spring and fall Trichocomacea (overall, the most prevalent family isolated throughout this study) were the most abundant taxa isolated at these depths as well as at deeper sampling sites. Our results highlight the dynamic nature of the culturable coral mycobiome and its sensitivity to environmental conditions and coral health.

RevDate: 2020-09-28

Biagi E, Mengucci C, Barone M, et al (2020)

Effects of Vitamin B2 Supplementation in Broilers Microbiota and Metabolome.

Microorganisms, 8(8):.

The study of the microbiome in broiler chickens holds great promise for the development of strategies for health maintenance and performance improvement. Nutritional strategies aimed at modulating the microbiota-host relationship can improve chickens' immunological status and metabolic fitness. Here, we present the results of a pilot trial aimed at analyzing the effects of a nutritional strategy involving vitamin B2 supplementation on the ileum, caeca and litter microbiota of Ross 308 broilers, as well as on the metabolic profile of the caecal content. Three groups of chickens were administered control diets and diets supplemented with two different dosages of vitamin B2. Ileum, caeca, and litter samples were obtained from subgroups of birds at three time points along the productive cycle. Sequencing of the 16S rRNA V3-V4 region and NMR metabolomics were used to explore microbiota composition and the concentration of metabolites of interest, including short-chain fatty acids. Vitamin B2 supplementation significantly modulated caeca microbiota, with the highest dosage being more effective in increasing the abundance of health-promoting bacterial groups, including Bifidobacterium, resulting in boosted production of butyrate, a well-known health-promoting metabolite, in the caeca environment.

RevDate: 2020-07-25

Allgeier JE, Andskog MA, Hensel E, et al (2020)

Rewiring coral: Anthropogenic nutrients shift diverse coral-symbiont nutrient and carbon interactions toward symbiotic algal dominance.

Global change biology [Epub ahead of print].

Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long-term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral-symbiotic algal interactions changed under real-world conditions that were a priori expected to be beneficial (fish-mediated nutrients) and to be harmful, but non-lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral-symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally "rewired" under anthropogenic nutrient regimes in ways that could increase corals' susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.

RevDate: 2020-10-21

Fernandes de Barros Marangoni L, Ferrier-Pagès C, Rottier C, et al (2020)

Unravelling the different causes of nitrate and ammonium effects on coral bleaching.

Scientific reports, 10(1):11975.

Mass coral bleaching represents one of the greatest threats to coral reefs and has mainly been attributed to seawater warming. However, reduced water quality can also interact with warming to increase coral bleaching, but this interaction depends on nutrient ratios and forms. In particular, nitrate (NO3-) enrichment reduces thermal tolerance while ammonium (NH4+) enrichment tends to benefit coral health. The biochemical mechanisms underpinning the different bleaching responses of corals exposed to DIN enrichment still need to be investigated. Here, we demonstrated that the coral Stylophora pistillata underwent a severe oxidative stress condition and reduced aerobic scope when exposed to NO3- enrichment combined with thermal stress. Such condition resulted in increased bleaching intensity compared to a low-nitrogen condition. On the contrary, NH4+ enrichment was able to amend the deleterious effects of thermal stress by favoring the oxidative status and energy metabolism of the coral holobiont. Overall, our results demonstrate that the opposite effects of nitrate and ammonium enrichment on coral bleaching are related to the effects on corals' energy/redox status. As nitrate loading in coastal waters is predicted to significantly increase in the future due to agriculture and land-based pollution, there is the need for urgent management actions to prevent increases in nitrate levels in seawater. In addition, the maintenance of important fish stocks, which provide corals with recycled nitrogen such as ammonium, should be favoured.

RevDate: 2020-08-26

Li J, Long L, Zou Y, et al (2020)

Microbial community and transcriptional responses to increased temperatures in coral Pocillopora damicornis holobiont.

Environmental microbiology [Epub ahead of print].

A few studies have holistically examined successive changes in coral holobionts in response to increased temperatures. Here, responses of the coral host Pocillopora damicornis, its Symbiodiniaceae symbionts, and associated bacteria to increased water temperatures were investigated. High temperatures induced bleaching, but no coral mortality was observed. Transcriptome analyses showed that P. damicornis responded more quickly to elevated temperatures than its algal symbionts. Numerous genes putatively associated with apoptosis, exocytosis, and autophagy were upregulated in P. damicornis, suggesting that Symbiodiniaceae can be eliminated or expelled through these mechanisms when P. damicornis experiences heat stress. Furthermore, apoptosis in P. damicornis is presumably induced through tumour necrosis factor and p53 signalling and caspase pathways. The relative abundances of several coral disease-associated bacteria increased at 32°C, which may affect immune responses in heat-stressed corals and potentially accelerates the loss of algal symbionts. Additionally, consistency of Symbiodiniaceae community structures under heat stress suggests non-selective loss of Symbiodiniaceae. We propose that heat stress elicits interrelated response mechanisms in all parts of the coral holobiont.

RevDate: 2020-09-28

Angers B, Perez M, Menicucci T, et al (2020)

Sources of epigenetic variation and their applications in natural populations.

Evolutionary applications, 13(6):1262-1278.

Epigenetic processes manage gene expression and products in a real-time manner, allowing a single genome to display different phenotypes. In this paper, we discussed the relevance of assessing the different sources of epigenetic variation in natural populations. For a given genotype, the epigenetic variation could be environmentally induced or occur randomly. Strategies developed by organisms to face environmental fluctuations such as phenotypic plasticity and diversified bet-hedging rely, respectively, on these different sources. Random variation can also represent a proxy of developmental stability and can be used to assess how organisms deal with stressful environmental conditions. We then proposed the microbiome as an extension of the epigenotype of the host to assess the factors determining the establishment of the community of microorganisms. Finally, we discussed these perspectives in the applied context of conservation.

RevDate: 2020-07-18

Varasteh T, Hamerski L, Tschoeke D, et al (2020)

Conserved Pigment Profiles in Phylogenetically Diverse Symbiotic Bacteria Associated with the Corals Montastraea cavernosa and Mussismilia braziliensis.

Microbial ecology pii:10.1007/s00248-020-01551-4 [Epub ahead of print].

Pigmented bacterial symbionts play major roles in the health of coral holobionts. However, there is scarce knowledge on the diversity of these microbes for several coral species. To gain further insights into holobiont health, pigmented bacterial isolates of Fabibacter pacificus (Bacteroidetes; n = 4), Paracoccus marcusii (Alphaproteobacteria; n = 1), and Pseudoalteromonas shioyasakiensis (Gammaproteobacteria; n = 1) were obtained from the corals Mussismilia braziliensis and Montastraea cavernosa in Abrolhos Bank, Brazil. Cultures of these bacterial symbionts produced strong antioxidant activity (catalase, peroxidase, and oxidase). To explore these bacterial isolates further, we identified their major pigments by HPLC and mass spectrometry. The six phylogenetically diverse symbionts had similar pigment patterns and produced myxol and keto-carotene. In addition, similar carotenoid gene clusters were confirmed in the whole genome sequences of these symbionts, which reinforce their antioxidant potential. This study highlights the possible roles of bacterial symbionts in Montastraea and Mussismilia holobionts.

RevDate: 2020-09-28

Mensch B, Neulinger SC, Künzel S, et al (2020)

Warming, but Not Acidification, Restructures Epibacterial Communities of the Baltic Macroalga Fucus vesiculosus With Seasonal Variability.

Frontiers in microbiology, 11:1471.

Due to ocean acidification and global warming, surface seawater of the western Baltic Sea is expected to reach an average of ∼1100 μatm pCO2 and an increase of ∼5°C by the year 2100. In four consecutive experiments (spanning 10-11 weeks each) in all seasons within 1 year, the abiotic factors temperature (+5°C above in situ) and pCO2 (adjusted to ∼1100 μatm) were tested for their single and combined effects on epibacterial communities of the brown macroalga Fucus vesiculosus and on bacteria present in the surrounding seawater. The experiments were set up in three biological replicates using the Kiel Outdoor Benthocosm facility (Kiel, Germany). Phylogenetic analyses of the respective microbiota were performed by bacterial 16S (V1-V2) rDNA Illumina MiSeq amplicon sequencing after 0, 4, 8, and 10/11 weeks per season. The results demonstrate (I) that the bacterial community composition varied in time and (II) that relationships between operational taxonomic units (OTUs) within an OTU association network were mainly governed by the habitat. (III) Neither single pCO2 nor pCO2:Temperature interaction effects were statistically significant. However, significant impact of ocean warming was detected varying among seasons. (IV) An indicator OTU (iOTU) analysis identified several iOTUs that were strongly influenced by temperature in spring, summer, and winter. In the warming treatments of these three seasons, we observed decreasing numbers of bacteria that are commonly associated with a healthy marine microbial community and-particularly during spring and summer-an increase in potentially pathogenic and bacteria related to intensified microfouling. This might lead to severe consequences for the F. vesiculosus holobiont finally affecting the marine ecosystem.

RevDate: 2020-10-02

Yergaliyev TM, Alexander-Shani R, Dimerets H, et al (2020)

Bacterial Community Structure Dynamics in Meloidogyne incognita-Infected Roots and Its Role in Worm-Microbiome Interactions.

mSphere, 5(4):.

Plant parasitic nematodes such as Meloidogyne incognita have a complex life cycle, occurring sequentially in various niches of the root and rhizosphere. They are known to form a range of interactions with bacteria and other microorganisms that can affect their densities and virulence. High-throughput sequencing can reveal these interactions in high temporal and geographic resolutions, although thus far we have only scratched the surface. In this study, we have carried out a longitudinal sampling scheme, repeatedly collecting rhizosphere soil, roots, galls, and second-stage juveniles from 20 plants to provide a high-resolution view of bacterial succession in these niches, using 16S rRNA metabarcoding. Our findings indicate that a structured community develops in the root, in which gall communities diverge from root segments lacking a gall, and that this structure is maintained throughout the crop season. We describe the successional process leading toward this structure, which is driven by interactions with the nematode and later by an increase in bacteria often found in hypoxic and anaerobic environments. We present evidence that this structure may play a role in the nematode's chemotaxis toward uninfected root segments. Finally, we describe the J2 epibiotic microenvironment as ecologically deterministic, in part, due to the active bacterial attraction of second-stage juveniles.IMPORTANCE The study of high-resolution successional processes within tightly linked microniches is rare. Using the power and relatively low cost of metabarcoding, we describe the bacterial succession and community structure in roots infected with root-knot nematodes and in the nematodes themselves. We reveal separate successional processes in galls and adjacent non-gall root sections, which are driven by the nematode's life cycle and the progression of the crop season. With their relatively low genetic diversity, large geographic range, spatially complex life cycle, and the simplified agricultural ecosystems they occupy, root-knot nematodes can serve as a model organism for terrestrial holobiont ecology. This perspective can improve our understanding of the temporal and spatial aspects of biological control efficacy.

RevDate: 2020-09-28

Malassigné S, Valiente Moro C, P Luis (2020)

Mosquito Mycobiota: An Overview of Non-Entomopathogenic Fungal Interactions.

Pathogens (Basel, Switzerland), 9(7):.

The growing expansion of mosquito vectors leads to the emergence of vector-borne diseases in new geographic areas and causes major public health concerns. In the absence of effective preventive treatments against most pathogens transmitted, vector control remains one of the most suitable strategies to prevent mosquito-borne diseases. Insecticide overuse raises mosquito resistance and deleterious impacts on the environment and non-target species. Growing knowledge of mosquito biology has allowed the development of alternative control methods. Following the concept of holobiont, mosquito-microbiota interactions play an important role in mosquito biology. Associated microbiota is known to influence many aspects of mosquito biology such as development, survival, immunity or even vector competence. Mosquito-associated microbiota is composed of bacteria, fungi, protists, viruses and nematodes. While an increasing number of studies have focused on bacteria, other microbial partners like fungi have been largely neglected despite their huge diversity. A better knowledge of mosquito-mycobiota interactions offers new opportunities to develop innovative mosquito control strategies. Here, we review the recent advances concerning the impact of mosquito-associated fungi, and particularly nonpathogenic fungi, on life-history traits (development, survival, reproduction), vector competence and behavior of mosquitoes by focusing on Culex, Aedes and Anopheles species.

RevDate: 2020-08-31

Mohanty I, Moore SG, Yi D, et al (2020)

Precursor-Guided Mining of Marine Sponge Metabolomes Lends Insight into Biosynthesis of Pyrrole-Imidazole Alkaloids.

ACS chemical biology, 15(8):2185-2194.

Pyrrole-imidazole alkaloids are natural products isolated from marine sponges, holobiont metazoans that are associated with symbiotic microbiomes. Pyrrole-imidazole alkaloids have attracted attention due to their chemical complexity and their favorable pharmacological properties. However, insights into how these molecules are biosynthesized within the sponge holobionts are scarce. Here, we provide a multiomic profiling of the microbiome and metabolomic architectures of three sponge genera that are prolific producers of pyrrole-imidazole alkaloids. Using a retrobiosynthetic scheme as a guide, we mine the metabolomes of these sponges to detect intermediates in pyrrole-imidazole alkaloid biosynthesis. Our findings reveal that the nonproteinogenic amino acid homoarginine is a critical branch point that connects primary metabolite lysine to the production of pyrrole-imidazole alkaloids. These insights are derived from the polar metabolomes of these sponges which additionally reveal the presence of zwitterionic betaines that may serve important ecological roles in marine habitats. We also establish that metabolomic richness does not correlate with microbial diversity of the sponge holobiont for neither the polar nor the nonpolar metabolomes. Our findings now provide the biochemical foundation for genomic interrogation of the sponge holobiont to establish biogenetic routes for pyrrole-imidazole alkaloid production.

RevDate: 2020-09-30

Groussin M, Mazel F, EJ Alm (2020)

Co-evolution and Co-speciation of Host-Gut Bacteria Systems.

Cell host & microbe, 28(1):12-22.

Mammalian gut microbiomes profoundly influence host fitness, but the processes that drive the evolution of host-microbiome systems are poorly understood. Recent studies suggest that mammals and their individual gut symbionts can have parallel evolutionary histories, as represented by their congruent phylogenies. These "co-phylogenetic" patterns are signatures of ancient co-speciation events and illustrate the cohesiveness of the mammalian host-gut microbiome entity over evolutionary times. Theory predicts that co-speciation between mammals and their gut symbionts could result from their co-evolution. However, there is only limited evidence of such co-evolution. Here, we propose a model that explains cophylogenetic patterns without relying on co-evolution. Specifically, we suggest that individual gut bacteria are likely to diverge in patterns recapitulating host phylogeny when hosts undergo allopatric speciation, limiting inter-host bacterial dispersal and genomic recombination. We provide evidence that the model is empirically grounded and propose a series of observational and experimental approaches to test its validity.

RevDate: 2020-09-28

Bertazzon N, Chitarra W, Angelini E, et al (2020)

Two New Putative Plant Viruses from Wood Metagenomics Analysis of an Esca Diseased Vineyard.

Plants (Basel, Switzerland), 9(7):.

The concept of plant as a holobiont is now spreading among the scientific community and the importance to study plant-associated microorganisms is becoming more and more necessary. Along with bacteria and fungi, also viruses can play important roles during the holobiont-environment interactions. In grapevine, viruses are studied mainly as pathological agents, and many species (more than 80) are known to be able to replicate inside its tissues. In this study two new viral species associated with grape wood tissues are presented, one belongs to the Potyviridae family and one to the Bunyavirales order. Due to the ability of potyviruses to enhance heterologous virus replication, it will be important to assess the presence of such a virus in the grapevine population to understand its ecological role. Furthermore, the association of the cogu-like virus with esca symptomatic samples opens new questions and the necessity of a more detailed characterization of this virus.

RevDate: 2020-10-10

Herrera M, Klein SG, Schmidt-Roach S, et al (2020)

Unfamiliar partnerships limit cnidarian holobiont acclimation to warming.

Global change biology [Epub ahead of print].

Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co-evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short- and long-term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.

RevDate: 2020-07-08

Clerissi C, Guillou L, Escoubas JM, et al (2020)

Unveiling protist diversity associated with the Pacific oyster Crassostrea gigas using blocking and excluding primers.

BMC microbiology, 20(1):193.

BACKGROUND: Microbiome of macroorganisms might directly or indirectly influence host development and homeostasis. Many studies focused on the diversity and distribution of prokaryotes within these assemblages, but the eukaryotic microbial compartment remains underexplored so far.

RESULTS: To tackle this issue, we compared blocking and excluding primers to analyze microeukaryotic communities associated with Crassostrea gigas oysters. High-throughput sequencing of 18S rRNA genes variable loops revealed that excluding primers performed better by not amplifying oyster DNA, whereas the blocking primer did not totally prevent host contaminations. However, blocking and excluding primers showed similar pattern of alpha and beta diversities when protist communities were sequenced using metabarcoding. Alveolata, Stramenopiles and Archaeplastida were the main protist phyla associated with oysters. In particular, Codonellopsis, Cyclotella, Gymnodinium, Polarella, Trichodina, and Woloszynskia were the dominant genera. The potential pathogen Alexandrium was also found in high abundances within some samples.

CONCLUSIONS: Our study revealed the main protist taxa within oysters as well as the occurrence of potential oyster pathogens. These new primer sets are promising tools to better understand oyster homeostasis and disease development, such as the Pacific Oyster Mortality Syndrome (POMS) targeting juveniles.

RevDate: 2020-10-02

Breusing C, Mitchell J, Delaney J, et al (2020)

Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails.

The ISME journal, 14(10):2568-2579.

Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )