Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biodiversity and Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 23 May 2019 at 01:31 Created: 

Biodiversity and Metagenomics

If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.

Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-05-22
CmpDate: 2019-05-22

Vernocchi P, Del Chierico F, Russo A, et al (2018)

Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype.

PloS one, 13(12):e0208171 pii:PONE-D-17-43072.

BACKGROUND: Cystic fibrosis (CF) is a disorder affecting the respiratory, digestive, reproductive systems and sweat glands. This lethal hereditary disease has known or suspected links to the dysbiosis gut microbiota. High-throughput meta-omics-based approaches may assist in unveiling this complex network of symbiosis modifications.

OBJECTIVES: The aim of this study was to provide a predictive and functional model of the gut microbiota enterophenotype of pediatric patients affected by CF under clinical stability.

METHODS: Thirty-one fecal samples were collected from CF patients and healthy children (HC) (age range, 1-6 years) and analysed using targeted-metagenomics and metabolomics to characterize the ecology and metabolism of CF-linked gut microbiota. The multidimensional data were low fused and processed by chemometric classification analysis.

RESULTS: The fused metagenomics and metabolomics based gut microbiota profile was characterized by a high abundance of Propionibacterium, Staphylococcus and Clostridiaceae, including Clostridium difficile, and a low abundance of Eggerthella, Eubacterium, Ruminococcus, Dorea, Faecalibacterium prausnitzii, and Lachnospiraceae, associated with overexpression of 4-aminobutyrate (GABA), choline, ethanol, propylbutyrate, and pyridine and low levels of sarcosine, 4-methylphenol, uracil, glucose, acetate, phenol, benzaldehyde, and methylacetate. The CF gut microbiota pattern revealed an enterophenotype intrinsically linked to disease, regardless of age, and with dysbiosis uninduced by reduced pancreatic function and only partially related to oral antibiotic administration or lung colonization/infection.

CONCLUSIONS: All together, the results obtained suggest that the gut microbiota enterophenotypes of CF, together with endogenous and bacterial CF biomarkers, are direct expression of functional alterations at the intestinal level. Hence, it's possible to infer that CFTR impairment causes the gut ecosystem imbalance.This new understanding of CF host-gut microbiota interactions may be helpful to rationalize novel clinical interventions to improve the affected children's nutritional status and intestinal function.

RevDate: 2019-05-22
CmpDate: 2019-05-22

Zmora N, Zilberman-Schapira G, Suez J, et al (2018)

Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features.

Cell, 174(6):1388-1405.e21.

Empiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome. A sequential invasive multi-omics measurement at baseline and during consumption of an 11-strain probiotic combination or placebo demonstrated that probiotics remain viable upon gastrointestinal passage. In colonized, but not germ-free mice, probiotics encountered a marked mucosal colonization resistance. In contrast, humans featured person-, region- and strain-specific mucosal colonization patterns, hallmarked by predictive baseline host and microbiome features, but indistinguishable by probiotics presence in stool. Consequently, probiotics induced a transient, individualized impact on mucosal community structure and gut transcriptome. Collectively, empiric probiotics supplementation may be limited in universally and persistently impacting the gut mucosa, meriting development of new personalized probiotic approaches.

RevDate: 2019-05-22
CmpDate: 2019-05-22

Galand PE, Pereira O, Hochart C, et al (2018)

A strong link between marine microbial community composition and function challenges the idea of functional redundancy.

The ISME journal, 12(10):2470-2478.

Marine microbes have tremendous diversity, but a fundamental question remains unanswered: why are there so many microbial species in the sea? The idea of functional redundancy for microbial communities has long been assumed, so that the high level of richness is often explained by the presence of different taxa that are able to conduct the exact same set of metabolic processes and that can readily replace each other. Here, we refute the hypothesis of functional redundancy for marine microbial communities by showing that a shift in the community composition altered the overall functional attributes of communities across different temporal and spatial scales. Our metagenomic monitoring of a coastal northwestern Mediterranean site also revealed that diverse microbial communities harbor a high diversity of potential proteins. Working with all information given by the metagenomes (all reads) rather than relying only on known genes (annotated orthologous genes) was essential for revealing the similarity between taxonomic and functional community compositions. Our finding does not exclude the possibility for a partial redundancy where organisms that share some specific function can coexist when they differ in other ecological requirements. It demonstrates, however, that marine microbial diversity reflects a tremendous diversity of microbial metabolism and highlights the genetic potential yet to be discovered in an ocean of microbes.

RevDate: 2019-05-21
CmpDate: 2019-05-21

Martí JM (2019)

Recentrifuge: Robust comparative analysis and contamination removal for metagenomics.

PLoS computational biology, 15(4):e1006967 pii:PCOMPBIOL-D-18-01602.

Metagenomic sequencing is becoming widespread in biomedical and environmental research, and the pace is increasing even more thanks to nanopore sequencing. With a rising number of samples and data per sample, the challenge of efficiently comparing results within a specimen and between specimens arises. Reagents, laboratory, and host related contaminants complicate such analysis. Contamination is particularly critical in low microbial biomass body sites and environments, where it can comprise most of a sample if not all. Recentrifuge implements a robust method for the removal of negative-control and crossover taxa from the rest of samples. With Recentrifuge, researchers can analyze results from taxonomic classifiers using interactive charts with emphasis on the confidence level of the classifications. In addition to contamination-subtracted samples, Recentrifuge provides shared and exclusive taxa per sample, thus enabling robust contamination removal and comparative analysis in environmental and clinical metagenomics. Regarding the first area, Recentrifuge's novel approach has already demonstrated its benefits showing that microbiomes of Arctic and Antarctic solar panels display similar taxonomic profiles. In the clinical field, to confirm Recentrifuge's ability to analyze complex metagenomes, we challenged it with data coming from a metagenomic investigation of RNA in plasma that suffered from critical contamination to the point of preventing any positive conclusion. Recentrifuge provided results that yielded new biological insight into the problem, supporting the growing evidence of a blood microbiota even in healthy individuals, mostly translocated from the gut, the oral cavity, and the genitourinary tract. We also developed a synthetic dataset carefully designed to rate the robust contamination removal algorithm, which demonstrated a significant improvement in specificity while retaining a high sensitivity even in the presence of cross-contaminants. Recentrifuge's official website is www.recentrifuge.org. The data and source code are anonymously and freely available on GitHub and PyPI. The computing code is licensed under the AGPLv3. The Recentrifuge Wiki is the most extensive and continually-updated source of documentation for Recentrifuge, covering installation, use cases, testing, and other useful topics.

RevDate: 2019-05-21
CmpDate: 2019-05-21

Fernandes C, Kankonkar H, Meena RM, et al (2019)

Metagenomic analysis of tarball-associated bacteria from Goa, India.

Marine pollution bulletin, 141:398-403.

The beaches of Goa state in India are frequently polluted with tarballs, specifically during pre-monsoon and monsoon seasons. Tarballs contain hydrocarbons, including polycyclic aromatic hydrocarbons, which pose significant environmental risks. Microbes associated with tarballs reportedly possess capabilities to degrade toxic hydrocarbons present in tarballs. In this study, bacterial diversity associated with tarballs from Vagator and Morjim beaches of north Goa was analysed based on V3-V4 regions of 16S rRNA gene sequenced using Illumina Miseq Platform. The Proteobacterial members were dominant in both Vagator (≥85.5%) and Morjim (≥94.0%) samples. Many of the identified taxa have been previously reported as hydrocarbon degraders (e.g. Halomonas, Marinobacter) or possible human pathogens (e.g. Acinetobacter, Klebsiella, Rhodococcus, Staphylococcus, Vibrio). This is the first study reported on a metagenomic analysis of bacteria associated with tarballs from Goa.

RevDate: 2019-05-21
CmpDate: 2019-05-21

Metch JW, Burrows ND, Murphy CJ, et al (2018)

Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design.

Nature nanotechnology, 13(3):253-259.

Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

RevDate: 2019-05-20
CmpDate: 2019-05-20

Cotta SR, Cadete LL, van Elsas JD, et al (2019)

Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity.

Marine pollution bulletin, 141:586-594.

Mangrove forests are highly productive yet vulnerable ecosystems that act as important carbon sinks ("blue carbon"). The objective of this work was to analyze the impact of anthropogenic activities on microbiome structure and functioning. The metagenomic analysis revealed that the taxonomic compositions were grossly similar across all mangrove microbiomes. Remarkably, these microbiomes, along the gradient of anthropogenic impact, showed fluctuations in the relative abundances of bacterial taxa predicted to be involved in sulfur cycling processes. Functions involved in sulfur metabolism, such as APS pathways (associated with sulfate reduction and sulfur oxidation processes) were prevalent across the microbiomes, being sox and dsrAB genes highly expressed on anthropogenically-impacted areas. Apparently, the oil-impacted microbiomes were more affected in taxonomic than in functional terms, as high functional redundancies were noted across them. The microbial gene diversity found was typical for a functional system, even following the previous disturbance.

RevDate: 2019-05-20
CmpDate: 2019-05-20

Thomas M, Wongkuna S, Ghimire S, et al (2019)

Gut Microbial Dynamics during Conventionalization of Germfree Chicken.

mSphere, 4(2): pii:4/2/e00035-19.

A gnotobiotic Gallus gallus (chicken) model was developed to study the dynamics of intestinal microflora from hatching to 18 days of age employing metagenomics. Intestinal samples were collected from a local population of feral chickens and administered orally to germfree 3-day-old chicks. Animals were euthanized on days 9 and 18 postinoculation, and intestinal samples were collected and subjected to metagenomic analysis. On day 18, the five most prevalent phyla were Bacteroidetes (43.03 ± 3.19%), Firmicutes (38.51 ± 2.67%), Actinobacteria (6.77 ± 0.7%), Proteobacteria (6.38 ± 0.7%), and Spirochaetes (2.71 ± 0.55%). Principal-coordinate analysis showed that the day 18 variables clustered more closely than the day 9 variables, suggesting that the microbial communities had changed temporally. The Morista-Horn index values ranged from 0.7 to 1, indicating that the communities in the inoculum and in the day 9 and day 18 samples were more similar than dissimilar. The predicted functional profiles of the microbiomes of the inoculum and the day 9 and day 18 samples were also similar (values of 0.98 to 1). These results indicate that the gnotobiotic chicks stably maintained the phylogenetic diversity and predicted metabolic functionality of the inoculum community.IMPORTANCE The domestic chicken is the cornerstone of animal agriculture worldwide, with a flock population exceeding 40 billion birds/year. It serves as an economically valuable source of protein globally. The microbiome of poultry has important effects on chicken growth, feed conversion, immune status, and pathogen resistance. The aim of our research was to develop a gnotobiotic chicken model appropriate for the study chicken gut microbiota function. Our experimental model shows that young germfree chicks are able to colonize diverse sets of gut bacteria. Therefore, besides the use of this model to study mechanisms of gut microbiota interactions in the chicken gut, it could be also used for applied aspects such as determining the safety and efficacy of new probiotic strains derived from chicken gut microbiota.

RevDate: 2019-05-20
CmpDate: 2019-05-20

Majta J, Odrzywolek K, Milanovic B, et al (2019)

Identification of Differentiating Metabolic Pathways between Infant Gut Microbiome Populations Reveals Depletion of Function-Level Adaptation to Human Milk in the Finnish Population.

mSphere, 4(2): pii:4/2/e00152-19.

A variety of autoimmune and allergy events are becoming increasingly common, especially in Western countries. Some pieces of research link such conditions with the composition of microbiota during infancy. In this period, the predominant form of nutrition for gut microbiota is oligosaccharides from human milk (HMO). A number of gut-colonizing strains, such as Bifidobacterium and Bacteroides, are able to utilize HMO, but only some Bifidobacterium strains have evolved to digest the specific composition of human oligosaccharides. Differences in the proportions of the two genera that are able to utilize HMO have already been associated with the frequency of allergies and autoimmune diseases in the Finnish and the Russian populations. Our results show that differences in terms of the taxonomic annotation do not explain the reason for the differences in the Bifidobacterium/Bacteroides ratio between the Finnish and the Russian populations. In this paper, we present the results of function-level analysis. Unlike the typical workflow for gene abundance analysis, BiomeScout technology explains the differences in the Bifidobacterium/Bacteroides ratio. Our research shows the differences in the abundances of the two enzymes that are crucial for the utilization of short type 1 oligosaccharides.IMPORTANCE Knowing the limitations of taxonomy-based research, there is an emerging need for the development of higher-resolution techniques. The significance of this research is demonstrated by the novel method used for the analysis of function-level metagenomes. BiomeScout-the presented technology-utilizes proprietary algorithms for the detection of differences between functionalities present in metagenomic samples.

RevDate: 2019-05-20
CmpDate: 2019-05-20

Chen L, Li H, Li J, et al (2019)

Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis.

International journal of molecular medicine, 43(3):1139-1148.

Decrease of 'health‑benefiting' microbes and increase of pathogenic bacteria (a condition termed dysbiosis) in intensive care unit patients is considered to induce or aggravate sepsis (gut‑origin sepsis). Orally administered probiotics have been effective in the prevention of nosocomial infections. However, the mechanisms of probiotic‑induced anti‑infection and anti‑sepsis remain to be explored. In the present study, 4‑week‑old C57BL6 mice were orally administrated with Lactobacillus rhamnosus GG (LGG) or normal saline (control) 4 weeks prior to cecal ligation and puncture (CLP). A subset of the mice were sacrificed at 24 h post‑CLP, and the others were used for survival studies. Ileum tissues, blood and fecal samples were collected. The survival rate of septic mice pretreated with LGG was significantly improved compared with untreated mice. The levels of inflammatory cytokines were reduced in LGG‑pretreated septic mice. A decrease of colonic proliferation and epithelial tight junctions and an increase of colonic apoptosis were observed in control septic CLP+saline mice. LGG pretreatment reversed the colonic proliferation, apoptosis and expression of tight junction proteins to the levels of the sham group. LGG pretreatment improved the richness and diversity of intestinal microbiota in septic mice. The principal coordinates analysis clustering plots revealed a significant separate clustering in microbiota structure between three groups. Bacteria associated with energy consumption, including Bacteroidetes, with opportunistic infection, including Proteobacteria, Staphylococcaceae and Enterococcaceae, lipopolysaccharide producers, including Enterobacteriaceae, and facultative anaerobes, such as Bacteroidaceae and Erysipelotrichaceae, increased in septic mice. By contrast, bacteria associated with energy harvest, including Firmicutes, intestinal barrier function regulators, including Akkermansia, hepatic function regulators, including Coprococcus and Oscillospira, and obligate anaerobes, including Prevotellaceae, decreased in septic mice. With LGG pretreatment, the sepsis‑induced microbiota dysbiosis was reversed. The present results elucidated the potential mechanism of LGG treatment in sepsis, by improving intestinal permeability and modulating microbiota dysbiosis.

RevDate: 2019-05-20
CmpDate: 2019-05-20

Quinn O, Gruber MAM, Brown RL, et al (2018)

A metatranscriptomic analysis of diseased social wasps (Vespula vulgaris) for pathogens, with an experimental infection of larvae and nests.

PloS one, 13(12):e0209589 pii:PONE-D-18-19659.

Social wasps are a major pest in many countries around the world. Pathogens may influence wasp populations and could provide an option for population management via biological control. We investigated the pathology of nests of apparently healthy common wasps, Vespula vulgaris, with nests apparently suffering disease. First, next-generation sequencing and metatranscriptomic analysis were used to examine pathogen presence. The transcriptome of healthy and diseased V. vulgaris showed 27 known microbial phylotypes. Four of these were observed in diseased larvae alone (Aspergillus fumigatus, Moellerella wisconsensis, Moku virus, and the microsporidian Vavraia culicis). Kashmir Bee Virus (KBV) was found to be present in both healthy and diseased larvae. Moellerella wisconsensis is a human pathogen that was potentially misidentified in our wasps by the MEGAN analysis: it is more likely to be the related bacteria Hafnia alvei that is known to infect social insects. The closest identification to the putative pathogen identified as Vavraia culicis was likely to be another microsporidian Nosema vulgaris. PCR and subsequent Sanger sequencing using published or our own designed primers, confirmed the identity of Moellerella sp. (which may be Hafnia alvei), Aspergillus sp., KBV, Moku virus and Nosema. Secondly, we used an infection study by homogenising diseased wasp larvae and feeding them to entire nests of larvae in the laboratory. Three nests transinfected with diseased larvae all died within 19 days. No pathogen that we monitored, however, had a significantly higher prevalence in diseased than in healthy larvae. RT-qPCR analysis indicated that pathogen infections were significantly correlated, such as between KBV and Aspergillus sp. Social wasps clearly suffer from an array of pathogens, which may lead to the collapse of nests and larval death.

RevDate: 2019-05-20
CmpDate: 2019-05-20

Bridgewater LC, Zhang C, Wu Y, et al (2017)

Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model.

Scientific reports, 7(1):10776.

Obesity is associated with a high prevalence of mood disorders such as anxiety and depression. Both stress and high fat diet can alter the gut microbiota and contribute to obesity. To examine the interrelationships between obesity, stress, gut microbiota and mood disorders, obesity was induced in mice using a high fat diet, and the mice were subsequently stressed using a chronic unpredictable mild stress protocol. During the experiment, the composition of the gut microbiota was analyzed by 16 S rRNA gene high-throughput sequencing, and anxiety-like behaviors were measured. The results revealed distinct gender differences in the impacts of obesity and stress on anxiety-like behaviors, activity levels, and composition of the gut microbiota. Male mice were more vulnerable to the anxiogenic effects of the high fat diet, and obese male mice showed decreased locomotion activity in response to stress whereas obese female mice did not. In females, stress caused the gut microbiota of lean mice to more closely resemble that of obese mice. Taken together, these results suggest the importance of considering gender as a biological variable in studies on the role of gut microbiota in obesity-related mood disorders.

RevDate: 2019-05-18

Sahoo K, Sahoo RK, Gaur M, et al (2019)

Cellulolytic thermophilic microorganisms in white biotechnology: a review.

Folia microbiologica pii:10.1007/s12223-019-00710-6 [Epub ahead of print].

Enzymes of microbial origin are of immense importance for organic material decomposition leading to bioremediation of organic waste, bioenergy generation, large-scale industrial bioprocesses, etc. The market demand for microbial cellulase enzyme is growing more rapidly which ultimately becomes the driving force towards research on this biocatalyst, widely used in various industrial activities. The use of novel cellulase genes obtained from various thermophiles through metagenomics and genetic engineering as well as following metabolic engineering pathways would be able to enhance the production of thermophilic cellulase at industrial scale. The present review is mainly focused on thermophilic cellulolytic bacteria, discoveries on cellulase gene, genetically modified cellulase, metabolic engineering, and their various industrial applications. A lot of lacunae are yet to overcome for thermophiles such as metagenome analysis, metabolic pathway modification study, search of heterologous hosts in gene expression system, and improved recombinant strain for better cellulase yield as well as value-added product formation.

RevDate: 2019-05-17
CmpDate: 2019-05-17

Osman JR, Regeard C, Badel C, et al (2019)

Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France).

Antonie van Leeuwenhoek, 112(3):351-365.

Salinity is an important environmental factor influencing microbial community composition. To better understand this influence, we determined the bacterial communities present in 17 different sites of brackish sediment (underwater) and soil (surface) samples from the Camargue region (Rhône river delta) in southern France during the fall of 2013 and 2014 using pyrosequencing of the V3-V4 regions of the 16S rRNA genes amplified by PCR. This region is known for abundant flora and fauna and, though saline, 30% of rice consumed in France is grown here. We found that bacterial abundance in 1 g of soil or sediment, calculated by qPCR, was higher in sediments than in surface soil samples. Members belonging to the Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes phyla dominated the bacterial communities of sediment samples, while members belonging to the Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Firmicutes and Acidobacteria phyla dominated the bacterial communities of the soil samples. The most abundant bacterial genera present in the saline sediments and soils from the Camargue belonged mostly to halophilic and sulphate reducing bacteria, suggesting that the Camargue may be a valuable system to investigate saline, yet agriculturally productive, sediment and soil microbial ecosystem.

RevDate: 2019-05-17
CmpDate: 2019-05-17

Panebianco C, Potenza A, Andriulli A, et al (2018)

Exploring the microbiota to better understand gastrointestinal cancers physiology.

Clinical chemistry and laboratory medicine, 56(9):1400-1412.

Gastrointestinal cancers account for around 40% of cancer-related deaths worldwide, representing a global health burden. There is a growing body of evidence highlighting the link between microbiota and gastrointestinal tumorigenesis and/or resistance to therapy. In the present manuscript, we reviewed the published studies on the relationship between the microbiota and the different gastrointestinal tumors, namely, gastric, colorectal and esophageal, including also the cancer of accessory organs such as liver and pancreas. There is an emergent interest in the manipulation of gastrointestinal microflora in order to understand the gastrointestinal tumorigenesis' processes and the establishment of chemoresistance mechanisms.

RevDate: 2019-05-16
CmpDate: 2019-05-16

Mahato NK, Sharma A, Singh Y, et al (2019)

Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics.

Archives of microbiology, 201(3):377-388.

Metagenomic surveys across microbial mat (~ 55 °C) samples of high-altitude (1760 m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~ 95 °C) and sediment samples (78-98 °C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55 °C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~ 78 °C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~ 98 °C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature.

RevDate: 2019-05-16
CmpDate: 2019-05-16

Tyagi A, Singh B, Billekallu Thammegowda NK, et al (2019)

Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome.

Archives of microbiology, 201(3):295-303.

Gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. With the presence of 36 phyla, 326 families and 985 genera, the fish gut microbiota was found to be quite diverse in nature. However, at the phylum level, more than three-fourths of gut microbes belonged to Proteobacteria. Very low prevalence of commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) in fish gut suggested the need to search for alternative probiotics for aquaculture use. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy metabolism (4%) and fermentation (2%). In conformity with herbivorous feeding habit of L. rohita, gut microbiome also had pathways for the degradation of cellulose, hemicellulose, chitin, pectin, starch, and other complex carbohydrates. High prevalence of Actinobacteria and antibiotic biosynthesis pathways in the fish gut microbiome indicated its potential for bioprospecting of potentially novel natural antibiotics. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment. The role of ARGs in fish gut microbiome needs further investigations.

RevDate: 2019-05-16
CmpDate: 2019-05-16

Lladó Fernández S, Větrovský T, P Baldrian (2019)

The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar.

Folia microbiologica, 64(1):19-23.

The concept of operational taxonomic units (OTUs), which constructs "mathematically" defined taxa, is widely accepted and applied to describe bacterial communities using amplicon sequencing of 16S rRNA gene. OTUs are often used to infer functional traits since they are considered to fairly represent of community members. However, the link between molecular taxa, real taxa, and OTUs seems to be much more complicated. Strains of the same bacterial species (ideally belonging to the same OTU) typically only share some genes (the core genome), while other genes are strain-specific and unique. It is thus unclear to what extent are important functional traits homogeneous within an OTU and how correctly can functional traits be inferred for individual OTU members. Here, we have tested in silico the similarity of all genes and, more specifically, the set of genes encoding for glycoside hydrolases (GH) in bacterial genomes that belong to the same OTU. Genome similarity varied among OTUs, but as many as 5-78% of genes were not shared between the two bacterial genomes in the pair. The complement of GH families (the presence of gene families and the number of genes per family) differed in 95% of OTUs. In average, 43% of GH families either differed in gene counts or were present in one genome and absent in the other. These results show a serious limitation of the OTU-based approaches when used to infer the functional traits of bacterial communities and open the questions how to link environmental sequencing data and microbial functions.

RevDate: 2019-05-16
CmpDate: 2019-05-16

Duru IC, Laine P, Andreevskaya M, et al (2018)

Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening.

International journal of food microbiology, 281:10-22.

In Swiss-type cheeses, characteristic nut-like and sweet flavor develops during the cheese ripening due to the metabolic activities of cheese microbiota. Temperature changes during warm and cold room ripening, and duration of ripening can significantly change the gene expression of the cheese microbiota, which can affect the flavor formation. In this study, a metagenomic and metatranscriptomic analysis of Swiss-type Maasdam cheese was performed on samples obtained during ripening in the warm and cold rooms. We reconstructed four different bacterial genomes (Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus helveticus, and Propionibacterium freudenreichii subsp. shermanii strain JS) from the Maasdam cheese to near completeness. Based on the DNA and RNA mean coverage, Lc. lactis strongly dominated (~80-90%) within the cheese microbial community. Genome annotation showed the potential for the presence of several flavor forming pathways in these species, such as production of methanethiol, free fatty acids, acetoin, diacetyl, acetate, ethanol, and propionate. Using the metatranscriptomic data, we showed that, with the exception of Lc. lactis, the central metabolism of the microbiota was downregulated during cold room ripening suggesting that fewer flavor compounds such as acetoin and propionate were produced. In contrast, Lc. lactis genes related to the central metabolism, including the vitamin biosynthesis and homolactic fermentation, were upregulated during cold room ripening.

RevDate: 2019-05-16
CmpDate: 2019-05-16

Kato S, Shibuya T, Takaki Y, et al (2018)

Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits.

Environmental microbiology, 20(2):862-877.

Deep-sea massive sulfide deposits remaining after ceasing of hydrothermal activity potentially provide energy for a chemosynthetic ecosystem in the dark, cold marine environments. Although yet-uncultivated bacteria in the phylum Nitrospirae and the class Deltaproteobacteria are known to dominate the microbial communities of sulfide deposits at and below the seafloor, their metabolic capabilities remain largely elusive. Here, we reveal the metabolic potential of these yet-uncultivated bacteria in hydrothermally inactive sulfide deposits collected at the Southern Mariana Trough by seafloor drilling. Near-complete genomes of the predominant bacterial members were recovered from shotgun metagenomic sequences. The genomic capabilities for CO2 and N2 fixation suggest that these bacteria are primary producers in the microbial ecosystem. Their genomes also encode versatile chemolithotrophic energy metabolisms, such as the oxidation of H2 , sulfide and intermediate sulfur species including thiosulfate, all of which can be supplied by chemical reactions between seawater and metal sulfides. Notably, the presence of genes involved in thiosulfate oxidation in Nitrospirae and Deltaproteobacteria genomes is unusual. Our study strongly support the presence of a chemosynthetic ecosystem fuelled by the Earth's internal energy in the deep-sea massive sulfide deposits, and illustrates the unexpected metabolic capability of known bacterial taxonomic groups.

RevDate: 2019-05-16
CmpDate: 2019-05-16

Fortunato CS, Larson B, Butterfield DA, et al (2018)

Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids.

Environmental microbiology, 20(2):769-784.

At deep-sea hydrothermal vents, microbial communities thrive across geochemical gradients above, at, and below the seafloor. In this study, we determined the gene content and transcription patterns of microbial communities and specific populations to understand the taxonomy and metabolism both spatially and temporally across geochemically different diffuse fluid hydrothermal vents. Vent fluids were examined via metagenomic, metatranscriptomic, genomic binning, and geochemical analyses from Axial Seamount, an active submarine volcano on the Juan de Fuca Ridge in the NE Pacific Ocean, from 2013 to 2015 at three different vents: Anemone, Marker 33, and Marker 113. Results showed that individual vent sites maintained microbial communities and specific populations over time, but with spatially distinct taxonomic, metabolic potential, and gene transcription profiles. The geochemistry and physical structure of each vent both played important roles in shaping the dominant organisms and metabolisms present at each site. Genomic binning identified key populations of SUP05, Aquificales and methanogenic archaea carrying out important transformations of carbon, sulfur, hydrogen, and nitrogen, with groups that appear unique to individual sites. This work highlights the connection between microbial metabolic processes, fluid chemistry, and microbial population dynamics at and below the seafloor and increases understanding of the role of hydrothermal vent microbial communities in deep ocean biogeochemical cycles.

RevDate: 2019-05-14
CmpDate: 2019-05-14

Pasolli E, Schiffer L, Manghi P, et al (2017)

Accessible, curated metagenomic data through ExperimentHub.

Nature methods, 14(11):1023-1024.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Zhang F, Zheng W, Xue Y, et al (2019)

Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels.

Applied microbiology and biotechnology, 103(2):853-868.

Unabsorbed copper accumulates in the hindgut of pigs that consume high levels of dietary copper, which enhances the coselection of antibiotic-resistant bacteria and is considered detrimental to the environment and to porcine health. In our study, a combination of 16S rRNA pyrosequencing and nontargeted metabolomics was used to investigate the microbiome-metabolome responses to dietary copper levels in the hindgut of suckling piglets. The results showed that the dietary copper level affected the abundance of several Clostridia genera and that the relative abundance of butyrate-producing bacteria, such as Coprococcus, Roseburia, and Acidaminococcus, was reduced in the 300 mg kg-1 (high) Cu group. Metabolomic analysis revealed that dietary copper levels affected protein and carbohydrate metabolites, protein biosynthesis, the urea cycle, galactose metabolism, gluconeogenesis, and amino acid metabolism (including the metabolism of arginine, proline, β-alanine, phenylalanine, tyrosine, and methionine). Furthermore, Pearson's correlation analysis showed that the abundance levels of Coprococcus (family Lachnospiraceae) and operational taxonomic unit (OTU) 18 (family Ruminococcaceae) were positively correlated with energy metabolism pathways (gluconeogenesis, glycolysis, and the pentose phosphate pathway). The abundance of Streptococcus was negatively correlated with amino acid metabolism pathways (protein biosynthesis, glycine, serine, threonine, methionine, phenylalanine, and tyrosine metabolism), and OTU583 and OTU1067 (family Rikenellaceae) were positively correlated with amino acid metabolism pathways. These results suggest that the copper levels consumed by LC (low-copper group) versus HC (high-copper group) animals alter the composition of the gut microbiota and modulate microbial metabolic pathways, which may further affect the health of suckling piglets.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Meng H, Zhou Z, Wu R, et al (2019)

Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene.

Applied microbiology and biotechnology, 103(2):995-1005.

Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Zhu L, Liao R, Wu N, et al (2019)

Heat stress mediates changes in fecal microbiome and functional pathways of laying hens.

Applied microbiology and biotechnology, 103(1):461-472.

Chicken gastrointestinal microbiota plays important roles in health, productivity, and disease. However, knowledge of the relationship between heat stress and the gut microbial ecosystem of poultry, especially laying hens, is still limited. Here, we aimed to provide important knowledge for heat stress intervention in the egg industry. We performed high-throughput sequencing metagenomics on fecal contents to unravel the microbial taxa and functional capacity of the gut microbiome of caged laying hens under heat stress. Results showed that the fecal microbial communities of laying hens were dominated by Firmicutes, Bacteroidetes, and Proteobacteria phyla. The Firmicutes were significantly decreased, and Bacteroidetes were increased in the fecal microbiota under heat stress. Functional prediction of these changes in microbiota revealed that metabolism-related pathways, including cysteine and methionine metabolism and benzoate degradation, were more abundant. Conversely, retinol metabolism and phenylpropanoid biosynthesis were decreased by heat stress, suggesting differences in metabolism between layers in different temperature environments. Clear contributions were identified between active taxa (genus level) and metabolic pathways, which were associated with the liver and intestinal dysfunction in layers. These data revealed that heat stress induced a significant taxonomic perturbation in the gut microbiome of caged laying hens. This was related to the negative effects of heat stress in poultry and provided important basic knowledge for heat stress intervention.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Almeida OGG, ECP De Martinis (2019)

Bioinformatics tools to assess metagenomic data for applied microbiology.

Applied microbiology and biotechnology, 103(1):69-82.

The reduction of the price of DNA sequencing has resulted in the emergence of large data sets to handle and analyze, especially in microbial ecosystems, which are characterized by high taxonomic and functional diversities. To assess the properties of these complex ecosystems, a conceptual background of the application of NGS technology and bioinformatics analysis to metagenomics is required. Accordingly, this article presents an overview of the evolution of knowledge of microbial ecology from traditional culture-dependent methods to culture-independent methods and the last frontier in knowledge, metagenomics. Topics that will be covered include sample preparation for NGS, starting with total DNA extraction and library preparation, followed by a brief discussion of the chemistry of NGS to help provide an understanding of which bioinformatics pipeline approach may be helpful for achieving a researcher's goals. The importance of selecting appropriate sequencing coverage and depth parameters to obtain a suitable measure of microbial diversity is discussed. As all DNA sequencing processes produce base-calling errors that compromise data analysis, including genome assembly and microbial functional analysis, dedicated software is presented and conceptually discussed with regard to potential applications in the general microbial ecology field.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Ganesh BP, Nelson JW, Eskew JR, et al (2018)

Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea.

Hypertension (Dallas, Tex. : 1979), 72(5):1141-1150.

Disruption of the gut microbiota, termed gut dysbiosis, has been described in animal models of hypertension and hypertensive patients. We have shown that gut dysbiosis plays a causal role in the development of hypertension in a rat model of obstructive sleep apnea (OSA). Functional analysis of the dysbiotic microbiota in OSA demonstrates a loss of short chain fatty acid-producing bacteria. However, measurements of short chain fatty acid concentrations and testing of their role in blood pressure regulation are lacking. We hypothesized that reduced short chain fatty acids in the gut are responsible for OSA-induced hypertension. OSA significantly increased systolic blood pressure at 7 and 14 days (P<0.05), an effect that was abolished by the probiotic Clostridium butyricum or the prebiotic Hylon VII. The 16S rRNA analysis identified several short chain fatty acid-producing bacteria that were significantly increased by Cbutyricum and Hylon treatment. Acetate concentration in the cecum was decreased by 48% after OSA (P<0.05), an effect that was prevented by Cbutyricum and Hylon. Cbutyricum and Hylon reduced OSA-induced dysbiosis, epithelial goblet cell loss, mucus barrier thinning, and activation of brain microglia (P<0.05 for each). To examine the role of acetate in OSA-induced hypertension, we chronically infused acetate into the cecum during 2 weeks of sham or OSA. Restoring cecal acetate concentration prevented OSA-induced gut inflammation and hypertension (P<0.05). These studies identify acetate as a key player in OSA-induced hypertension. We demonstrate that various methods to increase cecal acetate concentrations are protective from the adverse effects of OSA on the microbiota, gut, brain, and blood pressure.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Gonzalez A, Navas-Molina JA, Kosciolek T, et al (2018)

Qiita: rapid, web-enabled microbiome meta-analysis.

Nature methods, 15(10):796-798.

Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Beller HR, Rodrigues AV, Zargar K, et al (2018)

Discovery of enzymes for toluene synthesis from anoxic microbial communities.

Nature chemical biology, 14(5):451-457.

Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum.

RevDate: 2019-05-10
CmpDate: 2019-05-10

Thomas AM, Manghi P, Asnicar F, et al (2019)

Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation.

Nature medicine, 25(4):667-678.

Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.

RevDate: 2019-05-10
CmpDate: 2019-05-10

Hoyles L, Fernández-Real JM, Federici M, et al (2018)

Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women.

Nature medicine, 24(7):1070-1080.

Hepatic steatosis is a multifactorial condition that is often observed in obese patients and is a prelude to non-alcoholic fatty liver disease. Here, we combine shotgun sequencing of fecal metagenomes with molecular phenomics (hepatic transcriptome and plasma and urine metabolomes) in two well-characterized cohorts of morbidly obese women recruited to the FLORINASH study. We reveal molecular networks linking the gut microbiome and the host phenome to hepatic steatosis. Patients with steatosis have low microbial gene richness and increased genetic potential for the processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid metabolism. We demonstrated that fecal microbiota transplants and chronic treatment with phenylacetic acid, a microbial product of aromatic amino acid metabolism, successfully trigger steatosis and branched-chain amino acid metabolism. Molecular phenomic signatures were predictive (area under the curve = 87%) and consistent with the gut microbiome having an effect on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies.

RevDate: 2019-05-09
CmpDate: 2019-05-09

Eisenstein M (2018)

Microbiology: making the best of PCR bias.

Nature methods, 15(5):317-320.

RevDate: 2019-05-09
CmpDate: 2019-05-09

Houghton D, Stewart CJ, Stamp C, et al (2018)

Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition.

The journals of gerontology. Series A, Biological sciences and medical sciences, 73(5):571-578.

Mitochondrial dysfunction is prevalent in the aging gastrointestinal tract. We investigated whether mitochondrial function in aging colonic crypts and exercise influences microbial gut communities in mice. Twelve PolgAmut/mut mice were randomly divided into a sedentary and exercise group at 4 months. Seven-aged matched PolgA+/+ mice remained sedentary throughout. Stool samples were collected at 4, 7, and 11 months, and bacterial profiling was achieved through 16S rRNA sequencing profiling. Mitochondrial enzyme activity was assessed in colonic epithelial crypts at 11 months for PolgAmut/mut and PolgA+/+ mice. Sedentary and exercised PolgAmut/mut mice had significantly higher levels of mitochondrial dysfunction than PolgA+/+ mice (78%, 77%, and 1% of crypts, respectively). Bacterial profiles of sedentary PolgAmut/mut mice were significantly different from the sedentary PolgA+/+ mice, with increases in Lactobacillus and Mycoplasma, and decreases in Alistipes, Odoribacter, Anaeroplasma, Rikenella, Parabacteroides, and Allobaculum in the PolgAmut/mut mice. Exercise did not have any impact upon gut mitochondrial dysfunction; however, exercise did increase gut microbiota diversity and significantly increased bacterial genera Mucispirillum and Desulfovibrio. Mitochondrial dysfunction is associated with changes in the gut microbiota. Endurance exercise moderated some of these changes, establishing that environmental factors can influence gut microbiota, despite mitochondrial dysfunction.

RevDate: 2019-05-09
CmpDate: 2019-05-09

De Corte D, Srivastava A, Koski M, et al (2018)

Metagenomic insights into zooplankton-associated bacterial communities.

Environmental microbiology, 20(2):492-505.

Zooplankton and microbes play a key role in the ocean's biological cycles by releasing and consuming copious amounts of particulate and dissolved organic matter. Additionally, zooplankton provide a complex microhabitat rich in organic and inorganic nutrients in which bacteria thrive. In this study, we assessed the phylogenetic composition and metabolic potential of microbial communities associated with crustacean zooplankton species collected in the North Atlantic. Using Illumina sequencing of the 16S rRNA gene, we found significant differences between the microbial communities associated with zooplankton and those inhabiting the surrounding seawater. Metagenomic analysis of the zooplankton-associated microbial community revealed a highly specialized bacterial community able to exploit zooplankton as microhabitat and thus, mediating biogeochemical processes generally underrepresented in the open ocean. The zooplankton-associated bacterial community is able to colonize the zooplankton's internal and external surfaces using a large set of adhesion mechanisms and to metabolize complex organic compounds released or exuded by the zooplankton such as chitin, taurine and other complex molecules. Moreover, the high number of genes involved in iron and phosphorus metabolisms in the zooplankton-associated microbiome suggests that this zooplankton-associated bacterial community mediates specific biogeochemical processes (through the proliferation of specific taxa) that are generally underrepresented in the ambient waters.

RevDate: 2019-05-09
CmpDate: 2019-05-09

Minter MR, Hinterleitner R, Meisel M, et al (2017)

Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer's disease.

Scientific reports, 7(1):10411.

Recent evidence suggests the commensal microbiome regulates host immunity and influences brain function; findings that have ramifications for neurodegenerative diseases. In the context of Alzheimer's disease (AD), we previously reported that perturbations in microbial diversity induced by life-long combinatorial antibiotic (ABX) selection pressure in the APPSWE/PS1ΔE9 mouse model of amyloidosis is commensurate with reductions in amyloid-β (Aβ) plaque pathology and plaque-localised gliosis. Considering microbiota-host interactions, specifically during early post-natal development, are critical for immune- and neuro-development we now examine the impact of microbial community perturbations induced by acute ABX exposure exclusively during this period in APPSWE/PS1ΔE9 mice. We show that early post-natal (P) ABX treatment (P14-P21) results in long-term alterations of gut microbial genera (predominantly Lachnospiraceae and S24-7) and reduction in brain Aβ deposition in aged APPSWE/PS1ΔE9 mice. These mice exhibit elevated levels of blood- and brain-resident Foxp3+ T-regulatory cells and display an alteration in the inflammatory milieu of the serum and cerebrospinal fluid. Finally, we confirm that plaque-localised microglia and astrocytes are reduced in ABX-exposed mice. These findings suggest that ABX-induced microbial diversity perturbations during post-natal stages of development coincide with altered host immunity mechanisms and amyloidosis in a murine model of AD.

RevDate: 2019-05-09
CmpDate: 2019-05-09

Bhat M, Pasini E, Copeland J, et al (2017)

Impact of Immunosuppression on the Metagenomic Composition of the Intestinal Microbiome: a Systems Biology Approach to Post-Transplant Diabetes.

Scientific reports, 7(1):10277.

Solid organ transplantation (SOT) outcomes have continued to improve, although long-term use of immunosuppressants can lead to complications such as diabetes, compromising post-transplant outcomes. In this study, we have characterized the intestinal microbiome (IM) composition at the metagenomic level in the context of hyperglycemia induced by immunosuppressants. Sprague-Dawley rats were subjected to doses of tacrolimus and sirolimus that reliably induce hyperglycemia and an insulin-resistant state. Subsequent exposure to probiotics resulted in reversal of hyperglycemia. 16S rRNA and metagenomic sequencing of stool were done to identify the bacterial genes and pathways enriched in immunosuppression. Bacterial diversity was significantly decreased in sirolimus-treated rats, with 9 taxa significantly less present in both immunosuppression groups: Roseburia, Oscillospira, Mollicutes, Rothia, Micrococcaceae, Actinomycetales and Staphylococcus. Following probiotics, these changes were reversed to baseline. At the metagenomic level, the balance of metabolism was shifted towards the catabolic side with an increase of genes involved in sucrose degradation, similar to diabetes. Conversely, the control rats had greater abundance of anabolic processes and genes involved in starch degradation. Immunosuppression leads to a more catabolic microbial profile, which may influence development of diabetes after SOT. Modulation of the microbiome with probiotics may help in minimizing adverse long-term effects of immunosuppression.

RevDate: 2019-05-08
CmpDate: 2019-05-08

Snowdon RJ, S Schiessl (2019)

Illuminating Crop Adaptation Using Population Genomics.

Molecular plant, 12(1):27-29.

RevDate: 2019-05-08
CmpDate: 2019-05-08

Sun L, Xie C, Wang G, et al (2018)

Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.

Nature medicine, 24(12):1919-1929.

The anti-hyperglycemic effect of metformin is believed to be caused by its direct action on signaling processes in hepatocytes, leading to lower hepatic gluconeogenesis. Recently, metformin was reported to alter the gut microbiota community in humans, suggesting that the hyperglycemia-lowering action of the drug could be the result of modulating the population of gut microbiota. However, the critical microbial signaling metabolites and the host targets associated with the metabolic benefits of metformin remained elusive. Here, we performed metagenomic and metabolomic analysis of samples from individuals with newly diagnosed type 2 diabetes (T2D) naively treated with metformin for 3 d, which revealed that Bacteroides fragilis was decreased and the bile acid glycoursodeoxycholic acid (GUDCA) was increased in the gut. These changes were accompanied by inhibition of intestinal farnesoid X receptor (FXR) signaling. We further found that high-fat-diet (HFD)-fed mice colonized with B. fragilis were predisposed to more severe glucose intolerance, and the metabolic benefits of metformin treatment on glucose intolerance were abrogated. GUDCA was further identified as an intestinal FXR antagonist that improved various metabolic endpoints in mice with established obesity. Thus, we conclude that metformin acts in part through a B. fragilis-GUDCA-intestinal FXR axis to improve metabolic dysfunction, including hyperglycemia.

RevDate: 2019-05-07
CmpDate: 2019-05-07

Garza DR, van Verk MC, Huynen MA, et al (2018)

Towards predicting the environmental metabolome from metagenomics with a mechanistic model.

Nature microbiology, 3(4):456-460.

The environmental metabolome and metabolic potential of microorganisms are dominant and essential factors shaping microbial community composition. Recent advances in genome annotation and systems biology now allow us to semiautomatically reconstruct genome-scale metabolic models (GSMMs) of microorganisms based on their genome sequence 1 . Next, growth of these models in a defined metabolic environment can be predicted in silico, mechanistically linking the metabolic fluxes of individual microbial populations to the community dynamics. A major advantage of GSMMs is that no training data is needed, besides information about the metabolic capacity of individual genes (genome annotation) and knowledge of the available environmental metabolites that allow the microorganism to grow. However, the composition of the environment is often not fully determined and remains difficult to measure 2 . We hypothesized that the relative abundance of different bacterial species, as measured by metagenomics, can be combined with GSMMs of individual bacteria to reveal the metabolic status of a given biome. Using a newly developed algorithm involving over 1,500 GSMMs of human-associated bacteria, we inferred distinct metabolomes for four human body sites that are consistent with experimental data. Together, we link the metagenome to the metabolome in a mechanistic framework towards predictive microbiome modelling.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Fritz A, Hofmann P, Majda S, et al (2019)

CAMISIM: simulating metagenomes and microbial communities.

Microbiome, 7(1):17 pii:10.1186/s40168-019-0633-6.

BACKGROUND: Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis software, a wide range of benchmark data sets are required.

RESULTS: We describe the CAMISIM microbial community and metagenome simulator. The software can model different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small data sets generated with CAMISIM.

CONCLUSIONS: CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together with standards of truth for method evaluation. All data sets and the software are freely available at https://github.com/CAMI-challenge/CAMISIM.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Yu K, Yi S, Li B, et al (2019)

An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community.

Microbiome, 7(1):16 pii:10.1186/s40168-019-0634-5.

BACKGROUND: Understanding microbial interactions in engineering bioprocesses is important to enhance and optimize performance outcomes and requires dissection of the multi-layer complexities of microbial communities. However, unraveling microbial interactions as well as substrates involved in complex microbial communities is a challenging task. Here, we demonstrate an integrated approach of metagenomics, metatranscriptomics, and targeted metabolite analysis to identify the substrates involved in interspecies interactions from a potential cross-feeding model community-bisphenol A (BPA)-biodegrading community, aiming to establish an identification method of microbial interactions in engineering or environmental bioprocesses.

RESULTS: The community-level BPA-metabolic pathway was constructed using integrated metagenomics and targeted metabolite analyses. The dynamics of active functions and metabolism of major community members were identified using metagenomic and metatranscriptomic analyses in concert. Correlating the community BPA biodegradation performance to the individual bacterial activities enabled the discovery of substrates involved in a synergistic interaction of cross-feeding between BPA-degrading Sphingonomas species and intermediate users, Pseudomonas sp. and Pusillimonas sp. This proposed synergistic interaction was confirmed by the co-culture of a Sphingonomas sp. and Pseudomonas sp. isolates, which demonstrated enhanced BPA biodegradation compared to the isolate of Sphingonomas sp. alone.

CONCLUSION: The three types of integrated meta-omics analyses effectively revealed the metabolic capability at both community-wide and individual bacterial levels. The correlation between these two levels revealed the hidden connection between apparent overall community performance and the contributions of individual community members and their interactions in a BPA-degrading microbial community. In addition, we demonstrated that using integrated multi-omics in conjunction with culture-based confirmation approach is effective to elucidate the microbial interactions affecting the performance outcome. We foresee this approach would contribute the future application and operation of environmental bioprocesses on a knowledge-based control.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Cernava T, Erlacher A, Soh J, et al (2019)

Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.).

Microbiome, 7(1):13 pii:10.1186/s40168-019-0624-7.

BACKGROUND: Arugula is a traditional medicinal plant and popular leafy green today. It is mainly consumed raw in the Western cuisine and known to contain various bioactive secondary metabolites. However, arugula has been also associated with high-profile outbreaks causing severe food-borne human diseases. A multiphasic approach integrating data from metagenomics, amplicon sequencing, and arugula-derived bacterial cultures was employed to understand the specificity of the indigenous microbiome and resistome of the edible plant parts.

RESULTS: Our results indicate that arugula is colonized by a diverse, plant habitat-specific microbiota. The indigenous phyllosphere bacterial community was shown to be dominated by Enterobacteriaceae, which are well-equipped with various antibiotic resistances. Unexpectedly, the prevalence of specific resistance mechanisms targeting therapeutic antibiotics (fluoroquinolone, chloramphenicol, phenicol, macrolide, aminocoumarin) was only surpassed by efflux pump assignments.

CONCLUSIONS: Enterobacteria, being core microbiome members of arugula, have a substantial implication in the overall resistome. Detailed insights into the natural occurrence of antibiotic resistances in arugula-associated microorganisms showed that the plant is a hotspot for distinctive defense mechanisms. The specific functioning of microorganisms in this unusual ecosystem provides a unique model to study antibiotic resistances in an ecological context.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Paramsothy S, Nielsen S, Kamm MA, et al (2019)

Specific Bacteria and Metabolites Associated With Response to Fecal Microbiota Transplantation in Patients With Ulcerative Colitis.

Gastroenterology, 156(5):1440-1454.e2.

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) can induce remission in patients with ulcerative colitis (UC). In a randomized controlled trial of FMT in patients with active UC, we aimed to identify bacterial taxonomic and functional factors associated with response to therapy.

METHODS: We performed a double-blind trial of 81 patients with active UC randomly assigned to groups that received an initial colonoscopic infusion and then intensive multidonor FMT or placebo enemas, 5 d/wk for 8 weeks. Patients in the FMT group received blended homogenized stool from 3-7 unrelated donors. Patients in the placebo group were eligible to receive open-label FMT after the double-blind study period. We collected 314 fecal samples from the patients at screening, every 4 weeks during treatment, and 8 weeks after the blinded or open-label FMT therapy. We also collected 160 large-bowel biopsy samples from the patients at study entry, at completion of 8 weeks of blinded therapy, and at the end of open-label FMT, if applicable. We analyzed 105 fecal samples from the 14 individual donors (n = 55), who in turn contributed to 21 multidonor batches (n = 50). Bacteria in colonic and fecal samples were analyzed by both 16S ribosomal RNA gene and transcript amplicon sequencing; 285 fecal samples were analyzed by shotgun metagenomics, and 60 fecal samples were analyzed for metabolome features.

RESULTS: FMT increased microbial diversity and altered composition, based on analyses of colon and fecal samples collected before vs after FMT. Diversity was greater in fecal and colon samples collected before and after FMT treatment from patients who achieved remission compared with patients who did not. Patients in remission after FMT had enrichment of Eubacterium hallii and Roseburia inulivorans compared with patients who did not achieve remission after FMT and had increased levels of short-chain fatty acid biosynthesis and secondary bile acids. Patients who did not achieve remission had enrichment of Fusobacterium gonidiaformans, Sutterella wadsworthensis, and Escherichia species and increased levels of heme and lipopolysaccharide biosynthesis. Bacteroides in donor stool were associated with remission in patients receiving FMT, and Streptococcus species in donor stool was associated with no response to FMT.

CONCLUSIONS: In an analysis of fecal and colonic mucosa samples from patients receiving FMT for active UC and stool samples from donors, we associated specific bacteria and metabolic pathways with induction of remission. These findings may be of value in the design of microbe-based therapies for UC. ClinicalTrials.gov, Number NCT01896635.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Westreich ST, Treiber ML, Mills DA, et al (2018)

SAMSA2: a standalone metatranscriptome analysis pipeline.

BMC bioinformatics, 19(1):175.

BACKGROUND: Complex microbial communities are an area of growing interest in biology. Metatranscriptomics allows researchers to quantify microbial gene expression in an environmental sample via high-throughput sequencing. Metatranscriptomic experiments are computationally intensive because the experiments generate a large volume of sequence data and each sequence must be compared with reference sequences from thousands of organisms.

RESULTS: SAMSA2 is an upgrade to the original Simple Annotation of Metatranscriptomes by Sequence Analysis (SAMSA) pipeline that has been redesigned for standalone use on a supercomputing cluster. SAMSA2 is faster due to the use of the DIAMOND aligner, and more flexible and reproducible because it uses local databases. SAMSA2 is available with detailed documentation, and example input and output files along with examples of master scripts for full pipeline execution.

CONCLUSIONS: SAMSA2 is a rapid and efficient metatranscriptome pipeline for analyzing large RNA-seq datasets in a supercomputing cluster environment. SAMSA2 provides simplified output that can be examined directly or used for further analyses, and its reference databases may be upgraded, altered or customized to fit the needs of any experiment.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Sun TZ, Teng F, Jia SB, et al (2018)

[Salivary microbial communities associated with severe early childhood caries].

Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 36(2):150-155.

OBJECTIVE: To compare the salivary microbial profiles of healthy subjects and those with severe early childhood caries (S-ECC) by using high-throughput sequencing.

METHODS: Salivary samples were obtained from children with S-ECC (group C, n=24) and healthy children (group H, n=24). Total metagenomic DNA was extracted, and DNA amplicons of the V1-V3 hypervariable region of the 16S rRNA gene were generated and subjected to 454 sequencing. The characteristics of oral microbial communities from the two groups were compared based on microbial diversity and taxonomy assignment.

RESULTS: First, the microbial richness was significantly higher in group C than group H (P<0.05). Second, the microbial community structure was significantly different for the groups H and C (P<0.01). In addition, caries microbiota was significantly conserved in group C (P<0.001). High expression of suspected cariogenic microorganisms in group C (P<0.1) and health related microorganisms in group H (P<0.1) were identified. Finally, models of caries risk assessment were proposed to distinguish caries from healthy subjects with over 70% accuracy.

CONCLUSIONS: Salivary microbiota and certain taxa, such as caries-associated taxa (Prevotella), may be useful to screen/assess the children's risk of developing caries.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Connelly S, Subramanian P, Hasan NA, et al (2018)

Distinct consequences of amoxicillin and ertapenem exposure in the porcine gut microbiome.

Anaerobe, 53:82-93.

The gut microbiome influences many, if not all, aspects of human health. Antibiotics, while lifesaving, have the unintended consequence of killing commensal microbiota inhabiting the gastrointestinal (GI) tract, which can lead to overgrowth of opportunistic pathogens such as Clostridium difficile and emergence of antibiotic-resistant organisms. Here, porcine models were developed to evaluate changes to the gut microbiome caused by two distinct types of beta-lactam antibiotics delivered via common administration routes, oral amoxicillin and intravenous ertapenem. Amoxicillin is one of the most often used broad-spectrum antibiotics, frequently prescribed to young children. Ertapenem, a carbapenem considered a last resort antibiotic, is used sparingly in humans and prohibited for use in animals. Cohorts of normal pigs (n = 5) were treated with amoxicillin (20 mg/kg, PO, BID) or ertapenem (30 mg/kg, IV, SID) for seven days. Microbiomes were evaluated using whole genome shotgun metagenomics analyses of fecal DNA collected prior to, during, and after antibiotic treatment. Each antibiotic resulted in significant and distinct changes in the microbiome, causing elimination of key commensal bacterial species and overgrowth of other, potentially pathogenic taxa. In addition, amoxicillin promoted propagation of a broad range of antibiotic resistance genes, many encoding efflux pump components and beta-lactamases, while ertapenem triggered emergence of genes encoding vancomycin resistance, and beta-lactamases, including the carbapenemase, IMP-27. Notably, microbiota alterations and antibiotic resistance gene propagation displayed unique patterns following exposure to amoxicillin or ertapenem. These data underscore the importance of understanding consequences of individual antibiotic use to predict and potentially mitigate adverse outcomes. The porcine models developed here can facilitate evaluation of therapeutic interventions to prevent antibiotic-mediated microbiome disruption.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Humphries A, A Daud (2018)

The gut microbiota and immune checkpoint inhibitors.

Human vaccines & immunotherapeutics, 14(9):2178-2182.

Although immunotherapy has been remarkably effective across multiple cancer types, there continues to be a significant number of non-responding patients. A possible factor proposed to influence the efficacy of immunotherapies is the gut microbiome. We discuss the results and implications of recent research on the relationship between the gut microbiome, our immune systems, and immune checkpoint inhibitor therapies including anti-CTLA-4 Ab and anti-PD-1 Ab. While the investigations all exhibit interesting results and conclusions, we find little congruence in the specific bacteria that were found favorable for antitumor responses. It is unclear whether the inconsistencies are due to differential approaches in study design (pre-clinical or clinical subjects, anti-CTLA-4 Ab or anti-PD-1 Ab), experimental methods and measurements (metagenomics sequencing and clustering variations) or subject population dynamics (differential cancer types and baseline characteristics). Moreover, we note studies regarding particular bacterial commensals and autoimmune diseases, which challenge findings from these investigations. We conclude that with the current research, clinical investigators can appreciate the critical role of gut microbiota in mediating immunostimulant response. However, prospective research exploring the biochemical mechanisms which commensal bacteria communicate with each other and the immune system is imperative to understand how they can be adjusted properly for higher immunotherapy response.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Smith TE, Pond CD, Pierce E, et al (2018)

Accessing chemical diversity from the uncultivated symbionts of small marine animals.

Nature chemical biology, 14(2):179-185.

Chemistry drives many biological interactions between the microbiota and host animals, yet it is often challenging to identify the chemicals involved. This poses a problem, as such small molecules are excellent sources of potential pharmaceuticals, pretested by nature for animal compatibility. We discovered anti-HIV compounds from small, marine tunicates from the Eastern Fields of Papua New Guinea. Tunicates are a reservoir for new bioactive chemicals, yet their small size often impedes identification or even detection of the chemicals within. We solved this problem by combining chemistry, metagenomics, and synthetic biology to directly identify and synthesize the natural products. We show that these anti-HIV compounds, the divamides, are a novel family of lanthipeptides produced by symbiotic bacteria living in the tunicate. Neighboring animal colonies contain structurally related divamides that differ starkly in their biological properties, suggesting a role for biosynthetic plasticity in a native context wherein biological interactions take place.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Anonymous (2017)

Overcoming hurdles in sharing microbiome data.

Nature microbiology, 2(12):1573.

RevDate: 2019-05-03
CmpDate: 2019-05-03

Heintz-Buschart A, Pandey U, Wicke T, et al (2018)

The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder.

Movement disorders : official journal of the Movement Disorder Society, 33(1):88-98.

BACKGROUND: Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD patients. It is, however, unknown whether these differences can be observed in individuals at high risk, for example, with idiopathic rapid eye movement sleep behavior disorder, a prodromal condition of α-synuclein aggregation disorders including PD.

OBJECTIVES: To compare microbiota in carefully preserved nasal wash and stool samples of subjects with idiopathic rapid eye movement sleep behavior disorder, manifest PD, and healthy individuals.

METHODS: Microbiota of flash-frozen stool and nasal wash samples from 76 PD patients, 21 idiopathic rapid eye movement sleep behavior disorder patients, and 78 healthy controls were assessed by 16S and 18S ribosomal RNA amplicon sequencing. Seventy variables, related to demographics, clinical parameters including nonmotor symptoms, and sample processing, were analyzed in relation to microbiome variability and controlled differential analyses were performed.

RESULTS: Differentially abundant gut microbes, such as Akkermansia, were observed in PD, but no strong differences in nasal microbiota. Eighty percent of the differential gut microbes in PD versus healthy controls showed similar trends in idiopathic rapid eye movement sleep behavior disorder, for example, Anaerotruncus and several Bacteroides spp., and correlated with nonmotor symptoms. Metagenomic sequencing of select samples enabled the reconstruction of genomes of so far uncharacterized differentially abundant organisms.

CONCLUSION: Our study reveals differential abundances of gut microbial taxa in PD and its prodrome idiopathic rapid eye movement sleep behavior disorder in comparison to the healthy controls, and highlights the potential of metagenomics to identify and characterize microbial taxa, which are enriched or depleted in PD and/or idiopathic rapid eye movement sleep behavior disorder. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Nunes-Alves C (2017)

Microbial communities rock.

Nature microbiology, 2:17041 pii:nmicrobiol201741.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Soppa J (2017)

Polyploidy and community structure.

Nature microbiology, 2:16261 pii:nmicrobiol2016261.

RevDate: 2019-05-02
CmpDate: 2019-05-02

Perz AI, Giles CB, Brown CA, et al (2019)

MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations.

BMC bioinformatics, 20(Suppl 2):96 pii:10.1186/s12859-019-2623-x.

BACKGROUND: The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance.

RESULTS: We propose a novel framework for comparing microbial shifts between conditions. Using data from one of the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance vectors for microbes using experimental condition information provided with the AGP metadata, such as patient age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts.

CONCLUSIONS: Without comparison to prior data, it is difficult for experimentalists to know if their observed changes in species abundance have been observed by others, both in their conditions and in others they would never consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift. We've proposed and tested an algorithmic solution to this problem, which also allows for comparing the metagenomic signature shifts between conditions in the existing body of data.

RevDate: 2019-05-02
CmpDate: 2019-05-02

Ramírez-Flandes S, González B, O Ulloa (2019)

Redox traits characterize the organization of global microbial communities.

Proceedings of the National Academy of Sciences of the United States of America, 116(9):3630-3635.

The structure of biological communities is conventionally described as profiles of taxonomic units, whose ecological functions are assumed to be known or, at least, predictable. In environmental microbiology, however, the functions of a majority of microorganisms are unknown and expected to be highly dynamic and collectively redundant, obscuring the link between taxonomic structure and ecosystem functioning. Although genetic trait-based approaches at the community level might overcome this problem, no obvious choice of gene categories can be identified as appropriate descriptive units in a general ecological context. We used 247 microbial metagenomes from 18 biomes to determine which set of genes better characterizes the differences among biomes on the global scale. We show that profiles of oxidoreductase genes support the highest biome differentiation compared with profiles of other categories of enzymes, general protein-coding genes, transporter genes, and taxonomic gene markers. Based on oxidoreductases' description of microbial communities, the role of energetics in differentiation and particular ecosystem function of different biomes become readily apparent. We also show that taxonomic diversity is decoupled from functional diversity, e.g., grasslands and rhizospheres were the most diverse biomes in oxidoreductases but not in taxonomy. Considering that microbes underpin biogeochemical processes and nutrient recycling through oxidoreductases, this functional diversity should be relevant for a better understanding of the stability and conservation of biomes. Consequently, this approach might help to quantify the impact of environmental stressors on microbial ecosystems in the context of the global-scale biome crisis that our planet currently faces.

RevDate: 2019-05-01
CmpDate: 2019-05-01

Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, et al (2019)

Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome.

International journal of molecular sciences, 20(2): pii:ijms20020438.

Obesity is an excessive fat accumulation that could lead to complications like metabolic syndrome. There are reports on gut microbiota and metabolic syndrome in relation to dietary, host genetics, and other environmental factors; however, it is necessary to explore the role of the gut microbiota metabolic pathways in populations like Mexicans, where the prevalence of obesity and metabolic syndrome is high. This study identify alterations of the gut microbiota in a sample of healthy Mexican women (CO), women with obesity (OB), and women with obesity plus metabolic syndrome (OMS). We studied 67 women, characterizing their anthropometric and biochemical parameters along with their gut bacterial diversity by high-throughput DNA sequencing. Our results indicate that in OB or OMS women, Firmicutes was the most abundant bacterial phylum. We observed significant changes in abundances of bacteria belonging to the Ruminococcaceae, Lachnospiraceae, and Erysipelotrichaceae families and significant enrichment of gut bacteria from 16 different taxa that might explain the observed metabolic alterations between the groups. Finally, the predicted functional metagenome of the gut microbiota found in each category shows differences in metabolic pathways related to lipid metabolism. We demonstrate that Mexican women have a particular bacterial gut microbiota characteristic of each phenotype. There are bacteria that potentially explain the observed metabolic differences between the groups, and gut bacteria in OMS and OB conditions carry more genes of metabolic pathways implicated in lipid metabolism.

RevDate: 2019-05-01
CmpDate: 2019-05-01

Magnabosco C, Timmers PHA, Lau MCY, et al (2018)

Fluctuations in populations of subsurface methane oxidizers in coordination with changes in electron acceptor availability.

FEMS microbiology ecology, 94(7):.

The concentrations of electron donors and acceptors in the terrestrial subsurface biosphere fluctuate due to migration and mixing of subsurface fluids, but the mechanisms and rates at which microbial communities respond to these changes are largely unknown. Subsurface microbial communities exhibit long cellular turnover times and are often considered relatively static-generating just enough ATP for cellular maintenance. Here, we investigated how subsurface populations of CH4 oxidizers respond to changes in electron acceptor availability by monitoring the biological and geochemical composition in a 1339 m-below-land-surface (mbls) fluid-filled fracture over the course of both longer (2.5 year) and shorter (2-week) time scales. Using a combination of metagenomic, metatranscriptomic, and metaproteomic analyses, we observe that the CH4 oxidizers within the subsurface microbial community change in coordination with electron acceptor availability over time. We then validate these findings through a series of 13C-CH4 laboratory incubation experiments, highlighting a connection between composition of subsurface CH4 oxidizing communities and electron acceptor availability.

RevDate: 2019-05-01
CmpDate: 2019-05-01

Wu WK, Chen CC, Panyod S, et al (2019)

Optimization of fecal sample processing for microbiome study - The journey from bathroom to bench.

Journal of the Formosan Medical Association = Taiwan yi zhi, 118(2):545-555.

Although great interest has been displayed by researchers in the contribution of gut microbiota to human health, there is still no standard protocol with consensus to guarantee the sample quality of metagenomic analysis. Here we reviewed existing methodology studies and present suggestions for optimizing research pipeline from fecal sample collection to DNA extraction. First, we discuss strategies of clinical metadata collection as common confounders for microbiome research. Second, we propose general principles for freshly collected fecal sample and its storage and share a DIY stool collection kit protocol based on the manual procedure of Human Microbiome Project (HMP). Third, we provide a useful information of collection kit with DNA stabilization buffers and compare their pros and cons for multi-omic study. Fourth, we offer technical strategies as well as information of novel tools for sample aliquoting before long-term storage. Fifth, we discuss the substantial impact of different DNA extraction protocols on technical variations of metagenomic analysis. And lastly, we point out the limitation of current methods and the unmet needs for better quality control of metagenomic analysis. We hope the information provided here will help investigators in this exciting field to advance their studies while avoiding experimental artifacts.

RevDate: 2019-05-01
CmpDate: 2019-05-01

Tanner K, Martí JM, Belliure J, et al (2018)

Polar solar panels: Arctic and Antarctic microbiomes display similar taxonomic profiles.

Environmental microbiology reports, 10(1):75-79.

Solar panels located on high (Arctic and Antarctic) latitudes combine the harshness of the climate with that of the solar exposure. We report here that these polar solar panels are inhabited by similar microbial communities in taxonomic terms, dominated by Hymenobacter spp., Sphingomonas spp. and Ascomycota. Our results suggest that solar panels, even on high latitudes, can shape a microbial ecosystem adapted to irradiation and desiccation.

RevDate: 2019-05-01
CmpDate: 2019-05-01

Shibagaki N, Suda W, Clavaud C, et al (2017)

Aging-related changes in the diversity of women's skin microbiomes associated with oral bacteria.

Scientific reports, 7(1):10567.

Skin aging is associated with changes in cutaneous physiology including interactions with a skin microbial community. A striking alteration and diversification in the skin microbiome with aging was observed between two different age groups of 37 healthy Japanese women, i.e. younger adults of 21-37 years old and older adults of 60-76 years old, using bacterial 16S rRNA gene sequencing. The analyses revealed that the alpha diversity/species richness was significantly higher in the older than the younger group for the cheek and forehead microbiomes, while the beta diversity in the overall structure significantly differed particularly for the forearm and scalp microbiomes between the two age groups. Taxonomic profiling showed a striking reduction in the relative abundance of the majority skin genus Propionibacterium in the cheek, forearm and forehead microbiomes of the older adults, and identified 38 species including many oral bacteria that significantly differentiated the two age groups with a skin site dependency. Furthermore, we found chronological age-related and unrelated skin clinical parameters that correlate with the observed changes in the skin microbiome diversity. Thus, our data suggested that the diversification of skin microbiomes in adult women was largely affected by chronological and physiological skin aging in association with oral bacteria.

RevDate: 2019-04-30
CmpDate: 2019-04-30

Kumar R, Mishra A, B Jha (2019)

Bacterial community structure and functional diversity in subsurface seawater from the western coastal ecosystem of the Arabian Sea, India.

Gene, 701:55-64.

The present study revealed the spatial variability of bacteria in relation to physicochemical variations at four different locations (Diu - DIU, Veraval - VER, Porbandar - POR and Okha - OKH) along the Gujarat coast (Arabian Sea, India). The natural habitat was analyzed for temperature, salinity, pH, total dissolved solids, total organic content, total inorganic content, biological oxygen demand, conductivity and total dissolved oxygen. The lowest salinity and conductivity were observed at the VER site, whereas the highest salinity and conductivity were measured with OKH samples. In contrast, the pH was slightly alkaline at all of the sites. The VER site contained the maximum total dissolved solids (TDS), total carbon (TC), total organic carbon (TOC), and total inorganic carbon (TIC), while OKH showed the maximum dissolve oxygen (DO), biological oxygen demand (BOD), pH, temperature, conductivity, and salinity. The physicochemical characteristics showed that the Gujarat coast is alkaline and has a nutrient heterogeneous nature. Average well color development (AWCD) values, calculated using Biolog EcoPlates, showed that the microbial community from VER contained the highest metabolic activities and could metabolize all 31 substrates, followed by DIU > OKH > POR samples. In contrast, the abundance of the bacterial community, determined by qRT-PCR, was maximum in VER samples, followed by OKH > POR > DIU samples. The Shannon and Simpson indices showed that DIU, POR and OKH seawater clone libraries were more diverse. Furthermore, Chao estimator revealed the high diversity of POR and DIU clone libraries. Interestingly, DIU and OKH did not share any common operational taxonomic units (OTUs), and overall, the maximum bacterial diversity was observed with the POR seawater sample. Moreover, these observations were supported by statistical analysis, such as canonical correspondence analysis (CCA) and principal component analysis (PCA). The molecular phylogeny revealed the dominance of Proteobacteria followed by Firmicutes. Within the Proteobacteria phylum, most of the sequences were affiliated with the Gammaproteobacteria class. In total, about 726 OTUs were observed from all four sites which covers 59.79% DIU, 87.5% VER, 50% POR and 98.83% OKH of samples. This study is the first report to describe physicochemical attributes and the bacterial diversity of the coastal area of Gujarat. The study will provide useful insights about bacterial diversity, distribution, and abundance, as well as their relationships with the habitat.

RevDate: 2019-04-30
CmpDate: 2019-04-30

Murphy R, Morgan XC, Wang XY, et al (2019)

Eczema-protective probiotic alters infant gut microbiome functional capacity but not composition: sub-sample analysis from a RCT.

Beneficial microbes, 10(1):5-17.

Probiotic Lactobacillus rhamnosus HN001 given in early life has been shown to reduce infant eczema risk, but its effect on gut microbiota development has not been quantitatively and functionally examined. The aim of this study was to investigate the impact of early life probiotic exposure on the composition and functional capacity of infant gut microbiota from birth to 2 years considering the effects of age, delivery mode, antibiotics, pets and eczema. We performed shotgun metagenomic sequencing analysis of 650 infant faecal samples, collected at birth, 3, 12, and 24 months, as part of a randomised, controlled, 3-arm trial assessing the effect of L. rhamnosus HN001, Bifidobacterium animalis subsp. lactis HN019 supplementation on eczema development in 474 infants. There was a 50% reduced eczema risk in the HN001 probiotic group compared to placebo. Both mothers (from 35 weeks gestation until 6 months post-partum if breastfeeding) and infants (from birth to 2 years) received either a placebo or one of two probiotics, L. rhamnosus HN001 (6×109 cfu), or B. animalis subsp. lactis HN019 (9×109 cfu). L. rhamnosus HN001 probiotic supplementation was associated with increased overall glycerol-3 phosphate transport capacity and enrichment of L. rhamnosus. There were no other significant changes in infant gut microbiota composition or diversity. Increased capacity to transport glycerol-3-phosphate was positively correlated with relative abundance of L. rhamnosus. Children who developed eczema had gut microbiota with increased capacity for glycosaminoglycan degradation and flagellum assembly but had no significant differences in microbiota composition or diversity. Early life HN001 probiotic use is associated with both increased L. rhamnosus and increased infant gut microbiota functional capacity to transport glycerol-3 phosphate. The mechanistic relationship of such functional alteration in gut microbiota with reduced eczema risk and long-term health merits further investigation.

RevDate: 2019-04-30
CmpDate: 2019-04-30

Sivakala KK, Jose PA, Anandham R, et al (2018)

Spatial Physiochemical and Metagenomic Analysis of Desert Environment.

Journal of microbiology and biotechnology, 28(9):1517-1526.

Investigating the bacterial diversity and their metabolic capabilities are crucial for interpreting ecological patterns in desert environment, and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physico-chemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrates a desert environment (Thar Desert, India) which face hot arid climate with very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrates. Microbial diversity of the two quadrates was studied using Illumina bar coded sequencing by targeting V3-V4 regions of 16S rDNA. As the results, 702504 high-quality sequence reads, assigned to 173 operationaltaxonomic units (OTUs) at species level. The most abundant phyla in both quadrates were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiellarepresented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrates, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physico-chemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrates, and patchy nature in local scale. Interestingly, abundance ofthe biotechnologically important phylum Actinobacteria, with large proposition of unclassified speciesin the desert suggested that this arid environment is the promising site for bioprospection.

RevDate: 2019-04-29

Gregory AC, Zayed AA, Conceição-Neto N, et al (2019)

Marine DNA Viral Macro- and Microdiversity from Pole to Pole.

Cell pii:S0092-8674(19)30341-1 [Epub ahead of print].

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.

RevDate: 2019-04-29

Weyrich LS, Farrer AG, Eisenhofer R, et al (2019)

Laboratory contamination over time during low-biomass sample analysis.

Molecular ecology resources [Epub ahead of print].

Bacteria are not only ubiquitous on earth but can also be incredibly diverse within clean laboratories and reagents. The presence of both living and dead bacteria in laboratory environments and reagents is especially problematic when examining samples with low endogenous content (e.g., skin swabs, tissue biopsies, ice, water, degraded forensic samples or ancient material), where contaminants can outnumber endogenous microorganisms within samples. The contribution of contaminants within high-throughput studies remains poorly understood because of the relatively low number of contaminant surveys. Here, we examined 144 negative control samples (extraction blank and no-template amplification controls) collected in both typical molecular laboratories and an ultraclean ancient DNA laboratory over 5 years to characterize long-term contaminant diversity. We additionally compared the contaminant content within a home-made silica-based extraction method, commonly used to analyse low endogenous content samples, with a widely used commercial DNA extraction kit. The contaminant taxonomic profile of the ultraclean ancient DNA laboratory was unique compared to modern molecular biology laboratories, and changed over time according to researcher, month and season. The commercial kit also contained higher microbial diversity and several human-associated taxa in comparison to the home-made silica extraction protocol. We recommend a minimum of two strategies to reduce the impacts of laboratory contaminants within low-biomass metagenomic studies: (a) extraction blank controls should be included and sequenced with every batch of extractions and (b) the contributions of laboratory contamination should be assessed and reported in each high-throughput metagenomic study.

RevDate: 2019-04-29
CmpDate: 2019-04-29

Keijser BJF, Agamennone V, van den Broek TJ, et al (2019)

Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome.

BMC genomics, 20(1):65 pii:10.1186/s12864-018-5419-x.

BACKGROUND: Antibiotic therapy is commonly used in animal agriculture. Antibiotics excreted by the animals can contaminate farming environments, resulting in long term exposure of animals to sub-inhibitory levels of antibiotics. Little is known on the effect of this exposure on antibiotic resistance. In this study, we aimed to investigate the long term effects of sub-inhibitory levels of antibiotics on the gut microbiota composition and resistome of veal calves in vivo. Forty-two veal calves were randomly assigned to three groups. The first group (OTC-high) received therapeutic oral dosages of 1 g oxytetracycline (OTC), twice per day, during 5 days. The second group (OTC-low) received an oral dose of OTC of 100-200 μg per day during 7 weeks, mimicking animal exposure to environmental contamination. The third group (CTR) did not receive OTC, serving as unexposed control. Antibiotic residue levels were determined over time. The temporal effects on the gut microbiota and antibiotic resistance gene abundance was analysed by metagenomic sequencing.

RESULTS: In the therapeutic group, OTC levels exceeded MIC values. The low group remained at sub-inhibitory levels. The control group did not reach any significant OTC levels. 16S rRNA gene-based analysis revealed significant changes in the calf gut microbiota. Time-related changes accounted for most of the variation in the sequence data. Therapeutic application of OTC had transient effect, significantly impacting gut microbiota composition between day 0 and day 2. By metagenomic sequence analysis we identified six antibiotic resistance genes representing three gene classes (tetM, floR and mel) that differed in relative abundance between any of the intervention groups and the control. qPCR was used to validate observations made by metagenomic sequencing, revealing a peak of tetM abundance at day 28-35 in the OTC-high group. No increase in resistance genes abundance was seen in the OTC-low group.

CONCLUSIONS: Under the conditions tested, sub-therapeutic administration of OTC did not result in increased tetM resistance levels as observed in the therapeutic group.

RevDate: 2019-04-29
CmpDate: 2019-04-29

Delzenne NM, LB Bindels (2018)

Microbiome metabolomics reveals new drivers of human liver steatosis.

Nature medicine, 24(7):906-907.

RevDate: 2019-04-29
CmpDate: 2019-04-29

Coutinho FH, Gregoracci GB, Walter JM, et al (2018)

Metagenomics Sheds Light on the Ecology of Marine Microbes and Their Viruses.

Trends in microbiology, 26(11):955-965.

Advances brought about by omics-based approaches have revolutionized our understanding of the diversity and ecological processes involving marine archaea, bacteria, and their viruses. This broad review discusses recent examples of how genomics, metagenomics, and ecogenomics have been applied to reveal the ecology of these biological entities. Three major topics are covered in this revision: (i) the novel roles of microorganisms in ecosystem processes; (ii) virus-host associations; and (iii) ecological associations of microeukaryotes and other microbes. We also briefly comment on the discovery of novel taxa from marine ecosystems; development of a robust taxonomic framework for prokaryotes; breakthroughs on the diversity and ecology of cyanobacteria; and advances on ecological modelling. We conclude by discussing limitations of the field and suggesting directions for future research.

RevDate: 2019-04-26

Sirén K, Mak SST, Melkonian C, et al (2019)

Taxonomic and Functional Characterization of the Microbial Community During Spontaneous in vitro Fermentation of Riesling Must.

Frontiers in microbiology, 10:697.

Although there is an extensive tradition of research into the microbes that underlie the winemaking process, much remains to be learnt. We combined the high-throughput sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how microbial communities of Riesling musts sampled at four different vineyards, and their subsequent spontaneously fermented derivatives, vary. We specifically explored community variation relating to three points: (i) how microbial communities vary by vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii) how microbial community varies between musts that successfully complete alcoholic fermentation and those that become 'stuck' in the process. Our metabarcoding data showed a general influence of microbial composition at the vineyard level. Two of the vineyards (4 and 5) had strikingly a change in the differential abundance of Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing on a subset of the samples to provide preliminary insights into the potential relevance of this observation, and used the data to both investigate functional potential and reconstruct draft genomes (bins). At these two vineyards, we also observed an increase in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions during the early fermentation stage. The binning results yielded 11 coherent bins, with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read recruitment and functional analysis of this data revealed that during fermentation, a high abundance of Metschnikowia might serve as a biocontrol agent against bacteria, via a putative iron depletion pathway, and this in turn could help Saccharomyces dominate the fermentation. During alcoholic fermentation, we observed a general decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses based on reference-based read mapping. Analysis of open reading frames using these data showed an increase of functions assigned to class Actinobacteria in the end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until Saccharomyces activity slows down. Complementary approaches to annotation instead of relying a single database provide more coherent information true species. Lastly, our metabarcoding data enabled us to identify a relationship between stuck fermentations and Starmerella abundance. Given that robust chemical analysis indicated that although the stuck samples contained residual glucose, all fructose had been consumed, we hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces, dominated these fermentations. Overall, our results showcase the different ways in which metagenomic analyses can improve our understanding of the wine alcoholic fermentation process.

RevDate: 2019-04-24
CmpDate: 2019-04-24

Turgay E, Steinum TM, Colquhoun D, et al (2019)

Environmental biofilm communities associated with early-stage common dentex (Dentex dentex) culture.

Journal of applied microbiology, 126(4):1032-1043.

AIMS: To describe the biofilm microbiota associated with various feeding phases during larval common dentex (Dentex dentex) culture.

METHODS AND RESULTS: A targeted metagenomic (metagenetic) study was performed by means of 16S rRNA gene-based PCR and NextGen pyrosequencing. The resulting dataset was scrutinized with microbial community analysis software (r packages) using r/Rstudio. While median observed and estimated alpha-diversities were 171 ± 38 and 207 ± 27 taxa, respectively, 72·1-85·8% of individual biofilm communities comprised only 27-46 taxa. Members of the genus Methylobacterium and family Rhodobacteraceae dominated biofilms formed during all feeding phases while genera Nannochloropsis and Tetraselmis microalgae were major constituents of biofilms during rotifer live feeding. Both potential fish pathogenic genera, for example, Vibrio and putatively probiotic taxa, for example, Phaeobacter gallaeciensis were identified.

CONCLUSIONS: Relatively stable biofilm communities were identified during each feeding phase but varied significantly between feeding phases, most likely in response to the introduction of live feed/microalgae-associated bacteria into rearing tanks.

The structure of the bacterial communities identified represents a 'template' for successful larval dentex culture and provides a foundation for future investigations into failed production cycles.

RevDate: 2019-04-24
CmpDate: 2019-04-24

Park CH, Lee AR, Lee YR, et al (2019)

Evaluation of gastric microbiome and metagenomic function in patients with intestinal metaplasia using 16S rRNA gene sequencing.

Helicobacter, 24(1):e12547.

BACKGROUND: Despite recent advances in studies on the gastric microbiome, the role of the non-Helicobacter pylori gastric microbiome in gastric carcinogenesis remains unclear. We evaluated the characteristics of the gastric microbiome and metagenomic functions in patients with IM.

METHODS: Participants were classified into six groups according to disease status (chronic superficial gastritis [CSG], intestinal metaplasia [IM], and cancer) and H. pylori- infection status (H. pylori-positive and H. pylori-negative). The gastric microbiome was analyzed in mucosal tissues at the gastric antrum by 16S rRNA gene sequencing. Moreover, we assessed the metagenome including the type IV secretion system (T4SS) gene, as T4SS proteins are essential for transferring CagA from H. pylori- into the human gastric epithelium.

RESULTS: Among the 138 included patients, 48, 9, 23, 14, 12, and 32 were classified into the H. pylori-negative CSG, H. pylori-negative IM, H. pylori-negative cancer, H. pylori-positive CSG, H. pylori-positive IM, and H. pylori-positive cancer groups, respectively. Cyanobacteria were predominant in the H. pylori-negative CSG group compared to in the H. pylori-negative IM and H. pylori-negative cancer groups (H. pylori-negative CSG vs H. pylori-negative IM vs H. pylori-negative cancer: 14.0% vs 4.2% vs 0.04%, P < 0.001). In contrast, Rhizobiales were commonly observed in the H. pylori-negative IM group (H. pylori-negative CSG vs H. pylori-negative IM vs H. pylori-negative cancer: 1.9% vs 15.4% vs 2.8%, P < 0.001). The relative abundance of Rhizobiales increased as H. pylori-infected stomachs progressed from gastritis to IM. In the H. pylori-negative IM group, genes encoding T4SS were prevalent among the metagenome. Additionally, after H. pylori- eradication therapy, the gastric microbiome was similar to the microbiome observed after spontaneous clearance of H. pylori-.

CONCLUSIONS: The relative abundance of Rhizobiales was higher in patients with H. pylori-negative IM than in those with H. pylori-negative CSG or cancer. Additionally, T4SS genes were highly observed in the metagenome of patients with IM. Highly abundant T4SS proteins in these patients may promote gastric carcinogenesis.

RevDate: 2019-04-24
CmpDate: 2019-04-24

Mancini MV, Damiani C, Accoti A, et al (2018)

Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing.

BMC microbiology, 18(1):126.

BACKGROUND: Symbiosis in insects is accumulating significant amount of studies: the description of a wide array of mutualistic associations across the evolutionary history of insects suggests that resident microbiota acts as a driving force by affecting several aspects of hosts biology. Among arthropods, mosquito midgut microbiota has been largely investigated, providing crucial insights on the role and implications of host-symbiont relationships. However, limited amount of studies addressed their efforts on the investigation of microbiota colonizing salivary glands and reproductive tracts, crucial organs for pathogen invasion and vertical transmission of symbiotic microorganisms. Using 16S rRNA gene sequencing-based approach, we analysed the microbiota of gut, salivary glands and reproductive tracts of several mosquito species, representing some of the main vectors of diseases, aiming at describing the dynamics of bacterial communities within the individual.

RESULTS: We identified a shared core microbiota between different mosquito species, although interesting inter- and intra-species differences were detected. Additionally, our results showed deep divergences between genera, underlining microbiota specificity and adaptation to their host.

CONCLUSIONS: The comprehensive landscape of the bacterial microbiota components may ultimately provide crucial insights and novel targets for possible application of symbionts in innovative strategies for the control of vector borne diseases, globally named Symbiotic Control (SC), and suggesting that the holobiont of different mosquito species may significantly vary. Moreover, mosquito species are characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes.

RevDate: 2019-04-24
CmpDate: 2019-04-24

Pacchioni F, Esposito A, Giacobazzi E, et al (2018)

Air and waterborne microbiome of a pharmaceutical plant provide insights on spatiotemporal variations and community resilience after disturbance.

BMC microbiology, 18(1):124.

BACKGROUND: The presence of microrganisms in pharmaceutical production plant environments is typically monitored by cultural methods, however these cannot detect the unculturable fraction of the microbial community. To get more accurate information on the composition of these indoor microbial communities, both water and air microbiome from a pharmaceutical production plant were profiled by 16S amplicon sequencing.

RESULTS: In the water system, we found taxa which typically characterize surface freshwater, groundwater and oligotrophic environments. The airborne microbiome resulted dominated by taxa usually found in outdoor air in combination with human-associated taxa. The alpha- and beta- diversity values showed that the heat-based sanitization process of the water plant affects the composition of the water microbiome by transiently increasing both diversity and evenness. Taxonomic compositional shifts were also detected in response to sanitization, consisting in an increase of Firmicutes and α-Proteobacteria. On the other hand, seasonality seems to be the main driver of bacterial community composition in air of this work environment.

CONCLUSIONS: This approach resulted useful to describe the taxonomy of these indoor microbiomes and could be further applied to other built environments, in which the knowledge of the microbiome composition is of relevance. In addition, this study could assist in the design of new guidelines to improve microbiological quality control in indoor work environments.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Milanese A, Mende DR, Paoli L, et al (2019)

Microbial abundance, activity and population genomic profiling with mOTUs2.

Nature communications, 10(1):1014 pii:10.1038/s41467-019-08844-4.

Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).

RevDate: 2019-04-23
CmpDate: 2019-04-23

Mitchell AB, AR Glanville (2018)

Introduction to Techniques and Methodologies for Characterizing the Human Respiratory Virome.

Methods in molecular biology (Clifton, N.J.), 1838:111-123.

There have been great advances in the methodologies available for the detection of respiratory viruses. Accompanying this, our knowledge surrounding the impact of these viruses has also made a great leap forward. We have come a long way from the once commonly accepted belief that the lower respiratory tract was sterile and that the detection of any microbial species must represent a breach in host defence and likely be associated with symptomatic infection. With the advent of molecular detection techniques and improvements in sequencing-based methodologies to make these tools more accessible and cost effective, we now know that there is an abundant and diverse ecosystem within the lower-respiratory tract. This chapter will outline the clinical impact of the human respiratory virome, techniques for sampling the lower respiratory tract, the evolution of the diagnostic tools available, and the current limitations in our instruments and knowledge in this area. The human respiratory virome is an exciting new area of research that will continue to grow with the aid of the methodologies outlined in the following chapters and the advent of even more efficient tools in the future.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Mayo-Muñoz D (2018)

Viral Genome Isolation from Human Faeces for Succession Assessment of the Human Gut Virome.

Methods in molecular biology (Clifton, N.J.), 1838:97-108.

Despite the important role of the microbiota in the human gastrointestinal tract (GIT) and its impact on life-long health, the successional process through which this microbial community develops during infancy is still poorly understood. Specially, little is known about how the amount and type of viruses present in the GIT, i.e., the virome, varies throughout this period and about the role this collection of viruses may play in the assembly of the GIT microbiota.The patterns of taxonomic change of the GIT viral community can be analyzed in a birth cohort of infants during the first year of life. The present chapter presents a detailed protocol for the isolation and extraction of viral nucleic acids from collected human faecal samples, whole genome amplification (WGA) using phi29 DNA polymerase and preparation for sequencing through high-throughput 454 pyrosequencing. The sequencing data can be posteriorly used for taxonomic classification in order to establish the composition of the virome present in each sample and to assess the process of viral dynamics through time.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Kramná L, O Cinek (2018)

Virome Sequencing of Stool Samples.

Methods in molecular biology (Clifton, N.J.), 1838:59-83.

Next-generation sequencing has opened avenues to studying complex populations such as the bacteriome (all bacteria), mycobiome (all fungi), and virome (all viruses in a given sample). Viromes are less often investigated as compared to bacteriomes. The reasons are mostly methodological: because no common pan-viral sequence signature exists, metagenomic sequencing remains the only option. This brings about the need of laborious virus enrichment, multiple signal amplification steps with virtually no possibility of interim quality control, and complicated bioinformatic analysis of the ensuing sequence data. Nevertheless, over the past decade virome sequencing has been enormously successful in identifying new agents in human and animal diseases, and in characterizing viruses in various ecological niches. Recently, virome sequencing has been also employed in studies of non-infectious diseases, which has brought about new challenges of sensitivity, costs, and reproducibility in testing of large sets of samples. Here, we present a detailed protocol that has been utilized in virome studies where hundreds of samples had to be reliably tested in order to assess the association of the stool virome with susceptibility to type 1 diabetes, a non-infectious autoimmune disease.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Castro-Mejía JL, Deng L, Vogensen FK, et al (2018)

Extraction and Purification of Viruses from Fecal Samples for Metagenome and Morphology Analyses.

Methods in molecular biology (Clifton, N.J.), 1838:49-57.

The human enteric virome consists of endogenous retro elements and viruses that infect the host and members of the gut microbiome (GM). Mounting evidence suggests that the gut virome plays a central role in maintaining homeostasis and via the GM influences immunology of the host. To thoroughly characterize the gut virome, it is often very useful to first separate and concentrate extracellular viral-like particles (eVLPs) enabling an integrative characterization of them. Here, we describe a detailed protocol for extraction and concentration of the viral fraction from fecal samples based on a polyethylene glycol precipitation (PEG) approach. These procedures maximize the yields of eVLPs (and their DNA) with high purity well suited for down-stream analysis such as quantification and morphological assessment, determination of phage-host pairs as well as virome sequencing.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Ozkan J, Nielsen S, Diez-Vives C, et al (2017)

Temporal Stability and Composition of the Ocular Surface Microbiome.

Scientific reports, 7(1):9880.

To determine if there is a core ocular surface microbiome and whether there are microbial community changes over time, the conjunctiva of 45 healthy subjects were sampled at three time points over three months and processed using culture-dependent and -independent methods. Contaminant taxa were removed using a linear regression model using taxa abundances in negative controls as predictor of taxa abundances in subject samples. Both cultured cell counts and sequencing indicated low microbial biomass on the ocular surface. No cultured species was found in all subjects at all times or in all subjects at any one time. After removal of contaminant taxa identified in negative controls using a statistical model, the most commonly detected taxon was Corynebacterium (11.1%). No taxa were found in all subjects at all times or in all subjects in any one time, but there were 26 taxa present in at least one or more subjects at all times including Corynebacterium and Streptococcus. The ocular surface contains a low diversity of microorganisms. Using culture dependent and independent methods, the ocular surface does not appear to support a substantial core microbiome. However, consistently present taxa could be observed within individuals suggesting the possibility of individual-specific core microbiomes.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Mancabelli L, Milani C, Lugli GA, et al (2017)

Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses.

Scientific reports, 7(1):9879.

Functional constipation (FC) is a gastrointestinal disorder with a high prevalence among the general population. The precise causes of FC are still unknown and are most likely multifactorial. Growing evidence indicates that alterations of gut microbiota composition contribute to constipation symptoms. Nevertheless, many discrepancies exist in literature and no clear link between FC and gut microbiota composition has as yet been identified. In this study, we performed 16 S rRNA-based microbial profiling analysis of 147 stool samples from 68 FC individuals and compared their microbial profiles with those of 79 healthy subjects (HS). Notably, the gut microbiota of FC individuals was shown to be depleted of members belonging to Bacteroides, Roseburia and Coprococcus 3. Furthermore, the metabolic capabilities of the gut microbiomes of five FC and five HS individuals were evaluated through shotgun metagenomics using a MiSeq platform, indicating that HS are enriched in pathways involved in carbohydrate, fatty acid and lipid metabolism as compared to FC. In contrast, the microbiomes corresponding to FC were shown to exhibit high abundance of genes involved in hydrogen production, methanogenesis and glycerol degradation. The identified differences in bacterial composition and metabolic capabilities may play an important role in development of FC symptoms.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Gribben PE, Nielsen S, Seymour JR, et al (2017)

Microbial communities in marine sediments modify success of an invasive macrophyte.

Scientific reports, 7(1):9845.

Invasive plants have extensive impacts on ecosystem function and biodiversity globally. Our inability to manage invasive species stems in part from a lack of understanding of the processes that control their successful establishment and spread. To date, studies have largely considered how above-ground processes control native/invasive plant interactions. Emerging research from terrestrial and wetland ecosystems demonstrates that below-ground processes under microbial control can determine the outcome of interactions between native and invasive plants. Whether sediment microbes modify the success of invasive macrophytes in marine ecosystems is untested, despite marine sediment microbes controlling many ecological processes (e.g. nutrient cycling) comparable to those in terrestrial ecosystems. We first show that sediment bacterial communities differ between the native seagrass Zostera capricorni and the invasive alga Caulerpa taxifolia and that those differences relate to functional changes in sulfur cycling between the macrophytes. Second, by experimentally manipulating the microbial communities we show that intact microbial communities in Z. capricorni sediments provide biotic resistance by reducing C. taxifolia fragment growth 119% compared to when they are inactive, and intact microbial communities in C. taxifolia sediments have positive feedbacks by increasing fragment growth 200%. Thus, similar to terrestrial ecosystems, microorganisms appear to indirectly control the success of invasive macrophytes in marine ecosystems.

RevDate: 2019-04-22
CmpDate: 2019-04-22

Nakagawa T, Tsuchiya Y, Ueda S, et al (2019)

Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan.

Microbes and environments, 34(1):13-22.

Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones. Sulfur-oxidizing Gammaproteobacteria within nosZ gene clade II dominated in the lineage Dechloromonas-Magnetospirillum-Thiocapsa. Alphaproteobacteria within nosZ gene clade I were predominant in both zones. The proportions of Epsilonproteobacteria within nosZ gene clade II increased after incubations in the eelgrass zone microcosm supplemented with N2O only. Collectively, these results suggest that the N2O-reducing microbiome in eelgrass meadows is largely responsible for coastal N2O mitigation.

RevDate: 2019-04-22
CmpDate: 2019-04-22

Hannigan GD, Duhaime MB, Ruffin MT, et al (2018)

Diagnostic Potential and Interactive Dynamics of the Colorectal Cancer Virome.

mBio, 9(6):.

Human viruses (those that infect human cells) have been associated with many cancers, largely due to their mutagenic and functionally manipulative abilities. Despite this, cancer microbiome studies have focused almost exclusively on bacteria instead of viruses. We began evaluating the cancer virome by focusing on colorectal cancer, a primary cause of morbidity and mortality throughout the world and a cancer linked to altered colonic bacterial community compositions but with an unknown association with the gut virome. We used 16S rRNA gene, whole shotgun metagenomic, and purified virus metagenomic sequencing of stool to evaluate the differences in human colorectal cancer virus and bacterial community composition. Through random forest modeling, we identified differences in the healthy and colorectal cancer viromes. The cancer-associated virome consisted primarily of temperate bacteriophages that were also predicted to be bacterium-virus community network hubs. These results provide foundational evidence that bacteriophage communities are associated with colorectal cancer and potentially impact cancer progression by altering the bacterial host communities.IMPORTANCE Colorectal cancer is a leading cause of cancer-related death in the United States and worldwide. Its risk and severity have been linked to colonic bacterial community composition. Although human-specific viruses have been linked to other cancers and diseases, little is known about colorectal cancer virus communities. We addressed this knowledge gap by identifying differences in colonic virus communities in the stool of colorectal cancer patients and how they compared to bacterial community differences. The results suggested an indirect role for the virome in impacting colorectal cancer by modulating the associated bacterial community. These findings both support the idea of a biological role for viruses in colorectal cancer and provide a new understanding of basic colorectal cancer etiology.

RevDate: 2019-04-22
CmpDate: 2019-04-22

Bratburd JR, Keller C, Vivas E, et al (2018)

Gut Microbial and Metabolic Responses to Salmonella enterica Serovar Typhimurium and Candida albicans.

mBio, 9(6):.

The gut microbiota confers resistance to pathogens of the intestinal ecosystem, yet the dynamics of pathogen-microbiome interactions and the metabolites involved in this process remain largely unknown. Here, we use gnotobiotic mice infected with the virulent pathogen Salmonella enterica serovar Typhimurium or the opportunistic pathogen Candida albicans in combination with metagenomics and discovery metabolomics to identify changes in the community and metabolome during infection. To isolate the role of the microbiota in response to pathogens, we compared mice monocolonized with the pathogen, uninfected mice "humanized" with a synthetic human microbiome, or infected humanized mice. In Salmonella-infected mice, by 3 days into infection, microbiome community structure and function changed substantially, with a rise in Enterobacteriaceae strains and a reduction in biosynthetic gene cluster potential. In contrast, Candida-infected mice had few microbiome changes. The LC-MS metabolomic fingerprint of the cecum differed between mice monocolonized with either pathogen and humanized infected mice. Specifically, we identified an increase in glutathione disulfide, glutathione cysteine disulfide, inosine 5'-monophosphate, and hydroxybutyrylcarnitine in mice infected with Salmonella in contrast to uninfected mice and mice monocolonized with Salmonella These metabolites potentially play a role in pathogen-induced oxidative stress. These results provide insight into how the microbiota community members interact with each other and with pathogens on a metabolic level.IMPORTANCE The gut microbiota is increasingly recognized for playing a critical role in human health and disease, especially in conferring resistance to both virulent pathogens such as Salmonella, which infects 1.2 million people in the United States every year (E. Scallan, R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, et al., Emerg Infect Dis 17:7-15, 2011, https://doi.org/10.3201/eid1701.P11101), and opportunistic pathogens like Candida, which causes an estimated 46,000 cases of invasive candidiasis each year in the United States (Centers for Disease Control and Prevention, Antibiotic Resistance Threats in the United States, 2013, 2013). Using a gnotobiotic mouse model, we investigate potential changes in gut microbial community structure and function during infection using metagenomics and metabolomics. We observe that changes in the community and in biosynthetic gene cluster potential occur within 3 days for the virulent Salmonella enterica serovar Typhimurium, but there are minimal changes with a poorly colonizing Candida albicans In addition, the metabolome shifts depending on infection status, including changes in glutathione metabolites in response to Salmonella infection, potentially in response to host oxidative stress.

RevDate: 2019-04-22
CmpDate: 2019-04-22

Kim S, Goel R, Kumar A, et al (2018)

Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

Clinical science (London, England : 1979), 132(6):701-718.

Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN.

RevDate: 2019-04-22
CmpDate: 2019-04-22

Turroni F, Milani C, Duranti S, et al (2018)

Glycan Utilization and Cross-Feeding Activities by Bifidobacteria.

Trends in microbiology, 26(4):339-350.

Bifidobacteria represent one of the first colonizers of the mammalian gut, where such colonization is facilitated by their saccharolytic capabilities. Genomic analyses of bifidobacteria have revealed intriguing genetic strategies employed by these bacteria to access a variety of dietary and host-produced glycans. Bifidobacterial genome evolution therefore represents a fascinating example of how their chromosomes were molded to contain a large number of genes involved in carbohydrate metabolism. One of the reasons as to why bifidobacteria are such dominant and prevalent members of the (early) microbiota is that they may access glycans in the gut through mutualistic cross-feeding or resource-sharing activities, which is indicative of 'social behavior' among bifidobacterial strains.

RevDate: 2019-04-20

Sung CM, Lin YF, Chen KF, et al (2019)

Predicting clinical outcomes of cirrhosis patients with hepatic encephalopathy from the fecal microbiome.

Cellular and molecular gastroenterology and hepatology pii:S2352-345X(19)30047-5 [Epub ahead of print].

BACKGROUND & AIMS: Gut dysbiosis plays a role in hepatic encephalopathy (HE), while its relationship at the acute episode of overt HE (AHE), the disease progression and clinical outcomes remains unclear. We aimed to identify AHE-specific microbiome and its association to patients' outcomes.

METHODS: We profiled fecal microbiome changes for a cohort of 62 patients with cirrhosis and AHE i) before treatment, ii) 2-3 days after medication and iii) 2-3 months after recovery, and three control cohorts i) healthy individuals, patients with ii) compensated or iii) decompensated cirrhosis.

RESULTS: Comparison of the microbiome shift from compensated, decompensated cirrhosis, AHE to recovery revealed the AHE-specific gut-dysbiosis. The gut microbiome diversity was decreased during AHE, further reduced after medication, and only partially reversed during the recovery. The relative abundance of Bacteroidetes phylum in the microbiome decreased, whereas that of Firmicute, Proteobacteria and Actinobacteria increased in patients during AHE compared to those with compensated cirrhosis. A total of 70 operational taxonomic units (OTUs) were significantly different between AHE and decompensated cirrhosis abundances. Of them, the abundance of Veillonella parvula increased the most during AHE via a metagenomics recovery of the genomes. Moreover, the relative abundances of three (Alistipes, Bacteroides, Phascolarctobacterium) and five OTUs (Clostridium-XI, Bacteroides, Bacteroides, Lactobacillus, Clostridium-sedis) at AHE were respectively associated with HE recurrence and overall survival during the subsequent one-year follow-up.

CONCLUSIONS: AHE-specific gut OTUs were identified that may be involved in HE development and able to predict clinical outcomes, providing new strategies for the prevention and treatment of HE recurrence in patients with cirrhosis.

RevDate: 2019-04-18

Singer GAC, Fahner NA, Barnes JG, et al (2019)

Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: a case study of eDNA metabarcoding seawater.

Scientific reports, 9(1):5991 pii:10.1038/s41598-019-42455-9.

The characterization of biodiversity is a crucial element of ecological investigations as well as environmental assessment and monitoring activities. Increasingly, amplicon-based environmental DNA metabarcoding (alternatively, marker gene metagenomics) is used for such studies given its ability to provide biodiversity data from various groups of organisms simply from analysis of bulk environmental samples such as water, soil or sediments. The Illumina MiSeq is currently the most popular tool for carrying out this work, but we set out to determine whether typical studies were reading enough DNA to detect rare organisms (i.e., those that may be of greatest interest such as endangered or invasive species) present in the environment. We collected sea water samples along two transects in Conception Bay, Newfoundland and analyzed them on the MiSeq with a sequencing depth of 100,000 reads per sample (exceeding the 60,000 per sample that is typical of similar studies). We then analyzed these same samples on Illumina's newest high-capacity platform, the NovaSeq, at a depth of 7 million reads per sample. Not surprisingly, the NovaSeq detected many more taxa than the MiSeq thanks to its much greater sequencing depth. However, contrary to our expectations this pattern was true even in depth-for-depth comparisons. In other words, the NovaSeq can detect more DNA sequence diversity within samples than the MiSeq, even at the exact same sequencing depth. Even when samples were reanalyzed on the MiSeq with a sequencing depth of 1 million reads each, the MiSeq's ability to detect new sequences plateaued while the NovaSeq continued to detect new sequence variants. These results have important biological implications. The NovaSeq found 40% more metazoan families in this environment than the MiSeq, including some of interest such as marine mammals and bony fish so the real-world implications of these findings are significant. These results are most likely associated to the advances incorporated in the NovaSeq, especially a patterned flow cell, which prevents similar sequences that are neighbours on the flow cell (common in metabarcoding studies) from being erroneously merged into single spots by the sequencing instrument. This study sets the stage for incorporating eDNA metabarcoding in comprehensive analysis of oceanic samples in a wide range of ecological and environmental investigations.

RevDate: 2019-04-09

Tan S, Liu J, Fang Y, et al (2019)

Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics.

The ISME journal pii:10.1038/s41396-019-0415-y [Epub ahead of print].

Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.

RevDate: 2019-04-09

Brink M, Rhode C, Macey BM, et al (2019)

Metagenomic assessment of body surface bacterial communities of the sea urchin, Tripneustes gratilla.

Marine genomics pii:S1874-7787(19)30038-8 [Epub ahead of print].

Sea urchins, including Tripneustes gratilla, are susceptible to a disease known as bald sea urchin disease, which has the potential to lead to economic losses in this emerging aquaculture industry in South Africa. This disease is characterized by lesions that form on sea urchin exoskeletal surfaces. This study aimed to characterize the body surface bacterial communities associated with T. gratilla, using a 16S rDNA gene metagenomics approach, to provide insight into the bacterial agents associated with this aquaculture species, as well as with this balding disease. Bacterial samples were collected from non-lesioned healthy animals obtained from natural locations along the eastern coast of South Africa, as well as from different cultured cohorts: non-lesioned healthy-, lesioned diseased- and non-lesioned stressed animals. A total of 1,067,515 individual bacterial operational taxonomic units (OTUs) were identified, belonging to 133 family-, 123 genus- and 113 species level OTU groups. Alpha diversity analyses, based on Chao1, Shannon and Simpson indices, showed that there were no statistically significant differences (ANOVA; P > 0.05) between the respective cohorts, as all cohorts displayed a high degree of bacterial diversity. Similarly, beta diversity analyses (Non-metric multidimensional scaling) showed a large degree of overlapping OTUs across the four cohorts. Within each cohort, various OTUs commonly associated with marine environments were found, predominantly belonging to the families Vibrionaceae, Saprospiraceae, Flavobacteriaceae and Sphingomonadaceae. Differential abundance analysis (DESeq2) revealed that OTUs that are differentially abundant across cohorts were likely not responsible for this balding disease, suggesting that complex bacterial agents, rather than a specific pathogenic agent, are likely causing this disease. Furthermore, the putative metabolic functions assigned to the bacterial communities showed that heterotrophic bacteria appear to be responsible for tissue lysis of degrading animal matter. The results from this study, obtained through univariate and multivariate-based approaches, contributes to future management strategies of this emerging aquaculture species by providing insight into the bacterial communities associated with both natural and cultured environments.

RevDate: 2019-04-04

Sessa L, Reddel S, Manno E, et al (2019)

Distinct gut microbiota profile in antiretroviral therapy-treated perinatally HIV-infected patients associated with cardiac and inflammatory biomarkers.

AIDS (London, England), 33(6):1001-1011.

OBJECTIVE: Persistent inflammation and higher risk to develop cardiovascular diseases still represent a major complication for HIV-infected patients despite effective antiretroviral therapy (ART). We investigated the correlation between the gut microbiota profile, markers of inflammation, vascular endothelial activation (VEA) and microbial translocation (MT) in perinatally HIV-infected patients (PHIV) under ART.

DESIGN: Cross-sectional study including 61 ART-treated PHIV (age range 3-30 years old) and 71 age-matched healthy controls. Blood and stool sample were collected at the same time and analyzed for gut microbiota composition and plasma biomarkers.

METHODS: Gut microbiota composition was determined by 16S rRNA targeted-metagenomics. Soluble markers of MT, inflammation and VEA were quantified by ELISA or Luminex assay. Markers of immune activation were analyzed by flow cytometry on CD4 and CD8T cells.

RESULTS: We identified two distinct gut microbiota profiles (groups A and B) among PHIV. No different clinical parameters (age, sex, ethnicity, clinical class), dietary and sexual habits were found between the groups. The group A showed a relative dominance of Akkermansia muciniphila, whereas gut microbiota of group B was characterized by a higher biodiversity. The analysis of soluble markers revealed a significantly higher level of soluble E-selectine (P = 0.0296), intercellular adhesion molecule-1 (P = 0.0028), vascular adhesion molecule-1 (P = 0.0230), IL-6 (P = 0.0247) and soluble CD14 (P = 0.0142) in group A compared with group B.

CONCLUSION: Distinctive gut microbiota profiles are differently associated with inflammation, microbial translocation and VEA. Future studies are needed to understand the role of A. muciniphila and risk to develop cardiovascular diseases in PHIV.

RevDate: 2019-04-18

Ding GC, Bai M, Han H, et al (2019)

Microbial taxonomic, nitrogen cycling and phosphorus recycling community composition during long-term organic greenhouse farming.

FEMS microbiology ecology, 95(5):.

Understanding the interplay between the farming system and soil microbiomes could aid the design of a sustainable and efficient farming system. A comparative greenhouse experiment consisting of organic (ORG), integrated (INT) and conventional (CON) farming systems was established in northern China in 2002. The effects of 12 years of organic farming on soil microbiomes were explored by metagenomic and 16S rRNA gene amplicon sequencing analyses. Long-term ORG shifted the community composition of dominant phyla, especially Acidobacteria, increased the relative abundance of Ignavibacteria and Acidobacteria Gp6 and decreased the relative abundance of Nitrosomonas, Bacillus and Paenibacillus. Metagenomic analysis further revealed that relative abundance of ammonia oxidizing microorganisms (Bacteria and Archaea) and anaerobic ammonium oxidation bacteria decreased during ORG. Conversely, the relative abundance of bacteria-carrying periplasmic nitrate reductases (napA) was slightly higher for ORG. Long-term organic farming also caused significant alterations to the community composition of functional groups associated with ammonia oxidation, denitrification and phosphorus recycling. In summary, this study provides key insights into the composition of soil microbiomes and long-term organic farming under greenhouse conditions.

RevDate: 2019-03-29

Cycoń M, Mrozik A, Z Piotrowska-Seget (2019)

Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity.

Frontiers in microbiology, 10:338.

Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge.

RevDate: 2019-03-29

Eisenhofer R, LS Weyrich (2019)

Assessing alignment-based taxonomic classification of ancient microbial DNA.

PeerJ, 7:e6594 pii:6594.

The field of palaeomicrobiology-the study of ancient microorganisms-is rapidly growing due to recent methodological and technological advancements. It is now possible to obtain vast quantities of DNA data from ancient specimens in a high-throughput manner and use this information to investigate the dynamics and evolution of past microbial communities. However, we still know very little about how the characteristics of ancient DNA influence our ability to accurately assign microbial taxonomies (i.e. identify species) within ancient metagenomic samples. Here, we use both simulated and published metagenomic data sets to investigate how ancient DNA characteristics affect alignment-based taxonomic classification. We find that nucleotide-to-nucleotide, rather than nucleotide-to-protein, alignments are preferable when assigning taxonomies to short DNA fragment lengths routinely identified within ancient specimens (<60 bp). We determine that deamination (a form of ancient DNA damage) and random sequence substitutions corresponding to ∼100,000 years of genomic divergence minimally impact alignment-based classification. We also test four different reference databases and find that database choice can significantly bias the results of alignment-based taxonomic classification in ancient metagenomic studies. Finally, we perform a reanalysis of previously published ancient dental calculus data, increasing the number of microbial DNA sequences assigned taxonomically by an average of 64.2-fold and identifying microbial species previously unidentified in the original study. Overall, this study enhances our understanding of how ancient DNA characteristics influence alignment-based taxonomic classification of ancient microorganisms and provides recommendations for future palaeomicrobiological studies.

RevDate: 2019-03-29

Thrash A, Arick M, Barbato RA, et al (2019)

Keanu: a novel visualization tool to explore biodiversity in metagenomes.

BMC bioinformatics, 20(Suppl 2):103 pii:10.1186/s12859-019-2629-4.

BACKGROUND: One of the main challenges when analyzing complex metagenomics data is the fact that large amounts of information need to be presented in a comprehensive and easy-to-navigate way. In the process of analyzing FASTQ sequencing data, visualizing which organisms are present in the data can be useful, especially with metagenomics data or data suspected to be contaminated. Here, we describe the development and application of a command-line tool, Keanu, for visualizing and exploring sample content in metagenomics data. We developed Keanu as an interactive tool to make viewing complex data easier.

RESULTS: Keanu, a tool for exploring sequence content, helps a user to understand the presence and abundance of organisms in a sample by analyzing alignments against a database that contains taxonomy data and displaying them in an interactive web page. The content of a sample can be presented either as a collapsible tree, with node size indicating abundance, or as a bilevel partition graph, with arc size indicating abundance. Here, we illustrate how Keanu works by exploring shotgun metagenomics data from a sample collected from a bluff that contained paleosols and a krotovina in an alpine site in Ft. Greely, Alaska.

CONCLUSIONS: Keanu provides a simple means by which researchers can explore and visualize species present in sequence data generated from complex communities and environments. Keanu is written in Python and is freely available at https://github.com/IGBB/keanu .

RevDate: 2019-03-23

Liu ZX, Xu J, Sun W, et al (2019)

[Application of DNA metabarcoding in species identification of Chinese herbal medicines].

Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 44(1):1-8.

DNA metabarcoding,one rapid and robust method using specific standard DNA fragments,has been widely used for rapid species identification of a bulk sample through high-throughput sequencing technologies.While it has been widely used in the studies of metagenomics,animal and plant biodiversity,it has gradually come to be used as a profitable method in species identification of mixed Chinese herbal medicines.In this paper,we mainly summarize the current studies of the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines.Moreover,high-throughput sequencing technologies adopted in those studies,such as Sanger,the next-generation,and third-generation sequencing technologies,are discussed.It is conducted to provide a theoretical guidance for the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines and in more other biodiversity studies.

RevDate: 2019-04-03
CmpDate: 2019-04-03

Hendriksen RS, Munk P, Njage P, et al (2019)

Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage.

Nature communications, 10(1):1124 pii:10.1038/s41467-019-08853-3.

Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.

RevDate: 2019-03-22
CmpDate: 2019-03-22

Cordeiro MC, Garcia GD, Rocha AM, et al (2019)

Insights on the freshwater microbiomes metabolic changes associated with the world's largest mining disaster.

The Science of the total environment, 654:1209-1217.

To evaluate the impacts of the Fundão tailings dam failure (Minas Gerais, Brazil) on water quality of the Doce River, we analyzed metagenomics and physicochemical parameters during the month of the disaster and again 6 and 10 months after the disaster. To compare dam conditions before and after the failure, we performed a meta-analysis of physicochemical data from a public database. Immediately after the failure, suspended particulate matter (SPM) in the Doce River was 225-1877 mg L-1. Turbidity and dissolved aluminum and iron concentrations were extremely high, whereas dissolved oxygen was below Brazilian legislation norm (<5 mg L-1) in several locations. Six months later, physicochemical values were below thresholds set by Brazilian guidelines (e.g., SPM = 8-166 mg L-1). Short-term impacts on microbial communities included an increase in Actinobacteria and Bacteroidetes and gene sequences related to microbial virulence, motility, respiration, membrane transport, iron and nitrogen metabolism, suggesting changes in microbial metabolic profiles. The 11 recovered partial genomes from metagenomes (MAGs) had genes related to Fe cycle and metal resistance.

RevDate: 2019-04-09
CmpDate: 2019-04-09

Mahnert A, Moissl-Eichinger C, Zojer M, et al (2019)

Man-made microbial resistances in built environments.

Nature communications, 10(1):968 pii:10.1038/s41467-019-08864-0.

Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.

RevDate: 2019-04-05
CmpDate: 2019-04-05

Feng J, Penton CR, He Z, et al (2019)

Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils.

mBio, 10(1): pii:mBio.02521-18.

Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N2 fixation is the major source of biologically available N, the soil N2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem.IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.

RevDate: 2019-03-21
CmpDate: 2019-03-21

DeMaere MZ, AE Darling (2019)

bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes.

Genome biology, 20(1):46 pii:10.1186/s13059-019-1643-1.

Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity, target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the Infomap clustering algorithm (https://github.com/cerebis/bin3C).

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )