MENU
The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.
More About: ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT
ESP: PubMed Auto Bibliography 10 Jan 2026 at 01:30 Created:
Biodiversity and Metagenomics
If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.
Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion
Citations The Papers (from PubMed®)
RevDate: 2026-01-09
CmpDate: 2026-01-09
A molecular inventory of the faecal microbiomes of 23 marsupial species.
Microbial genomics, 12(1):.
Despite the recent expansion of culture-independent analyses of animal faecal microbiomes, many lineages remain understudied. Marsupials represent one such group, where, despite their iconic status, direct sequencing-based analyses remain limited. Here, we present a metagenomic and metabolomic exploration of the faecal microbiomes of 23 Diprotodontia marsupials, producing a reference set of 3,868 prokaryotic and 12,142 viral metagenome-assembled genomes, the majority (>80 %) of which represent novel species. As with other animals, host phylogeny is the primary driver of microbiome composition, including distinct profiles for two eucalypt folivore specialists (koalas and southern greater gliders), suggesting independent solutions to this challenging diet. Expansion of several bacterial and viral lineages was observed in these and other marsupial hosts that may provide adaptive benefits. Antimicrobial resistance genes were significantly more prevalent in captive than wild animals, likely reflecting human interaction. This molecular dataset contributes to our ongoing understanding of animal faecal microbiomes.
Additional Links: PMID-41511078
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41511078,
year = {2026},
author = {Bowerman, KL and Soo, RM and Chaumeil, PA and Blyton, MDJ and Sørensen, M and Gunbilig, D and Malig, M and Islam, M and Zaugg, J and Wood, DLA and Liachko, I and Auch, B and Morrison, M and Krause, L and Lindberg Møller, B and Neilson, EHJ and Hugenholtz, P},
title = {A molecular inventory of the faecal microbiomes of 23 marsupial species.},
journal = {Microbial genomics},
volume = {12},
number = {1},
pages = {},
doi = {10.1099/mgen.0.001601},
pmid = {41511078},
issn = {2057-5858},
mesh = {*Feces/microbiology/virology ; Animals ; *Marsupialia/microbiology/virology/classification ; Phylogeny ; *Bacteria/genetics/classification/isolation & purification ; Metagenomics/methods ; Metagenome ; *Microbiota/genetics ; *Gastrointestinal Microbiome/genetics ; Viruses/genetics/classification ; },
abstract = {Despite the recent expansion of culture-independent analyses of animal faecal microbiomes, many lineages remain understudied. Marsupials represent one such group, where, despite their iconic status, direct sequencing-based analyses remain limited. Here, we present a metagenomic and metabolomic exploration of the faecal microbiomes of 23 Diprotodontia marsupials, producing a reference set of 3,868 prokaryotic and 12,142 viral metagenome-assembled genomes, the majority (>80 %) of which represent novel species. As with other animals, host phylogeny is the primary driver of microbiome composition, including distinct profiles for two eucalypt folivore specialists (koalas and southern greater gliders), suggesting independent solutions to this challenging diet. Expansion of several bacterial and viral lineages was observed in these and other marsupial hosts that may provide adaptive benefits. Antimicrobial resistance genes were significantly more prevalent in captive than wild animals, likely reflecting human interaction. This molecular dataset contributes to our ongoing understanding of animal faecal microbiomes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Feces/microbiology/virology
Animals
*Marsupialia/microbiology/virology/classification
Phylogeny
*Bacteria/genetics/classification/isolation & purification
Metagenomics/methods
Metagenome
*Microbiota/genetics
*Gastrointestinal Microbiome/genetics
Viruses/genetics/classification
RevDate: 2026-01-09
CmpDate: 2026-01-09
Diversity, Function and Activity of DNA Viruses in the Qiangyong Proglacial Lake Sediment, the Tibetan Plateau.
Environmental microbiology reports, 18(1):e70262.
Viruses are the most abundant biological entities on Earth and play crucial roles in regulating ecosystem processes and biogeochemical cycling. Proglacial lakes-key components of cryosphere aquatic systems-host diverse microbial communities despite extreme environmental conditions. However, the composition and ecological roles of DNA viral communities in proglacial lake sediments remain poorly understood. In this study, we applied metagenomic and metatranscriptomic approaches to investigate the diversity, function, activity and host interactions of DNA viruses in sediments from Qiangyong proglacial lake on the Tibetan Plateau. We recovered 4039 viral operational taxonomic units (vOTUs), with 76.6% unclassified at the family level, highlighting a vast reservoir of uncharacterized viral lineages. Host prediction linked 1.8% of vOTUs to key microbial taxa involved in carbon, nitrogen and sulphur cycling. We identified a broad array of virus-encoded auxiliary metabolic genes (AMGs) involved in host resource utilization and metabolic transformation. Moreover, 63 AMGs not previously reported in the literature were discovered, significantly expanding the known viral functional gene repertoire. These findings offer new insights into the diversity and ecological potential of sediment-associated DNA viruses in proglacial lakes, and emphasize their possible roles in shaping microbial communities and influencing biogeochemical processes in cold-region ecosystems.
Additional Links: PMID-41508741
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41508741,
year = {2026},
author = {Zhao, Y and Feng, M and Chi, H and Liu, K and Wen, R and Zhang, W and Liu, P},
title = {Diversity, Function and Activity of DNA Viruses in the Qiangyong Proglacial Lake Sediment, the Tibetan Plateau.},
journal = {Environmental microbiology reports},
volume = {18},
number = {1},
pages = {e70262},
doi = {10.1111/1758-2229.70262},
pmid = {41508741},
issn = {1758-2229},
support = {24YFFA006//Key Research and Development Program of Gansu Province/ ; XZ202301ZY0008G//Key Research and Development Plan of Tibet Autonomous Region/ ; 42222105//National Natural Science Foundation of China for Excellent Young Scientists Fund Program/ ; 42171144//National Natural Science Foundation of China General Program/ ; 42201056//Young Scientists Fund of the National Natural Science Foundation of China/ ; //Global Ocean Negative Carbon Emissions (ONCE) Program/ ; },
mesh = {*Lakes/virology ; *DNA Viruses/genetics/classification/isolation & purification ; *Geologic Sediments/virology ; Tibet ; Metagenomics ; Phylogeny ; *Biodiversity ; Metagenome ; },
abstract = {Viruses are the most abundant biological entities on Earth and play crucial roles in regulating ecosystem processes and biogeochemical cycling. Proglacial lakes-key components of cryosphere aquatic systems-host diverse microbial communities despite extreme environmental conditions. However, the composition and ecological roles of DNA viral communities in proglacial lake sediments remain poorly understood. In this study, we applied metagenomic and metatranscriptomic approaches to investigate the diversity, function, activity and host interactions of DNA viruses in sediments from Qiangyong proglacial lake on the Tibetan Plateau. We recovered 4039 viral operational taxonomic units (vOTUs), with 76.6% unclassified at the family level, highlighting a vast reservoir of uncharacterized viral lineages. Host prediction linked 1.8% of vOTUs to key microbial taxa involved in carbon, nitrogen and sulphur cycling. We identified a broad array of virus-encoded auxiliary metabolic genes (AMGs) involved in host resource utilization and metabolic transformation. Moreover, 63 AMGs not previously reported in the literature were discovered, significantly expanding the known viral functional gene repertoire. These findings offer new insights into the diversity and ecological potential of sediment-associated DNA viruses in proglacial lakes, and emphasize their possible roles in shaping microbial communities and influencing biogeochemical processes in cold-region ecosystems.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Lakes/virology
*DNA Viruses/genetics/classification/isolation & purification
*Geologic Sediments/virology
Tibet
Metagenomics
Phylogeny
*Biodiversity
Metagenome
RevDate: 2026-01-09
CmpDate: 2026-01-09
Fecal Sample Collection for Gut Microbiome Research in a Prospective Cohort: A Pilot Study within the Australian Breakthrough Cancer Study.
Cancer research communications, 6(1):70-76.
UNLABELLED: Large prospective analyses of human gut microbiome profiles are needed to elucidate the role of microbiome variation in the development of disease. We conducted a pilot study to assess the feasibility of home fecal sample collection within a cohort study. A subset of cohort study participants was randomly selected and randomized into four groups defined by fecal sample collection method and questionnaire components. Of 1,093 invited participants, 610 (56%) opted-in, and of those, 88% returned a sample. Of those asked to provide a fecal sample via fecal occult blood test (FOBT) card and complete a short "day-of-sample" questionnaire, 49% returned a sample. Sample return was comparable for participants additionally asked to provide a sample via ethanol tube (51%), complete a food frequency questionnaire (48%), or complete both additional activities (49%). Whole-genome sequencing and metagenomic analysis on paired FOBT and ethanol samples showed that both collection methods provided sufficient quality and quantity of DNA for downstream metagenomic analyses and displayed highly concordant microbiome profiles. Home fecal sample collection for microbiome analysis is feasible in a large prospective cohort. Including additional components did not reduce the likelihood of participants completing all requested items.
SIGNIFICANCE: The expansion of this successful pilot to the larger Australian Breakthrough Cancer Study will facilitate future metagenomic and other host- and microbiome-related analyses in this large prospective cohort and potentially as part of an extended international pooling project.
Additional Links: PMID-41508656
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41508656,
year = {2026},
author = {Cheah, S and Burke, J and Bruinsma, FJ and Evans, M and Tsimiklis, H and Hodge, AM and Lynch, BM and Giles, GG and Sinha, R and Southey, MC and Milne, RL},
title = {Fecal Sample Collection for Gut Microbiome Research in a Prospective Cohort: A Pilot Study within the Australian Breakthrough Cancer Study.},
journal = {Cancer research communications},
volume = {6},
number = {1},
pages = {70-76},
doi = {10.1158/2767-9764.CRC-25-0445},
pmid = {41508656},
issn = {2767-9764},
support = {//Cancer Council Victoria/ ; //Gandel Foundation/ ; //Perpetual (Perpetual Ltd)/ ; //State Trustees Australia Foundation (STAF)/ ; //Winifred and John Webster Charitable Trust Fund/ ; //Pf - Alan (AGL)/ ; //Shaw Family Foundation (SFF)/ ; //Broomhead Family Foundation/ ; },
mesh = {Humans ; Pilot Projects ; *Gastrointestinal Microbiome/genetics ; *Feces/microbiology ; Prospective Studies ; Male ; Female ; *Specimen Handling/methods ; Middle Aged ; Australia ; Aged ; Occult Blood ; Adult ; *Neoplasms/microbiology ; Surveys and Questionnaires ; Metagenomics/methods ; },
abstract = {UNLABELLED: Large prospective analyses of human gut microbiome profiles are needed to elucidate the role of microbiome variation in the development of disease. We conducted a pilot study to assess the feasibility of home fecal sample collection within a cohort study. A subset of cohort study participants was randomly selected and randomized into four groups defined by fecal sample collection method and questionnaire components. Of 1,093 invited participants, 610 (56%) opted-in, and of those, 88% returned a sample. Of those asked to provide a fecal sample via fecal occult blood test (FOBT) card and complete a short "day-of-sample" questionnaire, 49% returned a sample. Sample return was comparable for participants additionally asked to provide a sample via ethanol tube (51%), complete a food frequency questionnaire (48%), or complete both additional activities (49%). Whole-genome sequencing and metagenomic analysis on paired FOBT and ethanol samples showed that both collection methods provided sufficient quality and quantity of DNA for downstream metagenomic analyses and displayed highly concordant microbiome profiles. Home fecal sample collection for microbiome analysis is feasible in a large prospective cohort. Including additional components did not reduce the likelihood of participants completing all requested items.
SIGNIFICANCE: The expansion of this successful pilot to the larger Australian Breakthrough Cancer Study will facilitate future metagenomic and other host- and microbiome-related analyses in this large prospective cohort and potentially as part of an extended international pooling project.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Pilot Projects
*Gastrointestinal Microbiome/genetics
*Feces/microbiology
Prospective Studies
Male
Female
*Specimen Handling/methods
Middle Aged
Australia
Aged
Occult Blood
Adult
*Neoplasms/microbiology
Surveys and Questionnaires
Metagenomics/methods
RevDate: 2026-01-09
CmpDate: 2026-01-09
The Secreted Metabolite Isopentenyladenine from Faecalibacterium prausnitzii Is Anti-inflammatory with Barrier-Protective Properties.
ACS infectious diseases, 12(1):224-236.
Colonic microbiome dysbiosis is correlated with inflammatory bowel disease (IBD), and depletion of the commensal bacterium Faecalibacterium prausnitzii (F. prausnitzii) is routinely observed in the metagenomic analyses of IBD patient microbiome samples. F. prausnitzii is likely beneficial to hosts, as oral administration of F. prausnitzii strain A2-165 has anti-inflammatory properties in murine models of colitis. Previous studies attribute the anti-inflammatory effects of F. prausnitzii A2-165 to production of the short-chain fatty acid butyrate, as well as a secreted protein known as microbial anti-inflammatory molecule (MAM). Here, we verified that oral dosing of strain A2-165 protects against DSS-induced murine colitis and further showed that the aqueous-soluble secreted fraction of overnight cultures from a collection of F. prausnitzii strains inhibits inflammatory signatures, including the activation of the host's NF-κB pathway, production of IL-8, and differentiation of naïve T cells into the TH17 lineage. Our findings against a panel of in vitro assays suggested that the anti-inflammatory responses were attributable to secreted small-molecule or peptide metabolites, as both heat-inactivated and proteinase K-treated F. prausnitzii culture supernatants retained activity. Untargeted and targeted mass spectrometry metabolomics analyses on the soluble anti-inflammatory secretome yielded several unique F. prausnitzii metabolites, including isopentenyladenine. We demonstrated that isopentenyladenine independently modulates host cellular signaling and immune responses and suggest that this newly identified metabolite with human immunomodulatory properties may be useful toward the discovery of IBD-focused therapeutics.
Additional Links: PMID-41469026
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41469026,
year = {2026},
author = {Yao, L and Solania, A and Luissint, AC and Balana, AT and Zhang, H and Sangaraju, D and Lai, Z and Kuo, J and Storek, KM and Wolan, DW},
title = {The Secreted Metabolite Isopentenyladenine from Faecalibacterium prausnitzii Is Anti-inflammatory with Barrier-Protective Properties.},
journal = {ACS infectious diseases},
volume = {12},
number = {1},
pages = {224-236},
doi = {10.1021/acsinfecdis.5c00771},
pmid = {41469026},
issn = {2373-8227},
mesh = {Animals ; *Faecalibacterium prausnitzii/metabolism ; Mice ; *Anti-Inflammatory Agents/pharmacology/metabolism ; *Colitis/chemically induced/prevention & control/drug therapy/microbiology ; Mice, Inbred C57BL ; Disease Models, Animal ; Gastrointestinal Microbiome ; Humans ; Inflammatory Bowel Diseases ; Administration, Oral ; Female ; },
abstract = {Colonic microbiome dysbiosis is correlated with inflammatory bowel disease (IBD), and depletion of the commensal bacterium Faecalibacterium prausnitzii (F. prausnitzii) is routinely observed in the metagenomic analyses of IBD patient microbiome samples. F. prausnitzii is likely beneficial to hosts, as oral administration of F. prausnitzii strain A2-165 has anti-inflammatory properties in murine models of colitis. Previous studies attribute the anti-inflammatory effects of F. prausnitzii A2-165 to production of the short-chain fatty acid butyrate, as well as a secreted protein known as microbial anti-inflammatory molecule (MAM). Here, we verified that oral dosing of strain A2-165 protects against DSS-induced murine colitis and further showed that the aqueous-soluble secreted fraction of overnight cultures from a collection of F. prausnitzii strains inhibits inflammatory signatures, including the activation of the host's NF-κB pathway, production of IL-8, and differentiation of naïve T cells into the TH17 lineage. Our findings against a panel of in vitro assays suggested that the anti-inflammatory responses were attributable to secreted small-molecule or peptide metabolites, as both heat-inactivated and proteinase K-treated F. prausnitzii culture supernatants retained activity. Untargeted and targeted mass spectrometry metabolomics analyses on the soluble anti-inflammatory secretome yielded several unique F. prausnitzii metabolites, including isopentenyladenine. We demonstrated that isopentenyladenine independently modulates host cellular signaling and immune responses and suggest that this newly identified metabolite with human immunomodulatory properties may be useful toward the discovery of IBD-focused therapeutics.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Faecalibacterium prausnitzii/metabolism
Mice
*Anti-Inflammatory Agents/pharmacology/metabolism
*Colitis/chemically induced/prevention & control/drug therapy/microbiology
Mice, Inbred C57BL
Disease Models, Animal
Gastrointestinal Microbiome
Humans
Inflammatory Bowel Diseases
Administration, Oral
Female
RevDate: 2026-01-09
CmpDate: 2026-01-09
Deciphering the interrelation of gut microbiota and BMI in atherosclerosis: a metagenomic approach.
Canadian journal of microbiology, 72:1-12.
Atherosclerotic cardiovascular disease (ASCVD) is a global health concern, leading to higher rates of morbidity and mortality. Gut microbial dysbiosis significantly contributes to obesity related ASCVD. However, the interrelation of gut microbiome in driving obesity or overweight mediated ASCVD has not been sufficiently investigated. To unravel this complex interplay, we have compared the gut microbial shotgun metagenome data of ASCVD subjects across normal BMI (Body Mass Index) and overweight/obese (OW/OB) BMI categories. We identified a distinct gut microbial composition and function in normal and OW/OB ASCVD subjects. Using gut microbial abundance, a machine learning model was built to predict ASCVD in the normal and OW/OB samples. The gut microbiome-based signature for ASCVD discrimination was achieved with an AUC of 0.87 and 0.83 for distinguishing control and ASCVD in normal and OW/OB BMI groups, respectively. In addition, we have also identified that Pseudoflavonifractor capillosus could act as a prognostic organism in identifying OW/OB associated ASCVD. Therefore, an appropriate diet could modify the ASCVD contributing gut microbiome, hence minimizing the risk of ASCVD in OW/OB individuals.
Additional Links: PMID-41297027
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41297027,
year = {2026},
author = {Palanisamy, H and Vidyalakshmi, S},
title = {Deciphering the interrelation of gut microbiota and BMI in atherosclerosis: a metagenomic approach.},
journal = {Canadian journal of microbiology},
volume = {72},
number = {},
pages = {1-12},
doi = {10.1139/cjm-2025-0075},
pmid = {41297027},
issn = {1480-3275},
mesh = {Humans ; *Gastrointestinal Microbiome ; *Atherosclerosis/microbiology ; *Body Mass Index ; Metagenomics ; Obesity/microbiology/complications ; Male ; Female ; Middle Aged ; Aged ; Metagenome ; Bacteria/classification/genetics/isolation & purification ; Dysbiosis/microbiology ; Overweight/microbiology ; },
abstract = {Atherosclerotic cardiovascular disease (ASCVD) is a global health concern, leading to higher rates of morbidity and mortality. Gut microbial dysbiosis significantly contributes to obesity related ASCVD. However, the interrelation of gut microbiome in driving obesity or overweight mediated ASCVD has not been sufficiently investigated. To unravel this complex interplay, we have compared the gut microbial shotgun metagenome data of ASCVD subjects across normal BMI (Body Mass Index) and overweight/obese (OW/OB) BMI categories. We identified a distinct gut microbial composition and function in normal and OW/OB ASCVD subjects. Using gut microbial abundance, a machine learning model was built to predict ASCVD in the normal and OW/OB samples. The gut microbiome-based signature for ASCVD discrimination was achieved with an AUC of 0.87 and 0.83 for distinguishing control and ASCVD in normal and OW/OB BMI groups, respectively. In addition, we have also identified that Pseudoflavonifractor capillosus could act as a prognostic organism in identifying OW/OB associated ASCVD. Therefore, an appropriate diet could modify the ASCVD contributing gut microbiome, hence minimizing the risk of ASCVD in OW/OB individuals.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome
*Atherosclerosis/microbiology
*Body Mass Index
Metagenomics
Obesity/microbiology/complications
Male
Female
Middle Aged
Aged
Metagenome
Bacteria/classification/genetics/isolation & purification
Dysbiosis/microbiology
Overweight/microbiology
RevDate: 2026-01-08
CmpDate: 2026-01-08
Bark microbiota modulate climate-active gas fluxes in Australian forests.
Science (New York, N.Y.), 391(6781):eadu2182.
Recent studies suggest that microbes inhabit tree bark, yet little is known about their identities, functions, and environmental roles. Here we reveal, through gene-centric and genome-resolved metagenomics, that the bark of eight common Australian tree species hosts abundant and specialized microbial communities. The predominant bacteria are hydrogen-cycling facultative anaerobes adapted to dynamic redox and substrate conditions. Furthermore, bark-associated methanotrophs are abundant and can coexist with hydrogenotrophic methanogens. Microcosm experiments showed that bark microorganisms aerobically consume methane, hydrogen, and carbon monoxide at in planta concentrations and produce these gases under anoxia. Combined with in situ field measurements, we show that tree-dwelling microbiota metabolize multiple climate-active gases at marked rates within tree stems, highlighting a potentially substantial role in global atmospheric cycles.
Additional Links: PMID-41505541
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41505541,
year = {2026},
author = {Leung, PM and Jeffrey, LC and Bay, SK and Gomez-Alvarez, P and Hall, M and Johnston, SG and Dittmann, J and Deschaseaux, E and Hopkins, B and Haskell, J and Jirapanjawat, T and Hutchinson, TF and Coleman, NV and Dong, X and Maher, DT and Greening, C},
title = {Bark microbiota modulate climate-active gas fluxes in Australian forests.},
journal = {Science (New York, N.Y.)},
volume = {391},
number = {6781},
pages = {eadu2182},
doi = {10.1126/science.adu2182},
pmid = {41505541},
issn = {1095-9203},
mesh = {*Methane/metabolism ; *Plant Bark/microbiology ; Australia ; *Microbiota ; *Forests ; *Hydrogen/metabolism ; Carbon Monoxide/metabolism ; Metagenomics ; *Trees/microbiology ; *Bacteria/metabolism/genetics/classification ; Anaerobiosis ; },
abstract = {Recent studies suggest that microbes inhabit tree bark, yet little is known about their identities, functions, and environmental roles. Here we reveal, through gene-centric and genome-resolved metagenomics, that the bark of eight common Australian tree species hosts abundant and specialized microbial communities. The predominant bacteria are hydrogen-cycling facultative anaerobes adapted to dynamic redox and substrate conditions. Furthermore, bark-associated methanotrophs are abundant and can coexist with hydrogenotrophic methanogens. Microcosm experiments showed that bark microorganisms aerobically consume methane, hydrogen, and carbon monoxide at in planta concentrations and produce these gases under anoxia. Combined with in situ field measurements, we show that tree-dwelling microbiota metabolize multiple climate-active gases at marked rates within tree stems, highlighting a potentially substantial role in global atmospheric cycles.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Methane/metabolism
*Plant Bark/microbiology
Australia
*Microbiota
*Forests
*Hydrogen/metabolism
Carbon Monoxide/metabolism
Metagenomics
*Trees/microbiology
*Bacteria/metabolism/genetics/classification
Anaerobiosis
RevDate: 2026-01-08
CmpDate: 2026-01-08
Discriminative Gut Microbial Signatures in Hyperuricemia and Overweight Populations Revealed by Metagenomic Sequencing.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 95(6):42590.
BACKGROUND: This cross-sectional study aimed to investigate the relationships between gut microbiota compositional alterations and chronic metabolic disorders by analyzing taxonomic diversity, community structure, and species-level differences in individuals with hyperuricemia (HUA) and a history of being overweight. Our findings offer novel insights into microbiota-targeted therapeutic strategies for managing metabolic diseases. A total of 144 participants were recruited and divided into three diagnostic categories: healthy controls (HL, n = 29), hyperuricemia group (HU, n = 24), and overweight (OW, n = 91).
METHODS: Comprehensive phenotypic profiles and metagenomes were analyzed for fecal samples from the three groups.
RESULTS: Significant differences were observed in psychological states and microbial ecology between the metabolic disorder groups (HU and OW) and the control group (HL) (p < 0.05). Both the overweight individuals and those with HUA presented significant changes in gut microbial composition, with reduced α-diversity indices (Shannon index: HU vs HL Mann-Whitney U = 306; p = 0.462; OW vs HL Mann-Whitney U = 1008; p = 0.040; richness index: HU vs HL Mann-Whitney U = 307; p = 0.469; OW vs HL Mann-Whitney U = 1072; p = 0.092) compared to healthy individuals. Moreover, analysis of the linear discriminant analysis effect size (LEfSe) identified four discriminatory species in the HU group (Alistipes putredinis, Mediterraneibacter faecis, Streptococcus oralis, and Gemella sanguinis), and five in the OW group (Pantoea endophytica, Pantoea vagans, Phocaeicola coprophilus, Ruminococcus SGB4421, and Klebsiella oxytoca), representing potential biomarkers for the progression of chronic metabolic diseases.
CONCLUSION: This study elucidates the characteristics of overweight individuals and those with HUA in terms of phenotypic features and gut microbiota, providing a theoretical reference for gut microbiota-targeted therapies and lifestyle interventions in chronic metabolic diseases.
Additional Links: PMID-41504158
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41504158,
year = {2025},
author = {Chen, T and Guo, Y and Liang, D and Li, D and Xing, S and Li, D and Zhang, C and Wang, F},
title = {Discriminative Gut Microbial Signatures in Hyperuricemia and Overweight Populations Revealed by Metagenomic Sequencing.},
journal = {International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition},
volume = {95},
number = {6},
pages = {42590},
doi = {10.31083/IJVNR42590},
pmid = {41504158},
issn = {0300-9831},
support = {S2023KFKT-12//Ministry of Agriculture and Rural Affairs/ ; 2024YFF1107000//National Key Research and Development Program of China/ ; },
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; *Hyperuricemia/microbiology ; Male ; Female ; *Overweight/microbiology ; Middle Aged ; Cross-Sectional Studies ; Feces/microbiology ; Adult ; Metagenomics ; Metagenome ; },
abstract = {BACKGROUND: This cross-sectional study aimed to investigate the relationships between gut microbiota compositional alterations and chronic metabolic disorders by analyzing taxonomic diversity, community structure, and species-level differences in individuals with hyperuricemia (HUA) and a history of being overweight. Our findings offer novel insights into microbiota-targeted therapeutic strategies for managing metabolic diseases. A total of 144 participants were recruited and divided into three diagnostic categories: healthy controls (HL, n = 29), hyperuricemia group (HU, n = 24), and overweight (OW, n = 91).
METHODS: Comprehensive phenotypic profiles and metagenomes were analyzed for fecal samples from the three groups.
RESULTS: Significant differences were observed in psychological states and microbial ecology between the metabolic disorder groups (HU and OW) and the control group (HL) (p < 0.05). Both the overweight individuals and those with HUA presented significant changes in gut microbial composition, with reduced α-diversity indices (Shannon index: HU vs HL Mann-Whitney U = 306; p = 0.462; OW vs HL Mann-Whitney U = 1008; p = 0.040; richness index: HU vs HL Mann-Whitney U = 307; p = 0.469; OW vs HL Mann-Whitney U = 1072; p = 0.092) compared to healthy individuals. Moreover, analysis of the linear discriminant analysis effect size (LEfSe) identified four discriminatory species in the HU group (Alistipes putredinis, Mediterraneibacter faecis, Streptococcus oralis, and Gemella sanguinis), and five in the OW group (Pantoea endophytica, Pantoea vagans, Phocaeicola coprophilus, Ruminococcus SGB4421, and Klebsiella oxytoca), representing potential biomarkers for the progression of chronic metabolic diseases.
CONCLUSION: This study elucidates the characteristics of overweight individuals and those with HUA in terms of phenotypic features and gut microbiota, providing a theoretical reference for gut microbiota-targeted therapies and lifestyle interventions in chronic metabolic diseases.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
*Hyperuricemia/microbiology
Male
Female
*Overweight/microbiology
Middle Aged
Cross-Sectional Studies
Feces/microbiology
Adult
Metagenomics
Metagenome
RevDate: 2026-01-08
CmpDate: 2026-01-08
Gut virome dysbiosis contributes to premature ovarian insufficiency by modulating gut bacteriome.
Gut microbes, 18(1):2611645.
BACKGROUND: Premature ovarian insufficiency (POI) significantly impairs female fertility and poses substantial health risks; however, its pathogenesis is incompletely understood, and effective therapeutic interventions are limited. Although gut bacteriome has been closely associated with ovarian dysfunction, the role and therapeutic potential of gut viruses, which far outnumber bacteria, remain largely unexplored.
RESULTS: Therefore, we recruited 60 healthy reproductive-aged women and recently diagnosed POI patients and investigated these concerns using various techniques, including whole-genome shotgun sequencing of virus-like particle (VLP) and fecal virome transplantation (FVT) in CTX-induced POI rats. We found considerable interindividual variability in the gut virome. The virome of POI patients exhibited significant dysbiosis, characterized by a marked reduction in virulent phage, significant changes in predominant phages, and a notable increase in horizontal gene transfer of resistance genes and virulence factors. Furthermore, gut VLPs from the healthy reproductive-aged women significantly improved the condition of POI rats. Conversely, gut VLPs from POI patients markedly impaired the ovarian function and reproductive capacity of healthy rats. The above regulatory effect is primarily due to modulations of gut bacteriome, specifically the estrobolome, and intestinal barrier integrity, which subsequently affect hypothalamic-pituitary-ovarian axis hormone levels and regulate ovarian oxidative stress and inflammation, thereby influencing ovarian function.
CONCLUSIONS: Our findings demonstrate the critical roles of the gut virome in regulating ovarian function and provide new insights into the pathogenesis of POI. This study also underscores the therapeutic potential of the gut virome in improving ovarian dysfunction and female infertility including POI.
Additional Links: PMID-41503791
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41503791,
year = {2026},
author = {Jin, J and Yao, G and Zhang, X and Zhang, T and Ye, H and Zhou, X and Yu, Y and Zhao, Y and Qin, Z and Chen, H and Bi, Y and Wang, X and Ren, X and Zhang, Y and Wang, Z and Zhang, Q},
title = {Gut virome dysbiosis contributes to premature ovarian insufficiency by modulating gut bacteriome.},
journal = {Gut microbes},
volume = {18},
number = {1},
pages = {2611645},
doi = {10.1080/19490976.2025.2611645},
pmid = {41503791},
issn = {1949-0984},
mesh = {Female ; Animals ; *Dysbiosis/microbiology/virology ; *Primary Ovarian Insufficiency/microbiology/virology/therapy ; *Gastrointestinal Microbiome ; Rats ; Humans ; Adult ; *Virome ; Fecal Microbiota Transplantation ; *Bacteria/genetics/classification/isolation & purification/virology ; Young Adult ; Feces/virology ; Ovary ; Rats, Sprague-Dawley ; },
abstract = {BACKGROUND: Premature ovarian insufficiency (POI) significantly impairs female fertility and poses substantial health risks; however, its pathogenesis is incompletely understood, and effective therapeutic interventions are limited. Although gut bacteriome has been closely associated with ovarian dysfunction, the role and therapeutic potential of gut viruses, which far outnumber bacteria, remain largely unexplored.
RESULTS: Therefore, we recruited 60 healthy reproductive-aged women and recently diagnosed POI patients and investigated these concerns using various techniques, including whole-genome shotgun sequencing of virus-like particle (VLP) and fecal virome transplantation (FVT) in CTX-induced POI rats. We found considerable interindividual variability in the gut virome. The virome of POI patients exhibited significant dysbiosis, characterized by a marked reduction in virulent phage, significant changes in predominant phages, and a notable increase in horizontal gene transfer of resistance genes and virulence factors. Furthermore, gut VLPs from the healthy reproductive-aged women significantly improved the condition of POI rats. Conversely, gut VLPs from POI patients markedly impaired the ovarian function and reproductive capacity of healthy rats. The above regulatory effect is primarily due to modulations of gut bacteriome, specifically the estrobolome, and intestinal barrier integrity, which subsequently affect hypothalamic-pituitary-ovarian axis hormone levels and regulate ovarian oxidative stress and inflammation, thereby influencing ovarian function.
CONCLUSIONS: Our findings demonstrate the critical roles of the gut virome in regulating ovarian function and provide new insights into the pathogenesis of POI. This study also underscores the therapeutic potential of the gut virome in improving ovarian dysfunction and female infertility including POI.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Female
Animals
*Dysbiosis/microbiology/virology
*Primary Ovarian Insufficiency/microbiology/virology/therapy
*Gastrointestinal Microbiome
Rats
Humans
Adult
*Virome
Fecal Microbiota Transplantation
*Bacteria/genetics/classification/isolation & purification/virology
Young Adult
Feces/virology
Ovary
Rats, Sprague-Dawley
RevDate: 2026-01-08
CmpDate: 2026-01-08
Short-Chain Fatty Acids in the Gut-Brain-Liver Axis: Implications for Hepatic Encephalopathy.
Acta medica Indonesiana, 57(4):433-435.
Hepatic encephalopathy (HE) is one of the serious complications of liver cirrhosis, characterized by a broad spectrum of neuropsychiatric symptoms, ranging from subtle cognitive impairment to coma, due to brain dysfunction associated with acute or chronic liver failure and/or portosystemic shunting. Globally, the prevalence of hepatic encephalopathy (HE) is reported to range from 20% to 80% in patients with liver cirrhosis, depending on whether the assessment includes minimal (MHE) or overt (OHE) forms. In Indonesia, determining the true prevalence of HE is challenging due to diagnostic difficulties, with estimates ranging from 30% to 84%. At Cipto Mangunkusumo General Hospital, the prevalence of HE in 2009 was 63.2%. In recent years, evidence has highlighted the role of the gut microbiota in the pathogenesis of hepatic encephalopathy (HE), a concept now widely referred to as the "gut-liver-brain axis." Short-chain fatty acids (SCFAs) are gut microbial-derived metabolites that provide numerous health benefits. SCFA has been demonstrated to impact gut barrier function, immunomodulation, and glucose homeostasis. In this issue, Ferdianto et al. conducted a cross-sectional observational study comparing the amount and composition of fecal SCFA in cirrhotic patients with and without HE. The study revealed no significant difference in SFA levels between HE and non-HE groups; however, the HE groups demonstrated higher levels of total SCFA, acetate, and butyrate compared to the non-HE groups. While this study contributes valuable early evidence from an Indonesian cohort, several important limitations should be acknowledged. First, the diagnostic approach for covert or minimal HE requires clarification. The authors did not explicitly state the neuropsychological tools and specific criteria used. Clear definitions are essential, as minimal and covert HE is susceptible to the choice of diagnostic method and can substantially influence group classification. Second, although SCFAs represent key microbial metabolites, the study did not explore the underlying microbiome composition. Without bacterial taxonomy or species-level data, it remains difficult to determine whether differences in SCFA levels truly reflect gut dysbiosis or altered microbial diversity. SCFA concentrations may be influenced by multiple factors, and therefore, inclusion of metagenomic or sequencing data would strengthen the mechanistic interpretation and allow linking specific bacterial taxa with cognitive impairment. Future studies that include larger and more heterogeneous cohorts, alongside integrated analyses of microbiome composition and validated neurocognitive testing, will be crucial to validate the role of SCFAs in HE development.
Additional Links: PMID-41502197
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41502197,
year = {2025},
author = {Hasan, I},
title = {Short-Chain Fatty Acids in the Gut-Brain-Liver Axis: Implications for Hepatic Encephalopathy.},
journal = {Acta medica Indonesiana},
volume = {57},
number = {4},
pages = {433-435},
pmid = {41502197},
issn = {2338-2732},
mesh = {Humans ; *Hepatic Encephalopathy/metabolism/etiology/epidemiology/microbiology ; *Gastrointestinal Microbiome ; *Fatty Acids, Volatile/metabolism ; *Liver Cirrhosis/complications ; Indonesia/epidemiology ; *Liver/metabolism ; *Brain/metabolism ; Cross-Sectional Studies ; Feces/chemistry ; },
abstract = {Hepatic encephalopathy (HE) is one of the serious complications of liver cirrhosis, characterized by a broad spectrum of neuropsychiatric symptoms, ranging from subtle cognitive impairment to coma, due to brain dysfunction associated with acute or chronic liver failure and/or portosystemic shunting. Globally, the prevalence of hepatic encephalopathy (HE) is reported to range from 20% to 80% in patients with liver cirrhosis, depending on whether the assessment includes minimal (MHE) or overt (OHE) forms. In Indonesia, determining the true prevalence of HE is challenging due to diagnostic difficulties, with estimates ranging from 30% to 84%. At Cipto Mangunkusumo General Hospital, the prevalence of HE in 2009 was 63.2%. In recent years, evidence has highlighted the role of the gut microbiota in the pathogenesis of hepatic encephalopathy (HE), a concept now widely referred to as the "gut-liver-brain axis." Short-chain fatty acids (SCFAs) are gut microbial-derived metabolites that provide numerous health benefits. SCFA has been demonstrated to impact gut barrier function, immunomodulation, and glucose homeostasis. In this issue, Ferdianto et al. conducted a cross-sectional observational study comparing the amount and composition of fecal SCFA in cirrhotic patients with and without HE. The study revealed no significant difference in SFA levels between HE and non-HE groups; however, the HE groups demonstrated higher levels of total SCFA, acetate, and butyrate compared to the non-HE groups. While this study contributes valuable early evidence from an Indonesian cohort, several important limitations should be acknowledged. First, the diagnostic approach for covert or minimal HE requires clarification. The authors did not explicitly state the neuropsychological tools and specific criteria used. Clear definitions are essential, as minimal and covert HE is susceptible to the choice of diagnostic method and can substantially influence group classification. Second, although SCFAs represent key microbial metabolites, the study did not explore the underlying microbiome composition. Without bacterial taxonomy or species-level data, it remains difficult to determine whether differences in SCFA levels truly reflect gut dysbiosis or altered microbial diversity. SCFA concentrations may be influenced by multiple factors, and therefore, inclusion of metagenomic or sequencing data would strengthen the mechanistic interpretation and allow linking specific bacterial taxa with cognitive impairment. Future studies that include larger and more heterogeneous cohorts, alongside integrated analyses of microbiome composition and validated neurocognitive testing, will be crucial to validate the role of SCFAs in HE development.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Hepatic Encephalopathy/metabolism/etiology/epidemiology/microbiology
*Gastrointestinal Microbiome
*Fatty Acids, Volatile/metabolism
*Liver Cirrhosis/complications
Indonesia/epidemiology
*Liver/metabolism
*Brain/metabolism
Cross-Sectional Studies
Feces/chemistry
RevDate: 2026-01-08
CmpDate: 2026-01-08
Cross-Feeding of Carbon and Nitrogen Between Aquificales and Thermus in Hot Springs.
Environmental microbiology, 28(1):e70225.
Acquisition and cycling of carbon and nitrogen among members of hot spring communities are not well understood. Metagenomic analyses of 105 communities inhabiting high temperature hot springs across Yellowstone and Iceland showed a co-distribution pattern of putatively autotrophic and/or diazotrophic (nitrogen-fixing) Aquificales and Thermus populations. Targeted enrichment of autotrophic and diazotrophic populations in an Icelandic hot spring produced a co-culture of Pampinifervens (Aquificales) that encoded carbon dioxide and nitrogen fixation pathways and Thermus (Thermales). Growth experiments revealed Pampinifervens could support the fixed carbon and nitrogen demands of Thermus, enabling growth. Interestingly, growth of Thermus was enhanced in co-cultures when Pampinifervens was forced to fix both carbon and nitrogen versus just carbon (ammonia-amended cultures). Further experimentation with Thermus, when grown in isolation, showed it preferred amino acids over ammonia as a nitrogen source. These findings demonstrate the importance of metabolic interactions among populations that can dictate the co-distribution of taxa in hot springs, drive community assembly, and maintain biodiversity. Further, these results highlight the fundamental role of Aquificales in the functioning of hot spring ecosystems, particularly those limited in organic carbon and fixed nitrogen like those in Iceland and to a lesser extent Yellowstone.
Additional Links: PMID-41502165
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41502165,
year = {2026},
author = {Keller, LM and Colman, DR and Stefánsson, A and Boyd, ES},
title = {Cross-Feeding of Carbon and Nitrogen Between Aquificales and Thermus in Hot Springs.},
journal = {Environmental microbiology},
volume = {28},
number = {1},
pages = {e70225},
doi = {10.1111/1462-2920.70225},
pmid = {41502165},
issn = {1462-2920},
support = {80NSSC19M0150/NASA/NASA/United States ; MSU D19//W. M. Keck Foundation/ ; },
mesh = {*Hot Springs/microbiology ; *Thermus/metabolism/growth & development/genetics ; *Nitrogen/metabolism ; *Carbon/metabolism ; Iceland ; Nitrogen Fixation ; Carbon Dioxide/metabolism ; Metagenomics ; },
abstract = {Acquisition and cycling of carbon and nitrogen among members of hot spring communities are not well understood. Metagenomic analyses of 105 communities inhabiting high temperature hot springs across Yellowstone and Iceland showed a co-distribution pattern of putatively autotrophic and/or diazotrophic (nitrogen-fixing) Aquificales and Thermus populations. Targeted enrichment of autotrophic and diazotrophic populations in an Icelandic hot spring produced a co-culture of Pampinifervens (Aquificales) that encoded carbon dioxide and nitrogen fixation pathways and Thermus (Thermales). Growth experiments revealed Pampinifervens could support the fixed carbon and nitrogen demands of Thermus, enabling growth. Interestingly, growth of Thermus was enhanced in co-cultures when Pampinifervens was forced to fix both carbon and nitrogen versus just carbon (ammonia-amended cultures). Further experimentation with Thermus, when grown in isolation, showed it preferred amino acids over ammonia as a nitrogen source. These findings demonstrate the importance of metabolic interactions among populations that can dictate the co-distribution of taxa in hot springs, drive community assembly, and maintain biodiversity. Further, these results highlight the fundamental role of Aquificales in the functioning of hot spring ecosystems, particularly those limited in organic carbon and fixed nitrogen like those in Iceland and to a lesser extent Yellowstone.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Hot Springs/microbiology
*Thermus/metabolism/growth & development/genetics
*Nitrogen/metabolism
*Carbon/metabolism
Iceland
Nitrogen Fixation
Carbon Dioxide/metabolism
Metagenomics
RevDate: 2026-01-08
CmpDate: 2026-01-08
Microbial Community Metagenomics in the Eastern Tropical North Pacific Oxygen Minimum Zone Reveals Functional Differences Along Biogeochemical Gradients.
Environmental microbiology, 28(1):e70226.
Oxygen Minimum Zones (OMZs) are pivotal ocean regions defined by low dissolved oxygen concentrations [DO]. However, biogeochemical variations within OMZs-both laterally and with depth-may select for fundamentally different microbial metabolisms important for ocean biogeochemistry. We used metagenome sequencing to investigate potential differences by specifically targeting biogeochemically-important features-including the primary and secondary nitrite maxima (PNM and SNM), the secondary chlorophyll maximum (SCM), and the upper edge of the OMZ (defined by 20 μM [DO]). Read-based analysis identified variations in 5389 functional genes but high similarity among SCM and SNM metagenomes at multiple stations. 690 genes showed significant differences between different features and included key functional genes involved in photosynthesis elevated in the PNM, while carbon fixation, anaerobic nitrogen cycling, and organic sulphur cycling genes increased in the SCM and SNM. Metagenome assembled genomes from a distinct upper OMZ edge sample included multiple Flavobacteriaceae and Rhodobacteraceae, with annotated functions contributing to metabolism of carbohydrates and amino acids, as well as aerobic anoxygenic photosynthesis (in Rhodobacteraceae). Our results identify functional genes and metabolic pathways that are enriched in unique SCM and SNM features, while also demonstrating sharp shifts in functional capacity in the overlying upper water column, within the ocean's largest OMZ.
Additional Links: PMID-41502126
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41502126,
year = {2026},
author = {Gutierrez, F and Vargas, S and Machado-Perez, F and Wilson, J and García-Maldonado, JQ and Beman, JM},
title = {Microbial Community Metagenomics in the Eastern Tropical North Pacific Oxygen Minimum Zone Reveals Functional Differences Along Biogeochemical Gradients.},
journal = {Environmental microbiology},
volume = {28},
number = {1},
pages = {e70226},
doi = {10.1111/1462-2920.70226},
pmid = {41502126},
issn = {1462-2920},
support = {OCE-1555375//National Science Foundation/ ; //University of California Alianza MX/ ; },
mesh = {*Oxygen/metabolism/analysis ; *Seawater/microbiology/chemistry ; *Metagenomics ; Pacific Ocean ; *Microbiota/genetics ; *Metagenome ; Photosynthesis/genetics ; *Bacteria/genetics/classification/metabolism/isolation & purification ; Chlorophyll/metabolism ; Nitrites/metabolism ; },
abstract = {Oxygen Minimum Zones (OMZs) are pivotal ocean regions defined by low dissolved oxygen concentrations [DO]. However, biogeochemical variations within OMZs-both laterally and with depth-may select for fundamentally different microbial metabolisms important for ocean biogeochemistry. We used metagenome sequencing to investigate potential differences by specifically targeting biogeochemically-important features-including the primary and secondary nitrite maxima (PNM and SNM), the secondary chlorophyll maximum (SCM), and the upper edge of the OMZ (defined by 20 μM [DO]). Read-based analysis identified variations in 5389 functional genes but high similarity among SCM and SNM metagenomes at multiple stations. 690 genes showed significant differences between different features and included key functional genes involved in photosynthesis elevated in the PNM, while carbon fixation, anaerobic nitrogen cycling, and organic sulphur cycling genes increased in the SCM and SNM. Metagenome assembled genomes from a distinct upper OMZ edge sample included multiple Flavobacteriaceae and Rhodobacteraceae, with annotated functions contributing to metabolism of carbohydrates and amino acids, as well as aerobic anoxygenic photosynthesis (in Rhodobacteraceae). Our results identify functional genes and metabolic pathways that are enriched in unique SCM and SNM features, while also demonstrating sharp shifts in functional capacity in the overlying upper water column, within the ocean's largest OMZ.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Oxygen/metabolism/analysis
*Seawater/microbiology/chemistry
*Metagenomics
Pacific Ocean
*Microbiota/genetics
*Metagenome
Photosynthesis/genetics
*Bacteria/genetics/classification/metabolism/isolation & purification
Chlorophyll/metabolism
Nitrites/metabolism
RevDate: 2026-01-08
CmpDate: 2026-01-08
Elucidating the therapeutic mechanism of Orthosiphon aristatus in hyperuricemic nephropathy: An integrated microbiome-metabolomics approach.
Journal of ethnopharmacology, 359:121115.
Hyperuricemic nephropathy (HN) remains challenging to treat due to the limitations, including variable efficacy and side effects, of conventional drugs. Orthosiphon aristatus (O. aristatus), used for over 2000 years in Dai medicine to treat kidney disorders by "clearing heat and promoting diuresis," shows strong potential for HN management. However, its mechanisms of action against HN remain unclear.
AIM OF THE STUDY: This study aimed to elucidate the nephroprotective effects and underlying mechanisms of O. aristatus against HN using an integrated strategy focusing on the gut-kidney axis.
METHODS: A rat model of HN was established by combined oral administration of potassium oxonate (750 mg/kg) and uric acid (300 mg/kg) daily for 7 weeks. Model rats were treated with a low- or high-dose aqueous extract of O. aristatus (3.125 or 6.25 g/kg/day), using allopurinol (5 mg/kg/day) as a positive control. Renal function was assessed by measuring serum levels of uric acid, creatinine, and urea nitrogen. Renal pathological injury and fibrosis were evaluated through histopathological examination (H&E and Masson's trichrome staining), immunohistochemistry (α-SMA, vimentin), and transmission electron microscopy. To elucidate the underlying mechanisms, an integrated multi-omics approach was employed: gut microbiota composition was profiled by metagenomic sequencing, and metabolic alterations in cecal content and kidney tissue were characterized using UPLC-MS-based metabolomics. Furthermore, the protein expression of key targets involved in intestinal barrier function (Occludin, Claudin-1) and the IDO1/AhR signaling pathway was validated by Western blot analysis.
RESULTS: O. aristatus treatment significantly ameliorated renal dysfunction and pathological injury, as demonstrated by marked reductions in serum uric acid (sUA), creatinine (Scr), and blood urea nitrogen (BUN) levels (all p < 0.001), alongside attenuated tubular injury and fibrosis. Concurrently, it restored gut microbiota diversity (e.g., increased Shannon index, p < 0.05) and composition, characterized by an enrichment of beneficial Prevotella and a reduction in Bacteroides. Integrated metabolomics analysis further linked these effects to the rectification of tryptophan metabolism, manifested by decreased renal kynurenine levels (p < 0.01) and enhanced intestinal barrier integrity (e.g., elevated Occludin and Claudin-1, p < 0.05). Collectively, our results delineate that the renoprotective effect of O. aristatus is mediated through the suppression of the renal IDO1/kynurenine/AhR pro-fibrotic signaling axis, unveiling a novel gut microbiota-metabolite-kidney interaction mechanism.
CONCLUSION: This study elucidates that the renoprotective effect of O. aristatus against HN is mediated through modulation of the gut-kidney axis, by restoring microbial ecology, reprogramming host tryptophan metabolism, and subsequently inhibiting the IDO1/kynurenine/AhR pro-fibrotic pathway.
Additional Links: PMID-41456824
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41456824,
year = {2026},
author = {Quan, H and Ouyang, J and Fu, X and Lin, D and Wu, Q and Li, D and Li, Y and Yang, F and Wu, S and Li, C and Mao, W},
title = {Elucidating the therapeutic mechanism of Orthosiphon aristatus in hyperuricemic nephropathy: An integrated microbiome-metabolomics approach.},
journal = {Journal of ethnopharmacology},
volume = {359},
number = {},
pages = {121115},
doi = {10.1016/j.jep.2025.121115},
pmid = {41456824},
issn = {1872-7573},
mesh = {Animals ; *Hyperuricemia/drug therapy/complications ; Male ; Rats ; *Plant Extracts/pharmacology/therapeutic use/isolation & purification ; *Kidney Diseases/drug therapy/pathology ; Metabolomics ; Rats, Sprague-Dawley ; Uric Acid/blood ; *Gastrointestinal Microbiome/drug effects ; *Orthosiphon/chemistry ; Kidney/drug effects/pathology/metabolism ; Disease Models, Animal ; },
abstract = {Hyperuricemic nephropathy (HN) remains challenging to treat due to the limitations, including variable efficacy and side effects, of conventional drugs. Orthosiphon aristatus (O. aristatus), used for over 2000 years in Dai medicine to treat kidney disorders by "clearing heat and promoting diuresis," shows strong potential for HN management. However, its mechanisms of action against HN remain unclear.
AIM OF THE STUDY: This study aimed to elucidate the nephroprotective effects and underlying mechanisms of O. aristatus against HN using an integrated strategy focusing on the gut-kidney axis.
METHODS: A rat model of HN was established by combined oral administration of potassium oxonate (750 mg/kg) and uric acid (300 mg/kg) daily for 7 weeks. Model rats were treated with a low- or high-dose aqueous extract of O. aristatus (3.125 or 6.25 g/kg/day), using allopurinol (5 mg/kg/day) as a positive control. Renal function was assessed by measuring serum levels of uric acid, creatinine, and urea nitrogen. Renal pathological injury and fibrosis were evaluated through histopathological examination (H&E and Masson's trichrome staining), immunohistochemistry (α-SMA, vimentin), and transmission electron microscopy. To elucidate the underlying mechanisms, an integrated multi-omics approach was employed: gut microbiota composition was profiled by metagenomic sequencing, and metabolic alterations in cecal content and kidney tissue were characterized using UPLC-MS-based metabolomics. Furthermore, the protein expression of key targets involved in intestinal barrier function (Occludin, Claudin-1) and the IDO1/AhR signaling pathway was validated by Western blot analysis.
RESULTS: O. aristatus treatment significantly ameliorated renal dysfunction and pathological injury, as demonstrated by marked reductions in serum uric acid (sUA), creatinine (Scr), and blood urea nitrogen (BUN) levels (all p < 0.001), alongside attenuated tubular injury and fibrosis. Concurrently, it restored gut microbiota diversity (e.g., increased Shannon index, p < 0.05) and composition, characterized by an enrichment of beneficial Prevotella and a reduction in Bacteroides. Integrated metabolomics analysis further linked these effects to the rectification of tryptophan metabolism, manifested by decreased renal kynurenine levels (p < 0.01) and enhanced intestinal barrier integrity (e.g., elevated Occludin and Claudin-1, p < 0.05). Collectively, our results delineate that the renoprotective effect of O. aristatus is mediated through the suppression of the renal IDO1/kynurenine/AhR pro-fibrotic signaling axis, unveiling a novel gut microbiota-metabolite-kidney interaction mechanism.
CONCLUSION: This study elucidates that the renoprotective effect of O. aristatus against HN is mediated through modulation of the gut-kidney axis, by restoring microbial ecology, reprogramming host tryptophan metabolism, and subsequently inhibiting the IDO1/kynurenine/AhR pro-fibrotic pathway.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Hyperuricemia/drug therapy/complications
Male
Rats
*Plant Extracts/pharmacology/therapeutic use/isolation & purification
*Kidney Diseases/drug therapy/pathology
Metabolomics
Rats, Sprague-Dawley
Uric Acid/blood
*Gastrointestinal Microbiome/drug effects
*Orthosiphon/chemistry
Kidney/drug effects/pathology/metabolism
Disease Models, Animal
RevDate: 2026-01-08
CmpDate: 2026-01-08
A young child formula with Limosilactobacillus reuteri and GOS modulates gut microbiome and enhances bone and muscle development: a randomized trial.
Nature communications, 17(1):237.
In this randomized, double-blind controlled trial, 182 Filipino children aged 2-3 years received either an experimental young child formula (EYCF) containing a combination of Limosilactobacillus reuteri DSM 17938 and galacto-oligosaccharides (GOS; n = 91) or a minimally fortified milk (CM; n = 91) for 6 months. Primary outcome was tibia speed of sound and secondary outcomes were muscle strength, blood vitamin D levels, bone turnover markers, gut microbiota, fecal calcium fatty acid soaps and gastro-intestinal tolerance. Compared to CM, those in the EYCF group showed increased tibia speed of sound after 3 and 6 months. The intervention remodeled the stool microbiome composition, assessed by shotgun metagenomics, with enrichment of L. reuteri and higher bifidobacteria presence in the EYCF group. Increased L. reuteri abundance after 6 months of EYCF consumption associates with higher bone quality and muscle strength. Stool metabolomics show 45 metabolites modulated by EYCF consumption and associated to microbiome compositional changes, leading to enrichment of tryptophane and indole metabolism. In summary, consumption of EYCF containing a L. reuteri + GOS synbiotic improves musculoskeletal development in toddlers via modulation of microbiota composition and function. These results provide insights on gut-musculoskeletal crosstalk during early life. Clinicaltrial.gov NCT04799028.
Additional Links: PMID-41387706
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41387706,
year = {2025},
author = {Bonnet, N and Capeding, MR and Siegwald, L and Garcia-Garcera, M and Desgeorges, T and Tytgat, HLP and Krattinger, LF and Lebumfacil, J and Phee, LC and Moll, JM and Gudjonsson, A and Rodriguez-Garcia, P and Baruchet, M and Feige, JN and Jankovic, I and Chen, Y and Egli, D and Horcajada, MN},
title = {A young child formula with Limosilactobacillus reuteri and GOS modulates gut microbiome and enhances bone and muscle development: a randomized trial.},
journal = {Nature communications},
volume = {17},
number = {1},
pages = {237},
pmid = {41387706},
issn = {2041-1723},
mesh = {Humans ; *Gastrointestinal Microbiome/drug effects/physiology ; *Limosilactobacillus reuteri/physiology ; Female ; Male ; Child, Preschool ; Feces/microbiology/chemistry ; Double-Blind Method ; *Infant Formula/chemistry ; *Oligosaccharides/administration & dosage/pharmacology ; *Bone Development/drug effects ; Muscle Strength/drug effects ; Vitamin D/blood ; Probiotics/administration & dosage ; Synbiotics/administration & dosage ; },
abstract = {In this randomized, double-blind controlled trial, 182 Filipino children aged 2-3 years received either an experimental young child formula (EYCF) containing a combination of Limosilactobacillus reuteri DSM 17938 and galacto-oligosaccharides (GOS; n = 91) or a minimally fortified milk (CM; n = 91) for 6 months. Primary outcome was tibia speed of sound and secondary outcomes were muscle strength, blood vitamin D levels, bone turnover markers, gut microbiota, fecal calcium fatty acid soaps and gastro-intestinal tolerance. Compared to CM, those in the EYCF group showed increased tibia speed of sound after 3 and 6 months. The intervention remodeled the stool microbiome composition, assessed by shotgun metagenomics, with enrichment of L. reuteri and higher bifidobacteria presence in the EYCF group. Increased L. reuteri abundance after 6 months of EYCF consumption associates with higher bone quality and muscle strength. Stool metabolomics show 45 metabolites modulated by EYCF consumption and associated to microbiome compositional changes, leading to enrichment of tryptophane and indole metabolism. In summary, consumption of EYCF containing a L. reuteri + GOS synbiotic improves musculoskeletal development in toddlers via modulation of microbiota composition and function. These results provide insights on gut-musculoskeletal crosstalk during early life. Clinicaltrial.gov NCT04799028.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/drug effects/physiology
*Limosilactobacillus reuteri/physiology
Female
Male
Child, Preschool
Feces/microbiology/chemistry
Double-Blind Method
*Infant Formula/chemistry
*Oligosaccharides/administration & dosage/pharmacology
*Bone Development/drug effects
Muscle Strength/drug effects
Vitamin D/blood
Probiotics/administration & dosage
Synbiotics/administration & dosage
RevDate: 2026-01-08
CmpDate: 2026-01-08
Rumen microbiome profiles of dairy cattle are affected by the presence of, and vaccination against, the abomasal parasitic nematode Ostertagia ostertagi.
Scientific reports, 16(1):1067.
Ostertagia ostertagi is a highly prevalent nematode that affects grazing cattle and impacts performance and welfare by reducing appetite and hindering weight gain. Despite its economic significance, the influence of the abomasal parasite O. ostertagi on the rumen microbiome remains unexplored. We examined the effects of subclinical O. ostertagi infection and vaccination on the rumen microbiome at taxonomic and functional levels. In an experimental trial, calves treated with vaccine or adjuvant-only were orally challenged with O. ostertagi larvae daily for 25 days; 4 groups of animals (UNF: unvaccinated, unchallenged; VAC: vaccinated, challenged; CHE: unvaccinated, challenged, high cumulative faecal egg counts (cFEC), and CLE: unvaccinated, challenged, low cFEC) were selected for whole shotgun metagenomic sequencing. Using a rigorous permutation test based on partial least squares discriminant analyses, we identified 36 (91), 38 (31), 21 (57), 41 (64) and 29 (57) microbial genera (genes) that distinguished VAC, CHE and CLE from UNF, CHE from CLE, and CHE from VAC, respectively. The subclinical infection reshaped the rumen microbiome; enrichment of opportunistic pathogens such as Listeria, and depletion of Filifactor in infected animals were identified as potential biomarkers for host immune response, whereas Actinomyces and Microspora were potential biomarkers of resistance to infection. Microbial biochemical pathways like acetogenesis (e.g., Elusimicrobium, nrfA), pectin and hemicellulose degradation (e.g., Sphaerochaeta), and phosphorus and sulphur metabolism (e.g., Candidatus Accumulibacter and Desulfatibacillum) were also affected by parasitism. Both infection and vaccination altered methanogens, methanotrophs and the methane metabolism pathway, highlighted by distinct gene clustering patterns between infected and uninfected animals. Clustering patterns of infected and vaccinated animals exhibited some similarities, which may reflect immune system modulation of the ruminal microbiome as a result of an abomasal infection. This study unveils critical changes in the rumen microbiome due to the infection by and vaccination against the abomasal parasite O. ostertagi. Our results highlight the importance of monitoring microbial dynamics in the development of effective anthelmintic treatments and vaccines.
Additional Links: PMID-41360901
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41360901,
year = {2025},
author = {Lima, J and McNeilly, TN and Auffret, MD and Steele, P and Frew, D and Martínez-Álvaro, M and Dewhurst, RJ and Watson, M and Roehe, R},
title = {Rumen microbiome profiles of dairy cattle are affected by the presence of, and vaccination against, the abomasal parasitic nematode Ostertagia ostertagi.},
journal = {Scientific reports},
volume = {16},
number = {1},
pages = {1067},
pmid = {41360901},
issn = {2045-2322},
support = {10045515//Innovate UK/ ; BB/N016742/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; BB/N01720X/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom ; },
mesh = {Animals ; Cattle ; *Ostertagia/immunology ; *Rumen/microbiology/parasitology ; *Ostertagiasis/veterinary/prevention & control/parasitology/immunology ; *Vaccination/veterinary ; *Cattle Diseases/parasitology/prevention & control/microbiology/immunology ; Abomasum/parasitology ; *Microbiota ; *Gastrointestinal Microbiome ; Feces/parasitology ; },
abstract = {Ostertagia ostertagi is a highly prevalent nematode that affects grazing cattle and impacts performance and welfare by reducing appetite and hindering weight gain. Despite its economic significance, the influence of the abomasal parasite O. ostertagi on the rumen microbiome remains unexplored. We examined the effects of subclinical O. ostertagi infection and vaccination on the rumen microbiome at taxonomic and functional levels. In an experimental trial, calves treated with vaccine or adjuvant-only were orally challenged with O. ostertagi larvae daily for 25 days; 4 groups of animals (UNF: unvaccinated, unchallenged; VAC: vaccinated, challenged; CHE: unvaccinated, challenged, high cumulative faecal egg counts (cFEC), and CLE: unvaccinated, challenged, low cFEC) were selected for whole shotgun metagenomic sequencing. Using a rigorous permutation test based on partial least squares discriminant analyses, we identified 36 (91), 38 (31), 21 (57), 41 (64) and 29 (57) microbial genera (genes) that distinguished VAC, CHE and CLE from UNF, CHE from CLE, and CHE from VAC, respectively. The subclinical infection reshaped the rumen microbiome; enrichment of opportunistic pathogens such as Listeria, and depletion of Filifactor in infected animals were identified as potential biomarkers for host immune response, whereas Actinomyces and Microspora were potential biomarkers of resistance to infection. Microbial biochemical pathways like acetogenesis (e.g., Elusimicrobium, nrfA), pectin and hemicellulose degradation (e.g., Sphaerochaeta), and phosphorus and sulphur metabolism (e.g., Candidatus Accumulibacter and Desulfatibacillum) were also affected by parasitism. Both infection and vaccination altered methanogens, methanotrophs and the methane metabolism pathway, highlighted by distinct gene clustering patterns between infected and uninfected animals. Clustering patterns of infected and vaccinated animals exhibited some similarities, which may reflect immune system modulation of the ruminal microbiome as a result of an abomasal infection. This study unveils critical changes in the rumen microbiome due to the infection by and vaccination against the abomasal parasite O. ostertagi. Our results highlight the importance of monitoring microbial dynamics in the development of effective anthelmintic treatments and vaccines.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
*Ostertagia/immunology
*Rumen/microbiology/parasitology
*Ostertagiasis/veterinary/prevention & control/parasitology/immunology
*Vaccination/veterinary
*Cattle Diseases/parasitology/prevention & control/microbiology/immunology
Abomasum/parasitology
*Microbiota
*Gastrointestinal Microbiome
Feces/parasitology
RevDate: 2026-01-08
CmpDate: 2026-01-08
Age-dependent patterns of the gut microbiome, antibiotic resistome, and pathogenicity in captive koalas (Phascolarctos cinereus).
Communications biology, 9(1):40.
Gut microbiome has a profound influence on koalas' health. Yet, the relationships among the gut bacteriome, virome, antibiotic resistome, and pathogenicity throughout different stages in koala's life remain elusive. Here, we presented a metagenome-resolved survey of gut microbiome utilizing 75 fecal samples from three groups of captive koalas. The diversity of bacteriome and virome were age-dependent, predominating in adult koalas. Lytic viruses increased with age as lysogenic viruses and bacterial hosts declined, and virus-to-microbe ratios rose, revealing concomitant age-related shifts in microbial communities, though causality remains unresolved. Antibiotic resistance genes (ARGs) were more prevalent in young koalas, unlike in humans, where they accumulate with age. Two ARG-carrying pathogens, Klebsiella pneumoniae and Escherichia coli, were identified and cultured, with K. pneumoniae and E. coli predominating in young koalas. One age-dependent lytic virus infecting K. pneumoniae only detected in young koalas, and two lysogenic viruses infecting E. coli identified the in young and adult koalas. Analyses showed a positive correlation between mobile genetic elements (MGEs) and virulence factors (VFs), which facilitated the widespread dissemination of VFs and impacted health. Collectively, this study advances the understanding of gut microbiome in health, providing solutions to the treatment and management of captive koalas.
Additional Links: PMID-41354765
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41354765,
year = {2025},
author = {Su, H and Han, P and Yan, H and Wu, C and Zeng, S and Zhang, P and Wang, Z and Dong, J and Liang, M and Jing, H and Zhang, D and Yang, C and Xie, N and Liu, X and Weng, S and Dong, G and He, J},
title = {Age-dependent patterns of the gut microbiome, antibiotic resistome, and pathogenicity in captive koalas (Phascolarctos cinereus).},
journal = {Communications biology},
volume = {9},
number = {1},
pages = {40},
pmid = {41354765},
issn = {2399-3642},
mesh = {Animals ; *Phascolarctidae/microbiology/virology ; *Gastrointestinal Microbiome/drug effects ; Feces/microbiology ; Anti-Bacterial Agents/pharmacology ; Klebsiella pneumoniae/pathogenicity ; Age Factors ; *Drug Resistance, Microbial/genetics ; Male ; *Bacteria/genetics/pathogenicity/drug effects ; Female ; },
abstract = {Gut microbiome has a profound influence on koalas' health. Yet, the relationships among the gut bacteriome, virome, antibiotic resistome, and pathogenicity throughout different stages in koala's life remain elusive. Here, we presented a metagenome-resolved survey of gut microbiome utilizing 75 fecal samples from three groups of captive koalas. The diversity of bacteriome and virome were age-dependent, predominating in adult koalas. Lytic viruses increased with age as lysogenic viruses and bacterial hosts declined, and virus-to-microbe ratios rose, revealing concomitant age-related shifts in microbial communities, though causality remains unresolved. Antibiotic resistance genes (ARGs) were more prevalent in young koalas, unlike in humans, where they accumulate with age. Two ARG-carrying pathogens, Klebsiella pneumoniae and Escherichia coli, were identified and cultured, with K. pneumoniae and E. coli predominating in young koalas. One age-dependent lytic virus infecting K. pneumoniae only detected in young koalas, and two lysogenic viruses infecting E. coli identified the in young and adult koalas. Analyses showed a positive correlation between mobile genetic elements (MGEs) and virulence factors (VFs), which facilitated the widespread dissemination of VFs and impacted health. Collectively, this study advances the understanding of gut microbiome in health, providing solutions to the treatment and management of captive koalas.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Phascolarctidae/microbiology/virology
*Gastrointestinal Microbiome/drug effects
Feces/microbiology
Anti-Bacterial Agents/pharmacology
Klebsiella pneumoniae/pathogenicity
Age Factors
*Drug Resistance, Microbial/genetics
Male
*Bacteria/genetics/pathogenicity/drug effects
Female
RevDate: 2026-01-08
CmpDate: 2026-01-08
Early-life exposure to linezolid caused gut microbiota dysbiosis can be inherited from parents to offspring.
Chemico-biological interactions, 424:111863.
BACKGROUND AND OBJECTIVES: Linezolid is a broad-spectrum antibiotic against Gram-positive bacterial infections. Widespread use of linezolid has brought about significant adverse effects and potential reproductive toxicity, but there is not yet any study regarding to the transgenerational impact.
METHODS: Gut microbiota and metabolites from the 12-weeks old male mice who were treated with one-week linezolid at 4 weeks of age, as well as those from their offsprings, were analyzed by metagenomics and metabolomics, respectively. Reproductivity of the male parents were monitored, including fertility, litter size, survival and weight gain of offsprings.
RESULTS: Offsprings survival from the linezolid-treated male parents was obviously decreased, although fertilities, litter size, or weight gain was not affected. The linezolid-induced gut microbiota perturbation in male parents was manifested as lower alpha diversity, distinguishing beta diversity, and the dramatically altered profiles of function genes and metabolites. Especially, linezolid exposure reversed the relationship between Dysosmobacter and butyrogenic species, and that between Dysosmobacter and inflammation-associated species. Interestingly, gut microbiota dysbiosis also existed in both female and male offsprings from the treated male parents. Moreover, it was found that the differential metabolites enriched in ABC transporter pathway were found male parents and offsprings, while those enriched in sphingolipid signaling pathway were only found in offsprings of both sexes.
CONCLUSIONS: The early-life short-term exposure to linezolid make long-term gut microbiota dysregulation, which was even inherited from parents to offsprings. These findings raised critical concern about the ecological consequences of early-life antibiotic exposure and clinical safety evaluations.
Additional Links: PMID-41352476
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41352476,
year = {2026},
author = {Su, J and Zhao, K and Zhou, X and Pan, Z and Xia, C},
title = {Early-life exposure to linezolid caused gut microbiota dysbiosis can be inherited from parents to offspring.},
journal = {Chemico-biological interactions},
volume = {424},
number = {},
pages = {111863},
doi = {10.1016/j.cbi.2025.111863},
pmid = {41352476},
issn = {1872-7786},
mesh = {Animals ; *Gastrointestinal Microbiome/drug effects ; *Linezolid/adverse effects/pharmacology ; Male ; *Dysbiosis/chemically induced/microbiology ; Female ; Mice ; *Anti-Bacterial Agents/adverse effects ; },
abstract = {BACKGROUND AND OBJECTIVES: Linezolid is a broad-spectrum antibiotic against Gram-positive bacterial infections. Widespread use of linezolid has brought about significant adverse effects and potential reproductive toxicity, but there is not yet any study regarding to the transgenerational impact.
METHODS: Gut microbiota and metabolites from the 12-weeks old male mice who were treated with one-week linezolid at 4 weeks of age, as well as those from their offsprings, were analyzed by metagenomics and metabolomics, respectively. Reproductivity of the male parents were monitored, including fertility, litter size, survival and weight gain of offsprings.
RESULTS: Offsprings survival from the linezolid-treated male parents was obviously decreased, although fertilities, litter size, or weight gain was not affected. The linezolid-induced gut microbiota perturbation in male parents was manifested as lower alpha diversity, distinguishing beta diversity, and the dramatically altered profiles of function genes and metabolites. Especially, linezolid exposure reversed the relationship between Dysosmobacter and butyrogenic species, and that between Dysosmobacter and inflammation-associated species. Interestingly, gut microbiota dysbiosis also existed in both female and male offsprings from the treated male parents. Moreover, it was found that the differential metabolites enriched in ABC transporter pathway were found male parents and offsprings, while those enriched in sphingolipid signaling pathway were only found in offsprings of both sexes.
CONCLUSIONS: The early-life short-term exposure to linezolid make long-term gut microbiota dysregulation, which was even inherited from parents to offsprings. These findings raised critical concern about the ecological consequences of early-life antibiotic exposure and clinical safety evaluations.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/drug effects
*Linezolid/adverse effects/pharmacology
Male
*Dysbiosis/chemically induced/microbiology
Female
Mice
*Anti-Bacterial Agents/adverse effects
RevDate: 2026-01-08
CmpDate: 2026-01-08
Deciphering the personalized functional redundancy hierarchy in the gut microbiome.
Microbiome, 14(1):17.
BACKGROUND: Functional redundancy (FR) in the human gut microbiome is crucial for maintaining stability and resilience, exhibiting a hierarchical structure. However, the precise configuration and functional implications of this hierarchy remain elusive and limited by single-metric measurements. We aimed to develop a method that comprehensively characterizes the hierarchical organization of functional redundancy in personalized microbiomes.
RESULTS: We represented functional redundancy as a network and developed a structural entropy (SE)-based approach to elucidate FR hierarchy, revealing functional redundancy clusters (FRCs)-groups of species capable of independently executing specific metabolic pathways. Through controlled simulations and cross-cohort analyses spanning 4912 gut metagenomes across 28 disease cohorts, we established that our approach offers higher resolution, more comprehensive measurement, and greater robustness in detecting disease-associated functional patterns than traditional FR methods. In healthy individuals, we observed FR network polycentric structure, which shifted to monocentric structure in non-alcoholic steatohepatitis patients. Vitamin biosynthesis FRCs correlated with microbiota transplantation efficiency, while FRCs specialized in short-chain fatty acid production predicted immunotherapy response and patient survival. Permutation tests validated the causal relationship between SE differences and disease phenotypes, while perturbation experiments revealed that FR keystone species exert disproportionate influence on the system's resilience.
CONCLUSIONS: Our SE-based approach to functional redundancy analysis provides superior sensitivity compared to conventional metrics by integrating multiple hierarchical levels of functional organization. This methodology establishes a novel perspective for understanding microbiome stability through personalized FR networks, positioning FRCs as promising diagnostic markers and therapeutic targets for microbiome-associated diseases. Video Abstract.
Additional Links: PMID-41345980
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41345980,
year = {2025},
author = {Jiang, Y and Che, L and Li, SC},
title = {Deciphering the personalized functional redundancy hierarchy in the gut microbiome.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {17},
pmid = {41345980},
issn = {2049-2618},
support = {JCYJ20220818101201004//Shenzhen Science and Technology Innovation Program/ ; },
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; Metagenome ; *Bacteria/classification/genetics/metabolism/isolation & purification ; Non-alcoholic Fatty Liver Disease/microbiology ; Metabolic Networks and Pathways ; Cohort Studies ; },
abstract = {BACKGROUND: Functional redundancy (FR) in the human gut microbiome is crucial for maintaining stability and resilience, exhibiting a hierarchical structure. However, the precise configuration and functional implications of this hierarchy remain elusive and limited by single-metric measurements. We aimed to develop a method that comprehensively characterizes the hierarchical organization of functional redundancy in personalized microbiomes.
RESULTS: We represented functional redundancy as a network and developed a structural entropy (SE)-based approach to elucidate FR hierarchy, revealing functional redundancy clusters (FRCs)-groups of species capable of independently executing specific metabolic pathways. Through controlled simulations and cross-cohort analyses spanning 4912 gut metagenomes across 28 disease cohorts, we established that our approach offers higher resolution, more comprehensive measurement, and greater robustness in detecting disease-associated functional patterns than traditional FR methods. In healthy individuals, we observed FR network polycentric structure, which shifted to monocentric structure in non-alcoholic steatohepatitis patients. Vitamin biosynthesis FRCs correlated with microbiota transplantation efficiency, while FRCs specialized in short-chain fatty acid production predicted immunotherapy response and patient survival. Permutation tests validated the causal relationship between SE differences and disease phenotypes, while perturbation experiments revealed that FR keystone species exert disproportionate influence on the system's resilience.
CONCLUSIONS: Our SE-based approach to functional redundancy analysis provides superior sensitivity compared to conventional metrics by integrating multiple hierarchical levels of functional organization. This methodology establishes a novel perspective for understanding microbiome stability through personalized FR networks, positioning FRCs as promising diagnostic markers and therapeutic targets for microbiome-associated diseases. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
Metagenome
*Bacteria/classification/genetics/metabolism/isolation & purification
Non-alcoholic Fatty Liver Disease/microbiology
Metabolic Networks and Pathways
Cohort Studies
RevDate: 2026-01-08
CmpDate: 2026-01-08
Comparative study on the rumen microbial communities and functions between Wagyu and Holstein calves.
BMC genomics, 27(1):20.
BACKGROUND: Understanding the rumen microbiota's development in calves is essential for optimizing breed-specific feeding strategies. This study aimed to comparatively investigate the dynamic changes in the rumen microbial community structure and function in Wagyu and Holstein calves.
METHODS: Five 3-month-old Wagyu calves and five age-matched Holstein calves were selected. All animals received the same diet consisting of concentrate and hay, with free access to feed and water. Rumen fluid samples were collected monthly from 3 to 6 months of age. Metagenomic sequencing was performed to assess microbial composition (phylum and genus levels), alpha diversity (Shannon, Simpson, ACE, and Chao1 indices), and functional pathway (KEGG-based).
RESULTS: The cumulative relative abundance of dominant taxa at both phylum and genus levels declined with age in both breeds, more markedly in Wagyu calves than in Holsteins. From 3 to 6 months of age, the top five phyla combined dropped by 3.25% in Wagyu and 0.87% in Holstein calves, whereas the top ten genera combined decreased by 1.63% and 0.63%, respectively. Alpha diversity in Wagyu calves increased significantly with age. At 5 and 6 months, the Shannon, ACE, and Chao1 indices were significantly higher than those at 3 months (P < 0.05). Moreover, from 4 to 6 months, Wagyu calves consistently exhibited significantly higher diversity indices than Holsteins (P < 0.05). At 6 months, Wagyu calves showed a significant reduction in metabolism-related microbial genes and an increase in genes related to cellular processes and genetic information processing compared to earlier ages and Holstein calves (P < 0.05).
CONCLUSIONS: These findings suggest potential breed-specific differences in the succession and functional maturation of rumen microbiota. Holstein calves developed earlier and more stable metabolic functions, while Wagyu calves underwent a more dynamic microbial selection process.
CLINICAL TRIAL NUMBER: Not applicable.
Additional Links: PMID-41345831
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41345831,
year = {2025},
author = {Bu, Y and Sun, F and Liu, L and He, X and Wang, H and Chen, Z and He, T and Xu, S and Zhao, X and Meng, X},
title = {Comparative study on the rumen microbial communities and functions between Wagyu and Holstein calves.},
journal = {BMC genomics},
volume = {27},
number = {1},
pages = {20},
pmid = {41345831},
issn = {1471-2164},
support = {CX23YQ31//Heilongjiang Agricultural Science and Technology Innovation Leapfrog Project/ ; CARS-37//Supported by China Agriculture Research System of MOF and MARA/ ; },
mesh = {Animals ; *Rumen/microbiology ; Cattle ; Metagenomics ; *Gastrointestinal Microbiome ; *Microbiota ; Metagenome ; Bacteria/classification/genetics ; },
abstract = {BACKGROUND: Understanding the rumen microbiota's development in calves is essential for optimizing breed-specific feeding strategies. This study aimed to comparatively investigate the dynamic changes in the rumen microbial community structure and function in Wagyu and Holstein calves.
METHODS: Five 3-month-old Wagyu calves and five age-matched Holstein calves were selected. All animals received the same diet consisting of concentrate and hay, with free access to feed and water. Rumen fluid samples were collected monthly from 3 to 6 months of age. Metagenomic sequencing was performed to assess microbial composition (phylum and genus levels), alpha diversity (Shannon, Simpson, ACE, and Chao1 indices), and functional pathway (KEGG-based).
RESULTS: The cumulative relative abundance of dominant taxa at both phylum and genus levels declined with age in both breeds, more markedly in Wagyu calves than in Holsteins. From 3 to 6 months of age, the top five phyla combined dropped by 3.25% in Wagyu and 0.87% in Holstein calves, whereas the top ten genera combined decreased by 1.63% and 0.63%, respectively. Alpha diversity in Wagyu calves increased significantly with age. At 5 and 6 months, the Shannon, ACE, and Chao1 indices were significantly higher than those at 3 months (P < 0.05). Moreover, from 4 to 6 months, Wagyu calves consistently exhibited significantly higher diversity indices than Holsteins (P < 0.05). At 6 months, Wagyu calves showed a significant reduction in metabolism-related microbial genes and an increase in genes related to cellular processes and genetic information processing compared to earlier ages and Holstein calves (P < 0.05).
CONCLUSIONS: These findings suggest potential breed-specific differences in the succession and functional maturation of rumen microbiota. Holstein calves developed earlier and more stable metabolic functions, while Wagyu calves underwent a more dynamic microbial selection process.
CLINICAL TRIAL NUMBER: Not applicable.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Rumen/microbiology
Cattle
Metagenomics
*Gastrointestinal Microbiome
*Microbiota
Metagenome
Bacteria/classification/genetics
RevDate: 2026-01-08
CmpDate: 2026-01-08
Integrated meta-omics reveals AFB1 dose-dependent remodeling of the rumen microbiome-virome-metabolome axis driving metabolic impairment in goats.
Microbiome, 14(1):18.
BACKGROUND: Aflatoxin B1 (AFB1), a highly carcinogenic and hepatotoxic mycotoxin frequently contaminating animal feed, presents serious health risks to both humans and livestock. Although AFB1's hepatotoxicity and other organ damage are extensively characterized, how this mycotoxin influences ruminal microbiota dynamics and functional activities in ruminants remains underexplored. Although some studies suggest that AFB1 reduces nutrient digestibility and performance in ruminants, the underlying mechanisms are unclear. To aid in developing effective mitigation strategies for aflatoxicosis in ruminants, this study randomly divided Saanen goats into three groups. The CON group received the standard ration without additives, whereas LD and HD groups were provided identical basal diets fortified with 50 or 500 μg/kg AFB1. Throughout the study, alterations in ruminal fermentation parameters, microbiome, and metabolome profiles were analyzed.
RESULTS: With increasing AFB1 levels, ruminal pH, the concentration of total volatile fatty acids (VFA), acetate, and propionate decreased quadratically, while butyrate decreased linearly. Metagenomic profiling indicated suppressed populations of Pelagibacter and Flavobacterium following AFB1 exposure, contrasting with promoted growth of Cryptobacteroides. Additionally, seven carbohydrate-active enzymes (CAZymes), specifically GT92, GT20, CE7, GT32, GT35, GT57, and GT50, were found to be more prevalent in the rumen of the CON group. Statistically higher viral loads characterized the HD group when benchmarked against CON group. Metabolomics analysis identified 1197 differential metabolites among the CON, LD, and HD groups, including cytochalasin Ppho and chrysophanol, both known for their teratogenic properties and their ability to induce cell death.
CONCLUSIONS: This study indicates that dietary AFB1 exposure can alter the ruminal microbial and metabolomic profiles, induce prophage activation, and impact carbohydrate degradation and microbial protein turnover. These alterations may contribute to reductions in ruminal pH and volatile fatty acid concentrations, thereby impairing feed digestibility and animal performance. The findings provide valuable insights into AFB1's effects on rumen health, and further investigations of these metabolic pathways may help develop precision interventions to mitigate AFB1-induced rumen dysfunction and productivity losses. Video Abstract.
Additional Links: PMID-41345737
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41345737,
year = {2025},
author = {Li, F and Yan, M and Su, D and Peng, J and Wang, X and Hao, J and Ma, T and Lin, Y and Shi, H},
title = {Integrated meta-omics reveals AFB1 dose-dependent remodeling of the rumen microbiome-virome-metabolome axis driving metabolic impairment in goats.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {18},
pmid = {41345737},
issn = {2049-2618},
support = {grant no. 31902187//National Natural Science Foundation of China/ ; SCCXTD-2024-14//Innovation Team Development Funds for Sichuan Meat Goat and Sheep/ ; },
mesh = {Animals ; *Rumen/microbiology/virology/metabolism/drug effects ; *Goats/microbiology/metabolism ; *Gastrointestinal Microbiome/drug effects ; *Aflatoxin B1/toxicity/administration & dosage ; Animal Feed/analysis ; *Metabolome/drug effects ; Bacteria/classification/genetics/drug effects/isolation & purification/metabolism ; Fermentation ; Metagenomics/methods ; Fatty Acids, Volatile/metabolism ; },
abstract = {BACKGROUND: Aflatoxin B1 (AFB1), a highly carcinogenic and hepatotoxic mycotoxin frequently contaminating animal feed, presents serious health risks to both humans and livestock. Although AFB1's hepatotoxicity and other organ damage are extensively characterized, how this mycotoxin influences ruminal microbiota dynamics and functional activities in ruminants remains underexplored. Although some studies suggest that AFB1 reduces nutrient digestibility and performance in ruminants, the underlying mechanisms are unclear. To aid in developing effective mitigation strategies for aflatoxicosis in ruminants, this study randomly divided Saanen goats into three groups. The CON group received the standard ration without additives, whereas LD and HD groups were provided identical basal diets fortified with 50 or 500 μg/kg AFB1. Throughout the study, alterations in ruminal fermentation parameters, microbiome, and metabolome profiles were analyzed.
RESULTS: With increasing AFB1 levels, ruminal pH, the concentration of total volatile fatty acids (VFA), acetate, and propionate decreased quadratically, while butyrate decreased linearly. Metagenomic profiling indicated suppressed populations of Pelagibacter and Flavobacterium following AFB1 exposure, contrasting with promoted growth of Cryptobacteroides. Additionally, seven carbohydrate-active enzymes (CAZymes), specifically GT92, GT20, CE7, GT32, GT35, GT57, and GT50, were found to be more prevalent in the rumen of the CON group. Statistically higher viral loads characterized the HD group when benchmarked against CON group. Metabolomics analysis identified 1197 differential metabolites among the CON, LD, and HD groups, including cytochalasin Ppho and chrysophanol, both known for their teratogenic properties and their ability to induce cell death.
CONCLUSIONS: This study indicates that dietary AFB1 exposure can alter the ruminal microbial and metabolomic profiles, induce prophage activation, and impact carbohydrate degradation and microbial protein turnover. These alterations may contribute to reductions in ruminal pH and volatile fatty acid concentrations, thereby impairing feed digestibility and animal performance. The findings provide valuable insights into AFB1's effects on rumen health, and further investigations of these metabolic pathways may help develop precision interventions to mitigate AFB1-induced rumen dysfunction and productivity losses. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Rumen/microbiology/virology/metabolism/drug effects
*Goats/microbiology/metabolism
*Gastrointestinal Microbiome/drug effects
*Aflatoxin B1/toxicity/administration & dosage
Animal Feed/analysis
*Metabolome/drug effects
Bacteria/classification/genetics/drug effects/isolation & purification/metabolism
Fermentation
Metagenomics/methods
Fatty Acids, Volatile/metabolism
RevDate: 2026-01-08
CmpDate: 2026-01-08
Perinatal citalopram exposure alters the gut composition and microbial metabolic profiles of Sprague-Dawley rat dams and female offspring but not male offspring.
Biology of sex differences, 17(1):2.
BACKGROUND: Selective serotonin reuptake inhibitors are widely prescribed during pregnancy. Their main route of administration is through the gut. However, their impact on the maternal and offspring gut microbiome and microbial metabolic pathways remains poorly understood. This study used metagenomic shotgun sequencing to examine the effects of perinatal citalopram exposure in rat dams and their offspring on gut composition and downstream metabolic pathways.
METHODS: We treated pregnant and nursing rat dams with either citalopram or vehicle (water). Their feces were collected, DNA from these samples was extracted and then sequenced using shotgun metagenomic sequencing. The BioBakery suite of microbiome analysis tools was utilized in tandem with RStudio to analyze the gut composition and microbial metabolic pathways of the rat dams and their offspring.
RESULTS: Pregnant and nursing dams treated with citalopram exhibited marked shifts in microbial community structure, including phylum-level alterations in Proteobacteria and Defferibacteria. Citalopram treated dams displayed significantly altered beta diversity. Species level alterations due to treatment were composed of five significantly altered microbes, two of which belong to the Proteobacteria phylum. These changes were highly diverse and were not congruent with microbe-level alterations observed in offspring. Alpha diversity of microbial metabolic pathways was compared using the Gini-Simpson index, which was significantly increased in dams suggesting greater metabolic functional diversity with age. Female offspring perinatally exposed to citalopram showed significant changes in gut beta diversity, with seven significant alterations at the microbe level. These microbial shifts were accompanied by twenty-one significantly altered microbial metabolic pathways. In contrast, male offspring showed no significant differences in microbial composition or beta diversity and only minor metabolic changes.
CONCLUSIONS: These findings demonstrate that maternal citalopram exposure during pregnancy and lactation has lasting, sex-specific impacts on the offspring's gut microbiome and microbial metabolic pathways. The pronounced alterations in female, but not male offspring, suggest that host sex may be a critical determinant in the developmental response to citalopram exposure. This work underscores the value of metagenomic approaches in uncovering complex host-microbiome interactions and highlights the need to consider offspring sex in evaluating the safety and long-term effects of antidepressant use during pregnancy.
Additional Links: PMID-41340151
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41340151,
year = {2025},
author = {Kropp, DR and Glover, ME and Samanta, R and Unroe, KA and Clinton, SM and Hodes, GE},
title = {Perinatal citalopram exposure alters the gut composition and microbial metabolic profiles of Sprague-Dawley rat dams and female offspring but not male offspring.},
journal = {Biology of sex differences},
volume = {17},
number = {1},
pages = {2},
pmid = {41340151},
issn = {2042-6410},
support = {R01MH105447-01/NH/NIH HHS/United States ; R01MH105447-01/NH/NIH HHS/United States ; },
mesh = {Animals ; *Citalopram/pharmacology ; Female ; Male ; *Gastrointestinal Microbiome/drug effects ; Rats, Sprague-Dawley ; Pregnancy ; *Selective Serotonin Reuptake Inhibitors/pharmacology ; *Prenatal Exposure Delayed Effects/microbiology ; Rats ; Sex Characteristics ; *Metabolome/drug effects ; Animals, Newborn ; },
abstract = {BACKGROUND: Selective serotonin reuptake inhibitors are widely prescribed during pregnancy. Their main route of administration is through the gut. However, their impact on the maternal and offspring gut microbiome and microbial metabolic pathways remains poorly understood. This study used metagenomic shotgun sequencing to examine the effects of perinatal citalopram exposure in rat dams and their offspring on gut composition and downstream metabolic pathways.
METHODS: We treated pregnant and nursing rat dams with either citalopram or vehicle (water). Their feces were collected, DNA from these samples was extracted and then sequenced using shotgun metagenomic sequencing. The BioBakery suite of microbiome analysis tools was utilized in tandem with RStudio to analyze the gut composition and microbial metabolic pathways of the rat dams and their offspring.
RESULTS: Pregnant and nursing dams treated with citalopram exhibited marked shifts in microbial community structure, including phylum-level alterations in Proteobacteria and Defferibacteria. Citalopram treated dams displayed significantly altered beta diversity. Species level alterations due to treatment were composed of five significantly altered microbes, two of which belong to the Proteobacteria phylum. These changes were highly diverse and were not congruent with microbe-level alterations observed in offspring. Alpha diversity of microbial metabolic pathways was compared using the Gini-Simpson index, which was significantly increased in dams suggesting greater metabolic functional diversity with age. Female offspring perinatally exposed to citalopram showed significant changes in gut beta diversity, with seven significant alterations at the microbe level. These microbial shifts were accompanied by twenty-one significantly altered microbial metabolic pathways. In contrast, male offspring showed no significant differences in microbial composition or beta diversity and only minor metabolic changes.
CONCLUSIONS: These findings demonstrate that maternal citalopram exposure during pregnancy and lactation has lasting, sex-specific impacts on the offspring's gut microbiome and microbial metabolic pathways. The pronounced alterations in female, but not male offspring, suggest that host sex may be a critical determinant in the developmental response to citalopram exposure. This work underscores the value of metagenomic approaches in uncovering complex host-microbiome interactions and highlights the need to consider offspring sex in evaluating the safety and long-term effects of antidepressant use during pregnancy.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Citalopram/pharmacology
Female
Male
*Gastrointestinal Microbiome/drug effects
Rats, Sprague-Dawley
Pregnancy
*Selective Serotonin Reuptake Inhibitors/pharmacology
*Prenatal Exposure Delayed Effects/microbiology
Rats
Sex Characteristics
*Metabolome/drug effects
Animals, Newborn
RevDate: 2026-01-08
CmpDate: 2026-01-08
Diverse quorum sensing systems regulate microbial communication and biogeochemical processes in deep-sea cold seeps.
Microbiome, 14(1):16.
BACKGROUND: Quorum sensing is a fundamental chemical communication mechanism that enables microorganisms to coordinate behavior and adapt to environmental conditions. However, its contribution in deep-sea cold seep ecosystems, where diverse microbial communities and frequent communication occur, remains poorly understood. In this study, we aimed to elucidate the occurrence and potential ecological roles of quorum sensing in cold seeps.
RESULTS: We analyzed 170 metagenomes and 33 metatranscriptomes from 17 global cold seep sites, identifying 299,355 quorum sensing genes from the cold seep non-redundant gene catalog. These genes represent 34 types across six quorum sensing systems, with distribution patterns influenced by sediment depth and seep type. A total of 32,500 quorum sensing genes were identified in 3576 metagenome-assembled genomes from 12 archaeal and 108 bacterial phyla, revealing a complex network of intraspecies and interspecies communication. Microbial groups involved in key metabolic processes, such as sulfate-reducing bacteria, anaerobic methanotrophic archaea, diazotrophs, and organohalide reducers, were extensively regulated by quorum sensing, influencing biogeochemical cycles in cold seeps. Phylogenetic analysis and protein domain identification highlighted the involvement of key quorum sensing-related proteins (e.g., PDE, RpfC/G, CahR, and LuxR) in modulating microbial behaviors, such as motility and chemotaxis. Heterologous expression further confirmed the activity of representative LuxI-R pairs, and metabolomic profiling suggested the presence of putative quorum sensing inhibitors in cold seep sediments.
CONCLUSIONS: Overall, these findings highlight the complexity and significance of quorum sensing in microbial interactions, ecological adaptation, and biogeochemical cycling within cold seep ecosystems, advancing our understanding of microbial communication in the deep biosphere. Video Abstract.
Additional Links: PMID-41340071
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41340071,
year = {2025},
author = {Peng, J and Liu, X and Wang, J and Meng, N and Cai, R and Peng, Y and Han, Y and Liao, J and Li, C and Rubin-Blum, M and Ma, Q and Dong, X},
title = {Diverse quorum sensing systems regulate microbial communication and biogeochemical processes in deep-sea cold seeps.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {16},
pmid = {41340071},
issn = {2049-2618},
support = {1359/23//Israel Science Foundation/ ; 32170121//National Natural Science Foundation of China/ ; 92351304//National Natural Science Foundation of China/ ; 2023J06042//Natural Science Foundation of Fujian Province/ ; 3502Z202373076//Natural Science Foundation Project of Xiamen City/ ; 2022025//Scientific Research Foundation of Third Institute of Oceanography, MNR/ ; },
mesh = {*Quorum Sensing/genetics ; *Bacteria/genetics/classification/metabolism/isolation & purification ; *Archaea/genetics/classification/metabolism ; Metagenome ; *Seawater/microbiology ; Phylogeny ; *Microbiota/genetics ; Ecosystem ; Geologic Sediments/microbiology ; },
abstract = {BACKGROUND: Quorum sensing is a fundamental chemical communication mechanism that enables microorganisms to coordinate behavior and adapt to environmental conditions. However, its contribution in deep-sea cold seep ecosystems, where diverse microbial communities and frequent communication occur, remains poorly understood. In this study, we aimed to elucidate the occurrence and potential ecological roles of quorum sensing in cold seeps.
RESULTS: We analyzed 170 metagenomes and 33 metatranscriptomes from 17 global cold seep sites, identifying 299,355 quorum sensing genes from the cold seep non-redundant gene catalog. These genes represent 34 types across six quorum sensing systems, with distribution patterns influenced by sediment depth and seep type. A total of 32,500 quorum sensing genes were identified in 3576 metagenome-assembled genomes from 12 archaeal and 108 bacterial phyla, revealing a complex network of intraspecies and interspecies communication. Microbial groups involved in key metabolic processes, such as sulfate-reducing bacteria, anaerobic methanotrophic archaea, diazotrophs, and organohalide reducers, were extensively regulated by quorum sensing, influencing biogeochemical cycles in cold seeps. Phylogenetic analysis and protein domain identification highlighted the involvement of key quorum sensing-related proteins (e.g., PDE, RpfC/G, CahR, and LuxR) in modulating microbial behaviors, such as motility and chemotaxis. Heterologous expression further confirmed the activity of representative LuxI-R pairs, and metabolomic profiling suggested the presence of putative quorum sensing inhibitors in cold seep sediments.
CONCLUSIONS: Overall, these findings highlight the complexity and significance of quorum sensing in microbial interactions, ecological adaptation, and biogeochemical cycling within cold seep ecosystems, advancing our understanding of microbial communication in the deep biosphere. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Quorum Sensing/genetics
*Bacteria/genetics/classification/metabolism/isolation & purification
*Archaea/genetics/classification/metabolism
Metagenome
*Seawater/microbiology
Phylogeny
*Microbiota/genetics
Ecosystem
Geologic Sediments/microbiology
RevDate: 2026-01-08
CmpDate: 2026-01-08
Haemophilus influenzae dominance in fungal ball microbiome revealed through multi-niche metagenomic sequencing.
BMC microbiology, 26(1):15.
OBJECTIVE: This study employed metagenomic sequencing to characterize the sinonasal microbiome in patients with unilateral maxillary sinus fungal ball (MSFB), with specific emphasis on bacterial-fungal interactions and functional pathways implicated in fungal ball pathogenesis.
METHODS: The study enrolled 30 MSFB patients and 30 healthy controls. Nasal secretion samples were obtained from three anatomical sites in MSFB cases: fungal ball cavity (FC), affected middle nasal meatus (AM), and contralateral unaffected middle nasal meatus (UM). And in the control group, samples were obtained from the healthy middle nasal meatus (HM). Metagenomic sequencing of microbial DNA was performed using the Illumina Novaseq platform. Taxonomic and functional analyses were conducted using Kraken2, Bracken, and HUMAnN2.
RESULTS: Bacteria dominated the microbiome in the FC group (98.53%), with Haemophilus influenzae identified as a key biomarker (LDA score > 5). A negative correlation between H. influenzae and Aspergillus flavus was observed in the FC group (r = -0.46, P = 0.013). Functional pathways enriched in the FC group included amino acid biosynthesis (map00290), lipopolysaccharide biosynthesis (map00540), and fatty acid biosynthesis (map00061), supporting H. influenzae survival and immune modulation. FC microbiota showed reduced diversity and distinct composition compared to other groups (PERMANOVA, P < 0.001). No significant differences were found in the composition of the microbiota between the bilateral middle nasal meatus groups of MSFB.
CONCLUSION: This study highlights H. influenzae as a critical bacterial biomarker in MSFB. The inverse relationship between H. influenzae and A. flavus may suggest competitive or immune-mediated interactions. These findings advance understanding of non-invasive fungal sinusitis. Future validation in larger fungal ball cohorts or invasive fungal sinusitis is warranted.
Additional Links: PMID-41339801
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41339801,
year = {2025},
author = {Yang, T and Wang, Y and Zhang, Y and Liu, C and Zeng, Y and Shi, P and Zhou, J and Li, Y and Wei, H},
title = {Haemophilus influenzae dominance in fungal ball microbiome revealed through multi-niche metagenomic sequencing.},
journal = {BMC microbiology},
volume = {26},
number = {1},
pages = {15},
pmid = {41339801},
issn = {1471-2180},
support = {7222026//Natural Science Foundation of Beijing Municipality/ ; },
mesh = {Humans ; Male ; Female ; Metagenomics/methods ; Adult ; *Microbiota/genetics ; Middle Aged ; *Haemophilus influenzae/genetics/isolation & purification/classification ; Fungi/genetics/classification/isolation & purification ; Bacteria/classification/genetics/isolation & purification ; *Mycoses/microbiology ; Aspergillus flavus/genetics/isolation & purification ; },
abstract = {OBJECTIVE: This study employed metagenomic sequencing to characterize the sinonasal microbiome in patients with unilateral maxillary sinus fungal ball (MSFB), with specific emphasis on bacterial-fungal interactions and functional pathways implicated in fungal ball pathogenesis.
METHODS: The study enrolled 30 MSFB patients and 30 healthy controls. Nasal secretion samples were obtained from three anatomical sites in MSFB cases: fungal ball cavity (FC), affected middle nasal meatus (AM), and contralateral unaffected middle nasal meatus (UM). And in the control group, samples were obtained from the healthy middle nasal meatus (HM). Metagenomic sequencing of microbial DNA was performed using the Illumina Novaseq platform. Taxonomic and functional analyses were conducted using Kraken2, Bracken, and HUMAnN2.
RESULTS: Bacteria dominated the microbiome in the FC group (98.53%), with Haemophilus influenzae identified as a key biomarker (LDA score > 5). A negative correlation between H. influenzae and Aspergillus flavus was observed in the FC group (r = -0.46, P = 0.013). Functional pathways enriched in the FC group included amino acid biosynthesis (map00290), lipopolysaccharide biosynthesis (map00540), and fatty acid biosynthesis (map00061), supporting H. influenzae survival and immune modulation. FC microbiota showed reduced diversity and distinct composition compared to other groups (PERMANOVA, P < 0.001). No significant differences were found in the composition of the microbiota between the bilateral middle nasal meatus groups of MSFB.
CONCLUSION: This study highlights H. influenzae as a critical bacterial biomarker in MSFB. The inverse relationship between H. influenzae and A. flavus may suggest competitive or immune-mediated interactions. These findings advance understanding of non-invasive fungal sinusitis. Future validation in larger fungal ball cohorts or invasive fungal sinusitis is warranted.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Male
Female
Metagenomics/methods
Adult
*Microbiota/genetics
Middle Aged
*Haemophilus influenzae/genetics/isolation & purification/classification
Fungi/genetics/classification/isolation & purification
Bacteria/classification/genetics/isolation & purification
*Mycoses/microbiology
Aspergillus flavus/genetics/isolation & purification
RevDate: 2026-01-08
CmpDate: 2026-01-08
Gut microbiota predict development of postdischarge diabetes mellitus in acute pancreatitis.
Gut, 75(2):316-325 pii:gutjnl-2025-336715.
BACKGROUND: Postdischarge morbidity and mortality is high in acute pancreatitis (AP) and pathophysiological mechanisms remain poorly understood.
OBJECTIVES: We aim to investigate the composition of gut microbiota and clinical long-term outcomes of prospectively enrolled patients with AP to predict postdischarge complications.
DESIGN: In this long-term follow-up study, we analysed clinical and microbiome data of 277 patients from the prospective multicentre Pancreatitis-Microbiome As Predictor of Severity trial. The primary endpoint was the association of the microbial composition with postdischarge mortality, recurrent AP (RAP), progression to chronic pancreatitis, pancreatic exocrine insufficiency, diabetes mellitus (DM) and pancreatic ductal adenocarcinoma.
RESULTS: Buccal (n=238) and rectal (n=249) swabs were analysed by 16S rRNA and metagenomics sequencing using Oxford Nanopore Technologies. Median follow-up was 2.8 years. Distance-based redundancy analysis with canonical analysis of principal coordinates showed significant differences for β-diversity (Bray-Curtis) for postdischarge mortality (p=0.04), RAP (p=0.02) and DM (p=0.03). A ridge regression model including 11 differentially abundant species predicted postdischarge DM with an area under the receiving operating characteristic of 94.8% and 86.2% in the matched and entire cohort, respectively. Using this classifier, a positive predictive value of 66.6%, a negative predictive value of 96% and an accuracy of 95% was achieved.
CONCLUSION: Our data indicate that the admission microbiome of patients with AP correlates with postdischarge complications independent from multiple risk factors such as AP severity, smoking or alcohol. Microbiota at admission show excellent capacity to predict postdischarge DM and may thus open new stratification tools for a tailored risk assessment in the future.
TRIAL REGISTRATION NUMBER: NCT04777812.
Additional Links: PMID-41298102
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41298102,
year = {2026},
author = {Ammer-Herrmenau, C and Meier, R and Antweiler, KL and Asendorf, T and Cameron, S and Capurso, G and Damm, M and Dang, L and Frost, F and Hamm, J and Hoffmeister, A and Kocheva, Y and Meinhardt, C and Nawacki, L and Nunes, V and Panyko, A and Ruiz-Rebollo, ML and Flórez-Pardo, C and Phillip, V and Pukitis, A and Vaselane, D and Rinja, E and Sandru, V and Schaefer, A and Scholz, R and Seelig, J and Sirtl, S and Ellenrieder, V and Neesse, A},
title = {Gut microbiota predict development of postdischarge diabetes mellitus in acute pancreatitis.},
journal = {Gut},
volume = {75},
number = {2},
pages = {316-325},
doi = {10.1136/gutjnl-2025-336715},
pmid = {41298102},
issn = {1468-3288},
mesh = {Humans ; *Pancreatitis/complications/microbiology/mortality ; Male ; *Gastrointestinal Microbiome ; Female ; Middle Aged ; *Diabetes Mellitus/microbiology/etiology ; Prospective Studies ; Follow-Up Studies ; Aged ; Adult ; Acute Disease ; Disease Progression ; },
abstract = {BACKGROUND: Postdischarge morbidity and mortality is high in acute pancreatitis (AP) and pathophysiological mechanisms remain poorly understood.
OBJECTIVES: We aim to investigate the composition of gut microbiota and clinical long-term outcomes of prospectively enrolled patients with AP to predict postdischarge complications.
DESIGN: In this long-term follow-up study, we analysed clinical and microbiome data of 277 patients from the prospective multicentre Pancreatitis-Microbiome As Predictor of Severity trial. The primary endpoint was the association of the microbial composition with postdischarge mortality, recurrent AP (RAP), progression to chronic pancreatitis, pancreatic exocrine insufficiency, diabetes mellitus (DM) and pancreatic ductal adenocarcinoma.
RESULTS: Buccal (n=238) and rectal (n=249) swabs were analysed by 16S rRNA and metagenomics sequencing using Oxford Nanopore Technologies. Median follow-up was 2.8 years. Distance-based redundancy analysis with canonical analysis of principal coordinates showed significant differences for β-diversity (Bray-Curtis) for postdischarge mortality (p=0.04), RAP (p=0.02) and DM (p=0.03). A ridge regression model including 11 differentially abundant species predicted postdischarge DM with an area under the receiving operating characteristic of 94.8% and 86.2% in the matched and entire cohort, respectively. Using this classifier, a positive predictive value of 66.6%, a negative predictive value of 96% and an accuracy of 95% was achieved.
CONCLUSION: Our data indicate that the admission microbiome of patients with AP correlates with postdischarge complications independent from multiple risk factors such as AP severity, smoking or alcohol. Microbiota at admission show excellent capacity to predict postdischarge DM and may thus open new stratification tools for a tailored risk assessment in the future.
TRIAL REGISTRATION NUMBER: NCT04777812.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Pancreatitis/complications/microbiology/mortality
Male
*Gastrointestinal Microbiome
Female
Middle Aged
*Diabetes Mellitus/microbiology/etiology
Prospective Studies
Follow-Up Studies
Aged
Adult
Acute Disease
Disease Progression
RevDate: 2026-01-08
CmpDate: 2026-01-08
Adherent-invasive Escherichia coli in Crohn's disease: the 25th anniversary.
Gut, 75(2):411-424 pii:gutjnl-2025-335331.
In 1998, Arlette Darfeuille-Michaud, Christel Neut and Jean-Frederic Colombel discovered a novel pathovar of Escherichia coli, adherent and invasive Escherichia coli (AIEC), in the ileum of patients with Crohn's disease (CD), that was genetically distinct from diarrheagenic E. coli, could adhere to and invade intestinal epithelial cells and survive in macrophages. The consistent association between AIEC and CD (approximately 30% across the world), their ability to exploit CD-associated genetic traits, and virulence in preclinical colitis models but not healthy hosts spurred global research to elucidate their pathogenicity. Research focused on integrating AIEC with the microbiome, metabolome, metagenome, host response and the impact of diet and antimicrobials has linked the luminal microenvironment and AIEC metabolism to health and disease. This deeper understanding has led to therapeutic trials and precision medicine targeting AIEC-colonised patients. In November 2023, prominent members of the AIEC research community met to present and discuss the many facets of basic, translational and clinical AIEC fields at 'AIEC: past, present and future' in NYC. This review is a summary of this international meeting highlighting the history of AIEC, knowledge accumulated over the past 25 years about its pathogenic properties and proposes a standardised approach for screening patients for AIEC.
Additional Links: PMID-40473402
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40473402,
year = {2026},
author = {Barnich, N and Arthur, JC and Buisson, A and Campbell, BJ and Carbonnel, F and Chassaing, B and Coombes, BK and Denizot, J and Dogan, B and Faith, J and Kamada, N and Longman, RS and Martinez-Medina, M and O'Brien, CL and Sartor, RB and Zhang, S and , and Colombel, JF and Simpson, KW and , },
title = {Adherent-invasive Escherichia coli in Crohn's disease: the 25th anniversary.},
journal = {Gut},
volume = {75},
number = {2},
pages = {411-424},
doi = {10.1136/gutjnl-2025-335331},
pmid = {40473402},
issn = {1468-3288},
mesh = {*Crohn Disease/microbiology ; Humans ; *Escherichia coli/pathogenicity ; *Escherichia coli Infections/microbiology/complications ; Bacterial Adhesion ; Gastrointestinal Microbiome ; },
abstract = {In 1998, Arlette Darfeuille-Michaud, Christel Neut and Jean-Frederic Colombel discovered a novel pathovar of Escherichia coli, adherent and invasive Escherichia coli (AIEC), in the ileum of patients with Crohn's disease (CD), that was genetically distinct from diarrheagenic E. coli, could adhere to and invade intestinal epithelial cells and survive in macrophages. The consistent association between AIEC and CD (approximately 30% across the world), their ability to exploit CD-associated genetic traits, and virulence in preclinical colitis models but not healthy hosts spurred global research to elucidate their pathogenicity. Research focused on integrating AIEC with the microbiome, metabolome, metagenome, host response and the impact of diet and antimicrobials has linked the luminal microenvironment and AIEC metabolism to health and disease. This deeper understanding has led to therapeutic trials and precision medicine targeting AIEC-colonised patients. In November 2023, prominent members of the AIEC research community met to present and discuss the many facets of basic, translational and clinical AIEC fields at 'AIEC: past, present and future' in NYC. This review is a summary of this international meeting highlighting the history of AIEC, knowledge accumulated over the past 25 years about its pathogenic properties and proposes a standardised approach for screening patients for AIEC.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Crohn Disease/microbiology
Humans
*Escherichia coli/pathogenicity
*Escherichia coli Infections/microbiology/complications
Bacterial Adhesion
Gastrointestinal Microbiome
RevDate: 2026-01-07
CmpDate: 2026-01-07
Physicochemical and microbiome changes in queso Crema de Chiapas during ripening.
PloS one, 21(1):e0323038 pii:PONE-D-25-17545.
The dynamic changes in the physicochemical, microbiological, and metagenomic profiles of Crema de Chiapas cheese were evaluated across three ripening stages (2, 29, and 58 days). Although the main physicochemical properties -including fat content- remained remarkably stable, salt and protein levels showed noticeable variation throughout ripening. Protein content had the strongest influence on sample differentiation across ripening stages in unsupervised multivariate models, enabling the clustering of microbial diversity according to maturation time. A clear shift in microbial diversity was detected, marked by a reduction in bacterial genera and a concurrent decline in fungal and yeast populations as ripening advanced. The predominant bacterial genera throughout ripening were Streptococcus, Lactobacillus, and Lactococcus. While Streptococcus and Lactobacillus increased over time, Lactococcus exhibited the opposite trend. Metagenomic analysis revealed a decrease in Candida etchellsii and a concomitant increase in Candida tropicalis as ripening progressed. Quantitative PCR (qPCR) confirmed the presence of C. etchellsii at T1 (Ct = 7.22) and C. tropicalis at T3 (Ct = 9.84). The presence of three additional bacterial genera-Chryseobacterium, Aeromonas, and Enterobacter-identified by next-generation sequencing (NGS), was also assessed by qPCR. Chryseobacterium was detected at T2 (Ct = 3.26), whereas Aeromonas and Enterobacter were absent across all stages. Collectively, these findings suggest that potentially pathogenic microorganisms were not present at biologically relevant levels.
Additional Links: PMID-41499519
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41499519,
year = {2026},
author = {Ocampo Morales, BN and Hernández Montes, A and Estrada, K and Valadez Moctezuma, E},
title = {Physicochemical and microbiome changes in queso Crema de Chiapas during ripening.},
journal = {PloS one},
volume = {21},
number = {1},
pages = {e0323038},
doi = {10.1371/journal.pone.0323038},
pmid = {41499519},
issn = {1932-6203},
mesh = {*Microbiota ; *Cheese/microbiology/analysis ; Bacteria/genetics/classification/isolation & purification ; Food Microbiology ; },
abstract = {The dynamic changes in the physicochemical, microbiological, and metagenomic profiles of Crema de Chiapas cheese were evaluated across three ripening stages (2, 29, and 58 days). Although the main physicochemical properties -including fat content- remained remarkably stable, salt and protein levels showed noticeable variation throughout ripening. Protein content had the strongest influence on sample differentiation across ripening stages in unsupervised multivariate models, enabling the clustering of microbial diversity according to maturation time. A clear shift in microbial diversity was detected, marked by a reduction in bacterial genera and a concurrent decline in fungal and yeast populations as ripening advanced. The predominant bacterial genera throughout ripening were Streptococcus, Lactobacillus, and Lactococcus. While Streptococcus and Lactobacillus increased over time, Lactococcus exhibited the opposite trend. Metagenomic analysis revealed a decrease in Candida etchellsii and a concomitant increase in Candida tropicalis as ripening progressed. Quantitative PCR (qPCR) confirmed the presence of C. etchellsii at T1 (Ct = 7.22) and C. tropicalis at T3 (Ct = 9.84). The presence of three additional bacterial genera-Chryseobacterium, Aeromonas, and Enterobacter-identified by next-generation sequencing (NGS), was also assessed by qPCR. Chryseobacterium was detected at T2 (Ct = 3.26), whereas Aeromonas and Enterobacter were absent across all stages. Collectively, these findings suggest that potentially pathogenic microorganisms were not present at biologically relevant levels.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Microbiota
*Cheese/microbiology/analysis
Bacteria/genetics/classification/isolation & purification
Food Microbiology
RevDate: 2026-01-07
CmpDate: 2026-01-07
Baseline multi-omics signatures could predict therapeutic response to neoadjuvant anti-PD-1 immunochemotherapy in non-small-cell lung cancer.
Clinical and translational medicine, 16(1):e70579.
BACKGROUND: Neoadjuvant anti-programmed cell death 1 (PD-1) immunochemotherapy has shown promising efficiency in the treatment of early-stage non-small-cell lung cancer (NSCLC), but it has not consistently yielded durable responses. Biomarkers for the prediction of efficacy are warranted.
METHODS: We performed shotgun metagenomic and plasma/faecal metabolomic studies in 44 NSCLC patients who underwent neoadjuvant tislelizumab plus platinum-based doublet chemotherapy. Samples were collected at baseline and before surgical resection, and the major pathologic response (MPR) was evaluated.
RESULTS: MPR patients showed a significantly higher gut-microbial alpha diversity, an enrichment of Ruminococcaceae, Lachnospiraceae and Clostridiales species, and an increased plasma level of tryptophan metabolites at baseline. On the contrary, non-MPR patients were characterized by enrichment of Prevotella species in faecal samples and higher plasma levels of linoleic acid metabolites. A high predictive accuracy was achieved using a small panel of differential microbial (Clostridium sp. M62/1 and Eisenbergiella tayi) or metabolomic features (linoleic acid, oxindole-3-acetic acid and quinolinic acid) with AUCs > .85.
CONCLUSIONS: The baseline characteristics of the gut microbiota and plasma metabolites could provide early predictions of the response to neoadjuvant anti-PD-1 immunochemotherapy.
TRIAL REGISTRATION: NCT05244837.
KEY POINTS: Baseline metagenomic and metabolomic signatures were significantly associated with the major pathologic response of neoadjuvant anti-PD-1 immunochemotherapy. Integrated microbial model (consists of Clostridium sp. M62/1 and Eisenbergiella tayi) and metabolomic model (consists of linoleic acid, oxindole-3-acetic acid and quinolinic acid) could provide early predictions of the response.
Additional Links: PMID-41499358
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41499358,
year = {2026},
author = {Cao, A and Lin, Y and Guan, S and Chen, Y and Zhai, W and Zhou, Y and Feng, S and Guan, Y and Zhang, Y and Huang, M and Wang, X and Long, H},
title = {Baseline multi-omics signatures could predict therapeutic response to neoadjuvant anti-PD-1 immunochemotherapy in non-small-cell lung cancer.},
journal = {Clinical and translational medicine},
volume = {16},
number = {1},
pages = {e70579},
doi = {10.1002/ctm2.70579},
pmid = {41499358},
issn = {2001-1326},
support = {82474002//National Natural Science Foundation of China/ ; 82020108031//National Natural Science Foundation of China/ ; 82404752//National Natural Science Foundation of China/ ; 81973398//National Natural Science Foundation of China/ ; WKZX2023CX020006//Development Center for Medical Science & Technology National Health Commission of the People's Republic of China/ ; 2025A1515012521//Natural Science Foundation of Guangdong Province/ ; 2020B1212060034//Guangdong Provincial Key Laboratory of Construction Foundation/ ; 2017B030314030//Guangdong Provincial Key Laboratory of Construction Foundation/ ; 2017YFC0909300//National Key Research and Development Program/ ; B16047//The 111 project/ ; },
mesh = {Humans ; *Carcinoma, Non-Small-Cell Lung/drug therapy ; Female ; Male ; *Neoadjuvant Therapy/methods ; Middle Aged ; Aged ; *Lung Neoplasms/drug therapy ; Gastrointestinal Microbiome/drug effects ; Metabolomics/methods ; Multiomics ; },
abstract = {BACKGROUND: Neoadjuvant anti-programmed cell death 1 (PD-1) immunochemotherapy has shown promising efficiency in the treatment of early-stage non-small-cell lung cancer (NSCLC), but it has not consistently yielded durable responses. Biomarkers for the prediction of efficacy are warranted.
METHODS: We performed shotgun metagenomic and plasma/faecal metabolomic studies in 44 NSCLC patients who underwent neoadjuvant tislelizumab plus platinum-based doublet chemotherapy. Samples were collected at baseline and before surgical resection, and the major pathologic response (MPR) was evaluated.
RESULTS: MPR patients showed a significantly higher gut-microbial alpha diversity, an enrichment of Ruminococcaceae, Lachnospiraceae and Clostridiales species, and an increased plasma level of tryptophan metabolites at baseline. On the contrary, non-MPR patients were characterized by enrichment of Prevotella species in faecal samples and higher plasma levels of linoleic acid metabolites. A high predictive accuracy was achieved using a small panel of differential microbial (Clostridium sp. M62/1 and Eisenbergiella tayi) or metabolomic features (linoleic acid, oxindole-3-acetic acid and quinolinic acid) with AUCs > .85.
CONCLUSIONS: The baseline characteristics of the gut microbiota and plasma metabolites could provide early predictions of the response to neoadjuvant anti-PD-1 immunochemotherapy.
TRIAL REGISTRATION: NCT05244837.
KEY POINTS: Baseline metagenomic and metabolomic signatures were significantly associated with the major pathologic response of neoadjuvant anti-PD-1 immunochemotherapy. Integrated microbial model (consists of Clostridium sp. M62/1 and Eisenbergiella tayi) and metabolomic model (consists of linoleic acid, oxindole-3-acetic acid and quinolinic acid) could provide early predictions of the response.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Carcinoma, Non-Small-Cell Lung/drug therapy
Female
Male
*Neoadjuvant Therapy/methods
Middle Aged
Aged
*Lung Neoplasms/drug therapy
Gastrointestinal Microbiome/drug effects
Metabolomics/methods
Multiomics
RevDate: 2026-01-07
CmpDate: 2026-01-07
Vertically stratified carbon fixation and coupling processes in deep-sea sediment.
ISME communications, 5(1):ycaf242.
Deep-sea sediments represent a vast yet underexplored reservoir of microbial carbon fixation, playing a critical role in global carbon cycling. However, the vertical distribution of carbon-fixing microorganisms, metabolic pathways, and the underlying energy sources and environmental drivers remain poorly understood. In this study, we investigated microbial carbon fixation and associated energy metabolism in South China Sea (SCS) sediment across 0-690 cm depth. Our findings revealed that dissolved inorganic carbon (DIC) and ammonium (NH4[+]) concentrations were key environmental drivers of carbon fixation and linked redox processes. Carbon fixation gene diversity increased with sediment depth, while the network complexity of functional genes and taxa involved in these processes declined. A distinct vertical succession of dominant microbial carbon-fixation pathways and their associated energy metabolisms was observed along the sediment depth: the Calvin-Benson-Bassham (CBB) and reductive glycine (rGLY) pathways dominated surface sediments, driven by nitrite oxidation, whereas the Wood-Ljungdahl (WL) pathway prevailed in deeper anoxic layers, supported by hydrogen and carbon monoxide oxidation. Taxonomically, Gammaproteobacteria and Methylomirabilia were abundant carbon-fixing groups in surface sediments, while Desulfobacterota, Chloroflexota, and Aerophobota became predominant at depth. Most carbon-fixing metagenome-assembled genomes (MAGs) exhibited mixotrophic lifestyles, and representative carbon fixation MAGs from Methylomirabilota, Dehalococcoidia (Chloroflexota) and Aerophobetes exhibited different metabolic features compared to their counterparts from other environments. These findings underscore the carbon fixation potential of deep-sea subsurface microbial communities and advance the understanding of carbon fluxes in deep biosphere.
Additional Links: PMID-41496864
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41496864,
year = {2025},
author = {Shi, H and Zhang, X and Liu, L and Thompson, F and Li, X and Sun, H and Mi, H and Zhang, XH and Zhang, Y},
title = {Vertically stratified carbon fixation and coupling processes in deep-sea sediment.},
journal = {ISME communications},
volume = {5},
number = {1},
pages = {ycaf242},
pmid = {41496864},
issn = {2730-6151},
abstract = {Deep-sea sediments represent a vast yet underexplored reservoir of microbial carbon fixation, playing a critical role in global carbon cycling. However, the vertical distribution of carbon-fixing microorganisms, metabolic pathways, and the underlying energy sources and environmental drivers remain poorly understood. In this study, we investigated microbial carbon fixation and associated energy metabolism in South China Sea (SCS) sediment across 0-690 cm depth. Our findings revealed that dissolved inorganic carbon (DIC) and ammonium (NH4[+]) concentrations were key environmental drivers of carbon fixation and linked redox processes. Carbon fixation gene diversity increased with sediment depth, while the network complexity of functional genes and taxa involved in these processes declined. A distinct vertical succession of dominant microbial carbon-fixation pathways and their associated energy metabolisms was observed along the sediment depth: the Calvin-Benson-Bassham (CBB) and reductive glycine (rGLY) pathways dominated surface sediments, driven by nitrite oxidation, whereas the Wood-Ljungdahl (WL) pathway prevailed in deeper anoxic layers, supported by hydrogen and carbon monoxide oxidation. Taxonomically, Gammaproteobacteria and Methylomirabilia were abundant carbon-fixing groups in surface sediments, while Desulfobacterota, Chloroflexota, and Aerophobota became predominant at depth. Most carbon-fixing metagenome-assembled genomes (MAGs) exhibited mixotrophic lifestyles, and representative carbon fixation MAGs from Methylomirabilota, Dehalococcoidia (Chloroflexota) and Aerophobetes exhibited different metabolic features compared to their counterparts from other environments. These findings underscore the carbon fixation potential of deep-sea subsurface microbial communities and advance the understanding of carbon fluxes in deep biosphere.},
}
RevDate: 2026-01-07
CmpDate: 2026-01-07
Immunoglobulin A protease from Sutterella wadsworthensis modifies outcome of infection with Campylobacter jejuni and is associated with microbiome diversity.
Gut microbes, 18(1):2611543.
Sutterella wadsworthensis is an enigmatic member of the microbiota, previously reported to be present in healthy humans yet also associated with certain gut diseases and their therapeutic outcomes. Here, we report on S. wadsworthensis classified to S. wadsworthensis_A that encodes an immunoglobulin A (IgA) protease that digests human IgA1 and IgA2 but not mouse IgA. The activity of this IgA protease could influence the trajectory of Campylobacter jejuni infection in human epithelial cells and phagocytosis in primary neutrophils. Comparative genomics and screening of metagenomic samples revealed that the protease shared sequence identity with an IgA protease from a bacterium that colonized other mammals and that S. wadsworthensis harboring IgA protease can be detected in individuals globally. Individuals positive for S. wadsworthensis IgA protease in China and Fiji (detection at >90% similarity) were found to have a different microbiome when compared to individuals where the protease was not detected. Phylogenetic analysis of pathogen IgA proteases along with IgA proteases from members of the microbiota suggested that there may be a unique subset of microbiota-derived IgA proteases. Our results highlight the importance of taxonomic resolution in microbiome studies and identify a subgroup of S. wadsworthensis that may be of potential clinical relevance.
Additional Links: PMID-41496502
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41496502,
year = {2026},
author = {Majzoub, ME and Santiago, FS and Raich, SS and Sirigeri, P and Simovic, I and Tedla, N and Kaakoush, NO},
title = {Immunoglobulin A protease from Sutterella wadsworthensis modifies outcome of infection with Campylobacter jejuni and is associated with microbiome diversity.},
journal = {Gut microbes},
volume = {18},
number = {1},
pages = {2611543},
doi = {10.1080/19490976.2025.2611543},
pmid = {41496502},
issn = {1949-0984},
mesh = {Humans ; *Immunoglobulin A/metabolism ; Animals ; Phylogeny ; *Campylobacter jejuni/physiology ; *Campylobacter Infections/microbiology/immunology ; *Gastrointestinal Microbiome ; Mice ; *Clostridiales/enzymology/genetics/classification ; Neutrophils/immunology/microbiology ; *Bacterial Proteins/genetics/metabolism ; China ; Phagocytosis ; Epithelial Cells/microbiology ; Serine Endopeptidases ; },
abstract = {Sutterella wadsworthensis is an enigmatic member of the microbiota, previously reported to be present in healthy humans yet also associated with certain gut diseases and their therapeutic outcomes. Here, we report on S. wadsworthensis classified to S. wadsworthensis_A that encodes an immunoglobulin A (IgA) protease that digests human IgA1 and IgA2 but not mouse IgA. The activity of this IgA protease could influence the trajectory of Campylobacter jejuni infection in human epithelial cells and phagocytosis in primary neutrophils. Comparative genomics and screening of metagenomic samples revealed that the protease shared sequence identity with an IgA protease from a bacterium that colonized other mammals and that S. wadsworthensis harboring IgA protease can be detected in individuals globally. Individuals positive for S. wadsworthensis IgA protease in China and Fiji (detection at >90% similarity) were found to have a different microbiome when compared to individuals where the protease was not detected. Phylogenetic analysis of pathogen IgA proteases along with IgA proteases from members of the microbiota suggested that there may be a unique subset of microbiota-derived IgA proteases. Our results highlight the importance of taxonomic resolution in microbiome studies and identify a subgroup of S. wadsworthensis that may be of potential clinical relevance.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Immunoglobulin A/metabolism
Animals
Phylogeny
*Campylobacter jejuni/physiology
*Campylobacter Infections/microbiology/immunology
*Gastrointestinal Microbiome
Mice
*Clostridiales/enzymology/genetics/classification
Neutrophils/immunology/microbiology
*Bacterial Proteins/genetics/metabolism
China
Phagocytosis
Epithelial Cells/microbiology
Serine Endopeptidases
RevDate: 2026-01-07
CmpDate: 2026-01-07
Evolving landscapes in childhood asthma-gut microbiota research: A bibliometric analysis from 2000 to 2024.
Medicine, 105(1):e46594.
BACKGROUND: Pediatric asthma, a chronic inflammatory airway disorder, is increasingly recognized for its association with gut microbiota dysbiosis, mediated through immune dysregulation and systemic inflammation. Recent advancements in multi-omics technologies and the "gut-lung axis" hypothesis have propelled this field into a research frontier. This bibliometric study delineates global research trends, collaborative networks, and emerging directions in pediatric asthma-gut microbiota research.
METHODS: Publications from the Web of Science Core Collection (2000-2024) were systematically retrieved using keywords related to asthma, children, and gut microbiota. Data from 635 articles (392 original studies, 243 reviews) were analyzed via CiteSpace and VOSviewer to map country/institutional contributions, author networks, citation metrics, and keyword clusters. Non-English publications, patents, and conference abstracts were excluded.
RESULTS: Global output demonstrated exponential growth, with 62% of articles published between 2018 to 2022. The United States led in productivity (180 articles, 28.35%) and citations (10,851), while Canada achieved the highest citation impact (121.12 citations/article). Key contributors included Prof Stuart E. Turvey (19 articles, 2463 citations) and Prof B. Brett Finlay (140.07 citations/article). The University of British Columbia dominated institutional contributions (28 articles, 149.11 citations/article). The Journal of Allergy and Clinical Immunology emerged as the top journal (33 articles, 126.48 citations/article). Seminal works highlighted early-life gut dysbiosis (e.g., reduced Lachnospira and Faecalibacterium) and cesarean delivery's role in asthma risk. Keyword clustering revealed 6 themes: disease phenotypes (asthma-allergy comorbidity), microbiota dynamics (dysbiosis, short-chain fatty acids [SCFAs]), immune mechanisms (T helper 17 cells/Treg imbalance, gut-lung axis), developmental exposures (antibiotics, breastfeeding), methodologies (metagenomics), and therapeutic strategies.
CONCLUSION: This study underscores a paradigm shift from descriptive microbial profiling to mechanistic exploration of microbiota-derived metabolites (e.g., SCFAs) and early-life interventions. Future priorities include elucidating causal pathways via longitudinal cohorts, developing microbiota-targeted therapies, and leveraging multi-omics integration. Despite limitations in database scope, this analysis highlights accelerating translation from basic research to clinical applications through global collaboration. Researchers should prioritize interdisciplinary studies to unravel the "microbiome-immune-development" triad and optimize personalized asthma management.
Additional Links: PMID-41496069
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41496069,
year = {2026},
author = {Zhao, Y and Wang, H and Lu, Y and Lou, D},
title = {Evolving landscapes in childhood asthma-gut microbiota research: A bibliometric analysis from 2000 to 2024.},
journal = {Medicine},
volume = {105},
number = {1},
pages = {e46594},
doi = {10.1097/MD.0000000000046594},
pmid = {41496069},
issn = {1536-5964},
support = {ZHGF2024-1//The Key Construction Discipline of Immunology and Pathogen biology in Zhuhai Campus of Zunyi Medical University/ ; NO. QKHRC-CXTDã€"2025〕046//The Program for High level Innovative Talents in the Guizhou Province/ ; },
mesh = {Humans ; *Asthma/microbiology/immunology ; *Bibliometrics ; *Gastrointestinal Microbiome ; Child ; Dysbiosis ; *Biomedical Research/trends ; },
abstract = {BACKGROUND: Pediatric asthma, a chronic inflammatory airway disorder, is increasingly recognized for its association with gut microbiota dysbiosis, mediated through immune dysregulation and systemic inflammation. Recent advancements in multi-omics technologies and the "gut-lung axis" hypothesis have propelled this field into a research frontier. This bibliometric study delineates global research trends, collaborative networks, and emerging directions in pediatric asthma-gut microbiota research.
METHODS: Publications from the Web of Science Core Collection (2000-2024) were systematically retrieved using keywords related to asthma, children, and gut microbiota. Data from 635 articles (392 original studies, 243 reviews) were analyzed via CiteSpace and VOSviewer to map country/institutional contributions, author networks, citation metrics, and keyword clusters. Non-English publications, patents, and conference abstracts were excluded.
RESULTS: Global output demonstrated exponential growth, with 62% of articles published between 2018 to 2022. The United States led in productivity (180 articles, 28.35%) and citations (10,851), while Canada achieved the highest citation impact (121.12 citations/article). Key contributors included Prof Stuart E. Turvey (19 articles, 2463 citations) and Prof B. Brett Finlay (140.07 citations/article). The University of British Columbia dominated institutional contributions (28 articles, 149.11 citations/article). The Journal of Allergy and Clinical Immunology emerged as the top journal (33 articles, 126.48 citations/article). Seminal works highlighted early-life gut dysbiosis (e.g., reduced Lachnospira and Faecalibacterium) and cesarean delivery's role in asthma risk. Keyword clustering revealed 6 themes: disease phenotypes (asthma-allergy comorbidity), microbiota dynamics (dysbiosis, short-chain fatty acids [SCFAs]), immune mechanisms (T helper 17 cells/Treg imbalance, gut-lung axis), developmental exposures (antibiotics, breastfeeding), methodologies (metagenomics), and therapeutic strategies.
CONCLUSION: This study underscores a paradigm shift from descriptive microbial profiling to mechanistic exploration of microbiota-derived metabolites (e.g., SCFAs) and early-life interventions. Future priorities include elucidating causal pathways via longitudinal cohorts, developing microbiota-targeted therapies, and leveraging multi-omics integration. Despite limitations in database scope, this analysis highlights accelerating translation from basic research to clinical applications through global collaboration. Researchers should prioritize interdisciplinary studies to unravel the "microbiome-immune-development" triad and optimize personalized asthma management.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Asthma/microbiology/immunology
*Bibliometrics
*Gastrointestinal Microbiome
Child
Dysbiosis
*Biomedical Research/trends
RevDate: 2026-01-07
CmpDate: 2026-01-07
Meta-analysis of 22,710 human microbiome metagenomes defines an oral-to-gut microbial enrichment score and associations with host health and disease.
Nature communications, 17(1):196.
Large public datasets of the human microbiome now exist but combining them for large-scale analysis is difficult due to a lack of standardization. We developed curatedMetagenomicData (cMD) 3, a uniformly processed collection of over 22,000 human microbiome samples with manually curated metadata from 94 studies and 42 countries. This large and diverse resource allows for meta-analysis of the links between microbes and human health. Through meta-analysis, we identified hundreds of microbial species and thousands of microbial functions significantly associated with a person's sex, age, body mass index, and disease status, and catalog these as references. We developed an "oral enrichment score" (OES) based on the relative abundance of bacteria typically found in the oral cavity and not in the gut. Higher OES in the gut is a consistent feature in individuals with disease, suggesting that the relative abundance of oral bacteria in the gut is a simple and quantifiable signal of altered microbiome health. These analyses identify modest but widely shared patterns in human microbiomes, serving as a reproducible and readily updatable reference.
Additional Links: PMID-41436448
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41436448,
year = {2025},
author = {Manghi, P and Antonello, G and Schiffer, L and Golzato, D and Wokaty, A and Beghini, F and Mirzayi, C and Long, K and Gravel-Pucillo, K and Piccinno, G and Gamboa-Tuz, SD and Bonetti, A and D'Amato, G and Azhar, R and Eckenrode, K and Zohra, F and Giunchiglia, V and Keller, M and Pedrotti, A and Likhotkin, I and Elsafoury, S and Geistlinger, L and Blanco-Miguez, A and Thomas, AM and Zolfo, M and Ramos, M and Valles-Colomer, M and Tamburini, S and Asnicar, F and Jones, HE and Huttenhower, C and Carey, V and Davis, S and Pasolli, E and Oh, S and Segata, N and Waldron, L},
title = {Meta-analysis of 22,710 human microbiome metagenomes defines an oral-to-gut microbial enrichment score and associations with host health and disease.},
journal = {Nature communications},
volume = {17},
number = {1},
pages = {196},
pmid = {41436448},
issn = {2041-1723},
support = {5R01CA230551//U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)/ ; },
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; *Mouth/microbiology ; *Metagenome/genetics ; *Bacteria/genetics/classification/isolation & purification ; Male ; Female ; *Microbiota/genetics ; Metagenomics/methods ; Adult ; },
abstract = {Large public datasets of the human microbiome now exist but combining them for large-scale analysis is difficult due to a lack of standardization. We developed curatedMetagenomicData (cMD) 3, a uniformly processed collection of over 22,000 human microbiome samples with manually curated metadata from 94 studies and 42 countries. This large and diverse resource allows for meta-analysis of the links between microbes and human health. Through meta-analysis, we identified hundreds of microbial species and thousands of microbial functions significantly associated with a person's sex, age, body mass index, and disease status, and catalog these as references. We developed an "oral enrichment score" (OES) based on the relative abundance of bacteria typically found in the oral cavity and not in the gut. Higher OES in the gut is a consistent feature in individuals with disease, suggesting that the relative abundance of oral bacteria in the gut is a simple and quantifiable signal of altered microbiome health. These analyses identify modest but widely shared patterns in human microbiomes, serving as a reproducible and readily updatable reference.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
*Mouth/microbiology
*Metagenome/genetics
*Bacteria/genetics/classification/isolation & purification
Male
Female
*Microbiota/genetics
Metagenomics/methods
Adult
RevDate: 2026-01-07
CmpDate: 2026-01-07
ProFiT-SPEci-FISH: a novel approach for linking plasmids to hosts in complex microbial communities at the single-cell level.
Microbiome, 14(1):11.
BACKGROUND: Plasmids are influential drivers of bacterial evolution, facilitating horizontal gene transfer and shaping microbial communities. Current knowledge on plasmid persistence and mobilization in natural environments is derived from community-level studies, neglecting the single-cell level, where these dynamic processes unfold. Pinpointing specific plasmids within their natural environments is essential to unravel the dynamics between plasmids and their bacterial hosts.
RESULTS: Here, we overcame the technical hurdle of natural plasmid detectability in single cells by developing SPEci-FISH (Short Probe EffiCIent Fluorescence In Situ Hybridization), a novel molecular method designed to detect and visualize plasmids, regardless of their copy number, directly within bacterial cells, enabling their precise identification at the single-cell level. To complement this method, we created ProFiT (PRObe FInding Tool), a program facilitating the design of sequence-based probes for targeting individual plasmids or plasmid families.
CONCLUSIONS: We have successfully applied these methods, combined with high-resolution microscopy, to investigate the dispersal and localization of natural plasmids within a clinical isolate, revealing various plasmid spatial patterns within the same bacterial population. Importantly, bridging the technological gap in linking plasmids to hosts in native complex microbial environments, we demonstrated that our method, when combined with fluorescence-activated cell sorting (FACS), can track plasmid-host dynamics in a human fecal sample. This approach identified multiple potential bacterial hosts for a conjugative plasmid that we assembled from this fecal sample's metagenome. Our integrated approach offers a significant advancement toward understanding plasmid ecology in complex microbiomes. Video Abstract.
Additional Links: PMID-41327428
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41327428,
year = {2025},
author = {Zorea, A and Moraïs, S and Pellow, D and Gershoni-Yahalom, O and Probst, M and Nadler, S and Shamir, R and Rosental, B and Elia, N and Mizrahi, I},
title = {ProFiT-SPEci-FISH: a novel approach for linking plasmids to hosts in complex microbial communities at the single-cell level.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {11},
pmid = {41327428},
issn = {2049-2618},
support = {ISF 1947/19//Israel Science Foundation/ ; 2476/2-1//German-Israeli Project Cooperation (DIP)/ ; ERC 866530//the European Research Council/ ; },
mesh = {*Plasmids/genetics ; *In Situ Hybridization, Fluorescence/methods ; *Single-Cell Analysis/methods ; *Bacteria/genetics/isolation & purification/classification ; *Microbiota/genetics ; Gene Transfer, Horizontal ; Humans ; },
abstract = {BACKGROUND: Plasmids are influential drivers of bacterial evolution, facilitating horizontal gene transfer and shaping microbial communities. Current knowledge on plasmid persistence and mobilization in natural environments is derived from community-level studies, neglecting the single-cell level, where these dynamic processes unfold. Pinpointing specific plasmids within their natural environments is essential to unravel the dynamics between plasmids and their bacterial hosts.
RESULTS: Here, we overcame the technical hurdle of natural plasmid detectability in single cells by developing SPEci-FISH (Short Probe EffiCIent Fluorescence In Situ Hybridization), a novel molecular method designed to detect and visualize plasmids, regardless of their copy number, directly within bacterial cells, enabling their precise identification at the single-cell level. To complement this method, we created ProFiT (PRObe FInding Tool), a program facilitating the design of sequence-based probes for targeting individual plasmids or plasmid families.
CONCLUSIONS: We have successfully applied these methods, combined with high-resolution microscopy, to investigate the dispersal and localization of natural plasmids within a clinical isolate, revealing various plasmid spatial patterns within the same bacterial population. Importantly, bridging the technological gap in linking plasmids to hosts in native complex microbial environments, we demonstrated that our method, when combined with fluorescence-activated cell sorting (FACS), can track plasmid-host dynamics in a human fecal sample. This approach identified multiple potential bacterial hosts for a conjugative plasmid that we assembled from this fecal sample's metagenome. Our integrated approach offers a significant advancement toward understanding plasmid ecology in complex microbiomes. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Plasmids/genetics
*In Situ Hybridization, Fluorescence/methods
*Single-Cell Analysis/methods
*Bacteria/genetics/isolation & purification/classification
*Microbiota/genetics
Gene Transfer, Horizontal
Humans
RevDate: 2026-01-07
CmpDate: 2026-01-07
Grapevine phyllosphere pan-metagenomics reveals pan-microbiome structure, diversity, and functional roles in downy mildew resistance.
Microbiome, 14(1):10.
BACKGROUND: Grapevines are among the most economically important fruit crops, and the microbiome profoundly influences their health, yield, and quality. However, mechanistic insights into microbiome-orchestrated grapevine biology remain limited.
RESULTS: Here, we conduct large-scale pan-metagenomic and pan-metatranscriptomic analyses of the phyllosphere microbiome from 107 grapevine accessions spanning 34 Vitis species. We show that the grapevine core microbiome is dominated by phyla Bacillota and Pseudomonadota. Leveraging PacBio sequencing, we assembled 19 high-quality metagenome-assembled genomes (MAGs) from the grapevine pan-microbiome, representing the first MAG reconstruction in plant-associated microbial communities using PacBio reads. These MAGs encode genes associated with antibiotic resistance, secondary metabolism, and carbohydrate-active enzymes (CAZymes), which could potentially influence grapevine biology. During downy mildew (DM) infection, DM-resistant grapevines exhibit significantly higher microbial network complexity than susceptible counterparts. Among the key taxa contributing to this complexity, Bacillota emerged as the dominant phylum, displaying strong abundance correlations with phylum Euglenozoa and Cyanobacteriota, and an isolated Bacillota species from the grapevine leaves, Bacillus cereus, demonstrated potent biocontrol activity against DM infection. Pan-metatranscriptomic analysis further revealed significant upregulation of eukaryotic microbial genes involved in primary and secondary metabolism.
CONCLUSIONS: This pan-metagenomic study offers unprecedented insights into the complex structure, diversity, and functional roles of the grapevine phyllosphere microbiome and presents valuable genomic and microbial resources for microbiome research and engineering to enhance viticulture productivity and quality. Video Abstract.
Additional Links: PMID-41327409
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41327409,
year = {2025},
author = {Jin, J and Wang, X and Zhang, X and Mei, J and Zheng, W and Guo, L and Sun, H and Zhang, L and Liu, C and Ye, W and Guo, L},
title = {Grapevine phyllosphere pan-metagenomics reveals pan-microbiome structure, diversity, and functional roles in downy mildew resistance.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {10},
pmid = {41327409},
issn = {2049-2618},
support = {ZR2024QC241//Shandong Provincial Natural Science Foundation Youth Project/ ; 2024CXPT031//Key R&D Program of Shandong Province/ ; ZR2023JQ010//Natural Science Foundation for Distinguished Young Scholars of Shandong Province/ ; },
mesh = {*Vitis/microbiology ; *Plant Diseases/microbiology ; *Disease Resistance/genetics ; *Microbiota/genetics ; *Metagenomics/methods ; Plant Leaves/microbiology ; Bacteria/classification/genetics/isolation & purification ; Metagenome ; },
abstract = {BACKGROUND: Grapevines are among the most economically important fruit crops, and the microbiome profoundly influences their health, yield, and quality. However, mechanistic insights into microbiome-orchestrated grapevine biology remain limited.
RESULTS: Here, we conduct large-scale pan-metagenomic and pan-metatranscriptomic analyses of the phyllosphere microbiome from 107 grapevine accessions spanning 34 Vitis species. We show that the grapevine core microbiome is dominated by phyla Bacillota and Pseudomonadota. Leveraging PacBio sequencing, we assembled 19 high-quality metagenome-assembled genomes (MAGs) from the grapevine pan-microbiome, representing the first MAG reconstruction in plant-associated microbial communities using PacBio reads. These MAGs encode genes associated with antibiotic resistance, secondary metabolism, and carbohydrate-active enzymes (CAZymes), which could potentially influence grapevine biology. During downy mildew (DM) infection, DM-resistant grapevines exhibit significantly higher microbial network complexity than susceptible counterparts. Among the key taxa contributing to this complexity, Bacillota emerged as the dominant phylum, displaying strong abundance correlations with phylum Euglenozoa and Cyanobacteriota, and an isolated Bacillota species from the grapevine leaves, Bacillus cereus, demonstrated potent biocontrol activity against DM infection. Pan-metatranscriptomic analysis further revealed significant upregulation of eukaryotic microbial genes involved in primary and secondary metabolism.
CONCLUSIONS: This pan-metagenomic study offers unprecedented insights into the complex structure, diversity, and functional roles of the grapevine phyllosphere microbiome and presents valuable genomic and microbial resources for microbiome research and engineering to enhance viticulture productivity and quality. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Vitis/microbiology
*Plant Diseases/microbiology
*Disease Resistance/genetics
*Microbiota/genetics
*Metagenomics/methods
Plant Leaves/microbiology
Bacteria/classification/genetics/isolation & purification
Metagenome
RevDate: 2026-01-07
CmpDate: 2026-01-07
Biochanin A improves nitrogen utilization efficiency by regulating ruminal microbial community in dairy goats.
Microbiome, 14(1):13.
BACKGROUND: Rumen microbial nitrogen metabolism is crucial for animal health, productivity, and environmental sustainability in ruminants. Natural products like biochanin A are garnering interest as potential feed additives due to their beneficial effects and safety profiles. Here, we collected total mixed diet, plasma, milk, urine, and feces samples of dairy goats to evaluate the impact of biochanin A on nitrogen metabolism and elucidated regulatory mechanisms of nitrogen metabolism using multi-omics approaches by analyzing plasma metabolites and ruminal microbial communities.
RESULTS: Supplementation with biochanin A significantly enhanced nitrogen utilization efficiency of dairy goats. Plasma metabolomics revealed that biochanin A altered pathways related to amino acid biosynthesis/metabolism and glycolysis/gluconeogenesis. In the rumen, biochanin A enriched microbial strains from the families Selenomonadaceae and Aminobacteriaceae. Up-regulated proteins predominantly associated with glycolysis were identified by metaproteomics. Integrated metagenomic and metaproteomic analyses demonstrated that biochanin A positively influenced carbohydrate metabolism, amino acid metabolism, and energy metabolism pathways.
CONCLUSION: Biochanin A enhances nitrogen metabolism by regulating rumen microbial community function, supporting its potential as a natural feed additive to improve nitrogen utilization of ruminants. Video Abstract.
Additional Links: PMID-41327304
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41327304,
year = {2025},
author = {Zhang, X and Li, Y and Xiong, Z and Zheng, N and Wang, J and Zhao, S},
title = {Biochanin A improves nitrogen utilization efficiency by regulating ruminal microbial community in dairy goats.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {13},
pmid = {41327304},
issn = {2049-2618},
support = {32402768//National Natural Science Foundation of China/ ; 2004DA125184G2108//State Key Laboratory of Animal Nutrition and Feeding/ ; CARS-36//Earmarked Fund for CARS/ ; 2022YFD1301000//National Key R&D Program of China/ ; CAAS-ZDRW202304//Agricultural Science and Technology Innovation Program/ ; },
mesh = {Animals ; *Genistein/pharmacology/administration & dosage ; *Nitrogen/metabolism ; *Rumen/microbiology/metabolism ; *Goats/microbiology ; *Gastrointestinal Microbiome/drug effects ; Animal Feed/analysis ; Female ; Dietary Supplements ; Milk/chemistry ; Feces/microbiology ; Metabolomics ; Bacteria/classification/metabolism/genetics ; },
abstract = {BACKGROUND: Rumen microbial nitrogen metabolism is crucial for animal health, productivity, and environmental sustainability in ruminants. Natural products like biochanin A are garnering interest as potential feed additives due to their beneficial effects and safety profiles. Here, we collected total mixed diet, plasma, milk, urine, and feces samples of dairy goats to evaluate the impact of biochanin A on nitrogen metabolism and elucidated regulatory mechanisms of nitrogen metabolism using multi-omics approaches by analyzing plasma metabolites and ruminal microbial communities.
RESULTS: Supplementation with biochanin A significantly enhanced nitrogen utilization efficiency of dairy goats. Plasma metabolomics revealed that biochanin A altered pathways related to amino acid biosynthesis/metabolism and glycolysis/gluconeogenesis. In the rumen, biochanin A enriched microbial strains from the families Selenomonadaceae and Aminobacteriaceae. Up-regulated proteins predominantly associated with glycolysis were identified by metaproteomics. Integrated metagenomic and metaproteomic analyses demonstrated that biochanin A positively influenced carbohydrate metabolism, amino acid metabolism, and energy metabolism pathways.
CONCLUSION: Biochanin A enhances nitrogen metabolism by regulating rumen microbial community function, supporting its potential as a natural feed additive to improve nitrogen utilization of ruminants. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Genistein/pharmacology/administration & dosage
*Nitrogen/metabolism
*Rumen/microbiology/metabolism
*Goats/microbiology
*Gastrointestinal Microbiome/drug effects
Animal Feed/analysis
Female
Dietary Supplements
Milk/chemistry
Feces/microbiology
Metabolomics
Bacteria/classification/metabolism/genetics
RevDate: 2026-01-07
CmpDate: 2026-01-07
Gut microbiome plasticity explains the altitudinal distribution pattern and adaptability in a small mammal species (Apodemus draco).
Microbiology spectrum, 14(1):e0238825.
Altitudinal distribution patterns of species, a central focus of ecology, predominantly focus on environmental factors and only rarely on the host's intrinsic adaptive capacity. Particularly, the role of gut microbiota has not yet been studied. Here, we used the wild South China Field Mouse (Apodemus draco), a widely distributed small mammal species, as the study subject to investigate the altitudinal distribution pattern of the species and assess how gut microbiota contributes to the formation of this pattern. A total of 219 wild samples were captured in the middle section of the Qionglai Mountains, China, and 121 adult individuals were selected for metagenomic sequencing (e.g., gut microbial diversity, network topology, composition, and functional profiles). Vegetation cover of each sampling quadrat was assessed using Normalized Difference Vegetation Index. Our results indicate that A. draco exhibited a hump-shaped altitudinal distribution, but the peak abundance of A. draco corresponds to lower vegetation cover of habitats. Gut microbial diversity, complexity, robustness, energy harvesting ability, and carbohydrate utilization capacity all peaked at the mid-altitude zone, matching the host's spatial distribution pattern. Furthermore, the gut microbiome in high-altitude A. draco populations facilitates host acclimatization in extreme high-altitude niches by enhancing energy harvesting, hypoxia tolerance, and pathogen resistance.IMPORTANCEWe propose for the first time that the gut microbiome serves as a pivotal factor in structuring the altitudinal distribution pattern of species and further reveal a gut microbiota-mediated adaptive strategy underlying mammalian high-altitude adaptation. These results demonstrate that the gut microbiome fundamentally facilitates host adaptation to ecological niches. The study provides a novel insight into the factors of species' spatial distribution from a gut microbiota perspective.
Additional Links: PMID-41264233
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41264233,
year = {2026},
author = {Yun, Y and Duan, C and He, X and Tang, R and Lan, Y and Lu, M and Liu, T and Fan, X and Fan, Z and Ran, J},
title = {Gut microbiome plasticity explains the altitudinal distribution pattern and adaptability in a small mammal species (Apodemus draco).},
journal = {Microbiology spectrum},
volume = {14},
number = {1},
pages = {e0238825},
pmid = {41264233},
issn = {2165-0497},
support = {00204055A1156//Biological Resources Baseline Survey in Chengdu Area of Giant Panda National Park Program/ ; 3240030216//National Natural Science Foundation of China/ ; },
mesh = {Animals ; *Gastrointestinal Microbiome/physiology ; *Altitude ; China ; *Murinae/microbiology/physiology ; *Bacteria/classification/genetics/isolation & purification ; Biodiversity ; Adaptation, Physiological ; Metagenomics ; Ecosystem ; },
abstract = {Altitudinal distribution patterns of species, a central focus of ecology, predominantly focus on environmental factors and only rarely on the host's intrinsic adaptive capacity. Particularly, the role of gut microbiota has not yet been studied. Here, we used the wild South China Field Mouse (Apodemus draco), a widely distributed small mammal species, as the study subject to investigate the altitudinal distribution pattern of the species and assess how gut microbiota contributes to the formation of this pattern. A total of 219 wild samples were captured in the middle section of the Qionglai Mountains, China, and 121 adult individuals were selected for metagenomic sequencing (e.g., gut microbial diversity, network topology, composition, and functional profiles). Vegetation cover of each sampling quadrat was assessed using Normalized Difference Vegetation Index. Our results indicate that A. draco exhibited a hump-shaped altitudinal distribution, but the peak abundance of A. draco corresponds to lower vegetation cover of habitats. Gut microbial diversity, complexity, robustness, energy harvesting ability, and carbohydrate utilization capacity all peaked at the mid-altitude zone, matching the host's spatial distribution pattern. Furthermore, the gut microbiome in high-altitude A. draco populations facilitates host acclimatization in extreme high-altitude niches by enhancing energy harvesting, hypoxia tolerance, and pathogen resistance.IMPORTANCEWe propose for the first time that the gut microbiome serves as a pivotal factor in structuring the altitudinal distribution pattern of species and further reveal a gut microbiota-mediated adaptive strategy underlying mammalian high-altitude adaptation. These results demonstrate that the gut microbiome fundamentally facilitates host adaptation to ecological niches. The study provides a novel insight into the factors of species' spatial distribution from a gut microbiota perspective.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/physiology
*Altitude
China
*Murinae/microbiology/physiology
*Bacteria/classification/genetics/isolation & purification
Biodiversity
Adaptation, Physiological
Metagenomics
Ecosystem
RevDate: 2026-01-07
CmpDate: 2026-01-07
Microbial succession in human tissues postmortem: insights from 2bRAD-M sequencing.
Microbiology spectrum, 14(1):e0266624.
Microbial communities play a crucial role in decomposition, yet their patterns in human tissues remain underexplored. Most previous research has often focused on animal models such as mice and swine, with limited studies on human samples, primarily targeting specific environments like the gut and skin. Consequently, gaps persist in understanding postmortem microbial dynamics within internal human organs. The 2bRAD-M sequencing technology offers a powerful approach for human thanatomicrobiome research, overcoming key limitations of 16S rRNA and metagenomic sequencing methods. In this study, we used 2bRAD-M to profile microbial succession across seven human tissues-heart, liver, spleen, lung, kidney, calf muscle, and gut-at various postmortem intervals (PMIs). Significant variations in microbial community composition were observed across organs and decomposition stages, with Proteobacteria dominating early and Firmicutes later. A comparison of frozen and unfrozen cadavers (PMI 1-7 days) revealed divergent microbial shifts in the liver and spleen, while other tissues exhibited limited variation. These findings highlight complex, organ-specific microbial trajectories and suggest that microbial signatures could serve as biomarkers for PMI estimation. This research deepens our understanding of the microbial succession within internal human organs postmortem and contributes to elucidating the identity and role of microorganisms in human decomposition.IMPORTANCEHumans host a diverse array of microbial communities that play a crucial role in the decomposition process after death. Understanding these postmortem microbial dynamics is essential, as they offer valuable insights into the progression of decomposition with significant implications for forensic science. The role of microorganisms in corpse decomposition has gained increasing attention in both forensic and ecological research, but studies in this area remain in their early stages, requiring further in-depth exploration. This work pioneers the use of 2bRAD-M sequencing to investigate microbial changes across various human organs over increasing postmortem intervals. By enhancing knowledge of postmortem microbiota dynamics, the study contributes to refining and improving the accuracy of forensic methodologies.
Additional Links: PMID-41247052
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41247052,
year = {2026},
author = {Huang, X and Zeng, J and Yang, F and Liu, Y and Chen, J and Wang, H and Li, S and Li, C and Zhang, S},
title = {Microbial succession in human tissues postmortem: insights from 2bRAD-M sequencing.},
journal = {Microbiology spectrum},
volume = {14},
number = {1},
pages = {e0266624},
pmid = {41247052},
issn = {2165-0497},
mesh = {Humans ; *Postmortem Changes ; *Microbiota/genetics ; *Bacteria/classification/genetics/isolation & purification ; RNA, Ribosomal, 16S/genetics ; Liver/microbiology ; Spleen/microbiology ; Lung/microbiology ; Cadaver ; Male ; Kidney/microbiology ; Metagenomics/methods ; Female ; },
abstract = {Microbial communities play a crucial role in decomposition, yet their patterns in human tissues remain underexplored. Most previous research has often focused on animal models such as mice and swine, with limited studies on human samples, primarily targeting specific environments like the gut and skin. Consequently, gaps persist in understanding postmortem microbial dynamics within internal human organs. The 2bRAD-M sequencing technology offers a powerful approach for human thanatomicrobiome research, overcoming key limitations of 16S rRNA and metagenomic sequencing methods. In this study, we used 2bRAD-M to profile microbial succession across seven human tissues-heart, liver, spleen, lung, kidney, calf muscle, and gut-at various postmortem intervals (PMIs). Significant variations in microbial community composition were observed across organs and decomposition stages, with Proteobacteria dominating early and Firmicutes later. A comparison of frozen and unfrozen cadavers (PMI 1-7 days) revealed divergent microbial shifts in the liver and spleen, while other tissues exhibited limited variation. These findings highlight complex, organ-specific microbial trajectories and suggest that microbial signatures could serve as biomarkers for PMI estimation. This research deepens our understanding of the microbial succession within internal human organs postmortem and contributes to elucidating the identity and role of microorganisms in human decomposition.IMPORTANCEHumans host a diverse array of microbial communities that play a crucial role in the decomposition process after death. Understanding these postmortem microbial dynamics is essential, as they offer valuable insights into the progression of decomposition with significant implications for forensic science. The role of microorganisms in corpse decomposition has gained increasing attention in both forensic and ecological research, but studies in this area remain in their early stages, requiring further in-depth exploration. This work pioneers the use of 2bRAD-M sequencing to investigate microbial changes across various human organs over increasing postmortem intervals. By enhancing knowledge of postmortem microbiota dynamics, the study contributes to refining and improving the accuracy of forensic methodologies.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Postmortem Changes
*Microbiota/genetics
*Bacteria/classification/genetics/isolation & purification
RNA, Ribosomal, 16S/genetics
Liver/microbiology
Spleen/microbiology
Lung/microbiology
Cadaver
Male
Kidney/microbiology
Metagenomics/methods
Female
RevDate: 2026-01-07
CmpDate: 2026-01-07
Dietary fat disrupts a commensal-host lipid network that promotes metabolic health.
Cell metabolism, 38(1):157-173.e9.
The microbiota influences metabolic health; however, few specific microbial molecules and mechanisms have been identified. We isolated a Turicibacter strain from a community of spore-forming bacteria that promotes leanness in mice. Human metagenomic analysis demonstrates reduced Turicibacter abundance in individuals with obesity. Similarly, a high-fat diet reduces Turicibacter colonization, preventing its weight-suppressive effects, which can be overcome with continuous Turicibacter supplementation. Ceramides accumulate during a high-fat diet and promote weight gain. Transcriptomics and lipidomics reveal that the spore-forming community and Turicibacter suppress host ceramides. Turicibacter produces unique lipids, which are reduced during a high-fat diet. These lipids can be transferred to host epithelial cells, reduce ceramide production, and decrease fat uptake. Treatment of animals with purified Turicibacter lipids prevents obesity, demonstrating that bacterial lipids can promote host metabolic health. These data identify a lipid metabolic circuit between bacteria and host that is disrupted by diet and can be targeted therapeutically.
Additional Links: PMID-41197631
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41197631,
year = {2026},
author = {Klag, K and Ott, D and Tippetts, TS and Nicolson, RJ and Tatum, SM and Bauer, KM and Stephen-Victor, E and Weis, AM and Bell, R and Weagley, J and Maschek, JA and Vu, DL and Heaver, S and Ley, R and O'Connell, R and Holland, WL and Summers, SA and Stephens, WZ and Round, JL},
title = {Dietary fat disrupts a commensal-host lipid network that promotes metabolic health.},
journal = {Cell metabolism},
volume = {38},
number = {1},
pages = {157-173.e9},
pmid = {41197631},
issn = {1932-7420},
support = {F30 DK127846/DK/NIDDK NIH HHS/United States ; U01 AT012990/AT/NCCIH NIH HHS/United States ; R01 AI181021/AI/NIAID NIH HHS/United States ; R01 DK124317/DK/NIDDK NIH HHS/United States ; R01 DK124336/DK/NIDDK NIH HHS/United States ; F32 CA243501/CA/NCI NIH HHS/United States ; R01 AT011423/AT/NCCIH NIH HHS/United States ; P30 CA042014/CA/NCI NIH HHS/United States ; },
mesh = {Animals ; Humans ; Mice ; Diet, High-Fat/adverse effects ; Obesity/metabolism/microbiology ; *Dietary Fats/metabolism ; *Lipid Metabolism ; Mice, Inbred C57BL ; Male ; Ceramides/metabolism ; Gastrointestinal Microbiome ; Lipids ; },
abstract = {The microbiota influences metabolic health; however, few specific microbial molecules and mechanisms have been identified. We isolated a Turicibacter strain from a community of spore-forming bacteria that promotes leanness in mice. Human metagenomic analysis demonstrates reduced Turicibacter abundance in individuals with obesity. Similarly, a high-fat diet reduces Turicibacter colonization, preventing its weight-suppressive effects, which can be overcome with continuous Turicibacter supplementation. Ceramides accumulate during a high-fat diet and promote weight gain. Transcriptomics and lipidomics reveal that the spore-forming community and Turicibacter suppress host ceramides. Turicibacter produces unique lipids, which are reduced during a high-fat diet. These lipids can be transferred to host epithelial cells, reduce ceramide production, and decrease fat uptake. Treatment of animals with purified Turicibacter lipids prevents obesity, demonstrating that bacterial lipids can promote host metabolic health. These data identify a lipid metabolic circuit between bacteria and host that is disrupted by diet and can be targeted therapeutically.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Humans
Mice
Diet, High-Fat/adverse effects
Obesity/metabolism/microbiology
*Dietary Fats/metabolism
*Lipid Metabolism
Mice, Inbred C57BL
Male
Ceramides/metabolism
Gastrointestinal Microbiome
Lipids
RevDate: 2026-01-06
Seasonal shifts in vegetation, soil properties, and microbial communities in Western Himalayan forests.
Environmental microbiome pii:10.1186/s40793-025-00842-y [Epub ahead of print].
BACKGROUND: The western Himalayan forest ecosystem faces escalating pressures from climate change and anthropogenic activities, demanding improved conservation strategies. Effective management requires understanding the seasonal fluctuations in vegetation, soil properties and microbial communities, but they remain poorly characterized across high altitude forests. We assessed these variables in 10 forest sites during the winter of 2023 and summer of 2024, analysing vegetation diversity, soil parameters, and microbial metagenomics.
RESULTS: We found pronounced seasonal shifts in plant and microbial diversities, and in soil properties. Plant species richness, and Shannon and Simpson diversity indices were higher (p < 0.001) in summer than in winter while the community maturity index was higher (p < 0.02) in winter than in summer. Soil properties exhibited clear seasonal patterns: pH, available phosphorus (AP), microbial biomass carbon (MBC) and cation exchange capacity (CEC) were higher (p < 0.05) in summer, whereas soil moisture (SM) and soil organic carbon (SOC) were higher (p < 0.05) in winter. Microbial alpha diversity indices (Shannon, Chao, and Sobs) were elevated (p < 0.05) in summer, while the Simpson index was elevated in winter, indicating a shift in community dominance. Beta diversity analyses revealed a significant seasonal shift in overall metabolic potential (KEGG orthologs; ANOSIM R = 0.222, p = 0.016), but not in general protein functions (COG), carbohydrate-active enzymes (CAZy), or taxonomic composition (RefSeq). Therefore, despite taxonomic turnover, core metabolic functions were maintained, indicating strong functional redundancy. Structural equation models (SEM) confirmed distinct seasonal dynamics, revealing stronger plant-soil-microbe interactions and a greater proportion of variance explained by the model in summer (R[2]=0.64-0.72 for key paths) than in winter (R[2]=0.52-0.63).
CONCLUSIONS: The findings demonstrate that the western Himalayan ecosystem undergoes a fundamental seasonal reorganization. Summer is characterized by increased biodiversity, distinct soil conditions, and more dynamic microbial-ecosystem interactions, while winter exhibits greater community maturity and functional stability. The resilience of core ecosystem processes is underpinned by microbial functional redundancy, which ensures metabolic continuity despite taxonomic shifts. We recommend that forest management strategies account for these seasonal dynamics and focus on preserving the conditions that support this critical functional redundancy.
Additional Links: PMID-41495863
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41495863,
year = {2026},
author = {Ali, H and Rafiq, M and Manzoor, M and Gillani, SW and Degen, A and Iqbal, A and Wang, W and Rafiq, MK and Shang, Z},
title = {Seasonal shifts in vegetation, soil properties, and microbial communities in Western Himalayan forests.},
journal = {Environmental microbiome},
volume = {},
number = {},
pages = {},
doi = {10.1186/s40793-025-00842-y},
pmid = {41495863},
issn = {2524-6372},
support = {31961143012//Natural Science Foundation of China/ ; ANSO-SBA-2023-02//Science-based Advisory Program of The Alliance of National and International Science Organizations for the Belt and Road Regions/ ; },
abstract = {BACKGROUND: The western Himalayan forest ecosystem faces escalating pressures from climate change and anthropogenic activities, demanding improved conservation strategies. Effective management requires understanding the seasonal fluctuations in vegetation, soil properties and microbial communities, but they remain poorly characterized across high altitude forests. We assessed these variables in 10 forest sites during the winter of 2023 and summer of 2024, analysing vegetation diversity, soil parameters, and microbial metagenomics.
RESULTS: We found pronounced seasonal shifts in plant and microbial diversities, and in soil properties. Plant species richness, and Shannon and Simpson diversity indices were higher (p < 0.001) in summer than in winter while the community maturity index was higher (p < 0.02) in winter than in summer. Soil properties exhibited clear seasonal patterns: pH, available phosphorus (AP), microbial biomass carbon (MBC) and cation exchange capacity (CEC) were higher (p < 0.05) in summer, whereas soil moisture (SM) and soil organic carbon (SOC) were higher (p < 0.05) in winter. Microbial alpha diversity indices (Shannon, Chao, and Sobs) were elevated (p < 0.05) in summer, while the Simpson index was elevated in winter, indicating a shift in community dominance. Beta diversity analyses revealed a significant seasonal shift in overall metabolic potential (KEGG orthologs; ANOSIM R = 0.222, p = 0.016), but not in general protein functions (COG), carbohydrate-active enzymes (CAZy), or taxonomic composition (RefSeq). Therefore, despite taxonomic turnover, core metabolic functions were maintained, indicating strong functional redundancy. Structural equation models (SEM) confirmed distinct seasonal dynamics, revealing stronger plant-soil-microbe interactions and a greater proportion of variance explained by the model in summer (R[2]=0.64-0.72 for key paths) than in winter (R[2]=0.52-0.63).
CONCLUSIONS: The findings demonstrate that the western Himalayan ecosystem undergoes a fundamental seasonal reorganization. Summer is characterized by increased biodiversity, distinct soil conditions, and more dynamic microbial-ecosystem interactions, while winter exhibits greater community maturity and functional stability. The resilience of core ecosystem processes is underpinned by microbial functional redundancy, which ensures metabolic continuity despite taxonomic shifts. We recommend that forest management strategies account for these seasonal dynamics and focus on preserving the conditions that support this critical functional redundancy.},
}
RevDate: 2026-01-06
CmpDate: 2026-01-06
Ambecovirus, a novel Betacoronavirus subgenus circulating in neotropical bats, sheds new light on bat-borne coronaviruses evolution.
Virus evolution, 11(1):veaf094.
Understanding the viral diversity harboured by wildlife is essential for effective mapping and prevention of future zoonotic outbreaks. Bats, in particular, are recognized as natural reservoirs for several high-impact zoonotic viral pathogens, including coronaviruses responsible for Severe Acute Respiratory Syndrome (SARS), the rabies virus, diverse paramyxoviruses, Marburg, Ebola, Nipah, and Hendra viruses. However, a large extent of bat viruses remains unexplored, especially in highly biodiverse regions of the Neotropics such as Brazilian ecosystems. We used a meta-transcriptomic approach to characterize new virus genomes found in blood, oral, and anal samples collected from cave- and noncave bats from Northeast Brazil, Caatinga, and Atlantic Forest biomes. From a total of 19 coronavirus-positive bats, we have assembled two complete genomes of a new Betacoronavirus subgenus, named Ambecovirus (American betacoronavirus). The subgenus herein described is phylogenetically placed between the Sarbeco-/Hibeco-/Nobecovirus and the Merbeco-/Embecovirus clades, being basal to the former. While the conserved S2 region of the spike protein retained hallmark domains, including HR1 and HR2, the S1/S2 cleavage site and the furin cleavage site, the S1 region consistently displayed only the N-terminal domain. The receptor-binding domain from the C-terminal domai (CTD) region could not be identified due to high dissimilarity relative to known congeners. The detection of Ambercovirus in sympatric Pteronotus gymnonotus and Carollia perspicillata bats suggests potential interspecies transmission. Longitudinal sampling confirmed persistent Ambecovirus infection in P. gymnonotus over multiple years and virus dispersion at a minimum distance of 270 km between caves. The present study confirms that viral diversity in neotropical hosts remains largely unknown, not just in Brazil but likely in the other countries of the region, supporting the need for a systematic approach to virome exploration and analysis followed by in vitro experimentation to assess zoonotic potential.
Additional Links: PMID-41492410
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41492410,
year = {2025},
author = {Wallau, GDL and Barbier, E and Machado, LC and da Silva, AF and Dias, YJM and Dezordi, FZ and Tomazatos, A and Horváth, B and Lins, RD and Bernard, E and Cadar, D},
title = {Ambecovirus, a novel Betacoronavirus subgenus circulating in neotropical bats, sheds new light on bat-borne coronaviruses evolution.},
journal = {Virus evolution},
volume = {11},
number = {1},
pages = {veaf094},
pmid = {41492410},
issn = {2057-1577},
abstract = {Understanding the viral diversity harboured by wildlife is essential for effective mapping and prevention of future zoonotic outbreaks. Bats, in particular, are recognized as natural reservoirs for several high-impact zoonotic viral pathogens, including coronaviruses responsible for Severe Acute Respiratory Syndrome (SARS), the rabies virus, diverse paramyxoviruses, Marburg, Ebola, Nipah, and Hendra viruses. However, a large extent of bat viruses remains unexplored, especially in highly biodiverse regions of the Neotropics such as Brazilian ecosystems. We used a meta-transcriptomic approach to characterize new virus genomes found in blood, oral, and anal samples collected from cave- and noncave bats from Northeast Brazil, Caatinga, and Atlantic Forest biomes. From a total of 19 coronavirus-positive bats, we have assembled two complete genomes of a new Betacoronavirus subgenus, named Ambecovirus (American betacoronavirus). The subgenus herein described is phylogenetically placed between the Sarbeco-/Hibeco-/Nobecovirus and the Merbeco-/Embecovirus clades, being basal to the former. While the conserved S2 region of the spike protein retained hallmark domains, including HR1 and HR2, the S1/S2 cleavage site and the furin cleavage site, the S1 region consistently displayed only the N-terminal domain. The receptor-binding domain from the C-terminal domai (CTD) region could not be identified due to high dissimilarity relative to known congeners. The detection of Ambercovirus in sympatric Pteronotus gymnonotus and Carollia perspicillata bats suggests potential interspecies transmission. Longitudinal sampling confirmed persistent Ambecovirus infection in P. gymnonotus over multiple years and virus dispersion at a minimum distance of 270 km between caves. The present study confirms that viral diversity in neotropical hosts remains largely unknown, not just in Brazil but likely in the other countries of the region, supporting the need for a systematic approach to virome exploration and analysis followed by in vitro experimentation to assess zoonotic potential.},
}
RevDate: 2026-01-06
CmpDate: 2026-01-06
Soil water limitation intensity alters nitrogen cycling at the plant-soil interface in Scots pine mesocosms.
Plant and soil, 516(1):705-723.
BACKGROUND AND AIM: More intense episodes of drought are expected to affect terrestrial nitrogen (N) cycling by altering N transformation rates, the functioning of soil microorganisms, and plant N uptake. However, there is limited empirical evidence of how progressive water loss affects N cycling at the plant-soil interface.
METHODS: We adopted [15]N tracing techniques and metagenomic analyzes of microbial genes involved in N cycling to assess how different levels of soil water availability influenced the fate of N derived from decomposing litter in mesocosms with Scots pine saplings.
RESULTS: With increasing water limitation, the release of N from decomposing litter into the soil declined rapidly. However, moderate levels of water limitation barely affected the microbial metagenome associated with N cycling and the uptake of N by the saplings. Comparatively, severe levels of water limitation impaired plant N uptake, and increased the prevalence of microbial N-cycling genes potentially involved in mechanisms that protect against water stress. Genes associated with the uptake and release of N during mineralization and nitrification declined under low soil water contents.
CONCLUSIONS: When soil water becomes largely unavailable, the cycling of N at the plant-soil interface is slowed down, and microbial and plant tolerance mechanisms may prevail over N uptake and microbial decomposition.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-025-07758-z.
Additional Links: PMID-41492364
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41492364,
year = {2025},
author = {Solly, EF and Jaeger, ACH and Barthel, M and Six, J and Mueller, RC and Hartmann, M},
title = {Soil water limitation intensity alters nitrogen cycling at the plant-soil interface in Scots pine mesocosms.},
journal = {Plant and soil},
volume = {516},
number = {1},
pages = {705-723},
pmid = {41492364},
issn = {0032-079X},
abstract = {BACKGROUND AND AIM: More intense episodes of drought are expected to affect terrestrial nitrogen (N) cycling by altering N transformation rates, the functioning of soil microorganisms, and plant N uptake. However, there is limited empirical evidence of how progressive water loss affects N cycling at the plant-soil interface.
METHODS: We adopted [15]N tracing techniques and metagenomic analyzes of microbial genes involved in N cycling to assess how different levels of soil water availability influenced the fate of N derived from decomposing litter in mesocosms with Scots pine saplings.
RESULTS: With increasing water limitation, the release of N from decomposing litter into the soil declined rapidly. However, moderate levels of water limitation barely affected the microbial metagenome associated with N cycling and the uptake of N by the saplings. Comparatively, severe levels of water limitation impaired plant N uptake, and increased the prevalence of microbial N-cycling genes potentially involved in mechanisms that protect against water stress. Genes associated with the uptake and release of N during mineralization and nitrification declined under low soil water contents.
CONCLUSIONS: When soil water becomes largely unavailable, the cycling of N at the plant-soil interface is slowed down, and microbial and plant tolerance mechanisms may prevail over N uptake and microbial decomposition.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-025-07758-z.},
}
RevDate: 2026-01-06
CmpDate: 2026-01-06
Untapped Microbial Diversity, Assemblages, and Interactions in Rwandan Geothermal Spring Mats, Africa.
Current microbiology, 83(2):123.
Research on prokaryotes living in geothermal ecosystems have broadened our understanding of their compositions and response to extreme environmental stresses, especially for plankton bacterial communities in hot spring water. However, the comprehensive exploration of microbial diversity, assemblages, and interactions in geothermal spring mats in Africa, particularly in Rwanda, remain underexplored. This study explored the bacterial and eukaryotic communities' biodiversity, assemblages, and interactions within microbial mats from the Bugarama hot pool (BHP; 40-47 °C) and Gisenyi hot springs (GHS; 58-71.4 °C) in Rwanda, using high-throughput sequencing of the 16S rRNA gene and 18S rRNA gene, complemented by null and neutral community models and physicochemical analytical methods. Interestingly, the bacterial Shannon, Evenness, and Simpson indices were significantly different (P < 0.05) among geothermal spring mats. In BHP and GHS, the abundances of Chloroflexota, Proteobacteria, Firmicutes, and Acidobacteriota were significantly higher in BHP (P < 0.05) than in GHS, whereas Cyanobacteria, Bacteroidota, Planctomycetota, Verrucomicrobiota, and Spirochaetota were significantly more abundant in GHS (P < 0.01). Conversely, Chloroplastida, Mucoromycota, Arthropoda, and Cryptomycota were significantly more prevalent in BHP (P < 0.05), while the SAR supergroup, Ascomycota, Nematoda, and Amoebozoa dominated in GHS (P < 0.05). Through null and neutral modeling, stochastic processes exerted greater influence on bacterial and eukaryotic community assembly in fine-scale variations within geothermal spring mats. Despite this stochastic predominance, abiotic environmental factors (deterministic processes) such as temperature, pH, salinity (EC and TDS), and nitrate cannot be entirely ruled out. Moreover, Co-occurrence network analysis (|r|> 0.7, P < 0.05) revealed more complex and stable microbial interactions at higher temperatures (GHS). These findings highlight the rich underexplored microbial diversity and interactions in Rwandan geothermal spring mats through metagenomic analysis, shedding light on ecological processes and dynamics in extreme environments. Despite being ignored in metagenomic studies, eukaryotic communities highlight novel temperature-tolerant taxa: Echinamoeba and Tubulinea in phylum Amoebozoa, Monhysterida in phylum Nematoda, and Novel_Clade_Gran-5 in phylum Cercozoa, which are both pathogens and fierce predators thriving in geothermal habitats.
Additional Links: PMID-41491053
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41491053,
year = {2026},
author = {Manirakiza, B and Zhang, S and Addo, FG and Ifon, BE and James, N and Kiribou, R and Nadine, NIA and Nyandwi, V and Sebaziga, JN and Mukasekuru, R and de Dieu Uwizelimana, J},
title = {Untapped Microbial Diversity, Assemblages, and Interactions in Rwandan Geothermal Spring Mats, Africa.},
journal = {Current microbiology},
volume = {83},
number = {2},
pages = {123},
pmid = {41491053},
issn = {1432-0991},
support = {E51879084//National Natural Science Foundation of China/ ; E51579075//National Natural Science Foundation of China/ ; },
mesh = {*Hot Springs/microbiology ; *Bacteria/classification/genetics/isolation & purification ; Rwanda ; *Biodiversity ; RNA, Ribosomal, 16S/genetics ; *Microbiota ; RNA, Ribosomal, 18S/genetics ; *Eukaryota/classification/genetics/isolation & purification ; Phylogeny ; },
abstract = {Research on prokaryotes living in geothermal ecosystems have broadened our understanding of their compositions and response to extreme environmental stresses, especially for plankton bacterial communities in hot spring water. However, the comprehensive exploration of microbial diversity, assemblages, and interactions in geothermal spring mats in Africa, particularly in Rwanda, remain underexplored. This study explored the bacterial and eukaryotic communities' biodiversity, assemblages, and interactions within microbial mats from the Bugarama hot pool (BHP; 40-47 °C) and Gisenyi hot springs (GHS; 58-71.4 °C) in Rwanda, using high-throughput sequencing of the 16S rRNA gene and 18S rRNA gene, complemented by null and neutral community models and physicochemical analytical methods. Interestingly, the bacterial Shannon, Evenness, and Simpson indices were significantly different (P < 0.05) among geothermal spring mats. In BHP and GHS, the abundances of Chloroflexota, Proteobacteria, Firmicutes, and Acidobacteriota were significantly higher in BHP (P < 0.05) than in GHS, whereas Cyanobacteria, Bacteroidota, Planctomycetota, Verrucomicrobiota, and Spirochaetota were significantly more abundant in GHS (P < 0.01). Conversely, Chloroplastida, Mucoromycota, Arthropoda, and Cryptomycota were significantly more prevalent in BHP (P < 0.05), while the SAR supergroup, Ascomycota, Nematoda, and Amoebozoa dominated in GHS (P < 0.05). Through null and neutral modeling, stochastic processes exerted greater influence on bacterial and eukaryotic community assembly in fine-scale variations within geothermal spring mats. Despite this stochastic predominance, abiotic environmental factors (deterministic processes) such as temperature, pH, salinity (EC and TDS), and nitrate cannot be entirely ruled out. Moreover, Co-occurrence network analysis (|r|> 0.7, P < 0.05) revealed more complex and stable microbial interactions at higher temperatures (GHS). These findings highlight the rich underexplored microbial diversity and interactions in Rwandan geothermal spring mats through metagenomic analysis, shedding light on ecological processes and dynamics in extreme environments. Despite being ignored in metagenomic studies, eukaryotic communities highlight novel temperature-tolerant taxa: Echinamoeba and Tubulinea in phylum Amoebozoa, Monhysterida in phylum Nematoda, and Novel_Clade_Gran-5 in phylum Cercozoa, which are both pathogens and fierce predators thriving in geothermal habitats.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Hot Springs/microbiology
*Bacteria/classification/genetics/isolation & purification
Rwanda
*Biodiversity
RNA, Ribosomal, 16S/genetics
*Microbiota
RNA, Ribosomal, 18S/genetics
*Eukaryota/classification/genetics/isolation & purification
Phylogeny
RevDate: 2026-01-06
CmpDate: 2026-01-06
Microbial collagenase activity is linked to oral-gut translocation in advanced chronic liver disease.
Nature microbiology, 11(1):211-227.
Microbiome perturbations are associated with advanced chronic liver disease (ACLD), but how microorganisms contribute to disease mechanisms is unclear. Here we analysed metagenomes of paired saliva and faecal samples from an ACLD cohort of 86 individuals, plus 2 control groups of 52 healthy individuals and 14 patients with sepsis. We identified highly similar oral and gut bacterial strains, including Veillonella and Streptococcus spp., which increased in absolute abundance in the gut of patients with ACLD compared with controls. These microbial translocators uniquely share a prtC gene encoding a collagenase-like proteinase, and its faecal abundance was a robust ACLD biomarker (area under precision-recall curve = 0.91). A mouse model of hepatic fibrosis inoculated with Veillonella and Streptococcus prtC-encoding patient isolates showed exacerbation of gut barrier impairment and hepatic fibrosis. Furthermore, faecal collagenase activity was increased in patients with ACLD and experimentally confirmed for the prtC gene of translocating Veillonella parvula. These findings establish mechanistic links between oral-gut translocation and ACLD pathobiology.
Additional Links: PMID-41461922
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41461922,
year = {2026},
author = {Jin, S and Cenier, A and Wetzel, D and Arefaine, B and Moreno-Gonzalez, M and Stamouli, M and Mohamad, M and Lupatsii, M and Ríos, E and Lee, S and Zamalloa, A and Chokshi, S and Mardinoglu, A and Shoaie, S and Beraza, N and Patel, VC and Schirmer, M},
title = {Microbial collagenase activity is linked to oral-gut translocation in advanced chronic liver disease.},
journal = {Nature microbiology},
volume = {11},
number = {1},
pages = {211-227},
pmid = {41461922},
issn = {2058-5276},
support = {426120468//Deutsche Forschungsgemeinschaft (German Research Foundation)/ ; BBS/E/F/000PR13632//RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)/ ; BB/CCG1860/1//RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)/ ; 268211/1134579//Foundation for Liver Research/ ; },
mesh = {Humans ; Feces/microbiology ; *Collagenases/metabolism/genetics ; *Gastrointestinal Microbiome ; Mice ; Animals ; Saliva/microbiology ; Male ; Female ; Veillonella/genetics/enzymology/isolation & purification ; Middle Aged ; Streptococcus/genetics/enzymology/isolation & purification ; Metagenome ; *Bacterial Translocation ; *Bacteria/enzymology/genetics/classification/isolation & purification ; Adult ; Disease Models, Animal ; *Mouth/microbiology ; Aged ; Liver Cirrhosis/microbiology ; *Liver Diseases/microbiology ; },
abstract = {Microbiome perturbations are associated with advanced chronic liver disease (ACLD), but how microorganisms contribute to disease mechanisms is unclear. Here we analysed metagenomes of paired saliva and faecal samples from an ACLD cohort of 86 individuals, plus 2 control groups of 52 healthy individuals and 14 patients with sepsis. We identified highly similar oral and gut bacterial strains, including Veillonella and Streptococcus spp., which increased in absolute abundance in the gut of patients with ACLD compared with controls. These microbial translocators uniquely share a prtC gene encoding a collagenase-like proteinase, and its faecal abundance was a robust ACLD biomarker (area under precision-recall curve = 0.91). A mouse model of hepatic fibrosis inoculated with Veillonella and Streptococcus prtC-encoding patient isolates showed exacerbation of gut barrier impairment and hepatic fibrosis. Furthermore, faecal collagenase activity was increased in patients with ACLD and experimentally confirmed for the prtC gene of translocating Veillonella parvula. These findings establish mechanistic links between oral-gut translocation and ACLD pathobiology.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Feces/microbiology
*Collagenases/metabolism/genetics
*Gastrointestinal Microbiome
Mice
Animals
Saliva/microbiology
Male
Female
Veillonella/genetics/enzymology/isolation & purification
Middle Aged
Streptococcus/genetics/enzymology/isolation & purification
Metagenome
*Bacterial Translocation
*Bacteria/enzymology/genetics/classification/isolation & purification
Adult
Disease Models, Animal
*Mouth/microbiology
Aged
Liver Cirrhosis/microbiology
*Liver Diseases/microbiology
RevDate: 2026-01-06
CmpDate: 2026-01-06
Ecosystem health shapes viral ecology in peatland soils.
Nature microbiology, 11(1):142-154.
Peatlands hold up to one-third of Earth's soil carbon but are increasingly turning from being carbon sinks to becoming carbon sources due to human impacts. Restoration efforts aim to reverse this trend, but viral influences on peatland recovery remain unclear, despite viruses being potent regulators of microbiomes and ecosystem function. Here we sequenced soil metagenomes to study viral communities across seven UK peatlands, each encompassing areas representing three peatland ecosystem health statuses: natural, damaged and restored. We found that viral diversity and community structure were shaped by both geography and ecosystem health. Viruses were geographically widespread, yet exhibited ecosystem health-specific endemism and functional adaptation, highlighting their sensitivity to restoration. Virus-host dynamics ranged from stable 'piggyback-the-winner' relationships to decoupled dynamics in those infecting keystone aerobes, sulfate reducers, carbohydrate degraders and fermenters. These findings position viruses as dynamic drivers of peatland ecosystem recovery and could unlock pathways to bolster carbon retention and accelerate climate mitigation.
Additional Links: PMID-41372637
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41372637,
year = {2026},
author = {Kosmopoulos, JC and Pallier, W and Malik, AA and Anantharaman, K},
title = {Ecosystem health shapes viral ecology in peatland soils.},
journal = {Nature microbiology},
volume = {11},
number = {1},
pages = {142-154},
pmid = {41372637},
issn = {2058-5276},
support = {DBI2047598//National Science Foundation (NSF)/ ; 2137424//National Science Foundation (NSF)/ ; },
mesh = {*Soil Microbiology ; *Soil/chemistry ; *Ecosystem ; *Viruses/genetics/classification/isolation & purification ; United Kingdom ; Metagenome ; Microbiota ; Carbon ; Phylogeny ; },
abstract = {Peatlands hold up to one-third of Earth's soil carbon but are increasingly turning from being carbon sinks to becoming carbon sources due to human impacts. Restoration efforts aim to reverse this trend, but viral influences on peatland recovery remain unclear, despite viruses being potent regulators of microbiomes and ecosystem function. Here we sequenced soil metagenomes to study viral communities across seven UK peatlands, each encompassing areas representing three peatland ecosystem health statuses: natural, damaged and restored. We found that viral diversity and community structure were shaped by both geography and ecosystem health. Viruses were geographically widespread, yet exhibited ecosystem health-specific endemism and functional adaptation, highlighting their sensitivity to restoration. Virus-host dynamics ranged from stable 'piggyback-the-winner' relationships to decoupled dynamics in those infecting keystone aerobes, sulfate reducers, carbohydrate degraders and fermenters. These findings position viruses as dynamic drivers of peatland ecosystem recovery and could unlock pathways to bolster carbon retention and accelerate climate mitigation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Soil Microbiology
*Soil/chemistry
*Ecosystem
*Viruses/genetics/classification/isolation & purification
United Kingdom
Metagenome
Microbiota
Carbon
Phylogeny
RevDate: 2026-01-06
CmpDate: 2026-01-06
Compiling an early life human gut microbiome atlas and identification of key microbial drivers.
NPJ biofilms and microbiomes, 12(1):4.
During the first year after birth, the infant gut microbiome undergoes a rapid and profound compositional and functional transformation, impelled by an intricate network of intrinsic and extrinsic factors. This process results in increased taxonomic and functional diversification, alongside greater interindividual variability. To better understand this early-life ecosystem, this study assessed the interindividual variability of the infant gut microbiome using a comprehensive infant gut microbiome database of 5288 fecal metagenomic data from healthy, full-term infants across various geographical locations. Our study identified six reference microbial communities, termed Early-Life Community State Types (ELi-CSTs), which not only capture specific compositional profiles and heterogeneity of the infant gut microbiome, but also record the extensive transformation experienced by this developing microbial community during the first year of human life. Indicative Species analysis and Random Forest modeling assisted the precise identification of unique, key taxonomic signatures that are critical to the structure of each ELi-CST, highlighting microbial taxa with pivotal roles in shaping the infant gut microbiota. To complement these findings, we established a bacterial biobank through dedicated cultivation efforts of the infant microbiota, comprising 182 genome-sequenced isolates corresponding to key taxa involved in early life gut microbiota assembly. This biobank provided the basis for co-cultivation experiments combined with transcriptome analyses, thereby enabling in vitro investigations into microbial cross-talk among key modulators, and yielding novel insights into the molecular interactions and cooperative dynamics behind early microbiome development.
Additional Links: PMID-41350579
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41350579,
year = {2025},
author = {Tarracchini, C and Longhi, G and Gennaioli, E and Muscò, A and Rizzo, SM and Viappiani, A and Vitale, SG and Mancabelli, L and Lugli, GA and Angioni, S and Turroni, F and van Sinderen, D and Milani, C and Ventura, M},
title = {Compiling an early life human gut microbiome atlas and identification of key microbial drivers.},
journal = {NPJ biofilms and microbiomes},
volume = {12},
number = {1},
pages = {4},
pmid = {41350579},
issn = {2055-5008},
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; Feces/microbiology ; Infant ; *Bacteria/classification/genetics/isolation & purification ; Infant, Newborn ; Metagenomics/methods ; Metagenome ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; },
abstract = {During the first year after birth, the infant gut microbiome undergoes a rapid and profound compositional and functional transformation, impelled by an intricate network of intrinsic and extrinsic factors. This process results in increased taxonomic and functional diversification, alongside greater interindividual variability. To better understand this early-life ecosystem, this study assessed the interindividual variability of the infant gut microbiome using a comprehensive infant gut microbiome database of 5288 fecal metagenomic data from healthy, full-term infants across various geographical locations. Our study identified six reference microbial communities, termed Early-Life Community State Types (ELi-CSTs), which not only capture specific compositional profiles and heterogeneity of the infant gut microbiome, but also record the extensive transformation experienced by this developing microbial community during the first year of human life. Indicative Species analysis and Random Forest modeling assisted the precise identification of unique, key taxonomic signatures that are critical to the structure of each ELi-CST, highlighting microbial taxa with pivotal roles in shaping the infant gut microbiota. To complement these findings, we established a bacterial biobank through dedicated cultivation efforts of the infant microbiota, comprising 182 genome-sequenced isolates corresponding to key taxa involved in early life gut microbiota assembly. This biobank provided the basis for co-cultivation experiments combined with transcriptome analyses, thereby enabling in vitro investigations into microbial cross-talk among key modulators, and yielding novel insights into the molecular interactions and cooperative dynamics behind early microbiome development.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
Feces/microbiology
Infant
*Bacteria/classification/genetics/isolation & purification
Infant, Newborn
Metagenomics/methods
Metagenome
Phylogeny
RNA, Ribosomal, 16S/genetics
RevDate: 2026-01-06
CmpDate: 2026-01-06
A human gut metagenome-assembled genome catalogue spanning 41 countries supports genome-scale metabolic models.
Nature microbiology, 11(1):317-334.
Understanding the human gut microbiome requires comprehensive genomic catalogues, yet many lack geographic diversity and contain medium-quality metagenome-assembled genomes (MAGs) missing up to 50% of genomic regions, potentially distorting functional insights. Here we describe an enhanced Human Reference Gut Microbiome (HRGM2) resource, a catalogue of near-complete MAGs (≥90% completeness, ≤5% contamination) and isolate genomes. HRGM2 comprises 155,211 non-redundant near-complete genomes from 4,824 prokaryotic species across 41 countries, representing a 66% increase in genome count and a 50% boost in species diversity compared to the Unified Human Gastrointestinal Genome catalogue. It enabled improved DNA-based species profiling, resolution of strain heterogeneity and survey of the human gut resistome. The exclusive use of these genomes improved metabolic capacity assessment, enabling high-confidence, automated genome-scale metabolic models of the entire microbiota and revealing disease-associated microbial metabolic interactions. This resource will facilitate reliable functional insights into gut microbiomes.
Additional Links: PMID-41345261
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41345261,
year = {2026},
author = {Ma, J and Kim, N and Cha, JH and Kim, W and Kim, CY and Lee, YH and Kim, HS and Han, YD and Yong, D and Han, E and Yang, S and Beck, S and Lee, I},
title = {A human gut metagenome-assembled genome catalogue spanning 41 countries supports genome-scale metabolic models.},
journal = {Nature microbiology},
volume = {11},
number = {1},
pages = {317-334},
pmid = {41345261},
issn = {2058-5276},
support = {2022M3A9F3016364//National Research Foundation of Korea (NRF)/ ; 2022R1A2C1092062//National Research Foundation of Korea (NRF)/ ; },
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; *Metagenome ; *Genome, Bacterial ; *Bacteria/genetics/classification/metabolism/isolation & purification ; Metagenomics/methods ; },
abstract = {Understanding the human gut microbiome requires comprehensive genomic catalogues, yet many lack geographic diversity and contain medium-quality metagenome-assembled genomes (MAGs) missing up to 50% of genomic regions, potentially distorting functional insights. Here we describe an enhanced Human Reference Gut Microbiome (HRGM2) resource, a catalogue of near-complete MAGs (≥90% completeness, ≤5% contamination) and isolate genomes. HRGM2 comprises 155,211 non-redundant near-complete genomes from 4,824 prokaryotic species across 41 countries, representing a 66% increase in genome count and a 50% boost in species diversity compared to the Unified Human Gastrointestinal Genome catalogue. It enabled improved DNA-based species profiling, resolution of strain heterogeneity and survey of the human gut resistome. The exclusive use of these genomes improved metabolic capacity assessment, enabling high-confidence, automated genome-scale metabolic models of the entire microbiota and revealing disease-associated microbial metabolic interactions. This resource will facilitate reliable functional insights into gut microbiomes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
*Metagenome
*Genome, Bacterial
*Bacteria/genetics/classification/metabolism/isolation & purification
Metagenomics/methods
RevDate: 2026-01-06
CmpDate: 2026-01-06
The Great Wall of China harbors a diverse and protective biocrust microbiome.
Current biology : CB, 36(1):16-27.e4.
The Great Wall of China, one of the most emblematic human heritage sites ever built, is largely covered by a living skin that has a potentially distinct microbiome compared with bare wall surfaces. However, the structure and function of this microbiome remain virtually unknown, which hampers any effort to understand the impacts of this microbiome on the long-term conservation of the Great Wall. Here, we investigated the microbiome of the Great Wall at six sampling sites along a 600-km section, which stretches across arid and semiarid climates and is covered by a mosaic of biological soil crusts (biocrusts) and exposed wall surfaces. We hypothesized that these biocrusts could establish a unique microhabitat and support a microbiome with a community structure and function potentially distinct from those on bare walls, thereby modulating the biodeterioration processes affecting the Great Wall. Our findings revealed that biocrust-covered sections exhibited a 12%-62% increase in abundance, diversity, and co-occurrence network complexity for bacterial and fungal communities compared with bare walls. Further metagenomic analyses indicated that the biocrust cover enhanced the abundance of overall functional genes and stress-resistance pathways within the microbiome by 4%-15%, while decreasing the metabolic pathways linked to heritage biodeterioration. Aridity was an additional determinant of the microbiome. Our work serves as a critical step toward understanding the microbiome of the Great Wall, which contributes to conserving this unparalleled human monument for future generations.
Additional Links: PMID-41344333
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41344333,
year = {2026},
author = {Cao, Y and Bowker, MA and Feng, Y and Delgado-Baquerizo, M and Xiao, B},
title = {The Great Wall of China harbors a diverse and protective biocrust microbiome.},
journal = {Current biology : CB},
volume = {36},
number = {1},
pages = {16-27.e4},
doi = {10.1016/j.cub.2025.10.087},
pmid = {41344333},
issn = {1879-0445},
mesh = {China ; *Microbiota ; Humans ; *Soil Microbiology ; Bacteria/classification/genetics ; *Fungi/classification/isolation & purification ; },
abstract = {The Great Wall of China, one of the most emblematic human heritage sites ever built, is largely covered by a living skin that has a potentially distinct microbiome compared with bare wall surfaces. However, the structure and function of this microbiome remain virtually unknown, which hampers any effort to understand the impacts of this microbiome on the long-term conservation of the Great Wall. Here, we investigated the microbiome of the Great Wall at six sampling sites along a 600-km section, which stretches across arid and semiarid climates and is covered by a mosaic of biological soil crusts (biocrusts) and exposed wall surfaces. We hypothesized that these biocrusts could establish a unique microhabitat and support a microbiome with a community structure and function potentially distinct from those on bare walls, thereby modulating the biodeterioration processes affecting the Great Wall. Our findings revealed that biocrust-covered sections exhibited a 12%-62% increase in abundance, diversity, and co-occurrence network complexity for bacterial and fungal communities compared with bare walls. Further metagenomic analyses indicated that the biocrust cover enhanced the abundance of overall functional genes and stress-resistance pathways within the microbiome by 4%-15%, while decreasing the metabolic pathways linked to heritage biodeterioration. Aridity was an additional determinant of the microbiome. Our work serves as a critical step toward understanding the microbiome of the Great Wall, which contributes to conserving this unparalleled human monument for future generations.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
China
*Microbiota
Humans
*Soil Microbiology
Bacteria/classification/genetics
*Fungi/classification/isolation & purification
RevDate: 2026-01-06
CmpDate: 2026-01-06
Gut microbiome-mediated transformation of dietary phytonutrients is associated with health outcomes.
Nature microbiology, 11(1):94-110.
Food, especially plant-based diet, has complex chemical diversity. However, large-scale phytonutrient-metabolizing activities of gut bacteria are largely unknown. Here we integrated and systematically analysed multiple databases containing information on enzymatic reactions and food health benefits, and 3,068 global public human microbiomes. Transformation of 775 phytonutrients from edible plants was associated with enzymes encoded by diverse gut microbes. In vitro assays validated the biotransformation activity of gut species, for example, Eubacterium ramulus. The biotransformation of phytonutrients demonstrated high interpersonal and geographical variability. Machine learning models based on 2,486 public case-control microbiomes, using the abundances of enzymes associated with modification of phytonutrients present in health-associated foods, discriminated the health status of individuals in multiple disease contexts, suggesting altered biotransformation potential in disease. We validated the association of microbiome-encoded enzymes with the anti-inflammatory activity of common edible plants by combining metagenomics and metatranscriptomics analysis in specific-pathogen-free and germ-free mice. These findings have implications for designing precise, personalized diets to guide an individual towards a healthy state.
Additional Links: PMID-41339745
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41339745,
year = {2026},
author = {Zhang, L and Marfil-Sánchez, A and Kuo, TH and Seelbinder, B and van Dam, L and Depetris-Chauvin, A and Jahn, LJ and Sommer, MOA and Zimmermann, M and Ni, Y and Panagiotou, G},
title = {Gut microbiome-mediated transformation of dietary phytonutrients is associated with health outcomes.},
journal = {Nature microbiology},
volume = {11},
number = {1},
pages = {94-110},
pmid = {41339745},
issn = {2058-5276},
support = {Germany's Excellence Strategy (EXC 2051) project ID 390713860//Deutsche Forschungsgemeinschaft (German Research Foundation)/ ; "PerMiCCion" project (Project ID 01KD2101A)//Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)/ ; Excellent Young Scientists Fund (project ID 24HAA01325)//National Natural Science Foundation of China (National Science Foundation of China)/ ; },
mesh = {*Gastrointestinal Microbiome/physiology ; Humans ; Animals ; Mice ; *Phytochemicals/metabolism ; *Diet ; Biotransformation ; *Bacteria/metabolism/genetics/classification/enzymology ; Plants, Edible/metabolism/chemistry ; Metagenomics ; },
abstract = {Food, especially plant-based diet, has complex chemical diversity. However, large-scale phytonutrient-metabolizing activities of gut bacteria are largely unknown. Here we integrated and systematically analysed multiple databases containing information on enzymatic reactions and food health benefits, and 3,068 global public human microbiomes. Transformation of 775 phytonutrients from edible plants was associated with enzymes encoded by diverse gut microbes. In vitro assays validated the biotransformation activity of gut species, for example, Eubacterium ramulus. The biotransformation of phytonutrients demonstrated high interpersonal and geographical variability. Machine learning models based on 2,486 public case-control microbiomes, using the abundances of enzymes associated with modification of phytonutrients present in health-associated foods, discriminated the health status of individuals in multiple disease contexts, suggesting altered biotransformation potential in disease. We validated the association of microbiome-encoded enzymes with the anti-inflammatory activity of common edible plants by combining metagenomics and metatranscriptomics analysis in specific-pathogen-free and germ-free mice. These findings have implications for designing precise, personalized diets to guide an individual towards a healthy state.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Gastrointestinal Microbiome/physiology
Humans
Animals
Mice
*Phytochemicals/metabolism
*Diet
Biotransformation
*Bacteria/metabolism/genetics/classification/enzymology
Plants, Edible/metabolism/chemistry
Metagenomics
RevDate: 2026-01-06
CmpDate: 2026-01-06
ASSR-mediated sludge yield reduction couples deterministic enrichment of Nitrospira with metabolic resource partitioning.
Water research, 290:125031.
The anaerobic side-stream reactor (ASSR) process offers a microbiome-driven strategy for sustainable wastewater treatment, yet the ecological mechanisms governing its sludge yield reduction efficiency remain unresolved. Here, we demonstrate that a pilot-scale anaerobic-anoxic-oxic (AAO) system with integrated anaerobic side-stream reactor (ASSR) (designated AAO-ASSR/SR) reduced sludge production by 43.6 % compared to a conventional AAO system (designated AAO/CK), while maintaining effluent quality. Through integrated multi-omics and ecological modeling, we revealed the core microbiome-driven mechanism for ASSR-mediated sludge yield reduction. This mechanism is characterized by three key features: (1) enhanced microbial stability via cooperative networks, (2) deterministic assembly selecting slow-growing keystone taxa (e.g., Nitrospira, 18.6 % abundance in SR), and (3) metabolic resource partitioning from biomass synthesis to amino acid cross-feeding. Functional metagenomics revealed that Nitrospira (phylum Nitrospirota, comprising >99 % Nitrospira) and Novosphingobium (phylum Proteobacteria) mediated increased amino acid metabolism and reduced ATP biosynthesis in SR, contrasting with Bacteroidota-dominated biomass synthesis in CK through enhanced protein, nucleotide metabolism and ATP biosynthesis. By coupling deterministic microbial assembly with functional repartitioning, this work contributes to establish a design principle for targeted microbiome engineering in low-sludge systems, advancing sustainable wastewater management through ecological optimization of microbial resource allocation.
Additional Links: PMID-41319383
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41319383,
year = {2026},
author = {Deng, H and Yang, J and Li, R and Li, K and Lu, H and Lin, B and Xu, X and Liao, J and Ye, C and Deng, J and Wu, B and Sun, L},
title = {ASSR-mediated sludge yield reduction couples deterministic enrichment of Nitrospira with metabolic resource partitioning.},
journal = {Water research},
volume = {290},
number = {},
pages = {125031},
doi = {10.1016/j.watres.2025.125031},
pmid = {41319383},
issn = {1879-2448},
mesh = {*Sewage/microbiology ; *Bioreactors/microbiology ; Waste Disposal, Fluid ; Anaerobiosis ; Microbiota ; Wastewater ; },
abstract = {The anaerobic side-stream reactor (ASSR) process offers a microbiome-driven strategy for sustainable wastewater treatment, yet the ecological mechanisms governing its sludge yield reduction efficiency remain unresolved. Here, we demonstrate that a pilot-scale anaerobic-anoxic-oxic (AAO) system with integrated anaerobic side-stream reactor (ASSR) (designated AAO-ASSR/SR) reduced sludge production by 43.6 % compared to a conventional AAO system (designated AAO/CK), while maintaining effluent quality. Through integrated multi-omics and ecological modeling, we revealed the core microbiome-driven mechanism for ASSR-mediated sludge yield reduction. This mechanism is characterized by three key features: (1) enhanced microbial stability via cooperative networks, (2) deterministic assembly selecting slow-growing keystone taxa (e.g., Nitrospira, 18.6 % abundance in SR), and (3) metabolic resource partitioning from biomass synthesis to amino acid cross-feeding. Functional metagenomics revealed that Nitrospira (phylum Nitrospirota, comprising >99 % Nitrospira) and Novosphingobium (phylum Proteobacteria) mediated increased amino acid metabolism and reduced ATP biosynthesis in SR, contrasting with Bacteroidota-dominated biomass synthesis in CK through enhanced protein, nucleotide metabolism and ATP biosynthesis. By coupling deterministic microbial assembly with functional repartitioning, this work contributes to establish a design principle for targeted microbiome engineering in low-sludge systems, advancing sustainable wastewater management through ecological optimization of microbial resource allocation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Sewage/microbiology
*Bioreactors/microbiology
Waste Disposal, Fluid
Anaerobiosis
Microbiota
Wastewater
RevDate: 2026-01-06
CmpDate: 2026-01-06
Sodium oligomannate modulates the gut-brain axis to alleviate post-stroke cognitive impairment by restoring butyrate metabolism.
Microbiome, 14(1):6.
BACKGROUND: Post-stroke cognitive impairment (PSCI) affects up to half of stroke survivors, severely impacting their quality of life. Despite its prevalence, the pathogenesis of PSCI remains poorly understood, and no specific pharmacological treatments are currently available.
RESULTS: In PSCI patients, fecal butyrate levels were significantly reduced and correlated with cognitive scores. A machine learning model incorporating butyrate levels, butyrate-producing bacteria, and clinical factors (education, smoking, body mass index [BMI], hemoglobin) demonstrates strong predictive performance (area under the curve [AUC]: 0.793 internal, 0.795 external validation). In a transient middle cerebral artery occlusion (tMCAO) mouse model, both sexes displayed sustained gut microbiota dysbiosis featuring decreased butyrate-producing bacteria and fecal butyrate concentrations, concomitant with hippocampal neuronal loss and microglial activation. Sodium oligomannate (GV-971) treatment ameliorated cognitive impairment in a sex-independent manner and restored butyrate-producing gut bacteria. Metagenomic analysis revealed that GV-971 enhanced butyrate production by promoting D-glucuronate degradation and upregulating butyrate synthesis pathway abundance. The elevated butyrate promoted acetylation of histone H3 at lysines 9 and 14 (Ac-H3K9/K14) in colonic and hippocampal neurons, stimulating neurogenesis, while concurrently reducing gut-derived lipopolysaccharide (LPS) and microglial inflammation. Antibiotic treatment and fecal microbiota transplantation established the essential role of butyrate-producing microbiota in mediating GV-971's effects. In vitro, butyrate supplementation significantly inhibited HDAC3 enzymatic activity in HT22 cells and alleviated LPS-induced inflammatory responses in BV2 microglia.
CONCLUSIONS: Intestinal butyrate levels are significantly associated with PSCI. GV-971 mitigates post-stroke cognitive decline by modulating the gut microbiota to increase butyrate production, highlighting its potential as a therapeutic agent for PSCI.
Additional Links: PMID-41316344
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41316344,
year = {2025},
author = {Ren, Y and Liang, J and Xie, J and Hu, W and Lai, M and Li, X and Zhang, J and Zheng, Y and Wu, Q and Zhou, H and Yin, J},
title = {Sodium oligomannate modulates the gut-brain axis to alleviate post-stroke cognitive impairment by restoring butyrate metabolism.},
journal = {Microbiome},
volume = {14},
number = {1},
pages = {6},
pmid = {41316344},
issn = {2049-2618},
support = {82171317//National Natural Science Foundation of China/ ; },
mesh = {Animals ; *Gastrointestinal Microbiome/drug effects ; *Butyrates/metabolism ; Mice ; *Cognitive Dysfunction/drug therapy/etiology/microbiology/metabolism ; Male ; Humans ; Female ; *Stroke/complications/microbiology ; Feces/microbiology/chemistry ; *Oligosaccharides/pharmacology/therapeutic use ; Dysbiosis/drug therapy/microbiology ; Disease Models, Animal ; Bacteria/metabolism/classification/genetics/isolation & purification/drug effects ; *Brain-Gut Axis/drug effects ; Hippocampus/drug effects/metabolism ; Middle Aged ; Aged ; Mice, Inbred C57BL ; },
abstract = {BACKGROUND: Post-stroke cognitive impairment (PSCI) affects up to half of stroke survivors, severely impacting their quality of life. Despite its prevalence, the pathogenesis of PSCI remains poorly understood, and no specific pharmacological treatments are currently available.
RESULTS: In PSCI patients, fecal butyrate levels were significantly reduced and correlated with cognitive scores. A machine learning model incorporating butyrate levels, butyrate-producing bacteria, and clinical factors (education, smoking, body mass index [BMI], hemoglobin) demonstrates strong predictive performance (area under the curve [AUC]: 0.793 internal, 0.795 external validation). In a transient middle cerebral artery occlusion (tMCAO) mouse model, both sexes displayed sustained gut microbiota dysbiosis featuring decreased butyrate-producing bacteria and fecal butyrate concentrations, concomitant with hippocampal neuronal loss and microglial activation. Sodium oligomannate (GV-971) treatment ameliorated cognitive impairment in a sex-independent manner and restored butyrate-producing gut bacteria. Metagenomic analysis revealed that GV-971 enhanced butyrate production by promoting D-glucuronate degradation and upregulating butyrate synthesis pathway abundance. The elevated butyrate promoted acetylation of histone H3 at lysines 9 and 14 (Ac-H3K9/K14) in colonic and hippocampal neurons, stimulating neurogenesis, while concurrently reducing gut-derived lipopolysaccharide (LPS) and microglial inflammation. Antibiotic treatment and fecal microbiota transplantation established the essential role of butyrate-producing microbiota in mediating GV-971's effects. In vitro, butyrate supplementation significantly inhibited HDAC3 enzymatic activity in HT22 cells and alleviated LPS-induced inflammatory responses in BV2 microglia.
CONCLUSIONS: Intestinal butyrate levels are significantly associated with PSCI. GV-971 mitigates post-stroke cognitive decline by modulating the gut microbiota to increase butyrate production, highlighting its potential as a therapeutic agent for PSCI.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/drug effects
*Butyrates/metabolism
Mice
*Cognitive Dysfunction/drug therapy/etiology/microbiology/metabolism
Male
Humans
Female
*Stroke/complications/microbiology
Feces/microbiology/chemistry
*Oligosaccharides/pharmacology/therapeutic use
Dysbiosis/drug therapy/microbiology
Disease Models, Animal
Bacteria/metabolism/classification/genetics/isolation & purification/drug effects
*Brain-Gut Axis/drug effects
Hippocampus/drug effects/metabolism
Middle Aged
Aged
Mice, Inbred C57BL
RevDate: 2026-01-06
CmpDate: 2026-01-06
The fecal resistome of beef cattle from conventional grain-fed and grass-fed systems in the Western United States.
BMC microbiology, 26(1):3.
Bacteria in the gastrointestinal tract of cattle may develop antimicrobial resistance (AMR) due to the use of antibiotics in live animals and can be excreted in feces, posing a risk of contamination. However, it remains unclear whether different beef production systems influence the levels of AMR in cattle feces. The objective of this study was to characterize and compare the fecal resistome of cattle raised in grass and grain-feeding systems in the Western United States. Fecal samples were collected from individual cattle at 14 months of age and two days before their respective harvest date. Groups included: (1) Conventional grain-fed (CON, n = 10), (2) Grass-fed for 20 months (20GF, n = 10), (3) Grass-fed and then grain-finished for 45 days (GR45, n = 10), (4) Grass-fed for 25 months (25GF, n = 10). According to metagenomic analysis, grass-feeding systems, particularly the one with extended grass-feeding, are associated with a less diverse resistome. The 25GF group had smaller (P < 0.05) Chao1 value than the other groups at the harvest time. Antimicrobial resistance genes (ARGs) richness and evenness were higher in CON and GR45 than in 20GF and 25GF (P < 0.05). Additionally, the resistome of GR45 and CON differed from 25GF (P = 0.018). In grass-feeding systems where antibiotics were not administered, animals' feces exhibited greater (P < 0.05) diversity in transferable biocide and metal resistant genes (BMRGs) compared with the grass-fed but grain-finished system. Greater ARG diversity in grain-finished feeding systems may enhance the spread of antimicrobial-resistant bacteria (ARB) during production, posing additional risks to food safety. Similarly, higher BMRG diversity observed in grass-fed systems may promote ARB spreading through co-selection mechanisms, which could also contribute to potential food safety concerns.
Additional Links: PMID-41310455
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41310455,
year = {2025},
author = {Feng, Y and Yang, F and Klopatek, SC and Oltjen, JW and Yang, X},
title = {The fecal resistome of beef cattle from conventional grain-fed and grass-fed systems in the Western United States.},
journal = {BMC microbiology},
volume = {26},
number = {1},
pages = {3},
pmid = {41310455},
issn = {1471-2180},
support = {20-1078-000-SG//Antimicrobial Use and Stewardship (AUS) Branch of the California Department of Food and Agriculture/ ; },
mesh = {Animals ; Cattle/microbiology ; *Feces/microbiology ; *Animal Feed/analysis ; *Bacteria/genetics/drug effects/isolation & purification/classification ; *Poaceae ; *Edible Grain ; Anti-Bacterial Agents/pharmacology ; *Drug Resistance, Bacterial/genetics ; United States ; Gastrointestinal Microbiome ; Metagenomics ; },
abstract = {Bacteria in the gastrointestinal tract of cattle may develop antimicrobial resistance (AMR) due to the use of antibiotics in live animals and can be excreted in feces, posing a risk of contamination. However, it remains unclear whether different beef production systems influence the levels of AMR in cattle feces. The objective of this study was to characterize and compare the fecal resistome of cattle raised in grass and grain-feeding systems in the Western United States. Fecal samples were collected from individual cattle at 14 months of age and two days before their respective harvest date. Groups included: (1) Conventional grain-fed (CON, n = 10), (2) Grass-fed for 20 months (20GF, n = 10), (3) Grass-fed and then grain-finished for 45 days (GR45, n = 10), (4) Grass-fed for 25 months (25GF, n = 10). According to metagenomic analysis, grass-feeding systems, particularly the one with extended grass-feeding, are associated with a less diverse resistome. The 25GF group had smaller (P < 0.05) Chao1 value than the other groups at the harvest time. Antimicrobial resistance genes (ARGs) richness and evenness were higher in CON and GR45 than in 20GF and 25GF (P < 0.05). Additionally, the resistome of GR45 and CON differed from 25GF (P = 0.018). In grass-feeding systems where antibiotics were not administered, animals' feces exhibited greater (P < 0.05) diversity in transferable biocide and metal resistant genes (BMRGs) compared with the grass-fed but grain-finished system. Greater ARG diversity in grain-finished feeding systems may enhance the spread of antimicrobial-resistant bacteria (ARB) during production, posing additional risks to food safety. Similarly, higher BMRG diversity observed in grass-fed systems may promote ARB spreading through co-selection mechanisms, which could also contribute to potential food safety concerns.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle/microbiology
*Feces/microbiology
*Animal Feed/analysis
*Bacteria/genetics/drug effects/isolation & purification/classification
*Poaceae
*Edible Grain
Anti-Bacterial Agents/pharmacology
*Drug Resistance, Bacterial/genetics
United States
Gastrointestinal Microbiome
Metagenomics
RevDate: 2026-01-05
CmpDate: 2026-01-05
Machine Learning Approaches to Assess Soil Microbiome Dynamics and Bio-Sustainability.
Physiologia plantarum, 178(1):e70719.
Understanding soil microbiota dynamics is essential for enhancing bio-sustainability in agriculture, yet the complexity of microbial communities hampers the prediction of their functional roles. Artificial intelligence (AI) and machine learning (ML) offer powerful tools to analyse high-dimensional microbiome data generated by high-throughput sequencing. Here, we apply unsupervised AI-based algorithms to uncover microbial patterns that are not immediately recognisable but are crucial for characterising the biological status of agricultural soils. Soil samples were collected from a site in Northern Italy managed under four strategies: conventional farming without organic matter (C), with organic matter (C + O), with beneficial microorganisms but without organic matter (M), and with both beneficial microorganisms and organic matter (M + O). Metagenomic amplicon sequencing of the 16S ribosomal RNA (rRNA) gene and the internal transcribed spacer (ITS) region was used to profile bacterial and fungal communities. Principal component analysis (PCA), k-means clustering, and t-distributed stochastic neighbour embedding (t-SNE) revealed coherent temporal trajectories in both datasets, with sampling time and crop presence emerging as dominant drivers of community assembly and only subtle compositional shifts attributable to treatments. Fungal communities exhibited higher plasticity and a stronger response to management than bacterial communities, which converged towards a stable oligotrophic core. Our findings highlight the complementary roles of fungal and bacterial guilds and show that unsupervised ML-based workflows provide an effective framework to disentangle temporal and treatment effects in complex microbiome datasets. This exploratory study lays the groundwork for future predictive models aimed at identifying microbial indicators of soil biological status and supporting bio-sustainable agronomic decisions.
Additional Links: PMID-41489025
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41489025,
year = {2026},
author = {Pace, R and Monti, MM and Cuomo, S and Affinito, A and Ruocco, M},
title = {Machine Learning Approaches to Assess Soil Microbiome Dynamics and Bio-Sustainability.},
journal = {Physiologia plantarum},
volume = {178},
number = {1},
pages = {e70719},
doi = {10.1111/ppl.70719},
pmid = {41489025},
issn = {1399-3054},
mesh = {*Soil Microbiology ; *Machine Learning ; *Microbiota/genetics ; RNA, Ribosomal, 16S/genetics ; Bacteria/genetics ; Fungi/genetics ; Soil/chemistry ; Agriculture ; Principal Component Analysis ; },
abstract = {Understanding soil microbiota dynamics is essential for enhancing bio-sustainability in agriculture, yet the complexity of microbial communities hampers the prediction of their functional roles. Artificial intelligence (AI) and machine learning (ML) offer powerful tools to analyse high-dimensional microbiome data generated by high-throughput sequencing. Here, we apply unsupervised AI-based algorithms to uncover microbial patterns that are not immediately recognisable but are crucial for characterising the biological status of agricultural soils. Soil samples were collected from a site in Northern Italy managed under four strategies: conventional farming without organic matter (C), with organic matter (C + O), with beneficial microorganisms but without organic matter (M), and with both beneficial microorganisms and organic matter (M + O). Metagenomic amplicon sequencing of the 16S ribosomal RNA (rRNA) gene and the internal transcribed spacer (ITS) region was used to profile bacterial and fungal communities. Principal component analysis (PCA), k-means clustering, and t-distributed stochastic neighbour embedding (t-SNE) revealed coherent temporal trajectories in both datasets, with sampling time and crop presence emerging as dominant drivers of community assembly and only subtle compositional shifts attributable to treatments. Fungal communities exhibited higher plasticity and a stronger response to management than bacterial communities, which converged towards a stable oligotrophic core. Our findings highlight the complementary roles of fungal and bacterial guilds and show that unsupervised ML-based workflows provide an effective framework to disentangle temporal and treatment effects in complex microbiome datasets. This exploratory study lays the groundwork for future predictive models aimed at identifying microbial indicators of soil biological status and supporting bio-sustainable agronomic decisions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Soil Microbiology
*Machine Learning
*Microbiota/genetics
RNA, Ribosomal, 16S/genetics
Bacteria/genetics
Fungi/genetics
Soil/chemistry
Agriculture
Principal Component Analysis
RevDate: 2026-01-04
CmpDate: 2026-01-04
Tigecycline suppresses colon cancer stem cells and impairs tumor engraftment by targeting SNAI1-regulated epithelial-mesenchymal transition.
Acta pharmacologica Sinica, 47(1):222-241.
Cancer stem cells (CSCs) play a key role in the progression of colorectal cancer (CRC). The high heterogeneity of CSCs has hindered the clinical application of CSC-targeting therapies. Tetracyclines are drugs with therapeutic potentials beyond their antibiotic activity. We previously demonstrated the efficacy of tigecycline, a third-generation tetracycline, against a model of colitis-associated colorectal cancer, primarily focusing on its immunomodulatory role with a preliminary assessment of its impact on stemness. In this study we characterize the effects of tigecycline on colon CSCs in vitro and in a CRC xenograft model, with special attention on the signaling pathways involved and the modulation of the gut microbiota. We generated secondary colonospheres from two colon tumor cell lines HCT116 and CMT93, and evaluated the effect of tigecycline on CSCs properties. We showed that tigecycline (25, 50 μM) effectively reduced colon CD133[+]CD44[+]LGR5[+]ALDH[+] subpopulations and their viability, self-renewal and migratory capacity. Moreover, tigecycline treatment hindered epithelial-mesenchymal transition (EMT) process through targeting SNAI1 and β-catenin, resulting in an upregulation of epithelial markers (E-cadherin) and a downregulation of pluripotency and mesenchymal ones (Vimentin, N-cadherin, SOX2, NANOG, MIR155, MIR146). This effect was confirmed in two independent CRC-xenograft murine models in which tigecycline administration led to a reduction in tumor volume. Finally, CRC samples were taken from HCT116 xenograft model mice for analysis of CSCs-related signaling pathways and stools were collected for gut microbiome metagenomic analysis. We found that the antibiotic modulated gut dysbiosis by increasing the abundance of beneficial bacterial species such as Parabacteroides sp., which were involved in metabolic pathways that hindered SNAI1-Wnt-β-catenin signaling. These results reinforce the new role of tigecycline in the therapy of CRC and demonstrate for the first time the effect of tigecycline on colon CSCs and their malignancies.
Additional Links: PMID-40940504
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40940504,
year = {2026},
author = {Ruiz-Malagón, AJ and Rodríguez-Sojo, MJ and García-García, J and Ho-Plagaro, A and García, F and Vezza, T and Redondo-Cerezo, E and Griñán-Lisón, C and Marchal, JA and Rodríguez-Cabezas, ME and Rodríguez-Nogales, A and Gálvez, J},
title = {Tigecycline suppresses colon cancer stem cells and impairs tumor engraftment by targeting SNAI1-regulated epithelial-mesenchymal transition.},
journal = {Acta pharmacologica Sinica},
volume = {47},
number = {1},
pages = {222-241},
pmid = {40940504},
issn = {1745-7254},
mesh = {*Epithelial-Mesenchymal Transition/drug effects ; Humans ; *Tigecycline/pharmacology/therapeutic use ; *Neoplastic Stem Cells/drug effects/metabolism/pathology ; Animals ; *Snail Family Transcription Factors/metabolism/antagonists & inhibitors ; *Colonic Neoplasms/drug therapy/pathology/metabolism ; HCT116 Cells ; Mice ; Xenograft Model Antitumor Assays ; Cell Line, Tumor ; Gastrointestinal Microbiome/drug effects ; },
abstract = {Cancer stem cells (CSCs) play a key role in the progression of colorectal cancer (CRC). The high heterogeneity of CSCs has hindered the clinical application of CSC-targeting therapies. Tetracyclines are drugs with therapeutic potentials beyond their antibiotic activity. We previously demonstrated the efficacy of tigecycline, a third-generation tetracycline, against a model of colitis-associated colorectal cancer, primarily focusing on its immunomodulatory role with a preliminary assessment of its impact on stemness. In this study we characterize the effects of tigecycline on colon CSCs in vitro and in a CRC xenograft model, with special attention on the signaling pathways involved and the modulation of the gut microbiota. We generated secondary colonospheres from two colon tumor cell lines HCT116 and CMT93, and evaluated the effect of tigecycline on CSCs properties. We showed that tigecycline (25, 50 μM) effectively reduced colon CD133[+]CD44[+]LGR5[+]ALDH[+] subpopulations and their viability, self-renewal and migratory capacity. Moreover, tigecycline treatment hindered epithelial-mesenchymal transition (EMT) process through targeting SNAI1 and β-catenin, resulting in an upregulation of epithelial markers (E-cadherin) and a downregulation of pluripotency and mesenchymal ones (Vimentin, N-cadherin, SOX2, NANOG, MIR155, MIR146). This effect was confirmed in two independent CRC-xenograft murine models in which tigecycline administration led to a reduction in tumor volume. Finally, CRC samples were taken from HCT116 xenograft model mice for analysis of CSCs-related signaling pathways and stools were collected for gut microbiome metagenomic analysis. We found that the antibiotic modulated gut dysbiosis by increasing the abundance of beneficial bacterial species such as Parabacteroides sp., which were involved in metabolic pathways that hindered SNAI1-Wnt-β-catenin signaling. These results reinforce the new role of tigecycline in the therapy of CRC and demonstrate for the first time the effect of tigecycline on colon CSCs and their malignancies.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Epithelial-Mesenchymal Transition/drug effects
Humans
*Tigecycline/pharmacology/therapeutic use
*Neoplastic Stem Cells/drug effects/metabolism/pathology
Animals
*Snail Family Transcription Factors/metabolism/antagonists & inhibitors
*Colonic Neoplasms/drug therapy/pathology/metabolism
HCT116 Cells
Mice
Xenograft Model Antitumor Assays
Cell Line, Tumor
Gastrointestinal Microbiome/drug effects
RevDate: 2026-01-03
CmpDate: 2026-01-03
Fast, Flexible, Feasible: A Transparent Framework for Evaluating eDNA Workflow Trade-Offs in Resource-Limited Settings.
Molecular ecology resources, 26(1):e70091.
Environmental DNA (eDNA) analysis enables biodiversity monitoring by detecting organisms from trace genetic material, but high reagent costs, cold-chain logistics and computational demands limit its broader use, particularly in resource-limited settings. To address these challenges and improve accessibility, we directly compared multiple workflow components, including four DNA extraction methods, two primer sets, three Nanopore basecalling models, and two demultiplexing pipelines. Across 48 workflow combinations tested in an aquarium with 15 fish species, we mapped trade-offs between cost, sensitivity, and processing speed to assess where time and resource savings are possible without compromising detection. Workflows using the Qiagen Blood and Tissue (BT) extraction kit and amplification using the MiFish-U primer set provided the highest sensitivity, detecting ≥ 12 of 15 species by ~3-5 h and reaching the 15-OTU plateau at ~8-10 h with Oxford Nanopore's high accuracy (HAC) basecalling model. Chelex, an alternative lower-cost extraction method, showed partial recovery only (≤ 9 OTUs by 61 h) even with extended sequencing, and did not recover all 15 OTUs. DirectPCR and QuickExtract offered field-friendly extraction alternatives that achieved comparable recovery in ~10-12 h, though their cost-effectiveness varied. While the MarVer1 primer was designed to broaden vertebrate detection, it recovered the same fish species as MiFish-U, though with fewer total reads. Real-time sequencing trials (0-61 h) revealed that high-efficiency workflows (BT + HAC) reached detection plateaus rapidly, indicating sequencing time can be reduced without sacrificing accuracy. The OBITools4 bioinformatics pipeline enabled automated demultiplexing but discarded more reads than an alternative, ONTbarcoder2.3, which retained low-abundance taxa at the cost of manual curation. Rather than identifying a single 'best' workflow, this study provides a transparent decision framework for prioritising cost, speed, and sensitivity in eDNA applications, supporting scalable, cost-effective eDNA monitoring in resource-limited settings.
Additional Links: PMID-41482808
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41482808,
year = {2026},
author = {Ip, YCA and Allan, EA and Hirsch, SL and Kelly, RP},
title = {Fast, Flexible, Feasible: A Transparent Framework for Evaluating eDNA Workflow Trade-Offs in Resource-Limited Settings.},
journal = {Molecular ecology resources},
volume = {26},
number = {1},
pages = {e70091},
doi = {10.1111/1755-0998.70091},
pmid = {41482808},
issn = {1755-0998},
support = {GR042390//OceanKind/ ; GR016745//David and Lucile Packard Foundation/ ; },
mesh = {*Workflow ; Animals ; *DNA, Environmental/isolation & purification/genetics ; *Fishes/genetics/classification ; *Metagenomics/methods/economics ; Time Factors ; Sensitivity and Specificity ; Computational Biology/methods ; Biodiversity ; Resource-Limited Settings ; },
abstract = {Environmental DNA (eDNA) analysis enables biodiversity monitoring by detecting organisms from trace genetic material, but high reagent costs, cold-chain logistics and computational demands limit its broader use, particularly in resource-limited settings. To address these challenges and improve accessibility, we directly compared multiple workflow components, including four DNA extraction methods, two primer sets, three Nanopore basecalling models, and two demultiplexing pipelines. Across 48 workflow combinations tested in an aquarium with 15 fish species, we mapped trade-offs between cost, sensitivity, and processing speed to assess where time and resource savings are possible without compromising detection. Workflows using the Qiagen Blood and Tissue (BT) extraction kit and amplification using the MiFish-U primer set provided the highest sensitivity, detecting ≥ 12 of 15 species by ~3-5 h and reaching the 15-OTU plateau at ~8-10 h with Oxford Nanopore's high accuracy (HAC) basecalling model. Chelex, an alternative lower-cost extraction method, showed partial recovery only (≤ 9 OTUs by 61 h) even with extended sequencing, and did not recover all 15 OTUs. DirectPCR and QuickExtract offered field-friendly extraction alternatives that achieved comparable recovery in ~10-12 h, though their cost-effectiveness varied. While the MarVer1 primer was designed to broaden vertebrate detection, it recovered the same fish species as MiFish-U, though with fewer total reads. Real-time sequencing trials (0-61 h) revealed that high-efficiency workflows (BT + HAC) reached detection plateaus rapidly, indicating sequencing time can be reduced without sacrificing accuracy. The OBITools4 bioinformatics pipeline enabled automated demultiplexing but discarded more reads than an alternative, ONTbarcoder2.3, which retained low-abundance taxa at the cost of manual curation. Rather than identifying a single 'best' workflow, this study provides a transparent decision framework for prioritising cost, speed, and sensitivity in eDNA applications, supporting scalable, cost-effective eDNA monitoring in resource-limited settings.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Workflow
Animals
*DNA, Environmental/isolation & purification/genetics
*Fishes/genetics/classification
*Metagenomics/methods/economics
Time Factors
Sensitivity and Specificity
Computational Biology/methods
Biodiversity
Resource-Limited Settings
RevDate: 2026-01-03
CmpDate: 2026-01-03
Environmental exposures associated with the gut microbiome and resistome of pregnant women and children in Northwest Ecuador.
Nature communications, 17(1):15.
Inadequate water, sanitation, and hygiene (WASH) infrastructure may increase exposure to antimicrobial resistance (AMR). In addition, close human-animal interactions and unregulated antibiotic use in livestock facilitate the spread of resistant bacteria. We use metagenomic sequence data and multivariate models to assess how animal exposure and WASH conditions affect the gut resistome and microbiome in 53 pregnant women and 84 children in Ecuador. Here we show improving WASH infrastructure and managing animal exposure may be important in reducing AMR but could also reduce taxonomic diversity in the gut. Escherichia coli, Klebsiella pneumoniae, and clinically relevant antimicrobial resistance genes (ARGs) are detected across all age groups, but the highest abundance is found in children compared to mothers. In mothers, higher animal exposure trends towards a higher number of unique ARGs compared to low animal exposure and is significantly associated with greater taxonomic diversity. In addition, mothers with sewer systems or septic tanks and piped drinking water have fewer unique ARGs compared to those without, and mothers with longer duration of drinking water access have lower total ARG abundance. In contrast, few associations are observed in children, likely due to the dynamic nature of the gut microbiome during early childhood.
Additional Links: PMID-41390665
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41390665,
year = {2025},
author = {Cotto, I and Albán, V and Durán-Viseras, A and Jesser, KJ and Zhou, NA and Hemlock, C and Ballard, AM and Fagnant-Sperati, CS and Lee, GO and Hatt, JK and Royer, CJ and Eisenberg, JNS and Trueba, G and Konstantinidis, KT and Levy, K and Fuhrmeister, ER and , },
title = {Environmental exposures associated with the gut microbiome and resistome of pregnant women and children in Northwest Ecuador.},
journal = {Nature communications},
volume = {17},
number = {1},
pages = {15},
pmid = {41390665},
issn = {2041-1723},
support = {P30 ES007033/ES/NIEHS NIH HHS/United States ; R01AI162867//U.S. Department of Health & Human Services | National Institutes of Health (NIH)/ ; 2127509//American Society for Engineering Education (ASEE)/ ; P30 ES007033/ES/NIEHS NIH HHS/United States ; },
mesh = {Humans ; Female ; Ecuador ; *Gastrointestinal Microbiome/genetics/drug effects ; Pregnancy ; Child ; Adult ; Child, Preschool ; Infant ; *Environmental Exposure/adverse effects ; Klebsiella pneumoniae/genetics/isolation & purification/drug effects ; Escherichia coli/genetics/isolation & purification/drug effects ; *Drug Resistance, Bacterial/genetics ; Animals ; Anti-Bacterial Agents/pharmacology ; Young Adult ; Male ; Hygiene ; Adolescent ; Sanitation ; Feces/microbiology ; Bacteria/genetics/classification/drug effects ; },
abstract = {Inadequate water, sanitation, and hygiene (WASH) infrastructure may increase exposure to antimicrobial resistance (AMR). In addition, close human-animal interactions and unregulated antibiotic use in livestock facilitate the spread of resistant bacteria. We use metagenomic sequence data and multivariate models to assess how animal exposure and WASH conditions affect the gut resistome and microbiome in 53 pregnant women and 84 children in Ecuador. Here we show improving WASH infrastructure and managing animal exposure may be important in reducing AMR but could also reduce taxonomic diversity in the gut. Escherichia coli, Klebsiella pneumoniae, and clinically relevant antimicrobial resistance genes (ARGs) are detected across all age groups, but the highest abundance is found in children compared to mothers. In mothers, higher animal exposure trends towards a higher number of unique ARGs compared to low animal exposure and is significantly associated with greater taxonomic diversity. In addition, mothers with sewer systems or septic tanks and piped drinking water have fewer unique ARGs compared to those without, and mothers with longer duration of drinking water access have lower total ARG abundance. In contrast, few associations are observed in children, likely due to the dynamic nature of the gut microbiome during early childhood.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Female
Ecuador
*Gastrointestinal Microbiome/genetics/drug effects
Pregnancy
Child
Adult
Child, Preschool
Infant
*Environmental Exposure/adverse effects
Klebsiella pneumoniae/genetics/isolation & purification/drug effects
Escherichia coli/genetics/isolation & purification/drug effects
*Drug Resistance, Bacterial/genetics
Animals
Anti-Bacterial Agents/pharmacology
Young Adult
Male
Hygiene
Adolescent
Sanitation
Feces/microbiology
Bacteria/genetics/classification/drug effects
RevDate: 2026-01-03
CmpDate: 2026-01-03
Impact of Sinus Surgery on Bacteriome Composition in Patients With Chronic Rhinosinusitis With Nasal Polyps.
International forum of allergy & rhinology, 16(1):114-118.
Staphylococcus aureus showed a significant increase in relative abundance in CRSwNP patients following endoscopic sinus surgery compared to pre-surgery samples. Other Staphylococcus species were found to correlate positively with S. aureus in patients with nasal polyps; among those, S. caprae correlated strongly while being the most represented in samples. Patients with recurrent nasal polyp growth exhibited a substantially greater postoperative increase in the relative abundance of S. aureus.
Additional Links: PMID-41389146
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41389146,
year = {2026},
author = {Vorobeva, M and iAkushev, A and Chen, CC and Orihara, M and Akbar, N and Colley, P and Sehanobish, E and Chung, CHY and Scott, A and O'Brien, E and Chang, CB and Kita, H and Voyich, J and Knoop, K and Jerschow, E},
title = {Impact of Sinus Surgery on Bacteriome Composition in Patients With Chronic Rhinosinusitis With Nasal Polyps.},
journal = {International forum of allergy & rhinology},
volume = {16},
number = {1},
pages = {114-118},
doi = {10.1002/alr.70082},
pmid = {41389146},
issn = {2042-6984},
support = {R21AI171306 to E.J./TR/NCATS NIH HHS/United States ; CTSA 5KL2TR001071/TR/NCATS NIH HHS/United States ; /NH/NIH HHS/United States ; R21AI171306 to E.J./TR/NCATS NIH HHS/United States ; CTSA 5KL2TR001071/TR/NCATS NIH HHS/United States ; /NH/NIH HHS/United States ; },
mesh = {Humans ; *Nasal Polyps/surgery/microbiology ; *Sinusitis/surgery/microbiology ; *Rhinitis/surgery/microbiology ; Chronic Disease ; *Paranasal Sinuses/surgery/microbiology ; Female ; Male ; Middle Aged ; Endoscopy ; Adult ; Staphylococcus aureus/isolation & purification ; *Microbiota ; Aged ; Staphylococcal Infections/microbiology ; Rhinosinusitis ; },
abstract = {Staphylococcus aureus showed a significant increase in relative abundance in CRSwNP patients following endoscopic sinus surgery compared to pre-surgery samples. Other Staphylococcus species were found to correlate positively with S. aureus in patients with nasal polyps; among those, S. caprae correlated strongly while being the most represented in samples. Patients with recurrent nasal polyp growth exhibited a substantially greater postoperative increase in the relative abundance of S. aureus.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Nasal Polyps/surgery/microbiology
*Sinusitis/surgery/microbiology
*Rhinitis/surgery/microbiology
Chronic Disease
*Paranasal Sinuses/surgery/microbiology
Female
Male
Middle Aged
Endoscopy
Adult
Staphylococcus aureus/isolation & purification
*Microbiota
Aged
Staphylococcal Infections/microbiology
Rhinosinusitis
RevDate: 2026-01-03
CmpDate: 2026-01-03
The gut methanotroph Methylocystis intestini modulates intestinal peristalsis and fat metabolism via reducing methane levels.
Nature communications, 17(1):2.
Methane, a predominant component of human intestinal gas, has been reported to be associated with a reduction in intestinal transit speed, as well as correlations with elevated body mass index. While the gut methanogenic archaea that produce this gas have been studied, the countervailing role of methane-consuming bacteria (methanotrophs) within the human gut ecosystem remains a critical, under-explored area. The potential for these bacteria to act as a built-in sink for intestinal methane and thereby mitigate its negative physiological effects is unknown. Here, we isolate an unreported methanotroph from human fecal samples, classified as Methylocystis intestini. Using a mouse model, we observe that methane challenge is associated with gastrointestinal motility and fat metabolism. We then demonstrate that the administration of Methylocystis intestini effectively reverses these dysfunctional processes, restoring motility and metabolic parameters. Additional analysis of methane-oxidation genes abundance in 1207 public metagenomic sequences from individuals with varying health statuses, including obesity and constipation, provides consistent correlative support for our experimental conclusions. Expanding this view to a global scale, we conducted a metagenomic survey of 550 human fecal samples from populations across five continents. This broader analysis reveals that methane-oxidizing genes are not a rarity but a common feature of the human gut microbiome, being detectable in over 91% of samples. This ubiquity underscores their fundamental role in human biology. Collectively, our findings establish gut methanotrophs as key mediators of intestinal methane level. Their presence is widespread across global populations, and their functional capacity can balance the effects of methane on host physiology. This work elucidates a crucial component of gut homeostasis and opens a promising avenue for developing microbiome-based therapeutic strategies aimed at managing methane-related gastrointestinal disorders by harnessing the power of these native methane-consuming bacteria.
Additional Links: PMID-41331251
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41331251,
year = {2025},
author = {Zhao, Y and Chen, H and Huang, J and Chistoserdova, L and Yu, Z},
title = {The gut methanotroph Methylocystis intestini modulates intestinal peristalsis and fat metabolism via reducing methane levels.},
journal = {Nature communications},
volume = {17},
number = {1},
pages = {2},
pmid = {41331251},
issn = {2041-1723},
support = {32300051//National Natural Science Foundation of China (National Science Foundation of China)/ ; },
mesh = {*Methane/metabolism ; Animals ; Humans ; Mice ; Feces/microbiology ; Gastrointestinal Microbiome/physiology ; *Lipid Metabolism/physiology ; *Methylocystaceae/metabolism/genetics/isolation & purification/physiology ; Male ; *Peristalsis/physiology ; Female ; Mice, Inbred C57BL ; Gastrointestinal Motility ; Adult ; },
abstract = {Methane, a predominant component of human intestinal gas, has been reported to be associated with a reduction in intestinal transit speed, as well as correlations with elevated body mass index. While the gut methanogenic archaea that produce this gas have been studied, the countervailing role of methane-consuming bacteria (methanotrophs) within the human gut ecosystem remains a critical, under-explored area. The potential for these bacteria to act as a built-in sink for intestinal methane and thereby mitigate its negative physiological effects is unknown. Here, we isolate an unreported methanotroph from human fecal samples, classified as Methylocystis intestini. Using a mouse model, we observe that methane challenge is associated with gastrointestinal motility and fat metabolism. We then demonstrate that the administration of Methylocystis intestini effectively reverses these dysfunctional processes, restoring motility and metabolic parameters. Additional analysis of methane-oxidation genes abundance in 1207 public metagenomic sequences from individuals with varying health statuses, including obesity and constipation, provides consistent correlative support for our experimental conclusions. Expanding this view to a global scale, we conducted a metagenomic survey of 550 human fecal samples from populations across five continents. This broader analysis reveals that methane-oxidizing genes are not a rarity but a common feature of the human gut microbiome, being detectable in over 91% of samples. This ubiquity underscores their fundamental role in human biology. Collectively, our findings establish gut methanotrophs as key mediators of intestinal methane level. Their presence is widespread across global populations, and their functional capacity can balance the effects of methane on host physiology. This work elucidates a crucial component of gut homeostasis and opens a promising avenue for developing microbiome-based therapeutic strategies aimed at managing methane-related gastrointestinal disorders by harnessing the power of these native methane-consuming bacteria.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Methane/metabolism
Animals
Humans
Mice
Feces/microbiology
Gastrointestinal Microbiome/physiology
*Lipid Metabolism/physiology
*Methylocystaceae/metabolism/genetics/isolation & purification/physiology
Male
*Peristalsis/physiology
Female
Mice, Inbred C57BL
Gastrointestinal Motility
Adult
RevDate: 2026-01-03
CmpDate: 2026-01-03
Field-Scale AMD Remediation: Microbial Community Dynamics and Functional Insights in Biochemical Passive Reactors.
Microbial ecology, 89(1):8.
Acid mine drainage (AMD) generated during coal mining activities is characterized by low pH, high concentrations of dissolved metals and metalloids, and elevated sulfate levels, all of which significantly impact surrounding ecosystems. Scaling up biochemical passive reactor (BPR) systems represents a promising approach for the in situ bioremediation of AMD. While numerous laboratory-scale studies have described the taxonomic and functional composition of microbial communities in BPRs, typically dominated by (ligno)cellulolytic organisms and sulfate-reducing bacteria (SRB), it remains unclear whether this composition is maintained at the field-pilot scale under environmental conditions. To address this gap, 16S rRNA gene metabarcoding and shotgun metagenomics analyses were performed to characterize the taxonomic and functional diversity of microbial communities in the BPRs within a multi-unit field-pilot system. The results revealed that bioremediation effectiveness was driven by syntrophic interactions among hydrolytic, fermentative, and sulfate-reducing bacteria, aligning with laboratory-scale observations. While community composition shifts altered specific taxa, core operational dynamics remained preserved.
Additional Links: PMID-41291216
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41291216,
year = {2025},
author = {Jurado, J and Garcia-Vega, A and Vasquez, Y and Villegas-Plazas, M and Roldan, F},
title = {Field-Scale AMD Remediation: Microbial Community Dynamics and Functional Insights in Biochemical Passive Reactors.},
journal = {Microbial ecology},
volume = {89},
number = {1},
pages = {8},
pmid = {41291216},
issn = {1432-184X},
mesh = {Biodegradation, Environmental ; *Bacteria/classification/genetics/metabolism/isolation & purification ; *Bioreactors/microbiology ; RNA, Ribosomal, 16S/genetics ; *Microbiota ; Sulfates/metabolism ; Coal Mining ; Water Pollutants, Chemical/metabolism ; },
abstract = {Acid mine drainage (AMD) generated during coal mining activities is characterized by low pH, high concentrations of dissolved metals and metalloids, and elevated sulfate levels, all of which significantly impact surrounding ecosystems. Scaling up biochemical passive reactor (BPR) systems represents a promising approach for the in situ bioremediation of AMD. While numerous laboratory-scale studies have described the taxonomic and functional composition of microbial communities in BPRs, typically dominated by (ligno)cellulolytic organisms and sulfate-reducing bacteria (SRB), it remains unclear whether this composition is maintained at the field-pilot scale under environmental conditions. To address this gap, 16S rRNA gene metabarcoding and shotgun metagenomics analyses were performed to characterize the taxonomic and functional diversity of microbial communities in the BPRs within a multi-unit field-pilot system. The results revealed that bioremediation effectiveness was driven by syntrophic interactions among hydrolytic, fermentative, and sulfate-reducing bacteria, aligning with laboratory-scale observations. While community composition shifts altered specific taxa, core operational dynamics remained preserved.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Biodegradation, Environmental
*Bacteria/classification/genetics/metabolism/isolation & purification
*Bioreactors/microbiology
RNA, Ribosomal, 16S/genetics
*Microbiota
Sulfates/metabolism
Coal Mining
Water Pollutants, Chemical/metabolism
RevDate: 2026-01-02
Troubleshooting common errors in assemblies of long-read metagenomes.
Nature biotechnology [Epub ahead of print].
Assessing the accuracy of long-read assemblies, especially from complex environmental metagenomes that include underrepresented organisms, is challenging. Here we benchmark four state-of-the-art long-read assembly software programs, HiCanu, hifiasm-meta, metaFlye and metaMDBG, on 21 PacBio HiFi metagenomes spanning mock communities, gut microbiomes and ocean samples. By quantifying read clipping events, in which long reads are systematically split during mapping to maximize the agreement with assembled contigs, we identify where assemblies diverge from their source reads. Our analyses reveal that long-read metagenome assemblies can include >40 errors per 100 million base pairs of assembled contigs, including multi-domain chimeras, prematurely circularized sequences, haplotyping errors, excessive repeats and phantom sequences. We provide an open-source tool and a reproducible workflow for rigorous evaluation of assembly errors, charting a path toward more reliable genome recovery from long-read metagenomes.
Additional Links: PMID-41482538
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41482538,
year = {2026},
author = {Trigodet, F and Sachdeva, R and Banfield, JF and Eren, AM},
title = {Troubleshooting common errors in assemblies of long-read metagenomes.},
journal = {Nature biotechnology},
volume = {},
number = {},
pages = {},
pmid = {41482538},
issn = {1546-1696},
abstract = {Assessing the accuracy of long-read assemblies, especially from complex environmental metagenomes that include underrepresented organisms, is challenging. Here we benchmark four state-of-the-art long-read assembly software programs, HiCanu, hifiasm-meta, metaFlye and metaMDBG, on 21 PacBio HiFi metagenomes spanning mock communities, gut microbiomes and ocean samples. By quantifying read clipping events, in which long reads are systematically split during mapping to maximize the agreement with assembled contigs, we identify where assemblies diverge from their source reads. Our analyses reveal that long-read metagenome assemblies can include >40 errors per 100 million base pairs of assembled contigs, including multi-domain chimeras, prematurely circularized sequences, haplotyping errors, excessive repeats and phantom sequences. We provide an open-source tool and a reproducible workflow for rigorous evaluation of assembly errors, charting a path toward more reliable genome recovery from long-read metagenomes.},
}
RevDate: 2026-01-02
CmpDate: 2026-01-02
Host-microbiome mutualism drives urea carbon salvage and acetogenesis during hibernation.
Proceedings of the National Academy of Sciences of the United States of America, 123(1):e2518978123.
Hibernation is a seasonal survival strategy employed by certain mammals that, through torpor use, reduces overall energy expenditure and permits long-term fasting. Although fasting solves the challenge of winter food scarcity, it also removes dietary carbon, a critical biomolecular building block. Here, we demonstrate a process of urea carbon salvage (UCS) in hibernating 13-lined ground squirrels, whereby urea carbon is reclaimed through gut microbial ureolysis and used in reductive acetogenesis to produce acetate, a short-chain fatty acid (SCFA) of major value to the host and its gut microbiota. We find that urea carbon incorporation into acetate is more efficient during hibernation than the summer active season and that while both host and gut microbes oxidize acetate for energy supply throughout the year, the host's ability to absorb and oxidize acetate is highest during hibernation. Metagenomic analysis of the gut microbiome indicates that genes involved in the degradation of gut mucins, an abundant endogenous nutrient, are retained during hibernation. The hydrogen disposal associated with reductive acetogenesis from urea carbon helps facilitate this mucin degradation by providing a luminal environment that sustains fermentation, thereby generating SCFAs and other metabolites usable by both the host and its gut microbes. Our findings introduce UCS as a mechanism that enables hibernating squirrels and their gut microbes to exploit two key endogenous nutrient sources-urea and mucins-in the resource-limited hibernation season.
Additional Links: PMID-41481471
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41481471,
year = {2026},
author = {Regan, MD and Chiang, E and Grahn, M and Tonelli, M and Assadi-Porter, FM and Suen, G and Carey, HV},
title = {Host-microbiome mutualism drives urea carbon salvage and acetogenesis during hibernation.},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {123},
number = {1},
pages = {e2518978123},
doi = {10.1073/pnas.2518978123},
pmid = {41481471},
issn = {1091-6490},
support = {IOS-1558044//NSF (NSF)/ ; P41GM136463//HHS | NIH (NIH)/ ; DGE-1747503//NSF | NSF Graduate Research Fellowship Program (GRFP)/ ; RGPIN-2021-03109//Natural Sciences and Engineering Research Council of Canada (NSERC)/ ; 21HLSRM06//Canadian Space Agency (CSA)/ ; },
mesh = {Animals ; *Hibernation/physiology ; *Urea/metabolism ; *Sciuridae/microbiology/physiology/metabolism ; *Carbon/metabolism ; *Acetates/metabolism ; *Gastrointestinal Microbiome/physiology ; *Symbiosis/physiology ; Acetic Acid/metabolism ; Fatty Acids, Volatile/metabolism ; *Host Microbial Interactions/physiology ; },
abstract = {Hibernation is a seasonal survival strategy employed by certain mammals that, through torpor use, reduces overall energy expenditure and permits long-term fasting. Although fasting solves the challenge of winter food scarcity, it also removes dietary carbon, a critical biomolecular building block. Here, we demonstrate a process of urea carbon salvage (UCS) in hibernating 13-lined ground squirrels, whereby urea carbon is reclaimed through gut microbial ureolysis and used in reductive acetogenesis to produce acetate, a short-chain fatty acid (SCFA) of major value to the host and its gut microbiota. We find that urea carbon incorporation into acetate is more efficient during hibernation than the summer active season and that while both host and gut microbes oxidize acetate for energy supply throughout the year, the host's ability to absorb and oxidize acetate is highest during hibernation. Metagenomic analysis of the gut microbiome indicates that genes involved in the degradation of gut mucins, an abundant endogenous nutrient, are retained during hibernation. The hydrogen disposal associated with reductive acetogenesis from urea carbon helps facilitate this mucin degradation by providing a luminal environment that sustains fermentation, thereby generating SCFAs and other metabolites usable by both the host and its gut microbes. Our findings introduce UCS as a mechanism that enables hibernating squirrels and their gut microbes to exploit two key endogenous nutrient sources-urea and mucins-in the resource-limited hibernation season.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Hibernation/physiology
*Urea/metabolism
*Sciuridae/microbiology/physiology/metabolism
*Carbon/metabolism
*Acetates/metabolism
*Gastrointestinal Microbiome/physiology
*Symbiosis/physiology
Acetic Acid/metabolism
Fatty Acids, Volatile/metabolism
*Host Microbial Interactions/physiology
RevDate: 2026-01-02
CmpDate: 2026-01-02
The potential immunological mechanisms of gut microbiota dysbiosis caused by antibiotics exacerbate the lethality of influenza viruses.
Gut microbes, 18(1):2609451.
BACKGROUND: Antibiotics are not recommended to treat influenza A virus (IAV). However, antibiotic misuse for IAV persists worldwide. How to scientifically use antibiotics for IAV-infected patients remains a considerable challenge.
RESULTS: Here, we investigated the impact of antibiotics on viral pathogenicity, pulmonary-intestinal antiviral immunity, and antiviral drug efficacy. Our findings indicated that antibiotic intervention exacerbated IAV-caused mortality and lung injury in mice, manifested as increased mortality rates, shortened survival time, aggravated pulmonary injury, and excessive inflammatory responses. Furthermore, antibiotic pretreatment significantly diminished the efficacy of antivirals. Metagenomic sequencing revealed that antibiotics reduced the diversity and abundance of beneficial gut microbiota, including Lactobacillus and Bifidobacterium, while promoting the proliferation of pathogenic bacteria such as Klebsiella pneumoniae and Escherichia coli. Mechanistically, antibiotic intervention exacerbated IAV-caused excessive inflammatory responses by the blockage of pulmonary-intestinal antiviral immune pathways, which were caused by the upregulation of PKR, RIG-I, ISG15, and TRIM25 levels while downregulating IPS-1 mRNA levels. However, it is noteworthy that the combination of antibiotics and antiviral drugs effectively offset the adverse effects of antibiotic pretreatment on influenza mortality by upregulating IPS-1 levels and partially restoring pulmonary-intestinal immune homeostasis.
CONCLUSIONS: Pulmonary-intestinal immune homeostasis imbalance caused by antibiotic misuse can not only markedly exacerbate the lethality of IAV, but also significantly attenuate the efficacy of antiviral drugs. A mechanistic study confirmed that gut microbes dysbiosis caused by antibiotic pretreatment exacerbates the homeostasis imbalance of host antiviral immunity by blocking the RIG/MDA5/IPS-1 antiviral signaling pathway. However, combination therapy with antibiotics and antivirals effectively reversed the fatal outcome exacerbated by antibiotic pretreatment. Collectively, our findings not only provide a scientific explanation from the perspective of antiviral immunity as to why antibiotics should not be arbitrarily used to treat viral infections but also lay the scientific foundation for the rational clinical use of antivirals and antibiotics for treating influenza.
Additional Links: PMID-41481285
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41481285,
year = {2026},
author = {Zhu, J and Huang, Z and Lin, Y and Zhu, J and Min, R and Wan, Z and Chen, Y and Zhu, J and Xing, L and Li, S and Olovo, CV and Wang, X and Li, G and Zhang, P},
title = {The potential immunological mechanisms of gut microbiota dysbiosis caused by antibiotics exacerbate the lethality of influenza viruses.},
journal = {Gut microbes},
volume = {18},
number = {1},
pages = {2609451},
doi = {10.1080/19490976.2025.2609451},
pmid = {41481285},
issn = {1949-0984},
mesh = {Animals ; *Dysbiosis/immunology/chemically induced/microbiology ; *Gastrointestinal Microbiome/drug effects/immunology ; *Anti-Bacterial Agents/adverse effects ; Mice ; *Orthomyxoviridae Infections/immunology/drug therapy/mortality/virology/microbiology ; Antiviral Agents/therapeutic use/pharmacology ; *Influenza A virus/drug effects/pathogenicity/immunology ; Lung/immunology/virology/pathology/drug effects ; Humans ; Mice, Inbred C57BL ; },
abstract = {BACKGROUND: Antibiotics are not recommended to treat influenza A virus (IAV). However, antibiotic misuse for IAV persists worldwide. How to scientifically use antibiotics for IAV-infected patients remains a considerable challenge.
RESULTS: Here, we investigated the impact of antibiotics on viral pathogenicity, pulmonary-intestinal antiviral immunity, and antiviral drug efficacy. Our findings indicated that antibiotic intervention exacerbated IAV-caused mortality and lung injury in mice, manifested as increased mortality rates, shortened survival time, aggravated pulmonary injury, and excessive inflammatory responses. Furthermore, antibiotic pretreatment significantly diminished the efficacy of antivirals. Metagenomic sequencing revealed that antibiotics reduced the diversity and abundance of beneficial gut microbiota, including Lactobacillus and Bifidobacterium, while promoting the proliferation of pathogenic bacteria such as Klebsiella pneumoniae and Escherichia coli. Mechanistically, antibiotic intervention exacerbated IAV-caused excessive inflammatory responses by the blockage of pulmonary-intestinal antiviral immune pathways, which were caused by the upregulation of PKR, RIG-I, ISG15, and TRIM25 levels while downregulating IPS-1 mRNA levels. However, it is noteworthy that the combination of antibiotics and antiviral drugs effectively offset the adverse effects of antibiotic pretreatment on influenza mortality by upregulating IPS-1 levels and partially restoring pulmonary-intestinal immune homeostasis.
CONCLUSIONS: Pulmonary-intestinal immune homeostasis imbalance caused by antibiotic misuse can not only markedly exacerbate the lethality of IAV, but also significantly attenuate the efficacy of antiviral drugs. A mechanistic study confirmed that gut microbes dysbiosis caused by antibiotic pretreatment exacerbates the homeostasis imbalance of host antiviral immunity by blocking the RIG/MDA5/IPS-1 antiviral signaling pathway. However, combination therapy with antibiotics and antivirals effectively reversed the fatal outcome exacerbated by antibiotic pretreatment. Collectively, our findings not only provide a scientific explanation from the perspective of antiviral immunity as to why antibiotics should not be arbitrarily used to treat viral infections but also lay the scientific foundation for the rational clinical use of antivirals and antibiotics for treating influenza.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Dysbiosis/immunology/chemically induced/microbiology
*Gastrointestinal Microbiome/drug effects/immunology
*Anti-Bacterial Agents/adverse effects
Mice
*Orthomyxoviridae Infections/immunology/drug therapy/mortality/virology/microbiology
Antiviral Agents/therapeutic use/pharmacology
*Influenza A virus/drug effects/pathogenicity/immunology
Lung/immunology/virology/pathology/drug effects
Humans
Mice, Inbred C57BL
RevDate: 2026-01-02
CmpDate: 2026-01-02
Combined metabolomic and metagenomic analysis reveals inflammatory bowel disease diversity in pediatric and adult patients.
World journal of gastroenterology, 31(48):112653.
BACKGROUND: The gut microbiota displays pronounced compositional differences between pediatric and adult populations, both under normal conditions and during the development of inflammatory bowel disease (IBD). These structural variations are accompanied by substantial changes in microbial metabolic activity.
AIM: To identify novel early diagnostic biomarkers of IBD, we performed an integrated multi-omics analysis that included assessing microbial community structure and profiling microbial metabolic activity in pediatric and adult cohorts with ulcerative colitis (UC) and Crohn's disease (CD).
METHODS: The study cohort consisted of two distinct age groups with confirmed IBD diagnoses: Adult patients (aged 45 to 70) and pediatric patients (aged 5 to 15), each diagnosed with either CD or UC. 16S rRNA gene sequencing was performed using the MinION™ Mk1B platform, with data acquisition carried out via MinKNOW software version 22.12.7 (Oxford Nanopore Technologies). Stool samples were analyzed using a Shimadzu QP2010 Ultra GC/MS system equipped with a Shimadzu HS-20 headspace extractor.
RESULTS: Comparative analysis revealed significant age-related differences in the abundance of Bacteroidota, with pediatric IBD patients showing a lower prevalence compared to adults. Microbial profiling identified Streptococcus salivarius and Escherichia coli as potential biomarkers for assessing IBD risk in children. Furthermore, metagenomic analysis uncovered five microbial signatures with diagnostic potential for CD: Ralstonia insidiosa, Stenotrophomonas maltophilia, Erysipelatoclostridium ramosum, Blautia spp., and Coprococcus comes. Using comprehensive metabolomic profiling, we developed and validated novel risk prediction algorithms for pediatric IBD. The CD risk stratification model identifies high-risk patients based on two key biomarkers: An elevated IBD risk coefficient score and reduced levels of 1H-indole-3-methyl. The UC risk prediction model incorporates three metabolic biomarkers indicative of increased disease risk: An elevated risk coefficient score, increased acetate levels, decreased pentanoic acid, and altered excretion of p-cresol (4-methylphenol).
CONCLUSION: Functional metabolomics holds transformative potential for IBD diagnostics across all age groups, with especially significant implications for pediatric patients. The distinct metabolic and metagenetic profiles observed in the pediatric cohort may represent primary alterations in IBD, providing valuable insights for exploring novel mechanisms underlying disease pathogenesis.
Additional Links: PMID-41480317
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41480317,
year = {2025},
author = {Zakharzhevskaya, NB and Erdes, SI and Belousova, EA and Samolygo, IS and Manina, MA and Kondrashova, PV and Lomakina, EY and Kardonsky, DA and Vorobyeva, EA and Shagaleeva, OY and Silantyev, AA and Kazakova, VD and Kashatnikova, DA and Kalachnuk, TN and Kolesnikova, IV and Chaplin, AV and Markelova, MI and Grigoryeva, TV and Olekhnovich, EI and Veselovsky, VA and Morozov, MD and Zoruk, PY and Boldyreva, DI and Vanyushkina, AA and Efimov, BA},
title = {Combined metabolomic and metagenomic analysis reveals inflammatory bowel disease diversity in pediatric and adult patients.},
journal = {World journal of gastroenterology},
volume = {31},
number = {48},
pages = {112653},
pmid = {41480317},
issn = {2219-2840},
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; *Metabolomics/methods ; *Colitis, Ulcerative/microbiology/diagnosis/metabolism ; *Crohn Disease/microbiology/diagnosis/metabolism ; Feces/microbiology ; Child ; Middle Aged ; Male ; Female ; *Metagenomics/methods ; Adolescent ; Child, Preschool ; Aged ; Biomarkers/metabolism/analysis ; Age Factors ; Adult ; RNA, Ribosomal, 16S/genetics ; *Bacteria/genetics/metabolism/classification/isolation & purification ; },
abstract = {BACKGROUND: The gut microbiota displays pronounced compositional differences between pediatric and adult populations, both under normal conditions and during the development of inflammatory bowel disease (IBD). These structural variations are accompanied by substantial changes in microbial metabolic activity.
AIM: To identify novel early diagnostic biomarkers of IBD, we performed an integrated multi-omics analysis that included assessing microbial community structure and profiling microbial metabolic activity in pediatric and adult cohorts with ulcerative colitis (UC) and Crohn's disease (CD).
METHODS: The study cohort consisted of two distinct age groups with confirmed IBD diagnoses: Adult patients (aged 45 to 70) and pediatric patients (aged 5 to 15), each diagnosed with either CD or UC. 16S rRNA gene sequencing was performed using the MinION™ Mk1B platform, with data acquisition carried out via MinKNOW software version 22.12.7 (Oxford Nanopore Technologies). Stool samples were analyzed using a Shimadzu QP2010 Ultra GC/MS system equipped with a Shimadzu HS-20 headspace extractor.
RESULTS: Comparative analysis revealed significant age-related differences in the abundance of Bacteroidota, with pediatric IBD patients showing a lower prevalence compared to adults. Microbial profiling identified Streptococcus salivarius and Escherichia coli as potential biomarkers for assessing IBD risk in children. Furthermore, metagenomic analysis uncovered five microbial signatures with diagnostic potential for CD: Ralstonia insidiosa, Stenotrophomonas maltophilia, Erysipelatoclostridium ramosum, Blautia spp., and Coprococcus comes. Using comprehensive metabolomic profiling, we developed and validated novel risk prediction algorithms for pediatric IBD. The CD risk stratification model identifies high-risk patients based on two key biomarkers: An elevated IBD risk coefficient score and reduced levels of 1H-indole-3-methyl. The UC risk prediction model incorporates three metabolic biomarkers indicative of increased disease risk: An elevated risk coefficient score, increased acetate levels, decreased pentanoic acid, and altered excretion of p-cresol (4-methylphenol).
CONCLUSION: Functional metabolomics holds transformative potential for IBD diagnostics across all age groups, with especially significant implications for pediatric patients. The distinct metabolic and metagenetic profiles observed in the pediatric cohort may represent primary alterations in IBD, providing valuable insights for exploring novel mechanisms underlying disease pathogenesis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
*Metabolomics/methods
*Colitis, Ulcerative/microbiology/diagnosis/metabolism
*Crohn Disease/microbiology/diagnosis/metabolism
Feces/microbiology
Child
Middle Aged
Male
Female
*Metagenomics/methods
Adolescent
Child, Preschool
Aged
Biomarkers/metabolism/analysis
Age Factors
Adult
RNA, Ribosomal, 16S/genetics
*Bacteria/genetics/metabolism/classification/isolation & purification
RevDate: 2026-01-02
CmpDate: 2026-01-02
Uneven sequencing (coverage) depth can bias microbial intraspecies diversity estimates and how to account for it.
ISME communications, 5(1):ycaf228.
An unbiased and accurate estimation of intraspecies diversity, i.e. the extent of genetic diversity within species (or microdiversity), is crucial for clinical and environmental microbiome studies. Although it is well appreciated that sequencing depth (or coverage depth) below 10X can provide biased estimates of microdiversity, typically underestimating diversity due to the random sampling of alleles, there is a widely accepted convention that microdiversity estimates tend to be relatively stable at sequencing depth exceeding 10X. Therefore, discarding species with <10X or rarefying to 10-20X sequencing depth are generally used to compare microdiversity among taxa and samples. Our findings showed that these biases may persist even at depth levels above 50-200X for all popular sequencing platforms, including Illumina, PacBio, and Oxford Nanopore. The biases mostly, but not always, represent an underestimation of diversity and were attributable to the incomplete recovery of Single Nucleotide Variants (SNVs) at lower sequencing depth levels. To address this issue, we recommend using rarefaction-based approaches to standardize data at least 50X, and ideally at 200X sequencing depth, which reduces differences between observed and expected microdiversity values to <0.5%. Furthermore, the Average Nucleotide Identity of reads (ANIr) metric is significantly less sensitive to sequencing depth variability than nucleotide diversity (π), making it a robust alternative for estimating microdiversity at sequencing depth close or exceeding 10X, without a need to rarefying data. Therefore, the sequencing depth thresholds proposed herein provide a more standardized framework for direct comparisons of microdiversity across samples and studies.
Additional Links: PMID-41480270
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41480270,
year = {2025},
author = {Bustos-Caparros, E and Viver, T and Gago, JF and Venter, SN and Bosch, R and Konstantinidis, KT and Rodriguez-R, LM and Rossello-Mora, R},
title = {Uneven sequencing (coverage) depth can bias microbial intraspecies diversity estimates and how to account for it.},
journal = {ISME communications},
volume = {5},
number = {1},
pages = {ycaf228},
pmid = {41480270},
issn = {2730-6151},
abstract = {An unbiased and accurate estimation of intraspecies diversity, i.e. the extent of genetic diversity within species (or microdiversity), is crucial for clinical and environmental microbiome studies. Although it is well appreciated that sequencing depth (or coverage depth) below 10X can provide biased estimates of microdiversity, typically underestimating diversity due to the random sampling of alleles, there is a widely accepted convention that microdiversity estimates tend to be relatively stable at sequencing depth exceeding 10X. Therefore, discarding species with <10X or rarefying to 10-20X sequencing depth are generally used to compare microdiversity among taxa and samples. Our findings showed that these biases may persist even at depth levels above 50-200X for all popular sequencing platforms, including Illumina, PacBio, and Oxford Nanopore. The biases mostly, but not always, represent an underestimation of diversity and were attributable to the incomplete recovery of Single Nucleotide Variants (SNVs) at lower sequencing depth levels. To address this issue, we recommend using rarefaction-based approaches to standardize data at least 50X, and ideally at 200X sequencing depth, which reduces differences between observed and expected microdiversity values to <0.5%. Furthermore, the Average Nucleotide Identity of reads (ANIr) metric is significantly less sensitive to sequencing depth variability than nucleotide diversity (π), making it a robust alternative for estimating microdiversity at sequencing depth close or exceeding 10X, without a need to rarefying data. Therefore, the sequencing depth thresholds proposed herein provide a more standardized framework for direct comparisons of microdiversity across samples and studies.},
}
RevDate: 2026-01-02
CmpDate: 2026-01-02
Purifying selection and low recombination facilitated sequential colonization of benthic and pelagic coastal ocean by ammonia-oxidizing archaea.
ISME communications, 5(1):ycaf234.
The evolutionary adaptation of archaea to ecologically diverse habitats remains poorly understood. Ammonia-oxidizing archaea (AOA) exhibit significant diversification across various environmental conditions; however, their ecological dynamics, diversification, and associated evolutionary processes are still largely unexplored in coastal environments, which contain extensive ecosystem heterogeneity. Combining newly assembled metagenomic data from Chinese marginal seas (2059 km coverage) with global datasets (spanning over 16 000 km), these knowledge gaps were explored across a continental-scale latitudinal gradient. It revealed that coastal AOA genomic diversity is latitude-dependent, with predicted optimum growth temperatures and substrate metabolic pathways explaining the geographical distribution. The two dominant genus-level clades exhibited significantly distinct benthic-pelagic niches, associated with specific genes involved in nutrient uptake and stress resistance. Phylogenomic reconstructions suggest that AOA initially colonized the coastal ocean sediments around 718 million years ago (Mya), and subsequent purifying selection and low recombination facilitated the AOA niche expansion into marine coastal environments. By revealing the evolutionary trajectories of Nitrososphaeria and their differential colonization patterns, our findings offer a novel perspective on the mechanisms of AOA diversification in the coastal ocean. This work advances our understanding of microbial diversification and niche differentiation of AOA in coastal ecosystems as well as the evolutionary forces shaping their global biogeography.
Additional Links: PMID-41480265
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41480265,
year = {2025},
author = {Ren, G and Gubry-Rangin, C and Wang, W and Liu, R and Liu, J and Liu, J and Zhang, XH and Liu, J},
title = {Purifying selection and low recombination facilitated sequential colonization of benthic and pelagic coastal ocean by ammonia-oxidizing archaea.},
journal = {ISME communications},
volume = {5},
number = {1},
pages = {ycaf234},
pmid = {41480265},
issn = {2730-6151},
abstract = {The evolutionary adaptation of archaea to ecologically diverse habitats remains poorly understood. Ammonia-oxidizing archaea (AOA) exhibit significant diversification across various environmental conditions; however, their ecological dynamics, diversification, and associated evolutionary processes are still largely unexplored in coastal environments, which contain extensive ecosystem heterogeneity. Combining newly assembled metagenomic data from Chinese marginal seas (2059 km coverage) with global datasets (spanning over 16 000 km), these knowledge gaps were explored across a continental-scale latitudinal gradient. It revealed that coastal AOA genomic diversity is latitude-dependent, with predicted optimum growth temperatures and substrate metabolic pathways explaining the geographical distribution. The two dominant genus-level clades exhibited significantly distinct benthic-pelagic niches, associated with specific genes involved in nutrient uptake and stress resistance. Phylogenomic reconstructions suggest that AOA initially colonized the coastal ocean sediments around 718 million years ago (Mya), and subsequent purifying selection and low recombination facilitated the AOA niche expansion into marine coastal environments. By revealing the evolutionary trajectories of Nitrososphaeria and their differential colonization patterns, our findings offer a novel perspective on the mechanisms of AOA diversification in the coastal ocean. This work advances our understanding of microbial diversification and niche differentiation of AOA in coastal ecosystems as well as the evolutionary forces shaping their global biogeography.},
}
RevDate: 2026-01-02
CmpDate: 2026-01-02
Microbial communities and metabolic functions vary with spatial heterogeneity in cold-seep carbonates.
ISME communications, 5(1):ycaf232.
Cold-seep carbonates, formed through interactions among methane, fluid chemistry, and microbial chemosynthesis, represent biodiversity hotspots in the deep sea. Spatial heterogeneity within these carbonates arises from variations in methane flux, yet the microbial contributions to this heterogeneity remain underexplored. Here we combined remotely operated vehicle-based in situ measurements, X-ray imaging, metagenomics, qPCR, and [13]C-CH4 stable-isotope labeling to investigate microbial communities across carbonate habitats in the South China Sea. We found that methane flux linked to carbonate structural properties, shapes microbial metabolic interactions, notably anaerobic methane oxidation coupled with aragonite and FeS precipitation. These processes may contribute to self-sealing carbonate features, potentially reducing methane permeability and influencing geochemical gradients and geomorphology. Our findings reveal that microbiomes and their feedbacks play a significant role in shaping habitat-scale spatial heterogeneity of cold-seep carbonates, improving our understanding of methane cycling and carbonate ecosystem dynamics.
Additional Links: PMID-41480263
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41480263,
year = {2025},
author = {Ma, M and Wang, M and Liang, Y and Guo, Y and Zhang, H and Cao, L and Fu, L and Hu, G and Li, C and Mock, T and Li, C},
title = {Microbial communities and metabolic functions vary with spatial heterogeneity in cold-seep carbonates.},
journal = {ISME communications},
volume = {5},
number = {1},
pages = {ycaf232},
pmid = {41480263},
issn = {2730-6151},
abstract = {Cold-seep carbonates, formed through interactions among methane, fluid chemistry, and microbial chemosynthesis, represent biodiversity hotspots in the deep sea. Spatial heterogeneity within these carbonates arises from variations in methane flux, yet the microbial contributions to this heterogeneity remain underexplored. Here we combined remotely operated vehicle-based in situ measurements, X-ray imaging, metagenomics, qPCR, and [13]C-CH4 stable-isotope labeling to investigate microbial communities across carbonate habitats in the South China Sea. We found that methane flux linked to carbonate structural properties, shapes microbial metabolic interactions, notably anaerobic methane oxidation coupled with aragonite and FeS precipitation. These processes may contribute to self-sealing carbonate features, potentially reducing methane permeability and influencing geochemical gradients and geomorphology. Our findings reveal that microbiomes and their feedbacks play a significant role in shaping habitat-scale spatial heterogeneity of cold-seep carbonates, improving our understanding of methane cycling and carbonate ecosystem dynamics.},
}
RevDate: 2026-01-02
CmpDate: 2026-01-02
Decoding microbial-mediated sulfur transformation pathways in mangrove wetland: Metagenomic and hydrogeochemical insights.
Environmental research, 290:123472.
Sulfur (S) cycling is essential to the ecological function of mangrove wetlands, but how microbial processes and gene-level patterns respond to environmental gradients remains poorly understood. Here, we integrated high-resolution hydrogeochemical profiling with metagenomic sequencing to characterize depth-resolved microbial communities and S-cycling genes in the mangrove wetlands of Dongzhai Harbor, Hainan, China. The results revealed pronounced differences in microbial community composition between zones, with Escherichia dominating mangrove sediments (4.22-20.07 %) and Salmonella prevailing in mudflat sediments (23.87-60.98 %). The abundance of S-cycling genes (e.g., tusA, soeA, aprA, dsrAB, sat) declined markedly with depth. Spatial variation in biogeochemical conditions shaped functional gene distributions: oxidative genes (aprA, soeA) were more abundant in mudflat profiles, whereas sat dominated reductive pathways in mangrove sediments. Environmental gradients structured microbial communities, with salinity, pH, total nitrogen (TN), and total organic carbon (TOC) showing negative correlations, and total sulfur (TS), total phosphorus (TP), SO4[2-] acting as positive drivers. Co-occurrence network analysis indicated tighter microbial associations in surface layers compared to deeper strata. The thiosulfate oxidation pathway was confined to the 5-10 cm interval in mudflat sediments and appeared at both 5-10 cm and 15-20 cm in mangrove sediments, while direct sulfite oxidation occurred in both zones. Moreover, methanogenesis, nitrification, and denitrification were more prominent in mudflat sediments, whereas methane oxidation prevailed in mangrove profiles. These findings advance our understanding of how microbial functional stratification and S metabolic pathways respond to environmental gradients, with implications for biogeochemical coupling in coastal wetland ecosystems.
Additional Links: PMID-41338426
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41338426,
year = {2026},
author = {Yan, L and Su, Y and Xie, X and Peng, K and Zhang, P and Deng, Y and Gan, Y and Li, Q and Zhang, Y},
title = {Decoding microbial-mediated sulfur transformation pathways in mangrove wetland: Metagenomic and hydrogeochemical insights.},
journal = {Environmental research},
volume = {290},
number = {},
pages = {123472},
doi = {10.1016/j.envres.2025.123472},
pmid = {41338426},
issn = {1096-0953},
mesh = {*Wetlands ; *Sulfur/metabolism ; China ; Metagenomics ; *Microbiota ; Geologic Sediments/microbiology ; Bacteria/metabolism/genetics ; Metagenome ; },
abstract = {Sulfur (S) cycling is essential to the ecological function of mangrove wetlands, but how microbial processes and gene-level patterns respond to environmental gradients remains poorly understood. Here, we integrated high-resolution hydrogeochemical profiling with metagenomic sequencing to characterize depth-resolved microbial communities and S-cycling genes in the mangrove wetlands of Dongzhai Harbor, Hainan, China. The results revealed pronounced differences in microbial community composition between zones, with Escherichia dominating mangrove sediments (4.22-20.07 %) and Salmonella prevailing in mudflat sediments (23.87-60.98 %). The abundance of S-cycling genes (e.g., tusA, soeA, aprA, dsrAB, sat) declined markedly with depth. Spatial variation in biogeochemical conditions shaped functional gene distributions: oxidative genes (aprA, soeA) were more abundant in mudflat profiles, whereas sat dominated reductive pathways in mangrove sediments. Environmental gradients structured microbial communities, with salinity, pH, total nitrogen (TN), and total organic carbon (TOC) showing negative correlations, and total sulfur (TS), total phosphorus (TP), SO4[2-] acting as positive drivers. Co-occurrence network analysis indicated tighter microbial associations in surface layers compared to deeper strata. The thiosulfate oxidation pathway was confined to the 5-10 cm interval in mudflat sediments and appeared at both 5-10 cm and 15-20 cm in mangrove sediments, while direct sulfite oxidation occurred in both zones. Moreover, methanogenesis, nitrification, and denitrification were more prominent in mudflat sediments, whereas methane oxidation prevailed in mangrove profiles. These findings advance our understanding of how microbial functional stratification and S metabolic pathways respond to environmental gradients, with implications for biogeochemical coupling in coastal wetland ecosystems.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Wetlands
*Sulfur/metabolism
China
Metagenomics
*Microbiota
Geologic Sediments/microbiology
Bacteria/metabolism/genetics
Metagenome
RevDate: 2026-01-02
CmpDate: 2026-01-02
Integrated metagenome and metabolome analysis reveals a disease signature of gut microbiota and the key gut microbiota-associated metabolite proline in schizophrenia.
Journal of psychiatric research, 193:223-235.
Schizophrenia (SCZ) is a multifaceted psychiatric condition with a complex set of etiological factors. Recent studies have revealed that gut microbiota play a significant role in the neurobiology associated with SCZ. Utilizing metagenomic sequencing and analysis techniques, we obtained composition and functional information of the gut microbiota from 68 SCZ patients and 61 healthy control (HC) subjects. We identified 72 inter-group differential species, 49 differential metabolic pathways, and 1987 differential functional genes. A. odontolyticus and F. prausnitzii were the core species enriched in the SCZ group and the HC group, respectively. Arginine and proline metabolism were the most significant differential metabolic pathways, with K00286 being the differential functional gene catalyzing the synthesis of L-proline in this pathway. Notably, a strong disease classification model was developed based on the gut microbiota data, achieving an outstanding AUC of 0.94, outperforming earlier models, the model achieved AUC values of 0.745 and 0.845 in two separate external datasets, respectively. Furthermore, insights into mechanisms were investigated by analyzing the relationships between microbial species and their associated metabolic pathways. Future research is essential to clarify causal connections, detail specific molecular pathways-particularly those involving functional proteins such as K00286-and to explore the communication processes between the gut microbiota and the brain. Our results underscore the potential for microbiota-based biomarkers and therapeutic targets in SCZ, emphasizing the essential role of gut microbiota in this intricate disorder.
Additional Links: PMID-41338123
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41338123,
year = {2026},
author = {Huang, S and Yang, P and Wang, X and Zhang, K and Li, L and Yao, S and Qian, L and Liu, C and Guo, J and Shi, L and Liu, F and Xie, W and Guo, Y},
title = {Integrated metagenome and metabolome analysis reveals a disease signature of gut microbiota and the key gut microbiota-associated metabolite proline in schizophrenia.},
journal = {Journal of psychiatric research},
volume = {193},
number = {},
pages = {223-235},
doi = {10.1016/j.jpsychires.2025.11.029},
pmid = {41338123},
issn = {1879-1379},
mesh = {Humans ; *Gastrointestinal Microbiome/physiology/genetics ; *Schizophrenia/microbiology/metabolism ; Male ; Female ; Adult ; *Proline/metabolism ; *Metabolome/physiology ; *Metagenome ; Middle Aged ; },
abstract = {Schizophrenia (SCZ) is a multifaceted psychiatric condition with a complex set of etiological factors. Recent studies have revealed that gut microbiota play a significant role in the neurobiology associated with SCZ. Utilizing metagenomic sequencing and analysis techniques, we obtained composition and functional information of the gut microbiota from 68 SCZ patients and 61 healthy control (HC) subjects. We identified 72 inter-group differential species, 49 differential metabolic pathways, and 1987 differential functional genes. A. odontolyticus and F. prausnitzii were the core species enriched in the SCZ group and the HC group, respectively. Arginine and proline metabolism were the most significant differential metabolic pathways, with K00286 being the differential functional gene catalyzing the synthesis of L-proline in this pathway. Notably, a strong disease classification model was developed based on the gut microbiota data, achieving an outstanding AUC of 0.94, outperforming earlier models, the model achieved AUC values of 0.745 and 0.845 in two separate external datasets, respectively. Furthermore, insights into mechanisms were investigated by analyzing the relationships between microbial species and their associated metabolic pathways. Future research is essential to clarify causal connections, detail specific molecular pathways-particularly those involving functional proteins such as K00286-and to explore the communication processes between the gut microbiota and the brain. Our results underscore the potential for microbiota-based biomarkers and therapeutic targets in SCZ, emphasizing the essential role of gut microbiota in this intricate disorder.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/physiology/genetics
*Schizophrenia/microbiology/metabolism
Male
Female
Adult
*Proline/metabolism
*Metabolome/physiology
*Metagenome
Middle Aged
RevDate: 2026-01-02
CmpDate: 2026-01-02
Cleanifier: contamination removal from microbial sequences using spaced seeds of a human pangenome index.
Bioinformatics (Oxford, England), 42(1):.
MOTIVATION: The first step when working with DNA data of human-derived microbiomes is to remove human contamination for two reasons. First, many countries have strict privacy and data protection guidelines for human sequence data, so microbiome data containing partly human data cannot be easily further processed or published. Second, human contamination may cause problems in downstream analysis, such as metagenomic binning or genome assembly. For large-scale metagenomics projects, fast and accurate removal of human contamination is therefore critical.
RESULTS: We introduce Cleanifier, a fast and memory frugal alignment-free tool for detecting and removing human contamination based on gapped k-mers, or spaced seeds. Cleanifier uses a pangenome index of known human gapped k-mers, and the creation and use of alternative references is also possible. Reads are classified and filtered according to their gapped k-mer content. Cleanifier supports two filtering modes: one that queries all gapped k-mers and one that queries only a sample of them. A comparison of Cleanifier with other state-of-the-art tools shows that the sampling mode makes Cleanifier the fastest method with comparable accuracy. When using a probabilistic Cuckoo filter to store the complete k-mer set, Cleanifier has similar memory requirements to methods that use a sampled minimizer index. At the same time, Cleanifier is more flexible, because it can use different sampling methods on the same index.
Cleanifier is available via gitlab (https://gitlab.com/rahmannlab/cleanifier), PyPi (https://pypi.org/project/cleanifier/), and Bioconda (https://anaconda.org/bioconda/cleanifier). The pre-computed human pangenome index is available at Zenodo (https://doi.org/10.5281/zenodo.15639519).
Additional Links: PMID-41252442
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41252442,
year = {2026},
author = {Zentgraf, J and Schmitz, JE and Rahmann, S},
title = {Cleanifier: contamination removal from microbial sequences using spaced seeds of a human pangenome index.},
journal = {Bioinformatics (Oxford, England)},
volume = {42},
number = {1},
pages = {},
doi = {10.1093/bioinformatics/btaf632},
pmid = {41252442},
issn = {1367-4811},
mesh = {Humans ; *Software ; *Metagenomics/methods ; *Microbiota/genetics ; *DNA Contamination ; Sequence Analysis, DNA/methods ; Algorithms ; *Metagenome ; },
abstract = {MOTIVATION: The first step when working with DNA data of human-derived microbiomes is to remove human contamination for two reasons. First, many countries have strict privacy and data protection guidelines for human sequence data, so microbiome data containing partly human data cannot be easily further processed or published. Second, human contamination may cause problems in downstream analysis, such as metagenomic binning or genome assembly. For large-scale metagenomics projects, fast and accurate removal of human contamination is therefore critical.
RESULTS: We introduce Cleanifier, a fast and memory frugal alignment-free tool for detecting and removing human contamination based on gapped k-mers, or spaced seeds. Cleanifier uses a pangenome index of known human gapped k-mers, and the creation and use of alternative references is also possible. Reads are classified and filtered according to their gapped k-mer content. Cleanifier supports two filtering modes: one that queries all gapped k-mers and one that queries only a sample of them. A comparison of Cleanifier with other state-of-the-art tools shows that the sampling mode makes Cleanifier the fastest method with comparable accuracy. When using a probabilistic Cuckoo filter to store the complete k-mer set, Cleanifier has similar memory requirements to methods that use a sampled minimizer index. At the same time, Cleanifier is more flexible, because it can use different sampling methods on the same index.
Cleanifier is available via gitlab (https://gitlab.com/rahmannlab/cleanifier), PyPi (https://pypi.org/project/cleanifier/), and Bioconda (https://anaconda.org/bioconda/cleanifier). The pre-computed human pangenome index is available at Zenodo (https://doi.org/10.5281/zenodo.15639519).},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Software
*Metagenomics/methods
*Microbiota/genetics
*DNA Contamination
Sequence Analysis, DNA/methods
Algorithms
*Metagenome
RevDate: 2026-01-02
CmpDate: 2026-01-02
A missense mutation in Muc2 promotes gut microbiome and metabolome-dependent colitis-associated tumorigenesis.
The Journal of clinical investigation, 136(1):.
Colitis-associated cancer (CAC) arises from a complex interplay between host and environmental factors. In this report, we investigated the role of the gut microbiome using Winnie mice, an ulcerative colitis-like (UC-like) model with a missense mutation in the Muc2 gene. Upon rederivation from a conventional (CONV) to a specific pathogen-free (SPF) facility, Winnie mice developed severe colitis and, notably, spontaneous CAC that progressively worsened over time. In contrast, CONV Winnie mice showed only mild colitis but no tumorigenesis. By comparison, when re-derived into germ-free (GF) conditions, SPF Winnie mice were protected from colitis and colon tumors, indicating an essential role for the gut microbiome in the development of CAC in these mice. Using shotgun metagenomics, metabolomics, and lipidomics, we identified a distinct proinflammatory microbial and metabolic signature that potentially drives the transition from colitis to CAC. Using either SPF Winnie or WT (Bl/6) donors, fecal microbiota transplantation (FMT) into GF Winnie recipients demonstrated that, while colitis developed regardless of the donor, only FM from SPF Winnie donors resulted in CAC in recipient mice. Our studies present a relevant model of CAC, providing strong evidence that the microbiome plays a key role in its pathogenesis, thus challenging the concept of colon cancer as a strictly nontransmissible disease.
Additional Links: PMID-41196658
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41196658,
year = {2026},
author = {Verna, G and De Santis, S and Islam, BN and Sommella, EM and Licastro, D and Zhang, L and De Almeida Celio, F and Miller, EN and Merciai, F and Caponigro, V and Xin, W and Campiglia, P and Pizarro, TT and Chieppa, M and Cominelli, F},
title = {A missense mutation in Muc2 promotes gut microbiome and metabolome-dependent colitis-associated tumorigenesis.},
journal = {The Journal of clinical investigation},
volume = {136},
number = {1},
pages = {},
pmid = {41196658},
issn = {1558-8238},
support = {R37 DK042191/DK/NIDDK NIH HHS/United States ; R56 DK042191/DK/NIDDK NIH HHS/United States ; R01 DK042191/DK/NIDDK NIH HHS/United States ; R56 DK055812/DK/NIDDK NIH HHS/United States ; R01 DK055812/DK/NIDDK NIH HHS/United States ; },
mesh = {Animals ; *Mutation, Missense ; Mice ; *Mucin-2/genetics/metabolism ; *Gastrointestinal Microbiome ; *Metabolome ; *Colitis-Associated Neoplasms/genetics/microbiology/metabolism/pathology ; *Colitis, Ulcerative/genetics/microbiology/metabolism/pathology ; *Colitis/genetics/microbiology/metabolism/pathology ; *Carcinogenesis/genetics/metabolism ; Fecal Microbiota Transplantation ; Humans ; Disease Models, Animal ; Female ; },
abstract = {Colitis-associated cancer (CAC) arises from a complex interplay between host and environmental factors. In this report, we investigated the role of the gut microbiome using Winnie mice, an ulcerative colitis-like (UC-like) model with a missense mutation in the Muc2 gene. Upon rederivation from a conventional (CONV) to a specific pathogen-free (SPF) facility, Winnie mice developed severe colitis and, notably, spontaneous CAC that progressively worsened over time. In contrast, CONV Winnie mice showed only mild colitis but no tumorigenesis. By comparison, when re-derived into germ-free (GF) conditions, SPF Winnie mice were protected from colitis and colon tumors, indicating an essential role for the gut microbiome in the development of CAC in these mice. Using shotgun metagenomics, metabolomics, and lipidomics, we identified a distinct proinflammatory microbial and metabolic signature that potentially drives the transition from colitis to CAC. Using either SPF Winnie or WT (Bl/6) donors, fecal microbiota transplantation (FMT) into GF Winnie recipients demonstrated that, while colitis developed regardless of the donor, only FM from SPF Winnie donors resulted in CAC in recipient mice. Our studies present a relevant model of CAC, providing strong evidence that the microbiome plays a key role in its pathogenesis, thus challenging the concept of colon cancer as a strictly nontransmissible disease.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Mutation, Missense
Mice
*Mucin-2/genetics/metabolism
*Gastrointestinal Microbiome
*Metabolome
*Colitis-Associated Neoplasms/genetics/microbiology/metabolism/pathology
*Colitis, Ulcerative/genetics/microbiology/metabolism/pathology
*Colitis/genetics/microbiology/metabolism/pathology
*Carcinogenesis/genetics/metabolism
Fecal Microbiota Transplantation
Humans
Disease Models, Animal
Female
RevDate: 2026-01-02
CmpDate: 2026-01-02
Machine Learning-Aided Meta-Analysis Reveals Changes in Penaeus vannamei Gut Bacterial Communities Upon Dietary Supplementation-Induced Immunostimulation.
Journal of fish diseases, 49(2):e70043.
Gut bacterial communities play a key role in shrimp health; thus, their modulation has been a target of dietary supplements which also function in enhancing disease and stress resistance of shrimp. However, this also raised the question of whether immunostimulants yield distinct changes in the gut bacterial composition or whether there are consistent features across all treatments. Here, we performed a machine learning-aided meta-analysis of 16S rRNA gut bacterial community studies of immunostimulants for Penaeus vannamei. Sequence reads from the selected studies were obtained and processed through bioinformatics tools. While beta diversity analysis suggests similarities between the normal, infected and stimulated shrimp, alpha diversity indices showed higher species richness in the gut bacterial communities of shrimp fed with immunostimulants. Specific beneficial taxa were enriched upon immunostimulation, while potentially pathogenic taxa decreased in abundance. Random forest modelling also identified key predictor taxa which may be used to classify gut bacterial communities based on immune status, type of immunostimulant and the specific immunostimulant. Despite some shared patterns in differential abundance-having decreased relative abundances of Photobacterium and other members of Gammaproteobacteria-the influence of immunostimulation on gut bacterial community composition was type- and treatment-specific, as evident in the distinct abundance profiles of the predictor taxa. Functional prediction analysis also showed distinct pathways enriched in immunostimulated shrimp, as influenced by the type of the immunostimulant. This study highlighted the specific impacts of dietary supplementation-induced immunostimulation on gut bacterial communities and identified key features in immunostimulated shrimp which provide a novel perspective on the interplay between gut bacterial community and immunity.
Additional Links: PMID-40801302
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40801302,
year = {2026},
author = {Guzman, JPMD and Mwamburi, SM and Lurkpranee, S and Koiwai, K and Kondo, H and Hirono, I},
title = {Machine Learning-Aided Meta-Analysis Reveals Changes in Penaeus vannamei Gut Bacterial Communities Upon Dietary Supplementation-Induced Immunostimulation.},
journal = {Journal of fish diseases},
volume = {49},
number = {2},
pages = {e70043},
doi = {10.1111/jfd.70043},
pmid = {40801302},
issn = {1365-2761},
support = {22H00379//Japan Society for the Promotion of Science/ ; JPMJSA1806//Japan Science and Technology Agency/ ; },
mesh = {Animals ; *Penaeidae/microbiology/immunology ; *Gastrointestinal Microbiome/drug effects ; *Dietary Supplements ; *Machine Learning ; RNA, Ribosomal, 16S/genetics/analysis ; *Adjuvants, Immunologic/pharmacology/administration & dosage ; Animal Feed/analysis ; Bacteria/classification/genetics ; Diet/veterinary ; },
abstract = {Gut bacterial communities play a key role in shrimp health; thus, their modulation has been a target of dietary supplements which also function in enhancing disease and stress resistance of shrimp. However, this also raised the question of whether immunostimulants yield distinct changes in the gut bacterial composition or whether there are consistent features across all treatments. Here, we performed a machine learning-aided meta-analysis of 16S rRNA gut bacterial community studies of immunostimulants for Penaeus vannamei. Sequence reads from the selected studies were obtained and processed through bioinformatics tools. While beta diversity analysis suggests similarities between the normal, infected and stimulated shrimp, alpha diversity indices showed higher species richness in the gut bacterial communities of shrimp fed with immunostimulants. Specific beneficial taxa were enriched upon immunostimulation, while potentially pathogenic taxa decreased in abundance. Random forest modelling also identified key predictor taxa which may be used to classify gut bacterial communities based on immune status, type of immunostimulant and the specific immunostimulant. Despite some shared patterns in differential abundance-having decreased relative abundances of Photobacterium and other members of Gammaproteobacteria-the influence of immunostimulation on gut bacterial community composition was type- and treatment-specific, as evident in the distinct abundance profiles of the predictor taxa. Functional prediction analysis also showed distinct pathways enriched in immunostimulated shrimp, as influenced by the type of the immunostimulant. This study highlighted the specific impacts of dietary supplementation-induced immunostimulation on gut bacterial communities and identified key features in immunostimulated shrimp which provide a novel perspective on the interplay between gut bacterial community and immunity.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Penaeidae/microbiology/immunology
*Gastrointestinal Microbiome/drug effects
*Dietary Supplements
*Machine Learning
RNA, Ribosomal, 16S/genetics/analysis
*Adjuvants, Immunologic/pharmacology/administration & dosage
Animal Feed/analysis
Bacteria/classification/genetics
Diet/veterinary
RevDate: 2026-01-02
CmpDate: 2026-01-02
Effects of dietary FODMAP content on the faecal microbiome and gastrointestinal physiology in healthy adults: a randomised, controlled cross-over feeding study.
The British journal of nutrition, 134(9):712-726.
The effect of dietary FODMAP (fermentable oligo-, di- and mono-saccharides and polyols) in healthy adults is poorly documented. This study compared the specific effects of low and moderate FODMAP intake (relative to typical intake) on the faecal microbiome, participant-reported outcomes and gastrointestinal physiology. In a single-blind cross-over study, twenty-five healthy participants were randomised to one of two provided diets, 'low' (LFD) <4 g/d or 'moderate' (MFD) 14-18 g/d, for 3 weeks each, with ≥ 2-week washout between. Endpoints were assessed in the last week of each diet. The faecal bacterial/archaeal and fungal communities were characterised by eighteen participants from whom high-quality DNA was extracted by 16S rRNA and internal transcribed spacer 2 (ITS2) profiling and metagenomic sequencing. There were no differences in gastrointestinal or behavioural symptoms (fatigue, depression, anxiety) or faecal characteristics and biochemistry (including SCFA). Mean colonic transit time (telemetry) was 23 (95 % CI: 15, 30) h with the MFD compared with 34 (24, 44) h with LFD (n 12; P = 0·009). Fungal diversity (richness) increased in response to MFD, but the bacterial richness was reduced, coincident with the expansion of the relative abundances of Bifidobacterium, Anaerostipes and Eubacterium. Metagenomic analysis showed expansion of polyol-utilising Bifidobacteria and Anaerostipes with MFD. In conclusion, short-term alterations of FODMAP intake are not associated with symptomatic, stool or behavioural manifestations in healthy adults, but remarkable shifts within the bacterial and mycobiome populations were observed. These findings emphasise the need to quantitatively assess all microbial domains and their interrelationships to improve understanding of the consequences of diet on gut function.
Additional Links: PMID-40270118
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40270118,
year = {2025},
author = {Murtaza, N and Collins, L and Yao, CK and Thwaites, PA and Veitch, P and Varney, JE and Gill, PA and Gibson, PR and Morrison, M and Muir, JG},
title = {Effects of dietary FODMAP content on the faecal microbiome and gastrointestinal physiology in healthy adults: a randomised, controlled cross-over feeding study.},
journal = {The British journal of nutrition},
volume = {134},
number = {9},
pages = {712-726},
doi = {10.1017/S0007114525000868},
pmid = {40270118},
issn = {1475-2662},
mesh = {Humans ; Cross-Over Studies ; *Feces/microbiology ; Adult ; Male ; Female ; Single-Blind Method ; Young Adult ; *Gastrointestinal Microbiome/drug effects ; Fermentation ; Middle Aged ; *Diet ; Polymers/administration & dosage ; *Gastrointestinal Tract/microbiology/physiology ; *Dietary Carbohydrates/administration & dosage ; Oligosaccharides/administration & dosage ; Fungi/classification/isolation & purification/genetics ; RNA, Ribosomal, 16S ; Bacteria/classification/genetics ; Gastrointestinal Transit ; },
abstract = {The effect of dietary FODMAP (fermentable oligo-, di- and mono-saccharides and polyols) in healthy adults is poorly documented. This study compared the specific effects of low and moderate FODMAP intake (relative to typical intake) on the faecal microbiome, participant-reported outcomes and gastrointestinal physiology. In a single-blind cross-over study, twenty-five healthy participants were randomised to one of two provided diets, 'low' (LFD) <4 g/d or 'moderate' (MFD) 14-18 g/d, for 3 weeks each, with ≥ 2-week washout between. Endpoints were assessed in the last week of each diet. The faecal bacterial/archaeal and fungal communities were characterised by eighteen participants from whom high-quality DNA was extracted by 16S rRNA and internal transcribed spacer 2 (ITS2) profiling and metagenomic sequencing. There were no differences in gastrointestinal or behavioural symptoms (fatigue, depression, anxiety) or faecal characteristics and biochemistry (including SCFA). Mean colonic transit time (telemetry) was 23 (95 % CI: 15, 30) h with the MFD compared with 34 (24, 44) h with LFD (n 12; P = 0·009). Fungal diversity (richness) increased in response to MFD, but the bacterial richness was reduced, coincident with the expansion of the relative abundances of Bifidobacterium, Anaerostipes and Eubacterium. Metagenomic analysis showed expansion of polyol-utilising Bifidobacteria and Anaerostipes with MFD. In conclusion, short-term alterations of FODMAP intake are not associated with symptomatic, stool or behavioural manifestations in healthy adults, but remarkable shifts within the bacterial and mycobiome populations were observed. These findings emphasise the need to quantitatively assess all microbial domains and their interrelationships to improve understanding of the consequences of diet on gut function.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Cross-Over Studies
*Feces/microbiology
Adult
Male
Female
Single-Blind Method
Young Adult
*Gastrointestinal Microbiome/drug effects
Fermentation
Middle Aged
*Diet
Polymers/administration & dosage
*Gastrointestinal Tract/microbiology/physiology
*Dietary Carbohydrates/administration & dosage
Oligosaccharides/administration & dosage
Fungi/classification/isolation & purification/genetics
RNA, Ribosomal, 16S
Bacteria/classification/genetics
Gastrointestinal Transit
RevDate: 2026-01-01
CmpDate: 2026-01-01
Metagenomic and culture-based genomics reveal virulence and resistance risks in Manila clam microbiomes.
Food microbiology, 136:105001.
Bivalves are important aquaculture products whose safety is shaped by their microbiomes. Here, we present the first comprehensive characterization of Manila clam (Ruditapes philippinarum) microbiomes using both shotgun metagenomics (6 clams) and culture-based genomics (169 isolates, 40 draft genomes), integrating community, functional, and antimicrobial resistance profiling. Communities were dominated by Proteobacteria (99.3-99.9 %), with Pseudoalteromonas and Vibrio collectively accounting for 74.9-99.7 % and showing strong inverse correlations, defining Pseudoalteromonas-dominated, Vibrio-dominated, and mixed states. Species richness ranged from 22 to 180 per sample. Recognized human pathogens occurred at low abundance (<0.3 %), including Vibrio parahaemolyticus, Vibrio alginolyticus, and Photobacterium damselae, while opportunistic vibrios expanded in some clams (e.g., Vibrio cyclitrophicus 57.9 %). We reconstructed 34 high-quality MAGs, seven resolved to species (Pseudoalteromonas tetraodonis, V. cyclitrophicus, Shewanella aquimarina), alongside unclassified lineages. Metagenomes encoded 14 virulence-factor categories with 2281 subtypes, and isolate genomes added 93 further subtypes, including high-virulence loci in Escherichia coli and type III secretion genes in V. parahaemolyticus. Resistomes spanned 18 antibiotic classes with 511 subtypes; isolates contributed 22 additional antibiotic resistance genes(ARGs), including extended-spectrum β-lactamases (blaCTX-M-102) and blaNDM-1. Four carbapenemase-producing isolates (three Shewanella algae, one V. parahaemolyticus) carried blaNDM-1 on IncC plasmids, with the V. parahaemolyticus plasmid transferable to E. coli. Two P. tetraodonis MAGs encoded RiPP-like and terpene biosynthetic clusters plus phage-defense systems, consistent with Vibrio suppression. These findings demonstrate that clam microbiomes fluctuate between protective (Pseudoalteromonas) and pathogenic (Vibrio-Shewanella) states, providing a first integrated framework for assessing microbial risk, antimicrobial resistance, and food safety interventions in bivalve aquaculture.
Additional Links: PMID-41478678
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41478678,
year = {2026},
author = {Wang, Y and He, L and Hu, X and Guan, Y and Chen, X and Du, J and Chen, J and Ma, C and Ye, L},
title = {Metagenomic and culture-based genomics reveal virulence and resistance risks in Manila clam microbiomes.},
journal = {Food microbiology},
volume = {136},
number = {},
pages = {105001},
doi = {10.1016/j.fm.2025.105001},
pmid = {41478678},
issn = {1095-9998},
mesh = {Animals ; *Bivalvia/microbiology ; Metagenomics ; *Bacteria/genetics/isolation & purification/pathogenicity/drug effects/classification ; *Microbiota ; Virulence Factors/genetics ; Anti-Bacterial Agents/pharmacology ; Virulence ; Genomics ; *Drug Resistance, Bacterial ; Vibrio/genetics/pathogenicity/isolation & purification/drug effects ; Shellfish/microbiology ; Phylogeny ; },
abstract = {Bivalves are important aquaculture products whose safety is shaped by their microbiomes. Here, we present the first comprehensive characterization of Manila clam (Ruditapes philippinarum) microbiomes using both shotgun metagenomics (6 clams) and culture-based genomics (169 isolates, 40 draft genomes), integrating community, functional, and antimicrobial resistance profiling. Communities were dominated by Proteobacteria (99.3-99.9 %), with Pseudoalteromonas and Vibrio collectively accounting for 74.9-99.7 % and showing strong inverse correlations, defining Pseudoalteromonas-dominated, Vibrio-dominated, and mixed states. Species richness ranged from 22 to 180 per sample. Recognized human pathogens occurred at low abundance (<0.3 %), including Vibrio parahaemolyticus, Vibrio alginolyticus, and Photobacterium damselae, while opportunistic vibrios expanded in some clams (e.g., Vibrio cyclitrophicus 57.9 %). We reconstructed 34 high-quality MAGs, seven resolved to species (Pseudoalteromonas tetraodonis, V. cyclitrophicus, Shewanella aquimarina), alongside unclassified lineages. Metagenomes encoded 14 virulence-factor categories with 2281 subtypes, and isolate genomes added 93 further subtypes, including high-virulence loci in Escherichia coli and type III secretion genes in V. parahaemolyticus. Resistomes spanned 18 antibiotic classes with 511 subtypes; isolates contributed 22 additional antibiotic resistance genes(ARGs), including extended-spectrum β-lactamases (blaCTX-M-102) and blaNDM-1. Four carbapenemase-producing isolates (three Shewanella algae, one V. parahaemolyticus) carried blaNDM-1 on IncC plasmids, with the V. parahaemolyticus plasmid transferable to E. coli. Two P. tetraodonis MAGs encoded RiPP-like and terpene biosynthetic clusters plus phage-defense systems, consistent with Vibrio suppression. These findings demonstrate that clam microbiomes fluctuate between protective (Pseudoalteromonas) and pathogenic (Vibrio-Shewanella) states, providing a first integrated framework for assessing microbial risk, antimicrobial resistance, and food safety interventions in bivalve aquaculture.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Bivalvia/microbiology
Metagenomics
*Bacteria/genetics/isolation & purification/pathogenicity/drug effects/classification
*Microbiota
Virulence Factors/genetics
Anti-Bacterial Agents/pharmacology
Virulence
Genomics
*Drug Resistance, Bacterial
Vibrio/genetics/pathogenicity/isolation & purification/drug effects
Shellfish/microbiology
Phylogeny
RevDate: 2026-01-01
CmpDate: 2026-01-01
Microbial-enzyme co-fermentation of low-grade tobacco: Metagenomics and metabolomic insights into flavor formation.
Enzyme and microbial technology, 194:110803.
Microbial-enzyme co-fermentation effectively enhances the quality of low-grade tobacco leaves quality, but the underlying mechanisms of flavor formation remain unclear. This study investigated the dynamics and relationships of microbial communities and volatile aroma metabolites during low-grade tobacco leaves fermentation through metagenomics and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that during microbial-enzyme co-fermentation, the tobacco leaves fermented for four days (D4) exhibited the highest levels of total sugars and reducing sugars, the peak total content of aroma metabolites, and the best sensory quality. Pseudomonadota, Bacillota, and Ascomycota were dominant microorganisms during fermentation. During the initial stage (D1-D4), Saccharomyces was the dominant genus, which was subsequently displaced by Pantoea at D5. This microbial succession coincided with a decline in sensory quality, indicating its crucial role in shaping flavor evolution during co-fermentation. During microbial-enzyme co-fermentation process, a total of 46 volatile metabolites were detected in low-grade tobacco leaves. Among them, seven esters with high variable important in projection values and strong microbial correlations were identified as characteristic aroma metabolites, including ethyl phenylacetate, benzyl acetate, phenylethyl acetate, ethyl myristate, ethyl palmitate, ethyl oleate, and methyl linolenate. Gene function annotation revealed carbohydrate metabolism was the most abundant, followed by amino acid metabolism. Spearman correlation analysis elucidated the formation mechanism of characteristic ester metabolites. Specifically, short-chain esters correlated with glycerolipid and amino acid metabolism, while long-chain esters linked to glycolysis and fatty-acid biosynthetic pathways.
Additional Links: PMID-41386031
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41386031,
year = {2026},
author = {Shu, M and Xue, H and Yang, Y and Zhang, X and Li, S and Bian, T and Yuan, K and Xu, C},
title = {Microbial-enzyme co-fermentation of low-grade tobacco: Metagenomics and metabolomic insights into flavor formation.},
journal = {Enzyme and microbial technology},
volume = {194},
number = {},
pages = {110803},
doi = {10.1016/j.enzmictec.2025.110803},
pmid = {41386031},
issn = {1879-0909},
mesh = {Fermentation ; *Nicotiana/microbiology/metabolism/chemistry ; Plant Leaves/microbiology/metabolism/chemistry ; Metagenomics ; Volatile Organic Compounds/analysis/metabolism ; Metabolomics ; Gas Chromatography-Mass Spectrometry ; Odorants/analysis ; Flavoring Agents/metabolism ; Taste ; Microbiota ; Bacteria/metabolism/genetics/classification ; },
abstract = {Microbial-enzyme co-fermentation effectively enhances the quality of low-grade tobacco leaves quality, but the underlying mechanisms of flavor formation remain unclear. This study investigated the dynamics and relationships of microbial communities and volatile aroma metabolites during low-grade tobacco leaves fermentation through metagenomics and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that during microbial-enzyme co-fermentation, the tobacco leaves fermented for four days (D4) exhibited the highest levels of total sugars and reducing sugars, the peak total content of aroma metabolites, and the best sensory quality. Pseudomonadota, Bacillota, and Ascomycota were dominant microorganisms during fermentation. During the initial stage (D1-D4), Saccharomyces was the dominant genus, which was subsequently displaced by Pantoea at D5. This microbial succession coincided with a decline in sensory quality, indicating its crucial role in shaping flavor evolution during co-fermentation. During microbial-enzyme co-fermentation process, a total of 46 volatile metabolites were detected in low-grade tobacco leaves. Among them, seven esters with high variable important in projection values and strong microbial correlations were identified as characteristic aroma metabolites, including ethyl phenylacetate, benzyl acetate, phenylethyl acetate, ethyl myristate, ethyl palmitate, ethyl oleate, and methyl linolenate. Gene function annotation revealed carbohydrate metabolism was the most abundant, followed by amino acid metabolism. Spearman correlation analysis elucidated the formation mechanism of characteristic ester metabolites. Specifically, short-chain esters correlated with glycerolipid and amino acid metabolism, while long-chain esters linked to glycolysis and fatty-acid biosynthetic pathways.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Fermentation
*Nicotiana/microbiology/metabolism/chemistry
Plant Leaves/microbiology/metabolism/chemistry
Metagenomics
Volatile Organic Compounds/analysis/metabolism
Metabolomics
Gas Chromatography-Mass Spectrometry
Odorants/analysis
Flavoring Agents/metabolism
Taste
Microbiota
Bacteria/metabolism/genetics/classification
RevDate: 2026-01-01
CmpDate: 2026-01-01
Clostridium perfringens can promote the formation of fatty liver in cows.
Veterinary microbiology, 312:110826.
During the periparturient period, reduced feed intake often causes negative energy balance in dairy cows, leading to fat mobilization, hepatic lipid accumulation, and fatty liver disease (FLD), ultimately compromising health and milk production. This study investigated the association between FLD and gut microbiota dysbiosis, with a particular focus on the role of Clostridium perfringens within the gut-liver axis. Metagenomic sequencing of ileal contents revealed a marked decrease in microbial diversity in cows with FLD, along with increased abundances of potential pathogens such as C. perfringens, Enterobacter cloacae, and Vibrio alginolyticus. Functional annotation indicated elevated expression of virulence factors (e.g., Hsp60, flagella, mu-toxin), antibiotic resistance genes (e.g., otrA, lsaC), and pathways related to lipopolysaccharide (LPS) biosynthesis and mitogen-activated protein kinase (MAPK) signaling pathways, suggesting enhanced pro-inflammatory potential. qPCR analysis of ileal tissue demonstrated reduced expression of tight junction proteins (zona occludens 1 (ZO-1), Claudin-1, and Occludin) and increased levels of pro-inflammatory cytokines (Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumour necrosis factor-alpha (TNF-α)), alongside a decrease in the anti-inflammatory cytokine interleukin-10 (IL-10), indicating compromised intestinal barrier function and local inflammation. Given the significant enrichment of C. perfringens in the ileum of FLD cows, we hypothesized its involvement in disease pathogenesis. To test this, C. perfringens was isolated and orally administered to antibiotic-pretreated mice fed a high-fat diet. These mice developed exacerbated hepatic steatosis, metabolic disturbances, and heightened inflammatory responses. Moreover, Western blot analysis revealed reduced expression of intestinal tight junction proteins (ZO-1, Claudin-1, Occludin), indicating increased intestinal permeability. Quantitative PCR confirmed upregulation of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and downregulation of IL-10 in both intestinal and hepatic tissues. These findings indicate that C. perfringens may promote FLD by impairing gut barrier integrity and enhancing inflammatory responses. In conclusion, our findings suggest that C. perfringens may contribute to the development of FLD in dairy cows by impairing intestinal barrier integrity and promoting systemic inflammation.
Additional Links: PMID-41365051
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41365051,
year = {2026},
author = {Wang, H and Congzhu, and Wang, J and Lin, X and Guo, Y and Kiani, FA and Zhou, X and Ding, Y},
title = {Clostridium perfringens can promote the formation of fatty liver in cows.},
journal = {Veterinary microbiology},
volume = {312},
number = {},
pages = {110826},
doi = {10.1016/j.vetmic.2025.110826},
pmid = {41365051},
issn = {1873-2542},
mesh = {Animals ; Cattle ; *Clostridium perfringens/pathogenicity/physiology ; *Fatty Liver/microbiology/veterinary ; *Cattle Diseases/microbiology ; Female ; *Clostridium Infections/veterinary/microbiology ; Cytokines/metabolism/genetics ; Gastrointestinal Microbiome ; Mice ; Liver/microbiology/pathology ; Dysbiosis/microbiology/veterinary ; Ileum/microbiology ; },
abstract = {During the periparturient period, reduced feed intake often causes negative energy balance in dairy cows, leading to fat mobilization, hepatic lipid accumulation, and fatty liver disease (FLD), ultimately compromising health and milk production. This study investigated the association between FLD and gut microbiota dysbiosis, with a particular focus on the role of Clostridium perfringens within the gut-liver axis. Metagenomic sequencing of ileal contents revealed a marked decrease in microbial diversity in cows with FLD, along with increased abundances of potential pathogens such as C. perfringens, Enterobacter cloacae, and Vibrio alginolyticus. Functional annotation indicated elevated expression of virulence factors (e.g., Hsp60, flagella, mu-toxin), antibiotic resistance genes (e.g., otrA, lsaC), and pathways related to lipopolysaccharide (LPS) biosynthesis and mitogen-activated protein kinase (MAPK) signaling pathways, suggesting enhanced pro-inflammatory potential. qPCR analysis of ileal tissue demonstrated reduced expression of tight junction proteins (zona occludens 1 (ZO-1), Claudin-1, and Occludin) and increased levels of pro-inflammatory cytokines (Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumour necrosis factor-alpha (TNF-α)), alongside a decrease in the anti-inflammatory cytokine interleukin-10 (IL-10), indicating compromised intestinal barrier function and local inflammation. Given the significant enrichment of C. perfringens in the ileum of FLD cows, we hypothesized its involvement in disease pathogenesis. To test this, C. perfringens was isolated and orally administered to antibiotic-pretreated mice fed a high-fat diet. These mice developed exacerbated hepatic steatosis, metabolic disturbances, and heightened inflammatory responses. Moreover, Western blot analysis revealed reduced expression of intestinal tight junction proteins (ZO-1, Claudin-1, Occludin), indicating increased intestinal permeability. Quantitative PCR confirmed upregulation of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and downregulation of IL-10 in both intestinal and hepatic tissues. These findings indicate that C. perfringens may promote FLD by impairing gut barrier integrity and enhancing inflammatory responses. In conclusion, our findings suggest that C. perfringens may contribute to the development of FLD in dairy cows by impairing intestinal barrier integrity and promoting systemic inflammation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
*Clostridium perfringens/pathogenicity/physiology
*Fatty Liver/microbiology/veterinary
*Cattle Diseases/microbiology
Female
*Clostridium Infections/veterinary/microbiology
Cytokines/metabolism/genetics
Gastrointestinal Microbiome
Mice
Liver/microbiology/pathology
Dysbiosis/microbiology/veterinary
Ileum/microbiology
RevDate: 2026-01-01
CmpDate: 2026-01-01
In-depth characterization of microbiome and resistome of carcasses and processing environments in a swine slaughterhouse.
Veterinary microbiology, 312:110820.
Antimicrobial resistance represents a critical global health challenge. Within the swine production chain, all stages have been identified as potential reservoirs for antimicrobial resistance genes. In the present study whole metagenomic sequencing technology was applied in a swine slaughterhouse and pig carcasses to investigate microbial communities and their associated antimicrobial resistance genes. Actinomycetota and Pseudomonadota were the dominant phyla across all samples, while Bacillota, Bacteroidota, and Campylobacteriota were more prevalent in the dirty zone and carcass samples than in the clean zone. Key antimicrobial-resistant bacteria included genera such as Acinetobacter, Aeromonas, and Streptococcus, with Acinetobacter spp., Streptococcus suis, and Aliarcobacter cryaerophilus identified as high-priority species for food safety due to their persistence and antimicrobial resistance genes associations. Several genera showed strong correlations with resistance to macrolides, lincosamides, and beta-lactams. Moreover, the plasmid-borne and lateral gene transfer events were associated with dirty zone and carcass samples in comparison to clean zone samples, suggesting the potential dissemination of antimicrobial resistance genes, especially for macrolides and sulphonamides resistance genes. Tetracycline, beta-lactam, and aminoglycoside resistance genes were the most abundant antimicrobial resistance genes across all samples, consistent with a pig slaughterhouse environment. This study highlights distinct microbiome profiles across environmental zones of a pig slaughterhouse, reflecting the adaptation of bacterial taxa to specific processing conditions. The findings have significant implications for food business operators who have to apply appropriate hygienic measures to reduce the dissemination of bacterial food-borne pathogens and to mitigate the risk of antimicrobial resistance transfer along the food chain.
Additional Links: PMID-41349311
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41349311,
year = {2026},
author = {Manfreda, C and Ghidini, S and Fuschi, A and Remondini, D and Guarneri, F and Alborali, GL and Fernández-Trapote, E and Cobo-Dìaz, JF and Alvarez-Ordóñez, A and Ianieri, A},
title = {In-depth characterization of microbiome and resistome of carcasses and processing environments in a swine slaughterhouse.},
journal = {Veterinary microbiology},
volume = {312},
number = {},
pages = {110820},
doi = {10.1016/j.vetmic.2025.110820},
pmid = {41349311},
issn = {1873-2542},
mesh = {Animals ; *Abattoirs ; Swine/microbiology ; *Microbiota/genetics ; *Drug Resistance, Bacterial/genetics ; *Bacteria/drug effects/genetics/classification/isolation & purification ; Anti-Bacterial Agents/pharmacology ; *Meat/microbiology ; Food Microbiology ; },
abstract = {Antimicrobial resistance represents a critical global health challenge. Within the swine production chain, all stages have been identified as potential reservoirs for antimicrobial resistance genes. In the present study whole metagenomic sequencing technology was applied in a swine slaughterhouse and pig carcasses to investigate microbial communities and their associated antimicrobial resistance genes. Actinomycetota and Pseudomonadota were the dominant phyla across all samples, while Bacillota, Bacteroidota, and Campylobacteriota were more prevalent in the dirty zone and carcass samples than in the clean zone. Key antimicrobial-resistant bacteria included genera such as Acinetobacter, Aeromonas, and Streptococcus, with Acinetobacter spp., Streptococcus suis, and Aliarcobacter cryaerophilus identified as high-priority species for food safety due to their persistence and antimicrobial resistance genes associations. Several genera showed strong correlations with resistance to macrolides, lincosamides, and beta-lactams. Moreover, the plasmid-borne and lateral gene transfer events were associated with dirty zone and carcass samples in comparison to clean zone samples, suggesting the potential dissemination of antimicrobial resistance genes, especially for macrolides and sulphonamides resistance genes. Tetracycline, beta-lactam, and aminoglycoside resistance genes were the most abundant antimicrobial resistance genes across all samples, consistent with a pig slaughterhouse environment. This study highlights distinct microbiome profiles across environmental zones of a pig slaughterhouse, reflecting the adaptation of bacterial taxa to specific processing conditions. The findings have significant implications for food business operators who have to apply appropriate hygienic measures to reduce the dissemination of bacterial food-borne pathogens and to mitigate the risk of antimicrobial resistance transfer along the food chain.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Abattoirs
Swine/microbiology
*Microbiota/genetics
*Drug Resistance, Bacterial/genetics
*Bacteria/drug effects/genetics/classification/isolation & purification
Anti-Bacterial Agents/pharmacology
*Meat/microbiology
Food Microbiology
RevDate: 2026-01-01
CmpDate: 2026-01-01
Unveiling the Presence of Coxiella-like bacteria in Rhipicephalus microplus Ticks from Punjab, North India: A 16S rRNA metagenomic study.
Veterinary microbiology, 312:110783.
In this study, using 16S rRNA gene-based metagenomics, we aimed to determine the presence of infectious bacteria in the ticks collected from Punjab state in north India. Tick samples were collected from the domesticated animals from the Patiala, Ropar, and Mohali districts of Punjab, India from February 2022- April 2022. DNA was extracted, and the library was prepared by targeting the V3-V4 hypervariable region of the 16S rRNA gene. The sequencing was conducted in Illumina using the 300 bp paired-end chemistry. Eight tick samples were analyzed from the Patiala, Ropar and Mohali districts of Punjab, India, revealing a diverse range of bacterial species within the tick microbiome. Seven out of eight samples were found to harbour Coxiella-like bacteria (46-181,607 reads; closely related to C. burnetii based on 16S rRNA [V3-V4] sequence similarity), indicating their abundance in the tick population. Furthermore, the analysis uncovered the presence of other pathogenic bacterial genera, including Staphylococcus, Streptococcus, Corynebacterium, Enterococcus, Pseudomonas, Bordetella, and Micrococcus in the tick microbiome, highlighting the abundance and diversity of infectious organisms within ticks. 16S rRNA gene-based metagenomics enables valuable insights into infectious agents in disease-transmitting vectors. Coxiella-like bacteria were found to be predominant bacterial species in the tick microbiomes in this study. The public health significance of this finding in animals and humans needs to be explored in this region. However, as 16S rRNA sequencing offers limited resolution for distinguishing closely related taxa, further confirmation using additional loci or whole-genome sequencing is warranted.
Additional Links: PMID-41232227
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41232227,
year = {2026},
author = {Sharma, V and Goel, S and Bisht, K and Kaura, T and Verma, S and Mewara, A and Grover, GS and Biswal, M},
title = {Unveiling the Presence of Coxiella-like bacteria in Rhipicephalus microplus Ticks from Punjab, North India: A 16S rRNA metagenomic study.},
journal = {Veterinary microbiology},
volume = {312},
number = {},
pages = {110783},
doi = {10.1016/j.vetmic.2025.110783},
pmid = {41232227},
issn = {1873-2542},
mesh = {Animals ; RNA, Ribosomal, 16S/genetics ; India ; Metagenomics ; *Rhipicephalus/microbiology ; *Coxiella/genetics/isolation & purification ; *Bacteria/genetics/isolation & purification/classification ; Phylogeny ; Microbiota ; DNA, Bacterial/genetics ; },
abstract = {In this study, using 16S rRNA gene-based metagenomics, we aimed to determine the presence of infectious bacteria in the ticks collected from Punjab state in north India. Tick samples were collected from the domesticated animals from the Patiala, Ropar, and Mohali districts of Punjab, India from February 2022- April 2022. DNA was extracted, and the library was prepared by targeting the V3-V4 hypervariable region of the 16S rRNA gene. The sequencing was conducted in Illumina using the 300 bp paired-end chemistry. Eight tick samples were analyzed from the Patiala, Ropar and Mohali districts of Punjab, India, revealing a diverse range of bacterial species within the tick microbiome. Seven out of eight samples were found to harbour Coxiella-like bacteria (46-181,607 reads; closely related to C. burnetii based on 16S rRNA [V3-V4] sequence similarity), indicating their abundance in the tick population. Furthermore, the analysis uncovered the presence of other pathogenic bacterial genera, including Staphylococcus, Streptococcus, Corynebacterium, Enterococcus, Pseudomonas, Bordetella, and Micrococcus in the tick microbiome, highlighting the abundance and diversity of infectious organisms within ticks. 16S rRNA gene-based metagenomics enables valuable insights into infectious agents in disease-transmitting vectors. Coxiella-like bacteria were found to be predominant bacterial species in the tick microbiomes in this study. The public health significance of this finding in animals and humans needs to be explored in this region. However, as 16S rRNA sequencing offers limited resolution for distinguishing closely related taxa, further confirmation using additional loci or whole-genome sequencing is warranted.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
RNA, Ribosomal, 16S/genetics
India
Metagenomics
*Rhipicephalus/microbiology
*Coxiella/genetics/isolation & purification
*Bacteria/genetics/isolation & purification/classification
Phylogeny
Microbiota
DNA, Bacterial/genetics
RevDate: 2025-12-31
CmpDate: 2025-12-31
Exploring gut microbiome and nutritional status among children with Autism Spectrum Disorder (MY-ASD Microbiome): A study protocol.
PloS one, 20(12):e0338801 pii:PONE-D-25-08831.
BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by persistent deficits in social communication and the presence of restricted, repetitive behaviours or interests. Previous literature has identified a link between the gut and ASD; however, the underlying mechanisms remain unclear. Gut microbiota dysbiosis has been extensively reported in cohort studies of ASD, and specific microbial metabolites or by-products may serve as potential biomarkers for ASD. Additionally, children with ASD often exhibit food refusal, have a limited food repertoire and display a tendency to consume the same foods frequently; thus, these behaviours increase their risk of malnutrition (over-nutrition or under-nutrition) compared to typically developing (TD) healthy children. This study primarily aims to identify oral and gut microbiota among children with ASD and TD healthy children. The secondary aim is to determine the associations between oral and gut microbiota with nutritional status among children with ASD. The findings will enhance understanding of the aetiology of ASD and inform early intervention strategies to mitigate disease severity and early identification of malnutrition in genetically at-risk children.
METHODS AND ANALYSIS: This observational, age-matched, case-control study is conducted in Malaysia among 40 male children with ASD and age-matched with 40 TD healthy controls aged 4-10 years. The dependent variables include the microbiota profile, identified through metagenomic sequencing analysis of saliva and faecal samples, and autism severity, assessed through validated questionnaires. Independent variables include nutritional status, determined through Subjective Global Nutrition Assessment (SGNA), anthropometry and dietary measurements, gastrointestinal symptoms, eating behaviour, behavioural profile, and sleep quality. Data collection is expected to be completed by June 2026. The study nature may limit causality establishment. Analyses will use chi-square/ANOVA for group comparisons, SparCC for microbiota correlations, and mixed-effects logistic regression to model associations.
CONCLUSION: This study advances understanding of ASD-related microbiota, guiding personalised nutrition and precision healthcare in Malaysia.
Additional Links: PMID-41474788
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41474788,
year = {2025},
author = {Wong, KX and Chen, ST and Ong, JJ and Gan, WY and Abdul Murad, NA and Chong, CW and Ramzi, NH},
title = {Exploring gut microbiome and nutritional status among children with Autism Spectrum Disorder (MY-ASD Microbiome): A study protocol.},
journal = {PloS one},
volume = {20},
number = {12},
pages = {e0338801},
doi = {10.1371/journal.pone.0338801},
pmid = {41474788},
issn = {1932-6203},
mesh = {Humans ; *Autism Spectrum Disorder/microbiology ; *Gastrointestinal Microbiome ; Child ; Male ; Child, Preschool ; *Nutritional Status ; Case-Control Studies ; Feces/microbiology ; Saliva/microbiology ; Malaysia ; Female ; },
abstract = {BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by persistent deficits in social communication and the presence of restricted, repetitive behaviours or interests. Previous literature has identified a link between the gut and ASD; however, the underlying mechanisms remain unclear. Gut microbiota dysbiosis has been extensively reported in cohort studies of ASD, and specific microbial metabolites or by-products may serve as potential biomarkers for ASD. Additionally, children with ASD often exhibit food refusal, have a limited food repertoire and display a tendency to consume the same foods frequently; thus, these behaviours increase their risk of malnutrition (over-nutrition or under-nutrition) compared to typically developing (TD) healthy children. This study primarily aims to identify oral and gut microbiota among children with ASD and TD healthy children. The secondary aim is to determine the associations between oral and gut microbiota with nutritional status among children with ASD. The findings will enhance understanding of the aetiology of ASD and inform early intervention strategies to mitigate disease severity and early identification of malnutrition in genetically at-risk children.
METHODS AND ANALYSIS: This observational, age-matched, case-control study is conducted in Malaysia among 40 male children with ASD and age-matched with 40 TD healthy controls aged 4-10 years. The dependent variables include the microbiota profile, identified through metagenomic sequencing analysis of saliva and faecal samples, and autism severity, assessed through validated questionnaires. Independent variables include nutritional status, determined through Subjective Global Nutrition Assessment (SGNA), anthropometry and dietary measurements, gastrointestinal symptoms, eating behaviour, behavioural profile, and sleep quality. Data collection is expected to be completed by June 2026. The study nature may limit causality establishment. Analyses will use chi-square/ANOVA for group comparisons, SparCC for microbiota correlations, and mixed-effects logistic regression to model associations.
CONCLUSION: This study advances understanding of ASD-related microbiota, guiding personalised nutrition and precision healthcare in Malaysia.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Autism Spectrum Disorder/microbiology
*Gastrointestinal Microbiome
Child
Male
Child, Preschool
*Nutritional Status
Case-Control Studies
Feces/microbiology
Saliva/microbiology
Malaysia
Female
RevDate: 2025-12-31
CmpDate: 2025-12-31
Comparative metagenomics reveals the differential gut microbiota involved in bile acid metabolism in patients with crohn's disease.
World journal of microbiology & biotechnology, 42(1):21.
Gut microbiota plays a critical role in bile acid (BA) metabolism within healthy populations, yet the differential species involved in BA metabolism in patients with Crohn's disease (CD) remains poorly characterized. To address this knowledge gap, we conducted a comparative metagenomics for nine CD patients and nine healthy controls. Integrated metagenomic species profiling and functional annotation, accompanied with species-function network analysis, reduced abundance in metabolism-associated genes and lower species-function correlation were predicted, suggesting a possible imbalance of microbial communities in CD group. Focused on functional genes involved in BA metabolism and their associated bacterial taxa, our results revealed that Anaerostipes hadrus-like (P = 0.001317), Roseburia intestinalis-like (P = 0.03542), and Coprococcus catus-like (P = 0.0005787), the microbial species related to bile salt hydrolase-coding gene, showed significantly lower abundance in CD patients. Conversely, Ruminococcus gnavus-like, related to 3α-hydroxysteroid dehydrogenase (3α-HSDH)- and 3β-HSDH-coding genes, demonstrated relatively higher abundance (P = 0.0257). Escherichia coli-like, the species for 7α-HSDH-coding genes, also exhibited higher abundance in CD group (P = 0.01044). Further network correlation analysis indicated that there was a potential association between these differential species with other co-occurring gut microbiota. Collectively, the findings identify and characterize the differential gut microbiota involved in BA metabolism in CD patients, which may provide the possible target microorganisms for future therapeutic interventions.
Additional Links: PMID-41474524
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41474524,
year = {2025},
author = {Luo, S and Li, Z and Peng, Y and Xie, X and Zeng, Y and Dai, L and Zhang, X},
title = {Comparative metagenomics reveals the differential gut microbiota involved in bile acid metabolism in patients with crohn's disease.},
journal = {World journal of microbiology & biotechnology},
volume = {42},
number = {1},
pages = {21},
pmid = {41474524},
issn = {1573-0972},
support = {32101368//National Natural Science Foundation of China/ ; 2022YFE0119600//National Key Research and Development Program of China/ ; 2025JJ50123//Hunan Provincial Natural Science Foundation of China/ ; },
mesh = {Humans ; *Bile Acids and Salts/metabolism ; *Gastrointestinal Microbiome/genetics ; *Crohn Disease/microbiology/metabolism ; *Metagenomics/methods ; *Bacteria/genetics/classification/metabolism/isolation & purification ; Male ; Female ; Adult ; Feces/microbiology ; Middle Aged ; },
abstract = {Gut microbiota plays a critical role in bile acid (BA) metabolism within healthy populations, yet the differential species involved in BA metabolism in patients with Crohn's disease (CD) remains poorly characterized. To address this knowledge gap, we conducted a comparative metagenomics for nine CD patients and nine healthy controls. Integrated metagenomic species profiling and functional annotation, accompanied with species-function network analysis, reduced abundance in metabolism-associated genes and lower species-function correlation were predicted, suggesting a possible imbalance of microbial communities in CD group. Focused on functional genes involved in BA metabolism and their associated bacterial taxa, our results revealed that Anaerostipes hadrus-like (P = 0.001317), Roseburia intestinalis-like (P = 0.03542), and Coprococcus catus-like (P = 0.0005787), the microbial species related to bile salt hydrolase-coding gene, showed significantly lower abundance in CD patients. Conversely, Ruminococcus gnavus-like, related to 3α-hydroxysteroid dehydrogenase (3α-HSDH)- and 3β-HSDH-coding genes, demonstrated relatively higher abundance (P = 0.0257). Escherichia coli-like, the species for 7α-HSDH-coding genes, also exhibited higher abundance in CD group (P = 0.01044). Further network correlation analysis indicated that there was a potential association between these differential species with other co-occurring gut microbiota. Collectively, the findings identify and characterize the differential gut microbiota involved in BA metabolism in CD patients, which may provide the possible target microorganisms for future therapeutic interventions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Bile Acids and Salts/metabolism
*Gastrointestinal Microbiome/genetics
*Crohn Disease/microbiology/metabolism
*Metagenomics/methods
*Bacteria/genetics/classification/metabolism/isolation & purification
Male
Female
Adult
Feces/microbiology
Middle Aged
RevDate: 2025-12-31
CmpDate: 2025-12-31
Gut microbiota-metabolite interactions in drug-induced liver injury: mechanisms, biomarkers, and therapeutic perspectives.
Frontiers in cellular and infection microbiology, 15:1737234.
Drug-induced liver injury (DILI) remains a major obstacle in clinical pharmacotherapy and a leading cause of acute liver failure and drug withdrawal worldwide. Conventional mechanistic models centered on hepatic xenobiotic metabolism, oxidative stress, and immune injury cannot fully account for the substantial interindividual variability and the unpredictable nature of idiosyncratic DILI. Increasing evidence shows that the gut microbiota and its metabolites critically shape hepatic susceptibility through modulation of drug metabolism, inflammatory signaling, and intestinal barrier integrity. This review summarizes current understanding of the gut-liver axis in DILI pathogenesis, with a focus on microbial enzymes such as β-glucuronidase that reactivate detoxified drug conjugates, microbial dysbiosis that disrupts bile acid homeostasis, and depletion of short chain fatty acids and indole derivatives that normally support epithelial defenses and immunologic tolerance. Drug-specific microbial patterns are discussed, including acetaminophen, amoxicillin-clavulanate, anti-tuberculosis regimens, and immune checkpoint inhibitors. We introduce the concept of metabotype-dependent hepatotoxicity, which emphasizes that individual microbial metabolic profiles influence DILI risk. Advances in metagenomics, metabolomics, and integrative multi-omics enable the identification of microbial biomarkers and functional pathways associated with DILI susceptibility. Emerging therapeutic strategies include restoration of microbial homeostasis, selective inhibition of microbial enzymes, and supplementation of hepatoprotective metabolites. Finally, we outline key challenges and future directions toward translating microbiome-based insights into clinical prediction and precision prevention of DILI. Importantly, this review integrates microbial metabolic functions with precision hepatology concepts, highlighting how metabotype-driven variability can be leveraged for individualized DILI risk assessment.
Additional Links: PMID-41473771
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41473771,
year = {2025},
author = {Mao, X and Hu, X and Fang, J},
title = {Gut microbiota-metabolite interactions in drug-induced liver injury: mechanisms, biomarkers, and therapeutic perspectives.},
journal = {Frontiers in cellular and infection microbiology},
volume = {15},
number = {},
pages = {1737234},
pmid = {41473771},
issn = {2235-2988},
mesh = {Humans ; *Gastrointestinal Microbiome/physiology ; *Chemical and Drug Induced Liver Injury/microbiology/metabolism/therapy ; Biomarkers/metabolism ; Dysbiosis ; Animals ; Liver/metabolism ; },
abstract = {Drug-induced liver injury (DILI) remains a major obstacle in clinical pharmacotherapy and a leading cause of acute liver failure and drug withdrawal worldwide. Conventional mechanistic models centered on hepatic xenobiotic metabolism, oxidative stress, and immune injury cannot fully account for the substantial interindividual variability and the unpredictable nature of idiosyncratic DILI. Increasing evidence shows that the gut microbiota and its metabolites critically shape hepatic susceptibility through modulation of drug metabolism, inflammatory signaling, and intestinal barrier integrity. This review summarizes current understanding of the gut-liver axis in DILI pathogenesis, with a focus on microbial enzymes such as β-glucuronidase that reactivate detoxified drug conjugates, microbial dysbiosis that disrupts bile acid homeostasis, and depletion of short chain fatty acids and indole derivatives that normally support epithelial defenses and immunologic tolerance. Drug-specific microbial patterns are discussed, including acetaminophen, amoxicillin-clavulanate, anti-tuberculosis regimens, and immune checkpoint inhibitors. We introduce the concept of metabotype-dependent hepatotoxicity, which emphasizes that individual microbial metabolic profiles influence DILI risk. Advances in metagenomics, metabolomics, and integrative multi-omics enable the identification of microbial biomarkers and functional pathways associated with DILI susceptibility. Emerging therapeutic strategies include restoration of microbial homeostasis, selective inhibition of microbial enzymes, and supplementation of hepatoprotective metabolites. Finally, we outline key challenges and future directions toward translating microbiome-based insights into clinical prediction and precision prevention of DILI. Importantly, this review integrates microbial metabolic functions with precision hepatology concepts, highlighting how metabotype-driven variability can be leveraged for individualized DILI risk assessment.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/physiology
*Chemical and Drug Induced Liver Injury/microbiology/metabolism/therapy
Biomarkers/metabolism
Dysbiosis
Animals
Liver/metabolism
RevDate: 2025-12-31
CmpDate: 2025-12-31
Changes in Microbiome Correspond with Diminished Lung Pathophysiology Following Early-Life Respiratory Syncytial Virus Infection or Antibiotic Treatment: Microbiome Following RSV Infection.
Viruses, 17(12): pii:v17121632.
Early-life respiratory syncytial virus (EL-RSV) infection has been implicated in long-term pulmonary disease in children. In these studies, neonatal BALB/c mice were infected at day 7 of life, leading to >35% losses in critical lung function, airway mucus metaplasia, and transcriptional hallmarks of mucus hypersecretion four weeks after RSV infection. While EL-RSV minimally reshaped the resident lung microbiota, it led to significant gut dysbiosis, including a long-term reduction of Proteobacteria that can be a source of protective metabolites related to barrier and immune function. Subsequent studies assessing whether a common infant antibiotic (ampicillin) could mitigate EL-RSV-induced lung alterations revealed further severe gut microbiome alterations and, on its own, later in life, recapitulated the full spectrum of RSV-associated alterations in lung function. Metagenomic inference showed that both RSV and ampicillin administered during early life reduced biosynthetic pathways for microbiome-derived metabolites, which are known to reinforce tight junctions, regulate inflammation, and preserve extracellular matrix elasticity. The shared loss of these metabolic programs provides a mechanistic bridge linking distinct early-life exposures to the microbiome changes and airway mechanical deficits later in life. Collectively, the data suggest that RSV and/or antibiotic-triggered gut dysbiosis is the primary insult that likely promotes improper lung maturation/repair through a metabolite-mediated mechanism and may suggest metabolite restoration as a strategy to promote proper developmental lung function.
Additional Links: PMID-41472301
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41472301,
year = {2025},
author = {Yagi, K and Ethridge, AD and Asai, N and Malinczak, CA and Arzola Martinez, L and Rasky, AJ and Morris, SB and Falkowski, NR and Fonseca, W and Huffnagle, GB and Lukacs, NW},
title = {Changes in Microbiome Correspond with Diminished Lung Pathophysiology Following Early-Life Respiratory Syncytial Virus Infection or Antibiotic Treatment: Microbiome Following RSV Infection.},
journal = {Viruses},
volume = {17},
number = {12},
pages = {},
doi = {10.3390/v17121632},
pmid = {41472301},
issn = {1999-4915},
mesh = {*Respiratory Syncytial Virus Infections/microbiology/physiopathology/drug therapy/virology ; Animals ; *Lung/physiopathology/microbiology/virology/drug effects ; *Anti-Bacterial Agents/pharmacology/therapeutic use ; Mice ; Mice, Inbred BALB C ; Dysbiosis ; *Microbiota/drug effects ; Gastrointestinal Microbiome/drug effects ; Animals, Newborn ; Disease Models, Animal ; Ampicillin/pharmacology ; Respiratory Syncytial Viruses ; Humans ; Female ; },
abstract = {Early-life respiratory syncytial virus (EL-RSV) infection has been implicated in long-term pulmonary disease in children. In these studies, neonatal BALB/c mice were infected at day 7 of life, leading to >35% losses in critical lung function, airway mucus metaplasia, and transcriptional hallmarks of mucus hypersecretion four weeks after RSV infection. While EL-RSV minimally reshaped the resident lung microbiota, it led to significant gut dysbiosis, including a long-term reduction of Proteobacteria that can be a source of protective metabolites related to barrier and immune function. Subsequent studies assessing whether a common infant antibiotic (ampicillin) could mitigate EL-RSV-induced lung alterations revealed further severe gut microbiome alterations and, on its own, later in life, recapitulated the full spectrum of RSV-associated alterations in lung function. Metagenomic inference showed that both RSV and ampicillin administered during early life reduced biosynthetic pathways for microbiome-derived metabolites, which are known to reinforce tight junctions, regulate inflammation, and preserve extracellular matrix elasticity. The shared loss of these metabolic programs provides a mechanistic bridge linking distinct early-life exposures to the microbiome changes and airway mechanical deficits later in life. Collectively, the data suggest that RSV and/or antibiotic-triggered gut dysbiosis is the primary insult that likely promotes improper lung maturation/repair through a metabolite-mediated mechanism and may suggest metabolite restoration as a strategy to promote proper developmental lung function.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Respiratory Syncytial Virus Infections/microbiology/physiopathology/drug therapy/virology
Animals
*Lung/physiopathology/microbiology/virology/drug effects
*Anti-Bacterial Agents/pharmacology/therapeutic use
Mice
Mice, Inbred BALB C
Dysbiosis
*Microbiota/drug effects
Gastrointestinal Microbiome/drug effects
Animals, Newborn
Disease Models, Animal
Ampicillin/pharmacology
Respiratory Syncytial Viruses
Humans
Female
RevDate: 2025-12-31
CmpDate: 2025-12-31
TSWV Infection Differentially Reshapes the Symbiotic Microbiome of Two Frankliniella Thrips Species.
Viruses, 17(12): pii:v17121625.
Vectoring tomato spotted wilt virus (TSWV) by two well-known thrips species, Frankliniella occidentalis Pergande and F. intonsa Trybom (Thysanoptera: Thripidae), is facilitated in different ways. Symbiotic bacteria positively influence thrips fitness, but the interaction between these bacteria and tospovirus inside the thrips' body remains unknown. Metagenomic profiling of symbionts in nonviruliferous and viruliferous Frankliniella thrips was performed to elucidate the interactions between symbiotic bacteria and the virus. A total of 97 operational taxonomic units (OTUs) were identified by profiling the microbes, where Proteobacteria was the most abundant phylum, with a high richness in Serratia spp. F. occidentalis showed lower variation in bacterial diversity between nonviruliferous and viruliferous treatments than F. intonsa. RT-qPCR validation for Serratia and Escherichia revealed opposite abundance patterns between the two thrips species. In contrast, Enterobacteriaceae and Pantoea showed similar patterns with higher abundance in nonviruliferous conditions. Wolbachia was detected exclusively in F. intonsa, with a higher bacterial titer in the viruliferous sample. Our findings suggest that TSWV association may influence the abundance of different bacterial symbionts within the thrips' body, potentially via induction of antimicrobial peptides in response to viral invasion, and to our knowledge this is the first report addressing this tripartite interaction. These findings improve our understanding of how virus-symbiont association contributes to thrips vector competence.
Additional Links: PMID-41472294
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41472294,
year = {2025},
author = {Mandal, E and Noirungsee, N and Disayathanoowat, T and Kil, EJ},
title = {TSWV Infection Differentially Reshapes the Symbiotic Microbiome of Two Frankliniella Thrips Species.},
journal = {Viruses},
volume = {17},
number = {12},
pages = {},
doi = {10.3390/v17121625},
pmid = {41472294},
issn = {1999-4915},
support = {0//Gyeongkuk National University/ ; },
mesh = {*Thysanoptera/microbiology/virology ; Animals ; *Symbiosis ; *Microbiota ; *Tospovirus/physiology ; Serratia/genetics ; Bacteria/classification/genetics/isolation & purification ; Insect Vectors/virology/microbiology ; Metagenomics ; Plant Diseases/virology ; Wolbachia/genetics ; },
abstract = {Vectoring tomato spotted wilt virus (TSWV) by two well-known thrips species, Frankliniella occidentalis Pergande and F. intonsa Trybom (Thysanoptera: Thripidae), is facilitated in different ways. Symbiotic bacteria positively influence thrips fitness, but the interaction between these bacteria and tospovirus inside the thrips' body remains unknown. Metagenomic profiling of symbionts in nonviruliferous and viruliferous Frankliniella thrips was performed to elucidate the interactions between symbiotic bacteria and the virus. A total of 97 operational taxonomic units (OTUs) were identified by profiling the microbes, where Proteobacteria was the most abundant phylum, with a high richness in Serratia spp. F. occidentalis showed lower variation in bacterial diversity between nonviruliferous and viruliferous treatments than F. intonsa. RT-qPCR validation for Serratia and Escherichia revealed opposite abundance patterns between the two thrips species. In contrast, Enterobacteriaceae and Pantoea showed similar patterns with higher abundance in nonviruliferous conditions. Wolbachia was detected exclusively in F. intonsa, with a higher bacterial titer in the viruliferous sample. Our findings suggest that TSWV association may influence the abundance of different bacterial symbionts within the thrips' body, potentially via induction of antimicrobial peptides in response to viral invasion, and to our knowledge this is the first report addressing this tripartite interaction. These findings improve our understanding of how virus-symbiont association contributes to thrips vector competence.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Thysanoptera/microbiology/virology
Animals
*Symbiosis
*Microbiota
*Tospovirus/physiology
Serratia/genetics
Bacteria/classification/genetics/isolation & purification
Insect Vectors/virology/microbiology
Metagenomics
Plant Diseases/virology
Wolbachia/genetics
RevDate: 2025-12-31
CmpDate: 2025-12-31
Characterizing the Bat Virome of Vietnam: A Systematic Review of Viral Diversity and Zoonotic Potential.
Viruses, 17(12): pii:v17121532.
Bats have been identified as reservoir hosts for an exceptional diversity of viruses, including multiple taxa of high zoonotic concern. Over a hundred bat species inhabit Vietnam, which, combined with significant biodiversity, carry high risk of zoonotic spillover due to dense human-animal interfaces, extensive wildlife trade, and proximity to recent outbreak epicenters. This review systematically synthesizes data on the bat virome in Vietnam and neighboring Southeast Asian countries, assessing viral diversity, host species involvement, and zoonotic potential. By prioritizing virus groups with established zoonotic capacity and pandemic potential, the systematic search identified studies reporting viruses from 32 families across 13 bat families. Based on the WHO 2024 risk classification, seven of these viral families were categorized as high-risk, three as medium-risk, and twelve as low-risk. The comparatively higher viral diversity reported in neighboring countries suggests that the current study likely represents an underestimation of the true virome present in Vietnamese bat populations. We emphasize the urgent need for expanded virological studies integrating metagenomic sequencing, serological surveys, and ecological modeling to improve early detection of emerging threats, as the comparatively higher viral diversity reported in neighboring countries suggests existing research likely represents an underestimation of the true virome present in Vietnamese bat populations. Strengthening regional collaboration is critical for establishing proactive pandemic prevention strategies in this high-risk zoonotic hotspot.
Additional Links: PMID-41472203
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41472203,
year = {2025},
author = {Lapshina, VK and Guskova, NI and Stetsenko, IF and Luong, MT and Tran, TV and Matsvay, AD and Shipulin, GA and Yudin, SM and Skvortsova, VI},
title = {Characterizing the Bat Virome of Vietnam: A Systematic Review of Viral Diversity and Zoonotic Potential.},
journal = {Viruses},
volume = {17},
number = {12},
pages = {},
doi = {10.3390/v17121532},
pmid = {41472203},
issn = {1999-4915},
support = {388-00084-24-00//Federal Medical Biological Agency/ ; },
mesh = {*Chiroptera/virology ; Vietnam/epidemiology ; Animals ; *Virome ; *Zoonoses/virology/epidemiology ; Humans ; *Viruses/genetics/classification/isolation & purification ; Disease Reservoirs/virology ; Biodiversity ; Viral Zoonoses/virology ; Genetic Variation ; },
abstract = {Bats have been identified as reservoir hosts for an exceptional diversity of viruses, including multiple taxa of high zoonotic concern. Over a hundred bat species inhabit Vietnam, which, combined with significant biodiversity, carry high risk of zoonotic spillover due to dense human-animal interfaces, extensive wildlife trade, and proximity to recent outbreak epicenters. This review systematically synthesizes data on the bat virome in Vietnam and neighboring Southeast Asian countries, assessing viral diversity, host species involvement, and zoonotic potential. By prioritizing virus groups with established zoonotic capacity and pandemic potential, the systematic search identified studies reporting viruses from 32 families across 13 bat families. Based on the WHO 2024 risk classification, seven of these viral families were categorized as high-risk, three as medium-risk, and twelve as low-risk. The comparatively higher viral diversity reported in neighboring countries suggests that the current study likely represents an underestimation of the true virome present in Vietnamese bat populations. We emphasize the urgent need for expanded virological studies integrating metagenomic sequencing, serological surveys, and ecological modeling to improve early detection of emerging threats, as the comparatively higher viral diversity reported in neighboring countries suggests existing research likely represents an underestimation of the true virome present in Vietnamese bat populations. Strengthening regional collaboration is critical for establishing proactive pandemic prevention strategies in this high-risk zoonotic hotspot.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Chiroptera/virology
Vietnam/epidemiology
Animals
*Virome
*Zoonoses/virology/epidemiology
Humans
*Viruses/genetics/classification/isolation & purification
Disease Reservoirs/virology
Biodiversity
Viral Zoonoses/virology
Genetic Variation
RevDate: 2025-12-31
CmpDate: 2025-12-31
Comparative Analysis of Sponge-Associated, Seawater, and Sediment Microbial Communities from Site F Cold Seep in the South China Sea.
Microorganisms, 13(12):.
Microbial communities at Site F cold seep, ubiquitous in both the environment and the associated fauna, demonstrate clear habitat-specific partitioning. Metagenomic sequencing and binning demonstrated a striking partitioning of microbial taxa at the cold seep: whereas the sponge-associated microbiome was distinctly enriched with specialized sulfur- and methane-oxidizing bacteria that were rare in the environment, it simultaneously exhibited a significantly reduced archaeal content, lower α-diversity, and a simpler overall community structure compared to the sediment and seawater communities. Distinct evolutionary lineages and varying abundances were observed among the microbiomes from seawater, sediment, and sponges. Furthermore, their Metagenome-Assembled Genomes (MAGs) exhibited significant differences in genomic features, including genome size and GC content. The sponge-associated microbiome exhibits lower diversity but maintains a high abundance of key functional genes, particularly those involved in sulfur cycling (e.g., apr, dsr, metZ), indicating enhanced metabolic efficiency in energy conservation and nutrient acquisition. This study reveals that the seawater, sediment, and sponge-associated microbiomes exhibit genome simplification and functional specialization in the cold seep environment, with varying lifestyles driving structural optimization and functional remodeling of the symbiotic microbiomes.
Additional Links: PMID-41471876
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41471876,
year = {2025},
author = {Wang, Y and Gong, L and Gao, Z and Dong, D and Li, X},
title = {Comparative Analysis of Sponge-Associated, Seawater, and Sediment Microbial Communities from Site F Cold Seep in the South China Sea.},
journal = {Microorganisms},
volume = {13},
number = {12},
pages = {},
pmid = {41471876},
issn = {2076-2607},
support = {42176114//National Natural Science Foundation of China/ ; ZR2023MD100//the Shandong Provincial Natural Science Foundation/ ; CAS-TAX-24-30//Biological Resources Programme, Chinese Academy of Sciences/ ; },
abstract = {Microbial communities at Site F cold seep, ubiquitous in both the environment and the associated fauna, demonstrate clear habitat-specific partitioning. Metagenomic sequencing and binning demonstrated a striking partitioning of microbial taxa at the cold seep: whereas the sponge-associated microbiome was distinctly enriched with specialized sulfur- and methane-oxidizing bacteria that were rare in the environment, it simultaneously exhibited a significantly reduced archaeal content, lower α-diversity, and a simpler overall community structure compared to the sediment and seawater communities. Distinct evolutionary lineages and varying abundances were observed among the microbiomes from seawater, sediment, and sponges. Furthermore, their Metagenome-Assembled Genomes (MAGs) exhibited significant differences in genomic features, including genome size and GC content. The sponge-associated microbiome exhibits lower diversity but maintains a high abundance of key functional genes, particularly those involved in sulfur cycling (e.g., apr, dsr, metZ), indicating enhanced metabolic efficiency in energy conservation and nutrient acquisition. This study reveals that the seawater, sediment, and sponge-associated microbiomes exhibit genome simplification and functional specialization in the cold seep environment, with varying lifestyles driving structural optimization and functional remodeling of the symbiotic microbiomes.},
}
RevDate: 2025-12-31
CmpDate: 2025-12-31
Oral Supplementation of Indole-3-acetic Acid Alleviates High-Fat-Induced Obesity by Activating the Gpha2-Mediated Thyroid-Stimulating Hormone Pathway.
Journal of agricultural and food chemistry, 73(52):33126-33140.
Obesity is a major global public health challenge. Indole-3-acetic acid (IAA), a gut microbiota-derived tryptophan metabolite, exhibits antiobesogenic potential. In this study, we found that in high-fat-diet-induced obese mice, oral IAA supplementation dose dependently attenuated body weight gain, adiposity, hepatic steatosis, and dyslipidemia while improving insulin sensitivity. Notably, intraperitoneal administration of IAA (50 mg/kg/day) paradoxically exacerbated weight gain. Metagenomic sequencing showed that oral IAA selectively enriched beneficial genera (Ileibacterium, Anaerotignum, and Clostridium) and significantly increased short-chain fatty acid (SCFA) production, particularly acetate and butyrate. In vitro experiments in Saccharomyces cerevisiae further confirmed that IAA directly suppresses de novo fatty acid biosynthesis and triacylglycerol assembly. Mechanistically, IAA upregulated hepatic Gpha2 expression, thereby activating the TSH-THR-PGC-1α-PPARγ signaling cascade and concomitantly repressing key lipogenic genes (Fasn, Acaca, and Srebp-1c). Collectively, these findings position IAA as a promising microbiota-derived metabolite with substantial preventive and therapeutic potential for obesity and related metabolic disorders.
Additional Links: PMID-41416507
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41416507,
year = {2025},
author = {Wang, Y and Wan, Y and Wang, H and Yan, J and Sun, J and Yang, J and Zhang, F and Cao, H and Li, D},
title = {Oral Supplementation of Indole-3-acetic Acid Alleviates High-Fat-Induced Obesity by Activating the Gpha2-Mediated Thyroid-Stimulating Hormone Pathway.},
journal = {Journal of agricultural and food chemistry},
volume = {73},
number = {52},
pages = {33126-33140},
doi = {10.1021/acs.jafc.5c14556},
pmid = {41416507},
issn = {1520-5118},
mesh = {Animals ; *Indoleacetic Acids/administration & dosage/metabolism ; Diet, High-Fat/adverse effects ; Mice ; *Obesity/metabolism/drug therapy/genetics ; Mice, Inbred C57BL ; Male ; Dietary Supplements/analysis ; Humans ; Gastrointestinal Microbiome ; Bacteria/classification/isolation & purification/genetics/metabolism ; PPAR gamma/metabolism/genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism/genetics ; Liver/metabolism/drug effects ; },
abstract = {Obesity is a major global public health challenge. Indole-3-acetic acid (IAA), a gut microbiota-derived tryptophan metabolite, exhibits antiobesogenic potential. In this study, we found that in high-fat-diet-induced obese mice, oral IAA supplementation dose dependently attenuated body weight gain, adiposity, hepatic steatosis, and dyslipidemia while improving insulin sensitivity. Notably, intraperitoneal administration of IAA (50 mg/kg/day) paradoxically exacerbated weight gain. Metagenomic sequencing showed that oral IAA selectively enriched beneficial genera (Ileibacterium, Anaerotignum, and Clostridium) and significantly increased short-chain fatty acid (SCFA) production, particularly acetate and butyrate. In vitro experiments in Saccharomyces cerevisiae further confirmed that IAA directly suppresses de novo fatty acid biosynthesis and triacylglycerol assembly. Mechanistically, IAA upregulated hepatic Gpha2 expression, thereby activating the TSH-THR-PGC-1α-PPARγ signaling cascade and concomitantly repressing key lipogenic genes (Fasn, Acaca, and Srebp-1c). Collectively, these findings position IAA as a promising microbiota-derived metabolite with substantial preventive and therapeutic potential for obesity and related metabolic disorders.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Indoleacetic Acids/administration & dosage/metabolism
Diet, High-Fat/adverse effects
Mice
*Obesity/metabolism/drug therapy/genetics
Mice, Inbred C57BL
Male
Dietary Supplements/analysis
Humans
Gastrointestinal Microbiome
Bacteria/classification/isolation & purification/genetics/metabolism
PPAR gamma/metabolism/genetics
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism/genetics
Liver/metabolism/drug effects
RevDate: 2025-12-31
CmpDate: 2025-12-31
Actifensin Evolution in the Human Oral Cavity over the Past 100,000 Years.
Journal of the American Chemical Society, 147(52):48060-48071.
Bacterially produced antimicrobial peptides (AMPs), or bacteriocins, play key roles in shaping microbial communities via interspecies competition. Unlike the more temporally dynamic gut microbiome, the oral microbiome exhibits long-term stability and is preserved into deep time in dental calculus, enabling evolutionary analysis across time. Here, we combine metagenomics, structural modeling, and experimental validation to investigate AMP diversity in ancient and modern dental biofilms from humans, Neanderthals, and nonhuman primates spanning 100,000 years. Using our newly developed platform, AMPcombi, we uncover evolutionary trajectories of bacteriocins and elucidate their ecological functions. Among these, we identify a conserved family of Actinomyces-derived defensin-like peptides, termed actifensins, present across all time periods. Phylogenetic, structural, and functional analyses revealed shared ancestry and adaptive diversification between ancient (paleo-) and modern actifensins, with evidence of positive selection and maintained antimicrobial activity. Our findings position the oral microbiome as a valuable reservoir for natural product discovery. In the face of rising antimicrobial resistance, evolutionary insights into AMP function open a door to next-generation therapeutics. AMPcombi streamlines this process, linking ancient biomolecules with biotechnology.
Additional Links: PMID-41407286
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41407286,
year = {2025},
author = {Herbst, R and Ibrahim, A and Hübner, A and Knüpfer, U and Regestein, L and Wiedemann, C and Hellmich, UA and Warinner, C and Stallforth, P},
title = {Actifensin Evolution in the Human Oral Cavity over the Past 100,000 Years.},
journal = {Journal of the American Chemical Society},
volume = {147},
number = {52},
pages = {48060-48071},
doi = {10.1021/jacs.5c14335},
pmid = {41407286},
issn = {1520-5126},
mesh = {Humans ; *Mouth/microbiology ; Animals ; *Bacteriocins/genetics/chemistry/metabolism ; *Evolution, Molecular ; Phylogeny ; Microbiota ; Actinomyces/chemistry/metabolism ; *Antimicrobial Peptides/genetics/chemistry ; Biofilms ; },
abstract = {Bacterially produced antimicrobial peptides (AMPs), or bacteriocins, play key roles in shaping microbial communities via interspecies competition. Unlike the more temporally dynamic gut microbiome, the oral microbiome exhibits long-term stability and is preserved into deep time in dental calculus, enabling evolutionary analysis across time. Here, we combine metagenomics, structural modeling, and experimental validation to investigate AMP diversity in ancient and modern dental biofilms from humans, Neanderthals, and nonhuman primates spanning 100,000 years. Using our newly developed platform, AMPcombi, we uncover evolutionary trajectories of bacteriocins and elucidate their ecological functions. Among these, we identify a conserved family of Actinomyces-derived defensin-like peptides, termed actifensins, present across all time periods. Phylogenetic, structural, and functional analyses revealed shared ancestry and adaptive diversification between ancient (paleo-) and modern actifensins, with evidence of positive selection and maintained antimicrobial activity. Our findings position the oral microbiome as a valuable reservoir for natural product discovery. In the face of rising antimicrobial resistance, evolutionary insights into AMP function open a door to next-generation therapeutics. AMPcombi streamlines this process, linking ancient biomolecules with biotechnology.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Mouth/microbiology
Animals
*Bacteriocins/genetics/chemistry/metabolism
*Evolution, Molecular
Phylogeny
Microbiota
Actinomyces/chemistry/metabolism
*Antimicrobial Peptides/genetics/chemistry
Biofilms
RevDate: 2025-12-30
CmpDate: 2025-12-30
Gut dysbiosis in early severe burns contributes to acute lung injury by impairing neutrophil chemotaxis.
Journal of leukocyte biology, 118(1):.
Severe burns complicated by acute lung injury are critical causes of respiratory failure and multiple organ dysfunction syndrome. Neutrophils extensively infiltrate lung tissues early postburn to mediate pulmonary damage, but the underlying mechanisms remain unclear. We analyzed gut microbiota of severe burn patients via metagenomics and metabolomics, assessed neutrophil chemotaxis using a self-developed in vitro agarose model, and validated Faecalibacterium prausnitzii and butyrate's effects on restoring neutrophil chemotaxis in gut microbiota-depleted mice via oral gavage (plus in vivo validation with small animal imaging). Bronchoalveolar lavage fluid biomarkers and pulmonary function tests evaluated pulmonary injury from impaired neutrophil chemotaxis. Early postburn, F. prausnitzii and its metabolite butyrate were significantly depleted in patients, concurrent with impaired neutrophil chemotaxis-restored by butyrate supplementation. In murine burn models, F. prausnitzii or butyrate rescued neutrophil chemotaxis, reduced pulmonary neutrophil infiltration, and attenuated lung injury. Mechanistically, butyrate restored neutrophil function in a severe burn patient plasma-stimulated model by downregulating P2X1 receptor expression and suppressing myosin light chain phosphorylation. Our findings indicate postburn gut microbiota dysbiosis and metabolite alterations disrupt neutrophil chemotaxis, causing excessive pulmonary neutrophil infiltration/activation. This highlights gut microbiota-derived metabolites as potential therapeutics for mitigating neutrophil-driven lung injury early postsevere burns.
Additional Links: PMID-41467315
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41467315,
year = {2025},
author = {Sun, Y and Li, P and Wang, X and Jiang, D and Shao, Y},
title = {Gut dysbiosis in early severe burns contributes to acute lung injury by impairing neutrophil chemotaxis.},
journal = {Journal of leukocyte biology},
volume = {118},
number = {1},
pages = {},
doi = {10.1093/jleuko/qiaf169},
pmid = {41467315},
issn = {1938-3673},
support = {82302800//National Natural Science Foundation of China/ ; 2024M751108//China Postdoctoral Science Foundation/ ; SDCX-ZG-202400032//Postdoctoral Innovation Program in Shandong Province/ ; },
mesh = {Animals ; *Dysbiosis/complications/immunology/microbiology ; *Gastrointestinal Microbiome/immunology ; *Acute Lung Injury/etiology/pathology/microbiology/immunology ; *Neutrophils/immunology/pathology ; Humans ; Mice ; *Burns/complications/microbiology/pathology/immunology ; *Chemotaxis, Leukocyte ; Male ; Female ; Mice, Inbred C57BL ; Butyrates/pharmacology ; Disease Models, Animal ; Neutrophil Infiltration ; Chemotaxis ; },
abstract = {Severe burns complicated by acute lung injury are critical causes of respiratory failure and multiple organ dysfunction syndrome. Neutrophils extensively infiltrate lung tissues early postburn to mediate pulmonary damage, but the underlying mechanisms remain unclear. We analyzed gut microbiota of severe burn patients via metagenomics and metabolomics, assessed neutrophil chemotaxis using a self-developed in vitro agarose model, and validated Faecalibacterium prausnitzii and butyrate's effects on restoring neutrophil chemotaxis in gut microbiota-depleted mice via oral gavage (plus in vivo validation with small animal imaging). Bronchoalveolar lavage fluid biomarkers and pulmonary function tests evaluated pulmonary injury from impaired neutrophil chemotaxis. Early postburn, F. prausnitzii and its metabolite butyrate were significantly depleted in patients, concurrent with impaired neutrophil chemotaxis-restored by butyrate supplementation. In murine burn models, F. prausnitzii or butyrate rescued neutrophil chemotaxis, reduced pulmonary neutrophil infiltration, and attenuated lung injury. Mechanistically, butyrate restored neutrophil function in a severe burn patient plasma-stimulated model by downregulating P2X1 receptor expression and suppressing myosin light chain phosphorylation. Our findings indicate postburn gut microbiota dysbiosis and metabolite alterations disrupt neutrophil chemotaxis, causing excessive pulmonary neutrophil infiltration/activation. This highlights gut microbiota-derived metabolites as potential therapeutics for mitigating neutrophil-driven lung injury early postsevere burns.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Dysbiosis/complications/immunology/microbiology
*Gastrointestinal Microbiome/immunology
*Acute Lung Injury/etiology/pathology/microbiology/immunology
*Neutrophils/immunology/pathology
Humans
Mice
*Burns/complications/microbiology/pathology/immunology
*Chemotaxis, Leukocyte
Male
Female
Mice, Inbred C57BL
Butyrates/pharmacology
Disease Models, Animal
Neutrophil Infiltration
Chemotaxis
RevDate: 2025-12-30
CmpDate: 2025-12-30
Combined effects of sound and temperature on the composition and function of bacterial and fungal communities in loess.
BMC microbiology, 25(1):803.
In Northwest China, the dominant soil type is loess, which is highly susceptible to various environmental factors. Of these, limited research has focused on the impacts of sound disturbance and temperature fluctuations on the microbial communities in loess. An orthogonal experiment was conducted by varying sound intensity (70 dB, 90 dB, 110 dB), sound duration (2 h, 4 h, 6 h), and temperature (- 5 °C, 15 °C, 35 °C). Metagenomic sequencing was then applied to investigate the effects of sound and temperature on the composition and function of bacterial and fungal communities in loess. Our results show that under the combined effects of sound and temperature, the dominant phyla and genera of bacteria and fungi have different responses and preferences to temperature and sound decibels. Alpha diversity analysis revealed that the Shannon index of the bacterial community differed significantly under the 90 dB treatment at - 5 °C and under the 110 dB treatment at 15 °C (P < 0.05). For the fungal community, both the Simpson and Shannon indices showed significant differences under the 70 dB treatment at - 5 °C and under the 110 dB treatment at 15 °C (P < 0.05). Notably, the richness of rare fungal taxa and overall species richness in the loess fungal community were significantly enhanced at 90 dB compared with the control and other treatment groups, while these indices were significantly reduced at 110 dB. In the loess microbial treatment groups subjected to the combined effects of sound and temperature, the gene abundance of CAZy family genes was lowest under high decibel (110 dB) sound stimulation. Among the six enzyme-encoding gene categories within the CAZy family, the highest number of annotated species was observed in Group A (2 h, 70 dB, - 5 °C), whereas the lowest was recorded in Group C (6 h, 110 dB, - 5 °C). Among the metabolic pathway functional genes annotated in the KEGG database, the abundance of metabolic genes in Group C (6 h, 110 dB, - 5 °C) was significantly lower than that in other treatment groups.
Additional Links: PMID-41466385
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41466385,
year = {2025},
author = {Zhao, L and Li, M and Wang, Y and Chen, L},
title = {Combined effects of sound and temperature on the composition and function of bacterial and fungal communities in loess.},
journal = {BMC microbiology},
volume = {25},
number = {1},
pages = {803},
pmid = {41466385},
issn = {1471-2180},
support = {31920250052; 22YF7FA172; Z2101707; 31560120//the Fundamental Research Funds for the Central Universities; the Key Research and Development Program of Gansu Province; Talent Introduction Program of Northwest Minzu University; National Natural Science Foundation of China/ ; },
mesh = {*Fungi/classification/genetics/isolation & purification ; *Bacteria/classification/genetics/isolation & purification ; *Temperature ; *Soil Microbiology ; China ; *Sound ; Biodiversity ; *Mycobiome ; Metagenomics ; Phylogeny ; Soil/chemistry ; *Microbiota ; },
abstract = {In Northwest China, the dominant soil type is loess, which is highly susceptible to various environmental factors. Of these, limited research has focused on the impacts of sound disturbance and temperature fluctuations on the microbial communities in loess. An orthogonal experiment was conducted by varying sound intensity (70 dB, 90 dB, 110 dB), sound duration (2 h, 4 h, 6 h), and temperature (- 5 °C, 15 °C, 35 °C). Metagenomic sequencing was then applied to investigate the effects of sound and temperature on the composition and function of bacterial and fungal communities in loess. Our results show that under the combined effects of sound and temperature, the dominant phyla and genera of bacteria and fungi have different responses and preferences to temperature and sound decibels. Alpha diversity analysis revealed that the Shannon index of the bacterial community differed significantly under the 90 dB treatment at - 5 °C and under the 110 dB treatment at 15 °C (P < 0.05). For the fungal community, both the Simpson and Shannon indices showed significant differences under the 70 dB treatment at - 5 °C and under the 110 dB treatment at 15 °C (P < 0.05). Notably, the richness of rare fungal taxa and overall species richness in the loess fungal community were significantly enhanced at 90 dB compared with the control and other treatment groups, while these indices were significantly reduced at 110 dB. In the loess microbial treatment groups subjected to the combined effects of sound and temperature, the gene abundance of CAZy family genes was lowest under high decibel (110 dB) sound stimulation. Among the six enzyme-encoding gene categories within the CAZy family, the highest number of annotated species was observed in Group A (2 h, 70 dB, - 5 °C), whereas the lowest was recorded in Group C (6 h, 110 dB, - 5 °C). Among the metabolic pathway functional genes annotated in the KEGG database, the abundance of metabolic genes in Group C (6 h, 110 dB, - 5 °C) was significantly lower than that in other treatment groups.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Fungi/classification/genetics/isolation & purification
*Bacteria/classification/genetics/isolation & purification
*Temperature
*Soil Microbiology
China
*Sound
Biodiversity
*Mycobiome
Metagenomics
Phylogeny
Soil/chemistry
*Microbiota
RevDate: 2025-12-30
CmpDate: 2025-12-30
Characterising gut microbiome dysbiosis in diarrhoea calves from multiple farms in Inner Mongolia using 16S and metagenomics.
Microbiome, 13(1):259.
BACKGROUND: The pathogenesis of neonatal calf diarrhoea (NCD), a critical disease that contributes to neonatal mortality in calves, remains nebulous.
RESULTS: Inner Mongolia, a key region for cattle farming in China, was selected as a study area to provide a comprehensive overview of the epidemiology and treatment of calf diarrhoea. No significant correlation was found between the incidence of diarrhoea and sampling points or medications. The severity of diarrhoea cases was stratified into five levels based on faecal characteristics. To elucidate the pathogenesis of NCD, 16S rRNA gene and metagenomic sequencing analyses were performed across severity levels. Microbial diversity analyses revealed distinct variations in microbial communities at different severity levels. Employing binning and LEfSe methodologies, two potential bacterial pathogens were identified: Escherichia coli (bin.216), leveraging non-canonical virulence mechanisms; and Streptococcus ruminantium (bin.338), an uncharacterised diarrhoeagenic bacterium. Furthermore, the viral agent Escherichia phage VpaE1_ev108 was significantly associated with disease progression. Gene function enrichment analysis revealed a broad spectrum of antibiotic resistance genes even in farms without direct antibiotic treatment, underscoring the pervasive prevalence of drug resistance.
CONCLUSIONS: The findings of this study revealed significant gut microbial dysbiosis in calves with severe diarrhoea, through which two putative NCD-associated pathogens were identified: E. coli (bin.216) and S. ruminantium (bin.338). Marked enrichment of Bacteroides spp. and Methanobrevibacter_A sp. 900313645 was observed in healthy cohorts, suggesting their potential protective roles. Therapeutic strategies employing phage-mediated pathogen targeting combined with probiotic transplantation have demonstrated dual benefits, potentially reducing antimicrobial dependency and preserving microbial homeostasis through ecological network reconstruction. Video Abstract.
Additional Links: PMID-41466331
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41466331,
year = {2025},
author = {Li, J and Zhang, X and Zhao, X and Gong, G and Li, J and Dalai, B and Mo, Z and Xu, X and Jia, X and Li, Y and Lai, J and Wang, P and Sun, L and Liu, Y and Luo, X},
title = {Characterising gut microbiome dysbiosis in diarrhoea calves from multiple farms in Inner Mongolia using 16S and metagenomics.},
journal = {Microbiome},
volume = {13},
number = {1},
pages = {259},
pmid = {41466331},
issn = {2049-2618},
support = {2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2021GG0171//Key Technology Project of Inner Mongolia Science and Technology Department/ ; 2020ZD0006//Inner Mongolia Autonomous Region Major Science and Technology Special Project/ ; 2020ZD0006//Inner Mongolia Autonomous Region Major Science and Technology Special Project/ ; 2020ZD0006//Inner Mongolia Autonomous Region Major Science and Technology Special Project/ ; 2020ZD0006//Inner Mongolia Autonomous Region Major Science and Technology Special Project/ ; 2020ZD0006//Inner Mongolia Autonomous Region Major Science and Technology Special Project/ ; 2022LJRC0009//Science and Technology Leading Talent Team in Inner Mongolia Autonomous Region/ ; 2022LJRC0009//Science and Technology Leading Talent Team in Inner Mongolia Autonomous Region/ ; 2022LJRC0009//Science and Technology Leading Talent Team in Inner Mongolia Autonomous Region/ ; 2022LJRC0009//Science and Technology Leading Talent Team in Inner Mongolia Autonomous Region/ ; 2022LJRC0009//Science and Technology Leading Talent Team in Inner Mongolia Autonomous Region/ ; },
mesh = {Animals ; Cattle ; *Gastrointestinal Microbiome/genetics ; *Diarrhea/microbiology/veterinary/epidemiology ; RNA, Ribosomal, 16S/genetics ; *Metagenomics/methods ; China/epidemiology ; *Dysbiosis/microbiology/veterinary ; *Cattle Diseases/microbiology/epidemiology ; Feces/microbiology ; Escherichia coli/genetics/isolation & purification/pathogenicity ; *Bacteria/classification/genetics/isolation & purification ; Farms ; },
abstract = {BACKGROUND: The pathogenesis of neonatal calf diarrhoea (NCD), a critical disease that contributes to neonatal mortality in calves, remains nebulous.
RESULTS: Inner Mongolia, a key region for cattle farming in China, was selected as a study area to provide a comprehensive overview of the epidemiology and treatment of calf diarrhoea. No significant correlation was found between the incidence of diarrhoea and sampling points or medications. The severity of diarrhoea cases was stratified into five levels based on faecal characteristics. To elucidate the pathogenesis of NCD, 16S rRNA gene and metagenomic sequencing analyses were performed across severity levels. Microbial diversity analyses revealed distinct variations in microbial communities at different severity levels. Employing binning and LEfSe methodologies, two potential bacterial pathogens were identified: Escherichia coli (bin.216), leveraging non-canonical virulence mechanisms; and Streptococcus ruminantium (bin.338), an uncharacterised diarrhoeagenic bacterium. Furthermore, the viral agent Escherichia phage VpaE1_ev108 was significantly associated with disease progression. Gene function enrichment analysis revealed a broad spectrum of antibiotic resistance genes even in farms without direct antibiotic treatment, underscoring the pervasive prevalence of drug resistance.
CONCLUSIONS: The findings of this study revealed significant gut microbial dysbiosis in calves with severe diarrhoea, through which two putative NCD-associated pathogens were identified: E. coli (bin.216) and S. ruminantium (bin.338). Marked enrichment of Bacteroides spp. and Methanobrevibacter_A sp. 900313645 was observed in healthy cohorts, suggesting their potential protective roles. Therapeutic strategies employing phage-mediated pathogen targeting combined with probiotic transplantation have demonstrated dual benefits, potentially reducing antimicrobial dependency and preserving microbial homeostasis through ecological network reconstruction. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
*Gastrointestinal Microbiome/genetics
*Diarrhea/microbiology/veterinary/epidemiology
RNA, Ribosomal, 16S/genetics
*Metagenomics/methods
China/epidemiology
*Dysbiosis/microbiology/veterinary
*Cattle Diseases/microbiology/epidemiology
Feces/microbiology
Escherichia coli/genetics/isolation & purification/pathogenicity
*Bacteria/classification/genetics/isolation & purification
Farms
RevDate: 2025-12-30
CmpDate: 2025-12-30
Pilot Clinical Trial of Fecal Microbiota Transplantation for Constipation in Parkinson's Disease.
Journal of microbiology and biotechnology, 35:e2509029 pii:jmb.2509.09029.
The purpose of this study was to evaluate the safety and efficacy of fecal microbiota transplantation in patients with constipation due to parkinson's disease. Gut dysbiosis has long been associated with parkinson's and recent studies have shown that FMT can restore the normal flora of the gut. Therefore, this clinical trial aimed to test the therapeutic efficacy of FMT in 5 patients aged 55 to 71 diagnosed with PD who presented with constipation. The study was conducted as an open label, prospective trial and consisted of FMT performed every 3 days via nasojejunal tube placement followed by 8 weeks of patient follow-up to evaluate response to drug therapy and to assess neurological function using UPDRS-III OFF scores, and improvement in constipation assessed with Wexner scores. Samples taken before and after FMT were collected for shotgun metagenomic sequencing to analyze the composition of the microbial communities present in patients. Untargeted non-targeted metabolomic studies were performed to investigate the impact of FMT on metabolome changes due to FMT. The results indicate an improvement in constipation and neurological functioning following FMT, and significant alteration of the gut microbiota. Significant increases in Bifidobacteria bifidus, Alistipes shahi, Anaerotruncus coli, and uncharacterized Flavonifractor were found post-treatment compared to the baseline. Many of the other strains present prior to treatment, including Acinetobacter sp. and Proteobacteria sp., had significantly decreased after the FMT. The metabolomic studies found shifts in metabolic pathways involved with unsaturated fatty acid synthesis and amino acid metabolism due to FMT. FMT may be an effective treatment option for constipation and neurological symptoms associated with PD.
Additional Links: PMID-41466105
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41466105,
year = {2025},
author = {Zhang, H and Shen, C and Lei, W and Wang, J and Liu, J and Qiu, Z},
title = {Pilot Clinical Trial of Fecal Microbiota Transplantation for Constipation in Parkinson's Disease.},
journal = {Journal of microbiology and biotechnology},
volume = {35},
number = {},
pages = {e2509029},
doi = {10.4014/jmb.2509.09029},
pmid = {41466105},
issn = {1738-8872},
mesh = {Humans ; *Constipation/therapy/etiology/microbiology ; *Fecal Microbiota Transplantation/methods ; *Parkinson Disease/complications/therapy/microbiology ; Aged ; Pilot Projects ; Middle Aged ; Male ; Gastrointestinal Microbiome ; Female ; Prospective Studies ; Feces/microbiology ; Treatment Outcome ; Dysbiosis/therapy ; Bacteria/classification/genetics/isolation & purification ; },
abstract = {The purpose of this study was to evaluate the safety and efficacy of fecal microbiota transplantation in patients with constipation due to parkinson's disease. Gut dysbiosis has long been associated with parkinson's and recent studies have shown that FMT can restore the normal flora of the gut. Therefore, this clinical trial aimed to test the therapeutic efficacy of FMT in 5 patients aged 55 to 71 diagnosed with PD who presented with constipation. The study was conducted as an open label, prospective trial and consisted of FMT performed every 3 days via nasojejunal tube placement followed by 8 weeks of patient follow-up to evaluate response to drug therapy and to assess neurological function using UPDRS-III OFF scores, and improvement in constipation assessed with Wexner scores. Samples taken before and after FMT were collected for shotgun metagenomic sequencing to analyze the composition of the microbial communities present in patients. Untargeted non-targeted metabolomic studies were performed to investigate the impact of FMT on metabolome changes due to FMT. The results indicate an improvement in constipation and neurological functioning following FMT, and significant alteration of the gut microbiota. Significant increases in Bifidobacteria bifidus, Alistipes shahi, Anaerotruncus coli, and uncharacterized Flavonifractor were found post-treatment compared to the baseline. Many of the other strains present prior to treatment, including Acinetobacter sp. and Proteobacteria sp., had significantly decreased after the FMT. The metabolomic studies found shifts in metabolic pathways involved with unsaturated fatty acid synthesis and amino acid metabolism due to FMT. FMT may be an effective treatment option for constipation and neurological symptoms associated with PD.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Constipation/therapy/etiology/microbiology
*Fecal Microbiota Transplantation/methods
*Parkinson Disease/complications/therapy/microbiology
Aged
Pilot Projects
Middle Aged
Male
Gastrointestinal Microbiome
Female
Prospective Studies
Feces/microbiology
Treatment Outcome
Dysbiosis/therapy
Bacteria/classification/genetics/isolation & purification
RevDate: 2025-12-30
CmpDate: 2025-12-30
Bacterial Community Composition and Structure in the Littoral of Rila Mountains Glacial Lakes.
Life (Basel, Switzerland), 15(12): pii:life15121921.
High-mountain lakes are biodiversity hotspots sensitive to increasing regional and global climate warming. However, their microbial communities remain insufficiently characterized due to their remoteness and limited accessibility. This study aimed to determine how seasonal environmental parameters shape the composition, structure and diversity of littoral bacterial communities in three glacial lakes in Rila Mountains (Bulgaria). Water samples were collected during ice-free periods in 2023 and 2024, and bacterial taxonomic composition was analysed by Next-generation sequencing. A total of 1158 bacterial OTUs were identified encompassing 18 phyla and 165 families. Actinomycetota, Pseudomonadota, and Bacteroidota were dominant at the phylum level, and Sporichthyaceae, Comamonadaceae, Chitinophagaceae and Mycobacteriaceae were most abundant among the families. Community richness and diversity peaked in June, immediately after ice melting, particularly in the highest-altitude lake (Sulzata Lake), and declined during the warm season (August), when the relative abundances of Sporichthyaceae and Mycobacteriaceae (Actinomycetota) increased. Seasonal restructuring occurred across phyla and families even in a single taxon, with water temperature and organic carbon availability identified as the main environmental drivers. The findings have improved our understanding of temperature-driven bacterial responses. They have also highlighted the vulnerability of cold-adapted taxa to regional climate warming which may contribute to more effective biodiversity conservation strategies for these unique ecosystems.
Additional Links: PMID-41465859
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41465859,
year = {2025},
author = {Angelova, B and Boteva, S and Traykov, I and Tsvetkov, M and Kenarova, A},
title = {Bacterial Community Composition and Structure in the Littoral of Rila Mountains Glacial Lakes.},
journal = {Life (Basel, Switzerland)},
volume = {15},
number = {12},
pages = {},
doi = {10.3390/life15121921},
pmid = {41465859},
issn = {2075-1729},
support = {KP-06-M71/2//The Bulgarian National Science Fund/ ; },
abstract = {High-mountain lakes are biodiversity hotspots sensitive to increasing regional and global climate warming. However, their microbial communities remain insufficiently characterized due to their remoteness and limited accessibility. This study aimed to determine how seasonal environmental parameters shape the composition, structure and diversity of littoral bacterial communities in three glacial lakes in Rila Mountains (Bulgaria). Water samples were collected during ice-free periods in 2023 and 2024, and bacterial taxonomic composition was analysed by Next-generation sequencing. A total of 1158 bacterial OTUs were identified encompassing 18 phyla and 165 families. Actinomycetota, Pseudomonadota, and Bacteroidota were dominant at the phylum level, and Sporichthyaceae, Comamonadaceae, Chitinophagaceae and Mycobacteriaceae were most abundant among the families. Community richness and diversity peaked in June, immediately after ice melting, particularly in the highest-altitude lake (Sulzata Lake), and declined during the warm season (August), when the relative abundances of Sporichthyaceae and Mycobacteriaceae (Actinomycetota) increased. Seasonal restructuring occurred across phyla and families even in a single taxon, with water temperature and organic carbon availability identified as the main environmental drivers. The findings have improved our understanding of temperature-driven bacterial responses. They have also highlighted the vulnerability of cold-adapted taxa to regional climate warming which may contribute to more effective biodiversity conservation strategies for these unique ecosystems.},
}
RevDate: 2025-12-30
CmpDate: 2025-12-30
Bifidobacterium adolescentis Strengthens Gut Barrier in Post-Voyage Functional Constipation.
International journal of molecular sciences, 26(24): pii:ijms262412142.
Prolonged periods of sailing may contribute to the development of functional constipation, which can significantly impair an individual's work efficiency. Currently, the efficacy of Bifidobacteria in treating functional constipation is gaining recognition. However, since the therapeutic effects of Bifidobacteria are strain-specific, further research is required on strains isolated from pre-voyage fecal samples. This study examines the role of gut microbiota in post-stroke constipation, aiming to identify specific microbial biomarkers for the development of targeted therapeutic strategies. B. adolescentis was identified through metagenomic analysis and subsequently isolated for validation. In the experimental group (EG), C57BL/6J mice received fecal suspension treatment following a 12-day navigation period, which was subsequently followed by a 12-day oral administration of B. adolescentis. After treatment, EG significantly improved fecal volume, intestinal motility, and goblet cells; reversed microbial ecological imbalance; reduced pathogens (E. coli and Klebsiella) by restoring arginine/bile acid metabolism, decreasing Tauro-ursodeoxycholic acid (TUDCA) content, 5-Hydroxytryptamine 4 Receptor (5-HT4R)/Slc8a1 signaling, and Ca[2+] signaling pathway; and restoring beneficial species (B. adolescentis, Pseudomonas aeruginosa). This study provides new insights into probiotics in improving human intestinal health.
Additional Links: PMID-41465567
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41465567,
year = {2025},
author = {Zhao, H and Wang, H and Zhao, X and Song, Y and Liang, D and Ma, Y and Xu, Z},
title = {Bifidobacterium adolescentis Strengthens Gut Barrier in Post-Voyage Functional Constipation.},
journal = {International journal of molecular sciences},
volume = {26},
number = {24},
pages = {},
doi = {10.3390/ijms262412142},
pmid = {41465567},
issn = {1422-0067},
support = {2024QN019//University-level research project of the Naval Medical University/ ; },
mesh = {*Constipation/microbiology/therapy/etiology ; Animals ; *Gastrointestinal Microbiome ; Mice ; *Bifidobacterium adolescentis/physiology ; *Probiotics ; Mice, Inbred C57BL ; Feces/microbiology ; Male ; Humans ; Gastrointestinal Motility ; },
abstract = {Prolonged periods of sailing may contribute to the development of functional constipation, which can significantly impair an individual's work efficiency. Currently, the efficacy of Bifidobacteria in treating functional constipation is gaining recognition. However, since the therapeutic effects of Bifidobacteria are strain-specific, further research is required on strains isolated from pre-voyage fecal samples. This study examines the role of gut microbiota in post-stroke constipation, aiming to identify specific microbial biomarkers for the development of targeted therapeutic strategies. B. adolescentis was identified through metagenomic analysis and subsequently isolated for validation. In the experimental group (EG), C57BL/6J mice received fecal suspension treatment following a 12-day navigation period, which was subsequently followed by a 12-day oral administration of B. adolescentis. After treatment, EG significantly improved fecal volume, intestinal motility, and goblet cells; reversed microbial ecological imbalance; reduced pathogens (E. coli and Klebsiella) by restoring arginine/bile acid metabolism, decreasing Tauro-ursodeoxycholic acid (TUDCA) content, 5-Hydroxytryptamine 4 Receptor (5-HT4R)/Slc8a1 signaling, and Ca[2+] signaling pathway; and restoring beneficial species (B. adolescentis, Pseudomonas aeruginosa). This study provides new insights into probiotics in improving human intestinal health.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Constipation/microbiology/therapy/etiology
Animals
*Gastrointestinal Microbiome
Mice
*Bifidobacterium adolescentis/physiology
*Probiotics
Mice, Inbred C57BL
Feces/microbiology
Male
Humans
Gastrointestinal Motility
RevDate: 2025-12-30
CmpDate: 2025-12-30
Microbial Consortium Application Under Temperature Stress: Effects on the Rhizosphere Microbiome and Plant Growth.
International journal of molecular sciences, 26(24): pii:ijms262411814.
The aim of the present study was to investigate the effect of a synthetic microbial consortium (SMC) containing five functionally different bacterial strains (Rahnella aquatilis, Rothia endophytica, Stenotrophomonas indicatrix, Burkholderia contaminans, Lelliotia amnigena) on the growth and development of three agricultural crops (wheat, buckwheat, and rapeseed) on two soil types (chernozem and gray forest soil) under field conditions. The experiment was conducted from June to September 2024 under extreme field conditions, with temperatures reaching 43.8 °C. This study evaluates SMC efficacy under severe abiotic stress, reflecting increasingly common climate extremes. Metagenomic data analysis showed that the introduced strains did not establish stable populations in the soil, possibly due to heat-induced bacterial mortality, though other factors including competition with indigenous microflora and lack of protective formulations may have also contributed. No statistically significant effects on plant morphometric parameters were observed. The extreme temperature and water stress conditions appear to have been the dominant limiting factors, overriding any potential benefits from microbial inoculation, as evidenced by the lack of response to mineral fertilizer application as well. Crop-specific effects were revealed: when cultivating rapeseed on chernozem, a significant increase in available phosphorus content was noted (from 278 ± 45 to 638 ± 92 mg/kg with SMC application, p < 0.001).
Additional Links: PMID-41465246
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41465246,
year = {2025},
author = {Sokolova, EA and Smirnova, NV and Fedorets, VA and Khlistun, IV and Mishukova, OV and Tromenschleger, IN and Savenkov, OA and Saprikin, OI and Rogaev, EI and Buyanova, MD and Filippova, IM and Mayorova, TM and Glukhova, MA and Ivanovna, MM and Manakhov, AD and Voronina, EN},
title = {Microbial Consortium Application Under Temperature Stress: Effects on the Rhizosphere Microbiome and Plant Growth.},
journal = {International journal of molecular sciences},
volume = {26},
number = {24},
pages = {},
doi = {10.3390/ijms262411814},
pmid = {41465246},
issn = {1422-0067},
support = {075-15-2025-473//Ministry of Science and Higher Education of the Russian Federation (the Federal Scientific-technical programme for genetic technologies development for 2019-2030)/ ; },
mesh = {*Rhizosphere ; Soil Microbiology ; *Microbiota ; *Microbial Consortia ; *Stress, Physiological ; *Plant Development ; Crops, Agricultural/growth & development/microbiology ; Temperature ; Bacteria/genetics ; Triticum/growth & development/microbiology ; Fagopyrum/growth & development/microbiology ; },
abstract = {The aim of the present study was to investigate the effect of a synthetic microbial consortium (SMC) containing five functionally different bacterial strains (Rahnella aquatilis, Rothia endophytica, Stenotrophomonas indicatrix, Burkholderia contaminans, Lelliotia amnigena) on the growth and development of three agricultural crops (wheat, buckwheat, and rapeseed) on two soil types (chernozem and gray forest soil) under field conditions. The experiment was conducted from June to September 2024 under extreme field conditions, with temperatures reaching 43.8 °C. This study evaluates SMC efficacy under severe abiotic stress, reflecting increasingly common climate extremes. Metagenomic data analysis showed that the introduced strains did not establish stable populations in the soil, possibly due to heat-induced bacterial mortality, though other factors including competition with indigenous microflora and lack of protective formulations may have also contributed. No statistically significant effects on plant morphometric parameters were observed. The extreme temperature and water stress conditions appear to have been the dominant limiting factors, overriding any potential benefits from microbial inoculation, as evidenced by the lack of response to mineral fertilizer application as well. Crop-specific effects were revealed: when cultivating rapeseed on chernozem, a significant increase in available phosphorus content was noted (from 278 ± 45 to 638 ± 92 mg/kg with SMC application, p < 0.001).},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Rhizosphere
Soil Microbiology
*Microbiota
*Microbial Consortia
*Stress, Physiological
*Plant Development
Crops, Agricultural/growth & development/microbiology
Temperature
Bacteria/genetics
Triticum/growth & development/microbiology
Fagopyrum/growth & development/microbiology
RevDate: 2025-12-30
CmpDate: 2025-12-30
Highly Virulent Newcastle Disease Virus in Eurasian Collared Doves in the North of Portugal.
Animals : an open access journal from MDPI, 15(24): pii:ani15243563.
Newcastle disease (ND), caused by avian orthoavulavirus 1 (AOAV-1), poses a global threat to poultry and wild birds. In early 2025, an outbreak of pigeon paramyxovirus type 1 (PPMV-1, genotype VI AOAV-1) was detected in a wildlife rehabilitation centre in northern Portugal, affecting Streptopelia decaocto, Streptopelia risoria, and Columba livia. Birds showed acute neurological signs and died rapidly. Necropsy revealed brain and pulmonary congestion, splenomegaly, and cloacal lesions, while histopathology demonstrated hepatocellular necrosis, hemorrhage, and eosinophilic intracytoplasmic inclusions in hepatocytes and renal tubular cells. Matrix (M) gene PCR using standard primers was negative, but metagenomic sequencing identified genotype VI as being closely related to strains from Iran and Cyprus. Partial fusion (F) gene analysis revealed the velogenic RRQKRF motif. These findings confirm the circulation of highly virulent PPMV-1 in Portugal, highlight that standard, recommended primers may fail to detect some genetically diverse strains, and emphasize the role of Columbidae as reservoirs with potential transmission to domestic poultry.
Additional Links: PMID-41463847
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41463847,
year = {2025},
author = {Moreira, G and Rodrigues, S and Gomes-Gonçalves, S and Silva, G and Amorim, I and Silva, E and Carmezim, S and Soeiro, V and Mesquita, JR},
title = {Highly Virulent Newcastle Disease Virus in Eurasian Collared Doves in the North of Portugal.},
journal = {Animals : an open access journal from MDPI},
volume = {15},
number = {24},
pages = {},
doi = {10.3390/ani15243563},
pmid = {41463847},
issn = {2076-2615},
abstract = {Newcastle disease (ND), caused by avian orthoavulavirus 1 (AOAV-1), poses a global threat to poultry and wild birds. In early 2025, an outbreak of pigeon paramyxovirus type 1 (PPMV-1, genotype VI AOAV-1) was detected in a wildlife rehabilitation centre in northern Portugal, affecting Streptopelia decaocto, Streptopelia risoria, and Columba livia. Birds showed acute neurological signs and died rapidly. Necropsy revealed brain and pulmonary congestion, splenomegaly, and cloacal lesions, while histopathology demonstrated hepatocellular necrosis, hemorrhage, and eosinophilic intracytoplasmic inclusions in hepatocytes and renal tubular cells. Matrix (M) gene PCR using standard primers was negative, but metagenomic sequencing identified genotype VI as being closely related to strains from Iran and Cyprus. Partial fusion (F) gene analysis revealed the velogenic RRQKRF motif. These findings confirm the circulation of highly virulent PPMV-1 in Portugal, highlight that standard, recommended primers may fail to detect some genetically diverse strains, and emphasize the role of Columbidae as reservoirs with potential transmission to domestic poultry.},
}
RevDate: 2025-12-30
CmpDate: 2025-12-30
Prospective association between the gut microbiota and incident pneumonia: a cohort study of 6419 individuals.
Respiratory research, 26(1):354.
BACKGROUND: Previous animal studies have identified the protective capacity of the gut microbiota against respiratory infections. Nevertheless, the prospective association between human gut microbiota and pneumonia risk remains unknown.
OBJECTIVES: To evaluate the links between gut microbiota and incident pneumonia in a representative population sample.
METHODS: We performed shotgun metagenome sequencing on stool samples from 6419 FINRISK 2002 participants. Participants were followed up for incident pneumonia using nationwide health register data. We employed multivariable-adjusted Cox regression models and permutational multivariate analysis of variance (PERMANOVA) to assess the association of gut microbiome alpha diversity, compositional variation (beta diversity), and taxonomic composition with pneumonia risk.
RESULTS: Altogether, 685 patients (10.7%) developed pneumonia during a mean follow-up of 17.8 years. Alpha diversity was not associated with incident pneumonia (hazard ratio [HR] 1.00; 95% confidence interval [CI] 0.93 - 1.08), whereas community composition was (PERMANOVA R[2] = 0.03%; P = 0.02). We observed an inverse association between the relative abundance of butyrate-producing bacteria and incident pneumonia (HR per 1-SD increase 0.91; 95% CI 0.85-0.98). The relative abundance of Bacteroides_F pectinophilus, Eubacterium_G ventriosum, Agathobaculum butyriciproducens, Butyribacter intestini, Eubacterium_I ramulus, CAG-1427 sp000435675, and CAG-603 sp900066105 were inversely associated with pneumonia risk. The relative abundance of Clostridium_AQ innocuum was positively correlated with pneumonia risk.
CONCLUSIONS: The gut microbiota composition, and especially the relative abundance of butyrate-producing bacteria, was associated with lower pneumonia risk in the population. These findings warrant further studies to investigate whether microbiome modulation to increase short chain fatty acid production through diet, prebiotics, or probiotics could reduce pneumonia risk.
Additional Links: PMID-41430301
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41430301,
year = {2025},
author = {Wikki, I and Palmu, J and Kauko, A and Havulinna, A and Jousilahti, P and Lahti, L and Knight, R and Salomaa, V and Niiranen, T},
title = {Prospective association between the gut microbiota and incident pneumonia: a cohort study of 6419 individuals.},
journal = {Respiratory research},
volume = {26},
number = {1},
pages = {354},
pmid = {41430301},
issn = {1465-993X},
support = {330887//Research Council of Finland/ ; 321351, 354447//Research Council of Finland/ ; },
mesh = {Humans ; *Gastrointestinal Microbiome/physiology ; Male ; Female ; Prospective Studies ; Middle Aged ; Incidence ; *Pneumonia/epidemiology/microbiology/diagnosis ; Aged ; Cohort Studies ; Adult ; Follow-Up Studies ; Risk Factors ; Feces/microbiology ; },
abstract = {BACKGROUND: Previous animal studies have identified the protective capacity of the gut microbiota against respiratory infections. Nevertheless, the prospective association between human gut microbiota and pneumonia risk remains unknown.
OBJECTIVES: To evaluate the links between gut microbiota and incident pneumonia in a representative population sample.
METHODS: We performed shotgun metagenome sequencing on stool samples from 6419 FINRISK 2002 participants. Participants were followed up for incident pneumonia using nationwide health register data. We employed multivariable-adjusted Cox regression models and permutational multivariate analysis of variance (PERMANOVA) to assess the association of gut microbiome alpha diversity, compositional variation (beta diversity), and taxonomic composition with pneumonia risk.
RESULTS: Altogether, 685 patients (10.7%) developed pneumonia during a mean follow-up of 17.8 years. Alpha diversity was not associated with incident pneumonia (hazard ratio [HR] 1.00; 95% confidence interval [CI] 0.93 - 1.08), whereas community composition was (PERMANOVA R[2] = 0.03%; P = 0.02). We observed an inverse association between the relative abundance of butyrate-producing bacteria and incident pneumonia (HR per 1-SD increase 0.91; 95% CI 0.85-0.98). The relative abundance of Bacteroides_F pectinophilus, Eubacterium_G ventriosum, Agathobaculum butyriciproducens, Butyribacter intestini, Eubacterium_I ramulus, CAG-1427 sp000435675, and CAG-603 sp900066105 were inversely associated with pneumonia risk. The relative abundance of Clostridium_AQ innocuum was positively correlated with pneumonia risk.
CONCLUSIONS: The gut microbiota composition, and especially the relative abundance of butyrate-producing bacteria, was associated with lower pneumonia risk in the population. These findings warrant further studies to investigate whether microbiome modulation to increase short chain fatty acid production through diet, prebiotics, or probiotics could reduce pneumonia risk.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/physiology
Male
Female
Prospective Studies
Middle Aged
Incidence
*Pneumonia/epidemiology/microbiology/diagnosis
Aged
Cohort Studies
Adult
Follow-Up Studies
Risk Factors
Feces/microbiology
RevDate: 2025-12-30
CmpDate: 2025-12-30
Extensive halogenated organic compound reservoirs and active microbial dehalogenation in Mariana Trench sediments.
The ISME journal, 19(1):.
The hadal trenches, the deepest regions of the ocean, serve as the final sinks for marine particles and "tunnels" for material exchange between the ocean and Earth's interior. Despite their extreme conditions, the trench sediments contain high content of organic carbon and active microbial carbon turnover, are hotspots for deep-sea organic carbon degradation and unique microbial processes. However, little is known about the organic carbon components and microbial metabolisms driving their degradation in trench sediments. This study provides the first comprehensive quantification of total halogenated organic compounds (organohalides) in Mariana Trench sediments. The measured bulk organic halogen concentrations exceeded all previously reported individual compounds by orders of magnitude, with a mean stoichiometric ratio of 1:49 (halogen:carbon) in the sedimentary organic carbon pool. These findings suggest the trench sediments may represent a significant reservoir for organohalides. Metagenomic analysis of global ocean data shows significant enrichment of the genes for organohalides biodegradation (dehalogenation) in trench microbiomes than those in other marine environments. Putative dehalogenating microorganisms in trench sediments encompassed 16 phyla and 52 orders, capable of metabolizing 18 structurally diverse organohalide compounds, revealing an unexpectedly broad phylogenetic distribution of organohalides metabolism and versatile substrate specificity among trench microbial communities. High pressure microcosm experiments demonstrated rapid degradation of typical organohalide compounds and transcription of genes related to organohalides metabolisms, confirming an active organohalides degradation by trench microorganisms. These findings underscore the role of organohalides metabolism in organic carbon remineralization in hadal trenches, advancing our understanding of deep-sea carbon cycling and microbial survival.
Additional Links: PMID-41369293
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41369293,
year = {2025},
author = {Liu, R and Wei, H and Xu, Z and Liu, Y and He, J and Wang, Z and Wang, L and Luo, M and Fang, J and Baltar, F and Xu, Y and Liang, Q and Huang, L},
title = {Extensive halogenated organic compound reservoirs and active microbial dehalogenation in Mariana Trench sediments.},
journal = {The ISME journal},
volume = {19},
number = {1},
pages = {},
doi = {10.1093/ismejo/wraf273},
pmid = {41369293},
issn = {1751-7370},
support = {//ocean negative carbon emissions program (ONCE)/ ; //Shanghai Frontiers Research Fund of the Hadal Biosphere, the deep ocean microbiome and ecosystem program (DOME)/ ; 42276149//National Natural Science Foundation of China/ ; 92251303//National Natural Science Foundation of China/ ; },
mesh = {*Geologic Sediments/microbiology/chemistry ; *Bacteria/metabolism/genetics/classification ; Microbiota ; *Hydrocarbons, Halogenated/analysis/metabolism ; Halogenation ; Carbon/analysis/metabolism ; *Organic Chemicals/metabolism/analysis ; Biodegradation, Environmental ; Metagenomics ; },
abstract = {The hadal trenches, the deepest regions of the ocean, serve as the final sinks for marine particles and "tunnels" for material exchange between the ocean and Earth's interior. Despite their extreme conditions, the trench sediments contain high content of organic carbon and active microbial carbon turnover, are hotspots for deep-sea organic carbon degradation and unique microbial processes. However, little is known about the organic carbon components and microbial metabolisms driving their degradation in trench sediments. This study provides the first comprehensive quantification of total halogenated organic compounds (organohalides) in Mariana Trench sediments. The measured bulk organic halogen concentrations exceeded all previously reported individual compounds by orders of magnitude, with a mean stoichiometric ratio of 1:49 (halogen:carbon) in the sedimentary organic carbon pool. These findings suggest the trench sediments may represent a significant reservoir for organohalides. Metagenomic analysis of global ocean data shows significant enrichment of the genes for organohalides biodegradation (dehalogenation) in trench microbiomes than those in other marine environments. Putative dehalogenating microorganisms in trench sediments encompassed 16 phyla and 52 orders, capable of metabolizing 18 structurally diverse organohalide compounds, revealing an unexpectedly broad phylogenetic distribution of organohalides metabolism and versatile substrate specificity among trench microbial communities. High pressure microcosm experiments demonstrated rapid degradation of typical organohalide compounds and transcription of genes related to organohalides metabolisms, confirming an active organohalides degradation by trench microorganisms. These findings underscore the role of organohalides metabolism in organic carbon remineralization in hadal trenches, advancing our understanding of deep-sea carbon cycling and microbial survival.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Geologic Sediments/microbiology/chemistry
*Bacteria/metabolism/genetics/classification
Microbiota
*Hydrocarbons, Halogenated/analysis/metabolism
Halogenation
Carbon/analysis/metabolism
*Organic Chemicals/metabolism/analysis
Biodegradation, Environmental
Metagenomics
RevDate: 2025-12-30
CmpDate: 2025-12-30
Spatial and functional differentiation of microbial biofilms in a traditional cheese ripening environment.
Scientific reports, 15(1):45638.
Biofilms in historic buildings represent stable microbial ecosystems shaped by long-term environmental filtering. We investigated bacterial and fungal communities forming biofilms on walls and ceilings in a 19th-century cheese ripening cellar in Poland, characterized by low temperature, high humidity, and minimal light - conditions resembling natural subterranean habitats. Using high-throughput 16 S rRNA and ITS sequencing, we revealed distinct taxonomic and predicted functional profiles associated with surface type (wall vs. ceiling) and material (brick vs. stone). The wall biofilms exhibited greater taxonomic and functional diversity, with enrichment in heterotrophic, fermentative, and polymer-degrading taxa and pathways, whereas ceiling biofilms showed predicted enrichment in aerobic, stress-tolerant, and potentially methanogenic lineages. The co-occurrence network analysis revealed more complex and tightly connected associations in wall biofilms, dominated by Actinobacteriota (21-97%) and Ascomycota (60-97%), suggesting stable ecological organization despite the limited sample size. Environmental factors, such as pH, redox potential, and electrolytical conductivity, explained a substantial proportion of the variance in the microbial diversity and predicted functional traits. Overall, this study highlights traditional ripening cellars as semi-natural built ecosystems that sustain specialized, spatially structured microbiomes. The results provide new insights into microbial adaptation, functional potential, and ecological resilience in heritage food environments.
Additional Links: PMID-41315665
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41315665,
year = {2025},
author = {Goraj, W and Kagan, K and Kuźniar, A and Banach, A and Jurczyk, S and Podlewski, J and Wolińska, A},
title = {Spatial and functional differentiation of microbial biofilms in a traditional cheese ripening environment.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {45638},
pmid = {41315665},
issn = {2045-2322},
mesh = {*Biofilms/growth & development ; *Cheese/microbiology ; *Bacteria/genetics/classification ; *Fungi/genetics/classification ; Ecosystem ; RNA, Ribosomal, 16S/genetics ; Microbiota ; Biodiversity ; Poland ; },
abstract = {Biofilms in historic buildings represent stable microbial ecosystems shaped by long-term environmental filtering. We investigated bacterial and fungal communities forming biofilms on walls and ceilings in a 19th-century cheese ripening cellar in Poland, characterized by low temperature, high humidity, and minimal light - conditions resembling natural subterranean habitats. Using high-throughput 16 S rRNA and ITS sequencing, we revealed distinct taxonomic and predicted functional profiles associated with surface type (wall vs. ceiling) and material (brick vs. stone). The wall biofilms exhibited greater taxonomic and functional diversity, with enrichment in heterotrophic, fermentative, and polymer-degrading taxa and pathways, whereas ceiling biofilms showed predicted enrichment in aerobic, stress-tolerant, and potentially methanogenic lineages. The co-occurrence network analysis revealed more complex and tightly connected associations in wall biofilms, dominated by Actinobacteriota (21-97%) and Ascomycota (60-97%), suggesting stable ecological organization despite the limited sample size. Environmental factors, such as pH, redox potential, and electrolytical conductivity, explained a substantial proportion of the variance in the microbial diversity and predicted functional traits. Overall, this study highlights traditional ripening cellars as semi-natural built ecosystems that sustain specialized, spatially structured microbiomes. The results provide new insights into microbial adaptation, functional potential, and ecological resilience in heritage food environments.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Biofilms/growth & development
*Cheese/microbiology
*Bacteria/genetics/classification
*Fungi/genetics/classification
Ecosystem
RNA, Ribosomal, 16S/genetics
Microbiota
Biodiversity
Poland
RevDate: 2025-12-30
CmpDate: 2025-12-30
Synergy between culturomics and metagenomics of health status-associated gut bacteria originating from non-IBD and IBD populations.
Scientific reports, 15(1):45469.
The bacteria in the human intestinal tract are important for health and associate with diseases, such as inflammatory bowel disease (IBD). Although metagenomic studies can identify certain bacteria or even specific strains and associate their presence or specific phenotypes with health or diseases, actual isolates for experimental validation of metagenomic associations are often lacking. Therefore, this study sets out to culture health- and IBD-associated bacteria from 32 fecal samples from 2 cohorts, for which extensive metadata is available. The cultivation of those samples resulted in 4,347 isolates, of which 1,362 isolates were obtained from IBD patients. Irrespective of health or IBD, Actinomycetota, Bacillota and Bacteroidota were the most represented phyla and members of 5 other phyla were less frequently isolated (Campylobacterota, Fusobacteriota, Pseudomonadota, Thermodesulfobacteriota and Verrucomicrobiota). Comparison of the genus richness between the culturomics approach and available metagenomic sequencing data of the corresponding participants revealed that both methods largely capture the same genera. Although not all genera could be identified in both methods, our results show that combining both methods has a synergetic effect, providing a higher identification rate. Furthermore, genetic analysis of 2 isolates of Bifidobacterium adolescentis strains shows that these isolates closely resembled the metagenome-assembled genome that was identified within the same participant. This showcases that it is possible to isolate specific strains that are important in the experimental validation of specific associations within a species. The culture collection that is presented in this study contains bacterial isolates that are strongly associated with health or IBD. Our results show that we are able to generate a valuable culture collection that opens a promising avenue for functional validation experiments of associations that are identified with metagenomic data.
Additional Links: PMID-41310063
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41310063,
year = {2025},
author = {Plomp, N and Gacesa, R and Slager, J and Samsom, JN and Faber, KN and Jonkers, IH and Withoff, S and Wijmenga, C and Weersma, RK and Harmsen, HJM},
title = {Synergy between culturomics and metagenomics of health status-associated gut bacteria originating from non-IBD and IBD populations.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {45469},
pmid = {41310063},
issn = {2045-2322},
support = {LSHM18057-SGF//Samenwerkende Gezondheidsfondsen/ ; NWO Gravitation project 024.003.001//Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ ; 016.136.308//Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ ; MLDS D16-14//Maag Lever Darm Stichting/ ; 101095470//HORIZON EUROPE Framework Programme/ ; },
mesh = {Humans ; *Metagenomics/methods ; *Inflammatory Bowel Diseases/microbiology ; *Gastrointestinal Microbiome/genetics ; *Bacteria/genetics/isolation & purification/classification ; Feces/microbiology ; Female ; Male ; Adult ; Middle Aged ; Health Status ; },
abstract = {The bacteria in the human intestinal tract are important for health and associate with diseases, such as inflammatory bowel disease (IBD). Although metagenomic studies can identify certain bacteria or even specific strains and associate their presence or specific phenotypes with health or diseases, actual isolates for experimental validation of metagenomic associations are often lacking. Therefore, this study sets out to culture health- and IBD-associated bacteria from 32 fecal samples from 2 cohorts, for which extensive metadata is available. The cultivation of those samples resulted in 4,347 isolates, of which 1,362 isolates were obtained from IBD patients. Irrespective of health or IBD, Actinomycetota, Bacillota and Bacteroidota were the most represented phyla and members of 5 other phyla were less frequently isolated (Campylobacterota, Fusobacteriota, Pseudomonadota, Thermodesulfobacteriota and Verrucomicrobiota). Comparison of the genus richness between the culturomics approach and available metagenomic sequencing data of the corresponding participants revealed that both methods largely capture the same genera. Although not all genera could be identified in both methods, our results show that combining both methods has a synergetic effect, providing a higher identification rate. Furthermore, genetic analysis of 2 isolates of Bifidobacterium adolescentis strains shows that these isolates closely resembled the metagenome-assembled genome that was identified within the same participant. This showcases that it is possible to isolate specific strains that are important in the experimental validation of specific associations within a species. The culture collection that is presented in this study contains bacterial isolates that are strongly associated with health or IBD. Our results show that we are able to generate a valuable culture collection that opens a promising avenue for functional validation experiments of associations that are identified with metagenomic data.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Metagenomics/methods
*Inflammatory Bowel Diseases/microbiology
*Gastrointestinal Microbiome/genetics
*Bacteria/genetics/isolation & purification/classification
Feces/microbiology
Female
Male
Adult
Middle Aged
Health Status
RevDate: 2025-12-30
CmpDate: 2025-12-30
Triptolide ameliorates LPS-induced acute lung injury in Balb/c mice through gut-lung axis-mediated regulation of bile acid metabolism and gut microbiota.
Scientific reports, 15(1):45351.
Acute lung injury (ALI) associated with pulmonary edema is a severe clinical condition characterized by acute inflammation, disrupted lung barrier function, and high mortality. Current therapeutic strategies remain limited, highlighting the need for exploring novel agents and their underlying mechanisms. Triptolide (TP), an active component derived from Tripterygium wilfordii, has shown anti-inflammatory and tissue-protective properties[1,2], but its specific role in alleviating ALI and the involvement of the lung-gut axis in metabolic regulation remain poorly understood. This study aims to investigate the therapeutic effects of TP on LPS-induced ALI, focusing on its impact on pulmonary edema and inflammatory injury. By analyzing the lung-gut axis using multi-omics approaches, we seek to clarify the metabolic network regulatory mechanisms through which TP exerts its effects. LPS-induced ALI model was established in Balb/c mice, with TP administered as the therapeutic intervention. Histopathological examination of lung tissues and detection of pro-inflammatory cytokines were performed to assess lung injury. Untargeted metabolomics via LC-MS/MS was used to identify differential metabolites in lung tissues and serum, while metagenomic sequencing analyzed changes in gut microbiota composition. Integrated multi-omics analysis was applied to explore associations between gut microbiota alterations, serum metabolites, and pulmonary bile acid levels. TP administration significantly reduced histopathological damage in lung tissues of ALI mice and decreased pro-inflammatory cytokine levels. Metabolomics profiling revealed distinct changes in key metabolites, including bile acids, amino acid derivatives, and energy metabolism intermediates, in both lung tissues and serum after TP treatment. Metagenomic analysis showed that TP restructured gut microbiota composition, with functional enrichment in glycolysis and thiamine metabolism pathways. Integrated analysis confirmed strong correlations between dynamic microbiota changes, serum metabolite profiles, and pulmonary bile acid levels, indicating a regulatory role of the lung-gut axis. This study demonstrates that TP alleviates pulmonary edema and inflammatory injury in ALI by modulating gut microbial ecology and function, which drives bile acid metabolic reprogramming and regulates metabolite interactions within the lung-gut axis. These findings provide novel insights into TP's therapeutic mechanism and support its potential application in ALI treatment.
Additional Links: PMID-41291200
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41291200,
year = {2025},
author = {Zha, Y and Fan, L and Shen, T and Zhang, Y and Ren, H},
title = {Triptolide ameliorates LPS-induced acute lung injury in Balb/c mice through gut-lung axis-mediated regulation of bile acid metabolism and gut microbiota.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {45351},
pmid = {41291200},
issn = {2045-2322},
support = {PW2022A-21//the Scientific Research Program of Shanghai Pudong New Area Health Commission/ ; },
mesh = {Animals ; *Diterpenes/pharmacology/therapeutic use ; *Acute Lung Injury/drug therapy/chemically induced/metabolism/pathology ; *Phenanthrenes/pharmacology/therapeutic use ; *Gastrointestinal Microbiome/drug effects ; Epoxy Compounds/pharmacology/therapeutic use ; *Bile Acids and Salts/metabolism ; Mice ; Lipopolysaccharides/toxicity ; *Lung/metabolism/drug effects/pathology ; Mice, Inbred BALB C ; Male ; Disease Models, Animal ; Metabolomics ; Cytokines/metabolism ; },
abstract = {Acute lung injury (ALI) associated with pulmonary edema is a severe clinical condition characterized by acute inflammation, disrupted lung barrier function, and high mortality. Current therapeutic strategies remain limited, highlighting the need for exploring novel agents and their underlying mechanisms. Triptolide (TP), an active component derived from Tripterygium wilfordii, has shown anti-inflammatory and tissue-protective properties[1,2], but its specific role in alleviating ALI and the involvement of the lung-gut axis in metabolic regulation remain poorly understood. This study aims to investigate the therapeutic effects of TP on LPS-induced ALI, focusing on its impact on pulmonary edema and inflammatory injury. By analyzing the lung-gut axis using multi-omics approaches, we seek to clarify the metabolic network regulatory mechanisms through which TP exerts its effects. LPS-induced ALI model was established in Balb/c mice, with TP administered as the therapeutic intervention. Histopathological examination of lung tissues and detection of pro-inflammatory cytokines were performed to assess lung injury. Untargeted metabolomics via LC-MS/MS was used to identify differential metabolites in lung tissues and serum, while metagenomic sequencing analyzed changes in gut microbiota composition. Integrated multi-omics analysis was applied to explore associations between gut microbiota alterations, serum metabolites, and pulmonary bile acid levels. TP administration significantly reduced histopathological damage in lung tissues of ALI mice and decreased pro-inflammatory cytokine levels. Metabolomics profiling revealed distinct changes in key metabolites, including bile acids, amino acid derivatives, and energy metabolism intermediates, in both lung tissues and serum after TP treatment. Metagenomic analysis showed that TP restructured gut microbiota composition, with functional enrichment in glycolysis and thiamine metabolism pathways. Integrated analysis confirmed strong correlations between dynamic microbiota changes, serum metabolite profiles, and pulmonary bile acid levels, indicating a regulatory role of the lung-gut axis. This study demonstrates that TP alleviates pulmonary edema and inflammatory injury in ALI by modulating gut microbial ecology and function, which drives bile acid metabolic reprogramming and regulates metabolite interactions within the lung-gut axis. These findings provide novel insights into TP's therapeutic mechanism and support its potential application in ALI treatment.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Diterpenes/pharmacology/therapeutic use
*Acute Lung Injury/drug therapy/chemically induced/metabolism/pathology
*Phenanthrenes/pharmacology/therapeutic use
*Gastrointestinal Microbiome/drug effects
Epoxy Compounds/pharmacology/therapeutic use
*Bile Acids and Salts/metabolism
Mice
Lipopolysaccharides/toxicity
*Lung/metabolism/drug effects/pathology
Mice, Inbred BALB C
Male
Disease Models, Animal
Metabolomics
Cytokines/metabolism
RevDate: 2025-12-30
CmpDate: 2025-12-30
Systematic review and meta-analysis of virome profiles and quantification of Torque teno virus load in blood of acute febrile illness patients.
Scientific reports, 15(1):45340.
Acute febrile illness (AFI) is a sudden fever which can be caused by various viruses such as dengue, Zika, and chikungunya viruses. This study aimed to identify viruses present in AFI patients via metagenomic next-generation sequencing (mNGS) through meta-analysis, and to compare the prevalence and viral load of the common viruses between AFI patients and healthy blood donors in northeastern Thailand. Our meta-analysis revealed that human anelloviruses-including torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV)-were the most prevalent viruses detected. We confirmed their presence in peripheral blood mononuclear cells from 203 AFI patients and 100 healthy blood donors using real-time PCR. TTV was the most identified anellovirus, detected in 84% of healthy donors and 61.08% of AFI patients. The mean TTV load was significantly lower in AFI patients compared to healthy donors. In AFI patients, TTV load increased in those with higher total white blood cell and neutrophil counts but decreased in those with higher lymphocyte counts. Our findings demonstrate high prevalence of anelloviruses, particularly TTV, in both AFI patients and healthy donors, and highlight the potential value of the TTV load in blood as an immune status biomarker in AFI patients.
Additional Links: PMID-41291018
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41291018,
year = {2025},
author = {Angwong, C and Pientong, C and Ekalaksananan, T and Burassakarn, A and Tongchai, P and Overgaard, HJ and Aromseree, S},
title = {Systematic review and meta-analysis of virome profiles and quantification of Torque teno virus load in blood of acute febrile illness patients.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {45340},
pmid = {41291018},
issn = {2045-2322},
support = {IN66039//Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand/ ; },
mesh = {Humans ; *Torque teno virus/genetics/isolation & purification ; *Viral Load ; *DNA Virus Infections/virology/epidemiology/blood ; *Fever/virology/blood ; *Virome ; Anelloviridae/genetics ; Thailand/epidemiology ; },
abstract = {Acute febrile illness (AFI) is a sudden fever which can be caused by various viruses such as dengue, Zika, and chikungunya viruses. This study aimed to identify viruses present in AFI patients via metagenomic next-generation sequencing (mNGS) through meta-analysis, and to compare the prevalence and viral load of the common viruses between AFI patients and healthy blood donors in northeastern Thailand. Our meta-analysis revealed that human anelloviruses-including torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV)-were the most prevalent viruses detected. We confirmed their presence in peripheral blood mononuclear cells from 203 AFI patients and 100 healthy blood donors using real-time PCR. TTV was the most identified anellovirus, detected in 84% of healthy donors and 61.08% of AFI patients. The mean TTV load was significantly lower in AFI patients compared to healthy donors. In AFI patients, TTV load increased in those with higher total white blood cell and neutrophil counts but decreased in those with higher lymphocyte counts. Our findings demonstrate high prevalence of anelloviruses, particularly TTV, in both AFI patients and healthy donors, and highlight the potential value of the TTV load in blood as an immune status biomarker in AFI patients.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Torque teno virus/genetics/isolation & purification
*Viral Load
*DNA Virus Infections/virology/epidemiology/blood
*Fever/virology/blood
*Virome
Anelloviridae/genetics
Thailand/epidemiology
RevDate: 2025-12-30
CmpDate: 2025-12-30
Assembly of the infant gut microbiome and resistome are linked to bacterial strains in mother's milk.
Nature communications, 16(1):11536.
The establishment of the gut microbiome in early life is critical for healthy infant development. Although human milk is recommended as sole nutrition for the infant, little is known about how variation in the milk microbiome shapes the microbial communities in the infant gut. Here, we quantified the similarity between the maternal milk and the infant gut microbiomes using 507 metagenomic samples collected from 195 mother-infant pairs at one, three, and six months postpartum. Microbial taxonomic overlap between milk and the infant gut was driven by Bifidobacterium longum, and infant microbiomes dominated by B. longum showed greater temporal stability than those dominated by other species. We identified numerous instances of strain sharing between milk and the infant gut, involving both commensal (e.g. B. longum) and pathobiont species (e.g. K. pneumoniae). Shared strains also included typically oral species such as S. salivarius and V. parvula, suggesting possible transmission from the infant's oral cavity to the mother's milk. At one month, the infant gut microbiome was enriched in biosynthetic pathways, suggesting that early colonisers might be more metabolically independent than those present at six months. Lastly, we observed significant overlap in antimicrobial resistance gene carriage within mother-infant pairs. Together, our results suggest that the human milk microbiome has an important role in the assembly, composition, and stability of the infant gut microbiome.
Additional Links: PMID-41274878
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41274878,
year = {2025},
author = {Ferretti, P and Allert, M and Johnson, KE and Rossi, M and Heisel, T and Gonia, S and Knights, D and Fields, DA and Albert, FW and Demerath, EW and Gale, CA and Blekhman, R},
title = {Assembly of the infant gut microbiome and resistome are linked to bacterial strains in mother's milk.},
journal = {Nature communications},
volume = {16},
number = {1},
pages = {11536},
pmid = {41274878},
issn = {2041-1723},
support = {R01HD109830//U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/ ; R21HD099473//U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/ ; F32HD105364//U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/ ; R01HD080444//U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/ ; },
mesh = {Humans ; *Milk, Human/microbiology ; *Gastrointestinal Microbiome/genetics ; Infant ; Female ; *Bacteria/genetics/classification/isolation & purification/drug effects ; Adult ; Feces/microbiology ; Infant, Newborn ; Bifidobacterium/genetics/isolation & purification ; Male ; Metagenomics ; Breast Feeding ; },
abstract = {The establishment of the gut microbiome in early life is critical for healthy infant development. Although human milk is recommended as sole nutrition for the infant, little is known about how variation in the milk microbiome shapes the microbial communities in the infant gut. Here, we quantified the similarity between the maternal milk and the infant gut microbiomes using 507 metagenomic samples collected from 195 mother-infant pairs at one, three, and six months postpartum. Microbial taxonomic overlap between milk and the infant gut was driven by Bifidobacterium longum, and infant microbiomes dominated by B. longum showed greater temporal stability than those dominated by other species. We identified numerous instances of strain sharing between milk and the infant gut, involving both commensal (e.g. B. longum) and pathobiont species (e.g. K. pneumoniae). Shared strains also included typically oral species such as S. salivarius and V. parvula, suggesting possible transmission from the infant's oral cavity to the mother's milk. At one month, the infant gut microbiome was enriched in biosynthetic pathways, suggesting that early colonisers might be more metabolically independent than those present at six months. Lastly, we observed significant overlap in antimicrobial resistance gene carriage within mother-infant pairs. Together, our results suggest that the human milk microbiome has an important role in the assembly, composition, and stability of the infant gut microbiome.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Milk, Human/microbiology
*Gastrointestinal Microbiome/genetics
Infant
Female
*Bacteria/genetics/classification/isolation & purification/drug effects
Adult
Feces/microbiology
Infant, Newborn
Bifidobacterium/genetics/isolation & purification
Male
Metagenomics
Breast Feeding
RevDate: 2025-12-30
CmpDate: 2025-12-30
Environmental exposure augments the abundance and transferability of antibiotic resistance genes in the respiratory tract.
Cell reports, 44(12):116517.
Exposure to environmental pollutants has been linked to increased antibiotic resistance, a critical global health challenge. The respiratory microbiome constitutes a key reservoir of antibiotic resistance genes (ARGs). Here, we constructed a respiratory ARG catalog from sputum metagenomes of 1,128 individuals. We demonstrate that exposures, particularly to cigarette smoke and biofuels, are associated with increased abundance and enhanced mobility of respiratory ARGs. These resistome alterations correlate inversely with lung function, with elevated mobile ARG abundance detectable even in individuals with mild airflow limitation within normal spirometry. Specific ARGs, including opmD and tet(K), interact with smoking in relation to lung function impairment. Murine experiments recapitulate these findings, showing exposure-induced increases in homologous ARGs that confer heightened phenotypic resistance in cultured respiratory bacteria. Our results elucidate a pathway through which environmental pollutants augment the respiratory resistome, suggesting the need for actions to mitigate the antimicrobial resistance burden by addressing environmental pollution.
Additional Links: PMID-41270740
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41270740,
year = {2025},
author = {Yi, X and Cai, H and Liu, H and Xu, S and Meng, R and Rao, J and Wu, M and Yang, L and Shi, Y and Zhang, J and Zhu, T and Yang, Y and Wen, P and Qin, Y and Song, W and Li, JT and Shu, W and Dai, J and Sun, J and Lin, L and Guan, WJ and Brightling, CE and Zheng, XY and Wang, Z},
title = {Environmental exposure augments the abundance and transferability of antibiotic resistance genes in the respiratory tract.},
journal = {Cell reports},
volume = {44},
number = {12},
pages = {116517},
doi = {10.1016/j.celrep.2025.116517},
pmid = {41270740},
issn = {2211-1247},
mesh = {Humans ; Animals ; *Environmental Exposure/adverse effects ; Mice ; Male ; *Respiratory System/microbiology/drug effects ; Female ; *Drug Resistance, Microbial/genetics ; Middle Aged ; Microbiota/genetics/drug effects ; Anti-Bacterial Agents/pharmacology ; Adult ; Sputum/microbiology ; Metagenome/genetics ; Mice, Inbred C57BL ; },
abstract = {Exposure to environmental pollutants has been linked to increased antibiotic resistance, a critical global health challenge. The respiratory microbiome constitutes a key reservoir of antibiotic resistance genes (ARGs). Here, we constructed a respiratory ARG catalog from sputum metagenomes of 1,128 individuals. We demonstrate that exposures, particularly to cigarette smoke and biofuels, are associated with increased abundance and enhanced mobility of respiratory ARGs. These resistome alterations correlate inversely with lung function, with elevated mobile ARG abundance detectable even in individuals with mild airflow limitation within normal spirometry. Specific ARGs, including opmD and tet(K), interact with smoking in relation to lung function impairment. Murine experiments recapitulate these findings, showing exposure-induced increases in homologous ARGs that confer heightened phenotypic resistance in cultured respiratory bacteria. Our results elucidate a pathway through which environmental pollutants augment the respiratory resistome, suggesting the need for actions to mitigate the antimicrobial resistance burden by addressing environmental pollution.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Animals
*Environmental Exposure/adverse effects
Mice
Male
*Respiratory System/microbiology/drug effects
Female
*Drug Resistance, Microbial/genetics
Middle Aged
Microbiota/genetics/drug effects
Anti-Bacterial Agents/pharmacology
Adult
Sputum/microbiology
Metagenome/genetics
Mice, Inbred C57BL
RevDate: 2025-12-30
CmpDate: 2025-12-30
Overview of the microbiome and resistome of swine manure in commercial piglet farms and its application in grazing soils.
Environmental technology, 47(1):136-146.
The environmental spread of antimicrobial resistance genes (ARGs) through the use of animal manure in agriculture has become a significant concern. This study investigated the impact of applying swine manure treated through biodigestion on the spread of ARGs in agricultural soils in the Midwest region of Brazil. Samples of untreated and treated manure, fertilized soil, and unfertilized soil were collected from three piglet production units. Bacterial communities and ARGs were characterized through metagenomic sequencing and bioinformatics. Bacterial profiles in fertilized and unfertilized soils were highly similar across all farms. In contrast, biodigestion reduced the total number of ARGs in treated manure. Of the 399 ARGs detected in fertilized soils, 67% were also found in unfertilized soils, and 12% were shared exclusively with treated manure. The presence of numerous ARGs in unfertilized soils highlights the role of environmental dissemination routes, such as runoff, dust, or wildlife, in shaping soil resistomes even in areas without manure application. These findings suggest a stable bacterial and resistome profile in soils, regardless of manure application. Although antimicrobial residues were not evaluated, the results reinforce the need for responsible antibiotic use and effective manure management to minimize environmental ARG dissemination.
Additional Links: PMID-41052412
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid41052412,
year = {2026},
author = {Dias, ME and Breyer, GM and Torres, MC and Wuaden, CR and Rebelatto, R and Kich, JD and Dorn, M and Siqueira, FM},
title = {Overview of the microbiome and resistome of swine manure in commercial piglet farms and its application in grazing soils.},
journal = {Environmental technology},
volume = {47},
number = {1},
pages = {136-146},
doi = {10.1080/09593330.2025.2566429},
pmid = {41052412},
issn = {1479-487X},
mesh = {Animals ; *Manure/microbiology ; Swine ; *Soil Microbiology ; *Microbiota ; Farms ; Brazil ; Bacteria/genetics ; Fertilizers ; Agriculture ; Drug Resistance, Bacterial/genetics ; Drug Resistance, Microbial/genetics ; Anti-Bacterial Agents/pharmacology ; Soil/chemistry ; },
abstract = {The environmental spread of antimicrobial resistance genes (ARGs) through the use of animal manure in agriculture has become a significant concern. This study investigated the impact of applying swine manure treated through biodigestion on the spread of ARGs in agricultural soils in the Midwest region of Brazil. Samples of untreated and treated manure, fertilized soil, and unfertilized soil were collected from three piglet production units. Bacterial communities and ARGs were characterized through metagenomic sequencing and bioinformatics. Bacterial profiles in fertilized and unfertilized soils were highly similar across all farms. In contrast, biodigestion reduced the total number of ARGs in treated manure. Of the 399 ARGs detected in fertilized soils, 67% were also found in unfertilized soils, and 12% were shared exclusively with treated manure. The presence of numerous ARGs in unfertilized soils highlights the role of environmental dissemination routes, such as runoff, dust, or wildlife, in shaping soil resistomes even in areas without manure application. These findings suggest a stable bacterial and resistome profile in soils, regardless of manure application. Although antimicrobial residues were not evaluated, the results reinforce the need for responsible antibiotic use and effective manure management to minimize environmental ARG dissemination.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Manure/microbiology
Swine
*Soil Microbiology
*Microbiota
Farms
Brazil
Bacteria/genetics
Fertilizers
Agriculture
Drug Resistance, Bacterial/genetics
Drug Resistance, Microbial/genetics
Anti-Bacterial Agents/pharmacology
Soil/chemistry
▼ ▼ LOAD NEXT 100 CITATIONS
ESP Quick Facts
ESP Origins
In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.
ESP Support
In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.
ESP Rationale
Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.
ESP Goal
In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.
ESP Usage
Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.
ESP Content
When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.
ESP Help
Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.
ESP Plans
With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.
ESP Picks from Around the Web (updated 28 JUL 2024 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Paleontology
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.
Big Data & Informatics
Big Data: Buzzword or Big Deal?
Hacking the genome: Identifying anonymized human subjects using publicly available data.