Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 25 Sep 2022 at 01:31 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-09-23

Esposito AM, Esposito MM, A Ptashnik (2022)

Phylogenetic Diversity of Animal Oral and Gastrointestinal Viromes Useful in Surveillance of Zoonoses.

Microorganisms, 10(9): pii:microorganisms10091815.

Great emphasis has been placed on bacterial microbiomes in human and animal systems. In recent years, advances in metagenomics have allowed for the detection and characterization of more and more native viral particles also residing in these organisms. The digestive tracts of animals and humans-from the oral cavity, to the gut, to fecal excretions-have become one such area of interest. Next-generation sequencing and bioinformatic analyses have uncovered vast phylogenetic virome diversity in companion animals, such as dogs and cats, as well as farm animals and wildlife such as bats. Zoonotic and arthropod-borne illnesses remain major causes of worldwide outbreaks, as demonstrated by the devastating COVID-19 pandemic. This highlights the increasing need to identify and study animal viromes to prevent such disastrous cross-species transmission outbreaks in the coming years. Novel viruses have been uncovered in the viromes of multiple organisms, including birds, bats, cats, and dogs. Although the exact consequences for public health have not yet become clear, many analyses have revealed viromes dominated by RNA viruses, which can be the most problematic to human health, as these genomes are known for their high mutation rates and immune system evasion capabilities. Furthermore, in the wake of worldwide disruption from the COVID-19 pandemic, it is evident that proper surveillance of viral biodiversity is crucial. For instance, gut viral metagenomic analysis in dogs has shown close relationships between the highly abundant canine coronavirus and human coronavirus strains 229E and NL63. Future studies and vigilance could potentially save many lives.

RevDate: 2022-09-22
CmpDate: 2022-09-22

Li Q, Vehik K, Li C, et al (2022)

A robust and transformation-free joint model with matching and regularization for metagenomic trajectory and disease onset.

BMC genomics, 23(1):661.

BACKGROUND: To identify operational taxonomy units (OTUs) signaling disease onset in an observational study, a powerful strategy was selecting participants by matched sets and profiling temporal metagenomes, followed by trajectory analysis. Existing trajectory analyses modeled individual OTU or microbial community without adjusting for the within-community correlation and matched-set-specific latent factors.

RESULTS: We proposed a joint model with matching and regularization (JMR) to detect OTU-specific trajectory predictive of host disease status. The between- and within-matched-sets heterogeneity in OTU relative abundance and disease risk were modeled by nested random effects. The inherent negative correlation in microbiota composition was adjusted by incorporating and regularizing the top-correlated taxa as longitudinal covariate, pre-selected by Bray-Curtis distance and elastic net regression. We designed a simulation pipeline to generate true biomarkers for disease onset and the pseudo biomarkers caused by compositionality. We demonstrated that JMR effectively controlled the false discovery and pseudo biomarkers in a simulation study generating temporal high-dimensional metagenomic counts with random intercept or slope. Application of the competing methods in the simulated data and the TEDDY cohort showed that JMR outperformed the other methods and identified important taxa in infants' fecal samples with dynamics preceding host disease status.

CONCLUSION: Our method JMR is a robust framework that models taxon-specific trajectory and host disease status for matched participants without transformation of relative abundance, improving the power of detecting disease-associated microbial features in certain scenarios. JMR is available in R package mtradeR at

RevDate: 2022-09-23
CmpDate: 2022-09-23

Beura S, Kundu P, Das AK, et al (2022)

Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health.

Computers in biology and medicine, 149:105997.

Metabolic activities of the microbial population are important to maintain the balance of almost all the ecosystems on earth. In the human gut environment, these microbial communities play essential roles in digestion and help to maintain biochemical homeostasis by synthesizing several vital metabolic compounds. Imbalance in the microbial abundance and community structure in the human gut microbiota leads to different diseases and metabolic disorders. Studying the metabolic interplay between the microbial consortia within the host environment is the key to exploring the cause behind the development of various diseases condition. However, mapping the entire biochemical characteristic of human gut microbiota may not be feasible only through experimental approaches. Therefore, the advanced systems biology approach, i.e., metagenome-scale community metabolic modelling, is introduced for understanding the metabolic role and interaction pattern of the entire microbiome. This in silico method directly uses the metagenomic information to model the microbial communities, which mimic the metabolic behavior of the human gut microbiome. This review discusses the recent development of metagenome-scale community metabolic model reconstruction tools and their application in studying the inter-link between the human gut microbiome and health. The application of the community metabolic models to study the metabolic profile of the human gut microbiome has also been investigated. Alteration of the metabolic fluxes associated with different biochemical activities in type 1 diabetics, type 2 diabetics, inflammatory bowel diseases (IBD), gouty arthritis, colorectal cancer (CRC), etc., has also been assessed with the metagenome-scale models. Thus, modelling the microbial communities combined with advanced experimental design may lead to novel therapeutic approaches like personalized microbiome modelling for treating human disease.

RevDate: 2022-09-23
CmpDate: 2022-09-23

Chen Y, Xia Z, H Li (2022)

Comparative analysis of the fecal bacterial communities of hawksbill sea turtles (Eretmochelys imbricata) and green sea turtles (Chelonia mydas).

FEMS microbiology letters, 369(1):.

Hawksbill sea turtles (Eretmochelys imbricata) are important for maintaining healthy coral reef ecosystems currently qualify as "critically endangered" by the IUCN. Their gut microbiota is closely linked to host nutrition and health, however, the gut microbiota of hawksbill sea turtles from a natural reserve remains unclear. Therefore, exploring their microbial community structure in a natural reserve may provide valuable information on strategies for protecting this species. In this study, we investigated hawksbill sea turtle fecal microbial communities from a natural reserve using 16S metagenomics and compared the gut microbiota from fecal samples of hawksbill and green sea turtles (Chelonia mydas). The results indicated that the structure of fecal microbial communities was significantly different between hawksbill and green sea turtles. In hawksbill sea turtles, the three dominant phyla were Bacteroidetes, Firmicutes, and Fusobacteria, whereas the fecal microbial communities of green sea turtles were mainly composed of Firmicutes, Bacteroidetes, and Proteobacteria. Among the hawksbill sea turtle fecal microbes, the predominant genera were Cetobacterium and Rikenell, whereas in green sea turtles, the predominant genera were Bacteroides and Paludibacter. In addition, predictive metagenomic analysis indicated that sugar catabolism was enriched in green sea turtle fecal microbiota, whereas pathways related to secondary metabolite production were enriched in hawksbill sea turtle fecal microbiota. Our study provides preliminary data on the fecal microbiota features of sea turtles from the natural reserve, which may contribute to the management of the food requirements and long-term conservation of hawksbill sea turtles.

RevDate: 2022-09-23
CmpDate: 2022-09-23

Kawser AQMR, Foysal MJ, Chua EG, et al (2022)

Microbiome data reveal significant differences in the bacterial diversity in freshwater rohu (Labeo rohita) across the supply chain in Dhaka, Bangladesh.

Letters in applied microbiology, 75(4):813-823.

The present study aimed to characterize and compare the skin and gut microbial communities of rohu at various post-harvest stages of consumption using quantitative real-time polymerase chain reaction and 16S rRNA-based amplicon sequencing. Real-time PCR amplification detected higher copy numbers for coliform bacteria-Escherichia coli, Salmonella enterica and Shigella spp. in the marketed fish-compared to fresh and frozen samples. The 16S rRNA data revealed higher alpha diversity measurements in the skin of fish from different retail markets of Dhaka city. Beta ordination revealed distinct clustering of bacterial OTUs for the skin and gut samples from three different groups. At the phylum level, Proteobacteria was most abundant in all groups except the Fusobacteria in the control fish gut. Although Aeromonas was found ubiquitous in all types of samples, diverse bacterial genera were identified in the marketed fish samples. Nonetheless, low species richness was observed for the frozen fish. Most of the differentially abundant bacteria in the skin samples of marketed fish are opportunistic human pathogens enriched at different stages of postharvest handling and processing. Therefore, considering the microbial contamination in the aquatic environment in Bangladesh, post-harvest handling should be performed with proper methods and care to minimize bacterial transmission into fish.

RevDate: 2022-09-22
CmpDate: 2022-09-22

Youngblut ND, de la Cuesta-Zuluaga J, RE Ley (2022)

Incorporating genome-based phylogeny and functional similarity into diversity assessments helps to resolve a global collection of human gut metagenomes.

Environmental microbiology, 24(9):3966-3984.

Tree-based diversity measures incorporate phylogenetic or functional relatedness into comparisons of microbial communities. This can improve the identification of explanatory factors compared to tree-agnostic diversity measures. However, applying tree-based diversity measures to metagenome data is more challenging than for single-locus sequencing (e.g. 16S rRNA gene). Utilizing the Genome Taxonomy Database for species-level metagenome profiling allows for functional diversity measures based on genomic content or traits inferred from it. Still, it is unclear how metagenome-based assessments of microbiome diversity benefit from incorporating phylogeny or function into measures of diversity. We assessed this by measuring phylogeny-based, function-based and tree-agnostic diversity measures from a large, global collection of human gut metagenomes composed of 30 studies and 2943 samples. We found tree-based measures to explain phenotypic variation (e.g. westernization, disease status and gender) better or equivalent to tree-agnostic measures. Ecophylogenetic and functional diversity measures provided unique insight into how microbiome diversity was partitioned by phenotype. Tree-based measures greatly improved machine learning model performance for predicting westernization, disease status and gender, relative to models trained solely on tree-agnostic measures. Our findings illustrate the usefulness of tree- and function-based measures for metagenomic assessments of microbial diversity, which is a fundamental component of microbiome science.

RevDate: 2022-09-19

Ramos-Tapia I, Nuñez R, Salinas C, et al (2022)

Study of Wetland Soils of the Salar de Atacama with Different Azonal Vegetative Formations Reveals Changes in the Microbiota Associated with Hygrophile Plant Type on the Soil Surface.

Microbiology spectrum [Epub ahead of print].

Salar de Atacama is located approximately 55 km south of San Pedro de Atacama in the Antofagasta region, Chile. The high UV irradiation and salt concentration and extreme drought make Salar de Atacama an ideal site to search for novel soil microorganisms with unique properties. Here, we used a metataxonomic approach (16S rRNA V3-V4) to identify and characterize the soil microbiota associated with different surface azonal vegetation formations, including strict hygrophiles (Baccharis juncea, Juncus balticus, and Schoenoplectus americanus), transitional hygrophiles (Distichlis spicata, Lycium humile, and Tessaria absinthioides), and their various combinations. We detected compositional differences among the soil surface microbiota associated with each plant formation in the sampling area. There were changes in soil microbial phylogenetic diversity from the strict to the transitional hygrophiles. Moreover, we found alterations in the abundance of bacterial phyla and genera. Halobacteriota and Actinobacteriota might have facilitated water uptake by the transitional hygrophiles. Our findings helped to elucidate the microbiota of Salar de Atacama and associate them with the strict and transitional hygrophiles indigenous to the region. These findings could be highly relevant to future research on the symbiotic relationships between microbiota and salt-tolerant plants in the face of climate change-induced desertification. IMPORTANCE The study of the composition and diversity of the wetland soil microbiota associated with hygrophilous plants in a desert ecosystem of the high Puna in northern Chile makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. These microorganisms are adapted to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration; they can be applied in various fields, such as biotechnology and astrobiology, and industries, including the pharmaceutical, food, agricultural, biofuel, cosmetic, and textile industries. These microorganisms can also be used for ecological conservation and restoration. Extreme ecosystems are a unique biological resource and biodiversity hot spots that play a crucial role in maintaining environmental sustainability. The findings could be highly relevant to future research on the symbiotic relationships between microbiota and extreme-environment-tolerant plants in the face of climate change-induced desertification.

RevDate: 2022-09-20
CmpDate: 2022-09-20

Prasetiyono BWHE, Widiyanto W, NS Pandupuspitasari (2022)

Gut Microbiota Profiles in Dairy Cattle from Highland and Coastal Regions Using Shotgun Metagenomic Approach.

BioMed research international, 2022:3659052.

There is significant difference in milk production of highland and coastal regions in Indonesia of which the latter is critically low. The recent studies indicate a possibility of improving the milk yield and quality by manipulating the gut microbiota, for which profiling and abundance of gut microbiota in these divergent regions need to be addressed. The present study was the first of its kind to explore the dairy cattle gut microbiota diversity, abundance, and functional annotation of the two divergent Indonesian regions, the highland and coastal regions, by shotgun metagenomic approach. Unfavorable environmental conditions such as type of forage grass in coastal regions and high temperature remain a limiting factor; however, the improvement through manipulating the gut microbiota was not considered until recently to improve the quality and quantity of coastal region dairy cattle. The application of recent advance technologies can help achieve this goal on sustainable basis. The results show Bacteroidetes in higher abundance in coastal region (FPP) than in highland (Salatiga) while Firmicutes were higher in Salatiga. Furthermore, a collective physiology of the community was found by annotating the sequences against KEGG, eggNOG, and CAZy databases. To identify the role in pathways, an mPATH analysis was performed to have insight into the microbiota community in different metabolic pathways. The identified targets can be used as prebiotic and/or probiotic to improve the average milk yield of coastal region dairy cattle by manipulating the dairy feed with desired microbes.

RevDate: 2022-09-18

Singh A, Varma A, Prasad R, et al (2022)

Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes.

Environmental research pii:S0013-9351(22)01665-6 [Epub ahead of print].

The tannery industry generates a consequential threat to the environment by producing a large amount of potentially toxic metal-containing waste. Bioremediation has been a promising approach for treating potentially toxic metals, but the efficiency of remediation in microbes is one of the factors limiting their application in tanneries waste treatment. The motivation behind the present work was to explore the microbial diversity and chromate reductase genes present in the tannery effluent-contaminated soil using metagenomics approach. The use of shotgun sequencing enabled the identification of operational parameters that influence microbiome composition and their ability to reduce Chromium (Cr) concentration. The Cr concentration in Kanpur tannery effluent contaminated soil sample was 700 ppm which is many folds than the approved permissible limit by World Health Organisation (WHO) for Cr is 100 ppm. Metagenomic Deoxyribo Nucleic Acid (DNA) was extracted to explore taxonomic community structure, phylogenetic linkages, and functional profile. With a Guanine-Cytosine (GC) abundance of 54%, total of 45,163,604 high-quality filtered reads were obtained. Bacteria (83%), Archaebacteria (14%), and Viruses (3%) were discovered in the structural biodiversity. Bacteria were classified to phylum level, with Proteobacteria (52%) being the dominant population, followed by Bacteriodetes (15%), Chloroflexi (15%), Spirochaetes (7%), Thermotogae (5%), Actinobacteria (4%), and Firmicutes (1%). The OXR genes were cloned and checked for their efficiency to reduce Cr concentration. Insitu validation of OXR8 gene showed a reduction of Cr concentration from 700 ppm to 24 ppm in 72 h (96.51% reduction). The results of this study suggests that there is a huge reservoir of microbes and chromate reductase genes which are unexplored yet.

RevDate: 2022-09-20
CmpDate: 2022-09-20

Isaac AL, Tritto M, Colwell RR, et al (2022)

Metagenomics of diabetic foot ulcer undergoing treatment with total contact casting: a case study.

Journal of wound care, 31(Sup9):S45-S49.

OBJECTIVE: Diabetic foot ulcers (DFUs) are characterised by the presence of many microbes, some of which may not be identified by traditional culture techniques. Total contact casting (TCC) remains the gold-standard for offloading, yet little is known about the microbiome of wounds that progress from hard-to-heal to closed within a TCC.

METHOD: A patient with a DFU underwent weekly treatment with TCC to closure. Samples for next-generation sequencing (NGS) and bioinformatics analysis of tissue samples were collected during each visit. Detection, identification, characterisation of the microbial community and abundance of microbes in each sample were compared.

RESULTS: Abundance of microbes, identified by species and strain, changed with each treatment visit. By the final week of treatment, species diversity of the wound microbiome had decreased significantly, highlighted by an observed decrease in the number of total microorganisms present. Resistance genes for tetracyclines were detected in the first sample, but not in subsequent samples.

CONCLUSION: The results of this study suggest dynamic microbiological changes associated with DFUs as they progress to healing within a TCC. As NGS becomes more readily available, further studies will be helpful to gain an improved understanding of the significance of the wound microbiome in patients with DFUs.

RevDate: 2022-09-20
CmpDate: 2022-09-19

Li L, Mac Aogáin M, Xu T, et al (2022)

Neisseria species as pathobionts in bronchiectasis.

Cell host & microbe, 30(9):1311-1327.e8.

Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.

RevDate: 2022-09-19
CmpDate: 2022-09-19

Luu LDW, Singh H, Castaño-Rodríguez N, et al (2022)

Changes to the upper gastrointestinal microbiotas of children with reflux oesophagitis and oesophageal metaplasia.

Microbial genomics, 8(9):.

Little is known of the relationships among paediatric upper gastrointestinal microbiotas, and the impact of medication use and disease on their diversity. Here, we investigated the diversity of three microbiotas in the upper gastrointestinal tract of paediatric patients in relation to each other and to host factors. Oral, oesophageal and gastric microbiotas from a prospective paediatric cohort (n=54) were profiled using the 16S rRNA gene and ITS2 amplicon sequencing. 16S rRNA gene amplicon sequencing of oesophageal biopsies from a retrospective paediatric cohort (n=96) and shotgun metagenomics data from oesophageal brushings (n=88) were employed for genomic signature validation. Bacterial diversity and composition showed substantial differences across oral, oesophageal and gastric fluid samples that were not replicated for fungi, and the presence of reflux led to increased homogeneity in the bacterial component of these three microbiotas. The oral and oesophageal microbiotas were associated with age, sex, history of oesophageal atresia and presence of oesophageal metaplasia, with the latter characterized by Prevotella enrichment. Proton pump inhibitor use was associated with increased oral bacterial richness in the gastric fluid, and this correlated with increased levels of gastric pro-inflammatory cytokines. Profiling of oesophageal biopsies from a retrospective paediatric cohort confirmed an increased Prevotella prevalence in samples with metaplasia. Analysis of metagenome-derived oesophageal Prevotella melaninogenica genomes identified strain-specific features that were significantly increased in prevalence in samples with metaplasia. Prevotella enrichment is a signature associated with paediatric oesophageal metaplasia, and proton pump inhibitor use substantially alters the paediatric gastric microenvironment.

RevDate: 2022-09-20
CmpDate: 2022-09-16

Chen S, Niu C, W Lv (2022)

Multi-omics insights reveal the remodeling of gut mycobiome with P. gingivalis.

Frontiers in cellular and infection microbiology, 12:937725.

As a keystone periodontal pathogen, Porphyromonas gingivalis (P. gingivalis) was suggested to be involved in the progression of systemic diseases by altering the intestinal microecology. However, studies concerning gut microbiome have focused entirely on the bacterial component, while the fungal community (gut mycobiome) has been overlooked. In this study, we aimed to characterize the alteration of gut mycobiome profile with P. gingivalis administration using mice fecal samples. Metagenomic analysis showed a distinct composition pattern of mycobiome and significant difference of beta diversity between control and the P. gingivalis group. Some fungal species were differentially characterized with P. gingivalis administration, among which Pyricularia pennisetigena and Alternaria alternata showed positive correlation with P. gingivalis. KEGG functional analyses revealed that three pathways, namely, "pentose and glucuronate interconversions", "metabolic pathways", and "two-component system", were statistically enriched with P. gingivalis administration. Moreover, the alteration of gut mycobiome was also closely related with serum metabolites, especially lipid and tryptophan metabolic pathways. Taken together, this study demonstrated the alteration of fungal composition and function with P. gingivalis administration for the first time, and investigated the fungi-bacterial interaction and fungi-metabolite interaction preliminarily, providing a whole insight into gut mycobiome remodeling with oral pathobiont through multi-omics analyses.

RevDate: 2022-09-19
CmpDate: 2022-09-16

Li T, Li R, Cao Y, et al (2022)

Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application.

Journal of hazardous materials, 439:129704.

The effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types. The abundance of ARGs detected in manure (2.52 ARGs/16 S rRNA) treated soils was higher than chemical fertilizer (2.42 ARGs/16 S rRNA) or compost (2.37 ARGs/16 S rRNA) amended soils. The higher abundance of MGEs and the enrichment of Proteobacteria were observed in manure treated soils than in chemical fertilizer or compost amended soils. Proteobacter and Actinobacter were recognized as the main potential hosts of ARGs revealed by network analysis. Further soil pH was identified as the key driver in determining the composition of both microbial community and resistome. The present study investigated the mechanisms driving the microbial community, MGEs and ARG profiles of long-term fertilized soils with ARGs contamination, and our findings could support strategies to manage the dissemination of soil ARGs.

RevDate: 2022-09-13

Sharma R, Patil C, Majeed J, et al (2022)

Next-generation sequencing in the biodiversity conservation of endangered medicinal plants.

Environmental science and pollution research international pii:10.1007/s11356-022-22842-y [Epub ahead of print].

Medicinal plants have been used as traditional herbal medicines in the treatment of various types of diseases. However, the increased demand for these plants highlights the importance of conservation specifically for endangered species. Significant advancements in next-generation sequencing (NGS) technologies have accelerated medicinal plant research while reducing costs and time demands. NGS systems enable high-throughput whole genome sequencing as well as direct RNA sequencing and transcriptome analysis. The sequence data sets created can be used in a variety of areas of study, including biodiversity conservation, comparative genomics, transcriptomic analysis, single cell mining, metagenomics, epigenetics, molecular marker discovery, multi genome sequencing, and so on. Commercial sequencing service providers are constantly working to improve technologies to address bioinformatics problems in NGS data analysis. Several genome sequencing projects on medicinal plants have been completed recently and a few more are in the works. In some medicinal plants, massive NGS-based data has been developed. In the present review, we have attempted to briefly discuss advancements in NGS technology on medicinally essential plants in India. The review will also provide ideas for applying NGS technologies for exploring genomes of various endangered medicinal plants whose genome sequences are not normally available and thus provides valuable insights for the conservation of these vulnerable species.

RevDate: 2022-09-15

Li T, Zhang Z, Ma Y, et al (2022)

Nitrogen deposition experiment mimicked with NH4NO3 overestimates the effect on soil microbial community composition and functional potential in the Eurasian steppe.

Environmental microbiome, 17(1):49.

BACKGROUND: The nitrogenous compound deposited from the atmosphere to the soil is complex, but most field experiments mimic nitrogen deposition with the acid NH4NO3 alone. Thus, whether the acid and non-acid nitrogenous compounds have similar effects on biodiversity and ecosystem functions remains understudied. We mimicked nitrogen deposition with acidic NH4NO3 and (NH4)2SO4, and non-acidic urea, slow-released urea and NH4HCO3 in a temperate steppe, and quantified soil microbial taxonomic and functional gene composition with amplicon sequencing and shotgun metagenomics, respectively.

RESULTS: While NH4NO3 and (NH4)2SO4 significantly altered the soil microbial taxonomic and functional composition as well as their carbon decomposition potential, the other three compounds had smaller effects.

CONCLUSION: Our results suggested that previous nitrogen deposition experiments mimicked with NH4NO3 or (NH4)2SO4 alone may have overestimated the effect on biodiversity and ecosystem functions in the Eurasian steppe and similar ecosystems affected by mainly nonacidic nitrogen deposition.

RevDate: 2022-09-20
CmpDate: 2022-09-13

Shi X, Gao B, Srivastava A, et al (2022)

Alterations of gut microbial pathways and virulence factors in hemodialysis patients.

Frontiers in cellular and infection microbiology, 12:904284.

Alterations in gut microbiota might contribute to uremic toxicity and immune dysregulation in patients with end-stage renal disease. Hemodialysis patients are prone to infection and higher mortality following sepsis. The virulence factors in the gut metagenome have not been well studied in hemodialysis patients, which could be employed by microorganisms to successfully thrive and flourish in their hosts. In this study, we performed shotgun metagenomics sequencing on fecal DNA collected from 16 control subjects and 24 hemodialysis patients. Our analysis shows that a number of microbial species, metabolic pathways, antibiotic resistance, and virulence factors were significantly altered in hemodialysis patients compared with controls. In particular, erythromycin resistance methylase, pyridoxamine 5-phosphate oxidase, and streptothricin-acetyl-transferase were significantly increased in hemodialysis patients. The findings in our study laid a valuable foundation to further elucidate the causative role of virulence factors in predisposing HD patients to infection and to develop treatment strategies to reduce the genetic capacities of antibiotic resistance and virulence factors in HD patients.

RevDate: 2022-09-10

Bell KL, Turo KJ, Lowe A, et al (2022)

Plants, pollinators, and their interactions under global ecological change: the role of pollen DNA metabarcoding.

Molecular ecology [Epub ahead of print].

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency, and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change, and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Dai D, Dai F, Chen J, et al (2022)

Integrated multi-omics reveal important roles of gut contents in intestinal ischemia-reperfusion induced injuries in rats.

Communications biology, 5(1):938.

Intestinal ischemia-reperfusion (IIR) is a life-threatening clinical event with damaging signals whose origin and contents are unclear. Here we observe that IIR significantly affect the metabolic profiles of most organs by unbiased organ-wide metabolic analysis of gut contents, blood, and fifteen organs in rats (n = 29). Remarkably, correlations between gut content metabolic profiles and those of other organs are the most significant. Gut contents are also the only ones to show dynamic correlations during IIR. Additionally, according to targeted metabolomics analysis, several neurotransmitters are considerably altered in the gut during IIR, and displayed noteworthy correlations with remote organs. Likewise, metagenomics analysis (n = 35) confirm the effects of IIR on gut microbiota, and identify key species fundamental to the changes in gut metabolites, particularly neurotransmitters. Our multi-omics results establish key roles of gut contents in IIR induced remote injury and provide clues for future exploration.

RevDate: 2022-09-19
CmpDate: 2022-09-13

Molina Ortiz JP, Read MN, McClure DD, et al (2022)

High throughput genome scale modeling predicts microbial vitamin requirements contribute to gut microbiome community structure.

Gut microbes, 14(1):2118831.

Human gut microbiome structure and emergent metabolic outputs impact health outcomes. However, what drives such community characteristics remains underexplored. Here, we rely on high throughput genomic reconstruction modeling, to infer the metabolic attributes and nutritional requirements of 816 gut strains, via a framework termed GEMNAST. This has been performed in terms of a group of human vitamins to examine the role vitamin exchanges have at different levels of community organization. We find that only 91 strains can satisfy their vitamin requirements (prototrophs) while the rest show various degrees of auxotrophy/specialization, highlighting their dependence on external sources, such as other members of the microbial community. Further, 79% of the strains in our sample were mapped to 11 distinct vitamin requirement profiles with low phylogenetic consistency. Yet, we find that human gut microbial community enterotype indicators display marked metabolic differences. Prevotella strains display a metabolic profile that can be complemented by strains from other genera often associated with the Prevotella enterotype and agrarian diets, while Bacteroides strains occupy a prototrophic profile. Finally, we identify pre-defined interaction modules (IMs) of gut species from human and mice predicted to be driven by, or highly independent of vitamin exchanges. Our analysis provides mechanistic grounding to gut microbiome stability and to co-abundance-based observations, a fundamental step toward understanding emergent processes that influence health outcomes. Further, our work opens a path to future explorations in the field through applications of GEMNAST to additional nutritional dimensions.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Ravi A, Troncoso-Rey P, Ahn-Jarvis J, et al (2022)

Hybrid metagenome assemblies link carbohydrate structure with function in the human gut microbiome.

Communications biology, 5(1):932.

Complex carbohydrates that escape small intestinal digestion, are broken down in the large intestine by enzymes encoded by the gut microbiome. This is a symbiotic relationship between microbes and host, resulting in metabolic products that influence host health and are exploited by other microbes. However, the role of carbohydrate structure in directing microbiota community composition and the succession of carbohydrate-degrading microbes, is not fully understood. In this study we evaluate species-level compositional variation within a single microbiome in response to six structurally distinct carbohydrates in a controlled model gut using hybrid metagenome assemblies. We identified 509 high-quality metagenome-assembled genomes (MAGs) belonging to ten bacterial classes and 28 bacterial families. Bacterial species identified as carrying genes encoding starch binding modules increased in abundance in response to starches. The use of hybrid metagenomics has allowed identification of several uncultured species with the functional potential to degrade starch substrates for future study.

RevDate: 2022-09-10
CmpDate: 2022-09-08

Li JT, Jia P, Wang XJ, et al (2022)

Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland.

NPJ biofilms and microbiomes, 8(1):71.

The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.

RevDate: 2022-09-10
CmpDate: 2022-09-08

Nishijima S, Nagata N, Kiguchi Y, et al (2022)

Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort.

Nature communications, 13(1):5252.

Indigenous bacteriophage communities (virome) in the human gut have a huge impact on the structure and function of gut bacterial communities (bacteriome), but virome variation at a population scale is not fully investigated yet. Here, we analyse the gut dsDNA virome in the Japanese 4D cohort of 4198 deeply phenotyped individuals. By assembling metagenomic reads, we discover thousands of high-quality phage genomes including previously uncharacterised phage clades with different bacterial hosts than known major ones. The distribution of host bacteria is a strong determinant for the distribution of phages in the gut, and virome diversity is highly correlated with anti-viral defence mechanisms of the bacteriome, such as CRISPR-Cas and restriction-modification systems. We identify 97 various intrinsic/extrinsic factors that significantly affect the virome structure, including age, sex, lifestyle, and diet, most of which showed consistent associations with both phages and their predicted bacterial hosts. Among the metadata categories, disease and medication have the strongest effects on the virome structure. Overall, these results present a basis to understand the symbiotic communities of bacteria and their viruses in the human gut, which will facilitate the medical and industrial applications of indigenous viruses.

RevDate: 2022-09-10
CmpDate: 2022-09-08

Ong CT, Ross EM, Boe-Hansen G, et al (2022)

Adaptive sampling during sequencing reveals the origins of the bovine reproductive tract microbiome across reproductive stages and sexes.

Scientific reports, 12(1):15075.

Cattle enterprises are one of the major livestock production systems globally and are forecasted to have stable growth in the next decade. To facilitate sustainable live weight production, optimal reproductive performance is essential. Microbial colonisation in the reproductive tract has been demonstrated as one of the factors contributing to bovine reproductive performance. Studies also implied that reproductive metagenomes are different at each stage of the estrous cycle. This study applied Oxford Nanopore Technologies' adaptive long-read sequencing to profile the bovine reproductive microbiome collected from tropical cattle in northern Queensland, Australia. The microbiome samples were collected from cattle of different sexes, reproductive status and locations to provide a comprehensive view of the bovine reproductive microbiome in northern Australian cattle. Ascomycota, Firmicutes and Proteobacteria were abundant phyla identified in the bovine reproductive metagenomes of Australian cattle regardless of sexes, reproductive status and location. The species level taxonomical investigation suggested that gastrointestinal metagenome and the surrounding environment were potentially the origins of the bovine reproductive metagenome. Functional profiles further affirmed this implication, revealing that the reproductive metagenomes of the prepubertal and postpartum animals were dominated by microorganisms that catabolise dietary polysaccharides as an energy substrate while that of the pregnant animals had the function of harvesting energy from aromatic compounds. Bovine reproductive metagenome investigations can be employed to trace the origins of abnormal metagenomes, which is beneficial for disease prevention and control. Additionally, our results demonstrated different reproductive metagenome diversities between cattle from two different locations. The variation in diversity within one location can serve as the indicator of abnormal reproductive metagenome, but between locations inferences cannot be made. We suggest establishing localised metagenomic indices that can be used to infer abnormal reproductive metagenomes which contribute to abortion or sub-fertility.

RevDate: 2022-09-19
CmpDate: 2022-09-19

Ullah N, Kakakhel MA, Khan I, et al (2022)

Structural and compositional segregation of the gut microbiota in HCV and liver cirrhotic patients: A clinical pilot study.

Microbial pathogenesis, 171:105739.

Gut microbial dysbiosis during the development of Hepatitis C virus and liver-related diseases is not well studied. Nowadays, HCV and liver cirrhosis are the major concerns that cause gut bacterial alteration, which leads to dysbiosis. For this purpose, the present study was aimed at correlating the gut bacterial community of the control group in comparison to HCV and liver cirrhotic patients. A total of 23 stool samples were collected, including control (9), liver cirrhotic (8), and HCV (6). The collected samples were subjected to 16 S rRNA Illumina gene sequencing. In comparison with control, a significant gut bacterial alteration was observed in the progression of HCV and liver cirrhosis. Overall, Firmicutes were significantly abundant in the whole study. No significant difference was observed in the alpha diversity of the control and patient studies. Additionally, the beta diversity based on non-metric multidimensional scaling (NMDS) has a significant difference (p = 0.005) (ANOSIM R2 = 0.14) in all groups. The discriminative results based on the LEfSe tool revealed that the HCV-infected patients had higher Enterobacteriaceae and Enterobacterial, as well as Lactobacillus and Bacilli in comparison than the liver-cirrhotic patients. These taxa were significantly different from the control group (p < 0.05). Regarding prospects, a detailed analysis of the function through metagenomics and transcriptomics is needed.

RevDate: 2022-09-07
CmpDate: 2022-09-07

Karpinets TV, Wu X, Solley T, et al (2022)

Metagenomes of rectal swabs in larger, advanced stage cervical cancers have enhanced mucus degrading functionalities and distinct taxonomic structure.

BMC cancer, 22(1):945.

BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC.

METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient's clinical characteristics.

RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors.

CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Zeng S, Patangia D, Almeida A, et al (2022)

A compendium of 32,277 metagenome-assembled genomes and over 80 million genes from the early-life human gut microbiome.

Nature communications, 13(1):5139.

Age-specific reference genomes of the human gut microbiome can provide higher resolution for metagenomic analyses including taxonomic classification, strain-level genomic investigation and functional characterization. We present the Early-Life Gut Genomes (ELGG) catalog with 32,277 genomes representing 2172 species from 6122 fecal metagenomes collected from children under 3 years old spanning delivery mode, gestational age, feeding pattern, and geography. The ELGG substantially expanded the phylogenetic diversity by 38% over the isolate microbial genomes, and the genomic landscape of the early-life microbiome by increasing recruitment of metagenomic reads to 82.8%. More than 60% of the ELGG species lack an isolate representative. The conspecific genomes of the most abundant species from children differed in gene diversity and functions compared to adults. The ELGG genomes encode over 80 million protein sequences, forming the Early-Life Gut Proteins (ELGP) catalog with over four million protein clusters, 29.5% of which lacked functional annotations. The ELGG and ELGP references provided new insights into the early-life human gut microbiome and will facilitate studies to understand the development and mechanisms of disturbances of the human gut microbiome in early life.

RevDate: 2022-09-14
CmpDate: 2022-09-14

Zhang Q, Zhao L, Zhang J, et al (2022)

Nitrogen contribution and microbial community of size-fractionated anammox sludge in continuous stirred-tank reactors.

Bioresource technology, 362:127857.

In this study, the microbial diversity of size-fractionated anammox sludge in a well-mixed system and their contribution to nitrogen transformation were investigated. Results showed that small granules (0.2-1.0 mm) contributed to the major part of the nitrogen removal rate (56 %) due to its largest mixed liquor volatile suspended solids (1240 ± 80 mg·L-1). However, large granules (>1.0 mm) possessed the highest relative abundances of Ca. Kuenenia stuttgartiensis and specific anammox activity, representing 49.34 % and 24.45 ± 0.01 mg-N·g-1-mixed liquor volatile suspended solids·h-1, respectively. The microbial diversity decreased as the increase of granular size, resulting in microbial community shifting to a simpler model. Metagenomic analysis showed that fine sludge might be the potential major for NO/N2O production in the mature well-mixed system under inorganic conditions. This study provides guidance for the evaluation of nitrogen contribution by anammox size-fractionated sludge and the inhibition of the potential NO/N2O emission in anammox processes.

RevDate: 2022-09-14
CmpDate: 2022-09-14

Zheng Y, Wang P, Yang X, et al (2022)

Metagenomics insight into bioaugmentation mechanism of Propionibacterium acidipropionici during anaerobic acidification of kitchen waste.

Bioresource technology, 362:127843.

In the present study, a biochemical strategy for improving propionic acid production from kitchen waste acidification by bioaugmentation with Propionibacterium acidipropionici (P. acidipropionici) was investigated. When the inoculum of P. acidipropionici was 30% (w/w) of the seeding sludge, the propionic acid production increased by 79.57%. Further, bioaugmentation improved the relative abundance of Firmicute and Actinobacteria. The results of metagenomic analysis further reveal that the ATP-binding cassette (ABC) transporters and all related pathways of Propanoate metabolism (ko00640) were enriched when P. acidipropionici was added. For Propanoate metabolism, most functional genes involved in the conversion from Glycolysis / Gluconeogenesis (ko00010) to Propanoyl-CoA and conversion from Propanoyl-CoA to propionic acid were enhanced after bioaugmentation with P. acidipropionici, thereby promoting propionic acid production. As such, bioaugmentation with P. acidipropionici was effective in the anaerobic acidification of kitchen waste for propionic acid production.

RevDate: 2022-09-02
CmpDate: 2022-08-29

Cholleti H, de Jong J, Blomström AL, et al (2022)

Characterization of Pipistrellus pygmaeus Bat Virome from Sweden.

Viruses, 14(8):.

Increasing amounts of data indicate that bats harbor a higher viral diversity relative to other mammalian orders, and they have been recognized as potential reservoirs for pathogenic viruses, such as the Hendra, Nipah, Marburg, and SARS-CoV viruses. Here, we present the first viral metagenomic analysis of Pipistrellus pygmaeus from Uppsala, Sweden. Total RNA was extracted from the saliva and feces of individual bats and analyzed using Illumina sequencing. The results identified sequences related to 51 different viral families, including vertebrate, invertebrate, and plant viruses. These viral families include Coronaviridae, Picornaviridae, Dicistroviridae, Astroviridae, Hepeviridae, Reoviridae, Botourmiaviridae, Lispviridae, Totiviridae, Botoumiaviridae, Parvoviridae, Retroviridae, Adenoviridae, and Partitiviridae, as well as different unclassified viruses. We further characterized three near full-length genome sequences of bat coronaviruses. A phylogenetic analysis showed that these belonged to alphacoronaviruses with the closest similarity (78-99% at the protein level) to Danish and Finnish bat coronaviruses detected in Pipistrellus and Myotis bats. In addition, the full-length and the near full-length genomes of picornavirus were characterized. These showed the closest similarity (88-94% at the protein level) to bat picornaviruses identified in Chinese bats. Altogether, the results of this study show that Swedish Pipistrellus bats harbor a great diversity of viruses, some of which are closely related to mammalian viruses. This study expands our knowledge on the bat population virome and improves our understanding of the evolution and transmission of viruses among bats and to other species.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Burakova I, Smirnova Y, Gryaznova M, et al (2022)

The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People.

Nutrients, 14(16):.

Obesity is a problem of modern health care that causes the occurrence of many concomitant diseases: arterial hypertension, diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. New strategies for the treatment and prevention of obesity are being developed that are based on using probiotics for modulation of the gut microbiota. Our study aimed to evaluate the bacterial composition of the gut of obese patients before and after two weeks of lactic acid bacteria (Lactobacillus acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and Lactobacillus delbrueckii) intake. The results obtained showed an increase in the number of members of the phylum Actinobacteriota in the group taking nutritional supplements, while the number of phylum Bacteroidota decreased in comparison with the control group. There has also been an increase in potentially beneficial groups: Bifidobacterium, Blautia, Eubacterium, Anaerostipes, Lactococcus, Lachnospiraceae ND3007, Streptococcus, Escherichia-Shigella, and Lachnoclostridium. Along with this, a decrease in the genera was demonstrated: Faecalibacterium, Pseudobutyrivibrio, Subdoligranulum, Faecalibacterium, Clostridium sensu stricto 1 and 2, Catenibacterium, Megasphaera, Phascolarctobacterium, and the Oscillospiraceae NK4A214 group, which contribute to the development of various metabolic disorders. Modulation of the gut microbiota by lactic acid bacteria may be one of the ways to treat obesity.

RevDate: 2022-08-30

Sbaoui Y, Ezaouine A, Toumi M, et al (2022)

Effect of Climate on Bacterial and Archaeal Diversity of Moroccan Marine Microbiota.

Microorganisms, 10(8):.

The Moroccan coast is characterized by a diversity of climate, reflecting a great richness and diversity of fauna and flora. By this, marine microbiota plays a fundamental role in many biogeochemical processes, environmental modifications, and responses to temperature changes. To date, no exploration by high-throughput techniques has been carried out on the characterization of the Moroccan marine microbiota. The objective of this work is to study the diversity and metabolic functions of MMM from the Moroccan coast (Atlantic and Mediterranean) according to the water source (WS) and the type of climate (CT) using the approach high-throughput sequencing of the 16SrRNA gene. Four water samples of twelve sampling sites from the four major climates along the Moroccan coastline were collected, and prokaryotic DNA was extracted. V4 region of 16S rRNA gene was amplified, and the product PCR was sequenced by Illumina Miseq. The β-diversity and α-diversity indices were determined to assess the species richness and evenness. The obtained results were analyzed by Mothur and R software. A total of twenty-eight Bacterial phyla and twelve Archaea were identified from the samples. Proteobacteria, Bacteroidetes, and Cyanobacteria are the three key bacterial phyla, and the Archaeal phyla identified are: Euryarchaeota, Nanoarchaeaeota, Crenarchaeota, Hydrothermarchaeota, Asgardaeota, Diapherotrites, and Thaumarchaeota in the Moroccan coastline and the four climates studied. The whole phylum are involved in marine biogeochemical cycles, and through their functions they participate in the homeostasis of the ocean in the presence of pollutants or stressful biotic and abiotic factors. In conclusion, the obtained results reported sufficient deepness of sequencing to cover the majority of Archaeal and Bacterial genera in each site. We noticed a strong difference in microbiota diversity, abundance, and taxonomy inter- and intra-climates and water source without significant differences in function. To better explore this diversity, other omic approaches can be applied such as the metagenomic shotgun, and transcriptomic approaches allowing a better characterization of the Moroccan marine microbiota and to understand the mechanisms of its adaptation and its impacts in/on the ecosystem.

RevDate: 2022-08-30

Pérez V, Liu Y, Hengst MB, et al (2022)

A Case Study for the Recovery of Authentic Microbial Ancient DNA from Soil Samples.

Microorganisms, 10(8):.

High Throughput DNA Sequencing (HTS) revolutionized the field of paleomicrobiology, leading to an explosive growth of microbial ancient DNA (aDNA) studies, especially from environmental samples. However, aDNA studies that examine environmental microbes routinely fail to authenticate aDNA, examine laboratory and environmental contamination, and control for biases introduced during sample processing. Here, we surveyed the available literature for environmental aDNA projects-from sample collection to data analysis-and assessed previous methodologies and approaches used in the published microbial aDNA studies. We then integrated these concepts into a case study, using shotgun metagenomics to examine methodological, technical, and analytical biases during an environmental aDNA study of soil microbes. Specifically, we compared the impact of five DNA extraction methods and eight bioinformatic pipelines on the recovery of microbial aDNA information in soil cores from extreme environments. Our results show that silica-based methods optimized for aDNA research recovered significantly more damaged and shorter reads (<100 bp) than a commercial kit or a phenol-chloroform method. Additionally, we described a stringent pipeline for data preprocessing, efficiently decreasing the representation of low-complexity and duplicated reads in our datasets and downstream analyses, reducing analytical biases in taxonomic classification.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Ajiboye TT, Ayangbenro AS, OO Babalola (2022)

Functional Diversity of Microbial Communities in the Soybean (Glycine max L.) Rhizosphere from Free State, South Africa.

International journal of molecular sciences, 23(16):.

The plant microbiome is involved in enhancing nutrient acquisition, plant growth, stress tolerance, and reducing chemical inputs. The identification of microbial functional diversity offers the chance to evaluate and engineer them for various agricultural processes. Using a shotgun metagenomics technique, this study examined the functional diversity and metabolic potentials of microbial communities in the rhizosphere of soybean genotype link 678. The dominant genera are Geobacter, Nitrobacter, Burkholderia, Candidatus, Bradyrhizobium and Streptomyces. Twenty-one functional categories were present, with fourteen of the functions being dominant in all samples. The dominant functions include carbohydrates, fatty acids, lipids and isoprenoids, amino acids and derivatives, sulfur metabolism, and nitrogen metabolism. A Kruskal-Wallis test was used to test samples' diversity differences. There was a significant difference in the alpha diversity. ANOSIM was used to analyze the similarities of the samples and there were significant differences between the samples. Phosphorus had the highest contribution of 64.3% and was more prominent among the soil properties that influence the functional diversity of the samples. Given the functional groups reported in this study, soil characteristics impact the functional role of the rhizospheric microbiome of soybean.

RevDate: 2022-09-06
CmpDate: 2022-08-25

Madrigal P, Singh NK, Wood JM, et al (2022)

Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome.

Microbiome, 10(1):134.

BACKGROUND: Antimicrobial resistance (AMR) has a detrimental impact on human health on Earth and it is equally concerning in other environments such as space habitat due to microgravity, radiation and confinement, especially for long-distance space travel. The International Space Station (ISS) is ideal for investigating microbial diversity and virulence associated with spaceflight. The shotgun metagenomics data of the ISS generated during the Microbial Tracking-1 (MT-1) project and resulting metagenome-assembled genomes (MAGs) across three flights in eight different locations during 12 months were used in this study. The objective of this study was to identify the AMR genes associated with whole genomes of 226 cultivable strains, 21 shotgun metagenome sequences, and 24 MAGs retrieved from the ISS environmental samples that were treated with propidium monoazide (PMA; viable microbes).

RESULTS: We have analyzed the data using a deep learning model, allowing us to go beyond traditional cut-offs based only on high DNA sequence similarity and extending the catalog of AMR genes. Our results in PMA treated samples revealed AMR dominance in the last flight for Kalamiella piersonii, a bacteria related to urinary tract infection in humans. The analysis of 226 pure strains isolated from the MT-1 project revealed hundreds of antibiotic resistance genes from many isolates, including two top-ranking species that corresponded to strains of Enterobacter bugandensis and Bacillus cereus. Computational predictions were experimentally validated by antibiotic resistance profiles in these two species, showing a high degree of concordance. Specifically, disc assay data confirmed the high resistance of these two pathogens to various beta-lactam antibiotics.

CONCLUSION: Overall, our computational predictions and validation analyses demonstrate the advantages of machine learning to uncover concealed AMR determinants in metagenomics datasets, expanding the understanding of the ISS environmental microbiomes and their pathogenic potential in humans. Video Abstract.

RevDate: 2022-09-09
CmpDate: 2022-08-24

Craddock HA, Godneva A, Rothschild D, et al (2022)

Phenotypic correlates of the working dog microbiome.

NPJ biofilms and microbiomes, 8(1):66.

Dogs have a key role in law enforcement and military work, and research with the goal of improving working dog performance is ongoing. While there have been intriguing studies from lab animal models showing a potential connection between the gut microbiome and behavior or mental health there is a dearth of studies investigating the microbiome-behavior relationship in working dogs. The overall objective of this study was to characterize the microbiota of working dogs and to determine if the composition of the microbiota is associated with behavioral and performance outcomes. Freshly passed stools from each working canine (Total n = 134) were collected and subject to shotgun metagenomic sequencing using Illumina technology. Behavior, performance, and demographic metadata were collected. Descriptive statistics and prediction models of behavioral/phenotypic outcomes using gradient boosting classification based on Xgboost were used to study associations between the microbiome and outcomes. Regarding machine learning methodology, only microbiome features were used for training and predictors were estimated in cross-validation. Microbiome markers were statistically associated with motivation, aggression, cowardice/hesitation, sociability, obedience to one trainer vs many, and body condition score (BCS). When prediction models were developed based on machine learning, moderate predictive power was observed for motivation, sociability, and gastrointestinal issues. Findings from this study suggest potential gut microbiome markers of performance and could potentially advance care for working canines.

RevDate: 2022-08-23
CmpDate: 2022-08-23

Hu J, Yang J, Chen L, et al (2022)

Alterations of the Gut Microbiome in Patients With Pituitary Adenoma.

Pathology oncology research : POR, 28:1610402.

Pituitary adenoma (PA) includes invasive pituitary adenoma (IPA) and noninvasive pituitary adenoma (NIPA), which are associated with the endocrine system. The gut microbiome plays an important role in human metabolism, but the association between the gut microbiome and pituitary adenoma remains unclear. A total of 44 subjects were enrolled in this study. Of these, 29 PA patients were further divided into IPA patients (n = 13) and NIPA patients (n = 16), while 15 healthy age-matched subjects were defined as control subjects. We collected faecal samples and characterized the gut microbial profiles by metagenomic sequencing using the Illumina X-ten platform. PLS-DA showed different microbial clusters among the three groups, and slightly different microbial ecological networks were observed. LEfSe analysis revealed significant alterations in the microbial community among PA patients. In particular, the enrichment of Clostridium innocuum, along with the reduced abundance of Oscillibacter sp. 57_20 and Fusobacterium mortiferum, were observed both in the IPA and NIPA groups compared to the control group. Moreover, PA patients could be effectively classified based on these bacteria using a support vector machine algorithm. In summary, this study demonstrated significant differences in the gut microbiome between PA patients and healthy controls. Future mechanistic experiments are needed to determine whether such alterations are a cause or consequence of pituitary adenoma.

RevDate: 2022-08-23
CmpDate: 2022-08-23

Thakur SS, Lone AR, Yellaboina S, et al (2022)

Metagenomic Insights into the Gut Microbiota of Eudrilus eugeniae (Kinberg) and Its Potential Roles in Agroecosystem.

Current microbiology, 79(10):295.

Gut microbiomes, a consortium of microorganisms that live in the animal gut, are highly engineered microbial communities. It makes a major contribution to digestive health, metabolism management, and the development of a strong immune system in the host. The present study was taken up to answer the long-running question about the existence of truly indigenous microflora of the epigeic earthworm gut. This is due to the general difficulties of culturing many of the microorganisms found in soil or earthworms' gut. Keeping this fact in a view, the metagenomics approach using 16S rRNA marker gene incorporated with amplicon-based sequencing was used to explore microbiota of commercially overriding, diversely fed epigeic earthworm Eudrilus eugeniae (Kinberg) in three varied habitats viz., artificial soil (AS), organic agricultural farm soil (OAFS) and conventional agriculture farm soil (CAFS). There are predominant bacteria that belong to different phyla such as Proteobacteria (29.72-76.81%), Actinobacteria (11.06-34.42%), Firmicutes (6.02-19.81%), and Bacteroidetes (2.40-9.22%) present in the gut of E. eugeniae. The alpha diversity (Observed species, Chao1, ACE, Shannon, Simpson, and Fisher alpha) indices showed that OAFS had significantly higher alpha diversity than AS and CAFS groups. The core microbiota analysis showed that OAFS and AS groups had a relatively similar bacterial panel in comparison to the CAFS group. Various statistical tools i.e. MetagenomeSeq, LEfSe, and Random Forest analysis were performed and the findings demonstrated prevalence of the most significant bacterial genera; Aeromonas, Gaiella, and Burkholderia in CAFS group. Nonetheless, in AS and OAFS groups, the common existence of Anaerosporobacter and Aquihabitans were found respectively. Metagenomic functional prediction revealed that earthworms' gut microbial communities were actively involved in multiple organic and xenobiotics compound degradation-related pathways. This is the first research to use high-throughput 16S rRNA gene amplicon sequencing to show the gut microbiota of E. eugeniae in diverse agricultural systems. The findings suggest the configuration of the gut microbiota of earthworms and its potential role in the soil ecosystem depends on the microbial communities of the soil.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Suez J, Cohen Y, Valdés-Mas R, et al (2022)

Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance.

Cell, 185(18):3307-3328.e19.

Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.

RevDate: 2022-09-02

Luo M, Ji Y, Warton D, et al (2022)

Extracting abundance information from DNA-based data.

Molecular ecology resources [Epub ahead of print].

The accurate extraction of species-abundance information from DNA-based data (metabarcoding, metagenomics) could contribute usefully to diet analysis and food-web reconstruction, the inference of species interactions, the modelling of population dynamics and species distributions, the biomonitoring of environmental state and change, and the inference of false positives and negatives. However, multiple sources of bias and noise in sampling and processing combine to inject error into DNA-based data sets. To understand how to extract abundance information, it is useful to distinguish two concepts. (i) Within-sample across-species quantification describes relative species abundances in one sample. (ii) Across-sample within-species quantification describes how the abundance of each individual species varies from sample to sample, such as over a time series, an environmental gradient or different experimental treatments. First, we review the literature on methods to recover across-species abundance information (by removing what we call "species pipeline biases") and within-species abundance information (by removing what we call "pipeline noise"). We argue that many ecological questions can be answered with just within-species quantification, and we therefore demonstrate how to use a "DNA spike-in" to correct for pipeline noise and recover within-species abundance information. We also introduce a model-based estimator that can be used on data sets without a physical spike-in to approximate and correct for pipeline noise.

RevDate: 2022-08-30
CmpDate: 2022-08-23

Yang L, J Chen (2022)

A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions.

Microbiome, 10(1):130.

BACKGROUND: Differential abundance analysis (DAA) is one central statistical task in microbiome data analysis. A robust and powerful DAA tool can help identify highly confident microbial candidates for further biological validation. Numerous DAA tools have been proposed in the past decade addressing the special characteristics of microbiome data such as zero inflation and compositional effects. Disturbingly, different DAA tools could sometimes produce quite discordant results, opening to the possibility of cherry-picking the tool in favor of one's own hypothesis. To recommend the best DAA tool or practice to the field, a comprehensive evaluation, which covers as many biologically relevant scenarios as possible, is critically needed.

RESULTS: We performed by far the most comprehensive evaluation of existing DAA tools using real data-based simulations. We found that DAA methods explicitly addressing compositional effects such as ANCOM-BC, Aldex2, metagenomeSeq (fitFeatureModel), and DACOMP did have improved performance in false-positive control. But they are still not optimal: type 1 error inflation or low statistical power has been observed in many settings. The recent LDM method generally had the best power, but its false-positive control in the presence of strong compositional effects was not satisfactory. Overall, none of the evaluated methods is simultaneously robust, powerful, and flexible, which makes the selection of the best DAA tool difficult. To meet the analysis needs, we designed an optimized procedure, ZicoSeq, drawing on the strength of the existing DAA methods. We show that ZicoSeq generally controlled for false positives across settings, and the power was among the highest. Application of DAA methods to a large collection of real datasets revealed a similar pattern observed in simulation studies.

CONCLUSIONS: Based on the benchmarking study, we conclude that none of the existing DAA methods evaluated can be applied blindly to any real microbiome dataset. The applicability of an existing DAA method depends on specific settings, which are usually unknown a priori. To circumvent the difficulty of selecting the best DAA tool in practice, we design ZicoSeq, which addresses the major challenges in DAA and remedies the drawbacks of existing DAA methods. ZicoSeq can be applied to microbiome datasets from diverse settings and is a useful DAA tool for robust microbiome biomarker discovery. Video Abstract.

RevDate: 2022-09-14
CmpDate: 2022-09-14

Jha V, Bombaywala S, Purohit H, et al (2022)

Differential colonization and functioning of microbial community in response to phosphate levels.

Journal of environmental management, 321:115856.

Microbes play a major role in phosphate cycling and regulate its availability in various environments. The metagenomic study highlights the microbial community divergence and interplay of phosphate metabolism functional genes in response to phosphate rich (100 mgL-1), limiting (25 mgL-1), and stressed (5 mgL-1) conditions at lab-scale bioreactor. Total five core phyla were found responsive toward different phosphate (Pi) levels. However, major variations were observed in Proteobacteria and Actinobacteria with 33-81% and 5-56% relative abundance, respectively. Canonical correspondence analysis reflects the colonization of Sinorhizobium (0.8-4%), Mesorhizobium (1-4%), Rhizobium (0.5-3%) in rich condition whereas, Pseudomonas (1-2%), Rhodococcus (0.2-2%), Flavobacterium (0.2-1%) and Streptomyces (0.3-4%) colonized in limiting and stress condition. The functional profiling demonstrates that Pi limiting and stress condition subjected biomass were characterized by abundant PQQ-Glucose dehydrogenase, alkaline phosphatase, 5'-nucleotidase, and phospholipases C genes. The finding implies that the major abundant genera belonging to phosphate solubilization enriched in limiting/stressed conditions decide the functional turnover by modulating the metabolic flexibility for Pi cycling. The study gives a better insight into intrinsic ecological responsiveness mediated by microbial communities in different Pi conditions that would help to design the microbiome according to the soil phosphate condition. Furthermore, this information assists in sustainably maintaining the ecological balance by omitting excessive chemical fertilizers and eutrophication.

RevDate: 2022-08-20

de la Haba RR, Antunes A, BP Hedlund (2022)

Editorial: Extremophiles: Microbial genomics and taxogenomics.

Frontiers in microbiology, 13:984632.

RevDate: 2022-09-10

Hempel CA, Wright N, Harvie J, et al (2022)

Metagenomics versus total RNA sequencing: most accurate data-processing tools, microbial identification accuracy and perspectives for ecological assessments.

Nucleic acids research [Epub ahead of print].

Metagenomics and total RNA sequencing (total RNA-Seq) have the potential to improve the taxonomic identification of diverse microbial communities, which could allow for the incorporation of microbes into routine ecological assessments. However, these target-PCR-free techniques require more testing and optimization. In this study, we processed metagenomics and total RNA-Seq data from a commercially available microbial mock community using 672 data-processing workflows, identified the most accurate data-processing tools, and compared their microbial identification accuracy at equal and increasing sequencing depths. The accuracy of data-processing tools substantially varied among replicates. Total RNA-Seq was more accurate than metagenomics at equal sequencing depths and even at sequencing depths almost one order of magnitude lower than those of metagenomics. We show that while data-processing tools require further exploration, total RNA-Seq might be a favorable alternative to metagenomics for target-PCR-free taxonomic identifications of microbial communities and might enable a substantial reduction in sequencing costs while maintaining accuracy. This could be particularly an advantage for routine ecological assessments, which require cost-effective yet accurate methods, and might allow for the incorporation of microbes into ecological assessments.

RevDate: 2022-08-21

Chiciudean I, Russo G, Bogdan DF, et al (2022)

Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments.

Environmental microbiome, 17(1):44.

BACKGROUND: Movile Cave (SE Romania) is a chemoautotrophically-based ecosystem fed by hydrogen sulfide-rich groundwater serving as a primary energy source analogous to the deep-sea hydrothermal ecosystems. Our current understanding of Movile Cave microbiology has been confined to the sulfidic water and its proximity, as most studies focused on the water-floating microbial mat and planktonic accumulations likely acting as the primary production powerhouse of this unique subterranean ecosystem. By employing comprehensive genomic-resolved metagenomics, we questioned the spatial variation, chemoautotrophic abilities, ecological interactions and trophic roles of Movile Cave's microbiome thriving beyond the sulfidic-rich water.

RESULTS: A customized bioinformatics pipeline led to the recovery of 106 high-quality metagenome-assembled genomes from 7 cave sediment metagenomes. Assemblies' taxonomy spanned 19 bacterial and three archaeal phyla with Acidobacteriota, Chloroflexota, Proteobacteria, Planctomycetota, Ca. Patescibacteria, Thermoproteota, Methylomirabilota, and Ca. Zixibacteria as prevalent phyla. Functional gene analyses predicted the presence of CO2 fixation, methanotrophy, sulfur and ammonia oxidation in the explored sediments. Species Metabolic Coupling Analysis of metagenome-scale metabolic models revealed the highest competition-cooperation interactions in the sediments collected away from the water. Simulated metabolic interactions indicated autotrophs and methanotrophs as major donors of metabolites in the sediment communities. Cross-feeding dependencies were assumed only towards 'currency' molecules and inorganic compounds (O2, PO43-, H+, Fe2+, Cu2+) in the water proximity sediment, whereas hydrogen sulfide and methanol were assumedly traded exclusively among distant gallery communities.

CONCLUSIONS: These findings suggest that the primary production potential of Movile Cave expands way beyond its hydrothermal waters, enhancing our understanding of the functioning and ecological interactions within chemolithoautotrophically-based subterranean ecosystems.

RevDate: 2022-09-04
CmpDate: 2022-08-17

DeWoody JA, Jeon JY, Bickham JW, et al (2022)

The Threatened Species Imperative: Conservation assessments would benefit from population genomic insights.

Proceedings of the National Academy of Sciences of the United States of America, 119(35):e2210685119.

RevDate: 2022-09-05
CmpDate: 2022-08-16

Sheng S, Yan S, Chen J, et al (2022)

Gut microbiome is associated with metabolic syndrome accompanied by elevated gamma-glutamyl transpeptidase in men.

Frontiers in cellular and infection microbiology, 12:946757.

It is predicted that by 2035, metabolic syndrome (MS) will be found in nearly more than half of our adult population, seriously affecting the health of our body. MS is usually accompanied by the occurrence of abnormal liver enzymes, such as elevated gamma-glutamyl transpeptidase (GGT). More and more studies have shown that the gut microbiota is involved in MS; however, the correlation between gut microbiota and MS with elevated GGT has not been studied comprehensively. Especially, there are few reports about its role in the physical examination of the population of men with MS and elevated GGT. By using the whole-genome shotgun sequencing technology, we conducted a genome-wide association study of the gut microbiome in 66 participants diagnosed as having MS accompanied by high levels of GGT (case group) and 66 participants with only MS and normal GGT level (control group). We found that the number of gut microbial species was reduced in participants in the case group compared to that of the control group. The overall microbial composition between the two groups is of significant difference. The gut microbiota in the case group is characterized by increased levels of "harmful bacteria" such as Megamonas hypermegale, Megamonas funiformis, Megamonas unclassified, Klebsiella pneumoniae, and Fusobacterium mortiferum and decreased levels of "beneficial bacteria" such as Faecalibacterium prausnitzii, Eubacterium eligens, Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bacteroides dorei, and Alistipes putredinis. Moreover, the pathways of POLYAMSYN-PWY, ARG+POLYAMINE-SYN, PWY-6305, and GOLPDLCAT-PWY were also increased in the case group, which may play a role in the elevation of GGT by producing amine, polyamine, putrescine, and endogenous alcohol. Taken together, there are apparent changes in the composition of the gut microbiome in men with MS and abnormal GGT levels, and it is high time to discover specific gut microbiome as a potential therapeutic target in that population. More in-depth studies of relevant mechanism could offer some new methods for the treatment of MS with elevated GGT.

RevDate: 2022-08-26
CmpDate: 2022-08-16

Sugino KY, Hernandez TL, Barbour LA, et al (2022)

A maternal higher-complex carbohydrate diet increases bifidobacteria and alters early life acquisition of the infant microbiome in women with gestational diabetes mellitus.

Frontiers in endocrinology, 13:921464.

Gestational diabetes mellitus (GDM) is associated with considerable imbalances in intestinal microbiota that may underlie pathological conditions in both mothers and infants. To more definitively identify these alterations, we evaluated the maternal and infant gut microbiota through the shotgun metagenomic analysis of a subset of stool specimens collected from a randomized, controlled trial in diet-controlled women with GDM. The women were fed either a CHOICE diet (60% complex carbohydrate/25% fat/15% protein, n=18) or a conventional diet (CONV, 40% complex carbohydrate/45% fat/15% protein, n=16) from 30 weeks' gestation through delivery. In contrast to other published studies, we designed the study to minimize the influence of other dietary sources by providing all meals, which were eucaloric and similar in fiber content. At 30 and 37 weeks' gestation, we collected maternal stool samples; performed the fasting measurements of glucose, glycerol, insulin, free fatty acids, and triglycerides; and administered an oral glucose tolerance test (OGTT) to measure glucose clearance and insulin response. Infant stool samples were collected at 2 weeks, 2 months, and 4-5 months of age. Maternal glucose was controlled to conventional targets in both diets, with no differences in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). No differences in maternal alpha or beta diversity between the two diets from baseline to 37 weeks' gestation were observed. However, women on CHOICE diet had higher levels of Bifidobacteriaceae, specifically Bifidobacterium adolescentis, compared with women on CONV. Species-level taxa varied significantly with fasting glycerol, fasting glucose, and glucose AUC after the OGTT challenge. Maternal diet significantly impacted the patterns of infant colonization over the first 4 months of life, with CHOICE infants showing increased microbiome alpha diversity (richness), greater Clostridiaceae, and decreased Enterococcaceae over time. Overall, these results suggest that an isocaloric GDM diet containing greater complex carbohydrates with reduced fat leads to an ostensibly beneficial effect on the maternal microbiome, improved infant gut microbiome diversity, and reduced opportunistic pathogens capable of playing a role in obesity and immune system development. These results highlight the critical role a maternal diet has in shaping the maternal and infant microbiome in women with GDM.

RevDate: 2022-08-23
CmpDate: 2022-08-16

Broman E, Izabel-Shen D, Rodríguez-Gijón A, et al (2022)

Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem.

Microbiome, 10(1):126.

BACKGROUND: Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea.

RESULTS: The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments.

CONCLUSIONS: This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.

RevDate: 2022-08-17
CmpDate: 2022-08-15

Yan H, Qin Q, Yan S, et al (2022)

Comparison Of The Gut Microbiota In Different Age Groups In China.

Frontiers in cellular and infection microbiology, 12:877914.

Aging is now the most profound risk factor for almost all non-communicable diseases. Studies have shown that probiotics play a specific role in fighting aging. We used metagenomic sequencing to study the changes in gut microbes in different age groups and found that aging had the most significant effect on subjects' gut microbe structure. Our study divided the subjects (n=614) into two groups by using 50 years as the age cut-off point for the grouping. Compared with the younger group, several species with altered abundance and specific functional pathways were found in the older group. At the species level, the abundance of Bacteroides fragilis, Bifidobacterium longum, Clostridium bolteae, Escherichia coli, Klebsiella pneumoniae, and Parabacteroides merdae were increased in older individuals. They were positively correlated to the pathways responsible for lipopolysaccharide (LPS) biosynthesis and the degradation of short-chain fatty acids (SCFAs). On the contrary, the levels of Barnesiella intestinihominis, Megamonas funiformis, and Subdoligranulum unclassified were decreased in the older group, which negatively correlated with the above pathways (p-value<0.05). Functional prediction revealed 92 metabolic pathways enriched in the older group significantly higher than those in the younger group (p-value<0.05), especially pathways related to LPS biosynthesis and the degradation of SCFAs. Additionally, we established a simple non-invasive model of aging, nine species (Bacteroides fragilis, Barnesiella intestinihominis, Bifidobacterium longum, Clostridium bolteae, Escherichia coli, Klebsiella pneumoniae, Megamonas funiformis, Parabacteroides merdae, and Subdoligranulum unclassified) were selected to construct the model. The area under the receiver operating curve (AUC) of the model implied that supplemented probiotics might influence aging. We discuss the features of the aging microbiota that make it more amenable to pre-and probiotic interventions. We speculate these metabolic pathways of gut microbiota can be associated with the immune status and inflammation of older adults. Health interventions that promote a diverse microbiome could influence the health of older adults.

RevDate: 2022-08-15
CmpDate: 2022-08-15

Chen Z, Liu B, Gong Z, et al (2022)

Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (-)-Epigallocatechin-3-Gallate Nanoparticles.

Molecules (Basel, Switzerland), 27(15):.

The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (-)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The "Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential" of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and -24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia.

RevDate: 2022-08-15
CmpDate: 2022-08-15

Anzalone A, Mosca A, Dimaria G, et al (2022)

Soil and Soilless Tomato Cultivation Promote Different Microbial Communities That Provide New Models for Future Crop Interventions.

International journal of molecular sciences, 23(15):.

The cultivation of soilless tomato in greenhouses has increased considerably, but little is known about the assembly of the root microbiome compared to plants grown in soil. To obtain such information, we constructed an assay in which we traced the bacterial and fungal communities by amplicon-based metagenomics during the cultivation chain from nursery to greenhouse. In the greenhouse, the plants were transplanted either into agricultural soil or into coconut fiber bags (soilless). At the phylum level, bacterial and fungal communities were primarily constituted in all microhabitats by Proteobacteria and Ascomycota, respectively. The results showed that the tomato rhizosphere microbiome was shaped by the substrate or soil in which the plants were grown. The microbiome was different particularly in terms of the bacterial communities. In agriculture, enrichment has been observed in putative biological control bacteria of the genera Pseudomonas and Bacillus and in potential phytopathogenic fungi. Overall, the study describes the different shaping of microbial communities in the two cultivation methods.

RevDate: 2022-09-10
CmpDate: 2022-08-15

Simpson JB, Sekela JJ, Graboski AL, et al (2022)

Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate.

Gut microbes, 14(1):2107289.

Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial β-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.

RevDate: 2022-09-09
CmpDate: 2022-08-15

Bhardwaj K, Garg A, Pandey AD, et al (2022)

Insights into the human gut virome by sampling a population from the Indian subcontinent.

The Journal of general virology, 103(8):.

Gut virome plays an important role in human physiology but remains poorly understood. This study reports an investigation of the human gut DNA-virome of a previously unexplored ethnic population through metagenomics of faecal samples collected from individuals residing in Northern India. Analysis shows that, similar to the populations investigated earlier, majority of the identified virome belongs to bacteriophages and a smaller fraction (<20 %) consists of viruses that infect animals, archaea, protists, multiple domains or plants. However, crAss-like phages, in this population, are dominated by the genera VI, VII and VIII. Interestingly, it also reveals the presence of a virus family, Sphaerolipoviridae, which has not been detected in the human gut earlier. Viral families, Siphoviridae, Myoviridae, Podoviridae, Microviridae, Herelleviridae and Phycodnaviridae are detected in all of the analysed individuals, which supports the existence of a core virome. Lysogeny-associated genes were found in less than 10 % of the assembled genomes and a negative correlation was observed in the richness of bacterial and free-viral species, suggesting that the dominant lifestyle of gut phage is not lysogenic. This is in contrast to some of the earlier studies. Further, several hundred high-quality viral genomes were recovered. Detailed characterization of these genomes would be useful for understanding the biology of these viruses and their significance in human physiology.

RevDate: 2022-09-12
CmpDate: 2022-09-08

Ortiz Sanjuán JM, Manzanilla EG, Cabrera-Rubio R, et al (2022)

Using Shotgun Sequencing to Describe the Changes Induced by In-Feed Zinc Oxide and Apramycin in the Microbiomes of Pigs One Week Postweaning.

Microbiology spectrum, 10(4):e0159722.

Postweaning diarrhea (PWD) is a relevant problem associated with early weaning on pig farms. For decades, in-feed antibiotics and therapeutic zinc oxide (ZnO) have been widely used to prevent PWD in piglets. The European Union is banning both strategies in 2022 due to antimicrobial resistance and environmental contamination concerns, respectively. Understanding the effects of these products on the pig microbiome is crucial for correcting potential microbial disbalances that would prompt PWD. Using shotgun sequencing, three trials were carried out to explore the impact of in-feed apramycin and ZnO, combined with different farm hygiene protocols, on the fecal microbiomes of piglets 7 days postweaning. In trial 1, 28-day-old piglets were allocated to one of three groups: control diet (Ct), Ct + ZnO (Zn), and Ct + apramycin (Ab). In trials 2 and 3, piglets were allocated to the same treatments, but the trials also included different cleaning protocols, achieving different hygiene levels. In-feed treatments impacted the richness, diversity, and relative abundance of the piglets' microbiome more than hygiene. Pigs in the Ct group showed higher species richness than pigs in the Ab and Zn groups. A clustering analysis evidenced a link between Enterobacteriaceae in the Ct group; Lactobacillaceae and Veillonellaceae mainly in the Ct group; and Bacteroidaceae, Ruminococcaceae, Oscillospiraceae, Acidaminococcaceae, and Lactobacillaceae in the Ab and Zn groups. Functional data analysis revealed a higher abundance of virulence genes in the Ct group microbiomes and heavy metal and antimicrobial resistance-related functions in the Zn treatment group. The results demonstrate that alternatives to Ab and ZnO should balance the microbial abundance and stimulate the growth of commensals to outcompete potential pathogens. IMPORTANCE Weaning is a critical period for piglets, during which potentially harmful bacteria such as Escherichia coli can increase in abundance in the intestine, creating digestive problems and diarrhea. In-feed antibiotics, the most frequent administration route for antibiotics in livestock, and therapeutic doses of zinc oxide (ZnO) help to control diarrhea but prompt secondary problems such as antimicrobial resistance and soil pollution from heavy metals. Understanding how these strategies impact the gut microbiota is crucial for establishing health biomarkers and designing successful replacement strategies. Using shotgun sequencing, this study compares the microbiota of pigs after early weaning when treated with in-feed antibiotics, ZnO, or treatment-free diets to describe differences that could define the susceptibility to infections, providing the basis for future research on improving intestinal resilience through microbiota-based strategies.

RevDate: 2022-08-13
CmpDate: 2022-08-11

Gómez M, Martinez D, Muñoz M, et al (2022)

Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission?.

Parasites & vectors, 15(1):287.

Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.

RevDate: 2022-08-16
CmpDate: 2022-08-16

Dhondge HV, Barvkar VT, Paul D, et al (2022)

Exploring the core microbiota in scented rice (Oryza sativa L.) rhizosphere through metagenomics approach.

Microbiological research, 263:127157.

Rice is a major food crop cultivated around the globe. Specially scented rice varieties are of commercial importance but they are low-yielding. The rhizospheric microflora plays a significant role in improving yield and aroma. However, the core microbiome of the scented rice rhizosphere is comparatively less explored. Here, we analyzed the core microbiome associated with the rhizosphere of the scented (Ambemohar-157 and Dehradun basmati) in comparison with non-scented rice (Kolam and Arize 6444 Gold) cultivated at two different geoclimatic zones of India (Maharashtra and Uttarakhand) using the metagenomics approach. The alpha and beta diversity analysis showed that the microbial communities associated with scented and non-scented varieties significantly changes with respect to richness, diversity, and evenness. The taxonomic profiling revealed the variation in composition, diversity, and abundance of the microbiome in terms of phyla and genera associated with scented rice varieties over non-scented. The cluster analysis distinguishes the microbial communities based on their geographical positions. The core microbiome analysis revealed that scented rice rhizosphere shelters distinct and unique microbiota. 28.6 % of genera were exclusively present only in the scented rice rhizosphere. The putative functional gene annotation revealed the high abundance of genes related to the biosynthesis of 2-acetyl-1-pyrroline (2AP) precursors in scented rice. The precursor feeding analysis revealed proline as a preferred substrate by 2AP synthesizing bacteria. The 2AP precursor proline and proline metabolism genes showed a positive correlation. The scented rice-specific rhizobacteria pointed out in this study can be used as bio-inoculants for enhancing aroma, yield, and sustainable rice cultivation.

RevDate: 2022-08-24
CmpDate: 2022-08-11

Yang Z, Zhang Y, Stubbe-Espejel A, et al (2022)

Vaginal microbiota and personal risk factors associated with HPV status conversion-A new approach to reduce the risk of cervical cancer?.

PloS one, 17(8):e0270521.

Vaginal microbiota (VMB) is associated with changes in Human papilloma virus (HPV) status, which consequently influences the risk of cervical cancer. This association was often confounded by personal risk factors. This pilot research aimed to explore the relationship between vaginal microbiota, personal risk factors and their interactions with HPV status conversion to identify the vaginal microbiota that was associated with HPV clearance under heterogeneous personal risk factors. A total of 38 women participated by self-collecting a cervicovaginal mucus (CVM) sample that was sent for metagenomics sequencing. Most of the participants also filled in personal risk factors questionnaire through an eHealth platform and authorized the use of their previous HPV genotyping results stored in this eHealth platform. Based on the two HPV results, the participants were grouped into three cohorts, namely HPV negative, HPV persistent infection, and HPV status conversion. The relative abundance of VMB and personal factors were compared among these three cohorts. A correlation investigation was performed between VMB and the significant personal factors to characterize a robustness of the panel for HPV status change using R programming. At baseline, 12 participants were HPV-negative, and 22 were HPV-positive. Within one year, 18 women remained HPV-positive, 12 were HPV-negative and 4 participants showed HPV clearance. The factors in the eHealth questionnaire were systematically evaluated which identified several factors significantly associated with persistent HPV infection, including age, salary, history of reproductive tract infection, and the total number of sexual partners. Concurrent vaginal microbiome samples suggest that a candidate biomarker panel consisting of Lactobacillus gasseri, Streptococcus agalactiae, and Timona prevotella bacteria, which may be associated with HPV clearance. This pilot study indicates a stable HPV status-related vaginal microbe environment. To establish a robust biomarker panel for clinical use, larger cohorts will be recruited into follow-up studies.

RevDate: 2022-09-15
CmpDate: 2022-09-15

Laanbroek HJ, Cassman NA, Keijzer RM, et al (2022)

The Stochastic Assembly of Nitrobacter winogradskyi-Selected Microbiomes with Heterotrophs from Sewage Sludge or Grassland Soil.

Applied and environmental microbiology, 88(17):e0078322.

Chemolitho-autotrophic microorganisms like the nitrite-oxidizing Nitrobacter winogradskyi create an environment for heterotrophic microorganisms that profit from the production of organic compounds. It was hypothesized that the assembly of a community of heterotrophic microorganisms around N. winogradskyi depends on the ecosystem from which the heterotrophs are picked. To test this hypothesis, pure cultures of N. winogradskyi were grown in continuously nitrite-fed bioreactors in a mineral medium free of added organic carbon that had been inoculated with diluted sewage sludge or with a suspension from a grassland soil. Samples for chemical and 16S rRNA gene amplicon analyses were taken after each volume change in the bioreactor. At the end of the enrichment runs, samples for shotgun metagenomics were also collected. Already after two volume changes, the transformations in community structure became less dynamic. The enrichment of heterotrophs from both sewage and soil was highly stochastic and yielded different dominant genera in most of the enrichment runs that were independent of the origin of the inoculum. Hence, the hypothesis had to be refuted. Notwithstanding the large variation in taxonomic community structure among the enrichments, the functional compositions of the communities were statistically not different between soil- and sludge-based enrichments. IMPORTANCE In the process of aerobic nitrification, nitrite-oxidizing bacteria together with ammonia-oxidizing microorganisms convert mineral nitrogen from its most reduced appearance, i.e., ammonium, into its most oxidized form, i.e., nitrate. Because the form of mineral nitrogen has large environmental implications, nitrite-oxidizing bacteria such as Nitrobacter winogradskyi play a central role in the global biogeochemical nitrogen cycle. In addition to this central role, the autotrophic nitrite-oxidizing bacteria also play a fundamental role in the global carbon cycle. They form the basis of heterotrophic food webs, in which the assimilated carbon is recycled. Little is known about the heterotrophic microorganisms that participate in these food webs, let alone their assembly in different ecosystems. This study showed that the assembly of microbial food webs by N. winogradskyi was a highly stochastic process and independent of the origin of the heterotrophic microorganisms, but the functional characteristics of the different food webs were similar.

RevDate: 2022-09-08
CmpDate: 2022-08-10

Martino C, Zaramela LS, Gao B, et al (2022)

Acetate reprograms gut microbiota during alcohol consumption.

Nature communications, 13(1):4630.

Liver damage due to chronic alcohol use is among the most prevalent liver diseases. Alcohol consumption frequency is a strong factor of microbiota variance. Here we use isotope labeled [1-13C] ethanol, metagenomics, and metatranscriptomics in ethanol-feeding and intragastric mouse models to investigate the metabolic impacts of alcohol consumption on the gut microbiota. First, we show that although stable isotope labeled [1-13C] ethanol contributes to fatty acid pools in the liver, plasma, and cecum contents of mice, there is no evidence of ethanol metabolism by gut microbiota ex vivo under anaerobic conditions. Next, we observe through metatranscriptomics that the gut microbiota responds to ethanol-feeding by activating acetate dissimilation, not by metabolizing ethanol directly. We demonstrate that blood acetate concentrations are elevated during ethanol consumption. Finally, by increasing systemic acetate levels with glyceryl triacetate supplementation, we do not observe any impact on liver disease, but do induce similar gut microbiota alterations as chronic ethanol-feeding in mice. Our results show that ethanol is not directly metabolized by the gut microbiota, and changes in the gut microbiota linked to ethanol are a side effect of elevated acetate levels. De-trending for these acetate effects may be critical for understanding gut microbiota changes that cause alcohol-related liver disease.

RevDate: 2022-09-13
CmpDate: 2022-08-10

Rahmeh R, Akbar A, Alomirah H, et al (2022)

Camel milk microbiota: A culture-independent assessment.

Food research international (Ottawa, Ont.), 159:111629.

Camel milk is renowned for its nutritional value and its therapeutic properties. It is considered a promising alternative to bovine milk due to its higher nutritional benefits, hypoallergenic characteristics and greater digestibility in the human gastrointestinal system. This study reports camel milk's bacterial and fungal microbiota, and the effect of geographical location and season on its bacterial community. We sequenced the V3-V4 regions of the16S rRNA gene for bacteria and the internal transcribed spacer (ITS) for fungi. A total of 134 samples of dromedary raw camel milk were collected from south, north and middle Kuwait during two seasons. Raw camel milk showed a diversified bacterial community, with 1196 genera belonging to 33 phyla. The four most predominant phyla of bacteria were Proteobacteria, Firmicutes, Actinobacteria and Bacteroidota. The core microbiota of raw camel milk, represented by the dominant genera shared by the majority of samples, was constituted by the genera Schlegelella, Paenibacillus, Lactobacillus, unclassified Comamonadaceae, Pediococcus, Moraxella, Acinetobacter, Staphylococcus, Enterococcus, Pseudomonas, Streptococcus, unclassified Micrococcaceae, Rothia, unclassified Sphingomonadaceae, unclassified Neisseriaceae and Sphingomonas. The fungal population was assessed in 14 raw camel milk samples, and comprised 87 genera belonging to 3 phyla. The genera Penicillium, Cladosporium, Candida, Aspergillus, Alternaria and Fusarium, dominated the fungal community. These findings shed light on raw camel milk's core bacterial and fungal microbiome. The geographical location and the season had a significant impact on the diversity and composition of camel milk microbiome.

RevDate: 2022-09-10
CmpDate: 2022-08-10

Wang J, Qie J, Zhu D, et al (2022)

The landscape in the gut microbiome of long-lived families reveals new insights on longevity and aging - relevant neural and immune function.

Gut microbes, 14(1):2107288.

Human longevity has a strong familial and genetic component. Dynamic characteristics of the gut microbiome during aging associated with longevity, neural, and immune function remained unknown. Here, we aim to reveal the synergistic changes in gut microbiome associated with decline in neural and immune system with aging and further obtain insights into the establishment of microbiome homeostasis that can benefit human longevity. Based on 16S rRNA and metagenomics sequencing data for 32 longevity families including three generations, centenarians, elderly, and young groups, we found centenarians showed increased diversity of gut microbiota, severely damaged connection among bacteria, depleted in microbial-associated essential amino acid function, and increased abundance of anti-inflammatory bacteria in comparison to young and elderly groups. Some potential probiotic species, such as Desulfovibrio piger, Gordonibacter pamelaeae, Odoribacter splanchnicus, and Ruminococcaceae bacterium D5 were enriched with aging, which might possibly support health maintenance. The level of Amyloid-β (Aβ) and brain-derived neurotrophic factor (BDNF) related to neural function showed increased and decreased with aging, respectively. The elevated level of inflammatory factors was observed in centenarians compared with young and elderly groups. The enriched Bacteroides fragilis in centenarians might promote longevity through up-regulating anti-inflammatory factor IL-10 expression to mediate the critical balance between health and disease. Impressively, the associated analysis for gut microbiota with the level of Aβ, BDNF, and inflammatory factors suggests Bifidobacterium pseudocatenulatum could be a particularly beneficial bacteria in the improvement of impaired neural and immune function. Our results provide a rationale for targeting the gut microbiome in future clinical applications of aging-related diseases and extending life span.Abbreviations: 16S rRNA: 16S ribosomal RNA; MAGs: Metagenome-assembled genomes; ASVs: Amplicon sequence variants; DNA: Deoxyribonucleic acid; FDR: False discovery rate: KEGG: Kyoto Encyclopedia of Genes and Genomes; PCoA: Principal coordinates analysis; PCR: Polymerase chain reaction; PICRUSt: Phylogenetic Investigation of Communities by Reconstruction of Unobserved States; Aβ: Amyloid-β (Aβ); BDNF: Brain-derived neurotrophic factor.

RevDate: 2022-09-08
CmpDate: 2022-08-19

Podlesny D, Durdevic M, Paramsothy S, et al (2022)

Identification of clinical and ecological determinants of strain engraftment after fecal microbiota transplantation using metagenomics.

Cell reports. Medicine, 3(8):100711.

Fecal microbiota transplantation (FMT) is a promising therapeutic approach for microbiota-associated pathologies, but our understanding of the post-FMT microbiome assembly process and its ecological and clinical determinants is incomplete. Here we perform a comprehensive fecal metagenome analysis of 14 FMT trials, involving five pathologies and >250 individuals, and determine the origins of strains in patients after FMT. Independently of the underlying clinical condition, conspecific coexistence of donor and recipient strains after FMT is uncommon and donor strain engraftment is strongly positively correlated with pre-FMT recipient microbiota dysbiosis. Donor strain engraftment was enhanced through antibiotic pretreatment and bowel lavage and dependent on donor and recipient ɑ-diversity; strains from relatively abundant species were more likely and from predicted oral, oxygen-tolerant, and gram-positive species less likely to engraft. We introduce a general mechanistic framework for post-FMT microbiome assembly in alignment with ecological theory, which can guide development of optimized, more targeted, and personalized FMT therapies.

RevDate: 2022-08-27
CmpDate: 2022-08-17

Sampara P, Luo Y, Lin X, et al (2022)

Integrating Genome-Resolved Metagenomics with Trait-Based Process Modeling to Determine Biokinetics of Distinct Nitrifying Communities within Activated Sludge.

Environmental science & technology, 56(16):11670-11682.

Conventional bioprocess models for wastewater treatment are based on aggregated bulk biomass concentrations and do not incorporate microbial physiological diversity. Such a broad aggregation of microbial functional groups can fail to predict ecosystem dynamics when high levels of physiological diversity exist within trophic guilds. For instance, functional diversity among nitrite-oxidizing bacteria (NOB) can obfuscate engineering strategies for their out-selection in activated sludge (AS), which is desirable to promote energy-efficient nitrogen removal. Here, we hypothesized that different NOB populations within AS can have different physiological traits that drive process performance, which we tested by estimating biokinetic growth parameters using a combination of highly replicated respirometry, genome-resolved metagenomics, and process modeling. A lab-scale AS reactor subjected to a selective pressure for over 90 days experienced resilience of NOB activity. We recovered three coexisting Nitrospira population genomes belonging to two sublineages, which exhibited distinct growth strategies and underwent a compositional shift following the selective pressure. A trait-based process model calibrated at the NOB genus level better predicted nitrite accumulation than a conventional process model calibrated at the NOB guild level. This work demonstrates that trait-based modeling can be leveraged to improve our prediction, control, and design of functionally diverse microbiomes driving key environmental biotechnologies.

RevDate: 2022-08-15
CmpDate: 2022-08-05

Gaire TN, Odland C, Zhang B, et al (2022)

The impacts of viral infection and subsequent antimicrobials on the microbiome-resistome of growing pigs.

Microbiome, 10(1):118.

BACKGROUND: Antimicrobials are used in food-producing animals for purposes of preventing, controlling, and/or treating infections. In swine, a major driver of antimicrobial use is porcine reproductive and respiratory syndrome (PRRS), which is caused by a virus that predisposes infected animals to secondary bacterial infections. Numerous antimicrobial protocols are used to treat PRRS, but we have little insight into how these treatment schemes impact antimicrobial resistance (AMR) dynamics within the fecal microbiome of commercial swine. The aim of this study was to determine whether different PRRS-relevant antimicrobial treatment protocols were associated with differences in the fecal microbiome and resistome of growing pigs. To accomplish this, we used a metagenomics approach to characterize and compare the longitudinal wean-to-market resistome and microbiome of pigs challenged with PRRS virus and then exposed to different antimicrobial treatments, and a group of control pigs not challenged with PRRS virus and having minimal antimicrobial exposure. Genomic DNA was extracted from pen-level composite fecal samples from each treatment group and subjected to metagenomic sequencing and microbiome-resistome bioinformatic and statistical analysis. Microbiome-resistome profiles were compared over time and between treatment groups.

RESULTS: Fecal microbiome and resistome compositions both changed significantly over time, with a dramatic and stereotypic shift between weaning and 9 days post-weaning (dpw). Antimicrobial resistance gene (ARG) richness and diversity were significantly higher at earlier time points, while microbiome richness and diversity were significantly lower. The post-weaning shift was characterized by transition from a Bacteroides-dominated enterotype to Lactobacillus- and Streptococcus-dominated enterotypes. Both the microbiome and resistome stabilized by 44 dpw, at which point the trajectory of microbiome-resistome maturation began to diverge slightly between the treatment groups, potentially due to physical clustering of the pigs. Challenge with PRRS virus seemed to correspond to the re-appearance of many very rare and low-abundance ARGs within the feces of challenged pigs. Despite very different antimicrobial exposures after challenge with PRRS virus, resistome composition remained largely similar between the treatment groups. Differences in ARG abundance between the groups were mostly driven by temporal changes in abundance that occurred prior to antimicrobial exposures, with the exception of ermG, which increased in the feces of treated pigs, and was significantly more abundant in the feces of these pigs compared to the pigs that did not receive post-PRRS antimicrobials.

CONCLUSIONS: The fecal microbiome-resistome of growing pigs exhibited a stereotypic trajectory driven largely by weaning and physiologic aging of the pigs. Events such as viral illness, antimicrobial exposures, and physical grouping of the pigs exerted significant yet relatively minor influence over this trajectory. Therefore, the AMR profile of market-age pigs is the culmination of the life history of the individual pigs and the populations to which they belong. Disease status alone may be a significant driver of AMR in market-age pigs, and understanding the interaction between disease processes and antimicrobial exposures on the swine microbiome-resistome is crucial to developing effective, robust, and reproducible interventions to control AMR. Video Abstract.

RevDate: 2022-08-30
CmpDate: 2022-08-30

Wang Y, Xu J, Chen H, et al (2022)

A balanced gut microbiota is essential to maintain health in captive sika deer.

Applied microbiology and biotechnology, 106(17):5659-5674.

Certain animals harbor a high proportion of pathogens, particular the zoonotic pathogens, in their gut microbiome but are usually asymptomic; however, their carried pathogens may seriously threaten the public health. By understanding how the microbiome overcomes the negative effects of pathogens to maintain host health, we can develop novel solutions to control animal-mediated pathogen transmission including identification and application of beneficial microbes. Here, we analyzed the gut microbiota of 10 asymptomic captive sika deer individuals by full-length 16S rDNA sequencing. Twenty-nine known pathogens capable of infecting humans were identified, and the accumulated proportions of the identified pathogens were highly variable among individuals (2.33 to 39.94%). The relative abundances of several beneficial bacteria, including Lactobacillus and Bifidobacterium, were found to be positively correlated with the relative abundances of accumulated pathogens. Whole-genome metagenomic analysis revealed that the beneficial- and pathogenic-associated functions, such as genes involved in the synthesis of short chain fatty acids and virulence factors, were also positively correlated in the microbiome, indicating that the beneficial and pathogenic functions were maintained at a relatively balanced ratio. Furthermore, the bacteriophages that target the identified pathogens were found to be positively correlated with the pathogenic content in the microbiome. Several high-quality genomes of beneficial bacteria affiliated with Lactobacillus and Bifidobacterium and bacteriophages were recovered from the metagenomic data. Overall, this study provides novel insights into the interplay between beneficial and pathogenic content to ensure maintenance of a healthy gut microbiome, and also contributes to discovery of novel beneficial microbes and functions that control pathogens. KEY POINTS: • Certain asymptomic captive sika deer individuals harbor relatively high amounts of zoonotic pathogens. • The beneficial microbes and the beneficial functions are balanced with the pathogenic contents in the gut microbiome. • Several high-quality genomes of beneficial bacteria and bacteriophages are recovered by metagenomics.

RevDate: 2022-09-09
CmpDate: 2022-09-09

Tchitchek N, Nguekap Tchoumba O, Pires G, et al (2022)

Low-dose IL-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation.

JCI insight, 7(17): pii:159406.

Gut microbiota dysbiosis is associated with inflammatory bowel diseases and with cardiometabolic, neurological, and autoimmune diseases. Gut microbiota composition has a direct effect on the immune system, and vice versa, and it has a particular effect on Treg homeostasis. Low-dose IL-2 (IL-2LD) stimulates Tregs and is a promising treatment for autoimmune and inflammatory diseases. We aimed to evaluate the impact of IL-2LD on gut microbiota and correlatively on the immune system. We used 16S ribosomal RNA profiling and metagenomics to characterize gut microbiota of mice and humans treated or not with IL-2LD. We performed fecal microbiota transplantation (FMT) from IL-2LD-treated to naive recipient mice and evaluated its effects in models of gut inflammation and diabetes. IL-2LD markedly affected gut microbiota composition in mice and humans. Transfer of an IL-2-tuned microbiota by FMT protected C57BL/6J mice from dextran sulfate sodium-induced colitis and prevented diabetes in NOD mice. Metagenomic analyses highlighted a role for several species affected by IL-2LD and for microbial pathways involved in the biosynthesis of amino acids, short-chain fatty acids, and L-arginine. Our results demonstrate that IL-2LD induced changes in gut microbiota that are involved in the immunoregulatory effects of IL-2LD and suggest a crosstalk between Tregs and gut microbiota. These results provide potentially novel insight for understanding the mode of action of Treg-directed therapies.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Ma R, Zhao M, Wang H, et al (2022)

Virome of Giant Panda-Infesting Ticks Reveals Novel Bunyaviruses and Other Viruses That Are Genetically Close to Those from Giant Pandas.

Microbiology spectrum, 10(4):e0203422.

Tick infestations have been reported as one of the factors threatening the health of giant pandas, but studies of viral pathogens carried by ticks feeding on the blood of giant pandas are limited. To assess whether blood-sucking ticks of giant pandas can carry viral pathogens and if so, whether the viruses in ticks are associated with those previously detected in giant panda hosts, we determined the viromes of ticks detached from giant pandas in a field stocking area in Sichuan Province, southwest China. Using viral metagenomics we identified 32 viral species in ticks, half of which (including anellovirus [n = 9], circovirus [n = 3], and gemycircularvirus [n = 4]) showed homology to viruses carried by giant pandas and their associated host species (such as red pandas and mosquitoes) in the same living domain. Remarkably, several viruses in this study phylogenetically assigned as bunyavirus, hepe-like virus, and circovirus were detected with relatively high abundance, but whether these newly identified tick-associated viruses can replicate in ticks and then transmit to host animals during a blood meal will require further investigation. These findings further expand our understanding of the role of giant panda-infesting ticks in the local ecosystem, especially related to viral acquisition and transmission, and lay a foundation to assess the risk for giant panda exposure to tick-borne viruses. IMPORTANCE Ticks rank only second to mosquitoes as blood-feeding arthropods, capable of spreading pathogens (including viruses, bacteria, and parasites) to hosts during a blood meal. To better understand the relationship between viruses carried by ticks and viruses that have been reported in giant pandas, it is necessary to analyze the viromes of giant panda-parasitic blood-sucking ticks. This study collected 421 ticks on the body surface of giant pandas in Sichuan Province, China. We characterized the extensive genetic diversity of viruses harbored by these ticks and reported frequent communication of viruses between giant pandas and their ticks. While most of the virome discovered here are nonpathogenic viruses from giant pandas and potentially tick-specific viruses, we revealed some possible tick-borne viruses, represented by novel bunyaviruses. This research contributes to the literature because currently there are few studies on the virome of giant panda-infesting ticks.

RevDate: 2022-08-31
CmpDate: 2022-08-31

Zhao F, Wang C, Song S, et al (2022)

Casein and red meat proteins differentially affect the composition of the gut microbiota in weaning rats.

Food chemistry, 397:133769.

Casein and meat are food sources providing high-quality animal proteins for human consumption. However, little is known concerning potentially different effects of these animal protein sources during early stages of life. In the present study, casein and red meat proteins (beef and pork) were fed to young postweaning rats for 14 days based on the AIN-93G diet formula. Casein and red meat protein-based diets did not differentially affect the overall growth performance. However, they discriminately modulated the abundances of different potentially beneficial bacteria belonging to genus Lactobacillus. Intake of the casein-based diet increased the intestinal abundance of Lactococcus lactis with a pronounced potential for galactose utilization via the Tag6P pathway, and it also resulted in lower amounts of toxic ammonia in the rat cecum compared to red meat protein-based diets. We observed no adverse effects on colonic tissue in response to any of the protein-based diets based on histological observations.

RevDate: 2022-08-22
CmpDate: 2022-08-15

Stevenson SJR, Lee KC, Handley KM, et al (2022)

Substrate degradation pathways, conserved functions and community composition of the hindgut microbiota in the herbivorous marine fish Kyphosus sydneyanus.

Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 272:111283.

Symbiotic gut microbiota in the herbivorous marine fish Kyphosus sydneyanus play an important role in digestion by converting refractory algal carbohydrate into short-chain fatty acids. Here we characterised community composition using both 16S rRNA gene amplicon sequencing and shotgun-metagenome sequencing. Sequencing was carried out on lumen and mucosa samples (radial sections) from three axial sections taken from the hindgut of wild-caught fish. Both lumen and mucosa communities displayed distinct distributions along the hindgut, likely an effect of the differing selection pressures within these hindgut locations, as well as considerable variation among individual fish. In contrast, metagenomic sequences displayed a high level of functional similarity between individual fish and gut sections in the relative abundance of genes (based on sequencing depth) that encoded enzymes involved in algal-derived substrate degradation. These results suggest that the host gut environment selects for functional capacity in symbionts rather than taxonomic identity. Functional annotation of the enzymes encoded by the gut microbiota was carried out to infer the metabolic pathways used by the gut microbiota for the degradation of important dietary substrates: mannitol, alginate, laminarin, fucoidan and galactan (e.g. agar and carrageenan). This work provides the first evidence of the genomic potential of K. sydneyanus hindgut microbiota to convert highly refractory algal carbohydrates into metabolically useful short-chain fatty acids.

RevDate: 2022-08-02
CmpDate: 2022-08-02

Bay V, Gür S, O Bayraktar (2022)

Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori).

Scientific reports, 12(1):13005.

In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.

RevDate: 2022-08-09
CmpDate: 2022-08-05

Marx V (2022)

Why the ocean virome matters.

Nature methods, 19(8):924-927.

RevDate: 2022-07-31
CmpDate: 2022-07-29

Tian Y, Rimal B, Gui W, et al (2022)

Early Life Short-Term Exposure to Polychlorinated Biphenyl 126 in Mice Leads to Metabolic Dysfunction and Microbiota Changes in Adulthood.

International journal of molecular sciences, 23(15):.

Early life exposure to environmental pollutants may have long-term consequences and harmful impacts on health later in life. Here, we investigated the short- and long-term impact of early life 3,3',4,4',5-pentacholorobiphenyl (PCB 126) exposure (24 μg/kg body weight for five days) in mice on the host and gut microbiota using 16S rRNA gene sequencing, metagenomics, and 1H NMR- and mass spectrometry-based metabolomics. Induction of Cyp1a1, an aryl hydrocarbon receptor (AHR)-responsive gene, was observed at 6 days and 13 weeks after PCB 126 exposure consistent with the long half-life of PCB 126. Early life, Short-Term PCB 126 exposure resulted in metabolic abnormalities in adulthood including changes in liver amino acid and nucleotide metabolism as well as bile acid metabolism and increased hepatic lipogenesis. Interestingly, early life PCB 126 exposure had a greater impact on bacteria in adulthood at the community structure, metabolic, and functional levels. This study provides evidence for an association between early life environmental pollutant exposure and increased risk of metabolic disorders later in life and suggests the microbiome is a key target of environmental chemical exposure.

RevDate: 2022-08-03
CmpDate: 2022-07-29

Calle-Tobón A, Pérez-Pérez J, Forero-Pineda N, et al (2022)

Local-scale virome depiction in Medellín, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus.

PloS one, 17(7):e0263143.

Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus. Increasing evidence suggests that vector competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure, Wolbachia presence and mitochondrial diversity of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; although the community of viral species identified was large and complex, the viromes were dominated by few virus species. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample and it was the only pathogenic virus detected. In Ae. albopictus, up to 11 ISVs and one plant virus were detected. Therefore, the virome composition appears to be species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachia sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito's virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (Metaviridae). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia-infected mosquitoes in Medellín, indicating that the population of wMel-infected mosquitoes released has introduced new alleles into the wild Ae. aegypti population of Medellín. However, additional studies are required on the dispersal speed and intergenerational stability of wMel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.

RevDate: 2022-08-04

Cannon JL, Seabolt MH, Xu R, et al (2022)

Gut Microbiome Changes Occurring with Norovirus Infection and Recovery in Infants Enrolled in a Longitudinal Birth Cohort in Leon, Nicaragua.

Viruses, 14(7):.

Noroviruses are associated with one fifth of diarrheal illnesses globally and are not yet preventable with vaccines. Little is known about the effects of norovirus infection on infant gut microbiome health, which has a demonstrated role in protecting hosts from pathogens and a possible role in oral vaccine performance. In this study, we characterized infant gut microbiome changes occurring with norovirus-associated acute gastroenteritis (AGE) and the extent of recovery. Metagenomic sequencing was performed on the stools of five infants participating in a longitudinal birth cohort study conducted in León, Nicaragua. Taxonomic and functional diversities of gut microbiomes were profiled at time points before, during, and after norovirus infection. Initially, the gut microbiomes resembled those of breastfeeding infants, rich in probiotic species. When disturbed by AGE, Gammaproteobacteria dominated, particularly Pseudomonas species. Alpha diversity increased but the genes involved in carbohydrate metabolism and glycan biosynthesis decreased. After the symptoms subsided, the gut microbiomes rebounded with their taxonomic and functional communities resembling those of the pre-infection microbiomes. In this study, during disruptive norovirus-associated AGE, the gut microbiome was temporarily altered, returning to a pre-infection composition a median of 58 days later. Our study provides new insights for developing probiotic treatments and furthering our understanding of the role that episodes of AGE have in shaping the infant gut microbiome, their long-term outcomes, and implications for oral vaccine effectiveness.

RevDate: 2022-08-04

French RK, Filion A, Niebuhr CN, et al (2022)

Metatranscriptomic Comparison of Viromes in Endemic and Introduced Passerines in New Zealand.

Viruses, 14(7):.

New Zealand/Aotearoa has many endemic passerine birds vulnerable to emerging infectious diseases. Yet little is known about viruses in passerines, and in some countries, including New Zealand, the virome of wild passerines has been only scarcely researched. Using metatranscriptomic sequencing we characterised the virome of New Zealand endemic and introduced species of passerine. Accordingly, we identified 34 possible avian viruses from cloacal swabs of 12 endemic and introduced bird species not showing signs of disease. These included a novel siadenovirus, iltovirus, and avastrovirus in the Eurasian blackbird (Turdus merula, an introduced species), song thrush (Turdus philomelos, introduced) and silvereye/tauhou (Zosterops lateralis, introduced), respectively. This is the first time novel viruses from these genera have been identified in New Zealand, likely reflecting prior undersampling. It also represents the first identification of an iltovirus and siadenovirus in blackbirds and thrushes globally. These three viruses were only found in introduced species and may pose a risk to endemic species if they were to jump species boundaries, particularly the iltoviruses and siadenoviruses that have a prior history of disease associations. Further virus study and surveillance are needed in New Zealand avifauna, particularly in Turdus populations and endemic species.

RevDate: 2022-07-31
CmpDate: 2022-07-28

Sharon I, Quijada NM, Pasolli E, et al (2022)

The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept.

Nutrients, 14(14):.

The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Holman DB, Kommadath A, Tingley JP, et al (2022)

Novel Insights into the Pig Gut Microbiome Using Metagenome-Assembled Genomes.

Microbiology spectrum, 10(4):e0238022.

Pigs are among the most numerous and intensively farmed food-producing animals in the world. The gut microbiome plays an important role in the health and performance of swine and changes rapidly after weaning. Here, fecal samples were collected from pigs at 7 different times points from 7 to 140 days of age. These swine fecal metagenomes were used to assemble 1,150 dereplicated metagenome-assembled genomes (MAGs) that were at least 90% complete and had less than 5% contamination. These MAGs represented 472 archaeal and bacterial species, and the most widely distributed MAGs were the uncultured species Collinsella sp002391315, Sodaliphilus sp004557565, and Prevotella sp000434975. Weaning was associated with a decrease in the relative abundance of 69 MAGs (e.g., Escherichia coli) and an increase in the relative abundance of 140 MAGs (e.g., Clostridium sp000435835, Oliverpabstia intestinalis). Genes encoding for the production of the short-chain fatty acids acetate, butyrate, and propionate were identified in 68.5%, 18.8%, and 8.3% of the MAGs, respectively. Carbohydrate-active enzymes associated with the degradation of arabinose oligosaccharides and mixed-linkage glucans were predicted to be most prevalent among the MAGs. Antimicrobial resistance genes were detected in 327 MAGs, including 59 MAGs with tetracycline resistance genes commonly associated with pigs, such as tet(44), tet(Q), and tet(W). Overall, 82% of the MAGs were assigned to species that lack cultured representatives indicating that a large portion of the swine gut microbiome is still poorly characterized. The results here also demonstrate the value of MAGs in adding genomic context to gut microbiomes. IMPORTANCE Many of the bacterial strains found in the mammalian gut are difficult to culture and isolate due to their various growth and nutrient requirements that are frequently unknown. Here, we assembled strain-level genomes from short metagenomic sequences, so-called metagenome-assembled genomes (MAGs), that were derived from fecal samples collected from pigs at multiple time points. The genomic context of a number of antimicrobial resistance genes commonly detected in swine was also determined. In addition, our study connected taxonomy with potential metabolic functions such as carbohydrate degradation and short-chain fatty acid production.

RevDate: 2022-09-19

Liang H, Jo JH, Zhang Z, et al (2022)

Predicting cancer immunotherapy response from gut microbiomes using machine learning models.

Oncotarget, 13:876-889.

Cancer immunotherapy has significantly improved patient survival. Yet, half of patients do not respond to immunotherapy. Gut microbiomes have been linked to clinical responsiveness of melanoma patients on immunotherapies; however, different taxa have been associated with response status with implicated taxa inconsistent between studies. We used a tumor-agnostic approach to find common gut microbiome features of response among immunotherapy patients with different advanced stage cancers. A combined meta-analysis of 16S rRNA gene sequencing data from our mixed tumor cohort and three published immunotherapy gut microbiome datasets from different melanoma patient cohorts found certain gut bacterial taxa correlated with immunotherapy response status regardless of tumor type. Using multivariate selbal analysis, we identified two separate groups of bacterial genera associated with responders versus non-responders. Statistical models of gut microbiome community features showed robust prediction accuracy of immunotherapy response in amplicon sequencing datasets and in cross-sequencing platform validation with shotgun metagenomic datasets. Results suggest baseline gut microbiome features may be predictive of clinical outcomes in oncology patients on immunotherapies, and some of these features may be generalizable across different tumor types, patient cohorts, and sequencing platforms. Findings demonstrate how machine learning models can reveal microbiome-immunotherapy interactions that may ultimately improve cancer patient outcomes.

RevDate: 2022-09-15
CmpDate: 2022-09-15

Kuhnert E, J Collemare (2022)

A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics.

Current opinion in microbiology, 69:102178.

Fungal pathogens produce a broad array of secondary metabolites (SMs), which allow the fungus to thrive in its natural habitat and gain competitive advantage. Analysis of the genetically encoded blueprints for SM assembly highlighted that only a small portion of the SMs these fungi are capable of producing are known, and even fewer have been investigated for their natural function. Using molecular tools, a lot of progress has been made recently in identifying the blueprint products and linking them to their ecological purpose such as the peptide virulence factor fusaoctaxin A released by Fusarium graminearum during infection of wheat or the F. oxysporum polyketide bikaverin that provides competitive advantage against bacteria in tomato. In addition, population genomics have given particularly important insights into the species-specific plasticity of the SM blueprint arsenal, showcasing the ongoing evolution and adaptation of fungal pathogens. This approach holds promise in inferring roles in pathogenicity of many more fungal SMs.

RevDate: 2022-09-15
CmpDate: 2022-09-14

Chen F, Fan B, Wang C, et al (2022)

Weak electro-stimulation promotes microbial uranium removal: Efficacy and mechanisms.

Journal of hazardous materials, 439:129622.

Removal and recovery of uranium from uranium-mine wastewater is beneficial to environmental protection and resource preservation. Reduction of soluble hexavalent U (U(VI)) to insoluble tetravalent uranium (U(IV)) by microbes is a plausible approach for this purpose, but its practical implementation has long been restricted by its intrinsic drawbacks. The electro-stimulated microbial process offers promise in overcoming these drawbacks. However, its applicability in real wastewater has not been evaluated yet, and its U(VI) removal mechanisms remain poorly understood. Herein, we report that introducing a weak electro-stimulation considerably boosted microbial U(VI) removal activities in both synthetic and real wastewater. The U(VI) removal has proceeded via U(VI)-to-U(IV) reduction in the biocathode, and the electrochemical characterization demonstrates the crucial role of the electroactive biofilm. Microbial community analysis shows that the broad biodiversity of the cathode biofilm is capable of U(VI) reduction, and the molecular ecological network indicates that synthetic metabolisms among electroactive and metal-reducing bacteria play major roles in electro-microbial-mediated uranium removal. Metagenomic sequencing elucidates that the electro-stimulated U(VI) bioreduction may proceed via e-pili, extracellular electron shuttles, periplasmic and outer membrane cytochrome, and thioredoxin pathways. These findings reveal the potential and mechanism of the electro-stimulated U(VI) bioreduction system for the treatment of U-bearing wastewater.

RevDate: 2022-09-07
CmpDate: 2022-07-26

Hu Y, Satten GA, YJ Hu (2022)

LOCOM: A logistic regression model for testing differential abundance in compositional microbiome data with false discovery rate control.

Proceedings of the National Academy of Sciences of the United States of America, 119(30):e2122788119.

Compositional analysis is based on the premise that a relatively small proportion of taxa are differentially abundant, while the ratios of the relative abundances of the remaining taxa remain unchanged. Most existing methods use log-transformed data, but log-transformation of data with pervasive zero counts is problematic, and these methods cannot always control the false discovery rate (FDR). Further, high-throughput microbiome data such as 16S amplicon or metagenomic sequencing are subject to experimental biases that are introduced in every step of the experimental workflow. McLaren et al. [eLife 8, e46923 (2019)] have recently proposed a model for how these biases affect relative abundance data. Motivated by this model, we show that the odds ratios in a logistic regression comparing counts in two taxa are invariant to experimental biases. With this motivation, we propose logistic compositional analysis (LOCOM), a robust logistic regression approach to compositional analysis, that does not require pseudocounts. Inference is based on permutation to account for overdispersion and small sample sizes. Traits can be either binary or continuous, and adjustment for confounders is supported. Our simulations indicate that LOCOM always preserved FDR and had much improved sensitivity over existing methods. In contrast, analysis of composition of microbiomes (ANCOM) and ANCOM with bias correction (ANCOM-BC)/ANOVA-Like Differential Expression tool (ALDEx2) had inflated FDR when the effect sizes were small and large, respectively. Only LOCOM was robust to experimental biases in every situation. The flexibility of our method for a variety of microbiome studies is illustrated by the analysis of data from two microbiome studies. Our R package LOCOM is publicly available.

RevDate: 2022-08-02

Jiang Q, Lin L, Xie F, et al (2022)

Metagenomic insights into the microbe-mediated B and K2 vitamin biosynthesis in the gastrointestinal microbiome of ruminants.

Microbiome, 10(1):109.

BACKGROUND: B and K2 vitamins, essential nutrients in host metabolism, can be synthesized by the rumen microbiome in ruminants and subsequently absorbed by the host. However, the B and K2 vitamin biosynthesis by the whole gastrointestinal microbiome and their abundances in different dietary strategies are largely unknown. Here, we reanalyzed our previous large-scale metagenomic data on the gastrointestinal microbiome of seven ruminant species and recruited 17,425 nonredundant microbial genomes from published datasets to gain a comprehensive understanding of the microbe-mediated B and K2 vitamin biosynthesis in ruminants.

RESULTS: We identified 1,135,807 genes and 167 enzymes involved in B and K2 vitamin biosynthesis. Our results indicated that the total abundances of B and K2 vitamin biosynthesis were dominant in the stomach microbiome, while the biosynthesis of thiamine, niacin, and pyridoxine was more abundant in the large intestine. By examining 17,425 nonredundant genomes, we identified 2366 high-quality genomes that were predicted to de novo biosynthesize at least one vitamin. Genomic analysis suggested that only 2.7% of these genomes can synthesize five or more vitamins, and nearly half of genomes can synthesize only one vitamin. Moreover, we found that most genomes possessed cobalamin transporters or cobalamin-dependent enzymes to consume cobalamin directly, and only a few microbial genomes possessed a complete cobalamin biosynthesis pathway. Based on these genomic data, we examined the effect of the high-grain (HG) diet on the vitamin biosynthesis of the rumen microbiome of dairy cattle. We revealed that most vitamin biosynthesis was enhanced in the HG group, while only cobalamin synthesis was inhibited in the HG group, indicating that dietary fiber is vital for cobalamin biosynthesis.

CONCLUSIONS: We primarily provided a gene catalog and 2366 microbial genomes involved in B and K2 vitamin biosynthesis in ruminants. Our findings demonstrated the regional heterogeneity and dietary effect of vitamin biosynthetic potential in the ruminant gastrointestinal microbiome and interpreted the biosynthesis mechanisms of these microbes and their physiological adaptability. This study expands our understanding of microbe-mediated vitamin biosynthesis in ruminants and may provide novel targets for manipulation to improve the production of these essential vitamins. Video abstract.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Rhoades NS, Cinco IR, Hendrickson SM, et al (2022)

Taxonomic and Functional Shifts in the Perinatal Gut Microbiome of Rhesus Macaques.

Microbiology spectrum, 10(4):e0081422.

Pregnancy and the postpartum period result in some of the most dramatic metabolic, hormonal, and physiological changes that can be experienced by an otherwise healthy adult. The timing and magnitude of these changes is key for both maternal and fetal health. One of the factors believed to critically modulate these physiological changes is the maternal gut microbiome. However, the dynamic changes in this community during the perinatal period remain understudied. Clinical studies can be complicated by confounding variables like diet and other drivers of heterogeneity in the human microbiome. Therefore, in this study, we conducted a longitudinal analysis of the fecal microbiome obtained during the pregnancy and postpartum periods in 26 captive rhesus macaques using 16S rRNA gene amplicon sequencing and shotgun metagenomics. Shifts at both the taxonomic and functional potential level were detected when comparing pregnancy to postpartum samples. Taxonomically, Alloprevotella, Actinobacillus, and Anaerovibrio were enriched in the gut microbiome during pregnancy, while Treponema, Lachnospiraceae, and Methanosphaera were more abundant postpartum. Functionally, the gut microbiome during pregnancy was associated with increased abundance in pathways involving the production of the short-chain fatty acid (SCFA) butyrate, while pathways associated with starch degradation and folate transformation were more abundant during the postpartum period. These data demonstrate dramatic changes in the maternal gut microbiome even in the absence of dietary changes and suggest that rhesus macaques could provide a valuable model to determine how changes in the microbiome correlate to other physiological changes in pregnancy. IMPORTANCE Pregnancy and the postpartum period are characterized by a myriad of metabolic and physiological adaptations needed to support fetal growth and maternal health. The maternal gut microbiome is believed to play a key role during this period but remains underexplored. Here, we report significant shifts in the taxonomic landscape and functional potential of the gut microbiome in 26 pregnant rhesus macaques during the transition from pregnancy to the postpartum period, despite shared dietary and environmental exposures. Increased abundance of pathways involved in the production of the short-chain fatty acid butyrate could play a critical role in modulating the maternal immune system and regulating fetal tolerance. On the other hand, increased abundance of pathways associated with starch degradation and folate transformation during the postpartum period could be important for meeting the metabolic demands of breastfeeding and neonatal growth.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Zhang L, Wang Z, Zhang X, et al (2022)

Alterations of the Gut Microbiota in Patients with Diabetic Nephropathy.

Microbiology spectrum, 10(4):e0032422.

Diabetic nephropathy (DN) is the primary cause of end-stage renal disease. Accumulating studies have implied a critical role for the gut microbiota in diabetes mellitus (DM) and DN. However, the precise roles and regulatory mechanisms of the gut microbiota in the pathogenesis of DN remain largely unclear. In this study, metagenomics sequencing was performed using fecal samples from healthy controls (CON) and type 2 diabetes mellitus (T2DM) patients with or without DN. Fresh fecal samples from 15 T2DM patients without DN, 15 DN patients, and 15 age-, gender-, and body mass index (BMI)-matched healthy controls were collected. The compositions and potential functions of the gut microbiota were estimated. Although no difference of gut microbiota α and β diversity was observed between the CON, T2DM, and DN groups, the relative abundances of butyrate-producing bacteria (Clostridium, Eubacterium, and Roseburia intestinalis) and potential probiotics (Lachnospira and Intestinibacter) were significantly reduced in T2DM and DN patients. Besides, Bacteroides stercoris was significantly enriched in fecal samples from patients with DN. Moreover, Clostridium sp. 26_22 was negatively associated with serum creatinine (P < 0.05). DN patients could be accurately distinguished from CON by Clostridium sp. CAG_768 (area under the curve [AUC] = 0.941), Bacteroides propionicifaciens (AUC = 0.905), and Clostridium sp. CAG_715 (AUC = 0.908). DN patients could be accurately distinguished from T2DM patients by Pseudomonadales, Fusobacterium varium, and Prevotella sp. MSX73 (AUC = 0.889). Regarding the potential bacterial functions of the gut microbiota, the citrate cycle, base excision repair, histidine metabolism, lipoic acid metabolism, and bile acid biosynthesis were enriched in DN patients, while selenium metabolism and branched-chain amino acid biosynthesis were decreased in DN patients. IMPORTANCE Gut microbiota imbalance is found in fecal samples from DN patients, in which Roseburia intestinalis is significantly decreased, while Bacteroides stercoris is increased. There is a significant correlation between gut microbiota imbalance and clinical indexes related to lipid metabolism, glucose metabolism, and renal function. The gut microbiota may be predictive factors for the development and progression of DN, although further studies are warranted to illustrate their regulatory mechanisms.

RevDate: 2022-08-03

Swarthout JM, Fuhrmeister ER, Hamzah L, et al (2022)

Differential Overlap in Human and Animal Fecal Microbiomes and Resistomes in Rural versus Urban Bangladesh.

Applied and environmental microbiology, 88(14):e0075922.

Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts from the urban community and rural humans carried ARGs on chromosomal contigs classified as potentially pathogenic bacteria, including Escherichia coli, Campylobacter jejuni, Clostridioides difficile, and Klebsiella pneumoniae. These findings provide insight into the breadth of ARGs circulating within human and animal populations in a rural compared to urban community in Bangladesh. IMPORTANCE While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antibiotic resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas.

RevDate: 2022-09-07
CmpDate: 2022-07-25

Szabo RE, Pontrelli S, Grilli J, et al (2022)

Historical contingencies and phage induction diversify bacterioplankton communities at the microscale.

Proceedings of the National Academy of Sciences of the United States of America, 119(30):e2117748119.

In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.

RevDate: 2022-08-02

Killinger BJ, Whidbey C, Sadler NC, et al (2022)

Activity-based protein profiling identifies alternating activation of enzymes involved in the bifidobacterium shunt pathway or mucin degradation in the gut microbiome response to soluble dietary fiber.

NPJ biofilms and microbiomes, 8(1):60.

While deprivation of dietary fiber has been associated with adverse health outcomes, investigations concerning the effect of dietary fiber on the gut microbiome have been largely limited to compositional sequence-based analyses or utilize a defined microbiota not native to the host. To extend understanding of the microbiome's functional response to dietary fiber deprivation beyond correlative evidence from sequence-based analyses, approaches capable of measuring functional enzymatic activity are needed. In this study, we use an activity-based protein profiling (ABPP) approach to identify sugar metabolizing and transport proteins in native mouse gut microbiomes that respond with differential activity to the deprivation or supplementation of the soluble dietary fibers inulin and pectin. We found that the microbiome of mice subjected to a high fiber diet high in soluble fiber had increased functional activity of multiple proteins, including glycoside hydrolases, polysaccharide lyases, and sugar transport proteins from diverse taxa. The results point to an increase in activity of the Bifidobacterium shunt metabolic pathway in the microbiome of mice fed high fiber diets. In those subjected to a low fiber diet, we identified a shift from the degradation of dietary fibers to that of gut mucins, in particular by the recently isolated taxon "Musculibacterium intestinale", which experienced dramatic growth in response to fiber deprivation. When combined with metabolomics and shotgun metagenomics analyses, our findings provide a functional investigation of dietary fiber metabolism in the gut microbiome and demonstrates the power of a combined ABPP-multiomics approach for characterizing the response of the gut microbiome to perturbations.

RevDate: 2022-07-19

Abuzahrah SS, Baeshen MN, Alkaladi A, et al (2022)

Exploring the taxonomic and functional diversity of marine benthic micro-Eukaryotes along the Red Sea coast of Jeddah city.

Saudi journal of biological sciences, 29(8):103342.

Backgrounds: Diverse marine habitats along Jeddah's Red Sea coast support rich biodiversity. Few studies have been done on its diverse communities, especially its microbial counterparts. Metagenomic analysis of marine benthic micro-eukaryotic communities was performed for the first time on the Red Sea coast of Jeddah. This research looks into their community structure and metabolic potential.

Methods: Next-generation sequencing was used to examine the micro-eukaryotic communities of seven sedimentary soil samples from four Jeddah coast locations. After isolating DNA from seven benthic sedimentary soil samples, the 18S rDNA V4 regions were amplified and sequenced on the Illumina MiSeq. It was also verified using an Agilent Technologies 2100 Bioanalyzer with a DNA 1000 chip (Agilent Technologies, Fisher Scientific). A standard curve of fluorescence readings generated by qPCR quantification using the Illumina library was achieved using the GS FLX library. Metagenomic data analysis was used to evaluate the microbial communities' biochemical and enzymatic allocations in studied samples.

Results: Blast analysis showed that the top ten phyla were Annelida, Eukaryota, Diatomea, Porifera, Phragmoplastophyta, Arthropoda, Dinoflagellata, Xenacoelomorpha Nematoda, and uncultured. Annelida was also found in the highest percentage (93%), in the sample M followed by Porifera (64%), the most abundant in the control sample then Eukaryotes (61%), Phragmatoplastophyta (55%), Arthropoda, and Diatomea (the least common) (32%). community diversity analysis: using Shannon and inverse Simpson indices showed sediment composition to be effective. Also, PICRUST2 indicated that the most abundant pathways were pyruvate fermentation to isobutanol, pyrimidine deoxyribonucleotide phosphorylation, adenosine ribonucleotide de novo biosynthesis, guanosine ribonucleotide de novo biosynthesis, NAD salvage pathway I, the super pathway of glyoxylate bypass and aerobic respiration I (cytochrome c).

Conclusion: Results showed that high throughput metagenomics could reveal species diversity and estimate gene profiles. Environmental factors appear to be more important than geographic variation in determining the structure of these microbial communities. This study provides the first report of marine benthic micro-eukaryotic communities found on the Red Sea coast of Jeddah and will serve as a good platform for future research.

RevDate: 2022-08-23
CmpDate: 2022-08-23

Walker ME, Simpson JB, MR Redinbo (2022)

A structural metagenomics pipeline for examining the gut microbiome.

Current opinion in structural biology, 75:102416.

Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.

RevDate: 2022-07-19
CmpDate: 2022-07-19

Conteville LC, ACP Vicente (2022)

A plasmid network from the gut microbiome of semi-isolated human groups reveals unique and shared metabolic and virulence traits.

Scientific reports, 12(1):12102.

The plasmids in gut microbiomes have the potential to contribute to the microbiome community, as well as human health and physiology. Nevertheless, this niche remains poorly explored. In general, most microbiome studies focus on urban-industrialized groups, but here, we studied semi-isolated groups from South America and Africa, which would represent a link between ancestral and modern human groups. Based on open metagenomic data, we characterized the set of plasmids, including their genes and functions, from the gut microbiome of the Hadza, Matses, Tunapuco, and Yanomami, semi-isolated groups with a hunter, gather or subsistence lifestyle. Unique plasmid clusters and gene functions for each human group were identified. Moreover, a dozen plasmid clusters circulating in other niches worldwide are shared by these distinct groups. In addition, novel and unique plasmids harboring resistance (encompassing six antibiotic classes and multiple metals) and virulence (as type VI secretion systems) genes were identified. Functional analysis revealed pathways commonly associated with urban-industrialized groups, such as lipopolysaccharide biosynthesis that was characterized in the Hadza gut plasmids. These results demonstrate the richness of plasmids in semi-isolated human groups' gut microbiome, which represents an important source of information with biotechnological/pharmaceutical potential, but also on the spread of resistance/virulence genes to semi-isolated groups.

RevDate: 2022-09-19
CmpDate: 2022-09-19

Cárdenas A, Raina JB, Pogoreutz C, et al (2022)

Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility.

The ISME journal, 16(10):2406-2420.

The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.

RevDate: 2022-08-30
CmpDate: 2022-08-30

Tao J, Chen Q, Chen S, et al (2022)

Metagenomic insight into the microbial degradation of organic compounds in fermented plant leaves.

Environmental research, 214(Pt 1):113902.

Microbial degradation of organic compounds is an environmentally benign and energy efficient part in product processing. Fermentation of plant leaves involves enzymatic actions of many microorganisms. However, microbes and enzymes discovered from natural degradation communities were still limited by cultural methods. In this study, we used a metagenomics sequence-guided strategy to identify the microbes and enzymes involved in compound degradation and explore the potential synergy among community members in fermented tobacco leaves. The results showed that contents of protein, starch, pectin, lignin, and cellulose varied in fermented leaves from different growing sites. The different compound contents were closely related to taxonomic composition and functional profiles of foliar microbial communities. Microbial communities showed significant correlations with protein, lignin, and cellulose. Vital species for degradations of protein (Bacillus cereus and Terribacillus aidingensis), lignin (Klebsiella pneumoniae and Pantoea ananatis) and cellulose (Pseudomonas putida and Sphingomonas sp. Leaf20) were identified and relating hydrolytic enzymes were annotated. Further, twenty-two metagenome-assembled genomes (MAGs) were assembled from metagenomes and six potential cellulolytic genomes were used to reconstruct the cellulose-degrading process, revealing the potential metabolic cooperation related to cellulose degradation. Our work should deepen the understanding of microbial roles in plant fermentation and provide a new viewpoint for applying microbial consortia to convert plant organic components to small molecules.

RevDate: 2022-09-14
CmpDate: 2022-09-08

Arias MB, Hartle-Mougiou K, Taboada S, et al (2022)

Unveiling biogeographical patterns in the worldwide distributed Ceratitis capitata (medfly) using population genomics and microbiome composition.

Molecular ecology, 31(18):4866-4883.

Invasive species are among the most important, growing threats to food security and agricultural systems. The Mediterranean medfly, Ceratitis capitata, is one of the most damaging representatives of a group of rapidly expanding species in the family Tephritidae, due to their wide host range and high invasiveness potential. Here, we used restriction site-associated DNA sequencing (RADseq) to investigate the population genomic structure and phylogeographical history of medflies collected from six sampling sites, including Africa (South Africa), the Mediterranean (Spain, Greece), Latin America (Guatemala, Brazil) and Australia. A total of 1907 single nucleotide polymorphisms (SNPs) were used to identify two genetic clusters separating native and introduced ranges, consistent with previous findings. In the introduced range, all individuals were assigned to one genetic cluster except for those in Brazil, which showed introgression of an additional genetic cluster that also appeared in South Africa, and which could not be previously identified using microsatellite markers. Moreover, we assessed the microbial composition variations in medfly populations from selected sampling sites using amplicon sequencing of the 16S ribosomal RNA (V4 region). Microbiome composition and structure were highly similar across geographical regions and host plants, and only the Brazilian specimens showed increased diversity levels and a unique composition of its microbiome compared to other sampling sites. The unique SNP patterns and microbiome features in the Brazilian specimens could point to a direct migration route from Africa with subsequent adaptation of the microbiota to the specific conditions present in Brazil. These findings significantly improve our understanding of the evolutionary history of the global medfly invasions and their adaptation to newly colonized environments.

RevDate: 2022-09-07
CmpDate: 2022-09-07

Wilcox TM, MR Jensen (2022)

Drawing a line in the sand: Environmental DNA population genomics.

Molecular ecology resources, 22(7):2455-2457.

Environmental DNA (eDNA) sampling uses genetic material in the environment to infer species presence sight-unseen. The method has rapidly become a powerful tool for monitoring biodiversity. However, biological diversity, as per the Convention on Biological Diversity definition of "diversity within species, between species and of ecosystems" is more inclusive than most eDNA studies cover: The vast majority focus only on between-species and ecosystem-level biodiversity. However, a tantalizing prospect, as illustrated by Farrell et al. (2022) in this issue of Molecular Ecology Resources, is that we might also be able to unlock information about individual and population-level diversity via population genomic analysis of these environmental samples. Farrell et al. (2022) found that targeted samples of beach sand contained genetic material not just informative about sea turtle presence, but also indicated the presence of pathogens and genome-wide mitochondrial and nuclear sequences that could accurately infer individual turtle source population. Moving from proof-of-concept to robust, population genomic inference will require a growth of genomic resources for nonmodel organisms and careful study design considerations, some of which have already been pioneered by related fields.

RevDate: 2022-07-22
CmpDate: 2022-07-18

Cheng JE, Su P, Zhang ZH, et al (2022)

Metagenomic analysis of the dynamical conversion of photosynthetic bacterial communities in different crop fields over different growth periods.

PloS one, 17(7):e0262517.

Photosynthetic bacteria are beneficial to plants, but knowledge of photosynthetic bacterial community dynamics in field crops during different growth stages is scarce. The factors controlling the changes in the photosynthetic bacterial community during plant growth require further investigation. In this study, 35 microbial community samples were collected from the seedling, flowering, and mature stages of tomato, cucumber, and soybean plants. 35 microbial community samples were assessed using Illumina sequencing of the photosynthetic reaction center subunit M (pufM) gene. The results revealed significant alpha diversity and community structure differences among the three crops at the different growth stages. Proteobacteria was the dominant bacterial phylum, and Methylobacterium, Roseateles, and Thiorhodococcus were the dominant genera at all growth stages. PCoA revealed clear differences in the structure of the microbial populations isolated from leaf samples collected from different crops at different growth stages. In addition, a dissimilarity test revealed significant differences in the photosynthetic bacterial community among crops and growth stages (P<0.05). The photosynthetic bacterial communities changed during crop growth. OTUs assigned to Methylobacterium were present in varying abundances among different sample types, which we speculated was related to the function of different Methylobacterium species in promoting plant growth development and enhancing plant photosynthetic efficiency. In conclusion, the dynamics observed in this study provide new research ideas for the detailed assessments of the relationship between photosynthetic bacteria and different growth stages of plants.

RevDate: 2022-07-29

Zeng Q, Zhao M, Wang F, et al (2022)

Integrating Choline and Specific Intestinal Microbiota to Classify Type 2 Diabetes in Adults: A Machine Learning Based Metagenomics Study.

Frontiers in endocrinology, 13:906310.

Emerging evidence is examining the precise role of intestinal microbiota in the pathogenesis of type 2 diabetes. The aim of this study was to investigate the association of intestinal microbiota and microbiota-generated metabolites with glucose metabolism systematically in a large cross-sectional study in China. 1160 subjects were divided into three groups based on their glucose level: normal glucose group (n=504), prediabetes group (n=394), and diabetes group (n=262). Plasma concentrations of TMAO, choline, betaine, and carnitine were measured. Intestinal microbiota was measured in a subgroup of 161 controls, 144 prediabetes and 56 diabetes by using metagenomics sequencing. We identified that plasma choline [Per SD of log-transformed change: odds ratio 1.36 (95 confidence interval 1.16, 1.58)] was positively, while betaine [0.77 (0.66, 0.89)] was negatively associated with diabetes, independently of TMAO. Individuals with diabetes could be accurately distinguished from controls by integrating data on choline, and certain microbiota species, as well as traditional risk factors (AUC=0.971). KOs associated with the carbohydrate metabolism pathway were enhanced in individuals with high choline level. The functional shift in the carbohydrate metabolism pathway in high choline group was driven by species Ruminococcus lactaris, Coprococcus catus and Prevotella copri. We demonstrated the potential ability for classifying diabetic population by choline and specific species, and provided a novel insight of choline metabolism linking the microbiota to impaired glucose metabolism and diabetes.

RevDate: 2022-09-12
CmpDate: 2022-07-14

Tremblay ÉD, GJ Bilodeau (2022)

Biomonitoring of Fungal and Oomycete Plant Pathogens by Using Metabarcoding.

Methods in molecular biology (Clifton, N.J.), 2536:309-346.

Fungal and oomycete plant pathogens are responsible for the devastation of various ecosystems such as forest and crop species worldwide. In an effort to protect such natural resources for food, lumber, etc., early detection of non-indigenous phytopathogenic fungi in new areas is a key approach in managing threats at their source of introduction. A workflow was developed using high-throughput sequencing (HTS), more specifically metabarcoding, a method for rapid and higher throughput species screening near high-risk areas, and over larger geographical spaces. Biomonitoring of fungal and oomycete entities of plant pathogens (e.g., airborne spores) regained from environmental samples and their processing by metabarcoding is thoroughly described here. The amplicon-based approach goes from DNA and sequencing library preparation using custom-designed polymerase chain reaction (PCR) fusion primers that target the internal transcribed spacer 1 (ITS1) from fungi and oomycetes and extends to multiplex HTS with the Ion Torrent platform. In addition, a brief and simplified overview of the bioinformatics analysis pipeline and other available tools required to process amplicon sequences is also included. The raw data obtained and processed enable users to select a bioinformatics pipeline in order to directly perform biodiversity, presence/absence, geographical distribution, and abundance analyses through the tools suggested, which allows for accelerated identification of phytopathogens of interest.

RevDate: 2022-09-12
CmpDate: 2022-07-14

Vettraino AM, N Luchi (2022)

A Rapid Method for Extracting High-Quality DNA from Soils.

Methods in molecular biology (Clifton, N.J.), 2536:103-107.

Metagenomics offers the possibility to study the microbial community of soils at large scale, allowing the characterization also of unculturable microorganisms. Availability of high-quality DNA is a prerequisite of this approach. However, since soils have highly heterogeneous physicochemical properties, several parameters need to be considered for the development of the best molecular practices. A method for isolation of high-molecular-weight and good-quality metagenomic DNA from different soil samples is described here. The protocol combines physical and chemical strategies to ensure efficient cell lysis and precipitation of humic impurities-free DNA suitable for downstream processing for metagenomics study.

RevDate: 2022-07-14
CmpDate: 2022-07-14

Rubiola S, Macori G, Civera T, et al (2022)

Comparison Between Full-Length 16S rRNA Metabarcoding and Whole Metagenome Sequencing Suggests the Use of Either Is Suitable for Large-Scale Microbiome Studies.

Foodborne pathogens and disease, 19(7):495-504.

Since the number of studies of the microbial communities related to food and food-associated matrices almost completely reliant on next-generation sequencing techniques is rising, evaluations of these high-throughput methods are critical. Currently, the two most used sequencing methods to profile the microbiota of complex samples, including food and food-related matrices, are the 16S ribosomal RNA (rRNA) metabarcoding and the whole metagenome sequencing (WMS), both of which are powerful tools for the monitoring of foodborne pathogens and the investigation of the microbiome. Herein, the microbial profiles of 20 bulk tank milk filters from different dairy farms were investigated using both the full-length 16S (FL-16S) rRNA metabarcoding, a third-generation sequencing method whose application in food and food-related matrices is yet in its infancy, and the WMS, to evaluate the correlation and the reliability of these two methods to explore the microbiome of food-related matrices. Metabarcoding and metagenomic data were generated on a MinION platform (Oxford Nanopore Technologies) and on a Illumina NovaSeq 6000 platform, respectively. Our findings support the greater resolution of WMS in terms of both increased detection of bacterial taxa and enhanced detection of diversity; in contrast, FL-16S rRNA metabarcoding has proven to be a promising, less expensive, and more practical tool to profile most abundant taxa. The significant correlation of the two technologies both in terms of taxa diversity and richness, together with the similar profiles defined for both highly abundant taxa and core microbiomes, including Acinetobacter, Bacillus, and Escherichia genera, highlights the possible application of both methods for different purposes. This study allowed the first comparison of FL-16S rRNA sequencing and WMS to investigate the microbial composition of a food-related matrix, pointing out the advantageous use of FL-16S rRNA to identify dominant microorganisms and the superior power of WMS for the taxonomic detection of low abundant microorganisms and to perform functional analysis of the microbial communities.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )