Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Kin Selection

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 18 Oct 2019 at 01:43 Created: 

Kin Selection

Wikipedia: Kin selection is the evolutionary strategy that favours the reproductive success of an organism's relatives, even at a cost to the organism's own survival and reproduction. Kin altruism is altruistic behaviour whose evolution is driven by kin selection. Kin selection is an instance of inclusive fitness, which combines the number of offspring produced with the number an individual can produce by supporting others, such as siblings. Charles Darwin discussed the concept of kin selection in his 1859 book, The Origin of Species, where he reflected on the puzzle of sterile social insects, such as honey bees, which leave reproduction to their mothers, arguing that a selection benefit to related organisms (the same "stock") would allow the evolution of a trait that confers the benefit but destroys an individual at the same time. R.A. Fisher in 1930 and J.B.S. Haldane in 1932 set out the mathematics of kin selection, with Haldane famously joking that he would willingly die for two brothers or eight cousins. In 1964, W.D. Hamilton popularised the concept and the major advance in the mathematical treatment of the phenomenon by George R. Price which has become known as "Hamilton's rule". In the same year John Maynard Smith used the actual term kin selection for the first time. According to Hamilton's rule, kin selection causes genes to increase in frequency when the genetic relatedness of a recipient to an actor multiplied by the benefit to the recipient is greater than the reproductive cost to the actor.

Created with PubMed® Query: "kin selection" or "inclusive fitness" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-10-16

Deng K, Liu W, DH Wang (2019)

Relatedness and spatial distance modulate intergroup interactions: experimental evidence from a social rodent.

Current zoology, 65(5):527-534.

Kin selection theory predicts that individuals should generally behave less aggressively or more amicably towards relatives than nonkin. However, how individuals treat conspecifics depends on genetic relatedness but also on the ecological context, which influences the benefits and costs of their interactions. In this study, we used microsatellite DNA markers and behavioral tests to examine the influence of kinship and proximity on the social behavior of Mongolian gerbils Meriones unguiculatus living in different social groups, and whether these effects varied with sex and season. We recorded the duration of 4 behavioral categories (investigative, neutral, amicable, and agonistic) during a 10-min pairwise test. We found that genetic relatedness had significant effects on the duration of investigative, neutral, and amicable behavior, but not on agonistic behavior. We also found significant interaction effects of relatedness and distance between burrow systems (i.e., spatial distance) on investigative, neutral, and amicable behavior, which suggests that the effects of kinship on social behavior were restricted by spatial proximity. The interaction effect between sex and relatedness on amicable behavior showed that male gerbils became more intimate with individuals of the same sex that had higher pairwise relatedness than females. Furthermore, both male and female gerbils enhanced their aggression during the food-hoarding season, but the intensity of these changes was significantly higher in females. Overall, our results suggest that the effects of kinship and spatial proximity on social behavior exhibit sexual or seasonal patterns, thereby implying ecological context-dependent responses to out-group individuals in Mongolian gerbils.

RevDate: 2019-10-10

Freeman AR, Wood TJ, Bairos-Novak KR, et al (2019)

Gone girl: Richardson's ground squirrel offspring and neighbours are resilient to female removal.

Royal Society open science, 6(9):190904 pii:rsos190904.

Within matrilineal societies, the presence of mothers and female kin can greatly enhance survival and reproductive success owing to kin-biased alarm calling, cooperation in territory defence, protection from infanticidal conspecifics, joint care of young and enhanced access to resources. The removal of mothers by predators or disease is expected to increase the stress experienced by offspring via activation of their hypothalamic-pituitary-adrenal axis, increasing circulating glucocorticoids and reducing offspring survival and reproductive success. Yet, few studies have removed mothers in the post-weaning period to examine the assumed physiological and fitness consequences associated with these mortality events. We examined how the loss of a mother affects juvenile Richardson's ground squirrels' (Urocitellus richardsonii) faecal glucocorticoid metabolites and their survival. Given that neighbours are often close kin, we further hypothesized that conspecific removal would similarly diminish the fitness of neighbouring individuals. Upon removing the mother, we detected no impact on offspring or neighbouring conspecific faecal glucocorticoid metabolites in the removal year, or on overwinter survival in the following year. Furthermore, no impact on neighbour reproductive success was detected. Given the high predation rates of ground squirrels in wild populations, resilience to a changing social environment would prove adaptive for both surviving kin and non-kin.

RevDate: 2019-10-03

Hervey SD, Barnas AF, Stechmann TJ, et al (2019)

Kin grouping is insufficient to explain the inclusive fitness gains of conspecific brood parasitism in the common eider.

Molecular ecology [Epub ahead of print].

Conspecific brood parasitism allows females to exploit other females' nests and enhance their reproductive output. Here, we test a recent theoretical model of how host females gain inclusive fitness from brood parasitism. High levels of relatedness between host and parasitizer can be maintained either by; 1) kin recognizing and parasitizing each other as a form of cooperative breeding or 2) natal philopatry and nest site fidelity facilitating the formation of kin groups increasing the probability of parasitism between relatives nesting in close proximity. To address these two hypotheses we genotyped feathers and hatch membranes of common eiders (Somateria mollissima) from western Hudson Bay, using a non-invasive sampling methodology. We found that most instances of brood parasitism do result in inclusive fitness gains. Further, females with failed nests moved an average of 492 meters from their previous years nest site, while successful females only moved an average of 13 meters. Therefore, we observed host-parasite relatedness can occur at levels higher than would be expected by chance even in the absence of kin grouping suggesting that closely related females nesting near one another is not essential to maintain high host-parasitizer relatedness. In addition, kin grouping is only a transient phenomenon that cannot occur every year due to the propensity for females of failed nests to nest farther away from their nest site in subsequent years than females with successful nests, which provides support for kin recognition as a more likely mechanism to maintain high host-parasitizer relatedness over time.

RevDate: 2019-10-01

Graves CJ, DM Weinreich (2017)

Variability in fitness effects can preclude selection of the fittest.

Annual review of ecology, evolution, and systematics, 48(1):399-417.

Evolutionary biologists often predict the outcome of natural selection on an allele by measuring its effects on lifetime survival and reproduction of individual carriers. However, alleles affecting traits like sex, evolvability, and cooperation can cause fitness effects that depend heavily on differences in the environmental, social, and genetic context of individuals carrying the allele. This variability makes it difficult to summarize the evolutionary fate of an allele based solely on its effects on any one individual. Attempts to average over this variability can sometimes salvage the concept of fitness. In other cases evolutionary outcomes can only be predicted by considering the entire genealogy of an allele, thus limiting the utility of individual fitness altogether. We describe a number of intriguing new evolutionary phenomena that have emerged in studies that explicitly model long-term lineage dynamics and discuss implications for the evolution of infectious diseases.

RevDate: 2019-09-24

Fréville H, Roumet P, Rode NO, et al (2019)

Preferential helping to relatives: A potential mechanism responsible for lower yield of crop variety mixtures?.

Evolutionary applications, 12(9):1837-1849 pii:EVA12842.

Variety mixtures, the cultivation of different genotypes within a field, have been proposed as a way to increase within-crop diversity, allowing the development of more sustainable agricultural systems with reduced environmental costs. Although mixtures have often been shown to over-yield the average of component varieties in pure stands, decreased yields in mixtures have also been documented. Kin selection may explain such pattern, whenever plants direct helping behaviors preferentially toward relatives and thus experience stronger competition when grown with less related neighbors, lowering seed production of mixtures. Using varieties of durum wheat originating from traditional Moroccan agrosystems, we designed a greenhouse experiment to address whether plants reduced competition for light by limiting stem elongation when growing with kin and whether such phenotypic response resulted in higher yield of kin groups. Seeds were sown in groups of siblings and nonkin, each group containing a focal plant surrounded by four neighbors. At the group level, mean plant height and yield did not depend upon relatedness among competing plants. At the individual level, plant height was not affected by genetic relatedness to neighbors, after accounting for direct genetic effects that might induce among-genotype differences in the ability to capture resources that do not depend on relatedness. Moreover, in contrast to our predictions, shorter plants had lower inclusive fitness. Phenotypic plasticity in height was very limited in response to neighbor genotypes. This suggests that human selection in crops may have attenuated shade-avoidance responses to competition for light. Future research on preferential helping to relatives in crops might thus target social traits that drive competition for other resources than light. Overall, our study illustrates the relevance of tackling agricultural issues from an evolutionary standpoint and calls for extending such approaches to a larger set of crop species.

RevDate: 2019-09-19

Tanskanen AO, Danielsbacka M, Coall DA, et al (2019)

Transition to Grandparenthood and Subjective Well-Being in Older Europeans: A Within-Person Investigation Using Longitudinal Data.

Evolutionary psychology : an international journal of evolutionary approaches to psychology and behavior, 17(3):1474704919875948.

The transition to grandparenthood, that is the birth of the first grandchild, is often assumed to increase the subjective well-being of older adults; however, prior studies are scarce and have provided mixed results. Investigation of the associations between grandparenthood and subjective well-being, measured by self-rated life satisfaction, quality of life scores, and depressive symptoms, used the longitudinal Survey of Health, Ageing and Retirement in Europe from 13 countries, including follow-up waves between 2006 and 2015 (n = 64,940 person-observations from 38,456 unique persons of whom 18,207 had two or more measurement times). Both between-person and within-person (or fixed-effect) regression models were executed, where between-person associations represent results across individuals, that is, between grandparents and non-grandparents; within-person associations represent an individual's variation over time, that is, they consider whether the transition to grandparenthood increases or decreases subjective well-being. According to the between-person models, both grandmothers and grandfathers reported higher rate of life satisfaction and quality of life than non-grandparents. Moreover, grandmothers reported fewer depressive symptoms than women without grandchildren. The within-person models indicated that entry into grandmotherhood was associated with both improved quality of life scores and improved life satisfaction. These findings are discussed with reference to inclusive fitness theory, parental investment theory, and the grandmother hypothesis.

RevDate: 2019-09-16

Kalske A, Shiojiri K, Uesugi A, et al (2019)

Insect Herbivory Selects for Volatile-Mediated Plant-Plant Communication.

Current biology : CB pii:S0960-9822(19)31027-9 [Epub ahead of print].

Plant volatile organic compounds (VOCs) are major vehicles of information transfer between organisms and mediate many ecological interactions [1-3]. Altering VOC emission in response to herbivore damage has been hypothesized to be adaptive, as it can deter subsequent herbivores [4], attract natural enemies of herbivores [5], or transmit information about attacks between distant parts of the same plant [6-9]. Neighboring plants may also respond to these VOC cues by priming their own defenses against oncoming herbivory, thereby reducing future damage [10-12]. However, under which conditions such information sharing provides fitness benefits to emitter plants, and, therefore, whether selection by herbivores affects the evolution of such VOC signaling, is still unclear [13]. Here, we test the predictions of two alternative hypotheses, the kin selection and mutual benefits hypotheses [14], to uncover the selective environment that may favor information sharing in plants. Measuring the response to natural selection in Solidago altissima, we found strong effects of herbivory on the way plants communicated with neighbors. Plants from populations that experienced selection by insect herbivory induced resistance in all neighboring conspecifics by airborne cues, whereas those from populations experiencing herbivore exclusion induced resistance only in neighbors of the same genotype. Furthermore, the information-sharing plants converged on a common, airborne VOC signal upon damage. We demonstrate that herbivory can drive the evolution of plant-plant communication via induction of airborne cues and suggest plants as a model system for understanding information sharing and communication among organisms in general.

RevDate: 2019-09-11

Berg EC, Lind MI, Monahan S, et al (2019)

Kin but less than kind: within-group male relatedness does not increase female fitness in seed beetles.

Proceedings. Biological sciences, 286(1910):20191664.

Theory maintains within-group male relatedness can mediate sexual conflict by reducing male-male competition and collateral harm to females. We tested whether male relatedness can lessen female harm in the seed beetle Callosobruchus maculatus. Male relatedness did not influence female lifetime reproductive success or individual fitness across two different ecologically relevant scenarios of mating competition. However, male relatedness marginally improved female survival. Because male relatedness improved female survival in late life when C. maculatus females are no longer producing offspring, our results do not provide support for the role of within-group male relatedness in mediating sexual conflict. The fact that male relatedness improves the post-reproductive part of the female life cycle strongly suggests that the effect is non-adaptive. We discuss adaptive and non-adaptive mechanisms that could result in reduced female harm in this and previous studies, and suggest that cognitive error is a likely explanation.

RevDate: 2019-09-06

Smith AL, Atwater DZ, RM Callaway (2019)

Early Sibling Conflict May Ultimately Benefit the Family.

The American naturalist, 194(4):482-487.

Relatives often interact differently with each other than with nonrelatives, and whether kin cooperate or compete has important consequences for the evolution of mating systems, seed size, dispersal, and competition. Previous research found that the larger of the size dimorphic seeds produced by the annual plant Aegilops triuncialis suppressed germination of their smaller sibs by 25%-60%. Here, we found evidence for kin recognition and sibling rivalry later in life among Aegilops seedlings that places seed-seed interactions in a broader context. In experiments with size dimorphic seeds, seedlings reduced the growth of sibling seedlings by ∼40% but that of nonsibling seedlings by ∼25%. These sequential antagonistic interactions between seeds and then seedlings provide insight into conflict and cooperation among kin. Kin-based conflict among seeds may maintain dormancy for some seeds until the coast is clear of more competitive siblings. If so, biotically induced seed dormancy may be a unique form of cooperation, which increases the inclusive fitness of maternal plants and offspring by minimizing competition among kin.

RevDate: 2019-09-06

Madgwick PG, Belcher LJ, JB Wolf (2019)

Greenbeard Genes: Theory and Reality.

Trends in ecology & evolution pii:S0169-5347(19)30250-2 [Epub ahead of print].

Greenbeard genes were proposed as a cartoonish thought experiment to explain why altruism can be a selfish strategy from the perspective of genes. The likelihood of finding a real greenbeard gene in nature was thought to be remote because they were believed to require a set of improbable properties. Yet, despite this expectation, there is an ongoing explosion in claimed discoveries of greenbeard genes. Bringing together the latest theory and experimental findings, we argue that there is a need to dispose of the cartoon presentation of a greenbeard to refocus their burgeoning empirical study on the more fundamental concept that the thought experiment was designed to illustrate.

RevDate: 2019-09-02

Martens J (2019)

Hamilton meets causal decision theory.

Studies in history and philosophy of biological and biomedical sciences pii:S1369-8486(18)30130-4 [Epub ahead of print].

In this paper, I contrast two mathematically equivalent ways of modeling the evolution of altruism, namely the classical inclusive fitness approach and a more recent, "direct fitness" approach. Though both are usually considered by evolutionists as mere different ways of representing the same causal process (i.e. that of kin selection), I argue that this consensus is misleading, for there is a fundamental ambiguity concerning the causal interpretation of the DF approach. Drawing on an analogy between the structure of inclusive fitness theory and that of causal decision theory (Stalnaker, 1972), I show that only the inclusive fitness framework can provide us with a proper, and unambiguous causal partition of the relevant variables involved in the evolution of altruism.

RevDate: 2019-09-01

Vostinar AE, Goldsby HJ, C Ofria (2019)

Suicidal selection: Programmed cell death can evolve in unicellular organisms due solely to kin selection.

Ecology and evolution, 9(16):9129-9136 pii:ECE35460.

Abstract: Unicellular organisms can engage in a process by which a cell purposefully destroys itself, termed programmed cell death (PCD). While it is clear that the death of specific cells within a multicellular organism could increase inclusive fitness (e.g., during development), the origin of PCD in unicellular organisms is less obvious. Kin selection has been shown to help maintain instances of PCD in existing populations of unicellular organisms; however, competing hypotheses exist about whether additional factors are necessary to explain its origin. Those factors could include an environmental shift that causes latent PCD to be expressed, PCD hitchhiking on a large beneficial mutation, and PCD being simply a common pathology. Here, we present results using an artificial life model to demonstrate that kin selection can, in fact, be sufficient to give rise to PCD in unicellular organisms. Furthermore, when benefits to kin are direct-that is, resources provided to nearby kin-PCD is more beneficial than when benefits are indirect-that is, nonkin are injured, thus increasing the relative amount of resources for kin. Finally, when considering how strict organisms are in determining kin or nonkin (in terms of mutations), direct benefits are viable in a narrower range than indirect benefits.

Open Research Badges: This article has been awarded Open Data and Open Materials Badges. All materials and data are publicly accessible via the Open Science Framework at

RevDate: 2019-08-27

Khodaei L, TAF Long (2019)

Kin recognition and co-operative foraging in Drosophila melanogaster larvae.

Journal of evolutionary biology [Epub ahead of print].

A long-standing goal for biologists and social scientists is to understand the factors that lead to the evolution and maintenance of co-operative behaviour between conspecifics. To that end, the fruit fly, Drosophila melanogaster, is becoming an increasingly popular model species to study sociality, however, most of the research to date has focused on adult behaviours. In this study, we set out to examine group feeding behaviour by larvae and to determine whether the degree of relatedness between individuals mediates the expression co-operation. In a series of assays, we manipulated the average degree of relatedness in groups of third instar larvae that were faced with resource scarcity, and measured the size, frequency and composition of feeding clusters, as well as the fitness benefits associated with co-operation. Our results suggest that larval D. melanogaster are capable of kin recognition (something that has not been previously described in this species), as clusters were more numerous, larger and involved more larvae, when more closely related kin were present in the social environment. These findings are discussed in the context of the correlated fitness-associated benefits of co-operation, the potential mechanisms by which individuals may recognize kin, and how that kinship may play an important role in facilitating the manifestation of this co-operative behaviour. This article is protected by copyright. All rights reserved.

RevDate: 2019-08-18

Cayuela H, Boualit L, Laporte M, et al (2019)

Kin-dependent dispersal influences relatedness and genetic structuring in a lek system.

Oecologia pii:10.1007/s00442-019-04484-z [Epub ahead of print].

Kin selection and dispersal play a critical role in the evolution of cooperative breeding systems. Limited dispersal increases relatedness in spatially structured populations (population viscosity), with the result that neighbours tend to be genealogical relatives. Yet the increase in neighbours' fitness-related performance through altruistic interaction may also result in habitat saturation and thus exacerbate local competition between kin. Our goal was to detect the footprint of kin selection and competition by examining the spatial structure of relatedness and by comparing non-effective and effective dispersal in a population of a lekking bird, Tetrao urogallus. For this purpose, we analysed capture-recapture and genetic data collected over a 6-year period on a spatially structured population of T. urogallus in France. Our findings revealed a strong spatial structure of relatedness in males. They also indicated that the population viscosity could allow male cooperation through two non-exclusive mechanisms. First, at their first lek attendance, males aggregate in a lek composed of relatives. Second, the distance corresponding to non-effective dispersal dramatically outweighed effective dispersal distance, which suggests that dispersers incur high post-settlement costs. These two mechanisms result in strong population genetic structuring in males. In females, our findings revealed a lower level of spatial structure of relatedness and genetic structure in respect to males. Additionally, non-effective dispersal and effective dispersal distances in females were highly similar, which suggests limited post-settlement costs. These results indicate that kin-dependent dispersal decisions and costs have a genetic footprint in wild populations and are factors that may be involved in the evolution of cooperative courtship.

RevDate: 2019-08-13

Page AE, Thomas MG, Smith D, et al (2019)

Testing adaptive hypotheses of alloparenting in Agta foragers.

Nature human behaviour pii:10.1038/s41562-019-0679-2 [Epub ahead of print].

Human children are frequently cared for by non-parental caregivers (alloparents), yet few studies have conducted systematic alternative hypothesis tests of why alloparents help. Here we explore whether predictions from kin selection, reciprocity, learning-to-mother and costly signalling hypotheses explain non-parental childcare among Agta hunter-gatherers from the Philippines. To test these hypotheses, we used high-resolution proximity data from 1,701 child-alloparent dyads. Our results indicated that reciprocity and relatedness were positively associated with the number of interactions with a child (our proxy for childcare). Need appeared more influential in close kin, suggesting indirect benefits, while reciprocity proved to be a stronger influence in non-kin, pointing to direct benefits. However, despite shared genes, close and distant kin interactions were also contingent on reciprocity. Compared with other apes, humans are unique in rapidly producing energetically demanding offspring. Our results suggest that the support that mothers require is met through support based on kinship and reciprocity.

RevDate: 2019-08-08

Schriver J, Perunovic WQE, Brymer K, et al (2019)

Do Relatives With Greater Reproductive Potential Get Help First?: A Test of the Inclusive Fitness Explanation of Kin Altruism.

Evolutionary psychology : an international journal of evolutionary approaches to psychology and behavior, 17(3):1474704919867094.

According to inclusive fitness theory, people are more willing to help those they are genetically related to because relatives share a kin altruism gene and are able to pass it along. We tested this theory by examining the effect of reproductive potential on altruism. Participants read hypothetical scenarios and chose between cousins (Studies 1 and 2) and cousins and friends (Study 3) to help with mundane chores or a life-or-death rescue. In life-or-death situations, participants were more willing to help a cousin preparing to conceive rather than adopt a child (Study 1) and a cousin with high rather than low chance of reproducing (Studies 2 and 3). Patterns in the mundane condition were less consistent. Emotional closeness also contributed to helping intentions (Studies 1 and 2). By experimentally manipulating reproductive potential while controlling for genetic relatedness and emotional closeness, we provide a demonstration of the direct causal effects of reproductive potential on helping intentions, supporting the inclusive fitness explanation of kin altruism.

RevDate: 2019-08-16

Berkowic D, S Markman (2019)

Weighing density and kinship: Aggressive behavior and time allocation in fire salamander (Salamandra infraimmaculata).

PloS one, 14(8):e0220499 pii:PONE-D-18-24785.

Kin-biased behavior (that is responding differentially to kin and non-kin) is thought to be adaptive in many social interactions. One example of this kin bias is behaving less aggressively toward a relative than a non-relative, a behavior which yields inclusive fitness benefits. However, data are lacking about the ability of animals to weigh their preference for kinship and the density of conspecifics simultaneously and to respond accordingly. Fire salamanders (Salamandra infraimmaculata) larviposit in high densities in ponds. Thus, larvae of different females confront competition and predation by other larvae. We studied whether larvae prefer their kin over particular density or vice versa. We experimentally used a transparent glass aquarium with inner chambers to test the responses of a focal larva toward its siblings and non-siblings. Specifically, we quantified the time a focal larva spent near its siblings or non-siblings, presented in varying densities, and the aggression level it demonstrated. We found that focal larvae spent more time near non-siblings if non-sibling and sibling groups were of equal density. The focal larvae were also more aggressive toward non-siblings. The results may be explained by the cannibalistic nature of these larvae: high density may provide more opportunities for food, especially when non-siblings are present. Further explanations for these findings may include other advantages of staying in a larger group and/or the stronger olfactory and visual stimulation offered by groups compared to a single individual. These findings suggest that larvae make differential responses toward conspecifics depending simultaneously on the level of relatedness and the density of the group. Such responses have important implications for social-aggregation decisions and may especially affect the fitness of cannibalistic species.

RevDate: 2019-07-30

Spivak M, Goblirsch M, M Simone-Finstrom (2019)

Social-medication in bees: the line between individual and social regulation.

Current opinion in insect science, 33:49-55.

We use the term social-medication to describe the deliberate consumption or use of plant compounds by social insects that are detrimental to a pathogen or parasite at the colony level, result in increased inclusive fitness to the colony, and have potential costs either at the individual or colony level in the absence of parasite infection. These criteria for social-medication differ from those for self-medication in that inclusive fitness costs and benefits are distinguished from individual costs and benefits. The consumption of pollen and nectar may be considered a form of social immunity if they help fight infection, resulting in a demonstrated increase in colony health and survival. However, the dietary use of pollen and nectar per se is likely not a form of social-medication unless there is a detriment or cost to their consumption in the absence of parasite infection, such as when they contain phytochemicals that are toxic at certain doses. We provide examples among social bees (bumblebees, stingless bees and honey bees) in which the consumption or use of plant compounds have a demonstrated role in parasite defense and health of the colony. We indicate where more work is needed to distinguish between prophylactic and therapeutic effects of these compounds, and whether the effects are observed at the individual or colony level.

RevDate: 2019-08-13

Birch J (2019)

Inclusive fitness as a criterion for improvement.

Studies in history and philosophy of biological and biomedical sciences, 76:101186.

I distinguish two roles for a fitness concept in the context of explaining cumulative adaptive evolution: fitness as a predictor of gene frequency change, and fitness as a criterion for phenotypic improvement. Critics of inclusive fitness argue, correctly, that it is not an ideal fitness concept for the purpose of predicting gene-frequency change, since it relies on assumptions about the causal structure of social interaction that are unlikely to be exactly true in real populations, and that hold as approximations only given a specific type of weak selection. However, Hamilton took this type of weak selection, on independent grounds, to be responsible for cumulative assembly of complex adaptations. In this special context, I argue that inclusive fitness is distinctively valuable as a criterion for improvement and a standard for optimality. Yet to call inclusive fitness a criterion for improvement and a standard for optimality is not to make any claim about the frequency with which inclusive fitness optimization actually occurs in nature. This is an empirical question that cannot be settled by theory alone. I close with some reflections on the place of inclusive fitness in the long running clash between 'causalist' and 'statisticalist' conceptions of fitness.

RevDate: 2019-08-13

Huneman P (2019)

Revisiting darwinian teleology: A case for inclusive fitness as design explanation.

Studies in history and philosophy of biological and biomedical sciences, 76:101188.

This paper elaborates a general framework to make sense of teleological explanations in Darwinian evolutionary biology. It relies on an attempt to tie natural selection to a sense of optimization. First, after assessing the objections made by any attempt to view selection as a maximising process within population genetics, it understands Grafen's Formal Darwinism (FD) as a conceptual link established between population genetics and behavioral ecology's adaptationist framework (without any empirical commitments). Thus I suggest that this provides a way to make sense of teleological explanations in biology under their various modes. Then the paper criticizes two major ways of accounting for teleology: a Darwinian one, the etiological view of biological functions, and a non-Darwinian one, here labeled "intrinsic teleology" view, which covers several subtypes of accounts, including plasticity-oriented conceptions of evolution or organizational views of function. The former is centered on traits while the latter is centered on organisms; this is shown to imply that both accounts are unable to provide a systematic understanding of biological teleology. Finally the paper argues that viewing teleology as maximization of inclusive fitness along the FD lines as understood here allows one to make sense of both the design of organisms and the individual traits as adaptions. Such notion is thereby claimed to be the proper meaning of teleology in evolutionary biology, since it avoids the opposed pitfalls of etiological views and intrinsic-teleology view, while accounting for the same features as they do.

RevDate: 2019-08-09

Mullon C, L Lehmann (2019)

An evolutionary quantitative genetics model for phenotypic (co)variances under limited dispersal, with an application to socially synergistic traits.

Evolution; international journal of organic evolution [Epub ahead of print].

Darwinian evolution consists of the gradual transformation of heritable traits due to natural selection and the input of random variation by mutation. Here, we use a quantitative genetics approach to investigate the coevolution of multiple quantitative traits under selection, mutation, and limited dispersal. We track the dynamics of trait means and of variance-covariances between traits that experience frequency-dependent selection. Assuming a multivariate-normal trait distribution, we recover classical dynamics of quantitative genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational selection that associates different traits within-individuals depends on the fitness effects of such associations between-individuals. We find that these kin selection effects can be as relevant as pleiotropy for the evolution of correlation between traits. We illustrate this with an example of the coevolution of two social traits whose association within-individuals is costly but synergistically beneficial between-individuals. As dispersal becomes limited and relatedness increases, associations between-traits between-individuals become increasingly targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a negative correlation under panmixia to unimodal with a positive correlation under limited dispersal.

RevDate: 2019-08-05

Garay J, Garay BM, Varga Z, et al (2019)

To save or not to save your family member's life? Evolutionary stability of self-sacrificing life history strategy in monogamous sexual populations.

BMC evolutionary biology, 19(1):147 pii:10.1186/s12862-019-1478-0.

BACKGROUND: For the understanding of human nature, the evolutionary roots of human moral behaviour are a key precondition. Our question is as follows: Can the altruistic moral rule "Risk your life to save your family members, if you want them to save your life" be evolutionary stable? There are three research approaches to investigate this problem: kin selection, group selection and population genetics modelling. The present study is strictly based on the last approach.

RESULTS: We consider monogamous and exogamous families, where at an autosomal locus, dominant-recessive alleles determine the phenotypes in a sexual population. Since all individuals' survival rate is determined by their altruistic family members, we introduce a new population genetics model based on the mating table approach and adapt the verbal definition of evolutionary stability to genotypes. In general, when the resident is recessive, a homozygote is an evolutionarily stable genotype (ESG), if the number of survivors of the resident genotype of the resident homozygote family is greater than that of non-resident heterozygote survivors of the family of the resident homozygote and mutant heterozygote genotypes. Using the introduced genotype dynamics we proved that in the recessive case ESG implies local stability of the altruistic genotype. We apply our general ESG conditions for self-sacrificing life history strategy when the number of new-born offspring does not depend on interactions within the family and the interactions are additive. We find that in this case our ESG conditions give back Hamilton's rule for evolutionary stability of the self-sacrificing life history strategy.

CONCLUSIONS: In spite of the fact that the kidney transplantations was not a selection factor during the earlier human evolution, nowadays "self-sacrificing" can be observed in the live donor kidney transplantations, when the donor is one of the family members. It seems that selection for self-sacrificing in family produced an innate moral tendency in modulating social cognition in human brain.

RevDate: 2019-07-19

Woodford P (2019)

Evaluating inclusive fitness.

Royal Society open science, 6(6):190644 pii:rsos190644.

RevDate: 2019-08-02

Koster J, Lukas D, Nolin D, et al (2019)

Kinship ties across the lifespan in human communities.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1780):20180069.

A hypothesis for the evolution of long post-reproductive lifespans in the human lineage involves asymmetries in relatedness between young immigrant females and the older females in their new groups. In these circumstances, inter-generational reproductive conflicts between younger and older females are predicted to resolve in favour of the younger females, who realize fewer inclusive fitness benefits from ceding reproduction to others. This conceptual model anticipates that immigrants to a community initially have few kin ties to others in the group, gradually showing greater relatedness to group members as they have descendants who remain with them in the group. We examine this prediction in a cross-cultural sample of communities, which vary in their sex-biased dispersal patterns and other aspects of social organization. Drawing on genealogical and demographic data, the analysis provides general but not comprehensive support for the prediction that average relatedness of immigrants to other group members increases as they age. In rare cases, natal members of the community also exhibit age-related increases in relatedness. We also find large variation in the proportion of female group members who are immigrants, beyond simple traditional considerations of patrilocality or matrilocality, which raises questions about the circumstances under which this hypothesis of female competition are met. We consider possible explanations for these heterogenous results, and we address methodological considerations that merit increased attention for research on kinship and reproductive conflict in human societies. This article is part of the theme issue 'The evolution of female-biased kinship in humans and other mammals'.

RevDate: 2019-08-02

Lynch EC, Lummaa V, Htut W, et al (2019)

Evolutionary significance of maternal kinship in a long-lived mammal.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1780):20180067.

Preferential treatment of kin is widespread across social species and is considered a central prerequisite to the evolution of cooperation through kin selection. Though it is well known that, among most social mammals, females will remain within their natal group and often bias social behaviour towards female maternal kin, less is known about the fitness consequences of these relationships. We test the fitness benefits of living with maternal sisters, measured by age-specific female reproduction, using an unusually large database of a semi-captive Asian elephant (Elephas maximus) population. This study system is particularly valuable to an exploration of reproductive trends in a long-lived mammal, because it includes life-history data that span multiple generations, enabling a study of the effects of kinship across a female's lifespan. We find that living near a sister significantly increased the likelihood of annual reproduction among young female elephants, and this effect was strongest when living near a sister 0-5 years younger. Our results show that fitness benefits gained from relationships with kin are age-specific, establish the basis necessary for the formation and maintenance of close social relationships with female kin, and highlight the adaptive importance of matriliny in a long-lived mammal. This article is part of the theme issue 'The evolution of female-biased kinship in humans and other mammals'.

RevDate: 2019-08-02

Holekamp KE, MA Sawdy (2019)

The evolution of matrilineal social systems in fissiped carnivores.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1780):20180065.

We review matrilineal relationships in the societies of fissiped mammalian carnivores, focusing on how the most complex of these may have evolved from simpler systems. Although competition for food is very intense at the trophic level occupied by most carnivores, and although most species of extant fissiped carnivores therefore lead solitary lives, some species show at least rudimentary clustering of maternal kin and matrilineal resource-sharing or transmission of critical resources between generations. The resources shared or transmitted range from individual food items and territories to entire networks of potential allies. The greatest elaboration of matrilineal relationships has occurred in two large carnivores, lions and spotted hyenas, which occur sympatrically throughout much of Africa. The societies of both these species apparently evolved in response to a shared suite of ecological conditions. The highly matrilineal societies of spotted hyenas are unique among carnivores and closely resemble the societies of many cercopithecine primates. The conditions favouring the evolution of matrilineal societies in carnivores include male-biased dispersal, female philopatry, the need for assistance in protecting or provisioning offspring, reliance on large or abundant prey, particularly in open habitat, high population density and kin-structured cooperative interactions that have strong positive effects on fitness. This article is part of the theme issue 'The evolution of female-biased kinship in humans and other mammals'.

RevDate: 2019-07-12

Ross L, Davies NG, A Gardner (2019)

How to make a haploid male.

Evolution letters, 3(2):173-184 pii:EVL3107.

Haplodiploidy has evolved repeatedly among invertebrates, and appears to be associated with inbreeding. Evolutionary biologists have long debated the possible benefits for females in diplodiploid species to produce haploid sons-beginning their population's transition to haplodiploidy-and whether inbreeding promotes or inhibits this transition. However, little attention has been given to what makes a haploid individual male rather than female, and whether the mechanism of sex determination may modulate the costs and benefits of male haploidy. We remedy this by performing a theoretical analysis of the origin and invasion of male haploidy across the full range of sex-determination mechanisms and sib-mating rates. We find that male haploidy is facilitated by three different mechanisms of sex determination-all involving male heterogamety-and impeded by the others. We also find that inbreeding does not pose an obvious evolutionary barrier, on account of a previously neglected sex-ratio effect whereby the production of haploid sons leads to an abundance of granddaughters that is advantageous in the context of inbreeding. We find empirical support for these predictions in a survey of sex determination and inbreeding across haplodiploids and their sister taxa.

RevDate: 2019-07-05

Ng YL (2019)

Active and Passive Facebook Use and Associated Costly Off-line Helping Behavior.

Psychological reports [Epub ahead of print].

RevDate: 2019-07-29

Leeks A, Dos Santos M, SA West (2019)

Transmission, relatedness, and the evolution of cooperative symbionts.

Journal of evolutionary biology [Epub ahead of print].

Cooperative interactions between species, termed mutualisms, play a key role in shaping natural ecosystems, economically important agricultural systems, and in influencing human health. Across different mutualisms, there is significant variation in the benefit that hosts receive from their symbionts. Empirical data suggest that transmission mode can help explain this variation: vertical transmission, where symbionts infect their host's offspring, leads to symbionts that provide greater benefits to their hosts than horizontal transmission, where symbionts leave their host and infect other hosts in the population. However, two different theoretical explanations have been given for this pattern: firstly, vertical transmission aligns the fitness interests of hosts and their symbionts; secondly, vertical transmission leads to increased relatedness between symbionts sharing a host, favouring cooperation between symbionts. We used a combination of analytical models and dynamic simulations to tease these factors apart, in order to compare their separate influences and see how they interact. We found that relatedness between symbionts sharing a host, rather than transmission mode per se, was the most important factor driving symbiont cooperation. Transmission mode mattered mainly because it determined relatedness. We also found evolutionary branching throughout much of our simulation, suggesting that a combination of transmission mode and multiplicity of infections could lead to the stable coexistence of different symbiont strategies.

RevDate: 2019-09-01

Bourke AF (2019)

Inclusive fitness and the major transitions in evolution.

Current opinion in insect science, 34:61-67.

Inclusive fitness theory is the leading framework for explaining the major transitions in evolution, whereby free-living subunits (e.g. cells, organisms) have cooperated to form new, higher-level units (e.g. organisms, eusocial societies). The theory has attracted considerable controversy. From a brief survey of the controversy's present status, I conclude that inclusive fitness theory continues to provide both a concept and a principled modelling tool of value for understanding social evolution, including major transitions. Turning to new developments in the study of major transitions, I describe work defining the point of occurrence of major transitions and, from inclusive fitness theory, the required conditions. I also suggest that it remains important to understand the evolution of individuality that occurs beyond such thresholds.

RevDate: 2019-06-28

Fromhage L, MD Jennions (2019)

The strategic reference gene: an organismal theory of inclusive fitness.

Proceedings. Biological sciences, 286(1904):20190459.

How to define and use the concept of inclusive fitness is a contentious topic in evolutionary theory. Inclusive fitness can be used to calculate selection on a focal gene, but it is also applied to whole organisms. Individuals are then predicted to appear designed as if to maximize their inclusive fitness, provided that certain conditions are met (formally when interactions between individuals are 'additive'). Here we argue that applying the concept of inclusive fitness to organisms is justified under far broader conditions than previously shown, but only if it is appropriately defined. Specifically, we propose that organisms should maximize the sum of their offspring (including any accrued due to the behaviour/phenotype of relatives), plus any effects on their relatives' offspring production, weighted by relatedness. By contrast, most theoreticians have argued that a focal individual's inclusive fitness should exclude any offspring accrued due to the behaviour of relatives. Our approach is based on the notion that long-term evolution follows the genome's 'majority interest' of building coherent bodies that are efficient 'vehicles' for gene propagation. A gene favoured by selection that reduces the propagation of unlinked genes at other loci (e.g. meiotic segregation distorters that lower sperm production) is eventually neutralized by counter-selection throughout the rest of the genome. Most phenotypes will therefore appear as if designed to maximize the propagation of any given gene in a focal individual and its relatives.

RevDate: 2019-06-10

Rautiala P, Helanterä H, M Puurtinen (2019)

Extended haplodiploidy hypothesis.

Evolution letters, 3(3):263-270 pii:EVL3119.

Evolution of altruistic behavior was a hurdle for the logic of Darwinian evolution. Soon after Hamilton formalized the concept of inclusive fitness, which explains how altruism can evolve, he suggested that the high sororal relatedness brought by haplodiploidy could be why Hymenopterans have a high prevalence in eusocial species, and why helpers in Hymenoptera are always female. Later it was noted that in order to capitalize on the high sororal relatedness, helpers would need to direct help toward sisters, and this would bias the population sex ratio. Under a 1:3 males:females sex ratio, the inclusive fitness valuation a female places on her sister, brother, and an own offspring are equal-apparently removing the benefit of helping over independent reproduction. Based on this argumentation, haplodiploidy hypothesis has been considered a red herring. However, here we show that when population sex ratio, cost of altruism, and population growth rate are considered together, haplodiploidy does promote female helping even with female-biased sex ratio, due the lowered cost of altruism in such populations. Our analysis highlights the need to re-evaluate the role of haplodiploidy in the evolution of helping, and the importance of fully exploring the model assumptions when comparing interactions of population sex ratios and social behaviors.

RevDate: 2019-07-17

Lenárt P, Zlámal F, Kukla L, et al (2019)

Sibling relatedness rather than father absence predicts earlier age at menarche in ELSPAC cohort.

Biology letters, 15(6):20190091.

Many studies during the past 50 years have found an association between father absence and earlier menarche. In connection with these findings, several evolutionary theories assume that father absence is a causal factor accelerating reproductive development. However, a recent study analysing data from the Avon Longitudinal Study of Parents and Children (ALSPAC) found that father absence does not predict age at menarche when adjusted for sibling relatedness. In this study, we have replicated these results in the Czech section of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC), which used the same questionnaires as ALSPAC to study a geographically distinct population. Our results support the conclusion that sibling relatedness rather than father absence predicts age at menarche. Furthermore, our results show that age at menarche in 1990s UK and Czech cohorts is very similar despite socioeconomic differences between the two countries.

RevDate: 2019-06-04

Ostrowski EA (2019)

Enforcing Cooperation in the Social Amoebae.

Current biology : CB, 29(11):R474-R484.

Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body. Some cells altruistically die to form the rigid stalk, while the remainder sit atop the stalk, become spores, and disperse. Evolutionary theory predicts that conflict will arise over which cells die to form the stalk and which cells become spores and survive. The power of the social amoeba lies in the ability to explore how cooperation and conflict work across multiple levels, ranging from proximate mechanisms (how does it work?) to ultimate evolutionary answers (why does it work?). Recent studies point to solutions to the problem of ensuring fairness, such as the ability to suppress selfishness and to recognize and avoid unrelated individuals. This work confirms a central role for kin selection, but also suggests new explanations for how social amoebae might enforce cooperation. New approaches based on genomics are also enabling researchers to decipher for the first time the evolutionary history of cooperation and conflict and to determine its role in shaping the biology of multicellular organisms.

RevDate: 2019-06-04

Apicella CL, JB Silk (2019)

The evolution of human cooperation.

Current biology : CB, 29(11):R447-R450.

Darwin viewed cooperation as a perplexing challenge to his theory of natural selection. Natural selection generally favors the evolution of behaviors that enhance the fitness of individuals. Cooperative behavior, which increases the fitness of a recipient at the expense of the donor, contradicts this logic. William D. Hamilton helped to solve the puzzle when he showed that cooperation can evolve if cooperators direct benefits selectively to other cooperators (i.e. assortment). Kinship, group selection and the previous behavior of social partners all provide mechanisms for assortment (Figure 1), and kin selection and reciprocal altruism are the foundation of the kinds of cooperative behavior observed in many animals. Humans also bias cooperation in favor of kin and reciprocating partners, but the scope, scale, and variability of human cooperation greatly exceed that of other animals. Here, we introduce derived features of human cooperation in the context in which they originally evolved, and discuss the processes that may have shaped the evolution of our remarkable capacity for cooperation. We argue that culturally-evolved norms that specify how people should behave provide an evolutionarily novel mechanism for assortment, and play an important role in sustaining derived properties of cooperation in human groups.

RevDate: 2019-06-04

Kay T, Lehmann L, L Keller (2019)

Kin selection and altruism.

Current biology : CB, 29(11):R438-R442.

Natural selection is predicated on the 'struggle for existence': life is short, cruel and, whether through predation, disease or starvation, often ends traumatically. It would seem that in such a dog-eat-dog world, organisms ought to act selfishly, and avoid reducing their fitness (expected survival and reproductive success) by expending time and energy helping others. Put another way, alleles that increase the probability of altruism - a behavior whose expression increases the fitness of recipients while decreasing that of the actor - should decrease in frequency across generations and ultimately disappear.

RevDate: 2019-06-04

Birch J (2019)

Are kin and group selection rivals or friends?.

Current biology : CB, 29(11):R433-R438.

Kin selection and group selection were once seen as competing explanatory hypotheses but now tend to be seen as equivalent ways of describing the same basic idea. Yet this 'equivalence thesis' seems not to have brought proponents of kin selection and group selection any closer together. This may be because the equivalence thesis merely shows the equivalence of two statistical formalisms without saying anything about causality. W.D. Hamilton was the first to derive an equivalence result of this type. Yet Hamilton was aware of its limitations, and saw that, while illuminating, it papered over some biologically important distinctions. Attending to these distinctions leads to the concept of 'K-G space', which helps us see where the biological disagreements between proponents of kin selection and group selection really lie.

RevDate: 2019-07-27

Southon RJ, Bell EF, Graystock P, et al (2019)

High indirect fitness benefits for helpers across the nesting cycle in the tropical paper wasp Polistes canadensis.

Molecular ecology, 28(13):3271-3284.

Explaining the evolution of helping behaviour in the eusocial insects where nonreproductive ("worker") individuals help raise the offspring of other individuals ("queens") remains one of the most perplexing phenomena in the natural world. Polistes paper wasps are popular study models, as workers retain the ability to reproduce: such totipotency is likely representative of the early stages of social evolution. Polistes is thought to have originated in the tropics, where seasonal constraints on reproductive options are weak and social groups are effectively perennial. Yet, most Polistes research has focused on nontropical species, where seasonality causes family groups to disperse; cofoundresses forming new nests the following spring are often unrelated, leading to the suggestion that direct fitness through nest inheritance is key in the evolution of helping behaviour. Here, we present the first comprehensive genetic study of social structure across the perennial nesting cycle of a tropical Polistes-Polistes canadensis. Using both microsatellites and newly developed single nucleotide polymorphism markers, we show that adult cofoundresses are highly related and that brood production is monopolized by a single female across the nesting cycle. Nonreproductive cofoundresses in tropical Polistes therefore have the potential to gain high indirect fitness benefits as helpers from the outset of group formation, and these benefits persist through the nesting cycle. Direct fitness may have been less important in the origin of Polistes sociality than previously suggested. These findings stress the importance of studying a range of species with diverse life history and ecologies when considering the evolution of reproductive strategies.

RevDate: 2019-08-26

Hitchcock TJ, Paracchini S, A Gardner (2019)

Genomic Imprinting As a Window into Human Language Evolution.

BioEssays : news and reviews in molecular, cellular and developmental biology, 41(6):e1800212.

Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.

RevDate: 2019-06-10

Shakhar K (2019)

The Inclusive Behavioral Immune System.

Frontiers in psychology, 10:1004.

Although living in social groups offers many advantages, it comes at a cost of increased transmissible disease. The behavioral immune system (BIS) is thought to have evolved as a first line of defense against such infections. It acts by minimizing the contact of yet uninfected hosts with potential pathogens. The BIS has been observed in a wide range of animals including insects, amphibians and mammals, but most research has focused on humans where the BIS is guided by complex cognitive and emotional processing. When researchers discuss the evolutionary origin of the BIS, they assess how it raises individual fitness. What would happen though if we shift our attention to the evolutionary unit of selection - the gene? Success would be measured as the change in the gene's prevalence in the entire population, and additional behaviors would come to our attention - those that benefit relatives, i.e., behaviors that raise inclusive fitness. One widely-recognized example of the inclusive BIS is social immunity, which is prevalent among eusocial organisms such as bees and ants. Their colonies engage in a collaborative protective behavior such as grooming and the removal of infected members from the nest. Another example may be sickness behavior, which includes the behavioral, cognitive and emotional symptoms that accompany infection, such as fatigue, and loss of appetite and social interest. My colleague and I recently suggested that sickness behavior has evolved because it reduces the direct and indirect contact between an infected host and its healthy kin - improving inclusive fitness. These additional behaviors are not carried out by the healthy individuals, but rather by whole communities in the first case, and by already infected individuals in the second. Since they step beyond the classical definition of BIS, it may be useful to broaden the term to the inclusive behavioral immune system.

RevDate: 2019-05-16

Duncan C, Gaynor D, Clutton-Brock T, et al (2019)

The Evolution of Indiscriminate Altruism in a Cooperatively Breeding Mammal.

The American naturalist, 193(6):841-851.

Kin selection theory suggests that altruistic behaviors can increase the fitness of altruists when recipients are genetic relatives. Although selection can favor the ability of organisms to preferentially cooperate with close kin, indiscriminately helping all group mates may yield comparable fitness returns if relatedness within groups is very high. Here, we show that meerkats (Suricata suricatta) are largely indiscriminate altruists who do not alter the amount of help provided to pups or group mates in response to their relatedness to them. We present a model showing that indiscriminate altruism may yield greater fitness payoffs than kin discrimination where most group members are close relatives and errors occur in the estimation of relatedness. The presence of errors in the estimation of relatedness provides a feasible explanation for associations between kin discriminative helping and group relatedness in eusocial and cooperatively breeding animals.

RevDate: 2019-07-17

Jänig S, Weiß BM, Birkemeyer C, et al (2019)

Comparative chemical analysis of body odor in great apes.

American journal of primatology, 81(6):e22976.

Olfaction is important across the animal kingdom for transferring information on, for example, species, sex, group membership, or reproductive parameters. Its relevance has been established in primates including humans, yet research on great apes still is fragmentary. Observational evidence indicates that great apes use their sense of smell in various contexts, but the information content of their body odor has not been analyzed. Our aim was therefore to compare the chemical composition of body odor in great ape species, namely Sumatran orangutans (Pongo abelii (Lesson, 1827), one adult male, five adult females, four nonadults), Western lowland gorillas (Gorilla gorilla gorilla (Savage, 1847), one adult male, two adult females, one nonadult), common chimpanzees (Pan troglodytes (Blumenbach, 1775), four adult males, nine adult females, four nonadults), and bonobos (Pan paniscus (Schwarz, 1929), two adult males, four adult females, two nonadults). We collected 195 samples (five per individual) of 39 captive individuals using cotton swabs and analyzed them using gas chromatography mass spectrometry. We compared the sample richness and intensity, similarity of chemical composition, and relative abundance of compounds. Results show that species, age, and potentially sex have an impact on the variance between odor profiles. Richness and intensity varied significantly between species (gorillas having the highest, bonobos the lowest richness and intensity), and with age (both increasing with age). Richness and intensity did not vary between sexes. Odor samples of the same species were more similar to each other than samples of different species. Among all compounds identified some were associated with age (N = 7), sex (N = 6), and species-related (N = 37) variance. Our study contributes to the basic understanding of olfactory communication in hominids by showing that the chemical composition of body odor varies across species and individuals, containing potentially important information for social communication.

RevDate: 2019-06-10

Geist KS, Strassmann JE, DC Queller (2019)

Family quarrels in seeds and rapid adaptive evolution in Arabidopsis.

Proceedings of the National Academy of Sciences of the United States of America, 116(19):9463-9468.

Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host-pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.

RevDate: 2019-07-02

Sbarra DA, Briskin JL, RB Slatcher (2019)

Smartphones and Close Relationships: The Case for an Evolutionary Mismatch.

Perspectives on psychological science : a journal of the Association for Psychological Science, 14(4):596-618.

This article introduces and outlines the case for an evolutionary mismatch between smartphones and the social behaviors that help form and maintain close social relationships. As psychological adaptations that enhance human survival and inclusive fitness, self-disclosure and responsiveness evolved in the context of small kin networks to facilitate social bonds, promote trust, and enhance cooperation. These adaptations are central to the development of attachment bonds, and attachment theory is a middle-level evolutionary theory that provides a robust account of the ways human bonding provides for reproductive and inclusive fitness. Evolutionary mismatches operate when modern contexts cue ancestral adaptations in a manner that does not provide for their adaptive benefits. We argue that smartphones and their affordances, although highly beneficial in many circumstances, cue humans' evolved needs for self-disclosure and responsiveness across broad virtual networks and, in turn, have the potential to undermine immediate interpersonal interactions. We review emerging evidence on the topic of technoference, which is defined as the ways in which smartphone use may interfere with or intrude into everyday social interactions. The article concludes with an empirical agenda for advancing the integrative study of smartphones, intimacy processes, and close relationships.

RevDate: 2019-07-11

Levin SR, A Grafen (2019)

Inclusive fitness is an indispensable approximation for understanding organismal design.

Evolution; international journal of organic evolution, 73(6):1066-1076.

For some decades most biologists interested in design have agreed that natural selection leads to organisms acting as if they are maximizing a quantity known as "inclusive fitness." This maximization principle has been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we adopt a resolution offered by Birch, who accepts the technical difficulties of establishing inclusive fitness maximization in a fully general model, while concluding that inclusive fitness is still useful as an organizing framework. We set out in more detail why inclusive fitness is such a practical and powerful framework, and provide verbal and conceptual arguments for why social biology would be more or less impossible without it. We aim to help mathematicians understand why social biologists are content to use inclusive fitness despite its theoretical weaknesses. Here, we also offer biologists practical advice for avoiding potential pitfalls.

RevDate: 2019-04-12

Cotter SC, Pincheira-Donoso D, R Thorogood (2019)

Defences against brood parasites from a social immunity perspective.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1769):20180207.

Parasitic interactions are so ubiquitous that all multicellular organisms have evolved a system of defences to reduce their costs, whether the parasites they encounter are the classic parasites which feed on the individual, or brood parasites which usurp parental care. Many parallels have been drawn between defences deployed against both types of parasite, but typically, while defences against classic parasites have been selected to protect survival, those against brood parasites have been selected to protect the parent's inclusive fitness, suggesting that the selection pressures they impose are fundamentally different. However, there is another class of defences against classic parasites that have specifically been selected to protect an individual's inclusive fitness, known as social immunity. Social immune responses include the anti-parasite defences typically provided for others in kin-structured groups, such as the antifungal secretions produced by termite workers to protect the brood. Defences against brood parasites, therefore, are more closely aligned with social immune responses. Much like social immunity, host defences against brood parasitism are employed by a donor (a parent) for the benefit of one or more recipients (typically kin), and as with social defences against classic parasites, defences have therefore evolved to protect the donor's inclusive fitness, not the survival or ultimately the fitness of individual recipients This can lead to severe conflicts between the different parties, whose interests are not always aligned. Here, we consider defences against brood parasitism in the light of social immunity, at different stages of parasite encounter, addressing where conflicts occur and how they might be resolved. We finish with considering how this approach could help us to address longstanding questions in our understanding of brood parasitism. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.

RevDate: 2019-04-12

Gloag R, M Beekman (2019)

The brood parasite's guide to inclusive fitness theory.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1769):20180198.

Hamilton's theory of inclusive fitness provides a framework for understanding the evolution of social behaviour between kin, including parental and alloparental care. Brood parasitism is a reproductive tactic in which parasites exploit the care of other individuals of the same species (conspecific parasitism) or different species (interspecific parasitism) to rear their brood. Here, drawing from examples in birds and social insects, we identify two insights into brood parasitism that stem from inclusive fitness theory. First, the kin structure within nests, or between neighbouring nests, can create a niche space favouring the evolution of conspecific parasitism. For example, low average relatedness within social insect nests can increase selection for reproductive cheats. Likewise, high average relatedness between adjacent nests of some birds can increase a female's tolerance of parasitism by her neighbour. Second, intrabrood conflict will be high in parasitized broods, from the perspective of both parasite and host young, relative to unparasitized broods. We also discuss offspring recognition by hosts as an example of discrimination in a kin-selected social behaviour. We conclude that the inclusive fitness framework is instructive for understanding aspects of brood parasite and host evolution. In turn, brood parasites present some unique opportunities to test the predictions of inclusive fitness theory. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.

RevDate: 2019-04-26

Vitikainen EIK, Thompson FJ, Marshall HH, et al (2019)

Live long and prosper: durable benefits of early-life care in banded mongooses.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1770):20180114.

Kin selection theory defines the conditions for which altruism or 'helping' can be favoured by natural selection. Tests of this theory in cooperatively breeding animals have focused on the short-term benefits to the recipients of help, such as improved growth or survival to adulthood. However, research on early-life effects suggests that there may be more durable, lifelong fitness impacts to the recipients of help, which in theory should strengthen selection for helping. Here, we show in cooperatively breeding banded mongooses (Mungos mungo) that care received in the first 3 months of life has lifelong fitness benefits for both male and female recipients. In this species, adult helpers called 'escorts' form exclusive one-to-one caring relationships with specific pups (not their own offspring), allowing us to isolate the effects of being escorted on later reproduction and survival. Pups that were more closely escorted were heavier at sexual maturity, which was associated with higher lifetime reproductive success for both sexes. Moreover, for female offspring, lifetime reproductive success increased with the level of escorting received per se, over and above any effect on body mass. Our results suggest that early-life social care has durable benefits to offspring of both sexes in this species. Given the well-established developmental effects of early-life care in laboratory animals and humans, we suggest that similar effects are likely to be widespread in social animals more generally. We discuss some of the implications of durable fitness benefits for the evolution of intergenerational helping in cooperative animal societies, including humans. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.

RevDate: 2019-04-10

Kuijper B, RA Johnstone (2019)

The evolution of early-life effects on social behaviour-why should social adversity carry over to the future?.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1770):20180111.

Numerous studies have shown that social adversity in early life can have long-lasting consequences for social behaviour in adulthood, consequences that may in turn be propagated to future generations. Given these intergenerational effects, it is puzzling why natural selection might favour such sensitivity to an individual's early social environment. To address this question, we model the evolution of social sensitivity in the development of helping behaviours, showing that natural selection indeed favours individuals whose tendency to help others is dependent on early-life social experience. In organisms with non-overlapping generations, we find that natural selection can favour positive social feedbacks, in which individuals who received more help in early life are also more likely to help others in adulthood, while individuals who received no early-life help develop low tendencies to help others later in life. This positive social sensitivity is favoured because of an intergenerational relatedness feedback: patches with many helpers tend to be more productive, leading to higher relatedness within the local group, which in turn favours higher levels of help in the next generation. In organisms with overlapping generations, this positive feedback is less likely to occur, and those who received more help may instead be less likely to help others (negative social feedback). We conclude that early-life social influences can lead to strong between-individual differences in helping behaviour, which can take different forms dependent on the life history in question. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.

RevDate: 2019-06-07

Schindler S, AN Radford (2018)

Factors influencing within-group conflict over defence against conspecific outsiders seeking breeding positions.

Proceedings. Biological sciences, 285(1893):20181669.

In social species, groups face a variety of threats from conspecific outsiders. Defensive actions are therefore common, but there is considerable variation in which individuals contribute and to what extent. There has been some theoretical exploration of this variation when the defence is of shared resources, but the relative contributions when a single intruder threatens a particular breeding position have received less attention. Defensive actions are costly, both for the individual and dependent young, and contributions are likely to differ depending on individual sex, rank and size, current breeding stage, infanticide risk and relatedness levels. Here, we model analytically the relative fitness benefits of different group members to engaging in defence against individual intruders and determine when within-group conflicts of interest might arise over these defensive contributions. Conflicts of interest between the challenged breeder and other group members depend on relatedness to the brood and the potential relatedness reduction if an intruder acquires breeding status. Conflicts are more likely to occur when there is a low chance of winning the contest, low infanticide rates, inefficient defence from helpers, a long remaining brood-dependency period and high external (non-contest-related) mortality. Our work can help explain variation in defensive actions against out-group threats.

RevDate: 2019-04-11

Faria GS, Varela SAM, A Gardner (2019)

The social evolution of sleep: sex differences, intragenomic conflicts and clinical pathologies.

Proceedings. Biological sciences, 286(1894):20182188.

Sleep appears to be essential for most animals, including humans. Accordingly, individuals who sacrifice sleep are expected to incur costs and so should only be evolutionarily favoured to do this when these costs are offset by other benefits. For instance, a social group might benefit from having some level of wakefulness during the sleeping period if this guards against possible threats. Alternatively, individuals might sacrifice sleep in order to gain an advantage over mate competitors. Here, we perform a theoretical analysis of the social evolutionary pressures that drive investment into sleep versus wakefulness. Specifically, we: investigate how relatedness between social partners may modulate sleeping strategies, depending upon whether sleep sacrifice is selfish or altruistic; determine the conditions under which the sexes are favoured to adopt different sleeping strategies; identify the potential for intragenomic conflict between maternal-origin versus paternal-origin genes regarding an individual's sleeping behaviour; translate this conflict into novel and readily testable predictions concerning patterns of gene expression; and explore the concomitant effects of different kinds of mutations, epimutations, and uniparental disomies in relation to sleep disorders and other clinical pathologies. Our aim is to provide a theoretical framework for future empirical data and stimulate further research on this neglected topic.

RevDate: 2019-04-10

Humphreys RK, GD Ruxton (2019)

Adaptive suicide: is a kin-selected driver of fatal behaviours likely?.

Biology letters, 15(2):20180823.

While several manipulated host behaviours are accepted as extended phenotypes of parasites, there remains debate over whether other altered behaviours in hosts following parasitic invasion represent cases of parasite manipulation, host defence or the pathology of infection. One particularly controversial subject is 'suicidal behaviour' in infected hosts. The host-suicide hypothesis proposes that host death benefits hosts doomed to reduced direct fitness by protecting kin from parasitism and therefore increasing inclusive fitness. However, adaptive suicide has been difficult to demonstrate conclusively as a host adaptation in studies on social or clonal insects, for whom high relatedness should enable greater inclusive fitness benefits. Following discussion of empirical and theoretical works from a behavioural ecology perspective, this review finds that the most persuasive evidence for selection of adaptive suicide comes from bacteria. Despite a focus on parasites, driven by the existing literature, the potential for the evolution of adaptive suicidal behaviour in hosts is also considered to apply to cases of infection by pathogens, provided that the disease has a severe effect on direct fitness and that suicidal behaviour can affect pathogen transmission dynamics. Suggestions are made for future research and a broadening of the possible implications for coevolution between parasites and hosts.

RevDate: 2019-04-07

Spring S, Lehner M, Huber L, et al (2019)

Oviposition and father presence reduce clutch cannibalism by female poison frogs.

Frontiers in zoology, 16:8 pii:304.

Background: The consumption of conspecific young by adult individuals is a common phenomenon across various animal taxa. Possible adaptive benefits of such behaviour include the acquisition of nutrients, decreased competition for one's own offspring, and/or increased mating opportunities. Clutch cannibalism has occasionally been observed in several species of Neotropical poison frogs, but the circumstances under which this behaviour occurs has rarely been investigated experimentally. Recent experiments with the poison frog Allobates femoralis have shown that males indiscriminately transport all clutches located inside their own territory to bodies of water, but become highly cannibalistic when taking over a new territory. Females are able to indirectly discriminate between their own and foreign clutches by location and take over transport duties of their own clutches only in the absence of the father. Cannibalism by A. femoralis females has not been previously observed. We thus asked if, and under which circumstances, cannibalism of unrelated clutches by female A. femoralis would occur, by manipulating the presence of the clutch's father, the female's own reproductive state, and the female's familiarity with the environment.

Results: Females clearly cannibalize foreign clutches. Cannibalism was most pronounced when the female had not recently produced her own clutch and the father of the foreign clutch was absent. The female's familiarity with the area had no significant influence on the likelihood of cannibalism to occur.

Conclusions: Our data indicate that both previous oviposition and the father's presence reduce cannibalistic behaviour in A. femoralis females. Cannibalistic females may gain nutritional benefits or enhanced inclusive fitness by preying on other females' offspring. The finding that the father's presence at the clutch site/territory was sufficient to reduce cannibalism by females suggests a prominent role of male territoriality for the evolution of male parental care.

RevDate: 2019-05-08

Smith AR, Kapheim KM, Kingwell CJ, et al (2019)

A split sex ratio in solitary and social nests of a facultatively social bee.

Biology letters, 15(4):20180740.

A classic prediction of kin selection theory is that a mixed population of social and solitary nests of haplodiploid insects should exhibit a split sex ratio among offspring: female biased in social nests, male biased in solitary nests. Here, we provide the first evidence of a solitary-social split sex ratio, using the sweat bee Megalopta genalis (Halictidae). Data from 2502 offspring collected from naturally occurring nests across 6 years spanning the range of the M. genalis reproductive season show that despite significant yearly and seasonal variation, the offspring sex ratio of social nests is consistently more female biased than in solitary nests. This suggests that split sex ratios may facilitate the evolutionary origins of cooperation based on reproductive altruism via kin selection.

RevDate: 2019-04-02

Atchison BJ, DL Goodwin (2019)

"My Child May Be Ready, but I Am Not": Parents' Experiences of Their Children's Transition to Inclusive Fitness Settings.

Adapted physical activity quarterly : APAQ, 36(2):282-301.

Parents play an essential role in the transition from separate physical activity programs to inclusive settings for their children. The purpose of this study was to explore experiences of parents as they anticipate and prepare for their children experiencing disability to transition, understand strategies used to address transition, and gain insights into the supports important to families during transition. Using an interpretative phenomenological analysis research approach, semistructured one-on-one interviews were conducted with 8 parents whose children were undergoing the transition from separate to inclusive community fitness contexts. Four themes described the experiences of parents as they anticipated, prepared for, and supported their child to transition: My child may be ready, but I am not; fear of outside judgment; playing by their rules; and reframing our thinking. Using Schlossberg's model, the tensions parents faced as they negotiated new roles, relationships, routines, and assumptions as they moved through the transition process were uncovered. The parents experienced transition alongside their children, providing insights for fitness and health-promotion professionals. Without preparation for transition, apprehensions and hesitancy may postpone or prevent their children's transition to community programs.

RevDate: 2019-02-24

David-Barrett T (2019)

Network Effects of Demographic Transition.

Scientific reports, 9(1):2361 pii:10.1038/s41598-019-39025-4.

Traditional human societies use two of biology's solutions to reduce free-riding: by collaborating with relatives, they rely on the mechanism of kin-selection, and by forming highly clustered social kin-networks, they can efficiently use reputation dynamics. Both of these solutions assume the presence of relatives. This paper shows how social networks change during demographic transition. With falling fertility, there are fewer children that could be relatives to one another. As the missing kin are replaced by non-kin friends, local clustering in the social network drops. This effect is compounded by increasing population size, characteristic of demographic transition. The paper also shows that the speed at which reputation spreads in the network slows down due to both falling fertility and increasing group size. Thus, demographic transition weakens both mechanisms for eliminating free-riders: there are fewer relatives around, and reputation spreads slower. This new link between falling fertility and the altered structure of the social network offers novel interpretations of the origins of legal institutions, the Small World phenomenon, the social impact of urbanisation, and the birds-of-a-feather friendship choice heuristic.

RevDate: 2019-02-19

Engelhardt SC, Bergeron P, Gagnon A, et al (2019)

Using Geographic Distance as a Potential Proxy for Help in the Assessment of the Grandmother Hypothesis.

Current biology : CB, 29(4):651-656.e3.

Life-history theory predicts that selection could favor the decoupling of somatic and reproductive senescence if post-reproductive lifespan (PRLS) provides additional indirect fitness benefits [1, 2]. The grandmother hypothesis proposes that prolonged PRLS evolved because post-reproductive grandmothers gain inclusive fitness benefits by helping their daughters and grandchildren [3, 4]. Because most historical human data do not report direct evidence of help, we hypothesized that geographic distance between individuals may be inversely related to their capacity to help. Using an exceptionally detailed dataset of pre-industrial French settlers in the St. Lawrence Valley during the 17th and 18th centuries, we assessed the potential for grandmothers to improve their inclusive fitness by helping their descendants, and we evaluated how this effect varied with geographic distance, ranging between 0 and 325 km, while accounting for potential familial genetic and environmental effects [5-9]. Grandmothers (F0) who were alive allowed their daughters (F1) to increase their number of offspring (F2) born by 2.1 and to increase their number of offspring surviving to 15 years of age by 1.1 compared to when grandmothers were dead. However, the age at first reproduction was not influenced by the life status (alive or dead) of grandmothers. As geographic distance increased, the number of offspring born and lifetime reproductive success decreased, while the age at first reproduction increased, despite the grandmother being alive in these analyses. Our study suggests that geographic proximity has the potential to modulate inclusive fitness, supporting the grandmother hypothesis, and to contribute to our understanding of the evolution of PRLS.

RevDate: 2019-02-19

Chapman SN, Pettay JE, Lummaa V, et al (2019)

Limits to Fitness Benefits of Prolonged Post-reproductive Lifespan in Women.

Current biology : CB, 29(4):645-650.e3.

Recent advances in medicine and life-expectancy gains have fueled multidisciplinary research into the limits of human lifespan [1-3]. Ultimately, how long humans can live for may depend on selection favoring extended longevity in our evolutionary past [4]. Human females have an unusually extended post-reproductive lifespan, which has been explained by the fitness benefits provided from helping to raise grandchildren following menopause [5, 6]. However, formal tests of whether such grandmothering benefits wane with grandmother age and explain the observed length of post-reproductive lifespan are missing. This is critical for understanding prevailing selection pressures on longevity but to date has been overlooked as a possible mechanism driving the evolution of lifespan. Here, we use extensive data from pre-industrial humans to show that fitness gains from grandmothering are dependent on grandmother age, affecting selection on the length of post-reproductive lifespan. We find both opportunities and ability to help grandchildren declined with age, while the hazard of death of women increased greatly in their late 60s and 70s compared to menopausal ages, together implying waning selection on subsequent longevity. The presence of maternal grandmothers aged 50-75 increased grandchild survival after weaning, confirming the fitness advantage of post-reproductive lifespan. However, co-residence with paternal grandmothers aged 75+ was detrimental to grandchild survival, with those grandmothers close to death and presumably in poorer health particularly associated with lower grandchild survival. The age limitations of gaining inclusive fitness from grandmothering suggests that grandmothering can select for post-reproductive longevity only up to a certain point.

RevDate: 2019-02-05

Almond EJ, Huggins TJ, Crowther LP, et al (2019)

Queen Longevity and Fecundity Affect Conflict with Workers over Resource Inheritance in a Social Insect.

The American naturalist, 193(2):256-266.

Resource inheritance is a major source of conflict in animal societies. However, the assumptions and predictions of models of conflict over resource inheritance have not been systematically tested within a single system. We developed an inclusive fitness model for annual eusocial Hymenoptera that predicts a zone of conflict in which future reproductive workers are selected to enforce nest inheritance before the queen is selected to cede the nest. We experimentally tested key elements of this model in the bumblebee Bombus terrestris. In colonies from which queens were sequentially removed, queen tenure was significantly negatively associated with worker male production, confirming that workers gain direct fitness by usurping the queen. In unmanipulated colonies, queen fecundity decreased significantly over the latter part of the colony cycle, confirming that workers' indirect fitness from maintaining queens declines over time. Finally, in an experiment simulating loss of queen fecundity by removal of queens' eggs, worker-to-queen aggression increased significantly and aggressive workers were significantly more likely to become egg layers, consistent with workers monitoring queen fecundity to assess the net benefit of future reproduction. Overall, by upholding key assumptions and predictions of the model, our results provide novel empirical support for kin-selected conflict over resource inheritance.

RevDate: 2019-02-08

Amici F, Sánchez-Amaro A, Sebastián-Enesco C, et al (2019)

The word order of languages predicts native speakers' working memory.

Scientific reports, 9(1):1124 pii:10.1038/s41598-018-37654-9.

The relationship between language and thought is controversial. One hypothesis is that language fosters habits of processing information that are retained even in non-linguistic domains. In left-branching (LB) languages, modifiers usually precede the head, and real-time sentence comprehension may more heavily rely on retaining initial information in working memory. Here we presented a battery of working memory and short-term memory tasks to adult native speakers of four LB and four right-branching (RB) languages from Africa, Asia and Europe. In working memory tasks, LB speakers were better than RB speakers at recalling initial stimuli, but worse at recalling final stimuli. Our results show that the practice of parsing sentences in specific directions due to the syntax and word order of our native language not only predicts the way we remember words, but also other non-linguistic stimuli.

RevDate: 2019-03-04

Grueter CC, Hale J, Jin R, et al (2019)

Infant handling by female mountain gorillas: Establishing its frequency, function, and (ir)relevance for life history evolution.

American journal of physical anthropology, 168(4):744-749.

OBJECTIVES: Infant handling describes cases in which youngsters are temporarily removed from the care of their mothers and "taken care of" (held, carried, etc.) by other conspecifics. Handlers may gain indirect fitness benefits from these actions and can practice mothering skills, thereby improving the odds of survival of their own infants. Great apes are notable for displaying little infant handling. Apart from anecdotal observations, no published data exist on infant handling in wild mountain gorillas. We tested two of the most pertinent explanations ("kin selection" and "learning to mother") in a wild population of mountain gorillas in Rwanda. We predicted that (a) nulliparous females would exhibit infant handling (i.e., carrying) more than parous females and (b) maternal kin would exhibit more infant handling than nonkin.

METHODS: We collated 8 years of data on infant carrying behavior collected in 13 groups monitored by the Dian Fossey Gorilla Fund's Karisoke Research Center.

RESULTS: Infant handling is an infrequent behavior (1,783 instances over 25,600 observation hours). A strong positive effect of relatedness and handler parity on the frequency of infant handling emerged.

CONCLUSIONS: While the nature of handler-infant interactions (affiliative, abusive, etc.) remains unstudied, they could constitute alloparental care and could therefore attenuate maternal energetic burden and ultimately allow increased birth rates. However, the rarity of this behavior makes it an unlikely contributor to mountain gorillas' relatively short interbirth intervals.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Bose APH, Henshaw JM, Zimmermann H, et al (2019)

Inclusive fitness benefits mitigate costs of cuckoldry to socially paired males.

BMC biology, 17(1):2 pii:10.1186/s12915-018-0620-6.

BACKGROUND: In socially monogamous species, reproduction is not always confined to paired males and females. Extra-pair males commonly also reproduce with paired females, which is traditionally thought to be costly to the females' social partners. However, we suggest that when the relatedness between reproducing individuals is considered, cuckolded males can suffer lower fitness losses than otherwise expected, especially when the rate of cuckoldry is high. We combine theoretical modeling with a detailed genetic study on a socially monogamous wild fish, Variabilichromis moorii, which displays biparental care despite exceptionally high rates of extra-pair paternity.

RESULTS: We measured the relatedness between all parties involved in V. moorii spawning events (i.e. between males and females in social pairs, females and their extra-pair partners, and paired males and their cuckolders), and we reveal that males are on average more related to their cuckolders than expected by chance. Queller-Goodnight estimates of relatedness between males and their cuckolders are on average r = 0.038 but can range up to r = 0.64. This also increases the relatedness between males and the extra-pair offspring under their care. These intriguing results are consistent with the predictions of our mathematical model, which shows that elevated relatedness between paired males and their cuckolders can be adaptive for both parties when competition for fertilizations is strong.

CONCLUSIONS: Our results show how cuckoldry by relatives can offset males' direct fitness losses with inclusive fitness gains, which can be substantial in systems where males face almost certain paternity losses.

RevDate: 2019-01-28

Grodwohl JB (2019)

Animal Behavior, Population Biology and the Modern Synthesis (1955-1985).

Journal of the history of biology pii:10.1007/s10739-018-9553-8 [Epub ahead of print].

This paper examines the history of animal behavior studies after the synthesis period. Three episodes are considered: the adoption of the theory of natural selection, the mathematization of ideas, and the spread of molecular methods in behavior studies. In these three episodes, students of behavior adopted practices and standards developed in population ecology and population genetics. While they borrowed tools and methods from these fields, they made distinct uses (inclusive fitness method, evolutionary theory of games, emphasis on individual selection) that set them relatively apart and led them to contribute, in their own way, to evolutionary theory. These episodes also highlight some limitations of "conjunction narratives" centered on the relation between a discipline and the modern synthesis. A trend in conjunction narratives is to interpret any development related to evolution in a discipline as an "extension," an "integration," or as a "delayed" synthesis. I here suggest that this can lead to underestimate discontinuities in the history of evolutionary biology.

RevDate: 2019-05-07

Patel M, Raymond B, Bonsall MB, et al (2019)

Crystal toxins and the volunteer's dilemma in bacteria.

Journal of evolutionary biology, 32(4):310-319.

The growth and virulence of the bacteria Bacillus thuringiensis depend on the production of Cry toxins, which are used to perforate the gut of its host. Successful invasion of the host relies on producing a threshold amount of toxin, after which there is no benefit from producing more toxin. Consequently, the production of Cry toxin appears to be a different type of social problem compared with the public goods scenarios that bacteria usually encounter. We show that selection for toxin production is a volunteer's dilemma. We make specific predictions that (a) selection for toxin production depends upon an interplay between the number of bacterial cells that each host ingests and the genetic relatedness between those cells; (b) cheats that do not produce toxin gain an advantage when at low frequencies, and at high bacterial density, allowing them to be maintained in a population alongside toxin-producing cells. More generally, our results emphasize the diversity of the social games that bacteria play.

RevDate: 2019-06-13
CmpDate: 2019-06-10

Barstow BA, Vice J, Bowman S, et al (2019)

Examining perceptions of existing and newly created accessibility symbols.

Disability and health journal, 12(2):180-186.

BACKGROUND: Symbols are used to convey messages in a clear, understandable manner, without the use of written language. The most widely recognized symbol used to denote access for persons with disabilities is the International Symbol of Access. This symbol has been criticized for its inadequate representation of disability diversity poorly representing universal design of space and products.

OBJECTIVE: This descriptive study explored individual comprehension and perceptions of nine existing and newly created accessibility pictograph symbols and identified one that represented universal access to fitness equipment.

METHODS: A survey was disseminated electronically and face-to-face to individuals, groups and organizations affiliated with inclusive fitness equipment, space and programming. Quantitative data was analyzed for descriptive statistics, rank order of symbols and group comparisons of rankings. Thematic analysis of open-ended question results revealed themes to enhance understanding of symbol rank order.

RESULTS: 981 participants completed the survey. Symbol four, shaped as a Venn diagram containing three icons representing individuals with varying ability levels, was ranked highest with no significant differences in group comparisons between participants with and without a disability and U.S. residents versus non-U.S. residents. 85.4% of participants demonstrated accurate comprehension of this symbol. Though symbol five had the same symbol rank median value, this symbol's distribution of scores was lower.

CONCLUSIONS: Participants accurately comprehended symbol four and it was identified as the highest ranked symbol representing universal access to fitness equipment. Because of symbol unfamiliarity, adoption will require education and consistency of use and placement.

RevDate: 2019-06-10

Lohr JN, Galimov ER, D Gems (2019)

Does senescence promote fitness in Caenorhabditis elegans by causing death?.

Ageing research reviews, 50:58-71.

A widely appreciated conclusion from evolutionary theory is that senescence (aging) is of no adaptive value to the individual that it afflicts. Yet studies of Caenorhabditis elegans and Saccharomyces cerevisiae are increasingly revealing the presence of processes which actively cause senescence and death, leading some biogerontologists to wonder about the established theory. Here we argue that programmed death that increases fitness could occur in C. elegans and S. cerevisiae, and that this is consistent with the classic evolutionary theory of aging. This is because of the special conditions under which these organisms have evolved, particularly the existence of clonal populations with limited dispersal and, in the case of C. elegans, the brevity of the reproductive period caused by protandrous hermaphroditism. Under these conditions, death-promoting mechanisms could promote worm fitness by enhancing inclusive fitness, or worm colony fitness through group selection. Such altruistic, adaptive death is not expected to evolve in organisms with outbred, dispersed populations (e.g. most vertebrate species). The plausibility of adaptive death in C. elegans is supported by computer modelling studies, and new knowledge about the ecology of this species. To support these arguments we also review the biology of adaptive death, and distinguish three forms: consumer sacrifice, biomass sacrifice and defensive sacrifice.

RevDate: 2019-02-03

Narasimha S, Nagornov KO, Menin L, et al (2019)

Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism.

PLoS biology, 17(1):e2006012 pii:pbio.2006012.

Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cannibalistic species, this very behavior facilitates egg predation by conspecifics (cannibalism). Similarly, toxins and aposematic signaling that deter egg predators are often inefficient against resistant conspecifics. Egg cannibalism can be adaptive, wherein cannibals may benefit through reduced competition and added nutrition, but since it reduces Darwinian fitness, the evolution of anticannibalistic strategies is rife. However, such strategies are likely to be nontoxic because deploying toxins against related individuals would reduce inclusive fitness. Here, we report how D. melanogaster use specific hydrocarbons to chemically mask their eggs from cannibal larvae. Using an integrative approach combining behavioral, sensory, and mass spectrometry methods, we demonstrate that maternally provisioned pheromone 7,11-heptacosadiene (7,11-HD) in the eggshell's wax layer deters egg cannibalism. Furthermore, we show that 7,11-HD is nontoxic, can mask underlying substrates (for example, yeast) when coated upon them, and its detection requires pickpocket 23 (ppk23) gene function. Finally, using light and electron microscopy, we demonstrate how maternal pheromones leak-proof the egg, consequently concealing it from conspecific larvae. Our data suggest that semiochemicals possibly subserve in deceptive functions across taxa, especially when predators rely on chemical cues to forage, and stimulate further research on deceptive strategies mediated through nonvisual sensory modules. This study thus highlights how integrative approaches can illuminate our understanding on the adaptive significance of deceptive defenses and the mechanisms through which they operate.

RevDate: 2019-07-01
CmpDate: 2019-07-01

Aumer D, Stolle E, Allsopp M, et al (2019)

A Single SNP Turns a Social Honey Bee (Apis mellifera) Worker into a Selfish Parasite.

Molecular biology and evolution, 36(3):516-526.

The evolution of altruism in complex insect societies is arguably one of the major transitions in evolution and inclusive fitness theory plausibly explains why this is an evolutionary stable strategy. Yet, workers of the South African Cape honey bee (Apis mellifera capensis) can reverse to selfish behavior by becoming social parasites and parthenogenetically producing female offspring (thelytoky). Using a joint mapping and population genomics approach, in combination with a time-course transcript abundance dynamics analysis, we show that a single nucleotide polymorphism at the mapped thelytoky locus (Th) is associated with the iconic thelytokous phenotype. Th forms a linkage group with the ecdysis-triggering hormone receptor (Ethr) within a nonrecombining region under strong selection in the genome. A balanced detrimental allele system plausibly explains why the trait is specific to A. m. capensis and cannot easily establish itself into genomes of other honey bee subspecies.

RevDate: 2018-12-21

Hare D, Blossey B, HK Reeve (2018)

Value of species and the evolution of conservation ethics.

Royal Society open science, 5(11):181038 pii:rsos181038.

The theory of evolution by natural selection can help explain why people care about other species. Building upon recent insights that morality evolves to secure fitness advantages of cooperation, we propose that conservation ethics (moral beliefs, attitudes, intuitions and norms regarding other species) could be adaptations that support cooperation between humans and non-humans. We present eco-evolutionary cost-benefit models of conservation behaviours as interspecific cooperation (altruism towards members of other species). We find that an evolutionary rule identical in structure to Hamilton's rule (which explains altruistic behaviour towards related conspecifics) can explain altruistic behaviour towards members of other species. Natural selection will favour traits for selectively altering the success of members of other species (e.g. conserving them) in ways that maximize inclusive fitness return benefits. Conservation behaviours and the ethics that evolve to reinforce them will be sensitive to local ecological and socio-cultural conditions, so will assume different contours in different places. Difficulties accurately assessing costs and benefits provided by other species, time required to adapt to ecological and socio-cultural change and barriers to collective action could explain the apparent contradiction between the widespread existence of conservation ethics and patterns of biodiversity decline globally.

RevDate: 2019-01-02

Eshel I (2018)

Mutual altruism and long-term optimization of the inclusive fitness in multilocus genetic systems.

Theoretical population biology pii:S0040-5809(18)30118-7 [Epub ahead of print].

The dynamics of long-term evolution in a complex genetically-structured population with a flux of random mutations is employed here to study the evolution of mutual altruism between relatives that are encountered repeatedly, where the level of altruism is measured by the risk one is willing to accept in order to save the life of one's relative. It is shown that regardless of the number of loci involved, of the rates of recombination among them, and of the intensity of the selection forces, the long-term dynamics can phenotypically converge only to a level of altruism that maximizes the individual inclusive fitness as it has previously defined by students of the individual approach to evolution. Except for the widely studied case of weak selection, however, the convergence to such a level of altruism is not necessarily generation-to-next monotone. It is further shown that, unlike the case of the one-shot encounter, repeated encounters between relatives allow for more than one level of altruism which may maximize the inclusive fitness, in which case not all such levels of altruism are evolutionarily accessible.

RevDate: 2018-12-07

Clarke PMR, McElreath MB, Barrett BJ, et al (2018)

The evolution of bequeathal in stable habitats.

Ecology and evolution, 8(21):10594-10607.

Adults sometimes disperse, while philopatric offspring inherit the natal site, a pattern known as bequeathal. Despite a decades-old empirical literature, little theoretical work has explored when natural selection may favor bequeathal. We present a simple mathematical model of the evolution of bequeathal in a stable environment, under both global and local dispersal. We find that natural selection favors bequeathal when adults are competitively advantaged over juveniles, baseline mortality is high, the environment is unsaturated, and when juveniles experience high dispersal mortality. However, frequently bequeathal may not evolve, because the fitness cost for the adult is too large relative to inclusive fitness benefits. Additionally, there are many situations for which bequeathal is an ESS, yet cannot invade the population. As bequeathal in real populations appears to be facultative, yet-to-be-modeled factors like timing of birth in the breeding season may strongly influence the patterns seen in natural populations.

RevDate: 2018-11-20

Amici F (2018)

An Evolutionary Approach to the Study of Collaborative Remembering?.

Topics in cognitive science [Epub ahead of print].

Hope and Gabbert (2008) and Jay and colleagues (in press) show us that collaborative remembering, in certain contexts, may result in incomplete and less accurate memories. Here, I will discuss the evolutionary origins of this behavior, linking it to phenomena such as social contagion, conformity, and social learning, which are highly adaptive and widespread across non-human taxa.

RevDate: 2019-06-10

Ruiz-Lambides AV, Weiß BM, Kulik L, et al (2018)

Which male and female characteristics influence the probability of extragroup paternities in rhesus macaques, Macaca mulatta?.

Animal behaviour, 140:119-127.

Extragroup paternity (EGP) is found across a wide range of species and may entail reproductive benefits, but may also entail costs to both sexes. While population and group parameters affecting the degree of EGPs are relatively well established, less is known about the individual characteristics that make males and females engage in alternative reproductive tactics such as EGP. Applying a combination of long-term demographic and genetic data from the rhesus macaque population of Cayo Santiago (Puerto Rico, U.S.A.), we investigate which male and female characteristics influence the probability of EGP to better understand the circumstances that shape the distribution and occurrence of EGP. Our results show that, against our expectations, higher-ranking females were more likely to produce EGP offspring than lower- ranking females. The probability of producing extragroup offspring was not significantly related to female or male age, male tenure or previous reproductive success. Furthermore, genetic relatedness between the parents did not affect the production of extragroup offspring, but extragroup offspring were more frequently produced early rather than late in a given mating season. Altogether, our analysis suggests that individual attributes and seasonal aspects create different opportunities and preferences for engaging in EGP as an alternative reproductive tactic. The observed patterns of EGP in rhesus macaques appear to be consistent with female mate choice for genetic benefits, which needs to be confirmed in future studies.

RevDate: 2018-12-07

Antfolk J, Lieberman D, Harju C, et al (2018)

Opposition to Inbreeding Between Close Kin Reflects Inclusive Fitness Costs.

Frontiers in psychology, 9:2101.

Due to the intense selection pressure against inbreeding, humans are expected to possess psychological adaptations that regulate mate choice and avoid inbreeding. From a gene's-eye perspective, there is little difference in the evolutionary costs between situations where an individual him/herself is participating in inbreeding and inbreeding among other close relatives. The difference is merely quantitative, as fitness can be compromised via both routes. The question is whether humans are sensitive to the direct as well as indirect costs of inbreeding. Using responses from a large population-based sample (27,364 responses from 2,353 participants), we found that human motivations to avoid inbreeding closely track the theoretical costs of inbreeding as predicted by inclusive fitness theory. Participants were asked to select in a forced choice paradigm, which of two acts of inbreeding with actual family members they would want to avoid most. We found that the estimated fitness costs explained 83.6% of participant choices. Importantly, fitness costs explained choices also when the self was not involved. We conclude that humans intuit the indirect fitness costs of mating decisions made by close family members and that psychological inbreeding avoidance mechanisms extend beyond self-regulation.

RevDate: 2019-08-20

Mullon C, L Lehmann (2018)

Eco-Evolutionary Dynamics in Metacommunities: Ecological Inheritance, Helping within Species, and Harming between Species.

The American naturalist, 192(6):664-686.

Understanding selection on intra- and interspecific interactions that take place in dispersal-limited communities is a challenge for ecology and evolutionary biology. The problem is that local demographic stochasticity generates eco-evolutionary dynamics that are generally too complicated to make tractable analytical investigations. Here we circumvent this problem by approximating the selection gradient on a quantitative trait that influences local community dynamics, assuming that such dynamics are deterministic with a stable fixed point. The model nonetheless captures unavoidable kin selection effects arising from demographic stochasticity. Our approximation reveals that selection depends on how an individual expressing a trait change influences (1) its own fitness and the fitness of its current relatives and (2) the fitness of its downstream relatives through modifications of local ecological conditions (i.e., through ecological inheritance). Mathematically, the effects of ecological inheritance on selection are captured by dispersal-limited versions of press perturbations of community ecology. We use our approximation to investigate the evolution of helping within species and harming between species when these behaviors influence demography. We find that altruistic helping evolves more readily when intraspecific competition is for material resources rather than for space, because in this case the costs of kin competition tend to be paid by downstream relatives. Similarly, altruistic harming between species evolves when it alleviates downstream relatives from interspecific competition. Beyond these examples, our approximation can help better understand the influence of ecological inheritance on a variety of eco-evolutionary dynamics in metacommunities, from consumer-resource and predator-prey coevolution to selection on mating systems with demographic feedbacks.

RevDate: 2019-07-03

Thomson CE, JD Hadfield (2019)

No evidence for sibling or parent-offspring coadaptation in a wild population of blue tits, despite high power.

Evolution; international journal of organic evolution, 73(1):28-41.

Parent and offspring behaviors are expected to act as both the agents and targets of selection. This may generate parent-offspring coadaptation in which parent and offspring behaviors become genetically correlated in a way that increases inclusive fitness. Cross-fostering has been used to study parent-offspring coadaptation, with the prediction that offspring raised by non-relatives, or parents raising non-relatives, should suffer fitness costs. Using long-term data from more than 400 partially crossed broods of blue tits (Cyanistes caeruleus), we show that there is no difference in mass or survival between crossed and non-crossed chicks. However, previous studies for which the evidence for parent-offspring coadaptation is strongest compare chicks from fully crossed broods with those from non-crossed broods. When parent-offspring coadaptation acts at the level of the brood then partial cross-fostering experiments are not expected to show evidence of coadaptation. To test this, we performed an additional experiment (163 broods) in which clutches were either fully crossed, non-crossed, or partially crossed. In agreement with the long-term data, there was no evidence for parent-offspring coadaptation on offspring fitness despite high power. In addition there was no evidence of effects on parental fitness, nor evidence of sibling coadaptation, although the power of these tests was more modest.

RevDate: 2019-06-10
CmpDate: 2019-01-07

Wang C, X Lu (2018)

Reply to Engelhardt et al.: Inclusive fitness does maintain a heritable altruism polymorphism in Tibetan ground tits.

Proceedings of the National Academy of Sciences of the United States of America, 115(48):E11210-E11211.

RevDate: 2019-05-20
CmpDate: 2019-01-23

Green JP, BJ Hatchwell (2018)

Inclusive fitness consequences of dispersal decisions in a cooperatively breeding bird, the long-tailed tit (Aegithalos caudatus).

Proceedings of the National Academy of Sciences of the United States of America, 115(47):12011-12016.

Natal dispersal is a demographic trait with profound evolutionary, ecological, and behavioral consequences. However, our understanding of the adaptive value of dispersal patterns is severely hampered by the difficulty of measuring the relative fitness consequences of alternative dispersal strategies in natural populations. This is especially true in social species, in which natal philopatry allows kin selection to operate, so direct and indirect components of inclusive fitness have to be considered when evaluating selection on dispersal. Here, we use lifetime reproductive success data from a long-term study of a cooperative breeder, the long-tailed tit Aegithalos caudatus, to quantify the direct and indirect components of inclusive fitness. We show that dispersal has a negative effect on the accrual of indirect fitness, and hence inclusive fitness, by males. In contrast, the inclusive, predominantly direct, fitness of females increases with dispersal distance. We conclude that the conflicting fitness consequences of dispersal in this species result in sexually antagonistic selection on this key demographic parameter.

RevDate: 2019-06-04

Macfarlan SJ, Erickson PI, Yost J, et al (2018)

Bands of brothers and in-laws: Waorani warfare, marriage and alliance formation.

Proceedings. Biological sciences, 285(1890):.

The root of modern human warfare lies in the lethal coalitionary violence of males in small-scale societies. However, there is a paucity of quantitative data concerning the form and function of coalitionary violence in this setting. Debates exist over how lethal coalitions are constituted, as well as the motivations and benefits for males to join such groups. Data from a lowland Amazonian population, the Waorani of Ecuador, illuminate three issues: (i) the degree to which raiding parties are composed of groups of fraternal kin as opposed to strategic alliances of actual or potential affinal kin; (ii) the extent to which individuals use pre-existing affinal ties to motivate others to participate in war or leverage warfare as a mechanism to create such ties; and (iii) the extent to which participation in raiding is driven by rewards associated with future marriage opportunities. Analyses demonstrate that Waorani raiding parties were composed of a mix of males who were potential affines, actual affines and fraternal kin, suggesting that men used pre-existing genetic, lineal and social kin ties for recruiting raid partners and used raiding as a venue to create novel social relationships. Furthermore, analyses demonstrate that males leveraged raiding alliances to achieve marriage opportunities for themselves as well as for their children. Overall, it appears that a complex set of motivations involving individual rewards, kin marriage opportunities, subtle coercion and the assessment of alliance strength promote violent intergroup conflict among the Waorani. These findings illustrate the complex inter-relationships among kin selection, coalition building and mating success in our species.

RevDate: 2019-06-04

Holen ØH, RA Johnstone (2018)

Reciprocal mimicry: kin selection can drive defended prey to resemble their Batesian mimics.

Proceedings. Biological sciences, 285(1890):.

Established mimicry theory predicts that Batesian mimics are selected to resemble their defended models, while models are selected to become dissimilar from their mimics. However, this theory has mainly considered individual selection acting on solitary organisms such as adult butterflies. Although Batesian mimicry of social insects is common, the few existing applications of kin selection theory to mimicry have emphasized relatedness among mimics rather than among models. Here, we present a signal detection model of Batesian mimicry in which the population of defended model prey is kin structured. Our analysis shows for most of parameter space that increased average dissimilarity from mimics has a twofold group-level cost for the model prey: it attracts more predators and these adopt more aggressive attack strategies. When mimetic resemblance and local relatedness are sufficiently high, such costs acting in the local neighbourhood may outweigh the individual benefits of dissimilarity, causing kin selection to drive the models to resemble their mimics. This requires model prey to be more common than mimics and/or well-defended, the conditions under which Batesian mimicry is thought most successful. Local relatedness makes defended prey easier targets for Batesian mimicry and is likely to stabilize the mimetic relationship over time.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Hernández Blasi C, L Mondéjar (2018)

Testing the Kundera Hypothesis: Does Every Woman (But Not Every Man) Prefer Her Child to Her Mate?.

Evolutionary psychology : an international journal of evolutionary approaches to psychology and behavior, 16(4):1474704918808864.

The context of a famous novel by Milan Kundera (Immortality) suggests that when faced with a life-or-death situation, every woman would prefer to save her child than her husband, left hanging whether every man would do the same. We labeled this as the Kundera hypothesis, and the purpose of this study was to test it empirically as we believe it raises a thought-provoking question in evolutionary terms. Specifically, 197 college students (92 women) were presented a questionnaire where they had to make different decisions about four dilemmas about who to save (their mate or their offspring) in two hypothetical life-or-death situations: a home fire and a car crash. These dilemmas involved two different mate ages (a 25- or a 40-year-old mate) and two offspring ages (1- or a 6-year-old child). For comparative purposes, we also included complementary life-or-death dilemmas on both a sibling and an offspring, and a sibling and a cousin. The results generally supported the Kundera hypothesis: Although the majority of men and women made the decision to save their offspring instead of their mate, about 18% of men on average (unlike the 5% of women) consistently decided to save their mate across the four dilemmas in the two life-or-death situations. These data were interpreted with reference to Hamilton's inclusive fitness theory, the preferential role of women as kin keepers, and the evolution of altruism toward friends and mates.

RevDate: 2019-07-01
CmpDate: 2019-07-01

Fortuna TM, Namias A, Snirc A, et al (2018)

Multiple infections, relatedness and virulence in the anther-smut fungus castrating Saponaria plants.

Molecular ecology, 27(23):4947-4959.

Multiple infections (co-occurrence of multiple pathogen genotypes within an individual host) can have important impacts on diseases. Relatedness among pathogens can affect the likelihood of multiple infections and their consequences through kin selection. Previous studies on the castrating anther-smut fungus Microbotryum lychnidis-dioicae have shown that multiple infections occur in its host plant Silene latifolia. Relatedness was high among fungal genotypes within plants, which could result from competitive exclusion between unrelated fungal genotypes, from population structure or from interactions between plant and fungal genotypes for infection ability. Here, we aimed at disentangling these hypotheses using M. saponariae and its host Saponaria officinalis, both experimentally tractable for these questions. By analysing populations using microsatellite markers, we also found frequent occurrence of multiple infections and high relatedness among strains within host plants. Infections resulting from experimental inoculations in the greenhouse also revealed high relatedness among strains co-infecting host plants, even in clonally replicated plant genotypes, indicating that high relatedness within plants did not result merely from plant x fungus interactions or population structure. Furthermore, hyphal growth in vitro was affected by the presence of a competitor growing nearby and by its genetic similarity, although this latter effect was strain-dependent. Altogether, our results support the hypothesis that relatedness-dependent competitive exclusion occurs in Microbotryum fungi within plants. These microorganisms can thus respond to competitors and to their level of relatedness.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Dos Santos M, Ghoul M, SA West (2018)

Pleiotropy, cooperation, and the social evolution of genetic architecture.

PLoS biology, 16(10):e2006671.

Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.

RevDate: 2019-04-09

Li XY, H Kokko (2019)

Sex-biased dispersal: a review of the theory.

Biological reviews of the Cambridge Philosophical Society, 94(2):721-736.

Dispersal is ubiquitous throughout the tree of life: factors selecting for dispersal include kin competition, inbreeding avoidance and spatiotemporal variation in resources or habitat suitability. These factors differ in whether they promote male and female dispersal equally strongly, and often selection on dispersal of one sex depends on how much the other disperses. For example, for inbreeding avoidance it can be sufficient that one sex disperses away from the natal site. Attempts to understand sex-specific dispersal evolution have created a rich body of theoretical literature, which we review here. We highlight an interesting gap between empirical and theoretical literature. The former associates different patterns of sex-biased dispersal with mating systems, such as female-biased dispersal in monogamous birds and male-biased dispersal in polygynous mammals. The predominant explanation is traceable back to Greenwood's () ideas of how successful philopatric or dispersing individuals are at gaining mates or the resources required to attract them. Theory, however, has developed surprisingly independently of these ideas: models typically track how immigration and emigration change relatedness patterns and alter competition for limiting resources. The limiting resources are often considered sexually distinct, with breeding sites and fertilizable females limiting reproductive success for females and males, respectively. We show that the link between mating system and sex-biased dispersal is far from resolved: there are studies showing that mating systems matter, but the oft-stated association between polygyny and male-biased dispersal is not a straightforward theoretical expectation. Here, an important understudied factor is the extent to which movement is interpretable as an extension of mate-searching (e.g. are matings possible en route or do they only happen after settling in new habitat - or can females perhaps move with stored sperm). We also point out other new directions for bridging the gap between empirical and theoretical studies: there is a need to build Greenwood's influential yet verbal explanation into formal models, which also includes the possibility that an individual benefits from mobility as it leads to fitness gains in more than one final breeding location (a possibility not present in models with a very rigid deme structure). The order of life-cycle events is likewise important, as this impacts whether a departing individual leaves behind important resources for its female or male kin, or perhaps both, in the case of partially overlapping resource use.

RevDate: 2019-09-03

Amici F (2019)

Memories of emotional expressions in horses.

Learning & behavior, 47(3):191-192.

Proops, Grounds, Smith, and McComb (2018) suggest that horses remember previous emotional expressions of specific humans, and use these memories to adjust their behavior in future social interactions. Despite some methodological shortcomings, this study raises important questions on the complexity of social interactions in nonhuman animals, which surely deserve further attention.

RevDate: 2019-03-12
CmpDate: 2019-03-12

van Veelen M (2018)

Can Hamilton's rule be violated?.

eLife, 7:.

How generally Hamilton's rule holds is a much debated question. The answer to that question depends on how costs and benefits are defined. When using the regression method to define costs and benefits, there is no scope for violations of Hamilton's rule. We introduce a general model for assortative group compositions to show that, when using the counterfactual method for computing costs and benefits, there is room for violations. The model also shows that there are limitations to observing violations in equilibrium, as the discrepancies between Hamilton's rule and the direction of selection may imply that selection will take the population out of the region of disagreement, precluding observations of violations in equilibrium. Given what it takes to create a violation, empirical tests of Hamilton's rule, both in and out of equilibrium, require the use of statistical models that allow for identifying non-linearities in the fitness function.

RevDate: 2018-11-14

Rodrigues AMM (2018)

Resource availability and adjustment of social behaviour influence patterns of inequality and productivity across societies.

PeerJ, 6:e5488.

Animal societies vary widely in the diversity of social behaviour and the distribution of reproductive shares among their group members. It has been shown that individual condition can lead to divergent social roles and that social specialisation can cause an exacerbation or a mitigation of the inequality among group members within a society. This work, however, has not investigated cases in which resource availability varies between different societies, a factor that is thought to explain variation in the level of cooperation and the disparities in reproductive shares within each social group. In this study, I focus on how resource availability mediates the expression of social behaviour and how this, in turn, mediates inequality both within and between groups. I find that when differences in resource availability between societies persist over time, resource-rich societies become more egalitarian. Because lower inequality improves the productivity of a society, the inequality between resource-rich and resource-poor societies rises. When resource availability fluctuates over time, resource-rich societies tend to become more unequal. Because inequality hinders the productivity of a society, the inequality between resource-rich and resource-poor societies falls. From the evolutionary standpoint, my results show that spatial and temporal variation in resource availability may exert a strong influence on the level of inequality both within and between societies.

RevDate: 2019-05-31

Ohkubo Y, Yamamoto T, Ogusu N, et al (2018)

The benefits of grouping as a main driver of social evolution in a halictine bee.

Science advances, 4(10):e1700741.

Over the past decade, the cause of sociality has been much debated. Inclusive fitness [br in Hamilton's rule (br - c > 0)] has been criticized but is still useful in the organization of a framework by elucidating mechanisms through which br (benefit × relatedness) becomes larger than c (cost). The bee Lasioglossum baleicum is suitable for investigation of this issue because of the sympatric occurrence of both social and solitary nesting in its populations. We show that a large part (approximately 92%) of the inclusive fitness of a eusocial worker can be attributed to the benefits of grouping. A 1.5-fold relatedness asymmetry benefit in singly mated haplo-diploids explains a small part (approximately 8.5%) of the observed inclusive fitness. Sociality enables this species to conduct foraging and nest defense simultaneously, which is not the case in solitary nests. Our results indicate that this benefit of grouping is the main source of the increased inclusive fitness of eusocial workers.

RevDate: 2019-08-27
CmpDate: 2019-08-27

Dyble M, Gardner A, Vinicius L, et al (2018)

Inclusive fitness for in-laws.

Biology letters, 14(10):.

Cooperation among kin is common across the natural world and can be explained in terms of inclusive fitness theory, which holds that individuals can derive indirect fitness benefits from aiding genetically related individuals. However, human kinship includes not only genetic kin but also kin by marriage: our affines (in-laws) and spouses. Can cooperation between these genetically unrelated kin be reconciled with inclusive fitness theory? Here, we argue that although affinal kin and spouses do not necessarily share genetic ancestry, they may have shared genetic interests in future reproduction and, as such, can derive indirect fitness benefits though cooperating. We use standard inclusive fitness theory to derive a coefficient of shared reproductive interest (s) that predicts altruistic investment both in genetic kin and in spouses and affines. Specifically, a behaviour that reduces the fitness of the actor by c and increases the fitness of the recipient by b will be favoured by natural selection when sb > c We suggest that the coefficient of shared reproductive interest may provide a valuable tool for understanding not only the evolution of human kinship but also cooperation and conflict across the natural world more generally.

RevDate: 2019-09-03

Minkner MMI, Young C, Amici F, et al (2018)

Assessment of Male Reproductive Skew via Highly Polymorphic STR Markers in Wild Vervet Monkeys, Chlorocebus pygerythrus.

The Journal of heredity, 109(7):780-790.

Male reproductive strategies have been well studied in primate species where the ability of males to monopolize reproductive access is high. Less is known about species where males cannot monopolize mating access. Vervet monkeys (Chlorocebus pygerythrus) are interesting in this regard as female codominance reduces the potential for male monopolization. Under this condition, we assessed whether male dominance rank still influences male mating and reproductive success, by assigning paternities to infants in a population of wild vervets in the Eastern Cape, South Africa. To determine paternity, we established microsatellite markers from noninvasive fecal samples via cross-species amplification. In addition, we evaluated male mating and reproductive success for 3 groups over 4 mating seasons. We identified 21 highly polymorphic microsatellites (number of alleles = 7.5 ± 3.1 [mean ± SD], observed heterozygosity = 0.691 ± 0.138 [mean ± SD]) and assigned paternity to 94 of 97 sampled infants (96.9%) with high confidence. Matings pooled over 4 seasons were significantly skewed across 3 groups, although skew indices were low (B index = 0.023-0.030) and mating success did not correlate with male dominance. Paternities pooled over 4 seasons were not consistently significantly skewed (B index = 0.005-0.062), with high-ranking males siring more offspring than subordinates only in some seasons. We detected 6 cases of extra-group paternity (6.4%) and 4 cases of natal breeding (4.3%). Our results suggest that alternative reproductive strategies besides priority of access for dominant males are likely to affect paternity success, warranting further investigation into the determinants of paternity among species with limited male monopolization potential.

RevDate: 2018-11-14

Konrad CM, Gero S, Frasier T, et al (2018)

Kinship influences sperm whale social organization within, but generally not among, social units.

Royal Society open science, 5(8):180914.

Sperm whales have a multi-level social structure based upon long-term, cooperative social units. What role kinship plays in structuring this society is poorly understood. We combined extensive association data (518 days, during 2005-2016) and genetic data (18 microsatellites and 346 bp mitochondrial DNA (mtDNA) control region sequences) for 65 individuals from 12 social units from the Eastern Caribbean to examine patterns of kinship and social behaviour. Social units were clearly matrilineally based, evidenced by greater relatedness within social units (mean r = 0.14) than between them (mean r = 0.00) and uniform mtDNA haplotypes within social units. Additionally, most individuals (82.5%) had a first-degree relative in their social unit, while we found no first-degree relatives between social units. Generally and within social units, individuals associated more with their closer relatives (matrix correlations: 0.18-0.25). However, excepting a highly related pair of social units that merged over the study period, associations between social units were not correlated with kinship (p > 0.1). These results are the first to robustly demonstrate kinship's contribution to social unit composition and association preferences, though they also reveal variability in association preferences that is unexplained by kinship. Comparisons with other matrilineal species highlight the range of possible matrilineal societies and how they can vary between and even within species.

RevDate: 2019-06-09

Townsend AK, Taff CC, Jones ML, et al (2019)

Apparent inbreeding preference despite inbreeding depression in the American crow.

Molecular ecology, 28(5):1116-1126.

Although matings between relatives can have negative effects on offspring fitness, apparent inbreeding preference has been reported in a growing number of systems, including those with documented inbreeding depression. Here, we examined evidence for inbreeding depression and inbreeding preference in two populations (Clinton, New York, and Davis, California, USA) of the cooperatively breeding American crow (Corvus brachyrhynchos). We then compared observed inbreeding strategies with theoretical expectations for optimal, adaptive levels of inbreeding, given the inclusive fitness benefits and population-specific magnitude of inbreeding depression. We found that low heterozygosity at a panel of 33 microsatellite markers was associated with low survival probability (fledging success) and low white blood cell counts among offspring in both populations. Despite these costs, our data were more consistent with inbreeding preference than avoidance: The observed heterozygosity among 396 sampled crow offspring was significantly lower than expected if local adults were mating by random chance. This pattern was consistent across a range of spatial scales in both populations. Adaptive levels of inbreeding, given the magnitude of inbreeding depression, were predicted to be very low in the California population, whereas complete disassortative mating was predicted in the New York population. Sexual conflict might have contributed to the apparent absence of inbreeding avoidance in crows. These data add to an increasing number of examples of an "inbreeding paradox," where inbreeding appears to be preferred despite inbreeding depression.

RevDate: 2018-11-14

Neupert S, Hornung M, Grenwille Millar J, et al (2018)

Learning Distinct Chemical Labels of Nestmates in Ants.

Frontiers in behavioral neuroscience, 12:191.

Colony coherence is essential for eusocial insects because it supports the inclusive fitness of colony members. Ants quickly and reliably recognize who belongs to the colony (nestmates) and who is an outsider (non-nestmates) based on chemical recognition cues (cuticular hydrocarbons: CHCs) which as a whole constitute a chemical label. The process of nestmate recognition often is described as matching a neural template with the label. In this study, we tested the prevailing view that ants use commonalities in the colony odor that are present in the CHC profile of all individuals of a colony or whether different CHC profiles are learned independently. We created and manipulated sub-colonies by adding one or two different hydrocarbons that were not present in the original colony odor of our Camponotus floridanus colony and later tested workers of the sub-colonies in one-on-one encounters for aggressive responses. We found that workers adjust their nestmate recognition by learning novel, manipulated CHC profiles, but still accept workers with the previous CHC profile. Workers from a sub-colony with two additional components showed aggression against workers with only one of the two components added to their CHC profile. Thus, additional components as well as the lack of a component can alter a label as "non-nestmate." Our results suggest that ants have multiple-templates to recognize nestmates carrying distinct labels. This finding is in contrast to what previously has been proposed, i.e., a widening of the acceptance range of one template. We conclude that nestmate recognition in ants is a partitioned (multiple-template) process of the olfactory system that allows discrimination and categorization of nestmates by differences in their CHC profiles. Our findings have strong implications for our understanding of the underlying mechanisms of colony coherence and task allocation because they illustrate the importance of individual experience and task associated differences in the CHC profiles that can be instructive for the organization of insect societies.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Kazem AJN, Barth Y, Pfefferle D, et al (2018)

Parent-offspring facial resemblance increases with age in rhesus macaques.

Proceedings. Biological sciences, 285(1886):.

Kin recognition is a key ability which facilitates the acquisition of inclusive fitness benefits and enables optimal outbreeding. In primates, phenotype matching is considered particularly important for the recognition of patrilineal relatives, as information on paternity is unlikely to be available via social familiarity. Phenotypic cues to both paternal and maternal relatedness exist in the facial features of humans and other primates. However, theoretical models suggest that in systems with uncertainty parentage it may be adaptive for offspring to conceal such cues when young, in order to avoid potential costs of being discriminated against by unrelated adults. Using experienced human raters, we demonstrate in a computer-based task that detection of parent-offspring resemblances in the faces of rhesus macaques (Macaca mulatta) increases significantly with offspring age. Moreover, this effect is specific to information about kinship, as raters were extremely successful at discriminating individuals even among the youngest animals. To our knowledge, this is the first evidence in non-humans for the age-dependent expression of visual cues used in kin recognition.

RevDate: 2019-01-30

Bawa KS, Ingty T, Revell LJ, et al (2019)

Correlated evolution of flower size and seed number in flowering plants (monocotyledons).

Annals of botany, 123(1):181-190.

Background and Aims: Kin selection theory predicts that a parent may minimize deleterious effects of competition among seeds developing within ovaries by increasing the genetic relatedness of seeds within an ovary. Alternatively, the number of developing seeds could be reduced to one or a few. It has also been suggested that single or few seeded fruits may be correlated with small flowers, and multi-ovulate ovaries or many seeded fruits may be associated with large flowers with specialized pollination mechanisms. We examined the correlation between flower size and seed number in 69 families of monocotyledons to assess if correlations are significant and independent of phylogeny.

Methods: We first examined the effect of phylogenetic history on the evolution of these two traits, flower size and seed number, and then mapped correlations between them on the latest phylogenetic tree of monocotyledons.

Results: The results provide phylogenetically robust evidence of strong correlated evolution between flower size and seed number and show that correlated evolution of traits is not constrained by phylogenetic history of taxa. Moreover, the two character combinations, small flowers and a single or few seeds per fruit, and large flowers and many seeded fruits, have persisted in monocotyledons longer than other trait combinations.

Conclusions: The analyses support the suggestion that most angiosperms may fall into two categories, one with large flowers and many seeded fruits and the other with small flowers and single or few seeded fruits, and kin selection within ovaries may explain the observed patterns.

RevDate: 2019-08-29
CmpDate: 2019-07-08

Downing PA, Griffin AS, CK Cornwallis (2018)

Sex differences in helping effort reveal the effect of future reproduction on cooperative behaviour in birds.

Proceedings. Biological sciences, 285(1885):.

The evolution of helping behaviour in species that breed cooperatively in family groups is typically attributed to kin selection alone. However, in many species, helpers go on to inherit breeding positions in their natal groups, but the extent to which this contributes to selection for helping is unclear as the future reproductive success of helpers is often unknown. To quantify the role of future reproduction in the evolution of helping, we compared the helping effort of female and male retained offspring across cooperative birds. The kin selected benefits of helping are equivalent between female and male helpers-they are equally related to the younger siblings they help raise-but the future reproductive benefits of helping differ because of sex differences in the likelihood of breeding in the natal group. We found that the sex which is more likely to breed in its natal group invests more in helping, suggesting that in addition to kin selection, helping in family groups is shaped by future reproduction.

RevDate: 2018-11-14

Ren Y, Huang K, Guo S, et al (2018)

Kinship promotes affiliative behaviors in a monkey.

Current zoology, 64(4):441-447.

In social mammals, kinship is an important factor that often affects the interactions among individuals within groups. In primates that live in a multilevel society, kinship may affect affiliative patterns between individuals at different scales within the larger group. For this study, we use field observations and molecular methods to reveal the profiles of how kinship affects affiliative behaviors between individuals in a breeding band of wild golden snub-nosed monkeys (Rhinopithecus roxellana). We use a novel nonparametric test, the partition Mantel test, to measure independently the correlation between kinship and each of three affiliative behaviors. Our results show that more closely related females are more likely to groom each other. Average relatedness between adult females within the same one-male unit (OMU) is higher than that between adult females from different OMUs. We suggest that closely related females may reside in the same OMU in order to attain inclusive fitness benefits, and that kinship plays an important role in maintaining the social structure of this species.

RevDate: 2019-09-02
CmpDate: 2019-09-02

D'Aloia CC, MG Neubert (2018)

The formation of marine kin structure: effects of dispersal, larval cohesion, and variable reproductive success.

Ecology, 99(10):2374-2384.

The spatial distribution of relatives has profound effects on kin interactions, inbreeding, and inclusive fitness. Yet, in the marine environment, the processes that generate patterns of kin structure remain understudied because larval dispersal on ocean currents was historically assumed to disrupt kin associations. Recent genetic evidence of co-occurring siblings challenges this assumption and raises the intriguing question of how siblings are found together after a (potentially) disruptive larval phase. Here, we develop individual-based models to explore how stochastic processes operating at the individual level affect expected kinship at equilibrium. Specifically, we predict how limited dispersal, sibling cohesion, and variability in reproductive success differentially affect patterns of kin structure. All three mechanisms increase mean kinship within populations, but their spatial effects are markedly different. We find that (1) when dispersal is limited, kinship declines monotonically as a function of the distance between individuals; (2) when siblings disperse cohesively, kinship increases within a site relative to between sites; and (3) when reproductive success varies, kinship increases equally at all distances. The differential effects of these processes therefore only become apparent when individuals are sampled at multiple spatial scales. Notably, our models suggest that aggregative larval behaviors, such as sibling cohesion, are not necessary to explain documented levels of relatedness within marine populations. Together, these findings establish a theoretical framework for disentangling the drivers of marine kin structure.

RevDate: 2018-08-03

Andersson M, Åhlund M, P Waldeck (2018)

Brood parasitism, relatedness and sociality: a kinship role in female reproductive tactics.

Biological reviews of the Cambridge Philosophical Society [Epub ahead of print].

Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg-laying animals, among birds most often in species with large clutches and self-feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female-biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host-parasite (h-p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h-p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over-represented in h-p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h-p relatedness was higher than between nesting close neighbours, and hosts parasitized by non-relatives aggressively rejected other females. In another species, birth nest-mates (mother-daughters, sisters) associated in the breeding area as adults, and became h-p pairs more often than expected by chance. These and other results point to recognition of birth nest-mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female-biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin-related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.

RevDate: 2019-08-05
CmpDate: 2019-08-05

Gleichsner AM, Reinhart K, DJ Minchella (2018)

Of mice and worms: are co-infections with unrelated parasite strains more damaging to definitive hosts?.

International journal for parasitology, 48(11):881-885.

Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host-parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )