Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 02 Aug 2021 at 01:30 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2021-07-31

Font-Verdera F, Liébana R, Aldeguer-Riquelme B, et al (2021)

Inverted microbial community stratification and spatial-temporal stability in hypersaline anaerobic sediments from the S'Avall solar salterns.

Systematic and applied microbiology, 44(5):126231 pii:S0723-2020(21)00054-0 [Epub ahead of print].

The anaerobic hypersaline sediments of an ephemeral pond from the S'Avall solar salterns constituted an excellent study system because of their easy accessibility, as well as the analogy of their microbial assemblages with some known deep-sea hypersaline anaerobic brines. By means of shotgun metagenomics and 16S rRNA gene amplicon sequencing, the microbial composition of the sediment was shown to be stable in time and space. The communities were formed by prokaryote representatives with a clear inferred anaerobic metabolism, mainly related to the methane, sulfur and nitrate cycles. The most conspicuous finding was the inverted nature of the vertical stratification. Contrarily to what could be expected, a methanogenic archaeal metabolism was found to dominate in the upper layers, whereas Bacteria with fermentative and anaerobic respiration metabolisms increased with depth. We could demonstrate the methanogenic nature of the members of candidate lineages DHVE2 and MSBL1, which were present in high abundance in this system, and described, for the first time, viruses infecting these lineages. Members of the putatively active aerobic genera Salinibacter and Halorubrum were detected especially in the deepest layers for which we hypothesize that either oxygen could be sporadically available, or they could perform anaerobic metabolisms. We also report a novel repertoire of virus species thriving in these sediments, which had special relevance because of their lysogenic lifestyles.

RevDate: 2021-07-30
CmpDate: 2021-07-30

Mohamed I, Zakeer S, Azab M, et al (2020)

Changes in Vaginal Microbiome in Pregnant and Nonpregnant Women with Bacterial Vaginosis: Toward Microbiome Diagnostics?.

Omics : a journal of integrative biology, 24(10):602-614.

Bacterial vaginosis (BV) is highly common, adversely affecting the health of millions of women. New therapeutic targets and diagnostics are urgently needed for BV. Microbiome research offers new prospects in this context. We report here original findings on changes in the vaginal microbiome in pregnant and nonpregnant women with BV. Reproductive age women were recruited for this study after a clinical examination. The total sample (N = 33) included four study groups: (1) healthy nonpregnant women (n = 9), (2) nonpregnant women with symptomatic BV (n = 11), (3) healthy pregnant women without BV (n = 6), and (4) pregnant women with symptomatic BV (N = 7). The vaginal microbiota in healthy women was less diverse, with dominance of a single genus, Lactobacillus. Six major phyla appeared upon taxonomic analysis of the bacterial sequences: Firmicutes, Actinobacteria, Proteobacteria, Tenericutes, Bacteroidetes, and Fusobacteria. For instance, Firmicutes had a significantly higher abundance (98.3%) in the nonpregnant healthy group and 94.3% in pregnant healthy group, compared with nonpregnant (49.7%) and pregnant (67%) women with BV (p = 0.003). Moreover, women with BV had significant increases in representation of Actinobacteria, Fusobacteria, and Bacteroidetes (p = 0.0003, 0.004, and 0.01, respectively). Although the Lactobacillus genus was predominant in healthy women, Gardnerella, Atopobium, Sneathia, and Prevotella significantly increased in nonpregnant women with BV (p = 0.001, 0.014, 0.004, and 0.012, respectively). Dysbiosis of Lactobacillus in pregnant women with BV was accompanied by increased prevalence of the Streptococcus genus. These findings contribute new insights toward microbiome diagnostics and therapeutics innovation in BV.

RevDate: 2021-07-30
CmpDate: 2021-07-30

Sibai M, Altuntaş E, Yıldırım B, et al (2020)

Microbiome and Longevity: High Abundance of Longevity-Linked Muribaculaceae in the Gut of the Long-Living Rodent Spalax leucodon.

Omics : a journal of integrative biology, 24(10):592-601.

With a world population living longer as well as marked disparities in life expectancy, understanding the determinants of longevity is one of the priority research agendas in 21st century life sciences. To this end, the blind mole-rat (Spalax leucodon), a subterranean mammalian, has emerged as an exceptional model organism due to its astonishing features such as remarkable longevity, hypoxia and hypercapnia tolerance, and cancer resistance. The microbiome has been found to be a vital parameter for cellular physiology and it is safe to assume that it has an impact on life expectancy. Although the unique characteristics of Spalax make it an ideal experimental model for longevity research, there is limited knowledge of the bacterial composition of Spalax microbiome, which limits its in-depth utilization. In this study, using 16S rRNA amplicon sequencing, we report the gut and skin bacterial structure of Spalax for the first time. The diversity between fecal and skin samples was manifested in the distant clustering, as revealed by beta diversity analysis. Importantly, the longevity-linked Muribaculaceae bacterial family was found to be the dominating bacterial taxa in Spalax fecal samples. These new findings contribute toward further development of Spalax as a model for longevity research and potential linkages between microbiome composition and longevity.

RevDate: 2021-07-30
CmpDate: 2021-07-30

Zamora-Briseño JA, Cerqueda-García D, Hernández-Velázquez IM, et al (2020)

Alterations in the gut-associated microbiota of juvenile Caribbean spiny lobsters Panulirus argus (Latreille, 1804) infected with PaV1.

Journal of invertebrate pathology, 176:107457.

The spiny lobster Panulirus argus (Latreille, 1804) is currently affected by an unenveloped, icosahedral, DNA virus termed Panulirus argus virus 1 (PaV1), a virulent and pathogenic virus that produces a long-lasting infection that alters the physiology and behaviour of heavily infected lobsters. Gut-associated microbiota is crucial for lobster homeostasis and well-being, but pathogens could change microbiota composition affecting its function. In PaV1 infection, the changes of gut-associated microbiota are yet to be elucidated. In the present study, we used high-throughput 16S rRNA sequencing technology to compare the bacterial microbiota in intestines of healthy and heavily PaV1-infected male and female juveniles of spiny lobsters P. argus captured in Puerto Morelos Reef lagoon, Quintana Roo, Mexico. We found that basal gut-associated microbiota composition showed a sex-dependent bias, with females being enriched in amplicon sequence variants (ASVs) assigned to Sphingomonas, while males were enriched in the genus Candidatus Hepatoplasma and Aliiroseovarius genera. Moreover, the alpha diversity of microbiota decreased in PaV1-infected lobsters. A significant increase of the genus Candidatus Bacilloplasma was observed in infected lobsters, as well as a significant decrease in Nesterenkonia, Caldalkalibacillus, Pseudomonas, Cetobacterium and Phyllobacterium. We also observed an alteration in the abundances of Vibrio species. Results from this study suggest that PaV1 infection impacts intestinal microbiota composition in Panulirus argus in a sex-dependent manner.

RevDate: 2021-07-30
CmpDate: 2021-07-30

Elsaeed E, Enany S, Hanora A, et al (2020)

Comparative Metagenomic Screening of Aromatic Hydrocarbon Degradation and Secondary Metabolite-Producing Genes in the Red Sea, the Suez Canal, and the Mediterranean Sea.

Omics : a journal of integrative biology, 24(9):541-550.

Marine and ecosystem pollution due to oil spills can be addressed by identifying the aromatic hydrocarbon (HC)-degrading microorganisms and their responsible genes for biodegradation. Moreover, screening for genes coding for secondary metabolites is invaluable for drug discovery. We report here, the first metagenomic study investigating the shotgun metagenome of the Suez Canal water sampled at Ismailia city concerning its aromatic HC degradation potential in comparison to the seawater sampled at Halayeb city at the Red Sea and Sallum city at the Mediterranean Sea. Moreover, for an in-depth understanding of marine biotechnology applications, we screened for the polyketide synthases (PKSs) and nonribosomal peptide synthetase (NRPS) domains in those three metagenomes. By mapping against functional protein databases, we found that 13, 6, and 3 gene classes from the SEED database; 2, 1, and 3 gene classes from the EgGNOG; and 5, 4, and 2 genes from the InterPro2GO database were identified to be differentially abundant among Halayeb, Ismailia, and Sallum metagenomes, respectively. Also, Halayeb metagenome in the Red Sea reported the highest number of PKS domains showing higher potential in secondary metabolite production in addition to the oil degradation potential.

RevDate: 2021-07-28
CmpDate: 2021-07-28

Li P, Li K, Xu P, et al (2021)

Treatment of wastewater with high carbon-to-nitrogen ratio using a waterfall aeration biofilm reactor combined with sequencing batch reactor: Microbial community structure and metabolism analysis.

Bioresource technology, 337:125450.

A low-cost and high-efficiency waterfall aeration biofilm reactor (WABR) combined with a sequencing batch reactor (SBR) was established to treat wastewater with a C/N ratio of 50. Three WABR-SBR systems with different fillers were used. In the stable operation phase, the removal efficiency of chemical oxygen demand was R1 (approximately 99%), R2 (97-99%), and R3 (96-99%); the effluent concentration of NH4+-N was 0.5 mg/L without nitrite or nitrate accumulation. High-throughput 16S rRNA sequencing revealed that the dominant phyla in the microbial community structure were Proteobacteria, Bacteroidetes, and Planctomycetes. Quantitative PCR was used to quantify the nitrification and denitrification gene expressions (Nitrobacter, nirS, and nirK) to evaluate the simultaneous nitrification and denitrification processes. Both anammox and denitrifying bacteria were abundant. Metagenomic annotation of genes that revealed the metabolic pathways of carbohydrates, amino acids, and the two dominant enzymes (GH and GT) provide valuable information for microbial ecology analysis.

RevDate: 2021-07-28
CmpDate: 2021-07-28

Fadiji AE, Kanu JO, OO Babalola (2021)

Impact of cropping systems on the functional diversity of rhizosphere microbial communities associated with maize plant: a shotgun approach.

Archives of microbiology, 203(6):3605-3613.

Understanding the functions carried out by rhizosphere microbiomes will further explore their importance in biotechnological improvement and agricultural sustainability. This study presents one of the foremost attempts to understand the functional diversity of the rhizosphere microbiome in mono-cropping and crop rotation farming sites using shotgun metagenomic techniques. We hypothesized that the functional diversity would vary in the cropping sites and more abundant in the rotational cropping site. Hence, we carried out complete DNA extraction from the bulk and rhizospheric soils associated with maize plant cultivated on the mono-cropping farm (LT and LTc) and the crop rotation farm (VD and VDc), respectively, and sequenced employing shotgun approach. Using the SEED subsystem, our result revealed that a total of 24 functional categories dominated the rotational cropping site, while four functional categories dominated the mono-cropping sites. Alpha diversity assessment showed that no significant difference (p > 0.05) was observed across the cropping sites, while beta diversity assessment revealed a significant difference. Going by the high abundance of functional groups observed in the samples from the crop rotational site, it is evident that cropping systems influenced the functions of soil microbiomes. Worthy of note is the high abundance of unknown functions associated with these maize rhizosphere microbiomes. This is an indication that there are still some under-investigated functional genes associated with the maize rhizosphere microbiome. It is, therefore, imperative that further studies explore these functional genes for their agricultural and biotechnological potentials.

RevDate: 2021-07-29
CmpDate: 2021-07-29

Pavlova YS, Paez-Espino D, Morozov AY, et al (2021)

Searching for fat tails in CRISPR-Cas systems: Data analysis and mathematical modeling.

PLoS computational biology, 17(3):e1008841.

Understanding CRISPR-Cas systems-the adaptive defence mechanism that about half of bacterial species and most of archaea use to neutralise viral attacks-is important for explaining the biodiversity observed in the microbial world as well as for editing animal and plant genomes effectively. The CRISPR-Cas system learns from previous viral infections and integrates small pieces from phage genomes called spacers into the microbial genome. The resulting library of spacers collected in CRISPR arrays is then compared with the DNA of potential invaders. One of the most intriguing and least well understood questions about CRISPR-Cas systems is the distribution of spacers across the microbial population. Here, using empirical data, we show that the global distribution of spacer numbers in CRISPR arrays across multiple biomes worldwide typically exhibits scale-invariant power law behaviour, and the standard deviation is greater than the sample mean. We develop a mathematical model of spacer loss and acquisition dynamics which fits observed data from almost four thousand metagenomes well. In analogy to the classical 'rich-get-richer' mechanism of power law emergence, the rate of spacer acquisition is proportional to the CRISPR array size, which allows a small proportion of CRISPRs within the population to possess a significant number of spacers. Our study provides an alternative explanation for the rarity of all-resistant super microbes in nature and why proliferation of phages can be highly successful despite the effectiveness of CRISPR-Cas systems.

RevDate: 2021-07-29
CmpDate: 2021-07-29

An J, McDowell A, Kim YK, et al (2021)

Extracellular vesicle-derived microbiome obtained from exhaled breath condensate in patients with asthma.

Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology, 126(6):729-731.

RevDate: 2021-07-28
CmpDate: 2021-07-28

Psonis N, Antoniou A, Karameta E, et al (2021)

The wall lizards of the Balkan peninsula: Tackling questions at the interface of phylogenomics and population genomics.

Molecular phylogenetics and evolution, 159:107121.

Wall lizards of the genus Podarcis (Sauria, Lacertidae) are the predominant reptile group in southern Europe, including 24 recognized species. Mitochondrial DNA data have shown that, with the exception of P. muralis, the Podarcis species distributed in the Balkan peninsula form a species group that is further sub-divided into two subgroups: the one of "P. tauricus" consisting of P. tauricus, P. milensis, P. gaigeae, and P. melisellensis, and the other of "P. erhardii" comprising P. erhardii, P. levendis, P. cretensis, and P. peloponnesiacus. In an attempt to explore the Balkan Podarcis phylogenomic relationships, assess the levels of genetic structure and to re-evaluate the number of extant species, we employed phylogenomic and admixture approaches on ddRADseq (double digested Restriction site Associated DNA sequencing) genomic data. With this efficient Next Generation Sequencing approach, we were able to obtain a large number of genomic loci randomly distributed throughout the genome and use them to resolve the previously obscure phylogenetic relationships among the different Podarcis species distributed in the Balkans. The obtained phylogenomic relationships support the monophyly of both aforementioned subgroups and revealed several divergent lineages within each subgroup, stressing the need for taxonomic re-evaluation of Podarcis' species in Balkans. The phylogenomic trees and the species delimitation analyses confirmed all recently recognized species (P. levendis, P. cretensis, and P. ionicus) and showed the presence of at least two more species, one in P. erhardii and the other in P. peloponnesiacus.

RevDate: 2021-07-29
CmpDate: 2021-07-29

Ghemrawi M, Torres AR, Duncan G, et al (2021)

The genital microbiome and its potential for detecting sexual assault.

Forensic science international. Genetics, 51:102432.

Since its inception, the Human Microbiome Project (HMP) has provided key discoveries that can be applied to forensics, in addition to those of obvious medical value. Whether for postmortem interval estimation, geolocation, or human identification, there are many applications of the microbiome as an investigative lead for forensic casework. The human skin microbiome has shown great potential for use in studies of transfer and human identification, however there has been little focus on the genital microbiome, in particular penile skin which differs from other body sites. Our preliminary data on both the penile and vaginal microbiome demonstrates potential value in cases of sexual assault. In this study we describe genital microbial signatures based on the analysis of five male and five female genital samples and compare these results to those from longitudinal studies. Selected taxa, e.g., Gardnerella, Lactobacilli, Finegoldia, Peptoniphilus, and Anaerococci, are shown to be candidate constituents of the genital microbiome that merit investigation for use in sexual assault casework.

RevDate: 2021-07-23

Andrade BGN, Goris T, Afli H, et al (2021)

Putative mobilized colistin resistance genes in the human gut microbiome.

BMC microbiology, 21(1):220.

BACKGROUND: The high incidence of bacterial genes that confer resistance to last-resort antibiotics, such as colistin, caused by mobilized colistin resistance (mcr) genes, poses an unprecedented threat to human health. Understanding the spread, evolution, and distribution of such genes among human populations will help in the development of strategies to diminish their occurrence. To tackle this problem, we investigated the distribution and prevalence of potential mcr genes in the human gut microbiome using a set of bioinformatics tools to screen the Unified Human Gastrointestinal Genome (UHGG) collection for the presence, synteny and phylogeny of putative mcr genes, and co-located antibiotic resistance genes.

RESULTS: A total of 2079 antibiotic resistance genes (ARGs) were classified as mcr genes in 2046 metagenome assembled genomes (MAGs), distributed across 1596 individuals from 41 countries, of which 215 were identified in plasmidial contigs. The genera that presented the largest number of mcr-like genes were Suterella and Parasuterella. Other potential pathogens carrying mcr genes belonged to the genus Vibrio, Escherichia and Campylobacter. Finally, we identified a total of 22,746 ARGs belonging to 21 different classes in the same 2046 MAGs, suggesting multi-resistance potential in the corresponding bacterial strains, increasing the concern of ARGs impact in the clinical settings.

CONCLUSION: This study uncovers the diversity of mcr-like genes in the human gut microbiome. We demonstrated the cosmopolitan distribution of these genes in individuals worldwide and the co-presence of other antibiotic resistance genes, including Extended-spectrum Beta-Lactamases (ESBL). Also, we described mcr-like genes fused to a PAP2-like domain in S. wadsworthensis. These novel sequences increase our knowledge about the diversity and evolution of mcr-like genes. Future research should focus on activity, genetic mobility and a potential colistin resistance in the corresponding strains to experimentally validate those findings.

RevDate: 2021-07-27
CmpDate: 2021-07-27

Olshan KL, Zomorrodi AR, Pujolassos M, et al (2021)

Microbiota and Metabolomic Patterns in the Breast Milk of Subjects with Celiac Disease on a Gluten-Free Diet.

Nutrients, 13(7):.

The intestinal microbiome may trigger celiac disease (CD) in individuals with a genetic disposition when exposed to dietary gluten. Research demonstrates that nutrition during infancy is crucial to the intestinal microbiome engraftment. Very few studies to date have focused on the breast milk composition of subjects with a history of CD on a gluten-free diet. Here, we utilize a multi-omics approach with shotgun metagenomics to analyze the breast milk microbiome integrated with metabolome profiling of 36 subjects, 20 with CD on a gluten-free diet and 16 healthy controls. These analyses identified significant differences in bacterial and viral species/strains and functional pathways but no difference in metabolite abundance. Specifically, three bacterial strains with increased abundance were identified in subjects with CD on a gluten-free diet of which one (Rothia mucilaginosa) has been previously linked to autoimmune conditions. We also identified five pathways with increased abundance in subjects with CD on a gluten-free diet. We additionally found four bacterial and two viral species/strains with increased abundance in healthy controls. Overall, the differences observed in bacterial and viral species/strains and in functional pathways observed in our analysis may influence microbiome engraftment in neonates, which may impact their future clinical outcomes.

RevDate: 2021-07-27
CmpDate: 2021-07-27

He X, Yin Q, Zhou L, et al (2021)

Metagenomic sequencing reveals viral abundance and diversity in mosquitoes from the Shaanxi-Gansu-Ningxia region, China.

PLoS neglected tropical diseases, 15(4):e0009381.

BACKGROUND: Mosquitoes host and transmit numerous arthropod-borne viruses (arboviruses) that cause disease in both humans and animals. Effective surveillance of virome profiles in mosquitoes is vital to the prevention and control of mosquito-borne diseases in northwestern China, where epidemics occur frequently.

METHODS: Mosquitoes were collected in the Shaanxi-Gansu-Ningxia region (Shaanxi Province, Gansu Province, and Ningxia Hui Autonomous Region) of China from June to August 2019. Morphological methods were used for taxonomic identification of mosquito species. High-throughput sequencing and metagenomic analysis were used to characterize mosquito viromes.

RESULTS: A total of 22,959 mosquitoes were collected, including Culex pipiens (45.7%), Culex tritaeniorhynchus (40.6%), Anopheles sinensis (8.4%), Aedes (5.2%), and Armigeres subalbatus (0.1%). In total, 3,014,183 (0.95% of clean reads) viral sequences were identified and assigned to 116 viral species (including pathogens such as Japanese encephalitis virus and Getah virus) in 31 viral families, including Flaviviridae, Togaviridae, Phasmaviridae, Phenuiviridae, and some unclassified viruses. Mosquitoes collected in July (86 species in 26 families) showed greater viral diversity than those from June and August. Culex pipiens (69 species in 25 families) and Culex tritaeniorhynchus (73 species in 24 families) carried more viral species than Anopheles sinensis (50 species in 19 families) or Aedes (38 species in 20 families) mosquitoes.

CONCLUSION: Viral diversity and abundance were affected by mosquito species and collection time. The present study elucidates the virome compositions of various mosquito species in northwestern China, improving the understanding of virus transmission dynamics for comparison with those of disease outbreaks.

RevDate: 2021-07-27
CmpDate: 2021-07-27

Tourancheau A, Mead EA, Zhang XS, et al (2021)

Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing.

Nature methods, 18(5):491-498.

Bacterial DNA methylation occurs at diverse sequence contexts and plays important functional roles in cellular defense and gene regulation. Existing methods for detecting DNA modification from nanopore sequencing data do not effectively support de novo study of unknown bacterial methylomes. In this work, we observed that a nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of bacterial species and developed a method, named nanodisco (https://github.com/fanglab/nanodisco), that couples the identification and fine mapping of the three forms of methylation into a multi-label classification framework. We applied it to individual bacteria and the mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes and identifying misassembled metagenomic contigs.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Zhang Z, L Zhang (2021)

METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs.

BMC bioinformatics, 22(Suppl 10):378.

BACKGROUND: Due to the complexity of microbial communities, de novo assembly on next generation sequencing data is commonly unable to produce complete microbial genomes. Metagenome assembly binning becomes an essential step that could group the fragmented contigs into clusters to represent microbial genomes based on contigs' nucleotide compositions and read depths. These features work well on the long contigs, but are not stable for the short ones. Contigs can be linked by sequence overlap (assembly graph) or by the paired-end reads aligned to them (PE graph), where the linked contigs have high chance to be derived from the same clusters.

RESULTS: We developed METAMVGL, a multi-view graph-based metagenomic contig binning algorithm by integrating both assembly and PE graphs. It could strikingly rescue the short contigs and correct the binning errors from dead ends. METAMVGL learns the two graphs' weights automatically and predicts the contig labels in a uniform multi-view label propagation framework. In experiments, we observed METAMVGL made use of significantly more high-confidence edges from the combined graph and linked dead ends to the main graph. It also outperformed many state-of-the-art contig binning algorithms, including MaxBin2, MetaBAT2, MyCC, CONCOCT, SolidBin and GraphBin on the metagenomic sequencing data from simulation, two mock communities and Sharon infant fecal samples.

CONCLUSIONS: Our findings demonstrate METAMVGL outstandingly improves the short contig binning and outperforms the other existing contig binning tools on the metagenomic sequencing data from simulation, mock communities and infant fecal samples.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Zhong ZP, Tian F, Roux S, et al (2021)

Glacier ice archives nearly 15,000-year-old microbes and phages.

Microbiome, 9(1):160.

BACKGROUND: Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination.

RESULTS: We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants.

CONCLUSIONS: Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Brito IL (2021)

The comings and goings of the healthy human gut microbiota.

Cell host & microbe, 29(7):1163-1164.

SNP-level analysis of 5,000+ metagenomic samples enabled Hildebrand and colleagues (2021) to identify human gut microbiota by their dispersal strategies in this issue of Cell Host & Microbe. This brings us a step closer in understanding how microbial communities are formed and maintained and also hints at ways in which microbiomes can be manipulated to improve human health.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Jo Y, Back CG, Kim KH, et al (2021)

Using RNA-Sequencing Data to Examine Tissue-Specific Garlic Microbiomes.

International journal of molecular sciences, 22(13):.

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Yuan X, Zhang X, Liu X, et al (2021)

Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants.

International journal of molecular sciences, 22(13):.

Intestinal symbiotic bacteria have played an important role in the digestion, immunity detoxification, mating, and reproduction of insects during long-term coevolution. The oriental fruit moth, Grapholita molesta, is an important fruit tree pest worldwide. However, the composition of the G. molesta microbial community, especially of the gut microbiome, remains unclear. To explore the differences of gut microbiota of G. molesta when reared on different host plants, we determined the gut bacterial structure when G. molesta was transferred from an artificial diet to different host plants (apples, peaches, nectarines, crisp pears, plums, peach shoots) by amplicon sequencing technology. The results showed that Proteobacteria and Firmicutes are dominant in the gut microbiota of G. molesta. Plum-feeding G. molesta had the highest richness and diversity of gut microbiota, while apple-feeding G. molesta had the lowest. PCoA and PERMANOVA analysis revealed that there were significant differences in the gut microbiota structure of G. molesta on different diets. PICRUSt2 analysis indicated that most of the functional prediction pathways were concentrated in metabolic and cellular processes. Our results confirmed that gut bacterial communities of G. molesta can be influenced by host diets and may play an important role in host adaptation.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Kurup K, Matyi S, Giles CB, et al (2021)

Calorie restriction prevents age-related changes in the intestinal microbiota.

Aging, 13(5):6298-6329.

The effect of calorie restriction (CR) on the microbiome, fecal metabolome, and colon transcriptome of adult and old male mice was compared. Life-long CR increased microbial diversity and the Bacteroidetes/Firmicutes ratio and prevented the age-related changes in the microbiota, shifting it to a younger microbial and fecal metabolite profile in both C57BL/6JN and B6D2F1 mice. Old mice fed CR were enriched in the Rikenellaceae, S24-7 and Bacteroides families. The changes in the microbiome that occur with age and CR were initiated in the cecum and further modified in the colon. Short-term CR in adult mice had a minor effect on the microbiome but a major effect on the transcriptome of the colon mucosa. These data suggest that CR has a major impact on the physiological status of the gastrointestinal system, maintaining it in a more youthful state, which in turn could result in a more diverse and youthful microbiome.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Konishi T, Kusakabe S, Hino A, et al (2021)

Low diversity of gut microbiota in the early phase of post-bone marrow transplantation increases the risk of chronic graft-versus-host disease.

Bone marrow transplantation, 56(7):1728-1731.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Daliri EB, Ofosu FK, Chelliah R, et al (2021)

Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies.

Biomolecules, 11(2):.

The advent of omic technology has made it possible to identify viable but unculturable micro-organisms in the gut. Therefore, application of multi-omic technologies in gut microbiome studies has become invaluable for unveiling a comprehensive interaction between these commensals in health and disease. Meanwhile, despite the successful identification of many microbial and host-microbial cometabolites that have been reported so far, it remains difficult to clearly identify the origin and function of some proteins and metabolites that are detected in gut samples. However, the application of single omic techniques for studying the gut microbiome comes with its own challenges which may be overcome if a number of different omics techniques are combined. In this review, we discuss our current knowledge about multi-omic techniques, their challenges and future perspective in this field of gut microbiome studies.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Hernandez-Baixauli J, Puigbò P, Torrell H, et al (2021)

A Pilot Study for Metabolic Profiling of Obesity-Associated Microbial Gut Dysbiosis in Male Wistar Rats.

Biomolecules, 11(2):.

Obesity is one of the most incident and concerning disease worldwide. Definite strategies to prevent obesity and related complications remain elusive. Among the risk factors of the onset of obesity, gut microbiota might play an important role in the pathogenesis of the disease, and it has received extensive attention because it affects the host metabolism. In this study, we aimed to define a metabolic profile of the segregated obesity-associated gut dysbiosis risk factor. The study of the metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way for the discrimination on the different biomarkers in the obesity onset. Thus, we developed a model of this obesity risk factors through the transference of gut microbiota from obese to non-obese male Wistar rats and performed a subsequent metabolic analysis in the receptor rats. Our results showed alterations in the lipid metabolism in plasma and in the phenylalanine metabolism in urine. In consequence, we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-coumaric acid. Hereby, we propose these metabolites as a metabolic profile associated to a segregated dysbiosis state related to obesity disease.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Münch PC, Franzosa EA, Stecher B, et al (2021)

Identification of Natural CRISPR Systems and Targets in the Human Microbiome.

Cell host & microbe, 29(1):94-106.e4.

Many bacteria resist invasive DNA by incorporating sequences into CRISPR loci, which enable sequence-specific degradation. CRISPR systems have been well studied from isolate genomes, but culture-independent metagenomics provide a new window into their diversity. We profiled CRISPR loci and cas genes in the body-wide human microbiome using 2,355 metagenomes, yielding functional and taxonomic profiles for 2.9 million spacers by aligning the spacer content to each sample's metagenome and corresponding gene families. Spacer and repeat profiles agree qualitatively with those from isolate genomes but expand their diversity by approximately 13-fold, with the highest spacer load present in the oral microbiome. The taxonomy of spacer sequences parallels that of their source community, with functional targets enriched for viral elements. When coupled with cas gene systems, CRISPR-Cas subtypes are highly site and taxon specific. Our analysis provides a comprehensive collection of natural CRISPR-cas loci and targets in the human microbiome.

RevDate: 2021-07-26
CmpDate: 2021-07-26

Abdel-Aziz MI, Brinkman P, Vijverberg SJH, et al (2021)

Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months.

The Journal of allergy and clinical immunology, 147(1):123-134.

BACKGROUND: Asthma is a heterogeneous disease characterized by distinct phenotypes with associated microbial dysbiosis.

OBJECTIVES: Our aim was to identify severe asthma phenotypes based on sputum microbiome profiles and assess their stability after 12 to 18 months. A further aim was to evaluate clusters' robustness after inclusion of an independent cohort of patients with mild-to-moderate asthma.

METHODS: In this longitudinal multicenter cohort study, sputum samples were collected for microbiome profiling from a subset of the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adult patient cohort at baseline and after 12 to 18 months of follow-up. Unsupervised hierarchical clustering was performed by using the Bray-Curtis β-diversity measure of microbial profiles. For internal validation, partitioning around medoids, consensus cluster distribution, bootstrapping, and topological data analysis were applied. Follow-up samples were studied to evaluate within-patient clustering stability in patients with severe asthma. Cluster robustness was evaluated by using an independent cohort of patients with mild-to-moderate asthma.

RESULTS: Data were available for 100 subjects with severe asthma (median age 55 years; 42% males). Two microbiome-driven clusters were identified; they were characterized by differences in asthma onset, smoking status, residential locations, percentage of blood and/or sputum neutrophils and macrophages, lung spirometry results, and concurrent asthma medications (all P values < .05). The cluster 2 patients displayed a commensal-deficient bacterial profile that was associated with worse asthma outcomes than those of the cluster 1 patients. Longitudinal clusters revealed high relative stability after 12 to 18 months in those with severe asthma. Further inclusion of an independent cohort of 24 patients with mild-to-moderate asthma was consistent with the clustering assignments.

CONCLUSION: Unbiased microbiome-driven clustering revealed 2 distinct robust phenotypes of severe asthma that exhibited relative overtime stability. This suggests that the sputum microbiome may serve as a biomarker for better characterizing asthma phenotypes.

RevDate: 2021-07-22
CmpDate: 2021-07-22

Santiago-Rodriguez TM, Garoutte A, Adams E, et al (2020)

Metagenomic Information Recovery from Human Stool Samples Is Influenced by Sequencing Depth and Profiling Method.

Genes, 11(11):.

Sequencing of the 16S rRNA gene (16S) has long been a go-to method for microbiome characterization due to its accessibility and lower cost compared to shotgun metagenomic sequencing (SMS). However, 16S sequencing rarely provides species-level resolution and cannot provide direct assessment of other taxa (e.g., viruses and fungi) or functional gene content. Shallow shotgun metagenomic sequencing (SSMS) has emerged as an approach to bridge the gap between 16S sequencing and deep metagenomic sequencing. SSMS is cost-competitive with 16S sequencing, while also providing species-level resolution and functional gene content insights. In the present study, we evaluated the effects of sequencing depth on marker gene-mapping- and alignment-based annotation of bacteria in healthy human stool samples. The number of identified taxa decreased with lower sequencing depths, particularly with the marker gene-mapping-based approach. Other annotations, including viruses and pathways, also showed a depth-dependent effect on feature recovery. These results refine the understanding of the suitability and shortcomings of SSMS, as well as annotation tools for metagenomic analyses in human stool samples. Results may also translate to other sample types and may open the opportunity to explore the effect of sequencing depth and annotation method.

RevDate: 2021-07-22
CmpDate: 2021-07-22

Maki KA, Kazmi N, Barb JJ, et al (2021)

The Oral and Gut Bacterial Microbiomes: Similarities, Differences, and Connections.

Biological research for nursing, 23(1):7-20.

Background: The oral cavity is associated with local and systemic diseases, although oral samples are not as commonly studied as fecal samples in microbiome research. There is a gap in understanding between the similarities and differences in oral and gut microbiomes and how they may influence each other. Methods: A scoping literature review was conducted comparing oral and gut microbiome communities in healthy humans. Results: Ten manuscripts met inclusion criteria and were examined. The oral microbiome sites demonstrated great variance in differential bacterial abundance and the oral microbiome had higher alpha diversity as compared to the gut microbiome. Studies using 16S rRNA sequencing analysis resulted in overall community differences between the oral and gut microbiomes when beta diversity was analyzed. Shotgun metagenomics sequencing increased taxonomic resolution to strain level (intraspecies) and demonstrated a greater percentage of shared taxonomy and oral bacterial translocation to the gut microbiome community. Discussion: The oral and gut microbiome bacterial communities may be more similar than earlier research has suggested, when species strain is analyzed through shotgun metagenomics sequencing. The association between oral health and systemic diseases has been widely reported but many mechanisms underlying this relationship are unknown. Although future research is needed, the oral microbiome may be a novel interventional target through its downstream effects on the gut microbiome. As nurse scientists are experts in symptom characterization and phenotyping of patients, they are also well posed to lead research on the connection of the oral microbiome to the gut microbiome in health and disease.

RevDate: 2021-07-22
CmpDate: 2021-07-22

Shibata K, Ogai K, Ogura K, et al (2021)

Skin Physiology and its Microbiome as Factors Associated with the Recurrence of Pressure Injuries.

Biological research for nursing, 23(1):75-81.

BACKGROUND: Preventing recurrent pressure injuries (RPIs) is one of the important challenges faced in healthcare, but the risk factors of RPIs have not been fully revealed. This study aims to explore factors associated with RPIs, by focusing on skin physiology and its microbiome as local factors crucial for the health of healed tissue after pressure injury healing.

METHODS: This prospective observational study was conducted in a long-term care facility in Japan with patients whose PIs had healed within 1 month. Skin physiology was evaluated by stratum corneum (SC) hydration, pH, and transepidermal water loss. Skin bacteria was collected by tape stripping, followed by 16S ribosomal RNA-based metagenomics analysis. These parameters were evaluated every two weeks over a period of six weeks.

RESULTS: A total of 30 patients were included in this study, and 8 patients (26.7%) had an RPI within 6 weeks. In this study, significantly lower SC hydration and a higher rate of Staphylococcus species on the healed site were found in the RPI group.

DISCUSSION: A high rate of RPIs (about one in four) points out the necessity of a further care strategy on the healed PIs. Lower skin hydration and/or the increase in Staphylococcus bacteria may have a potential to be used as a biomarker for the prediction of RPIs, or may be an intervention point for the prevention of RPIs by, for example, skin cleansing with moisturizing care.

RevDate: 2021-07-22
CmpDate: 2021-07-22

New FN, IL Brito (2020)

What Is Metagenomics Teaching Us, and What Is Missed?.

Annual review of microbiology, 74:117-135.

Shotgun metagenomic sequencing has revolutionized our ability to detect and characterize the diversity and function of complex microbial communities. In this review, we highlight the benefits of using metagenomics as well as the breadth of conclusions that can be made using currently available analytical tools, such as greater resolution of species and strains across phyla and functional content, while highlighting challenges of metagenomic data analysis. Major challenges remain in annotating function, given the dearth of functional databases for environmental bacteria compared to model organisms, and the technical difficulties of metagenome assembly and phasing in heterogeneous environmental samples. In the future, improvements and innovation in technology and methodology will lead to lowered costs. Data integration using multiple technological platforms will lead to a better understanding of how to harness metagenomes. Subsequently, we will be able not only to characterize complex microbiomes but also to manipulate communities to achieve prosperous outcomes for health, agriculture, and environmental sustainability.

RevDate: 2021-07-21

Agrawal R, Ajami NJ, Malhotra S, et al (2021)

Habitual Sleep Duration and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Pilot Study.

Clocks & sleep, 3(3):387-397 pii:clockssleep3030025.

We examined the association between the colonic adherent microbiota and nocturnal sleep duration in humans. In a cross-sectional study, 63 polyp-free adults underwent a colonoscopy and donated 206 mucosal biopsies. The gut microbiota was profiled using the 16S rRNA gene sequencing targeting the V4 region. The sequence reads were processed using UPARSE and DADA2, respectively. Lifestyle factors, including sleep habits, were obtained using an interviewer-administered questionnaire. We categorized the participants into short sleepers (<6 h per night; n = 16) and normal sleepers (6-8 h per night; n = 47) based on self-reported data. Differences in bacterial biodiversity and the taxonomic relative abundance were compared between short vs. normal sleepers, followed by multivariable analysis. A false discovery rate-adjusted p value (q value) < 0.05 indicated statistical significance. The bacterial community composition differed in short and normal sleepers. The relative abundance of Sutterella was significantly lower (0.38% vs. 1.25%) and that of Pseudomonas was significantly higher (0.14% vs. 0.08%) in short sleepers than in normal sleepers (q values < 0.01). The difference was confirmed in the multivariable analysis. Nocturnal sleep duration was associated with the bacterial community composition and structure in the colonic gut microbiota in adults.

RevDate: 2021-07-21
CmpDate: 2021-07-21

Bhattacharya S, Roy C, Mandal S, et al (2020)

Aerobic microbial communities in the sediments of a marine oxygen minimum zone.

FEMS microbiology letters, 367(19):.

The ecology of aerobic microorganisms is never explored in marine oxygen minimum zone (OMZ) sediments. Here we reveal aerobic bacterial communities along ∼3 m sediment-horizons of the eastern Arabian Sea OMZ. Sulfide-containing sediment-cores retrieved from 530 mbsl (meters beneath the sea-level) and 580 mbsl were explored at 15-30 cm intervals, using metagenomics, pure-culture-isolation, genomics and metatranscriptomics. Genes for aerobic respiration, and oxidation of methane/ammonia/alcohols/thiosulfate/sulfite/organosulfur-compounds, were detected in the metagenomes from all 25 sediment-samples explored. Most probable numbers for aerobic chemolithoautotrophs and chemoorganoheterotrophs at individual sample-sites were up to 1.1 × 107 (g sediment)-1. The sediment-sample collected from 275 cmbsf (centimeters beneath the seafloor) of the 530-mbsl-core yielded many such obligately aerobic isolates belonging to Cereibacter, Guyparkeria, Halomonas, Methylophaga, Pseudomonas and Sulfitobacter which died upon anaerobic incubation, despite being provided with all possible electron acceptors and fermentative substrates. High percentages of metatranscriptomic reads from the 275 cmbsf sediment-sample, and metagenomic reads from all 25 sediment-samples, matched the isolates' genomic sequences including those for aerobic metabolisms, genetic/environmental information processing and cell division, thereby illustrating the bacteria's in-situ activity, and ubiquity across the sediment-horizons, respectively. The findings hold critical implications for organic carbon sequestration/remineralization, and inorganic compounds oxidation, within the sediment realm of global marine OMZs.

RevDate: 2021-07-21
CmpDate: 2021-07-21

Sanjar F, Weaver AJ, Peacock TJ, et al (2020)

Identification of Metagenomics Structure and Function Associated With Temporal Changes in Rat (Rattus norvegicus) Skin Microbiome During Health and Cutaneous Burn.

Journal of burn care & research : official publication of the American Burn Association, 41(2):347-358.

The cutaneous skin microbiome is host to a vast ensemble of resident microbes that provide essential capabilities including protection of skin barrier integrity and modulation of the host immune response. Cutaneous burn-injury promotes alteration of cutaneous and systemic immune response that can affect both commensal and pathogenic microbes. A cross-sectional study of a limited number of burn patients revealed a difference in the bacteriome of burned versus control participants. Temporal changes of the skin microbiome during health and cutaneous burn-injury remains largely unknown. Furthermore, how this microbial shift relates to community function in the collective metagenome remain elusive. Due to cost considerations and reduced healing time, rodents are frequently used in burn research, despite inherent physiological differences between rodents and human skin. Using a rat burn model, a longitudinal study was conducted to characterize the rat skin bacterial residents and associated community functions in states of health (n = 30) (sham-burned) and when compromised by burn-injury (n = 24). To address the knowledge gap, traumatic thermal injury and disruption of cutaneous surface is associated with genus-level changes in the microbiota, reduced bacterial richness, and altered representation of bacterial genes and associated predicted functions across different skin microbial communities. These findings demonstrate that, upon burn-injury, there is a shift in diversity of the skin's organismal assemblages, yielding a core microbiome that is distinct at the genome and functional level. Moreover, deviations from the core community correlate with temporal changes post-injury and community transition from the state of cutaneous health to disease (burn-injury).

RevDate: 2021-07-20
CmpDate: 2021-07-20

Kazarina A, Petersone-Gordina E, Kimsis J, et al (2021)

The Postmedieval Latvian Oral Microbiome in the Context of Modern Dental Calculus and Modern Dental Plaque Microbial Profiles.

Genes, 12(2):.

Recent advantages in paleomicrobiology have provided an opportunity to investigate the composition of ancient microbial ecologies. Here, using metagenome analysis, we investigated the microbial profiles of historic dental calculus retrieved from archaeological human remains from postmedieval Latvia dated 16-17th century AD and examined the associations of oral taxa and microbial diversity with specific characteristics. We evaluated the preservation of human oral microbiome patterns in historic samples and compared the microbial composition of historic dental calculus, modern human dental plaque, modern human dental calculus samples and burial soil microbiota. Overall, the results showed that the majority of microbial DNA in historic dental calculus originated from the oral microbiome with little impact of the burial environment. Good preservation of ancient DNA in historical dental calculus samples has provided reliable insight into the composition of the oral microbiome of postmedieval Latvian individuals. The relative stability of the classifiable oral microbiome composition was observed. Significant differences between the microbiome profiles of dental calculus and dental plaque samples were identified, suggesting microbial adaptation to a specific human body environment.

RevDate: 2021-07-20
CmpDate: 2021-07-20

Oliverio AM, Bissett A, McGuire K, et al (2020)

The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities.

mBio, 11(5):.

Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. We paired marker gene and shotgun metagenomic analyses to determine how soil bacterial and archaeal communities respond to differences in soil P availability and to detect corresponding shifts in functional attributes. We identified microbial taxa that are consistently responsive to extractable soil P, with those taxa found in low P soils being more likely to have traits typical of oligotrophic life history strategies. Using environmental niche modeling of genes and gene pathways, we found an enriched abundance of key genes in low P soils linked to the carbon-phosphorus (C-P) lyase and phosphonotase degradation pathways, along with key components of the high-affinity phosphate-specific transporter (Pst) and phosphate regulon (Pho) systems. Taken together, these analyses suggest that catabolism of phosphonates is an important strategy used by bacteria to scavenge phosphate in P-limited soils. Surprisingly, these same pathways are important for bacterial growth in P-limited marine waters, highlighting the shared metabolic strategies used by both terrestrial and marine microbes to cope with P limitation.

RevDate: 2021-07-20
CmpDate: 2021-07-20

Vuillemin A, Vargas S, Coskun ÖK, et al (2020)

Atribacteria Reproducing over Millions of Years in the Atlantic Abyssal Subseafloor.

mBio, 11(5):.

How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum "Candidatus Atribacteria," which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. "Ca. Atribacteria" dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing "Ca. Atribacteria" also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+ Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor "Ca Atribacteria," as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the "Ca Atribacteria" can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments.IMPORTANCE The deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial phylum "Candidatus Atribacteria" dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year-old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial microcompartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that "Ca Atribacteria" can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.

RevDate: 2021-07-20
CmpDate: 2021-07-20

Yuan Z, Ye X, Zhu L, et al (2020)

Virome assembly and annotation in brain tissue based on next-generation sequencing.

Cancer medicine, 9(18):6776-6790.

The glioblastoma multiforme (GBM) is one of the deadliest tumors. It has been speculated that virus plays a role in GBM but the evidences are controversy. Published researches are mainly limited to studies on the presence of human cytomegalovirus (HCMV) in GBM. No comprehensive assessment of the brain virome, the collection of viral material in the brain, based on recently sequenced data has been performed. Here, we characterized the virome from 111 GBM samples and 57 normal brain samples from eight projects in the SRA database by a tested and comprehensive assembly approach. The annotation of the assembled contigs showed that most viral sequences in the brain belong to the viral family Retroviridae. In some GBM samples, we also detected full genome sequence of a novel picornavirus recently discovered in invertebrates. Unlike previous reports, our study did not detect herpes virus such as HCMV in GBM from the data we used. However, some contigs that cannot be annotated with any known genes exhibited antibody epitopes in their sequences. These findings provide several avenues for potential cancer therapy: the newly discovered picornavirus could be a starting point to engineer novel oncolytic virus; and the exhibited antibody epitopes could be a source to explore potential drug targets for immune cancer therapy. By characterizing the virosphere in GBM and normal brain at a global level, the results from this study strengthen the link between GBM and viral infection which warrants the further investigation.

RevDate: 2021-07-20
CmpDate: 2021-07-20

Vorobev A, Dupouy M, Carradec Q, et al (2020)

Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics.

Genome research, 30(4):647-659.

Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ∼37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ∼12,000 co-abundant gene groups (CAGs), encompassing ∼7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Pastor-Villaescusa B, Plaza-Díaz J, Egea-Zorrilla A, et al (2021)

Evaluation of the gut microbiota after metformin intervention in children with obesity: A metagenomic study of a randomized controlled trial.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 134:111117.

BACKGROUND: Metformin, a first-line oral antidiabetic agent that has shown promising results in terms of treating childhood and adolescent obesity, might influence the composition of the gut microbiota. We aimed to evaluate whether the gut microbiota of non-diabetic children with obesity changes after a metformin intervention.

METHODS: The study was a multicenter and double-blind randomized controlled trial in 160 children with obesity. Children were randomly assigned to receive either metformin (1 g/day) or placebo for 6 months in combination with healthy lifestyle recommendations in both groups. Then, we conducted a metagenomic analysis in a subsample obtained from 33 children (15 metformin, 18 placebo). A linear mixed-effects model (LMM) was used to determine the abundance changes from baseline to six months according to treatment. To analyze the data by clusters, a principal component analysis was performed to understand whether lifestyle habits have a different influence on the microbiota depending on the treatment group.

RESULTS: Actinobacteria abundance was higher after placebo treatment compared with metformin. However, the interaction time x treatment just showed a trend to be significant (4.6% to 8.1% after placebo vs. 3.8 % to 2.6 % after metformin treatment, p = 0.055). At genus level, only the abundance of Bacillus was significantly higher after the placebo intervention compared with metformin (2.5% to 5.7% after placebo vs. 1.5 % to 0.8 % after metformin treatment, p = 0.044). Furthermore, different ensembles formed by Firmicutes, Bacteroidetes, and Verrucomicrobia were found according to the interventions under a similar food consumption.

CONCLUSION: Further studies with a large sample size controlled by lifestyle patterns are required in obese children and adolescents to clarify whether metformin might trigger gut microbiota alterations.

TRIAL REGISTRATION: Registered on the European Clinical Trials Database (EudraCT, ID: 2010-023061-21) on 14 November 2011.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Gálvez EJC, Iljazovic A, Amend L, et al (2020)

Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp.

Cell host & microbe, 28(6):838-852.e6.

Prevotella spp. are a dominant bacterial genus within the human gut. Multiple Prevotella spp. co-exist in some individuals, particularly those consuming plant-based diets. Additionally, Prevotella spp. exhibit variability in the utilization of diverse complex carbohydrates. To investigate the relationship between Prevotella competition and diet, we isolated Prevotella species from the mouse gut, analyzed their genomes and transcriptomes in vivo, and performed competition experiments between species in mice. Diverse dominant Prevotella species compete for similar metabolic niches in vivo, which is linked to the upregulation of specific polysaccharide utilization loci (PULs). Complex plant-derived polysaccharides are required for Prevotella spp. expansion, with arabinoxylans having a prominent impact on species abundance. The most dominant Prevotella species encodes a specific tandem-repeat trsusC/D PUL that enables arabinoxylan utilization and is conserved in human Prevotella copri strains, particularly among those consuming a vegan diet. These findings suggest that efficient (arabino)xylan-utilization is a factor contributing to Prevotella dominance.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Thijssen M, Tacke F, Beller L, et al (2020)

Clinical relevance of plasma virome dynamics in liver transplant recipients.

EBioMedicine, 60:103009.

BACKGROUND: The role of the microbiome in liver transplantation (LT) outcome has received a growing interest in the past decades. In contrast to bacteria, the role of endogenous viral communities, known as the virome, is poorly described. Here, we applied a viral metagenomic approach to study the dynamic evolution of circulating viruses in the plasma of LT recipients and its effect on the clinical course of patients.

METHODS: Patients chronically infected with hepatitis B virus (HBV) that received a LT due to endstage liver disease were included in this study. Longitudinal plasma samples were collected pre- and post-LT. Intact viral particles were isolated and sequenced on an Illumina HiSeq 2500 platform. Short read libraries were analysed with an in-house bioinformatics pipeline. Key endpoints were the dynamics of viral families and post-LT complications.

FINDINGS: The initiation of immunosuppression induced a bloom of the Anelloviridae that dominated the post-LT plasma virome. A variety of post-LT complication were observed. Nephrotoxicity was reported in 38% of the patients and was associated with a high abundance of anelloviruses. Besides nephrotoxicity, 16 (67%) patients experienced flares of viral or bacterial infections in post-transplant follow-up. These flares were recognized by an increased burden of anelloviruses (p < 0.05). Interestingly, no mortality was observed in patients infected with human pegivirus.

INTERPRETATION: These findings suggest a diagnostic potential for the Anelloviridae family in post-LT complications. Furthermore, the impact of human pegivirus infection on post-transplant survival should be further investigated.

FUNDING: This trial was supported by Gilead Sciences grant number BE-2017-000133.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Brugger SD, Eslami SM, Pettigrew MM, et al (2020)

Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota.

mSphere, 5(5):.

Multiple epidemiological studies identify Dolosigranulum pigrum as a candidate beneficial bacterium based on its positive association with health, including negative associations with nasal/nasopharyngeal colonization by the pathogenic species Staphylococcus aureus and Streptococcus pneumoniae Using a multipronged approach to gain new insights into D. pigrum function, we observed phenotypic interactions and predictions of genomic capacity that support the idea of a role for microbe-microbe interactions involving D. pigrum in shaping the composition of human nasal microbiota. We identified in vivo community-level and in vitro phenotypic cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. aureus growth in vitro, whereas robust inhibition of S. pneumoniae required both D. pigrum and a nasal Corynebacterium together. D. pigrum l-lactic acid production was insufficient to account for these inhibitions. Genomic analysis of 11 strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple predicted auxotrophies consistent with D. pigrum relying on its human host and on cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum harbored a diverse repertoire of biosynthetic gene clusters, some of which may have a role in microbe-microbe interactions. These new insights into D. pigrum's functions advance the field from compositional analysis to genomic and phenotypic experimentation on a potentially beneficial bacterial resident of the human upper respiratory tract and lay the foundation for future animal and clinical experiments.IMPORTANCE Staphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureus in vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Ramírez AL, Colmant AMG, Warrilow D, et al (2020)

Metagenomic Analysis of the Virome of Mosquito Excreta.

mSphere, 5(5):.

Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future.IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Bobay LM, Wissel EF, K Raymann (2020)

Strain Structure and Dynamics Revealed by Targeted Deep Sequencing of the Honey Bee Gut Microbiome.

mSphere, 5(4):.

Host-associated microbiomes can be critical for the health and proper development of animals and plants. The answers to many fundamental questions regarding the modes of acquisition and microevolution of microbiome communities remain to be established. Deciphering strain-level dynamics is essential to fully understand how microbial communities evolve, but the forces shaping the strain-level dynamics of microbial communities remain largely unexplored, mostly because of methodological issues and cost. Here, we used targeted strain-level deep sequencing to uncover the strain dynamics within a host-associated microbial community using the honey bee gut microbiome as a model system. Our results revealed that amplicon sequencing of conserved protein-coding gene regions using species-specific primers is a cost-effective and accurate method for exploring strain-level diversity. In fact, using this method we were able to confirm strain-level results that have been obtained from whole-genome shotgun sequencing of the honey bee gut microbiome but with a much higher resolution. Importantly, our deep sequencing approach allowed us to explore the impact of low-frequency strains (i.e., cryptic strains) on microbiome dynamics. Results show that cryptic strain diversity is not responsible for the observed variations in microbiome composition across bees. Altogether, the findings revealed new fundamental insights regarding strain dynamics of host-associated microbiomes.IMPORTANCE The factors driving fine-scale composition and dynamics of gut microbial communities are poorly understood. In this study, we used metagenomic amplicon deep sequencing to decipher the strain dynamics of two key members of the honey bee gut microbiome. Using this high-throughput and cost-effective approach, we were able to confirm results from previous large-scale whole-genome shotgun (WGS) metagenomic sequencing studies while also gaining additional insights into the community dynamics of two core members of the honey bee gut microbiome. Moreover, we were able to show that cryptic strains are not responsible for the observed variations in microbiome composition across bees.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Auchtung JM, Preisner EC, Collins J, et al (2020)

Identification of Simplified Microbial Communities That Inhibit Clostridioides difficile Infection through Dilution/Extinction.

mSphere, 5(4):.

The gastrointestinal microbiome plays an important role in limiting susceptibility to infection with Clostridioides difficile To better understand the ecology of bacteria important for C. difficile colonization resistance, we developed an experimental platform to simplify complex communities of fecal bacteria through dilution and rapidly screen for their ability to resist C. difficile colonization after challenge, as measured by >100-fold reduction in levels of C. difficile in challenged communities. We screened 76 simplified communities diluted from cultures of six fecal donors and identified 24 simplified communities that inhibited C. difficile colonization in vitro Sequencing revealed that simplified communities were composed of 19 to 67 operational taxonomic units (OTUs) and could be partitioned into four distinct community types. One simplified community could be further simplified from 56 to 28 OTUs through dilution and retain the ability to inhibit C. difficile We tested the efficacy of seven simplified communities in a humanized microbiota mouse model. We found that four communities were able to significantly reduce the severity of the initial C. difficile infection and limit susceptibility to disease relapse. Analysis of fecal microbiomes from treated mice demonstrated that simplified communities accelerated recovery of indigenous bacteria and led to stable engraftment of 19 to 22 OTUs from simplified communities. Overall, the insights gained through the identification and characterization of these simplified communities increase our understanding of the microbial dynamics of C. difficile infection and recovery.IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and a significant health care burden. Fecal microbiota transplantation is highly effective at treating recurrent C. difficile disease; however, uncertainties about the undefined composition of fecal material and potential long-term unintended health consequences remain. These concerns have motivated studies to identify new communities of microbes with a simpler composition that will be effective at treating disease. This work describes a platform for rapidly identifying and screening new simplified communities for efficacy in treating C. difficile infection. Four new simplified communities of microbes with potential for development of new therapies to treat C. difficile disease are identified. While this platform was developed and validated to model infection with C. difficile, the underlying principles described in the paper could be easily modified to develop therapeutics to treat other gastrointestinal diseases.

RevDate: 2021-07-19
CmpDate: 2021-07-19

Van Borm S, Fu Q, Winand R, et al (2020)

Evaluation of a commercial exogenous internal process control for diagnostic RNA virus metagenomics from different animal clinical samples.

Journal of virological methods, 283:113916.

Metagenomic next generation sequencing (mNGS) is increasingly recognized as an important complementary tool to targeted human and animal infectious disease diagnostics. It is, however, sensitive to biases and errors that are currently not systematically evaluated by the implementation of quality controls (QC) for the diagnostic use of mNGS. We evaluated a commercial reagent (Mengovirus extraction control kit, CeraamTools, bioMérieux) as an exogenous internal control for mNGS. It validates the integrity of reagents and workflow, the efficient isolation of viral nucleic acids and the absence of inhibitors in individual samples (verified using a specific qRT-PCR). Moreover, it validates the efficient generation of viral sequence data in individual samples (verified by normalized mengoviral read counts in the metagenomic analysis). We show that when using a completely random metagenomics workflow: (1) Mengovirus RNA can be reproducibly detected in different animal sample types (swine feces and sera, wild bird cloacal swabs), except for tissue samples (swine lung); (2) the Mengovirus control kit does not contain other contaminating viruses that may affect metagenomic experiments (using a cutoff of minimum 1 Kraken classified read per million (RPM)); (3) the addition of 2.17 × 106Mengovirus copies/mL of sample does not affect the virome composition of pig fecal samples or wild bird cloacal swab samples; (4) Mengovirus Cq values (using as cutoff the upper limit of the 99 % confidence interval of Cq values for a given sample matrix) allow the identification of samples with poor viral RNA extraction or high inhibitor load; (5) Mengovirus normalized read counts (cutoff RPM > 1) allow the identification of samples where the viral sequences are outcompeted by host or bacterial target sequences in the random metagenomic workflow. The implementation of two QC testing points, a first one after RNA extraction (Mengoviral qRT-PCR) and a second one after metagenomic data analysis provide valuable information for the validation of individual samples and results. Their implementation in addition to external controls validating runs or experiments should be carefully considered for a given sample type and workflow.

RevDate: 2021-07-17

Osvatic JT, Wilkins LGE, Leibrecht L, et al (2021)

Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups.

Proceedings of the National Academy of Sciences of the United States of America, 118(29):.

In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.

RevDate: 2021-07-16

Khattab AR, MA Farag (2021)

Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications.

Critical reviews in biotechnology [Epub ahead of print].

Endophytic fungi are a kind of fungi that colonizes living plant tissues presenting a myriad of microbial adaptations that have been developed in such a hidden environment. Owing to its large diversity and particular habituation, they present a golden mine for research in the field of drug discovery. Endophytic fungal communities possess unique biocatalytic machinery that furnishes a myriad of complex natural product scaffolds. Xanthone compounds are examples of endophytic secondary metabolic products with pronounced biological activity to include: antioxidant, antimicrobial, anti-inflammatory, antithrombotic, antiulcer, choleretic, diuretic, and monoamine oxidase inhibiting activity.The current review compiles the recent progress made on the microbiological production of xanthones using fungal endophytes obtained from both marine and terrestrial origins, with comparisons being made among both natural resources. The biosynthesis of xanthones in endophytic fungi is outlined along with its decoding enzymes. Biotransformation reactions reported to be carried out using different endophytic microbial models are also outlined for xanthones structural modification purposes and the production of novel molecules.A promising application of novel computational tools is presented as a future direction for the goal of optimizing microbial xanthones production to include establishing metabolic pathway databases and the in silico analysis of microbial interactions. Metagenomics methods and related bioinformatics platforms are highlighted as unexplored tools for the biodiversity analysis of endophytic microbial communities that are difficult to be cultured.

RevDate: 2021-07-16
CmpDate: 2021-07-16

Del Chierico F, Manco M, Gardini S, et al (2021)

Fecal microbiota signatures of insulin resistance, inflammation, and metabolic syndrome in youth with obesity: a pilot study.

Acta diabetologica, 58(8):1009-1022.

AIMS: To identify fecal microbiota profiles associated with metabolic abnormalities belonging to the metabolic syndrome (MS), high count of white blood cells (WBCs) and insulin resistance (IR).

METHODS: Sixty-eight young patients with obesity were stratified for percentile distribution of MS abnormalities. A MS risk score was defined as low, medium, and high MS risk. High WBCs were defined as a count ≥ 7.0 103/µL; severe obesity as body mass index Z-score ≥ 2 standard deviations; IR as homeostatic assessment model algorithm of IR (HOMA) ≥ 3.7. Stool samples were analyzed by 16S rRNA-based metagenomics.

RESULTS: We found reduced bacterial richness of fecal microbiota in patients with IR and high diastolic blood pressure (BP). Distinct microbial markers were associated to high BP (Clostridium and Clostridiaceae), low high-density lipoprotein cholesterol (Lachnospiraceae, Gemellaceae, Turicibacter), and high MS risk (Coriobacteriaceae), WBCs (Bacteroides caccae, Gemellaceae), severe obesity (Lachnospiraceae), and impaired glucose tolerance (Bacteroides ovatus and Enterobacteriaceae). Conversely, taxa such as Faecalibacterium prausnitzii, Parabacterodes, Bacteroides caccae, Oscillospira, Parabacterodes distasonis, Coprococcus, and Haemophilus parainfluenzae were associated to low MS risk score, triglycerides, fasting glucose and HOMA-IR, respectively. Supervised multilevel analysis grouped clearly "variable" patients based on the MS risk.

CONCLUSIONS: This was a proof-of-concept study opening the way at the identification of fecal microbiota signatures, precisely associated with cardiometabolic risk factors in young patients with obesity. These evidences led us to infer, while some gut bacteria have a detrimental role in exacerbating metabolic risk factors some others are beneficial ameliorating cardiovascular host health.

RevDate: 2021-07-16
CmpDate: 2021-07-16

Ariaeenejad S, Kavousi K, Mamaghani ASA, et al (2021)

In-silico discovery of bifunctional enzymes with enhanced lignocellulose hydrolysis from microbiota big data.

International journal of biological macromolecules, 177:211-220.

Due to the importance of using lignocellulosic biomass, it is always important to find an effective novel enzyme or enzyme cocktail or fusion enzymes. Identification of bifunctional enzymes through a metagenomic approach is an efficient method for converting agricultural residues and a beneficial way to reduce the cost of enzyme cocktail and fusion enzyme production. In this study, a novel stable bifunctional cellulase/xylanase, PersiCelXyn1 was identified from the rumen microbiota by the multi-stage in-silico screening pipeline and computationally assisted methodology. The enzyme exhibited the optimal activity at pH 5 and 50°C. Analyzing the enzyme activity at extreme temperature, pH, long-term storage, and presence of inhibitors and metal ions, confirmed the stability of the bifunctional enzyme under harsh conditions. Hydrolysis of the rice straw by PersiCelXyn1 showed its capability to degrade both cellulose and hemicellulose polymers. Also, the enzyme improved the degradation of various biomass substrates after 168 h of hydrolysis. Our results demonstrated the power of the multi-stage in-silico screening to identify bifunctional enzymes from metagenomic big data for effective bioconversion of lignocellulosic biomass.

RevDate: 2021-07-16
CmpDate: 2021-07-16

Starke R, Pylro VS, DK Morais (2021)

16S rRNA Gene Copy Number Normalization Does Not Provide More Reliable Conclusions in Metataxonomic Surveys.

Microbial ecology, 81(2):535-539.

Sequencing 16S rRNA gene amplicons is the gold standard to uncover the composition of prokaryotic communities. The presence of multiple copies of this gene makes the community abundance data distorted and gene copy normalization (GCN) necessary for correction. Even though GCN of 16S data provided a picture closer to the metagenome before, it should also be compared with communities of known composition due to the fact that library preparation is prone to methodological biases. Here, we process 16S rRNA gene amplicon data from eleven simple mock communities with DADA2 and estimate the impact of GCN. In all cases, the mock community composition derived from the 16S sequencing differs from those expected, and GCN fails to improve the classification for most of the analysed communities. Our approach provides empirical evidence that GCN does not improve the 16S target sequencing analyses in real scenarios. We therefore question the use of GCN for metataxonomic surveys until a more comprehensive catalogue of copy numbers becomes available.

RevDate: 2021-07-16
CmpDate: 2021-07-16

Lukoseviciute L, Lebedeva J, N Kuisiene (2021)

Diversity of Polyketide Synthases and Nonribosomal Peptide Synthetases Revealed Through Metagenomic Analysis of a Deep Oligotrophic Cave.

Microbial ecology, 81(1):110-121.

Caves are considered to be extreme and challenging environments. It is believed that the ability of microorganisms to produce secondary metabolites enhances their survivability and adaptiveness in the energy-starved cave environment. Unfortunately, information on the genetic potential for the production of secondary metabolites, such as polyketides and nonribosomal peptides, is limited. In the present study, we aimed to identify and characterize genes responsible for the production of secondary metabolites in the microbial community of one of the deepest caves in the world, Krubera-Voronja Cave (43.4184 N 40.3083 E, Western Caucasus). The analysed sample materials included sediments, drinkable water from underground camps, soil and clay from the cave walls, speleothems and coloured spots from the cave walls. The type II polyketide synthases (PKSs) ketosynthases α and β and the adenylation domains of nonribosomal peptide synthetases (NRPSs) were investigated using a metagenomic approach. Taxonomic diversity analysis showed that most PKS sequences could be attributed to Actinobacteria followed by unclassified bacteria and Acidobacteria, while the NRPS sequences were more taxonomically diverse and could be assigned to Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Chloroflexi, etc. Only three putative metabolites could be predicted: an angucycline group polyketide, a massetolide A-like cyclic lipopeptide and a surfactin-like lipopeptide. The absolute majority of PKS and NRPS sequences showed low similarity with the sequences of the reference biosynthetic pathways, suggesting that these sequences could be involved in the production of novel secondary metabolites.

RevDate: 2021-07-15

Gilroy R (2021)

Spotlight on the Avian Gut Microbiome: Fresh Opportunities in Discovery.

Chickens represent a globally ubiquitous food animal underpinning many aspects of human nutrition and health. Consumption of chicken meat continues to surge, representing a cheaper, healthier, low carbon alternative to other livestock meats. Despite this importance, we are still unable to define what lives within the chicken gut microbiome. This complex community bridges poultry diet, health and productivity as well as providing a reservoir for zoonotic pathogens. Even with decades of intensive study we are still discovering novel microbial species within this environment, each of which having the potential to provide an avenue for commercial microbiome modulation. The chicken gut truly represents an exhilarating challenge in turning new-found knowledge into new-won power to improve the health and wealth of poultry and people.

RevDate: 2021-07-14

Chen P, Zhou H, Huang Y, et al (2021)

Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep.

Genome biology, 22(1):207.

BACKGROUND: The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms.

RESULTS: We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts' nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat.

CONCLUSION: Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.

RevDate: 2021-07-14
CmpDate: 2021-07-14

Arif M, Zhang C, Li X, et al (2021)

iNetModels 2.0: an interactive visualization and database of multi-omics data.

Nucleic acids research, 49(W1):W271-W276.

It is essential to reveal the associations between various omics data for a comprehensive understanding of the altered biological process in human wellness and disease. To date, very few studies have focused on collecting and exhibiting multi-omics associations in a single database. Here, we present iNetModels, an interactive database and visualization platform of Multi-Omics Biological Networks (MOBNs). This platform describes the associations between the clinical chemistry, anthropometric parameters, plasma proteomics, plasma metabolomics, as well as metagenomics for oral and gut microbiome obtained from the same individuals. Moreover, iNetModels includes tissue- and cancer-specific Gene Co-expression Networks (GCNs) for exploring the connections between the specific genes. This platform allows the user to interactively explore a single feature's association with other omics data and customize its particular context (e.g. male/female specific). The users can also register their data for sharing and visualization of the MOBNs and GCNs. Moreover, iNetModels allows users who do not have a bioinformatics background to facilitate human wellness and disease research. iNetModels can be accessed freely at https://inetmodels.com without any limitation.

RevDate: 2021-07-14
CmpDate: 2021-07-14

Gatcliffe C, Rao A, Brigger M, et al (2021)

Metagenomic sequencing and evaluation of the host response in the pediatric aerodigestive population.

Pediatric pulmonology, 56(2):516-524.

OBJECTIVES: To assess the diagnostic utility of metagenomic sequencing in pediatric aerodigestive clinic patients being evaluated for chronic aspiration. We hypothesize that using a metagenomics platform will aid in the identification of microbes not found on standard culture.

STUDY DESIGN AND METHODS: Twenty-four children referred to an aerodigestive clinic were enrolled in a prospective, single-site, cross-sectional cohort study. At the time of clinical evaluation under anesthesia, two samples were obtained: an upper airway sample and a sample from bronchoalveolar lavage (BAL). Samples were sent for routine culture and analyzed using Explify® Respiratory, a CLIA Laboratory Developed Test which identifies respiratory commensals and pathogens through RNA and DNA sequencing. Since RNA was sequenced in the course of the metagenomic analysis to identify organisms (RNA viruses and bacteria), the sequencing approach also captured host derived messenger RNA during sample analysis. This incidentally obtained host transcriptomic data were analyzed to evaluate the host immune response. The results of these studies were correlated with the clinical presentation of the research subjects.

RESULTS: In 10 patients, organisms primarily associated with oral flora were identified in the BAL. Standard culture was negative in three patients where clinical metagenomics led to a result with potential clinical significance. Transcriptomic data correlated with the presence or absence of dysphagia as identified on prior videofluoroscopic evaluation of swallowing.

CONCLUSIONS: Clinical metagenomics allows for simultaneous analysis of the microbiota and the host immune response from BAL samples. As the technologies in this field continue to advance, such testing may improve the diagnostic evaluation of patients with suspected chronic aspiration.

RevDate: 2021-07-14
CmpDate: 2021-07-14

Akinola SA, Ayangbenro AS, OO Babalola (2021)

The diverse functional genes of maize rhizosphere microbiota assessed using shotgun metagenomics.

Journal of the science of food and agriculture, 101(8):3193-3201.

BACKGROUND: The geographical diversification in chemical, biological and physical properties of plant biospheres instigates heterogenicity in the proliferation of important soil microbiome. Controlling functions and structure of plant rhizosphere from a better understanding and prediction of a plant's immediate environment will help assess plant-microbe interplay, improve the productivity of plant ecosystems and improve plant response to adverse soil conditions. Here we characterized functional genes of the microbial community of maize rhizosphere using a culture-independent method.

RESULTS: Our metadata showed microbial genes involved in nitrogen fixation, phosphate solubilization, quorum sensing molecules, trehalose, siderophore production, phenazine biosynthesis protein, daunorubicin resistance, acetoin, 1-aminocyclopropane-1-carboxylate deaminase, 4-hydroxybenzoate, disease control and stress-reducing genes (superoxidase dismutase, catalase, peroxidase, etc.). β-Diversity showed that there is a highly significant difference between most of the genes mined from rhizosphere soil samples and surrounding soils.

CONCLUSIONS: The high relative abundance of stress-reducing genes mined from this study showed that the sampling sites harbor not only important plant-beneficial organisms but also a hotspot for developing bio-fertilizers. Nevertheless, since most of these organisms are unculturable, mapping cultivation strategies for their growth could make them readily available as bio-inoculants and possible biotechnological applications in the future. © 2020 Society of Chemical Industry.

RevDate: 2021-07-15
CmpDate: 2021-07-15

Evans JT, VJ Denef (2020)

To Dereplicate or Not To Dereplicate?.

mSphere, 5(3):.

Metagenome-assembled genomes (MAGs) expand our understanding of microbial diversity, evolution, and ecology. Concerns have been raised on how sequencing, assembly, binning, and quality assessment tools may result in MAGs that do not reflect single populations in nature. Here, we reflect on another issue, i.e., how to handle highly similar MAGs assembled from independent data sets. Obtaining multiple genomic representatives for a species is highly valuable, as it allows for population genomic analyses; however, when retaining genomes of closely related populations, it complicates MAG quality assessment and abundance inferences. We show that (i) published data sets contain a large fraction of MAGs sharing >99% average nucleotide identity, (ii) different software packages and parameters used to resolve this redundancy remove very different numbers of MAGs, and (iii) the removal of closely related genomes leads to losses of population-specific auxiliary genes. Finally, we highlight some approaches that can infer strain-specific dynamics across a sample series without dereplication.

RevDate: 2021-07-15
CmpDate: 2021-07-15

Estaki M, Jiang L, Bokulich NA, et al (2020)

QIIME 2 Enables Comprehensive End-to-End Analysis of Diverse Microbiome Data and Comparative Studies with Publicly Available Data.

Current protocols in bioinformatics, 70(1):e100.

QIIME 2 is a completely re-engineered microbiome bioinformatics platform based on the popular QIIME platform, which it has replaced. QIIME 2 facilitates comprehensive and fully reproducible microbiome data science, improving accessibility to diverse users by adding multiple user interfaces. QIIME 2 can be combined with Qiita, an open-source web-based platform, to re-use available data for meta-analysis. The following basic protocol describes how to install QIIME 2 on a single computer and analyze microbiome sequence data, from processing of raw DNA sequence reads through generating publishable interactive figures. These interactive figures allow readers of a study to interact with data with the same ease as its authors, advancing microbiome science transparency and reproducibility. We also show how plug-ins developed by the community to add analysis capabilities can be installed and used with QIIME 2, enhancing various aspects of microbiome analyses-e.g., improving taxonomic classification accuracy. Finally, we illustrate how users can perform meta-analyses combining different datasets using readily available public data through Qiita. In this tutorial, we analyze a subset of the Early Childhood Antibiotics and the Microbiome (ECAM) study, which tracked the microbiome composition and development of 43 infants in the United States from birth to 2 years of age, identifying microbiome associations with antibiotic exposure, delivery mode, and diet. For more information about QIIME 2, see https://qiime2.org. To troubleshoot or ask questions about QIIME 2 and microbiome analysis, join the active community at https://forum.qiime2.org. © 2020 The Authors. Basic Protocol: Using QIIME 2 with microbiome data Support Protocol: Further microbiome analyses.

RevDate: 2021-07-12

Garrido-Sanz L, Senar MÀ, J Piñol (2021)

Relative species abundance estimation in artificial mixtures of insects using mito-metagenomics and a correction factor for the mitochondrial DNA copy number.

Molecular ecology resources [Epub ahead of print].

Mito-metagenomics (MMG) is becoming an alternative to amplicon metabarcoding for the assessment of biodiversity in complex biological samples using high-throughput sequencing. Whereas MMG overcomes the biases introduced by the PCR step in the generation of amplicons, it is not yet a technique free of shortcomings. First, as the reads are obtained from shotgun sequencing, a very low proportion of reads map into the mitogenomes, so a high sequencing effort is needed. Second, as the number of mitogenomes per cell can vary among species, the relative species abundance (RSA) in a mixture could be wrongly estimated. Here, we challenge the MMG method to estimate the RSA using artificial libraries of 17 insect species whose complete genomes are available on public repositories. With fresh specimens of these species, we created single-species libraries to calibrate the bioinformatic pipeline and mixed-species libraries to estimate the RSA. Our results showed that the MMG approach confidently recovers the species list of the mixtures, even when they contain congeneric species. The method was also able to estimate the abundance of a species across different samples (within-species estimation) but failed to estimate the RSA within a single sample (across-species estimation) unless a correction factor accounting for the variable number of mitogenomes per cell was used. To estimate this correction factor, we used the proportion of reads mapping into mitogenomes in the single-species libraries and the lengths of the whole genomes and mitogenomes.

RevDate: 2021-07-13
CmpDate: 2021-07-13

Kameoka S, Motooka D, Watanabe S, et al (2021)

Benchmark of 16S rRNA gene amplicon sequencing using Japanese gut microbiome data from the V1-V2 and V3-V4 primer sets.

BMC genomics, 22(1):527.

BACKGROUND: 16S rRNA gene amplicon sequencing (16S analysis) is widely used to analyze microbiota with next-generation sequencing technologies. Here, we compared fecal 16S analysis data from 192 Japanese volunteers using the modified V1-V2 (V12) and the standard V3-V4 primer (V34) sets to optimize the gut microbiota analysis protocol.

RESULTS: QIIME1 and QIIME2 analysis revealed a higher number of unclassified representative sequences in the V34 data than in the V12 data. The comparison of bacterial composition demonstrated that at the phylum level, Actinobacteria and Verrucomicrobia were detected at higher levels with V34 than with V12. Among these phyla, we observed higher relative compositions of Bifidobacterium and Akkermansia with V34. To estimate the actual abundance, we performed quantitative real-time polymerase chain reaction (qPCR) assays for Akkermansia and Bifidobacterium. We found that the abundance of Akkermansia as detected by qPCR was close to that in V12 data, but was markedly lower than that in V34 data. The abundance of Bifidobacterium detected by qPCR was higher than that in V12 and V34 data.

CONCLUSIONS: These results indicate that the bacterial composition derived from the V34 region might differ from the actual abundance for specific gut bacteria. We conclude that the use of the modified V12 primer set is more desirable in the 16S analysis of the Japanese gut microbiota.

RevDate: 2021-07-05

Jiao L, Kourkoumpetis T, Hutchinson D, et al (2021)

Spatial Characteristics of Colonic Mucosa-Associated Gut Microbiota in Humans.

Microbial ecology [Epub ahead of print].

Limited data exist on the spatial distribution of the colonic bacteria in humans. We collected the colonic biopsies from five segments of 27 polyp-free adults and collected feces from 13 of them. We sequenced the V4 region of the bacterial 16S rRNA gene using the MiSeq platform. The sequencing data were assigned to the amplicon sequence variant (ASV) using SILVA. Biodiversity and the relative abundance of the ASV were compared across the colonic segments and between the rectal and fecal samples. Bacterial functional capacity was assessed using Tax4fun. Each individual had a unique bacterial community composition (Weighted Bray-Curtis P value = 0.001). There were no significant differences in richness, evenness, community composition, and the taxonomic structure across the colon segments in all the samples. Firmicutes (47%), Bacteroidetes (39%), and Proteobacteria (6%) were the major phyla in all segments, followed by Verrucomicrobia, Fusobacteria, Desulfobacterota, and Actinobacteria. There were 15 genera with relative abundance > 1%, including Bacteroides, Faecalibacterium, Escherichia/Shigella, Sutterella, Akkermansia, Parabacteroides, Prevotella, Lachnoclostridium, Alistipes, Fusobacterium, Erysipelatoclostridium, and four Lachnospiraceae family members. Intra-individually, the community compositional dissimilarity was the greatest between the cecum and the rectum. There were significant differences in biodiversity and the taxonomic structure between the rectal and fecal bacteria. The bacterial community composition and structure were homogeneous across the large intestine in adults. The inter-individual variability of the bacteria was greater than inter-segment variability. The rectal and fecal bacteria differed in the community composition and structure.

RevDate: 2021-07-05

Zampieri A, Babbucci M, Carraro L, et al (2021)

Combining Culture-Dependent and Culture-Independent Methods: New Methodology Insight on the Vibrio Community of Ruditapes philippinarum.

Foods (Basel, Switzerland), 10(6):.

Vibrios represent a natural contaminant of seafood products. V. alginolyticus, V. cholerae, V. parahaemolyticus and V. vulnificus are the most hazardous species to human health. Given the worldwide consumption of mollusc products, reliable detection of Vibrio species is recommended to prevent human vibriosis. In this study, culture-dependent and -independent methods were compared and integrated to implement knowledge of the Manila clam Vibrio community composition. Here, 16S and recA-pyrH metabarcoding were applied to compare the microbial communities of homogenate clam samples (culture-independent method) and their culture-derived samples plated on three different media (culture-dependent method). In addition, a subset of plated clam samples was investigated using shotgun metagenomics. Homogenate metabarcoding characterized the most abundant taxa (16S) and Vibrio species (recA-pyrH). Culture-dependent metabarcoding detected the cultivable taxa, including rare species. Moreover, marine agar medium was found to be a useful substrate for the recovery of several Vibrio species, including the main human pathogenic ones. The culture-dependent shotgun metagenomics detected all the main human pathogenic Vibrio species and a higher number of vibrios with respect to the recA-pyrH metabarcoding. The study revealed that integration of culture-dependent and culture-independent methods might be a valid approach for the characterization of Vibrio biodiversity.

RevDate: 2021-07-12
CmpDate: 2021-07-12

Huang S, Jiang S, Huo D, et al (2021)

Candidate probiotic Lactiplantibacillus plantarum HNU082 rapidly and convergently evolves within human, mice, and zebrafish gut but differentially influences the resident microbiome.

Microbiome, 9(1):151.

BACKGROUND: Improving probiotic engraftment in the human gut requires a thorough understanding of the in vivo adaptive strategies of probiotics in diverse contexts. However, for most probiotic strains, these in vivo genetic processes are still poorly characterized. Here, we investigated the effects of gut selection pressures from human, mice, and zebrafish on the genetic stability of a candidate probiotic Lactiplantibacillus plantarum HNU082 (Lp082) as well as its ecological and evolutionary impacts on the indigenous gut microbiota using shotgun metagenomic sequencing in combination with isolate resequencing methods.

RESULTS: We combined both metagenomics and isolate whole genome sequencing approaches to systematically study the gut-adaptive evolution of probiotic L. plantarum and the ecological and evolutionary changes of resident gut microbiomes in response to probiotic ingestion in multiple host species. Independent of host model, Lp082 colonized and adapted to the gut by acquiring highly consistent single-nucleotide mutations, which primarily modulated carbohydrate utilization and acid tolerance. We cultivated the probiotic mutants and validated that these gut-adapted mutations were genetically stable for at least 3 months and improved their fitness in vitro. In turn, resident gut microbial strains, especially competing strains with Lp082 (e.g., Bacteroides spp. and Bifidobacterium spp.), actively responded to Lp082 engraftment by accumulating 10-70 times more evolutionary changes than usual. Human gut microbiota exhibited a higher ecological and genetic stability than that of mice.

CONCLUSIONS: Collectively, our results suggest a highly convergent adaptation strategy of Lp082 across three different host environments. In contrast, the evolutionary changes within the resident gut microbes in response to Lp082 were more divergent and host-specific; however, these changes were not associated with any adverse outcomes. This work lays a theoretical foundation for leveraging animal models for ex vivo engineering of probiotics to improve engraftment outcomes in humans. Video abstract.

RevDate: 2021-06-29

Selari PJRG, Olchanheski LR, Ferreira AJ, et al (2021)

Short-Term Effect in Soil Microbial Community of Two Strategies of Recovering Degraded Area in Brazilian Savanna: A Pilot Case Study.

Frontiers in microbiology, 12:661410.

The Brazilian Cerrado is a highland tropical savanna considered a biodiversity hotspot with many endemic species of plants and animals. Over the years, most of the native areas of this biome became arable areas, and with inadequate management, some are nowadays at varying levels of degradation stage. Crop-livestock integrated systems (CLIS) are one option for the recovery of areas in degradation, improving the physicochemical and biological characteristics of the soil while increasing income and mitigating risks due to product diversification. Little is known about the effect of CLIS on the soil microbial community. Therefore, we perform this pilot case study to support further research on recovering degraded areas. The bacterial and fungal soil communities in the area with CLIS were compared to an area under moderate recovery (low-input recovering - LI) and native savanna (NS) area. Bacterial and fungal communities were investigated by 16S and ITS rRNA gene sequencing (deep rRNA sequencing). Ktedonobacteraceae and AD3 families were found predominantly in LI, confirming the relationship of the members of the Chloroflexi phylum in challenging environmental conditions, which can be evidenced in LI. The CLIS soil presented 63 exclusive bacterial families that were not found in LI or NS and presented a higher bacterial richness, which can be related to good land management. The NS area shared 21 and 6 families with CLIS and LI, respectively, suggesting that the intervention method used in the analyzed period brings microbial diversity closer to the conditions of the native area, demonstrating a trend of approximation between NS and CLIS even in the short term. The most abundant fungal phylum in NS treatment was Basidiomycota and Mucoromycota, whereas Ascomycota predominated in CLIS and LI. The fungal community needs more time to recover and to approximate from the native area than the bacterial community. However, according to the analysis of bacteria, the CLIS area behaved differently from the LI area, showing that this treatment induces a faster response to the increase in species richness, tending to more accelerated recovery. Results obtained herein encourage CLIS as a sustainable alternative for recovery and production in degraded areas.

RevDate: 2021-07-01
CmpDate: 2021-06-30

Berry ASF, Pierdon MK, Misic AM, et al (2021)

Remodeling of the maternal gut microbiome during pregnancy is shaped by parity.

Microbiome, 9(1):146.

BACKGROUND: The maternal microbiome has emerged as an important factor in gestational health and outcome and is associated with risk of preterm birth and offspring morbidity. Epidemiological evidence also points to successive pregnancies-referred to as maternal parity-as a risk factor for preterm birth, infant mortality, and impaired neonatal growth. Despite the fact that both the maternal microbiome and parity are linked to maternal-infant health, the impact of parity on the microbiome remains largely unexplored, in part due to the challenges of studying parity in humans.

RESULTS: Using synchronized pregnancies and dense longitudinal monitoring of the microbiome in pigs, we describe a microbiome trajectory during pregnancy and determine the extent to which parity modulates this trajectory. We show that the microbiome changes reproducibly during gestation and that this remodeling occurs more rapidly as parity increases. At the time of parturition, parity was linked to the relative abundance of several bacterial species, including Treponema bryantii, Lactobacillus amylovorus, and Lactobacillus reuteri. Strain tracking carried out in 18 maternal-offspring "quadrads"-each consisting of one mother sow and three piglets-linked maternal parity to altered levels of Akkermansia muciniphila, Prevotella stercorea, and Campylobacter coli in the infant gut 10 days after birth.

CONCLUSIONS: Collectively, these results identify parity as an important environmental factor that modulates the gut microbiome during pregnancy and highlight the utility of a swine model for investigating the microbiome in maternal-infant health. In addition, our data show that the impact of parity extends beyond the mother and is associated with alterations in the community of bacteria that colonize the offspring gut early in life. The bacterial species we identified as parity-associated in the mother and offspring have been shown to influence host metabolism in other systems, raising the possibility that such changes may influence host nutrient acquisition or utilization. These findings, taken together with our observation that even subtle differences in parity are associated with microbiome changes, underscore the importance of considering parity in the design and analysis of human microbiome studies during pregnancy and in infants. Video abstract.

RevDate: 2021-06-25
CmpDate: 2021-06-25

Kaur I, Gaur VK, Regar RK, et al (2021)

Plants exert beneficial influence on soil microbiome in a HCH contaminated soil revealing advantage of microbe-assisted plant-based HCH remediation of a dumpsite.

Chemosphere, 280:130690.

Persistence of hexachlorocyclohexane (HCH) pesticide is a major problem for its disposal. Soil microflora plays an important role in remediating contaminated sites. Keeping concepts of microbial- and phyto-remediation together, the difference between soil microflora with and without association of HCH accumulating plant species was studied. Metagenomic analysis among the non-plant soil (BS) (∑HCH 434.19 mg/g), rhizospheric soil of shrubs (RSS) (∑HCH 157.31 mg/g), and rhizospheric soil of trees (RSD) (∑HCH 105.39 mg/g) revealed significant differences in microbial communities. Shrubs and trees occurred at a long-term dumpsite accumulated α- and β- HCH residues. Plant rhizospheric soils exhibited high richness and evenness with higher diversity indices compared to the non-plant soil. Order Rhizobiales was most abundant in all soils and Streptomycetales was absent in the BS soil. Proteobacteria and Ascomycota were highest in BS soil, while Actinobacteria was enriched in both the plant rhizospheric soil samples. In BS soil, Pseudomonas, Sordaria, Caulobacter, Magnetospirillum, Rhodospirillum were abundant. While, genera Actinoplanes, Streptomyces, Bradyrhizobium, Rhizobium, Azospirillum, Agrobacterium are abundant in RSD soil. Selected plants have accumulated HCH residues from soil and exerted positive impacts on soil microbial communities in HCH contaminated site. This study advocates microbe-assisted plant-based bioremediation strategy to remediate HCH contamination.

RevDate: 2021-07-08
CmpDate: 2021-07-08

Wagner J, Kancherla J, Braccia D, et al (2020)

Interactive exploratory data analysis of Integrative Human Microbiome Project data using Metaviz.

F1000Research, 9:601.

The rich data produced by the second phase of the Human Microbiome Project (iHMP) offers a unique opportunity to test hypotheses that interactions between microbial communities and a human host might impact an individual's health or disease status. In this work we describe infrastructure that integrates Metaviz, an interactive microbiome data analysis and visualization tool, with the iHMP Data Coordination Center web portal and the HMP2Data R/Bioconductor package. We describe integrative statistical and visual analyses of two datasets from iHMP using Metaviz along with the metagenomeSeq R/Bioconductor package for statistical analysis of differential abundance analysis. These use cases demonstrate the utility of a combined approach to access and analyze data from this resource.

RevDate: 2021-06-25
CmpDate: 2021-06-25

West PT, Peters SL, Olm MR, et al (2021)

Genetic and behavioral adaptation of Candida parapsilosis to the microbiome of hospitalized infants revealed by in situ genomics, transcriptomics, and proteomics.

Microbiome, 9(1):142.

BACKGROUND: Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure culture, leaving gaps in understanding of its function in a microbiome context.

RESULTS: Here, we compare five unique C. parapsilosis genomes assembled from premature infant fecal samples, three of which are newly reconstructed, and analyze their genome structure, population diversity, and in situ activity relative to reference strains in pure culture. All five genomes contain hotspots of single nucleotide variants, some of which are shared by strains from multiple hospitals. A subset of environmental and hospital-derived genomes share variants within these hotspots suggesting derivation of that region from a common ancestor. Four of the newly reconstructed C. parapsilosis genomes have 4 to 16 copies of the gene RTA3, which encodes a lipid translocase and is implicated in antifungal resistance, potentially indicating adaptation to hospital antifungal use. Time course metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C. parapsilosis blood infection revealed highly variable in situ expression patterns that are distinct from those of similar strains in pure cultures. For example, biofilm formation genes were relatively less expressed in situ, whereas genes linked to oxygen utilization were more highly expressed, indicative of growth in a relatively aerobic environment. In gut microbiome samples, C. parapsilosis co-existed with Enterococcus faecalis that shifted in relative abundance over time, accompanied by changes in bacterial and fungal gene expression and proteome composition.

CONCLUSIONS: The results reveal potentially medically relevant differences in Candida function in gut vs. laboratory environments, and constrain evolutionary processes that could contribute to hospital strain persistence and transfer into premature infant microbiomes. Video abstract.

RevDate: 2021-06-25
CmpDate: 2021-06-25

Schmidt BM, Erb-Downward J, Ranjan P, et al (2021)

Metagenomics to Identify Pathogens in Diabetic Foot Ulcers and the Potential Impact for Clinical Care.

Current diabetes reports, 21(8):26.

PURPOSE OF REVIEW: Diabetes mellitus may affect every third adult American by 2050, and about one-third will develop a diabetic foot ulcer (DFU) during their lifetime. The current standard of care results in healing of less than 50% of all DFUs. Many individuals with DFU develop limb-threatening infection which place them at risk for additional morbidity and mortality. We review research associated with culture-independent next-generation sequencing techniques pertaining to diabetic foot ulcers and their potential for clinical application.

RECENT FINDINGS: Diabetic foot ulcers are a growing problem and clinicians are limited by their reliance on conventional culture. Metagenomic sequencing technology provides an unparalleled viewpoint of the polymicrobial constituency of DFU. The microbiome techniques used to study the microbial constituency of DFU may offer insight to improve care for these patients, but without standardized approaches in research based on real-world clinical practices, a significant knowledge gap will remain.

RevDate: 2021-07-05
CmpDate: 2021-07-05

Townsend EM, Kelly L, Muscatt G, et al (2021)

The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome.

Frontiers in cellular and infection microbiology, 11:643214.

The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.

RevDate: 2021-06-22

Morrison MD, Thissen JB, Karouia F, et al (2021)

Investigation of Spaceflight Induced Changes to Astronaut Microbiomes.

Frontiers in microbiology, 12:659179.

The International Space Station (ISS) is a uniquely enclosed environment that has been continuously occupied for the last two decades. Throughout its operation, protecting the health of the astronauts on-board has been a high priority. The human microbiome plays a significant role in maintaining human health, and disruptions in the microbiome have been linked to various diseases. To evaluate the effects of spaceflight on the human microbiome, body swabs and saliva samples were collected from four ISS astronauts on consecutive expeditions. Astronaut samples were analyzed using shotgun metagenomic sequencing and microarrays to characterize the microbial biodiversity before, during, and after the astronauts' time onboard the ISS. Samples were evaluated at an individual and population level to identify changes in microbial diversity and abundance. No significant changes in the number or relative abundance of taxa were observed between collection time points when samples from all four astronauts were analyzed together. When the astronauts' saliva samples were analyzed individually, the saliva samples of some astronauts showed significant changes in the relative abundance of taxa during and after spaceflight. The relative abundance of Prevotella in saliva samples increased during two astronauts' time onboard the ISS while the relative abundance of other commensal taxa such as Neisseria, Rothia, and Haemophilus decreased. The abundance of some antimicrobial resistance genes within the saliva samples also showed significant changes. Most notably, elfamycin resistance gene significantly increased in all four astronauts post-flight and a CfxA6 beta-lactam marker significantly increased during spaceflight but returned to normal levels post-flight. The combination of both shotgun metagenomic sequencing and microarrays showed the benefit of both technologies in monitoring microbes on board the ISS. There were some changes in each astronaut's microbiome during spaceflight, but these changes were not universal for all four astronauts. Two antimicrobial resistance gene markers did show a significant change in abundance in the saliva samples of all four astronauts across their collection times. These results provide insight for future ISS microbial monitoring studies and targets for antimicrobial resistance screenings.

RevDate: 2021-07-12
CmpDate: 2021-07-12

Hardmeier I, Aeberhard N, Qi W, et al (2021)

Metagenomic analysis of fecal and tissue samples from 18 endemic bat species in Switzerland revealed a diverse virus composition including potentially zoonotic viruses.

PloS one, 16(6):e0252534.

Many recent disease outbreaks in humans had a zoonotic virus etiology. Bats in particular have been recognized as reservoirs to a large variety of viruses with the potential to cross-species transmission. In order to assess the risk of bats in Switzerland for such transmissions, we determined the virome of tissue and fecal samples of 14 native and 4 migrating bat species. In total, sequences belonging to 39 different virus families, 16 of which are known to infect vertebrates, were detected. Contigs of coronaviruses, adenoviruses, hepeviruses, rotaviruses A and H, and parvoviruses with potential zoonotic risk were characterized in more detail. Most interestingly, in a ground stool sample of a Vespertilio murinus colony an almost complete genome of a Middle East respiratory syndrome-related coronavirus (MERS-CoV) was detected by Next generation sequencing and confirmed by PCR. In conclusion, bats in Switzerland naturally harbour many different viruses. Metagenomic analyses of non-invasive samples like ground stool may support effective surveillance and early detection of viral zoonoses.

RevDate: 2021-06-24
CmpDate: 2021-06-17

Glickman C, Hendrix J, M Strong (2021)

Simulation study and comparative evaluation of viral contiguous sequence identification tools.

BMC bioinformatics, 22(1):329.

BACKGROUND: Viruses, including bacteriophages, are important components of environmental and human associated microbial communities. Viruses can act as extracellular reservoirs of bacterial genes, can mediate microbiome dynamics, and can influence the virulence of clinical pathogens. Various targeted metagenomic analysis techniques detect viral sequences, but these methods often exclude large and genome integrated viruses. In this study, we evaluate and compare the ability of nine state-of-the-art bioinformatic tools, including Vibrant, VirSorter, VirSorter2, VirFinder, DeepVirFinder, MetaPhinder, Kraken 2, Phybrid, and a BLAST search using identified proteins from the Earth Virome Pipeline to identify viral contiguous sequences (contigs) across simulated metagenomes with different read distributions, taxonomic compositions, and complexities.

RESULTS: Of the tools tested in this study, VirSorter achieved the best F1 score while Vibrant had the highest average F1 score at predicting integrated prophages. Though less balanced in its precision and recall, Kraken2 had the highest average precision by a substantial margin. We introduced the machine learning tool, Phybrid, which demonstrated an improvement in average F1 score over tools such as MetaPhinder. The tool utilizes machine learning with both gene content and nucleotide features. The addition of nucleotide features improves the precision and recall compared to the gene content features alone.Viral identification by all tools was not impacted by underlying read distribution but did improve with contig length. Tool performance was inversely related to taxonomic complexity and varied by the phage host. For instance, Rhizobium and Enterococcus phages were identified consistently by the tools; whereas, Neisseria prophage sequences were commonly missed in this study.

CONCLUSION: This study benchmarked the performance of nine state-of-the-art bioinformatic tools to identify viral contigs across different simulation conditions. This study explored the ability of the tools to identify integrated prophage elements traditionally excluded from targeted sequencing approaches. Our comprehensive analysis of viral identification tools to assess their performance in a variety of situations provides valuable insights to viral researchers looking to mine viral elements from publicly available metagenomic data.

RevDate: 2021-07-04
CmpDate: 2021-06-25

Xie F, Jin W, Si H, et al (2021)

An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants.

Microbiome, 9(1):137.

BACKGROUND: Gastrointestinal tract (GIT) microbiomes in ruminants play major roles in host health and thus animal production. However, we lack an integrated understanding of microbial community structure and function as prior studies. are predominantly biased towards the rumen. Therefore, to acquire a microbiota inventory of the discrete GIT compartments, In this study, we used shotgun metagenomics to profile the microbiota of 370 samples that represent 10 GIT regions of seven ruminant species.

RESULTS: Our analyses reconstructed a GIT microbial reference catalog with > 154 million nonredundant genes and identified 8745 uncultured candidate species from over 10,000 metagenome-assembled genomes. The integrated gene catalog across the GIT regions demonstrates spatial associations between the microbiome and physiological adaptations, and 8745 newly characterized genomes substantially expand the genomic landscape of ruminant microbiota, particularly those from the lower gut. This substantially expands the previously known set of endogenous microbial diversity and the taxonomic classification rate of the GIT microbiome. These candidate species encode hundreds of enzymes and novel biosynthetic gene clusters that improve our understanding concerning methane production and feed efficiency in ruminants. Overall, this study expands the characterization of the ruminant GIT microbiota at unprecedented spatial resolution and offers clues for improving ruminant livestock production in the future.

CONCLUSIONS: Having access to a comprehensive gene catalog and collections of microbial genomes provides the ability to perform efficiently genome-based analysis to achieve a detailed classification of GIT microbial ecosystem composition. Our study will bring unprecedented power in future association studies to investigate the impact of the GIT microbiota in ruminant health and production. Video abstract.

RevDate: 2021-06-30
CmpDate: 2021-06-30

Lloréns-Rico V, Vieira-Silva S, Gonçalves PJ, et al (2021)

Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases.

Nature communications, 12(1):3562.

While metagenomic sequencing has become the tool of preference to study host-associated microbial communities, downstream analyses and clinical interpretation of microbiome data remains challenging due to the sparsity and compositionality of sequence matrices. Here, we evaluate both computational and experimental approaches proposed to mitigate the impact of these outstanding issues. Generating fecal metagenomes drawn from simulated microbial communities, we benchmark the performance of thirteen commonly used analytical approaches in terms of diversity estimation, identification of taxon-taxon associations, and assessment of taxon-metadata correlations under the challenge of varying microbial ecosystem loads. We find quantitative approaches including experimental procedures to incorporate microbial load variation in downstream analyses to perform significantly better than computational strategies designed to mitigate data compositionality and sparsity, not only improving the identification of true positive associations, but also reducing false positive detection. When analyzing simulated scenarios of low microbial load dysbiosis as observed in inflammatory pathologies, quantitative methods correcting for sampling depth show higher precision compared to uncorrected scaling. Overall, our findings advocate for a wider adoption of experimental quantitative approaches in microbiome research, yet also suggest preferred transformations for specific cases where determination of microbial load of samples is not feasible.

RevDate: 2021-06-29
CmpDate: 2021-06-29

Rivera AJ, RE Tyx (2021)

Microbiology of the American Smokeless Tobacco.

Applied microbiology and biotechnology, 105(12):4843-4853.

Smokeless tobacco products (STP) contain diverse microbial communities that contribute to the formation of harmful chemical byproducts. This is concerning since 300 million individuals around the globe are users of smokeless tobacco. Significant evidence has shown that microbial metabolic activities mediate the formation of carcinogens during manufacturing. In recent years, studies have revealed a series of additional health impacts that include lesions and inflammation of the oral mucosa and the gastrointestinal tract, as well as alterations of the endogenous microbiota. These findings are due to recent developments in molecular technologies that allowed researchers to better examine the microbial component of these products. This new information illustrates the scale of the STP microbiota and its diversity in the finished product that is sold for consumption. Additionally, the application of metagenomics and metatranscriptomics has provided the tools to look at phylogenies across bacterial, viral, and eukaryotic groups, their functional capacities, and viability. Here we present key examples of tobacco microbiology research that utilizes newer approaches and strategies to define the microbial component of smokeless tobacco products. We also highlight challenges in these approaches, the knowledge gaps being filled, and those gaps that warrant further study. A better understanding of the microbiology of STP brings vast public health benefits. It will provide important information for the product consumer, impact manufacturing practices, and provide support for the development of attainable and more meaningful regulatory goals. KEY POINTS: Newer technologies allowed quicker and more comprehensive identification of microbes in tobacco samples, encapsulating microorganisms difficult or impossible to culture. Current research in smokeless tobacco microbiology is filling knowledge gaps previously unfilled due to the lack of suitable approaches. The microbial ecology of smokeless tobacco presents a clearer picture of diversity and variability not considered before.

RevDate: 2021-06-13

Yoshitake K, Kimura G, Sakami T, et al (2021)

Development of a time-series shotgun metagenomics database for monitoring microbial communities at the Pacific coast of Japan.

Scientific reports, 11(1):12222.

Although numerous metagenome, amplicon sequencing-based studies have been conducted to date to characterize marine microbial communities, relatively few have employed full metagenome shotgun sequencing to obtain a broader picture of the functional features of these marine microbial communities. Moreover, most of these studies only performed sporadic sampling, which is insufficient to understand an ecosystem comprehensively. In this study, we regularly conducted seawater sampling along the northeastern Pacific coast of Japan between March 2012 and May 2016. We collected 213 seawater samples and prepared size-based fractions to generate 454 subsets of samples for shotgun metagenome sequencing and analysis. We also determined the sequences of 16S rRNA (n = 111) and 18S rRNA (n = 47) gene amplicons from smaller sample subsets. We thereafter developed the Ocean Monitoring Database for time-series metagenomic data (http://marine-meta.healthscience.sci.waseda.ac.jp/omd/), which provides a three-dimensional bird's-eye view of the data. This database includes results of digital DNA chip analysis, a novel method for estimating ocean characteristics such as water temperature from metagenomic data. Furthermore, we developed a novel classification method that includes more information about viruses than that acquired using BLAST. We further report the discovery of a large number of previously overlooked (TAG)n repeat sequences in the genomes of marine microbes. We predict that the availability of this time-series database will lead to major discoveries in marine microbiome research.

RevDate: 2021-06-30

Wei ST, Chen YL, Wu YW, et al (2021)

Integrated Multi-omics Investigations Reveal the Key Role of Synergistic Microbial Networks in Removing Plasticizer Di-(2-Ethylhexyl) Phthalate from Estuarine Sediments.

mSystems, 6(3):e0035821.

Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer worldwide, with an annual global production of more than 8 million tons. Because of its improper disposal, endocrine-disrupting DEHP often accumulates in estuarine sediments in industrialized countries at submillimolar levels, resulting in adverse effects on both ecosystems and human beings. The microbial degraders and biodegradation pathways of DEHP in O2-limited estuarine sediments remain elusive. Here, we employed an integrated meta-omics approach to identify the DEHP degradation pathway and major degraders in this ecosystem. Estuarine sediments were treated with DEHP or its derived metabolites, o-phthalic acid and benzoic acid. The rate of DEHP degradation in denitrifying mesocosms was two times slower than that of o-phthalic acid, suggesting that side chain hydrolysis of DEHP is the rate-limiting step of anaerobic DEHP degradation. On the basis of microbial community structures, functional gene expression, and metabolite profile analysis, we proposed that DEHP biodegradation in estuarine sediments is mainly achieved through synergistic networks between denitrifying proteobacteria. Acidovorax and Sedimenticola are the major degraders of DEHP side chains; the resulting o-phthalic acid is mainly degraded by Aestuariibacter through the UbiD-dependent benzoyl coenzyme A (benzoyl-CoA) pathway. We isolated and characterized Acidovorax sp. strain 210-6 and its extracellular hydrolase, which hydrolyzes both alkyl side chains of DEHP. Interestingly, genes encoding DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase and phthaloyl-CoA decarboxylase-key enzymes for side chain hydrolysis and o-phthalic acid degradation, respectively-are flanked by transposases in these proteobacterial genomes, indicating that DEHP degradation capacity is likely transferred horizontally in microbial communities. IMPORTANCE Xenobiotic phthalate esters (PAEs) have been produced on a considerably large scale for only 70 years. The occurrence of endocrine-disrupting di-(2-ethylhexyl) phthalate (DEHP) in environments has raised public concern, and estuarine sediments are major DEHP reservoirs. Our multi-omics analyses indicated that complete DEHP degradation in O2-limited estuarine sediments depends on synergistic microbial networks between diverse denitrifying proteobacteria and uncultured candidates. Our data also suggested that the side chain hydrolysis of DEHP, rather than o-phthalic acid activation, is the rate-limiting step in DEHP biodegradation within O2-limited estuarine sediments. Therefore, deciphering the bacterial ecophysiology and related biochemical mechanisms can help facilitate the practice of bioremediation in O2-limited environments. Furthermore, the DEHP hydrolase genes of active DEHP degraders can be used as molecular markers to monitor environmental DEHP degradation. Finally, future studies on the directed evolution of identified DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase would bring a more catalytically efficient DEHP/MEHP hydrolase into practice.

RevDate: 2021-06-25
CmpDate: 2021-06-25

Callahan BJ, Grinevich D, Thakur S, et al (2021)

Ultra-accurate microbial amplicon sequencing with synthetic long reads.

Microbiome, 9(1):130.

BACKGROUND: Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge.

METHODS: Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads.

RESULTS: LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens.

CONCLUSIONS: The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics. Video abstract.

RevDate: 2021-06-25
CmpDate: 2021-06-25

Wilkins D, Tong X, Leung MHY, et al (2021)

Diurnal variation in the human skin microbiome affects accuracy of forensic microbiome matching.

Microbiome, 9(1):129.

BACKGROUND: The human skin microbiome has been recently investigated as a potential forensic tool, as people leave traces of their potentially unique microbiomes on objects and surfaces with which they interact. In this metagenomic study of four people in Hong Kong, their homes, and public surfaces in their neighbourhoods, we investigated the stability and identifiability of these microbiota traces on a timescale of hours to days.

RESULTS: Using a Canberra distance-based method of comparing skin and surface microbiomes, we found that a person could be accurately matched to their household in 84% of tests and to their neighbourhood in 50% of tests, and that matching accuracy did not decay for household surfaces over the 10-day study period, although it did for public surfaces. The time of day at which a skin or surface sample was taken affected matching accuracy, and 160 species across all sites were found to have a significant variation in abundance between morning and evening samples. We hypothesised that daily routines drive a rhythm of daytime dispersal from the pooled public surface microbiome followed by normalisation of a person's microbiome by contact with their household microbial reservoir, and Dynamic Bayesian Networks (DBNs) supported dispersal from public surfaces to skin as the major dispersal route among all sites studied.

CONCLUSIONS: These results suggest that in addition to considering the decay of microbiota traces with time, diurnal patterns in microbiome exposure that contribute to the human skin microbiome assemblage must also be considered in developing this as a potential forensic method. Video Abstract.

RevDate: 2021-06-05

Sisk-Hackworth L, Ortiz-Velez A, Reed MB, et al (2021)

Compositional Data Analysis of Periodontal Disease Microbial Communities.

Frontiers in microbiology, 12:617949.

Periodontal disease (PD) is a chronic, progressive polymicrobial disease that induces a strong host immune response. Culture-independent methods, such as next-generation sequencing (NGS) of bacteria 16S amplicon and shotgun metagenomic libraries, have greatly expanded our understanding of PD biodiversity, identified novel PD microbial associations, and shown that PD biodiversity increases with pocket depth. NGS studies have also found PD communities to be highly host-specific in terms of both biodiversity and the response of microbial communities to periodontal treatment. As with most microbiome work, the majority of PD microbiome studies use standard data normalization procedures that do not account for the compositional nature of NGS microbiome data. Here, we apply recently developed compositional data analysis (CoDA) approaches and software tools to reanalyze multiomics (16S, metagenomics, and metabolomics) data generated from previously published periodontal disease studies. CoDA methods, such as centered log-ratio (clr) transformation, compensate for the compositional nature of these data, which can not only remove spurious correlations but also allows for the identification of novel associations between microbial features and disease conditions. We validated many of the studies' original findings, but also identified new features associated with periodontal disease, including the genera Schwartzia and Aerococcus and the cytokine C-reactive protein (CRP). Furthermore, our network analysis revealed a lower connectivity among taxa in deeper periodontal pockets, potentially indicative of a more "random" microbiome. Our findings illustrate the utility of CoDA techniques in multiomics compositional data analysis of the oral microbiome.

RevDate: 2021-06-27

Chukwuma OB, Rafatullah M, Tajarudin HA, et al (2021)

Bacterial Diversity and Community Structure of a Municipal Solid Waste Landfill: A Source of Lignocellulolytic Potential.

Life (Basel, Switzerland), 11(6):.

Omics have given rise to research on sparsely studied microbial communities such as the landfill, lignocellulolytic microorganisms and enzymes. The bacterial diversity of Municipal Solid Waste sediments was determined using the illumina MiSeq system after DNA extraction and Polymerase chain reactions. Data analysis was used to determine the community's richness, diversity, and correlation with environmental factors. Physicochemical studies revealed sites with mesophilic and thermophilic temperature ranges and a mixture of acidic and alkaline pH values. Temperature and moisture content showed the highest correlation with the bacteria community. The bacterial analysis of the community DNA revealed 357,030 effective sequences and 1891 operational taxonomic units (OTUs) assigned. Forty phyla were found, with the dominant phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota, while Aerococcus, Stenotrophomonas, and Sporosarcina were the dominant species. PICRUSt provided insight on community's metabolic function, which was narrowed down to search for lignocellulolytic enzymes' function. Cellulase, xylanase, esterase, and peroxidase were gene functions inferred from the data. This article reports on the first phylogenetic analysis of the Pulau Burung landfill bacterial community. These results will help to improve the understanding of organisms dominant in the landfill and the corresponding enzymes that contribute to lignocellulose breakdown.

RevDate: 2021-06-14
CmpDate: 2021-06-14

Ansorge R, Birolo G, James SA, et al (2021)

Dadaist2: A Toolkit to Automate and Simplify Statistical Analysis and Plotting of Metabarcoding Experiments.

International journal of molecular sciences, 22(10):.

The taxonomic composition of microbial communities can be assessed using universal marker amplicon sequencing. The most common taxonomic markers are the 16S rDNA for bacterial communities and the internal transcribed spacer (ITS) region for fungal communities, but various other markers are used for barcoding eukaryotes. A crucial step in the bioinformatic analysis of amplicon sequences is the identification of representative sequences. This can be achieved using a clustering approach or by denoising raw sequencing reads. DADA2 is a widely adopted algorithm, released as an R library, that denoises marker-specific amplicons from next-generation sequencing and produces a set of representative sequences referred to as 'Amplicon Sequence Variants' (ASV). Here, we present Dadaist2, a modular pipeline, providing a complete suite for the analysis that ranges from raw sequencing reads to the statistics of numerical ecology. Dadaist2 implements a new approach that is specifically optimised for amplicons with variable lengths, such as the fungal ITS. The pipeline focuses on streamlining the data flow from the command line to R, with multiple options for statistical analysis and plotting, both interactive and automatic.

RevDate: 2021-06-23
CmpDate: 2021-06-23

Izawa K, Okamoto-Shibayama K, Kita D, et al (2021)

Taxonomic and Gene Category Analyses of Subgingival Plaques from a Group of Japanese Individuals with and without Periodontitis.

International journal of molecular sciences, 22(10):.

Periodontitis is an inflammation of tooth-supporting tissues, which is caused by bacteria in the subgingival plaque (biofilm) and the host immune response. Traditionally, subgingival pathogens have been investigated using methods such as culturing, DNA probes, or PCR. The development of next-generation sequencing made it possible to investigate the whole microbiome in the subgingival plaque. Previous studies have implicated dysbiosis of the subgingival microbiome in the etiology of periodontitis. However, details are still lacking. In this study, we conducted a metagenomic analysis of subgingival plaque samples from a group of Japanese individuals with and without periodontitis. In the taxonomic composition analysis, genus Bacteroides and Mycobacterium demonstrated significantly different compositions between healthy sites and sites with periodontal pockets. The results from the relative abundance of functional gene categories, carbohydrate metabolism, glycan biosynthesis and metabolism, amino acid metabolism, replication and repair showed significant differences between healthy sites and sites with periodontal pockets. These results provide important insights into the shift in the taxonomic and functional gene category abundance caused by dysbiosis, which occurs during the progression of periodontal disease.

RevDate: 2021-06-29
CmpDate: 2021-06-29

Franciosa I, Ferrocino I, Giordano M, et al (2021)

Specific metagenomic asset drives the spontaneous fermentation of Italian sausages.

Food research international (Ottawa, Ont.), 144:110379.

Metagenomics is a powerful tool to study and understand the microbial dynamics that occur during food fermentation and allows to close the link between microbial diversity and final sensory characteristics. Each food matrix can be colonized by different microbes, but also by different strains of the same species. In this study, using an innovative integrated approach combining culture-dependent method with a shotgun sequencing, we were able to show how strain-level biodiversity could influence the quality characteristics of the final product. The attention was placed on a model food fermentation process: Salame Piemonte, a Protected Geographical Indication (PGI) Italian fermented sausage. Three independent batches produced in February, March and May 2018 were analysed. The sausages were manufactured, following the production specification, in a local meat factory in the area of Turin (Italy) without the use of starter cultures. A pangenomic approach was applied in order to identify and evaluate the lactic acid bacteria (LAB) population driving the fermentation process. It was observed that all batches were characterized by the presence of few LAB species, namely Pediococcus pentosaceus, Latilactobacillus curvatus and Latilactobacillus sakei. Sausages from the different batches were different when the volatilome was taken into consideration, and a strong association between quality attributes and strains present was determined. In particular, different strains of L. sakei, showing heterogeneity at genomic level, colonized the meat at the beginning of each production and deeply influenced the fermentation process by distinctive metabolic pathways that affected the fermentation process and the final sensory aspects.

RevDate: 2021-06-19
CmpDate: 2021-06-08

Xu L, Dong Z, Chiniquy D, et al (2021)

Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics.

Nature communications, 12(1):3209.

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.

RevDate: 2021-07-10
CmpDate: 2021-06-08

Behsaz B, Bode E, Gurevich A, et al (2021)

Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery.

Nature communications, 12(1):3225.

Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly encoded in the genome but are instead produced by metabolic pathways encoded by biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, without knowing which modifications exist in the sample. To address this challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to identify many NRPs from different environments, including four previously unreported NRP families from soil-associated microbes and NRPs from human microbiota. Furthermore, in this work we demonstrate the anti-parasitic activities and the structure of two of these NRP families using direct bioactivity screening and nuclear magnetic resonance spectrometry, illustrating the power of NRPminer for discovering bioactive NRPs.

RevDate: 2021-06-02
CmpDate: 2021-05-31

Guo J, Pang E, Song H, et al (2021)

A tri-tuple coordinate system derived for fast and accurate analysis of the colored de Bruijn graph-based pangenomes.

BMC bioinformatics, 22(1):282.

BACKGROUND: With the rapid development of accurate sequencing and assembly technologies, an increasing number of high-quality chromosome-level and haplotype-resolved assemblies of genomic sequences have been derived, from which there will be great opportunities for computational pangenomics. Although genome graphs are among the most useful models for pangenome representation, their structural complexity makes it difficult to present genome information intuitively, such as the linear reference genome. Thus, efficiently and accurately analyzing the genome graph spatial structure and coordinating the information remains a substantial challenge.

RESULTS: We developed a new method, a colored superbubble (cSupB), that can overcome the complexity of graphs and organize a set of species- or population-specific haplotype sequences of interest. Based on this model, we propose a tri-tuple coordinate system that combines an offset value, topological structure and sample information. Additionally, cSupB provides a novel method that utilizes complete topological information and efficiently detects small indels (< 50 bp) for highly similar samples, which can be validated by simulated datasets. Moreover, we demonstrated that cSupB can adapt to the complex cycle structure.

CONCLUSIONS: Although the solution is made suitable for increasingly complex genome graphs by relaxing the constraint, the directed acyclic graph, the motif cSupB and the cSupB method can be extended to any colored directed acyclic graph. We anticipate that our method will facilitate the analysis of individual haplotype variants and population genomic diversity. We have developed a C + + program for implementing our method that is available at https://github.com/eggleader/cSupB .

RevDate: 2021-06-25
CmpDate: 2021-06-25

Leung MHY, Tong X, Bøifot KO, et al (2021)

Characterization of the public transit air microbiome and resistome reveals geographical specificity.

Microbiome, 9(1):112.

BACKGROUND: The public transit is a built environment with high occupant density across the globe, and identifying factors shaping public transit air microbiomes will help design strategies to minimize the transmission of pathogens. However, the majority of microbiome works dedicated to the public transit air are limited to amplicon sequencing, and our knowledge regarding the functional potentials and the repertoire of resistance genes (i.e. resistome) is limited. Furthermore, current air microbiome investigations on public transit systems are focused on single cities, and a multi-city assessment of the public transit air microbiome will allow a greater understanding of whether and how broad environmental, building, and anthropogenic factors shape the public transit air microbiome in an international scale. Therefore, in this study, the public transit air microbiomes and resistomes of six cities across three continents (Denver, Hong Kong, London, New York City, Oslo, Stockholm) were characterized.

RESULTS: City was the sole factor associated with public transit air microbiome differences, with diverse taxa identified as drivers for geography-associated functional potentials, concomitant with geographical differences in species- and strain-level inferred growth profiles. Related bacterial strains differed among cities in genes encoding resistance, transposase, and other functions. Sourcetracking estimated that human skin, soil, and wastewater were major presumptive resistome sources of public transit air, and adjacent public transit surfaces may also be considered presumptive sources. Large proportions of detected resistance genes were co-located with mobile genetic elements including plasmids. Biosynthetic gene clusters and city-unique coding sequences were found in the metagenome-assembled genomes.

CONCLUSIONS: Overall, geographical specificity transcends multiple aspects of the public transit air microbiome, and future efforts on a global scale are warranted to increase our understanding of factors shaping the microbiome of this unique built environment.

RevDate: 2021-07-08
CmpDate: 2021-07-08

Fulci V, Carissimi C, I Laudadio (2021)

COVID-19 and Preparing for Future Ecological Crises: Hopes from Metagenomics in Facing Current and Future Viral Pandemic Challenges.

Omics : a journal of integrative biology, 25(6):336-341.

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak demonstrates the potential of coronaviruses, especially bat-derived beta coronaviruses to rapidly escalate to a global pandemic that has caused deaths in the order of several millions already. The huge efforts put in place by the scientific community to address this emergency have disclosed how the implementation of new technologies is crucial in the prepandemic period to timely face future ecological crises. In this context, we argue that metagenomics and new approaches to understanding ecosystems and biodiversity offer veritable prospects to innovate therapeutics and diagnostics against novel and existing infectious agents. We discuss the opportunities and challenges associated with the science of metagenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century.

RevDate: 2021-06-23
CmpDate: 2021-05-27

Valença IN, Santos RBD, Peronni KC, et al (2021)

Deep sequencing applied to the analysis of viromes in patients with beta-thalassemia.

Revista do Instituto de Medicina Tropical de Sao Paulo, 63:e40.

To date, blood banks apply routine diagnosis to a specific spectrum of transfusion-transmitted viruses. Even though this measure is considered highly efficient to control their transmission, the threat imposed by emerging viruses is increasing globally, which can impact transfusion safety, especially in the light of the accelerated viral discovery by novel sequencing technologies. One of the most important groups of patients, who may indicate the presence of emerging viruses in the field of blood transfusion, is the group of individuals who receive multiple transfusions due to hereditary hemoglobinopathies. It is possible that they harbor unknown or unsuspected parenterally-transmitted viruses. In order to elucidate this, nucleic acids from 30 patients with beta-thalassemia were analyzed by Illumina next-generation sequencing and bioinformatics analysis. Three major viral families: Anelloviridae, Flaviviridae and Hepadnaviridae were identified. Among them, anelloviruses were the most representative, being detected with high number of reads in all tested samples. Human Pegivirus 1 (HPgV-1, or GBV-C), Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) were also identified. HBV and HCV detection was expected due to the high seroprevalence in patients with beta thalassemia. Our results do not confirm the presence of emerging or unsuspected viruses threatening the transfusion safety at present, but can be used to actively search for viruses that threaten blood transfusion safety. We believe that the application of viral metagenomics in multiple-transfused patients is highly useful to monitor possible viral transfusion threats and for the annotation of their virome composition.

RevDate: 2021-06-17
CmpDate: 2021-06-17

Wu X, Liu P, Wegner CE, et al (2021)

Deciphering microbial mechanisms underlying soil organic carbon storage in a wheat-maize rotation system.

The Science of the total environment, 788:147798.

A link between microbial life history strategies and soil organic carbon storage in agroecosystems is presumed, but largely unexplored at the gene level. We aimed to elucidate whether and how differential organic material amendments (manure versus peat-vermiculite) affect, relative to sole chemical fertilizer application, the link between microbial life history strategies and soil organic carbon storage in a wheat-maize rotation field experiment. To achieve this goal, we combined bacterial 16S rRNA gene and fungal ITS amplicon sequencing, metagenomics and the assembly of genomes. Fertilizer treatments had a significantly greater effect on microbial community composition than aggregate size, with soil available phosphorus and potassium being the most important community-shaping factors. Limitation in labile carbon was linked to a K-selected oligotrophic life history strategy (Gemmatimonadetes, Acidobacteria) under sole chemical fertilizer application; defined by a significant enrichment of genes involved in resource acquisition, polymer hydrolysis, and competition. By contrast, excess of labile carbon promoted an r-selected copiotrophic life history strategy (Cytophagales, Bacillales, Mortierellomycota) under manure treatment; defined by a significant enrichment of genes involved in cellular growth. A distinct life history strategy was not observed under peat-vermiculite treatment, but rather a mix of both K-selected (Acidobacteria) and r-selected (Actinobacteria, Mortierellomycota) microorganisms. Compared to sole chemical fertilizer application, soil organic carbon storage efficiency was significantly increased by 26.5% and 50.0% under manure and peat-vermiculite treatments, respectively. Taken together, our results highlight the importance of organic material amendments, but in particular a one-time peat-vermiculite application, to promote soil organic carbon storage as a potential management strategy for sustainable agriculture.

RevDate: 2021-05-28
CmpDate: 2021-05-28

Qiao L, Liu X, Zhang S, et al (2021)

Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: A metagenomics approach.

The Science of the total environment, 779:146502.

Metal mining has caused the accumulation of waste mine tailing dumps from abandoned mines. The pollution of farmlands surrounding metal tailings by heavy metals has been a long-recognized problem. However, the distribution of antibiotic resistance genes (ARGs) in tailings and the main factors influencing this distribution have rarely been reported. In this study, a metagenomics approach was used to investigate the microbial community and ARGs present in farmland surrounding gold tailings in northern China. The results showed that the main pollutants in the farmland were As, Pb, and Cd. Proteobacteria and Actinobacteria were the dominant phyla of microbes in farmlands surrounding gold tailings. A total of 75 ARGs with 327 ARG subtypes were detected in soil samples. Macrolide-, lincosaminide-, and streptogramin B resistant genes accounted for the majority of ARGs in this study, and Actinobacteria, Proteobacteria, and Acidobacteria were the hosts of most ARGs. Partial least squares path modeling revealed that the microbial community was the most influential driver moderating the distribution of soil ARGs near tailings, and heavy metals have direct and partially indirect effects on these ARGs. In contrast to previous analyses of ARGs, our study found that mobile gene elements had a minimal impact on ARGs. Overall, this study presents a complete ARG survey that sheds light on the distribution and fate of ARGs under heavy metal contamination in farmland around gold tailings.

RevDate: 2021-06-17
CmpDate: 2021-06-17

Ramírez-Fernández L, Orellana LH, Johnston ER, et al (2021)

Diversity of microbial communities and genes involved in nitrous oxide emissions in Antarctic soils impacted by marine animals as revealed by metagenomics and 100 metagenome-assembled genomes.

The Science of the total environment, 788:147693.

Antarctic soils generally have low temperatures and limited availability of liquid water and nutrients. However, animals can increase the nutrient availability of ice-free areas by transferring nutrients from marine to terrestrial ecosystems, mainly through their excreta. In this study, we employed shotgun metagenomics and population genome binning techniques to study the diversity of microbial communities in Antarctic soils impacted by marine pinnipeds and birds relative to soils with no evident animal presence. We obtained ~285,000 16S rRNA gene-carrying metagenomic reads representing ~60 phyla and 100 metagenome-assembled genomes (MAGs) representing eight phyla. Only nine of these 100 MAGs represented previously described species, revealing that these soils harbor extensive novel diversity. Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant phyla in all samples, with Rhodanobacter being one of the most abundant genera in the bird-impacted soils. Further, the relative abundance of genes related to denitrification was at least double in soils impacted by birds than soils without animal influence. These results advance our understanding of the microbial populations and their genes involved in nitrous oxide emissions in ice-free coastal Antarctic soils impacted by marine animals and reveal novel microbial diversity associated with these ecosystems.

RevDate: 2021-06-21
CmpDate: 2021-06-21

Nodari R, Drancourt M, R Barbieri (2021)

Paleomicrobiology of the human digestive tract: A review.

Microbial pathogenesis, 157:104972.

The microbiota is a hot topic of research in medical microbiology, boosted by culturomics and metagenomics, with unanticipated knowledge outputs in physiology and pathology. Knowledge of the microbiota in ancient populations may therefore be of prime interest in understanding factors shaping the coevolution of the microbiota and populations. Studies on ancient human microbiomes can help us understand how the community of microorganisms presents in the oral cavity and the gut was shaped during the evolution of our species and what environmental, social or cultural changes may have changed it. This review cumulates and summarizes the discoveries in the field of the ancient human microbiota, focusing on the remains used as samples and techniques used to handle and analyze them.

RevDate: 2021-06-25
CmpDate: 2021-06-25

Matheus Carnevali PB, Lavy A, Thomas AD, et al (2021)

Meanders as a scaling motif for understanding of floodplain soil microbiome and biogeochemical potential at the watershed scale.

Microbiome, 9(1):121.

BACKGROUND: Biogeochemical exports from watersheds are modulated by the activity of microorganisms that function over micron scales. Here, we tested the hypothesis that meander-bound regions share a core microbiome and exhibit patterns of metabolic potential that broadly predict biogeochemical processes in floodplain soils along a river corridor.

RESULTS: We intensively sampled the microbiomes of floodplain soils located in the upper, middle, and lower reaches of the East River, Colorado. Despite the very high microbial diversity and complexity of the soils, we reconstructed 248 quality draft genomes representative of subspecies. Approximately one third of these bacterial subspecies was detected across all three locations at similar abundance levels, and ~ 15% of species were detected in two consecutive years. Within the meander-bound floodplains, we did not detect systematic patterns of gene abundance based on sampling position relative to the river. However, across meanders, we identified a core floodplain microbiome that is enriched in capacities for aerobic respiration, aerobic CO oxidation, and thiosulfate oxidation with the formation of elemental sulfur. Given this, we conducted a transcriptomic analysis of the middle floodplain. In contrast to predictions made based on the prominence of gene inventories, the most highly transcribed genes were relatively rare amoCAB and nxrAB (for nitrification) genes, followed by genes involved in methanol and formate oxidation, and nitrogen and CO2 fixation. Within all three meanders, low soil organic carbon correlated with high activity of genes involved in methanol, formate, sulfide, hydrogen, and ammonia oxidation, nitrite oxidoreduction, and nitrate and nitrite reduction. Overall, the results emphasize the importance of sulfur, one-carbon and nitrogen compound metabolism in soils of the riparian corridor.

CONCLUSIONS: The disparity between the scale of a microbial cell and the scale of a watershed currently limits the development of genomically informed predictive models describing watershed biogeochemical function. Meander-bound floodplains appear to serve as scaling motifs that predict aggregate capacities for biogeochemical transformations, providing a foundation for incorporating riparian soil microbiomes in watershed models. Widely represented genetic capacities did not predict in situ activity at one time point, but rather they define a reservoir of biogeochemical potential available as conditions change. Video abstract.

RevDate: 2021-07-08
CmpDate: 2021-07-08

Quiza L, Tremblay J, Greer CW, et al (2021)

Rhizosphere shotgun metagenomic analyses fail to show differences between ancestral and modern wheat genotypes grown under low fertilizer inputs.

FEMS microbiology ecology, 97(6):.

It is thought that modern wheat genotypes have lost their capacity to associate with soil microbes that would help them acquire nutrients from the soil. To test this hypothesis, ten ancestral and modern wheat genotypes were seeded in a field experiment under low fertilization conditions. The rhizosphere soil was collected, its DNA extracted and submitted to shotgun metagenomic sequencing. In contrast to our hypothesis, there was no significant difference in the global rhizosphere metagenomes of the different genotypes, and this held true when focusing the analyses on specific taxonomic or functional categories of genes. Some genes were significantly more abundant in the rhizosphere of one genotype or another, but they comprised only a small portion of the total genes identified and did not affect the global rhizosphere metagenomes. Our study shows for the first time that the rhizosphere metagenome of wheat is stable across a wide variety of genotypes when growing under nutrient poor conditions.

RevDate: 2021-06-14
CmpDate: 2021-06-14

Tierney BT, Tan Y, Kostic AD, et al (2021)

Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators.

Nature communications, 12(1):2907.

We propose microbiome disease "architectures": linking >1 million microbial features (species, pathways, and genes) to 7 host phenotypes from 13 cohorts using a pipeline designed to identify associations that are robust to analytical model choice. Here, we quantify conservation and heterogeneity in microbiome-disease associations, using gene-level analysis to identify strain-specific, cross-disease, positive and negative associations. We find coronary artery disease, inflammatory bowel diseases, and liver cirrhosis to share gene-level signatures ascribed to the Streptococcus genus. Type 2 diabetes, by comparison, has a distinct metagenomic signature not linked to any one specific species or genus. We additionally find that at the species-level, the prior-reported connection between Solobacterium moorei and colorectal cancer is not consistently identified across models-however, our gene-level analysis unveils a group of robust, strain-specific gene associations. Finally, we validate our findings regarding colorectal cancer and inflammatory bowel diseases in independent cohorts and identify that features inversely associated with disease tend to be less reproducible than features enriched in disease. Overall, our work is not only a step towards gene-based, cross-disease microbiome diagnostic indicators, but it also illuminates the nuances of the genetic architecture of the human microbiome, including tension between gene- and species-level associations.

RevDate: 2021-05-19

Hwang Y, Rahlff J, Schulze-Makuch D, et al (2021)

Diverse Viruses Carrying Genes for Microbial Extremotolerance in the Atacama Desert Hyperarid Soil.

mSystems, 6(3):.

Viruses play an essential role in shaping microbial community structures and serve as reservoirs for genetic diversity in many ecosystems. In hyperarid desert environments, where life itself becomes scarce and loses diversity, the interactions between viruses and host populations have remained elusive. Here, we resolved host-virus interactions in the soil metagenomes of the Atacama Desert hyperarid core, one of the harshest terrestrial environments on Earth. We show evidence of diverse viruses infecting a wide range of hosts found in sites up to 205 km apart. Viral genomes carried putative extremotolerance features (i.e., spore formation proteins) and auxiliary metabolic genes, indicating that viruses could mediate the spread of microbial resilience against environmental stress across the desert. We propose a mutualistic model of host-virus interactions in the hyperarid core where viruses seek protection in microbial cells as lysogens or pseudolysogens, while viral extremotolerance genes aid survival of their hosts. Our results suggest that the host-virus interactions in the Atacama Desert soils are dynamic and complex, shaping uniquely adapted microbiomes in this highly selective and hostile environment.IMPORTANCE Deserts are one of the largest and rapidly expanding terrestrial ecosystems characterized by low biodiversity and biomass. The hyperarid core of the Atacama Desert, previously thought to be devoid of life, is one of the harshest environments, supporting only scant biomass of highly adapted microbes. While there is growing evidence that viruses play essential roles in shaping the diversity and structure of nearly every ecosystem, very little is known about the role of viruses in desert soils, especially where viral contact with viable hosts is significantly reduced. Our results demonstrate that diverse viruses are widely dispersed across the desert, potentially spreading key stress resilience and metabolic genes to ensure host survival. The desertification accelerated by climate change expands both the ecosystem cover and the ecological significance of the desert virome. This study sheds light on the complex virus-host interplay that shapes the unique microbiome in desert soils.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )