Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Horizontal Gene Transfer

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 08 Feb 2023 at 01:30 Created: 

Horizontal Gene Transfer

The pathology-inducing genes of O157:H7 appear to have been acquired, likely via prophage, by a nonpathogenic E. coli ancestor, perhaps 20,000 years ago. That is, horizontal gene transfer (HGT) can lead to the profound phenotypic change from benign commensal to lethal pathogen. "Horizontal" in this context refers to the lateral or "sideways" movement of genes between microbes via mechanisms not directly associated with reproduction. HGT among prokaryotes can occur between members of the same "species" as well as between microbes separated by vast taxonomic distances. As such, much prokaryotic genetic diversity is both created and sustained by high levels of HGT. Although HGT can occur for genes in the core-genome component of a pan-genome, it occurs much more frequently among genes in the optional, flex-genome component. In some cases, HGT has become so common that it is possible to think of some "floating" genes more as attributes of the environment in which they are useful rather than as attributes of any individual bacterium or strain or "species" that happens to carry them. For example, bacterial plasmids that occur in hospitals are capable of conferring pathogenicity on any bacterium that successfully takes them up. This kind of genetic exchange can occur between widely unrelated taxa.

Created with PubMed® Query: ( "horizontal gene transfer" OR "lateral gene transfer") NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2023-02-07

Anbo M, L Jelsbak (2023)

A bittersweet fate: detection of serotype switching in Pseudomonas aeruginosa.

Microbial genomics, 9(1):.

High-risk clone types in Pseudomonas aeruginosa are problematic global multidrug-resistant clones. However, apart from their ability to resist antimicrobial treatment, not much is known about what sets these clones apart from the multitude of other clones. In high-risk clone ST111, it has previously been shown that replacement of the native serotype biosynthetic gene cluster (O4) by a different gene cluster (O12) by horizontal gene transfer and recombination may have contributed to the global success of this clone. However, the extent to which isolates undergo this type of serotype switching has not been adequately explored in P. aeruginosa. In the present study, a bioinformatics tool has been developed and utilized to provide a first estimate of serotype switching in groups of multidrug resistant (MDR) clinical isolates. The tool detects serotype switching by analysis of core-genome phylogeny and in silico serotype. Analysis of a national survey of MDR isolates found a prevalence of 3.9 % of serotype-switched isolates in high-risk clone types ST111, ST244 and ST253. A global survey of MDR isolates was additionally analysed, and it was found that 2.3 % of isolates had undergone a serotype switch. To further understand this process, we determined the exact boundaries of the horizontally transferred serotype O12 island. We found that the size of the serotype island correlates with the clone type of the receiving isolate and additionally we found intra-clone type variations in size and boundaries. This suggests multiple serotype switch events. Moreover, we found that the housekeeping gene gyrA is co-transferred with the O12 serotype island, which prompted us to analyse this allele for all serotype O12 isolates. We found that 95 % of ST111 O12 isolates had a resistant gyrA allele and 86 % of all O12 isolates had a resistant gyrA allele. The rates of resistant gyrA alleles in isolates with other prevalent serotypes are all lower. Together, these results show that the transfer and acquisition of serotype O12 in high-risk clone ST111 has happened multiple times and may be facilitated by multiple donors, which clearly suggests a strong selection pressure for this process. However, gyrA-mediated antibiotic resistance may not be the only evolutionary driver.

RevDate: 2023-02-07

Wietz M, López-Pérez M, Sher D, et al (2022)

Microbe Profile: Alteromonas macleodii - a widespread, fast-responding, 'interactive' marine bacterium.

Microbiology (Reading, England), 168(11):.

Alteromonas macleodii is a marine heterotrophic bacterium with widespread distribution - from temperate to tropical oceans, and from surface to deep waters. Strains of A. macleodii exhibit considerable genomic and metabolic variability, and can grow rapidly on diverse organic compounds. A. macleodii is a model organism for the study of population genomics, physiological adaptations and microbial interactions, with individual genomes encoding diverse phenotypic traits influenced by recombination and horizontal gene transfer.

RevDate: 2023-02-07

Kupczok A, Bailey ZM, Refardt D, et al (2022)

Co-transfer of functionally interdependent genes contributes to genome mosaicism in lambdoid phages.

Microbial genomics, 8(11):.

Lambdoid (or Lambda-like) phages are a group of related temperate phages that can infect Escherichia coli and other gut bacteria. A key characteristic of these phages is their mosaic genome structure, which served as the basis for the 'modular genome hypothesis'. Accordingly, lambdoid phages evolve by transferring genomic regions, each of which constitutes a functional unit. Nevertheless, it is unknown which genes are preferentially transferred together and what drives such co-transfer events. Here we aim to characterize genome modularity by studying co-transfer of genes among 95 distantly related lambdoid (pro-)phages. Based on gene content, we observed that the genomes cluster into 12 groups, which are characterized by a highly similar gene content within the groups and highly divergent gene content across groups. Highly similar proteins can occur in genomes of different groups, indicating that they have been transferred. About 26 % of homologous protein clusters in the four known operons (i.e. the early left, early right, immunity and late operon) engage in gene transfer, which affects all operons to a similar extent. We identified pairs of genes that are frequently co-transferred and observed that these pairs tend to be near one another on the genome. We find that frequently co-transferred genes are involved in related functions and highlight interesting examples involving structural proteins, the cI repressor and Cro regulator, proteins interacting with DNA, and membrane-interacting proteins. We conclude that epistatic effects, where the functioning of one protein depends on the presence of another, play an important role in the evolution of the modular structure of these genomes.

RevDate: 2023-02-07

Sengupta S, RK Azad (2023)

Leveraging comparative genomics to uncover alien genes in bacterial genomes.

Microbial genomics, 9(1):.

A significant challenge in bacterial genomics is to catalogue genes acquired through the evolutionary process of horizontal gene transfer (HGT). Both comparative genomics and sequence composition-based methods have often been invoked to quantify horizontally acquired genes in bacterial genomes. Comparative genomics methods rely on completely sequenced genomes and therefore the confidence in their predictions increases as the databases become more enriched in completely sequenced genomes. Recent developments including in microbial genome sequencing call for reassessment of alien genes based on information-rich resources currently available. We revisited the comparative genomics approach and developed a new algorithm for alien gene detection. Our algorithm compared favourably with the existing comparative genomics-based methods and is capable of detecting both recent and ancient transfers. It can be used as a standalone tool or in concert with other complementary algorithms for comprehensively cataloguing alien genes in bacterial genomes.

RevDate: 2023-02-07

Colombi E, Hill Y, Lines R, et al (2023)

Population genomics of Australian indigenous Mesorhizobium reveals diverse nonsymbiotic genospecies capable of nitrogen-fixing symbioses following horizontal gene transfer.

Microbial genomics, 9(1):.

Mesorhizobia are soil bacteria that establish nitrogen-fixing symbioses with various legumes. Novel symbiotic mesorhizobia frequently evolve following horizontal transfer of symbiosis-gene-carrying integrative and conjugative elements (ICESyms) to indigenous mesorhizobia in soils. Evolved symbionts exhibit a wide range in symbiotic effectiveness, with some fixing nitrogen poorly or not at all. Little is known about the genetic diversity and symbiotic potential of indigenous soil mesorhizobia prior to ICESym acquisition. Here we sequenced genomes of 144 Mesorhizobium spp. strains cultured directly from cultivated and uncultivated Australian soils. Of these, 126 lacked symbiosis genes. The only isolated symbiotic strains were either exotic strains used previously as legume inoculants, or indigenous mesorhizobia that had acquired exotic ICESyms. No native symbiotic strains were identified. Indigenous nonsymbiotic strains formed 22 genospecies with phylogenomic diversity overlapping the diversity of internationally isolated symbiotic Mesorhizobium spp. The genomes of indigenous mesorhizobia exhibited no evidence of prior involvement in nitrogen-fixing symbiosis, yet their core genomes were similar to symbiotic strains and they generally lacked genes for synthesis of biotin, nicotinate and thiamine. Genomes of nonsymbiotic mesorhizobia harboured similar mobile elements to those of symbiotic mesorhizobia, including ICESym-like elements carrying aforementioned vitamin-synthesis genes but lacking symbiosis genes. Diverse indigenous isolates receiving ICESyms through horizontal gene transfer formed effective symbioses with Lotus and Biserrula legumes, indicating most nonsymbiotic mesorhizobia have an innate capacity for nitrogen-fixing symbiosis following ICESym acquisition. Non-fixing ICESym-harbouring strains were isolated sporadically within species alongside effective symbionts, indicating chromosomal lineage does not predict symbiotic potential. Our observations suggest previously observed genomic diversity amongst symbiotic Mesorhizobium spp. represents a fraction of the extant diversity of nonsymbiotic strains. The overlapping phylogeny of symbiotic and nonsymbiotic clades suggests major clades of Mesorhizobium diverged prior to introduction of symbiosis genes and therefore chromosomal genes involved in symbiosis have evolved largely independent of nitrogen-fixing symbiosis.

RevDate: 2023-02-07

Tamminga SM, Völpel SL, Schipper K, et al (2022)

Genetic diversity of Staphylococcus aureus wall teichoic acid glycosyltransferases affects immune recognition.

Microbial genomics, 8(12):.

Staphylococcus aureus is a leading cause of skin and soft tissue infections and systemic infections. Wall teichoic acids (WTAs) are cell wall-anchored glycopolymers that are important for S. aureus nasal colonization, phage-mediated horizontal gene transfer, and antibiotic resistance. WTAs consist of a polymerized ribitol phosphate (RboP) chain that can be glycosylated with N-acetylglucosamine (GlcNAc) by three glycosyltransferases: TarS, TarM, and TarP. TarS and TarP modify WTA with β-linked GlcNAc at the C-4 (β1,4-GlcNAc) and the C-3 position (β1,3-GlcNAc) of the RboP subunit, respectively, whereas TarM modifies WTA with α-linked GlcNAc at the C-4 position (α1,4-GlcNAc). Importantly, these WTA glycosylation patterns impact immune recognition and clearance of S. aureus. Previous studies suggest that tarS is near-universally present within the S. aureus population, whereas a smaller proportion co-contain either tarM or tarP. To gain more insight into the presence and genetic variation of tarS, tarM and tarP in the S. aureus population, we analysed a collection of 25 652 S. aureus genomes within the PubMLST database. Over 99 % of isolates contained tarS. Co-presence of tarS/tarM or tarS/tarP occurred in 37 and 7 % of isolates, respectively, and was associated with specific S. aureus clonal complexes. We also identified 26 isolates (0.1 %) that contained all three glycosyltransferase genes. At sequence level, we identified tar alleles with amino acid substitutions in critical enzymatic residues or with premature stop codons. Several tar variants were expressed in a S. aureus tar-negative strain. Analysis using specific monoclonal antibodies and human langerin showed that WTA glycosylation was severely attenuated or absent. Overall, our data provide a broad overview of the genetic diversity of the three WTA glycosyltransferases in the S. aureus population and the functional consequences for immune recognition.

RevDate: 2023-02-07

Greig DR, Bird MT, Chattaway MA, et al (2022)

Characterization of a P1-bacteriophage-like plasmid (phage-plasmid) harbouring bla CTX-M-15 in Salmonella enterica serovar Typhi.

Microbial genomics, 8(12):.

Antimicrobial-resistance (AMR) genes can be transferred between microbial cells via horizontal gene transfer (HGT), which involves mobile and integrative elements such as plasmids, bacteriophages, transposons, integrons and pathogenicity islands. Bacteriophages are found in abundance in the microbial world, but their role in virulence and AMR has not fully been elucidated in the Enterobacterales. With short-read sequencing paving the way to systematic high-throughput AMR gene detection, long-read sequencing technologies now enable us to establish how such genes are structurally connected into meaningful genomic units, raising questions about how they might cooperate to achieve their biological function. Here, we describe a novel ~98 kbp circular P1-bacteriophage-like plasmid termed ph681355 isolated from a clinical Salmonella enterica serovar Typhi isolate. It carries bla CTX-M-15, an IncY plasmid replicon (repY gene) and the ISEcP1 mobile element and is, to our knowledge, the first reported P1-bacteriophage-like plasmid (phage-plasmid) in S. enterica Typhi. We compared ph681355 to two previously described phage-plasmids, pSJ46 from S. enterica serovar Indiana and pMCR-1-P3 from Escherichia coli, and found high nucleotide similarity across the backbone. However, we saw low ph681355 backbone similarity to plasmid p60006 associated with the extensively drug-resistant S. enterica Typhi outbreak isolate in Pakistan, providing evidence of an alternative route for bla CTX-M-15 transmission. Our discovery highlights the importance of utilizing long-read sequencing in interrogating bacterial genomic architecture to fully understand AMR mechanisms and their clinical relevance. It also raises questions regarding how widespread bacteriophage-mediated HGT might be, suggesting that the resulting genomic plasticity might be higher than previously thought.

RevDate: 2023-02-06

Prasad A, Ene A, Jablonska S, et al (2023)

Comparative Genomic Study of Streptococcus anginosus Reveals Distinct Group of Urinary Strains.

mSphere [Epub ahead of print].

Streptococcus anginosus is a prevalent member of the human flora. While it has been found in the microbiota of "healthy" asymptomatic individuals, it has also been associated with genitourinary tract infections and bacteremia. Based upon multilocus sequence analysis, two subspecies and two genomosubspecies have been characterized for the species. We previously conducted whole-genome sequencing of 85 S. anginosus isolates from the urinary tract. Here, we present genomic analysis of this species, including isolates from the urinary tract as well as gut and fecal, vaginal, oral, respiratory, and blood and heart samples. Average nucleotide identity and core genome analysis revealed that these strains form two distinct groups. Group 1 is comprised of the S. anginosus type strain and other previously identified S. anginosus subspecies and genomosubspecies, including isolates from throughout the human body. In contrast, group 2 consists of predominantly urinary streptococci (n = 77; 85.6%). Both of these S. anginosus groups are distinct from other members of the Streptococcus anginosus group (SAG) species S. intermedius and S. constellatus. Genes conserved among all strains of one group but not in any strains in the other group were next identified. Group 1 strains included genes found in S. intermedius and S. constellatus, suggesting that they were lost within the ancestor of the group 2 strains. In contrast, genes unique to the group 2 strains were homologous to more distant streptococci, indicative of acquisition via horizontal gene transfer. These genes are ideal candidates for use as marker genes to distinguish between the two groups in the human microbiota. IMPORTANCE Whole-genome analysis of S. anginosus strains provides greater insight into the diversity of this species than from marker genes alone. Our investigation of 166 publicly available S. anginosus genomes via average nucleotide identity and core genome analysis revealed two phylogenomically distinct groups of this species, with one group almost exclusively consisting of isolates from the urinary tract. In contrast, only 8 urinary strains were identified within the other group, which contained the S. anginosus type strain, as well as all identified subspecies and genomosubspecies. While genomic analysis suggested that this urinary group of S. anginosus is genomically different from the previously characterized S. anginosus subspecies, phenotypic characterization is still needed. Given prior reports of the prevalence of S. anginosus in the urinary tract of both continent and incontinent females, future studies are needed to investigate if the symptom state of the urinary tract is associated with these two different groups.

RevDate: 2023-02-06

Qi Q, Rajabal V, Ghaly TM, et al (2023)

Identification of integrons and gene cassette-associated recombination sites in bacteriophage genomes.

Frontiers in microbiology, 14:1091391.

Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lytic) phages carry integrons, including integron-integrase genes, attC/attI recombination sites and gene cassettes. Integrons are normally found in Bacteria, where they capture, express and re-arrange mobile gene cassettes via integron-integrase activity. We demonstrate experimentally that a panel of attC sites carried in virulent phage can be recognized by the bacterial class 1 integron-integrase (IntI1) and then integrated into the paradigmatic attI1 recombination site using an attC x attI recombination assay. With an increasing number of phage genomes projected to become available, more phage-associated integrons and their components will likely be identified in the future. The discovery of integron components in bacteriophages establishes a new route for lateral transfer of these elements and their cargo genes between bacterial host cells.

RevDate: 2023-02-06

Lombard L, van Doorn R, Groenewald JZ, et al (2022)

Fusarium diversity associated with the Sorghum-Striga interaction in Ethiopia.

Fungal systematics and evolution, 10:177-215.

Sorghum production is seriously threatened by the root parasitic weeds (RPWs) Striga hermonthica and Striga asiatica in sub-Saharan Africa. Research has shown that Striga control depends on eliminating its seed reserves in soil. Several species of the genus Fusarium (Nectriaceae, Hypocreales), which have been isolated from diseased Striga plants have proven to be highly pathogenic to all developmental stages of these RPWs. In the present study 439 isolates of Fusarium spp. were found associated with soils from Sorghum growing fields, Sorghum rhizosphere, or as endophytes with Sorghum roots and seeds, or as endophytes of Striga stems and seeds. Based on multi-locus phylogenies of combinations of CaM, tef1, rpb1 and rpb2 alignments, and morphological characteristics, 42 species were identified, including three species that are newly described, namely F. extenuatum and F. tangerinum from Sorghum soils, and F. pentaseptatum from seed of Striga hermonthica. Using a previously published AFLP-derived marker that is specific to detect isolates of F. oxysporum f.sp. strigae, an effective soil-borne biocontrol agent against Striga, we also detected the gene in several other Fusarium species. As these isolates were all associated with the Striga/Sorghum pathosystem, the possibility of horizontal gene transfer among these fusaria will be of interest to further investigate in future. Citation: Lombard L, van Doorn R, Groenewald JZ, Tessema T, Kuramae EE, Etolo DW, Raaijmakers JM, Crous PW (2022). Fusarium diversity associated with the Sorghum-Striga interaction in Ethiopia. Fungal Systematics and Evolution 10: 177-215. doi: 10.3114/fuse.2022.10.08.

RevDate: 2023-02-05

Markowicz A (2023)

The significance of metallic nanoparticles in the emerging, development and spread of antibiotic resistance.

The Science of the total environment pii:S0048-9697(23)00644-7 [Epub ahead of print].

An ever-increasing number of newly synthesised nanoparticles have a constantly expanding range of applications. The large-scale implementation of nanoparticles will inevitably lead to intentional or accidental contamination of various environments. Since the major benefit of using several metallic nanoparticles is antimicrobial activity, these emerging contaminants may have a potentially hazardous impact on the development and spread of antibiotic resistance - a challenge that threats infection therapy worldwide. Few studies underline that metallic nanoparticles may affect the emergence and evolution of resistance via mutations and horizontal transfer between different bacterial species. Due to the complexity of factors and mechanisms involved in disseminating antibiotic resistance, it is crucial to investigate if metallic nanoparticles play a significant role in this process through co-selection ability and pressure exerted on bacteria. The aim of this review is to summarise the current research on mutations and three main horizontal gene transfer modes facilitated by nanoparticles. Here, the current results in the field are presented, major knowledge gaps and the necessity for more environmentally relevant studies are discussed.

RevDate: 2023-02-04

Islam T, Azad RB, Kasfy SH, et al (2023)

Horizontal gene transfer from plant to whitefly.

Trends in biotechnology pii:S0167-7799(23)00025-2 [Epub ahead of print].

The recent discovery of the horizontal transfer of a toxin-neutralizing gene from plant to whitefly (Bemisia tabaci), a polyphagous insect, sparked a new area of study. In this forum, we discuss some potential biotechnological applications of this newly discovered knowledge in the coevolutionary arms race between plants and whitefly.

RevDate: 2023-02-04

Bhowmik P, Bharatham N, Murakami S, et al (2023)

Identification of key amino acid residues in OqxB mediated efflux of fluoroquinolones using site-directed mutagenesis.

Research in microbiology pii:S0923-2508(23)00014-1 [Epub ahead of print].

OqxB belongs to the RND (Resistance-Nodulation-Division) efflux pump family, recognized widely as a major contributor towards enhancing antimicrobial resistance. It is known to be predominantly present in all Klebsiella spp. and is attributed for its role in increasing resistance against an array of antibiotics like nitrofurantoin, quinolones, β-lactams and colistin. However, the presence of oqxB encoding this efflux pump is not limited only to Klebsiella spp., but is also found to occur via horizontal gene transfer in other bacterial genera like Escherichia coli, Enterobacter cloacae and Salmonella spp. Recently, we reported the crystal structure of OqxB and its structure-function relationship required for the efflux of fluoroquinolones. Extending these findings further, we characterized the structural architecture of this efflux pump along with identifying some critical amino acids at the substrate binding domain of OqxB. Based on our in silico modelling studies, both, hydrophobic residues (F180, L280, L621, F626) and polar residues (R48, E50, E184, R157, R774) were found to be located at this site. The present work reports the importance of these key amino acid residues and the crucial ion-pair interactions at the substrate-binding pocket, thereby establishing their role in OqxB mediated efflux and the resultant resistance development against fluoroquinolones.

RevDate: 2023-02-04

Zhang Y, Zhao Z, Xu H, et al (2023)

Fate of antibiotic resistance genes and bacteria in a coupled water-processing system with wastewater treatment plants and constructed wetlands in coastal eco-industrial parks.

Ecotoxicology and environmental safety, 252:114606 pii:S0147-6513(23)00110-0 [Epub ahead of print].

In coastal eco-industrial zones, wastewater treatment plants (WWTPs) and constructed wetlands (CWs) can alleviate the challenge of water shortage and the negative effect of sewage discharge, while the problems of antibiotic resistance genes (ARGs) have not attracted enough attention. In this research, the Wafergen SmartChip system was adopted to investigate the ARG profiles in a coupled system combined WWTPs and CWs in a coastal industrial park. Potential risks of antibiotic resistance in chemical industrial wastewater were confirmed due to the higher abundance of target ARGs (> 10[7] copies/mL). General decline with partial enrichment in absolute and relative abundance of ARGs from the WWTPs to CWs revealed the effective removal of ARGs in the coupled system, while the fate of different ARG types varied greatly. Aminoglycoside and sulfonamide ARGs were detected with higher abundance (up to 5.34 ×10[7] and 3.61 ×10[7] copies/mL), especially aac(6')-Ib and sul1. Denitrification, secondary sedimentation, and acid hydrolysis contributed to the removal of aminoglycoside, sulfonamide, β-lactamase, chloramphenicol, and multidrug ARGs. Catalytic ozonation contributed to the removal of tetracycline and MLSB ARGs. Subsurface CWs worked effectively for the removal of sulfonamide, tetracycline, and multidrug ARGs, especially tetX, cphA, tetG, and strB. Close correlations between ARGs and MGEs emphasized the vital roles of anthropogenic pollutants and horizontal gene transfer on the diffusion of ARGs. Actinobacteria, Bacteroidota, and Cyanobacteria were dominant in the CWs, while Proteobacteria, Firmicutes, and Planctomycetota were prevalent in the WWTPs. Redundancy analysis and variance partitioning analysis indicated that transposase and water quality posed greater influences on the distribution of ARGs. Co-occurrence network revealed that potential multiple antibiotic resistant pathogenic bacteria decreased in the CWs. The coupled system has a limited effect on the reduction of ARGs and potential ARG hosts, providing a comprehensive insight into the fate of ARGs in conventional water-processing systems.

RevDate: 2023-02-02

Bhattacharjee AS, Schulz F, Woyke T, et al (2023)

Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids.

ISME communications, 3(1):10 pii:10.1038/s43705-022-00210-8.

The oceanic igneous crust is a vast reservoir for microbial life, dominated by diverse and active bacteria, archaea, and fungi. Archaeal and bacterial viruses were previously detected in oceanic crustal fluids at the Juan de Fuca Ridge (JdFR). Here we report the discovery of two eukaryotic Nucleocytoviricota genomes from the same crustal fluids by sorting and sequencing single virions. Both genomes have a tRNA[Tyr] gene with an intron (20 bps) at the canonical position between nucleotide 37 and 38, a common feature in eukaryotic and archaeal tRNA genes with short introns (<100 bps), and fungal genes acquired through horizontal gene transfer (HGT) events. The dominance of Ascomycota fungi as the main eukaryotes in crustal fluids and the evidence for HGT point to these fungi as the putative hosts, making these the first putative fungi-Nucleocytoviricota specific association. Our study suggests active host-viral dynamics for the only eukaryotic group found in the subsurface oceanic crust and raises important questions about the impact of viral infection on the productivity and biogeochemical cycling in this ecosystem.

RevDate: 2023-02-02

Calero-Cáceres W, Rodríguez K, Medina A, et al (2022)

Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective.

Frontiers in microbiology, 13:1032753.

The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance.

RevDate: 2023-02-02

Petersen C, Sørensen T, Nielsen MR, et al (2023)

Comparative genomic study of the Penicillium genus elucidates a diverse pangenome and 15 lateral gene transfer events.

IMA fungus, 14(1):3.

The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.

RevDate: 2023-02-01

Adenaya A, Berger M, Brinkhoff T, et al (2023)

Usage of antibiotics in aquaculture and the impact on coastal waters.

Marine pollution bulletin, 188:114645 pii:S0025-326X(23)00076-0 [Epub ahead of print].

For decades, coastal marine ecosystems have been threatened by a wide range of anthropogenic pollutants. Recently, there has been increasing concern about the accumulation and impacts of antibiotic compounds on marine ecosystems. However, information regarding the accumulation of antibiotics and the impacts they may have on microbial communities in coastal water bodies and on human health is sparse in literature. Antibiotics from aquacultures are constantly discharged into marine environments via rivers. Large rivers transport tons of antibiotics every year into coastal waters, e.g., 12 tons of sulfonamide by the river Mekong. Here, we discuss a potential influence of such imported antibiotics on bacterial communities in coastal waters. Potential accumulation of antibiotics in the uppermost surface layer of aquatic ecosystems, the so-called sea surface microlayer (SML), is of interest. Because of the ability of the SML to accumulate anthropogenic pollutants, it may serve as a pool for antibiotics and correspondingly also for resistant organisms. Also, due to its biofilm-like structure, the SML could serve as a hotspot for horizontal gene transfer, speeding up the spread of antibiotic resistant strains to encompassing marine environments. The emergence of antibiotic resistant bacteria is a global threat and scientists projected that it could pave the way for the next pandemic that could ravage the world in the next decades. For this reason, it is time to focus research on understanding and minimizing the impact of antibiotics on the sustainability of coastal waters and on the health of humans who depend on coastal resources for food and recreational purposes. Also, knowledge about antibiotics in the SML is necessary to understand the effects they are likely to have on bacterial abundance, diversity, and metabolic activities in coastal water bodies.

RevDate: 2023-02-01

Sarma S, Bhattacharjee A, Devi MV, et al (2022)

Long-term adaptation of ParA, RelE/ParE partition system, replication protein and phage proteins encoding low-cost plasmids of Escherichia species isolated from diarrheic children of North East India.

Journal of applied microbiology pii:6918836 [Epub ahead of print].

AIMS: The prevalent distribution of plasmid-mediated β-lactam resistance is the most pressing global problem in enteric diseases. The current work aims to characterize plasmid-carrying β-lactam resistant Enterobacteriaceae isolates from North East India for horizontal gene transfer (HGT) and plasmid adaptation study.

METHODS AND RESULTS: In vitro transconjugation and transformation showed overall high conjugation frequency (4.11 × 10-1-9.2 × 10-1) and moderate transformation efficiency/µg DNA (1.02 × 102 -1 × 103), and the highest conjugation frequency (9.2 × 10-1) and transformation efficiency (1 × 103) for Escherichia species S-10. Intra/intergenus plasmid transformation efficiency was highest for the transformation of Klebsiella pneumoniae S-2 to Shigellaflexneri S-42 (1.3 × 103) and lowest for Escherichia species S-10 to Escherichia fergusonii S-30 (2 × 102). In the plasmid stability test, S-10 was detected with the highest plasmid carrying frequency (83.44%) and insignificant segregational loss rate (0.0004) until the 60th day with low plasmid cost on the host. The above findings were also validated by whole-plasmid sequencing of Escherichia species S-10. The genome was identified with two plasmids constituting multiple phage proteins, relaxosomal protein NikA, replication protein RepA, and the plasmid maintenance proteins (ParA, RelE/ParE), thus assisting stable plasmid maintenance.

CONCLUSIONS: The results thus indicate that the high conjugation ability and low plasmid fitness cost might lead to horizontal gene transfer of the plasmid to the environment due to their prolonged adaptation in nonselective conditions, intensifying the infection's severity.

RevDate: 2023-02-01

Carrilero L, Dunn SJ, Moran RA, et al (2023)

Evolutionary Responses to Acquiring a Multidrug Resistance Plasmid Are Dominated by Metabolic Functions across Diverse Escherichia coli Lineages.

mSystems [Epub ahead of print].

Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes varies among bacterial lineages, but how the evolutionary processes enabling the genomic integration of MDR plasmids vary is less well understood, particularly in clinical pathogens. Using diverse Escherichia coli lineages experimentally evolved for ~700 generations, we show that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific and shared mutational targets. The expression of several of these functions, such as anaerobic metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile genetic elements, notably several IS-elements, potentiated parallel mutations, including insertions upstream of hns that were associated with its upregulation and the downregulation of the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations targeted conjugation-related genes, whose expression was also commonly downregulated in evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important selective force shaping the evolution of bacterial chromosomes and core cellular functions. IMPORTANCE Plasmids drive the spread of antimicrobial resistance genes between bacterial genomes. However, the evolutionary processes allowing plasmids to be assimilated by diverse bacterial genomes are poorly understood, especially in clinical pathogens. Using experimental evolution with diverse E. coli lineages and a clinical multidrug resistance plasmid, we show that although plasmids drove unique evolutionary paths per lineage, there was a surprising degree of convergence in the functions targeted by mutations across lineages, dominated by metabolic functions. Remarkably, these same metabolic functions show higher evolutionary rates in MDR-lineages in nature and in some cases, like anaerobic metabolism, their expression is directly manipulated by the plasmid. Interactions with other mobile elements resident in the genomes accelerated adaptation by disrupting genes and regulatory sequences that they inserted into. Beyond their role in horizontal gene transfer, plasmids are an important selective force driving the evolution of bacterial genomes and core cellular functions.

RevDate: 2023-02-01
CmpDate: 2023-02-01

Shi H, Hu X, Xu J, et al (2023)

Conjugation-mediated transfer of antibiotic resistance genes influenced by primary soil components and underlying mechanisms.

The Science of the total environment, 865:161232.

Soil is the main natural reservoir of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Their dissemination and proliferation were largely motivated by conjugative transfer, while the influence of soil components on bacterial conjugative transfer and the underlying mechanisms remain poorly understood. In the present study, two Escherichia coli strains were exposed to soil minerals (quartz, kaolinite and montmorillonite) and organic matters (humic acid, biochar and soot) respectively to investigate their impact on ARGs conjugation. The results showed that quartz had no significant effect on conjugation; montmorillonite promoted the growth of the donor, but inhibited the recipient and conjugant; kaolinite and three organic matters significantly promoted the production of conjugant, while biochar promoted and then inhibited it with time prolong. Within the range of bacterial concentration involved in this study, the concentration of conjugant increased with the ratio of the concentration of donor and recipient (RD/R), indicating that the variation of conjugant production was mainly mediated by changing RD/R. Further observation of biochar treatment group showed that the bacterial responses such as cell membrane permeability, cell surface hydrophobicity and biofilm formation ability shifted with the exposure time, which might be a potential factor affecting conjugative transfer. Collectively, our findings suggest that the type and exposure time of soil components jointly affected conjugation, while the change of RD/R and related bacterial responses are the main underlying mechanisms.

RevDate: 2023-01-31

Zhao H, Liu X, Sun Y, et al (2023)

Effects and mechanisms of plant growth regulators on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation.

Chemosphere pii:S0045-6535(23)00264-3 [Epub ahead of print].

A vast number of bacteria occur in both soil and plants, with some of them harboring antibiotic resistance genes (ARGs). When bacteria congregate on the interface of soil particles or on plant root surfaces, these ARGs can be transferred between bacteria via conjugation, leading to the formation of antibiotic-resistant pathogens that threaten human health. Plant growth regulators (PGRs) are widely used in agricultural production, promoting plant growth and increasing crop yields. However, until now, little information has been known about the effects of PGRs on the horizontal gene transfer (HGT) of ARGs. In this study, with Escherichia coli DH5α (carrying RP4 plasmid with Tet[R], Amp[R], Kan[R]) as the donor and E. coli HB101 as the recipient, a series of diparental conjugation experiments were conducted to investigate the effects of indoleacetic acid (IAA), ethel (ETH) and gibberellin (GA3) on HGT of ARGs via plasmid-mediated conjugation. Furthermore, the mechanisms involved were also clarified. The results showed that all three PGRs affected the ARG transfer frequency by inducing the intracellular reactive oxygen species (ROS) formation, changing the cell membrane permeability, and regulating the gene transcription of traA, traL, trfAp, trbBp, kilA, and korA in plasmid RP4. In detail, 50-100 mg⋅L[-1] IAA, 20-50 mg⋅L[-1] ETH and 1500-2500 mg⋅L[-1] GA3 all significantly promoted the ARG conjugation. This study indicated that widespread use of PGRs in agricultural production could affect the HGT of ARGs via plasmid-mediated conjugation, and the application of reasonable concentrations of PGRs could reduce the ARG transmission in both soil environments and plants.

RevDate: 2023-01-31

Cesa-Luna C, Geudens N, Girard L, et al (2023)

Charting the Lipopeptidome of Nonpathogenic Pseudomonas.

mSystems [Epub ahead of print].

A major source of pseudomonad-specialized metabolites is the nonribosomal peptide synthetases (NRPSs) assembling siderophores and lipopeptides. Cyclic lipopeptides (CLPs) of the Mycin and Peptin families are frequently associated with, but not restricted to, phytopathogenic species. We conducted an in silico analysis of the NRPSs encoded by lipopeptide biosynthetic gene clusters in nonpathogenic Pseudomonas genomes, covering 13 chemically diversified families. This global assessment of lipopeptide production capacity revealed it to be confined to the Pseudomonas fluorescens lineage, with most strains synthesizing a single type of CLP. Whereas certain lipopeptide families are specific for a taxonomic subgroup, others are found in distant groups. NRPS activation domain-guided peptide predictions enabled reliable family assignments, including identification of novel members. Focusing on the two most abundant lipopeptide families (Viscosin and Amphisin), a portion of their uncharted diversity was mapped, including characterization of two novel Amphisin family members (nepenthesin and oakridgin). Using NMR fingerprint matching, known Viscosin-family lipopeptides were identified in 15 (type) species spread across different taxonomic groups. A bifurcate genomic organization predominates among Viscosin-family producers and typifies Xantholysin-, Entolysin-, and Poaeamide-family producers but most families feature a single NRPS gene cluster embedded between cognate regulator and transporter genes. The strong correlation observed between NRPS system phylogeny and rpoD-based taxonomic affiliation indicates that much of the structural diversity is linked to speciation, providing few indications of horizontal gene transfer. The grouping of most NRPS systems in four superfamilies based on activation domain homology suggests extensive module dynamics driven by domain deletions, duplications, and exchanges. IMPORTANCE Pseudomonas species are prominent producers of lipopeptides that support proliferation in a multitude of environments and foster varied lifestyles. By genome mining of biosynthetic gene clusters (BGCs) with lipopeptide-specific organization, we mapped the global Pseudomonas lipopeptidome and linked its staggering diversity to taxonomy of the producers, belonging to different groups within the major Pseudomonas fluorescens lineage. Activation domain phylogeny of newly mined lipopeptide synthetases combined with previously characterized enzymes enabled assignment of predicted BGC products to specific lipopeptide families. In addition, novel peptide sequences were detected, showing the value of substrate specificity analysis for prioritization of BGCs for further characterization. NMR fingerprint matching proved an excellent tool to unequivocally identify multiple lipopeptides bioinformatically assigned to the Viscosin family, by far the most abundant one in Pseudomonas and with stereochemistry of all its current members elucidated. In-depth analysis of activation domains provided insight into mechanisms driving lipopeptide structural diversification.

RevDate: 2023-01-30

Ishibashi K, Tanaka Y, Y Morishita (2023)

Evolutionary Overview of Aquaporin Superfamily.

Advances in experimental medicine and biology, 1398:81-98.

Aquaporins (AQPs) are present not only in three domains of life, bacteria, eukaryotes, and archaea, but also in viruses. With the accumulating arrays of AQP superfamily, the evolutional relationship has attracted much attention with multiple publications on "the genome-wide identification and phylogenetic analysis" of AQP superfamily. A pair of NPA boxes forming a pore is highly conserved throughout the evolution and renders key residues for the classification of AQP superfamily into four groups: AQP1-like, AQP3-like, AQP8-like, and AQP11-like. The complexity of AQP family has mostly been achieved in nematodes and subsequent evolution has been directed toward increasing the number of AQPs through whole-genome duplications (WGDs) to extend the tissue specific expression and regulation. The discovery of the intracellular AQP (iAQP: AQP8-like and AQP11-like) and substrate transports by the plasma membrane AQP (pAQP: AQP1-like and AQP3-like) have accelerated the AQP research much more toward the transport of substrates with complex profiles. This evolutionary overview based on a simple classification of AQPs into four subfamilies will provide putative structural, functional, and localization information and insights into the role of AQP as well as clues to understand the complex diversity of AQP superfamily.

RevDate: 2023-01-30

Liu H, Huang W, Yu Y, et al (2023)

Lightning-Rod Effect on Nanowire Tips Reinforces Electroporation and Electrochemical Oxidation: An Efficient Strategy for Eliminating Intracellular Antibiotic Resistance Genes.

ACS nano [Epub ahead of print].

Conventional oxidative disinfection methods are usually inefficient to eliminate intracellular antibiotic resistance genes (i-ARGs) due to competitive oxidation of cellular components of antibiotic-resistant bacteria (ARB), resulting in the ubiquitous occurrence of ARGs in drinking water systems. Herein, we developed the strategy of coupling electroporation and electrochemical oxidation on a Co3O4-nanowires-modified electrode to destroy the multiresistant Escherichia coli cells and promote subsequent i-ARG (blaTEM-1 and aac(3)-II) degradation. The lightning-rod effect over nanowire tips can form finite regions with a locally enhanced electric field and highly concentrated charge density, in turn facilitating the electroporation for ARB cell damage and electrochemical reactivity for reactive chlorine/oxygen species generation. Characterization of the ARB membrane integrity and morphology revealed that electroporation-induced cell pores were further enlarged by the oxidation of reactive species, resulting in i-ARG removal at lower applied voltages and with 6-9 times lower energy consumption than the conventional electrochemical oxidation approach with a Co3O4-film-modified electrode. The satisfactory application and effective inhibition of horizontal gene transfer in tap water further demonstrated the great potential of our strategy in the control of the ARG dissemination risk in drinking water systems.

RevDate: 2023-01-30

Cheng YY, Zhou Z, Papadopoulos JM, et al (2023)

Efficient plasmid transfer via natural competence in a microbial co-culture.

Molecular systems biology [Epub ahead of print].

The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.

RevDate: 2023-01-30

Zhu X, Chen WJ, Bhatt K, et al (2022)

Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review.

Frontiers in plant science, 13:1063393.

With the increasing resistance exhibited by undesirable bacteria to traditional antibiotics, the need to discover alternative (or, at least, supplementary) treatments to combat chemically resistant bacteria is becoming urgent. Quorum sensing (QS) refers to a novel bacterial communication system for monitoring cell density and regulation of a network of gene expression that is mediated by a group of signaling molecules called autoinducers (AIs). QS-regulated multicellular behaviors include biofilm formation, horizontal gene transfer, and antibiotic synthesis, which are demonstrating increasing pathogenicity to plants and aquacultural animals as well as contamination of wastewater treatment devices. To inhibit QS-regulated microbial behaviors, the strategy of quorum quenching (QQ) has been developed. Different quorum quenchers interfere with QS through different mechanisms, such as competitively inhibiting AI perception (e.g., by QS inhibitors) and AI degradation (e.g., by QQ enzymes). In this review, we first introduce different signaling molecules, including diffusible signal factor (DSF) and acyl homoserine lactones (AHLs) for Gram-negative bacteria, AIPs for Gram-positive bacteria, and AI-2 for interspecies communication, thus demonstrating the mode of action of the QS system. We next exemplify the QQ mechanisms of various quorum quenchers, such as chemical QS inhibitors, and the physical/enzymatic degradation of QS signals. We devote special attention to AHL-degrading enzymes, which are categorized in detail according to their diverse catalytic mechanisms and enzymatic properties. In the final part, the applications and advantages of quorum quenchers (especially QQ enzymes and bacteria) are summarized in the context of agricultural/aquacultural pathogen biocontrol, membrane bioreactors for wastewater treatment, and the attenuation of human pathogenic bacteria. Taken together, we present the state-of-the-art in research considering QS and QQ, providing theoretical evidence and support for wider application of this promising environmentally friendly biocontrol strategy.

RevDate: 2023-01-30

Kuroyanagi T, Bulasag AS, Fukushima K, et al (2022)

Botrytis cinerea identifies host plants via the recognition of antifungal capsidiol to induce expression of a specific detoxification gene.

PNAS nexus, 1(5):pgac274.

The gray mold pathogen Botrytis cinerea has a broad host range, causing disease in >400 plant species, but it is not known how this pathogen evolved this polyxenous nature. Botrytis cinerea can metabolize a wide range of phytoalexins, including the stilbenoid resveratrol in grape, and the sesquiterpenoids capsidiol in tobacco and rishitin in potato and tomato. In this study, we analyzed the metabolism of sesquiterpenoid phytoalexins by B. cinerea. Capsidiol was dehydrogenated to capsenone, which was then further oxidized, while rishitin was directly oxidized to epoxy- or hydroxyrishitins, indicating that B. cinerea has separate mechanisms to detoxify structurally similar sesquiterpenoid phytoalexins. RNA-seq analysis revealed that a distinct set of genes were induced in B. cinerea when treated with capsidiol or rishitin, suggesting that B. cinerea can distinguish structurally similar phytoalexins to activate appropriate detoxification mechanisms. The gene most highly upregulated by capsidiol treatment encoded a dehydrogenase, designated Bccpdh. Heterologous expression of Bccpdh in a capsidiol-sensitive plant symbiotic fungus, Epichloë festucae, resulted in an acquired tolerance of capsidiol and the ability to metabolize capsidiol to capsenone, while B. cinerea Δbccpdh mutants became relatively sensitive to capsidiol. The Δbccpdh mutant showed reduced virulence on the capsidiol producing Nicotiana and Capsicum species but remained fully pathogenic on potato and tomato. Homologs of Bccpdh are found in taxonomically distant Ascomycota fungi but not in related Leotiomycetes species, suggesting that B. cinerea acquired the ancestral Bccpdh by horizontal gene transfer, thereby extending the pathogenic host range of this polyxenous pathogen to capsidiol-producing plant species.

RevDate: 2023-01-28

Xiao R, Huang D, Du L, et al (2023)

Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks.

The Science of the total environment pii:S0048-9697(23)00470-9 [Epub ahead of print].

As an emerging environmental contaminant, the widespread of antibiotic resistance has caused a series of environmental issues and human health concerns. A load of antibiotic residues induced by agricultural practices have exerted selective pressure to bacterial communities in the soil-plant system, which facilitated the occurrence and dissemination of antibiotic resistance genes (ARGs) through horizontal gene transfer. As a result, the enrichment of ARGs within crops at harvest under the influence of food ingestion could lead to critical concerns of public health. In this review, the prevalence and dissemination of antibiotic resistance in the soil-plant system are highlighted. Moreover, different underlying mechanisms and detection methods for ARGs transfer between the soil environment and plant compartments are summarized and discussed. On the other hand, a wide range of influencing factors for the transfer and distribution of antibiotic resistance within the soil-plant system are also presented and discussed. In response to exposure of antibiotic residues and resistomes, corresponding hazard identification assessments have been summarized, which could provide beneficial guides of the toxicological tolerance for the general population. Finally, further research priorities for detection and management ARGs spread are also suggested.

RevDate: 2023-01-27

Melamed JR, Yerneni SS, Arral ML, et al (2023)

Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer.

Science advances, 9(4):eade1444.

Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing β cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.

RevDate: 2023-01-25

Anderson REV, Chalmers G, Murray R, et al (2023)

Characterization of Escherichia coli and Other Enterobacterales Resistant to Extended-Spectrum Cephalosporins Isolated from Dairy Manure in Ontario, Canada.

Applied and environmental microbiology [Epub ahead of print].

Extended-spectrum cephalosporins (ESCs) resistance genes, such as blaCTX-M, blaCMY, and blaSHV, have been found regularly in bacteria from livestock. However, information on their distribution in dairy cattle in Canada and on the associated genome sequences of ESC-resistant Enterobacterales is sparse. In this study, the diversity and distribution of ESC-resistant Escherichia coli throughout manure treatments in six farms in Southern Ontario were assessed over a one-year period, and their ESC-resistance plasmids were characterized. The manure samples were enriched using selective media. The resulting isolates were screened via polymerase chain reaction for blaCTX-M, blaCMY, and blaSHV. No E. coli carrying blaSHV were detected. Escherichia coli (n = 248) carrying blaCTX-M or blaCMY underwent whole-genome sequencing using an Illumina MiSeq/NextSeq. These isolates were typed using multilocus sequence typing (MLST) and their resistance gene profiles. A subset of E. coli (n = 28) were sequenced using Oxford Nanopore Technologies. Plasmids were assembled using Unicycler and characterized via the resistance genes pattern, replicon type, plasmid MLST, phylogenetic analysis, and Mauve alignments. The recovery of ESC-resistant Enterobacterales (18 species, 8 genera) was drastically reduced in manure outputs. However, multiple treatment stages were needed to attain a significant reduction. 62 sequence types were identified, with ST10, ST46, ST58, ST155, ST190, ST398, ST685, and ST8761 being detected throughout the treatment pipeline. These STs overlapped with those found on multiple farms. The ESC-resistance determinants included CTX-M-1, -14, -15, -17, -24, -32, -55, and CMY-2. The plasmids carrying blaCTX-M were more diverse than were the plasmids carrying blaCMY. Known "epidemic plasmids" were detected for both blaCTX-M and blaCMY. IMPORTANCE The increase in antimicrobial resistance is of concern for human and animal health, especially when resistance is conferred to extended-spectrum cephalosporins, which are used to treat serious infections in both human and veterinary medicine. Bacteria carrying extended-spectrum cephalosporin resistance genes, including blaCTX-M and blaCMY, are frequently found in dairy manure. Manure treatment influences the loads and diversity of bacteria, including those carrying antimicrobial resistance genes, such as Enterobacterales and Escherichia coli. Any bacteria that survive the treatment process are subsequently applied to the environment. Enterobacterales carrying blaCTX-M or blaCMY can contaminate soil and crops consumed by humans and animals, thereby increasing the potential for antimicrobial resistance genes to integrate into the human gut microflora through horizontal gene transfer. This furthers the dissemination of resistance. Therefore, it is imperative to understand the effects manure treatments have on ESC-resistance in environmentally applied manure.

RevDate: 2023-01-24

Li Y, Xiong L, Yu H, et al (2023)

Biogeochemical sulfur cycling of virus auxiliary metabolic genes involved in Napahai plateau wetland.

Environmental science and pollution research international [Epub ahead of print].

Virus plays important roles in regulating microbial community structure, horizontal gene transfer, and promoting biological evolution, also augmenting host metabolism during infection via the expression of auxiliary metabolic genes (AMGs), and thus affect biogeochemical cycling in the oceans. As the "kidney of the earth," wetlands have rich biodiversity and abundant resources. Based on metagenomic data, 10 AMGs associated with sulfur cycling, i.e., tusA, moaD, dsrE, soxA, soxB, soxC, soxD, soxX, soxY, and soxZ, were analyzed in Napahai plateau wetland. The phylogenetic trees of AMGs involved in sulfur metabolism from different habitats and host origins were constructed. Combined with principal coordinate analysis, it revealed that most AMGs associated with sulfur metabolism clustered separately, indicating the abundance and uniqueness in this region. The sulfur metabolism pathways involved by AMGs were mainly SOX systems, among which sulfur oxidation was associated with moaD and dsrE genes, while sulfur transport was related to tusA genes. It provides an insight into the biogeochemical sulfur cycling in plateau wetlands and lays the foundation for further study on the co-evolution of virus and host.

RevDate: 2023-01-24

Chen M, Shao Y, Luo J, et al (2023)

Penicillin and Cefotaxime Resistance of Quinolone-Resistant Neisseria meningitidis Clonal Complex 4821, Shanghai, China, 1965-2020.

Emerging infectious diseases, 29(2):341-350.

Clonal complex 4821 (CC4821) Neisseria meningitidis, usually resistant to quinolones but susceptible to penicillin and third-generation cephalosporins, is increasing worldwide. To characterize the penicillin-nonsusceptible (Pen[NS]) meningococci, we analyzed 491 meningococci and 724 commensal Neisseria isolates in Shanghai, China, during 1965-2020. The Pen[NS] proportion increased from 0.3% in 1965-1985 to 7.0% in 2005-2014 and to 33.3% in 2015-2020. Of the 26 Pen[NS] meningococci, 11 (42.3%) belonged to the CC4821 cluster; all possessed mutations in penicillin-binding protein 2, mostly from commensal Neisseria. Genetic analyses and transformation identified potential donors of 6 penA alleles. Three Pen[NS] meningococci were resistant to cefotaxime, 2 within the CC4821 cluster. With 96% of the Pen[NS] meningococci beyond the coverage of scheduled vaccination and the cefotaxime-resistant isolates all from toddlers, quinolone-resistant CC4821 has acquired penicillin and cefotaxime resistance closely related to the internationally disseminated ceftriaxone-resistant gonococcal FC428 clone, posing a greater threat especially to young children.

RevDate: 2023-01-23

Yue Z, Zhang J, Ding C, et al (2023)

Transfer and distribution of antibiotic resistance genes in the soil-peanut system receiving manure for years.

The Science of the total environment pii:S0048-9697(23)00357-1 [Epub ahead of print].

Antibiotic resistance gene (ARG)-contaminated food from manure application is gaining widespread interest, but little is known about the distribution and uptake of ARGs in peanuts that are subjected to manure routinely. In this study, the ARG profile and bacterial community in soil and peanut plants from a 7-year manure-fertilized field were investigated using high-throughput qPCR and 16S rRNA gene sequencing. Manure application increased the abundance of ARGs in soil and peanuts by 59-72 and 4-10 fold, respectively. The abundance of ARGs from high to low was as follows: manure, shell-sphere soil, rhizosphere soil, bulk soil, stems, shells, needles, kernels, and roots. Source-tracker analyses were used to investigate the potential source of ARGs in peanut kernels, which revealed that the ARGs in peanut kernels may be primarily absorbed by the roots from the soil. The horizontal gene transfer (HGT) of ARGs was the primary factor in the spread of ARGs, and Proteobacteria were the primary agents of HGT between different parts of peanut plants. Additionally, norank_Chloroplast from the phylum Cyanobacteria was the most important contributor to the abundance of ARGs in peanut kernels. Overall, our findings fill a gap in our understanding of the distribution patterns of ARGs in peanut plants and the migratory pathways of ARGs from soil to peanut kernels.

RevDate: 2023-01-23

An R, Qi Y, Zhang XX, et al (2023)

Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes - Challenges, progress and prospects.

Water research, 231:119629 pii:S0043-1354(23)00064-7 [Epub ahead of print].

Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.

RevDate: 2023-01-23

Bhandari M, Rathnayake IU, Huygens F, et al (2023)

Clinical and Environmental Vibrio cholerae Non-O1, Non-O139 Strains from Australia Have Similar Virulence and Antimicrobial Resistance Gene Profiles.

Microbiology spectrum [Epub ahead of print].

Cholera caused by pathogenic Vibrio cholerae is still considered one of the major health problems in developing countries including those in Asia and Africa. Australia is known to have unique V. cholerae strains in Queensland waterways, resulting in sporadic cholera-like disease being reported in Queensland each year. We conducted virulence and antimicrobial genetic characterization of O1 and non-O1, non-O139 V. cholerae (NOVC) strains (1983 to 2020) from Queensland with clinical significance and compared these to environmental strains that were collected as part of a V. cholerae monitoring project in 2012 of Queensland waterways. In this study, 87 V. cholerae strains were analyzed where O1 (n = 5) and NOVC (n = 54) strains from Queensland and international travel-associated NOVC (n = 2) (61 in total) strains were sequenced, characterized, and compared with seven previously sequenced O1 strains and 18 other publicly available NOVC strains from Australia and overseas to visualize the genetic context among them. Of the 61 strains, three clinical and environmental NOVC serogroup strains had cholera toxin-producing genes, namely, the CTX phage (identified in previous outbreaks) and the complete Vibrio pathogenicity island 1. Phylogenetic analysis based on core genome analysis showed more than 10 distinct clusters and interrelatedness between clinical and environmental V. cholerae strains from Australia. Moreover, 30 (55%) NOVC strains had the cholix toxin gene (chxA) while only 11 (20%) strains had the mshA gene. In addition, 18 (34%) NOVC strains from Australia had the type three secretion system and discrete expression of type six secretion system genes. Interestingly, four NOVC strains from Australia and one NOVC strain from Indonesia had intSXT, a mobile genetic element. Several strains were found to have beta-lactamase (blaCARB-9) and chloramphenicol acetyltransferase (catB9) genes. Our study suggests that Queensland waterways can harbor highly divergent V. cholerae strains and serve as a reservoir for various V. cholerae-associated virulence genes which could be shared among O1 and NOVC V. cholerae strains via mobile genetic elements or horizontal gene transfer. IMPORTANCE Australia has its own V. cholerae strains, both toxigenic and nontoxigenic, that are associated with cholera disease. This study aimed to characterize a collection of clinical and environmental NOVC strains from Australia to understand their virulence and antimicrobial resistance profile and to place strains from Australia in the genetic context of international strains. The findings from this study suggest the toxigenic V. cholerae strains in the Queensland River water system are of public health concern. Therefore, ongoing monitoring and genomic characterization of V. cholerae strains from the Queensland environment are important and would assist public health departments to track the source of cholera infection early and implement prevention strategies for future outbreaks. Understanding the genomics of V. cholerae could also inform the natural ecology and evolution of this bacterium in natural environments.

RevDate: 2023-01-23

Gomis-Rüth FX, W Stöcker (2022)

Structural and evolutionary insights into astacin metallopeptidases.

Frontiers in molecular biosciences, 9:1080836.

The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.

RevDate: 2023-01-23

Wang Y, MQ Shahid (2022)

Genome sequencing and resequencing identified three horizontal gene transfers and uncovered the genetic mechanism on the intraspecies adaptive evolution of Gastrodia elata Blume.

Frontiers in plant science, 13:1035157.

Horizontal gene transfer is a rare and useful genetic mechanism in higher plants. Gastrodia elata Blume (GE) (Orchidaceae), well known as traditional medicinal material in East Asia, adopts a heterotrophic lifestyle, thus being considered to be more prone to horizontal gene transfer (HGT). GE is a "polytypic species" that currently comprised of five recognized forms according to the plant morphology. G. elata Blume forma elata (GEE) and G. elata Bl.f.glauca (GEG) are two common forms that naturally grow in different habitats with difference in altitude and latitude. G. elata Bl.f.viridis (GEV) often occurs sporadically in cultivated populations of GEE and GEG. However, the genetic relationships and genetic mechanism underpinned the divergent ecological adaptations of GEE and GEG have not been revealed. Here, we assembled a chromosome-level draft genome of GEE with 1.04 Gb. Among predicted 17,895 protein coding genes, we identified three HGTs. Meanwhile, we resequenced 10 GEE accessions, nine GEG accessions, and 10 GEV accessions, and identified two independent genetic lineages: GEG_pedigree (GEG individuals and GEV individuals collected from GEG populations) and GEE_pedigree (GEE individuals and GEV individuals collected from GEE populations), which strongly support the taxonomic status of GEE and GEG as subspecies, not as different forms. In highly differentiated genomic regions of GEE_pedigree and GEG_pedigree, three chalcone synthase-encoding genes and one Phox/Bem1p (PB1) domain of encoding Auxin (AUX)/Indoleacetic acid (IAA) were identified in selection sweeping genome regions, which suggested that differentiation between GEE_pedigree and GEG_pedigree was promoted by the selection of genes related to photoresponse and growth and development. Overall, this new genome would be helpful for breeding and utilization of GE and the new findings would deepen the understanding about ecological adaptation and evolution of GE.

RevDate: 2023-01-21

Tang Y, Shi Y, Jia B, et al (2023)

Evolution and function analysis of glycerol kinase GlpK in Pseudomonasaeruginosa.

Biochemical and biophysical research communications, 645:30-39 pii:S0006-291X(22)01725-9 [Epub ahead of print].

Pseudomonas aeruginosa is a Gram-negative bacterium capable of widespread niches, which is also one of the main bacteria that cause patient infection. The metabolic diversity of Pseudomonas aeruginosa is an essential factor in adapting to a variety of environments. Based on the previous studies, adaptive genetic variation in the glycerol kinase GlpK, the glycerol 3-phosphotransferase, contributes to the fitness of bacteria in human bodies, such as Mycobacterium tuberculosis and Escherichia coli. Thus, this study aimed to explore the molecular evolution and function of glpK in P. aeruginosa. Using extensive population genomic data, we have identified the prevalence of two glpK copies in P. aeruginosa that clustered into distinct branches, which were later known as Clade 1 and 2. The evolution analysis revealed that glpK in Clade 1 derived from an ancestral P. aeruginosa species and the other from an ancient horizontal gene transfer event. In addition, we confirmed that the GlpK in Clade 2 still retained glycerol kinase activity but was much weaker than that of GlpK in Clade 1. We demonstrated the importance of the critical amino acid Q70 in GlpK glycerol kinase activity by point mutation. Furthermore, Co-expression network analysis implied that the two glpK copies of P. aeruginosa regulate separate networks and may be a strategy to improve fitness in P. aeruginosa.

RevDate: 2023-01-21

Pchelin IM, Tkachev PV, Azarov DV, et al (2023)

A Genome of Temperate Enterococcus Bacteriophage Placed in a Space of Pooled Viral Dark Matter Sequences.

Viruses, 15(1): pii:v15010216.

In the human gut, temperate bacteriophages interact with bacteria through predation and horizontal gene transfer. Relying on taxonomic data, metagenomic studies have associated shifts in phage abundance with a number of human diseases. The temperate bacteriophage VEsP-1 with siphovirus morphology was isolated from a sample of river water using Enterococcus faecalis as a host. Starting from the whole genome sequence of VEsP-1, we retrieved related phage genomes in blastp searches of the tail protein and large terminase sequences, and blastn searches of the whole genome sequences, with matches compiled from several different databases, and visualized a part of viral dark matter sequence space. The genome network and phylogenomic analyses resulted in the proposal of a novel genus "Vespunovirus", consisting of temperate, mainly metagenomic phages infecting Enterococcus spp.

RevDate: 2023-01-21

Shivaramu S, Tomasch J, Kopejtka K, et al (2022)

The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica.

Microorganisms, 11(1): pii:microorganisms11010027.

The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L[-1]. When grown at a lower concentration of calcium (2 mg CaCl2 L[-1]) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L[-1] to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.

RevDate: 2023-01-21

Lila ASA, Rajab AAH, Abdallah MH, et al (2023)

Biofilm Lifestyle in Recurrent Urinary Tract Infections.

Life (Basel, Switzerland), 13(1): pii:life13010148.

Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.

RevDate: 2023-01-21

Li Y, Qi M, Zhang Q, et al (2022)

Phylogenesis of the Functional 1-Aminocyclopropane-1-Carboxylate Oxidase of Fungi and Plants.

Journal of fungi (Basel, Switzerland), 9(1): pii:jof9010055.

The 1-aminocyclopropane-1-carboxylic acid (ACC) pathway that synthesizes ethylene is shared in seed plants, fungi and probably other organisms. However, the evolutionary relationship of the key enzyme ACC oxidase (ACO) in the pathway among organisms remains unknown. Herein, we cloned, expressed and characterized five ACOs from the straw mushroom (Volvariella volvacea) and the oyster mushroom (Pleurotus ostreatus): VvACO1-4 and PoACO. The five mushroom ACOs and the previously identified AbACO of the button mushroom contained all three conserved residues that bound to Fe(II) in plant ACOs. They also had variable residues that were conserved and bound to ascorbate and bicarbonate in plant ACOs and harbored only 1-2 of the five conserved ACO motifs in plant ACOs. Particularly, VvACO2 and AbACO had only one ACO motif 2. Additionally, VvACO4 shared 44.23% sequence identity with the cyanobacterium Hapalosiphon putative functional ACO. Phylogenetic analysis showed that the functional ACOs of monocotyledonous and dicotyledonous plants co-occurred in Type I, Type II and Type III, while putative functional gymnosperm ACOs also appeared in Type III. The putative functional bacterial ACO, functional fungi and slime mold ACOs were clustered in ancestral Type IV. These results indicate that ACO motif 2, ACC and Fe(II) are essential for ACO activity. The ACOs of the other organisms may come from the horizontal transfer of fungal ACOs, which were found ordinarily in basidiomycetes. It is mostly the first case for the horizontal gene transfers from fungi to seed plants. The horizontal transfer of ACOs from fungi to plants probably facilitates the fungal-plant symbioses, plant-land colonization and further evolution to form seeds.

RevDate: 2023-01-21

Canellas ALB, de Oliveira BFR, MS Laport (2023)

Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes.

Antibiotics (Basel, Switzerland), 12(1): pii:antibiotics12010084.

Antimicrobial resistance (AMR) has become one of the greatest challenges worldwide, hampering the treatment of a plethora of infections. Indeed, the AMR crisis poses a threat to the achievement of the United Nations' Sustainable Development Goals and, due to its multisectoral character, a holistic approach is needed to tackle this issue. Thus, the investigation of environments beyond the clinic is of utmost importance. Here, we investigated thirteen strains of antimicrobial-resistant Aeromonas isolated from an urban estuary in Brazil. Most strains carried at least one antimicrobial resistance gene and 11 carried at least one heavy metal resistance gene. Noteworthy, four (30.7%) strains carried the blaKPC gene, coding for a carbapenemase. In particular, the whole-genome sequence of Aeromonas hydrophila strain 34SFC-3 was determined, revealing not only the presence of antimicrobial and heavy metal resistance genes but also a versatile virulome repertoire. Mobile genetic elements, including insertion sequences, transposons, integrative conjugative elements, and an IncQ1 plasmid were also detected. Considering the ubiquity of Aeromonas species, their genetic promiscuity, pathogenicity, and intrinsic features to endure environmental stress, our findings reinforce the concept that A. hydrophila truly is a "Jack of all trades'' that should not be overlooked under the One Health perspective.

RevDate: 2023-01-21

Selvarajan R, Obize C, Sibanda T, et al (2022)

Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance.

Antibiotics (Basel, Switzerland), 12(1): pii:antibiotics12010028.

Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.

RevDate: 2023-01-20

Tonkin-Hill G, Gladstone RA, Pöntinen AK, et al (2023)

Robust analysis of prokaryotic pangenome gene gain and loss rates with Panstripe.

Genome research pii:gr.277340.122 [Epub ahead of print].

Horizontal gene transfer (HGT) plays a critical role in the evolution and diversification of many microbial species. The resulting dynamics of gene gain and loss can have important implications for the development of antibiotic resistance and the design of vaccine and drug interventions. Methods for the analysis of gene presence/absence patterns typically do not account for errors introduced in the automated annotation and clustering of gene sequences. In particular, methods adapted from ecological studies, including the pangenome gene accumulation curve, can be misleading as they may reflect the underlying diversity in the temporal sampling of genomes rather than a difference in the dynamics of HGT. Here, we introduce Panstripe, a method based on generalized linear regression that is robust to population structure, sampling bias, and errors in the predicted presence/absence of genes. We show using simulations that Panstripe can effectively identify differences in the rate and number of genes involved in HGT events, and illustrate its capability by analyzing several diverse bacterial genome data sets representing major human pathogens.

RevDate: 2023-01-20

Breidenstein A, Ter Beek J, RP Berntsson (2023)

Structural and functional characterization of TraI from pKM101 reveals basis for DNA processing.

Life science alliance, 6(4): pii:6/4/e202201775.

Type 4 secretion systems are large and versatile protein machineries that facilitate the spread of antibiotic resistance and other virulence factors via horizontal gene transfer. Conjugative type 4 secretion systems depend on relaxases to process the DNA in preparation for transport. TraI from the well-studied conjugative plasmid pKM101 is one such relaxase. Here, we report the crystal structure of the trans-esterase domain of TraI in complex with its substrate oriT DNA, highlighting the conserved DNA-binding mechanism of conjugative relaxases. In addition, we present an apo structure of the trans-esterase domain of TraI that includes most of the flexible thumb region. This allows us for the first time to visualize the large conformational change of the thumb subdomain upon DNA binding. We also characterize the DNA binding, nicking, and religation activity of the trans-esterase domain, helicase domain, and full-length TraI. Unlike previous indications in the literature, our results reveal that the TraI trans-esterase domain from pKM101 behaves in a conserved manner with its homologs from the R388 and F plasmids.

RevDate: 2023-01-20

Ishikawa M, Fujiwara A, Kosetsu K, et al (2023)

GRAS transcription factors regulate cell division planes in moss overriding the default rule.

Proceedings of the National Academy of Sciences of the United States of America, 120(4):e2210632120.

Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.

RevDate: 2023-01-20

Proctor RH, Hao G, Kim HS, et al (2022)

A Novel Trichothecene Toxin Phenotype Associated with Horizontal Gene Transfer and a Change in Gene Function in Fusarium.

Toxins, 15(1): pii:toxins15010012.

Fusarium trichothecenes are among the mycotoxins of most concern to food and feed safety. Production of these mycotoxins and presence of the trichothecene biosynthetic gene (TRI) cluster have been confirmed in only two multispecies lineages of Fusarium: the Fusarium incarnatum-equiseti (Incarnatum) and F. sambucinum (Sambucinum) species complexes. Here, we identified and characterized a TRI cluster in a species that has not been formally described and is represented by Fusarium sp. NRRL 66739. This fungus is reported to be a member of a third Fusarium lineage: the F. buharicum species complex. Cultures of NRRL 66739 accumulated only two trichothecenes, 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol. Although these are not novel trichothecenes, the production profile of NRRL 66739 is novel, because in previous reports 7-hydroxyisotrichodermin and 7-hydroxyisotrichodermol were components of mixtures of 6-8 trichothecenes produced by several Fusarium species in Sambucinum. Heterologous expression analysis indicated that the TRI13 gene in NRRL 66739 confers trichothecene 7-hydroxylation. This contrasts the trichothecene 4-hydroxylation function of TRI13 in other Fusarium species. Phylogenetic analyses suggest that NRRL 66739 acquired the TRI cluster via horizontal gene transfer from a close relative of Incarnatum and Sambucinum. These findings provide insights into evolutionary processes that have shaped the distribution of trichothecene production among Fusarium species and the structural diversity of the toxins.

RevDate: 2023-01-20
CmpDate: 2023-01-20

Couturier A, Virolle C, Goldlust K, et al (2023)

Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer.

Nature communications, 14(1):294.

Conjugation is a contact-dependent mechanism for the transfer of plasmid DNA between bacterial cells, which contributes to the dissemination of antibiotic resistance. Here, we use live-cell microscopy to visualise the intracellular dynamics of conjugative transfer of F-plasmid in E. coli, in real time. We show that the transfer of plasmid in single-stranded form (ssDNA) and its subsequent conversion into double-stranded DNA (dsDNA) are fast and efficient processes that occur with specific timing and subcellular localisation. Notably, the ssDNA-to-dsDNA conversion determines the timing of plasmid-encoded protein production. The leading region that first enters the recipient cell carries single-stranded promoters that allow the early and transient synthesis of leading proteins immediately upon entry of the ssDNA plasmid. The subsequent conversion into dsDNA turns off leading gene expression, and activates the expression of other plasmid genes under the control of conventional double-stranded promoters. This molecular strategy allows for the timely production of factors sequentially involved in establishing, maintaining and disseminating the plasmid.

RevDate: 2023-01-19

Shin H, Kim Y, Han S, et al (2022)

Resistome Study in Aquatic Environments.

Journal of microbiology and biotechnology, 33(3):1-11 pii:jmb.2210.10044 [Epub ahead of print].

Since the first discovery of antibiotics, introduction of new antibiotics has been coupled with the occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Rapid dissemination of ARB and ARGs in the aquatic environments has become a global concern. ARB and ARGs have been already disseminated in the aquatic environments via various routes. Main hosts of most of ARGs were found to belong to Gammaproteobacteria class, including clinically important potential pathogens. Transmission of ARGs also occurs by horizontal gene transfer (HGT) mechanisms between bacterial strains in the aquatic environments, resulting in ubiquity of ARGs. Thus, a few of ARGs and MGEs (e.g. strA, sul1, int1) have been suggested as indicators for global comparability of contamination level in the aquatic environments. With ARB and ARGs contamination, the occurrence of critical pathogens has been globally issued due to their widespread in the aquatic environments. Thus, active surveillance systems have been launched worldwide. In this review, we described advancement of methodologies for ARGs detection, and occurrence of ARB and ARGs and their dissemination in the aquatic environments. Even though numerous studies have been conducted for ARB and ARGs, there is still no clear strategy to tackle antibiotic resistance (AR) in the aquatic environments. At least, for consistent surveillance, a strict framework should be established for further research in the aquatic environments.

RevDate: 2023-01-18

Murakami H, Sano K, Motomura K, et al (2023)

Assessment of horizontal gene transfer-mediated destabilization of Synechococcus elongatus PCC 7942 biocontainment system.

Journal of bioscience and bioengineering pii:S1389-1723(22)00371-1 [Epub ahead of print].

Biological containment is a biosafety strategy that prevents the dispersal of genetically modified organisms in natural ecosystems. We previously established a biocontainment system that makes bacterial growth dependent on the availability of phosphite (Pt), an ecologically rare form of phosphorus (P), by introducing Pt metabolic pathway genes and disrupting endogenous phosphate and organic phosphate transporter genes. Although this system proved highly effective, horizontal gene transfer (HGT) mediated recovery of a P transporter gene is considered as a potential pathway to abolish the Pt-dependent growth, resulting in escape from the containment. Here, we assessed the risk of HGT driven escape using the Pt-dependent cyanobacterium Synechococcus elongatus PCC 7942. Transformation experiments revealed that the Pt-dependent strain could regain phosphate transporter genes from the S. elongatus PCC 7942 wild-type genome and from the genome of the closely related strain, S. elongatus UTEX 2973. Transformed S. elongatus PCC 7942 became viable in a phosphate-containing medium. Meanwhile, transformation of the Synechocystis sp. PCC 6803 genome or environmental DNA did not yield escape strains, suggesting that only genetic material derived from phylogenetically-close species confer high risk to generate escape. Eliminating a single gene necessary for natural competence from the Pt-dependent strain reduced the escape occurrence rate. These results demonstrate that natural competence could be a potential risk to destabilize Pt-dependence, and therefore inhibiting exogenous DNA uptake would be effective for enhancing the robustness of the gene disruption-dependent biocontainment.

RevDate: 2023-01-15

Alnahhas RN, MJ Dunlop (2023)

Advances in linking single-cell bacterial stress response to population-level survival.

Current opinion in biotechnology, 79:102885 pii:S0958-1669(22)00219-1 [Epub ahead of print].

Stress response mechanisms can allow bacteria to survive a myriad of challenges, including nutrient changes, antibiotic encounters, and antagonistic interactions with other microbes. Expression of these stress response pathways, in addition to other cell features such as growth rate and metabolic state, can be heterogeneous across cells and over time. Collectively, these single-cell-level phenotypes contribute to an overall population-level response to stress. These include diversifying actions, which can be used to enable bet-hedging, and coordinated actions, such as biofilm production, horizontal gene transfer, and cross-feeding. Here, we highlight recent results and emerging technologies focused on both single-cell and population-level responses to stressors, and we draw connections about the combined impact of these effects on survival of bacterial communities.

RevDate: 2023-01-13

Zhu J, Yang F, Du K, et al (2023)

Phylogenomics of five Pseudanabaena cyanophages and evolutionary traces of horizontal gene transfer.

Environmental microbiome, 18(1):3.

BACKGROUND: Along with the fast development and urbanization in developing countries, the waterbodies aside the growing cities become heavily polluted and highly eutrophic, thus leading to the seasonal outbreak of cyanobacterial bloom. Systematic isolation and characterization of freshwater cyanophages might provide a biological solution to control the awful blooms. However, genomic sequences and related investigations on the freshwater cyanophages remain very limited to date.

RESULTS: Following our recently reported five cyanophages Pam1~Pam5 from Lake Chaohu in China, here we isolated another five cyanophages, termed Pan1~Pan5, which infect the cyanobacterium Pseudanabaena sp. Chao 1811. Whole-genome sequencing showed that they all contain a double-stranded DNA genome of 37.2 to 72.0 kb in length, with less than half of the putative open reading frames annotated with known functions. Remarkably, the siphophage Pan1 encodes an auxiliary metabolic gene phoH and constitutes, together with the host, a complete queuosine modification pathway. Proteomic analyses revealed that although Pan1~Pan5 are distinct from each other in evolution, Pan1 and Pan3 are somewhat similar to our previously identified cyanophages Pam3 and Pam1 at the genomic level, respectively. Moreover, phylogenetic analyses suggested that Pan1 resembles the α-proteobacterial phage vB_DshS-R5C, revealing direct evidence for phage-mediated horizontal gene transfer between cyanobacteria and α-proteobacteria.

CONCLUSION: In addition to the previous reports of Pam1~Pam5, the present findings on Pan1~Pan5 largely enrich the library of reference freshwater cyanophages. The abundant genomic information provides a pool to identify novel genes and proteins of unknown function. Moreover, we found for the first time the evolutionary traces in the cyanophage that horizontal gene transfer might occur at the level of not only inter-species, but even inter-phylum. It indicates that the bacteriophage or cyanophage could be developed as a powerful tool for gene manipulation among various species or phyla.

RevDate: 2023-01-13

Yang K, Chen ML, D Zhu (2023)

Exposure to benzalkonium chloride disinfectants promotes antibiotic resistance in sewage sludge microbiomes.

The Science of the total environment pii:S0048-9697(23)00142-0 [Epub ahead of print].

Disinfectants are routinely used in human environments to control and prevent the transmission of microbial disease, and this is particularly true during the current COVID-19 crisis. However, it remains unclear whether the increased disinfectant loadings to wastewater treatment plants facilitate the dissemination of antibiotic resistance genes (ARGs) in sewage sludge microbiomes. Here, we investigated the impacts of benzalkonium chlorides (BACs), widely used disinfectants, on ARGs profiles and microbial community structures in sewage sludge by using high-throughput quantitative PCR and Illumina sequencing. A total of 147 unique ARGs and 39 mobile genetic elements (MGEs) were detected in all sewage sludge samples. Our results show that exposure to BACs disinfectants at environmentally relevant concentrations significantly promotes both the diversity and absolute abundance of ARGs in sludge microbiomes, indicating the co-selection of ARGs by BACs disinfectants. The enrichment of ARGs abundance varied from 2.15-fold to 3.63-fold compared to controls. In addition, BACs exposure significantly alters bacterial and protistan communities, resulting in dysbiosis of the sludge microbiota. The Mantel test and Procrustes analysis confirm that bacterial communities are significantly correlated with ARGs profiles under BACs treatments. The structural equation model explains 83.8 % of the total ARGs variation and further illustrates that the absolute abundance of MGEs exerts greater impacts on the variation of absolute abundance of ARGs than microbial communities under BACs exposure, suggesting BACs may promote antibiotic resistance by enhancing the horizontal gene transfer of ARGs across sludge microbiomes. Collectively, our results provide new insights into the proliferation of antibiotic resistance through disinfectant usage during the pandemic and highlight the necessity to minimize the environmental release of disinfectants into the non-target environment for combating antibiotic resistance.

RevDate: 2023-01-13

Gibson PS, JW Veening (2023)

Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae.

Current opinion in microbiology, 72:102261 pii:S1369-5274(22)00145-X [Epub ahead of print].

Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.

RevDate: 2023-01-12

Ryan MP, Carraro N, Slattery S, et al (2023)

Integrative Conjugative Elements (ICEs) of the SXT/R391 family drive adaptation and evolution in γ-Proteobacteria.

Critical reviews in microbiology [Epub ahead of print].

Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases.

RevDate: 2023-01-11

Finks SS, JBH Martiny (2023)

Plasmid-Encoded Traits Vary across Environments.

mBio [Epub ahead of print].

Plasmids are key mobile genetic elements in bacterial evolution and ecology as they allow the rapid adaptation of bacteria under selective environmental changes. However, the genetic information associated with plasmids is usually considered separately from information about their environmental origin. To broadly understand what kinds of traits may become mobilized by plasmids in different environments, we analyzed the properties and accessory traits of 9,725 unique plasmid sequences from a publicly available database with known bacterial hosts and isolation sources. Although most plasmid research focuses on resistance traits, such genes made up <1% of the total genetic information carried by plasmids. Similar to traits encoded on the bacterial chromosome, plasmid accessory trait compositions (including general Clusters of Orthologous Genes [COG] functions, resistance genes, and carbon and nitrogen genes) varied across seven broadly defined environment types (human, animal, wastewater, plant, soil, marine, and freshwater). Despite their potential for horizontal gene transfer, plasmid traits strongly varied with their host's taxonomic assignment. However, the trait differences across environments of broad COG categories could not be entirely explained by plasmid host taxonomy, suggesting that environmental selection acts on the plasmid traits themselves. Finally, some plasmid traits and environments (e.g., resistance genes in human-related environments) were more often associated with mobilizable plasmids (those having at least one detected relaxase) than others. Overall, these findings underscore the high level of diversity of traits encoded by plasmids and provide a baseline to investigate the potential of plasmids to serve as reservoirs of adaptive traits for microbial communities. IMPORTANCE Plasmids are well known for their role in the transmission of antibiotic resistance-conferring genes. Beyond human and clinical settings, however, they disseminate many other types of genes, including those that contribute to microbially driven ecosystem processes. In this study, we identified the distribution of traits genetically encoded by plasmids isolated from seven broadly categorized environments. We find that plasmid trait content varied with both bacterial host taxonomy and environment and that, on average, half of the plasmids were potentially mobilizable. As anthropogenic activities impact ecosystems and the climate, investigating and identifying the mechanisms of how microbial communities can adapt will be imperative for predicting the impacts on ecosystem functioning.

RevDate: 2023-01-10

Sundarraj S, Sudarmani DNP, Samuel P, et al (2022)

Bioremediation of hexavalent chromium by transformation of Escherichia coli DH5α with chromate reductase (ChrR) genes of Pseudomonas putida isolated from tannery effluent.

Journal of applied microbiology pii:6956809 [Epub ahead of print].

AIMS: Hexavalent chromium (Cr(VI)), a toxic heavy metal, is a serious pollutant from tannery effluent, and its accumulation in soil and water causes severe environmental concerns and increasing public health issues. The present study focuses on the isolation and identification of chromium-reducing bacteria collected from the tannery industry in Dindigul, Tamil Nadu. Chromium-reducing bacteria Pseudomonas putida were identified by 16S rRNA sequencing followed by BLAST search. The plasmid with Cr(VI) reductase gene was isolated from Ps. putida and transferred to Escherichia coli DH5α for further studies.

METHODS AND RESULTS: The bacterial cultures were kept under controlled conditions for 72 h to observe the growth rates and bacterial resistance to chromium. When strains wild-type and transformant E. coli DH5α were grown in chromium-supplemented media, they revealed significant growth, but strains cured type Ps. putida and E. coli DH5α recorded minimum growth. The Cr(VI) reduction employed by transformant E. coli DH5α and wild Ps. putida was 42.52 ± 1.48% and 44.46 ± 0.55%, respectively. The culture supernatant of the wild Ps. putida and transformant E. coli DH5α showed an increased reduction of Cr(VI) compared with cell extract supernatant and cell debris due to the extracellular activity of chromium reductase being responsible for Cr(VI) reduction. Besides, the chromium reductase gene was confirmed in the isolated Ps. putida and transformant E. coli DH5α.

CONCLUSIONS: Transformant bacteria could employ an alternative method for heavy metal detoxification in contaminated environments like tannery effluent and mining processes.

High Cr(VI) concentration resistance and high Cr(VI) reducing the strain's ability make it suitable for bioremediation. These possible horizontal gene transfer events indicated in this study may have enabled transformant E. coli DH5α as a good candidate for reducing the heavy metal pollution.

RevDate: 2023-01-09

Sazykin IS, MA Sazykina (2023)

The role of oxidative stress in genome destabilization and adaptive evolution of bacteria.

Gene pii:S0378-1119(23)00011-2 [Epub ahead of print].

The review is devoted to bacterial genome destabilization by oxidative stress. The article discusses the main groups of substances causing such stress. Stress regulons involved in destabilization of genetic material and mechanisms enhancing mutagenesis, bacterial genome rearrangements, and horizontal gene transfer, induced by oxidative damage to cell components are also considered. Based on the analysis of publications, it can be claimed that rapid development of new food substrates and ecological niches by microorganisms occurs due to acceleration of genetic changes induced by oxidative stress, mediated by several stress regulons (SOS, RpoS and RpoE) and under selective pressure. The authors conclude that non-lethal oxidative stress is probably one of the fundamental processes that guide evolution of prokaryotes and a powerful universal trigger for adaptive destabilization of bacterial genome under changing environmental conditions.

RevDate: 2023-01-09

Wang C, Jia Y, Li J, et al (2023)

Effect of bioaugmentation on tetracyclines influenced chicken manure composting and antibiotics resistance.

The Science of the total environment pii:S0048-9697(23)00072-4 [Epub ahead of print].

Antibiotic residue in husbandry waste has become a serious concern. In this study, contaminated chicken manure composting was conducted to reveal the bioaugmentation effect on tetracyclines residue and antibiotics resistance genes (ARGs). The bioaugmented composting removed most of the antibiotics in 7 days. Under bioaugmentation, 96.88 % of tetracycline and 92.31 % of oxytetracycline were removed, 6.32 % and 20.93 % higher than the control (P < 0.05). The high-temperature period was the most effective phase for eliminating antibiotics. The treatment showed a long high-temperature period (7 days), while no high-temperature period was in control. After composting, the treatment showed 13.87 % higher TN (26.51 g/kg) and 13.42 % higher NO3[-]-N (2.45 g/kg) than control (23.28 and 2.16 g/kg, respectively) but 12.72 % lower C/N, indicating fast decomposition and less nutrient loss. Exogenous microorganisms from bioaugmentation significantly reshaped the microbial community structure and facilitated the enrichment of genera such as Truepera and Fermentimonas, whose abundance increased by 71.10 % and 75.37 % than the control, respectively. Remarkably, ARGs, including tetC, tetG, and tetW, were enhanced by 198.77 %, 846.77 %, and 62.63 % compared with the control, while the integron gene (intl1) was elevated by 700.26 %, indicating horizontal gene transfer of ARGs. Eventually, bioaugmentation was efficient in regulating microbial metabolism, relieving antibiotic stress, and eliminating antibiotics in composting. However, the ability to remove ARGs should be further investigated. Such an approach should be further considered for treating pollutants-influenced organic waste to eliminate environmental concerns.

RevDate: 2023-01-09

Nieves C, Vincent AT, Zarantonelli L, et al (2023)

Horizontal transfer of the rfb cluster in Leptospira is a genetic determinant of serovar identity.

Life science alliance, 6(2): pii:6/2/e202201480.

Leptospira bacteria comprise numerous species, several of which cause serious disease to a broad range of hosts including humans. These spirochetes exhibit large intraspecific variation, resulting in complex tabulations of serogroups/serovars that crisscross the species classification. Serovar identity, linked to biological/clinical phenotypes, depends on the structure of surface-exposed LPS. Many LPS biosynthesis-encoding genes reside within the chromosomic rfb gene cluster. However, the genetic basis of intraspecies variability is not fully understood, constraining diagnostics/typing methods to cumbersome serologic procedures. We now show that the gene content of the rfb cluster strongly correlates with Leptospira serovar designation. Whole-genome sequencing of pathogenic L. noguchii, including strains of different serogroups, reveals that the rfb cluster undergoes extensive horizontal gene transfer. The rfb clusters from several Leptospira species disclose a univocal correspondence between gene composition and serovar identity. This work paves the way to genetic typing of Leptospira serovars, and to pinpointing specific genes within the distinct rfb clusters, encoding host-specific virulence traits. Further research shall unveil the molecular mechanism of rfb transfer among Leptospira strains and species.

RevDate: 2023-01-09

Lindqvist LL, Jarmusch SA, Sonnenschein EC, et al (2023)

Tropodithietic Acid, a Multifunctional Antimicrobial, Facilitates Adaption and Colonization of the Producer, Phaeobacter piscinae.

mSphere [Epub ahead of print].

In the marine environment, surface-associated bacteria often produce an array of antimicrobial secondary metabolites, which have predominantly been perceived as competition molecules. However, they may also affect other hallmarks of surface-associated living, such as motility and biofilm formation. Here, we investigate the ecological significance of an antibiotic secondary metabolite, tropodithietic acid (TDA), in the producing bacterium, Phaeobacter piscinae S26. We constructed a markerless in-frame deletion mutant deficient in TDA biosynthesis, S26ΔtdaB. Molecular networking demonstrated that other chemical sulfur-containing features, likely related to TDA, were also altered in the secondary metabolome. We found several changes in the physiology of the TDA-deficient mutant, ΔtdaB, compared to the wild type. Growth of the two strains was similar; however, ΔtdaB cells were shorter and more motile. Transcriptome and proteome profiling revealed an increase in gene expression and protein abundance related to a type IV secretion system, and to a prophage, and a gene transfer agent in ΔtdaB. All these systems may contribute to horizontal gene transfer (HGT), which may facilitate adaptation to novel niches. We speculate that once a TDA-producing population has been established in a new niche, the accumulation of TDA acts as a signal of successful colonization, prompting a switch to a sessile lifestyle. This would lead to a decrease in motility and the rate of HGT, while filamentous cells could form the base of a biofilm. In addition, the antibiotic properties of TDA may inhibit invading competing microorganisms. This points to a role of TDA in coordinating colonization and adaptation. IMPORTANCE Despite the broad clinical usage of microbial secondary metabolites with antibiotic activity, little is known about their role in natural microbiomes. Here, we studied the effect of production of the antibiotic tropodithietic acid (TDA) on the producing strain, Phaeobacter piscinae S26, a member of the Roseobacter group. We show that TDA affects several phenotypes of the producing strain, including motility, cell morphology, metal metabolism, and three horizontal gene transfer systems: a prophage, a type IV secretion system, and a gene transfer agent. Together, this indicates that TDA participates in coordinating the colonization process of the producer. TDA is thus an example of a multifunctional secondary metabolite that can mediate complex interactions in microbial communities. This work broadens our understanding of the ecological role that secondary metabolites have in microbial community dynamics.

RevDate: 2023-01-09

Lieberman LA (2022)

Outer membrane vesicles: A bacterial-derived vaccination system.

Frontiers in microbiology, 13:1029146.

Outer membrane vesicles (OMVs) are non-living spherical nanostructures that derive from the cell envelope of Gram-negative bacteria. OMVs are important in bacterial pathogenesis, cell-to-cell communication, horizontal gene transfer, quorum sensing, and in maintaining bacterial fitness. These structures can be modified to express antigens of interest using glycoengineering and genetic or chemical modification. The resulting OMVs can be used to immunize individuals against the expressed homo- or heterologous antigens. Additionally, cargo can be loaded into OMVs and they could be used as a drug delivery system. OMVs are inherently immunogenic due to proteins and glycans found on Gram negative bacterial outer membranes. This review focuses on OMV manipulation to increase vesiculation and decrease antigenicity, their utility as vaccines, and novel engineering approaches to extend their application.

RevDate: 2023-01-07

Aldaihani R, LS Heath (2023)

Connecting genomic islands across prokaryotic and phage genomes via protein families.

Scientific reports, 13(1):344.

Prokaryotic genomes evolve via horizontal gene transfer (HGT), mutations, and rearrangements. A noteworthy part of the HGT process is facilitated by genomic islands (GIs). While previous computational biology research has focused on developing tools to detect GIs in prokaryotic genomes, there has been little research investigating GI patterns and biological connections across species. We have pursued the novel idea of connecting GIs across prokaryotic and phage genomes via patterns of protein families. Such patterns are sequences of protein families frequently present in the genomes of multiple species. We combined the large data set from the IslandViewer4 database with protein families from Pfam while implementing a comprehensive strategy to identify patterns making use of HMMER, BLAST, and MUSCLE. we also implemented Python programs that link the analysis into a single pipeline. Research results demonstrated that related GIs often exist in species that are evolutionarily unrelated and in multiple bacterial phyla. Analysis of the discovered patterns led to the identification of biological connections among prokaryotes and phages. These connections suggest broad HGT connections across the bacterial kingdom and its associated phages. The discovered patterns and connections could provide the basis for additional analysis on HGT breadth and the patterns in pathogenic GIs.

RevDate: 2023-01-07

Botelho J, Cazares A, H Schulenburg (2023)

The ESKAPE mobilome contributes to the spread of antimicrobial resistance and CRISPR-mediated conflict between mobile genetic elements.

Nucleic acids research pii:6970226 [Epub ahead of print].

Mobile genetic elements (MGEs) mediate the shuffling of genes among organisms. They contribute to the spread of virulence and antibiotic resistance (AMR) genes in human pathogens, such as the particularly problematic group of ESKAPE pathogens. Here, we performed the first systematic analysis of MGEs, including plasmids, prophages, and integrative and conjugative/mobilizable elements (ICEs/IMEs), across all ESKAPE pathogens. We found that different MGE types are asymmetrically distributed across these pathogens, and that most horizontal gene transfer (HGT) events are restricted by phylum or genus. We show that the MGEs proteome is involved in diverse functional processes and distinguish widespread proteins within the ESKAPE context. Moreover, anti-CRISPRs and AMR genes are overrepresented in the ESKAPE mobilome. Our results also underscore species-specific trends shaping the number of MGEs, AMR, and virulence genes across pairs of conspecific ESKAPE genomes with and without CRISPR-Cas systems. Finally, we observed that CRISPR spacers found on prophages, ICEs/IMEs, and plasmids have different targeting biases: while plasmid and prophage CRISPRs almost exclusively target other plasmids and prophages, respectively, ICEs/IMEs CRISPRs preferentially target prophages. Overall, our study highlights the general importance of the ESKAPE mobilome in contributing to the spread of AMR and mediating conflict among MGEs.

RevDate: 2023-01-07

Tan Y, Cao X, Chen S, et al (2023)

Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting.

The Science of the total environment pii:S0048-9697(23)00001-3 [Epub ahead of print].

Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment.

RevDate: 2023-01-07

Utter DR, VJ Orphan (2023)

Gifts hidden in shadowy genome islands.

Cell, 186(1):5-7.

Despite being typically perceived as "clonal" organisms, bacteria and archaea possess numerous mechanisms to share and co-opt genetic material from other lineages. Several mechanisms for horizontal gene transfer have been discovered, but the high mosaicity observed in many bacterial genomes outscales that explained by known mechanisms, hinting at yet undiscovered processes. In this issue of Cell, Hackl et al. introduce a new category of mobile genetic elements called tycheposons, providing a novel mechanism that contributes to the prodigious genomic diversity within microbial populations. The discovery and characterization of tycheposons prompts a reevaluation of microbial diversification in complex environments.

RevDate: 2023-01-07

Hackl T, Laurenceau R, Ankenbrand MJ, et al (2023)

Novel integrative elements and genomic plasticity in ocean ecosystems.

Cell, 186(1):47-62.e16.

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.

RevDate: 2023-01-05

Regmi A, Tague JG, Boas Lichty KE, et al (2023)

A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus.

Applied and environmental microbiology [Epub ahead of print].

Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.

RevDate: 2023-01-04

Cho CH, Park SI, Huang TY, et al (2023)

Genome-wide signatures of adaptation to extreme environments in red algae.

Nature communications, 14(1):10.

The high temperature, acidity, and heavy metal-rich environments associated with hot springs have a major impact on biological processes in resident cells. One group of photosynthetic eukaryotes, the Cyanidiophyceae (Rhodophyta), has successfully thrived in hot springs and associated sites worldwide for more than 1 billion years. Here, we analyze chromosome-level assemblies from three representative Cyanidiophyceae species to study environmental adaptation at the genomic level. We find that subtelomeric gene duplication of functional genes and loss of canonical eukaryotic traits played a major role in environmental adaptation, in addition to horizontal gene transfer events. Shared responses to environmental stress exist in Cyanidiales and Galdieriales, however, most of the adaptive genes (e.g., for arsenic detoxification) evolved independently in these lineages. Our results underline the power of local selection to shape eukaryotic genomes that may face vastly different stresses in adjacent, extreme microhabitats.

RevDate: 2023-01-04

O'Leary ML, LP Burbank (2023)

Natural Recombination among Type I Restriction-Modification Systems Creates Diverse Genomic Methylation Patterns among Xylella fastidiosa Strains.

Applied and environmental microbiology [Epub ahead of print].

Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.

RevDate: 2023-01-04

Xu C, Rao J, Xie Y, et al (2023)

The DNA Phosphorothioation Restriction-Modification System Influences the Antimicrobial Resistance of Pathogenic Bacteria.

Microbiology spectrum [Epub ahead of print].

Bacterial defense barriers, such as DNA methylation-associated restriction-modification (R-M) and the CRISPR-Cas system, play an important role in bacterial antimicrobial resistance (AMR). Recently, a novel R-M system based on DNA phosphorothioate (PT) modification has been shown to be widespread in the kingdom of Bacteria as well as Archaea. However, the potential role of the PT R-M system in bacterial AMR remains unclear. In this study, we explored the role of PT R-Ms in AMR with a series of common clinical pathogenic bacteria. By analyzing the distribution of AMR genes related to mobile genetic elements (MGEs), it was shown that the presence of PT R-M effectively reduced the distribution of horizontal gene transfer (HGT)-derived AMR genes in the genome, even in the bacteria that did not tend to acquire AMR genes by HGT. In addition, unique gene variation analysis based on pangenome analysis and MGE prediction revealed that the presence of PT R-M could suppress HGT frequency. Thus, this is the first report showing that the PT R-M system has the potential to repress HGT-derived AMR gene acquisition by reducing the HGT frequency. IMPORTANCE In this study, we demonstrated the effect of DNA PT modification-based R-M systems on horizontal gene transfer of AMR genes in pathogenic bacteria. We show that there is no apparent association between the genetic background of the strains harboring PT R-Ms and the number of AMR genes or the kinds of gene families. The strains equipped with PT R-M harbor fewer plasmid-derived, prophage-derived, or integrating mobile genetic element (iMGE)-related AMR genes and have a lower HGT frequency, but the degree of inhibition varies among different bacteria. In addition, compared with Salmonella enterica and Escherichia coli, Klebsiella pneumoniae prefers to acquire MGE-derived AMR genes, and there is no coevolution between PT R-M clusters and bacterial core genes.

RevDate: 2023-01-04

Lai CK, Lee YC, Ke HM, et al (2023)

The Aphelenchoides genomes reveal substantial horizontal gene transfers in the last common ancestor of free-living and major plant parasitic nematodes.

Molecular ecology resources [Epub ahead of print].

Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the Aphelenchoididae family capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7-47.4 Mb and are amongst the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of horizontal gene transfer in nematodes.

RevDate: 2023-01-02

Liu Y, Chen J, Raj K, et al (2023)

A Universal Strategy to Promote Secretion of G+/G- Bacterial Extracellular Vesicles and Its Application in Host Innate Immune Responses.

ACS synthetic biology [Epub ahead of print].

Both Gram-positive and Gram-negative bacteria release nanosized extracellular vesicles called membrane vesicles (MVs, 20-400 nm), which have great potential in various biomedical applications due to their abilities to deliver effector molecules and induce therapeutic responses. To fully utilize bacterial MVs for therapeutic purposes, regulated and enhanced production of MVs would be highly advantageous. In this study, we developed a universal method to enhance MV yields in both G+/G- bacteria through an autonomous controlled peptidoglycan hydrolase (PGase) expression system. A significant increase (9.37-fold) of MV concentration was observed in engineered E. coli Nissle 1917 compared to the wild-type. With the help of this autonomous system, for the first time we experimentally confirmed horizontal gene transfer and nutrient acquisition in a cocultured bacterial consortium. Furthermore, the engineered probiotic E. coli strains with high yield of MVs showed higher activation of the innate immune responses in human embryonic kidney 293T (HEK293T) and human colorectal carcinoma cells (HCT116), thereby demonstrating the great potential of engineering probiotics in immunology and further living therapeutics in humans.

RevDate: 2023-01-02

Martinez-Vaz BM, Dodge AG, Lucero RM, et al (2022)

Wastewater bacteria remediating the pharmaceutical metformin: Genomes, plasmids and products.

Frontiers in bioengineering and biotechnology, 10:1086261.

Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.

RevDate: 2023-01-01

Trissi N, Troczka BJ, Ozsanlav-Harris L, et al (2022)

Differential regulation of the Tor gene homolog drives the red/green pigmentation phenotype in the aphid Myzuspersicae.

Insect biochemistry and molecular biology pii:S0965-1748(22)00178-3 [Epub ahead of print].

In some aphid species, intraspecific variation in body colour is caused by differential carotenoid content: whilst green aphids contain only yellow carotenoids (β-, γ-, and β,γ-carotenes), red aphids additionally possess red carotenoids (torulene and 3,4-didehydrolycopene). Unusually, within animals who typically obtain carotenoids from their diet, ancestral horizontal gene transfer of carotenoid biosynthetic genes from fungi (followed by gene duplication), have imbued aphids with the intrinsic gene repertoire necessary to biosynthesise carotenoids. In the pea aphid, Acyrthosiphon pisum a lycopene (phytoene) desaturase gene (Tor) underpins the red/green phenotype, with this locus present in heterozygous form in red individuals but absent in green aphids, resulting in them being unable to convert lycopene into the red compounds 3,4-didehydrolycopene and torulene. The green peach aphid, Myzus persicae, separated from the pea aphid for ≈45MY also exists as distinct colour variable morphs, with both red and green individuals present. Here, we examined genomic data for both red and green morphs of M. persicae and identified an enlarged (compared to A. pisum) repertoire of 16 carotenoid biosynthetic genes (11 carotenoid desaturases and five carotenoid cyclase/synthase genes). From these, we identify the homolog of A. pisum Tor (here called carotene desaturase 2 or CDE-2) and show through 3D modelling that this homolog can accommodate the torulene precursor lycopene and, through RNA knockdown feeding experiments, demonstrate that disabling CDE-2 expression in red M. persicae clones results in green-coloured offspring. Unlike in A. pisum, we show that functional CDE-2 is present in the genomes of both red and green aphids. However, expression differences between the two colour morphs (350-700 fold CDE-2 overexpression in red clones), potentially driven by variants identified in upstream putative regulatory elements, underpin this phenotype. Thus, whilst aphids have a common origin of their carotenoid biosynthetic pathway, two aphid species separated for over 40MY have evolved very different drivers of intraspecific colour variation.

RevDate: 2022-12-31

Nnorom MA, Saroj D, Avery L, et al (2022)

A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure.

Journal of hazardous materials, 446:130628 pii:S0304-3894(22)02424-4 [Epub ahead of print].

The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.

RevDate: 2022-12-30

Sloan DB, Warren JM, Williams AM, et al (2022)

Incompatibility and Interchangeability in Molecular Evolution.

Genome biology and evolution pii:6965385 [Epub ahead of print].

There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes - even single nucleotide substitutions - create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: 1) function in multisubunit enzyme complexes and protein-protein interactions, 2) sensitivity to changes in gene dosage, 3) rapid rate of sequence evolution, and 4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.

RevDate: 2022-12-30

Manaia CM, Aga DS, Cytryn E, et al (2022)

The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment.

Environmental toxicology and chemistry [Epub ahead of print].

Antibiotic resistant bacteria and antibiotic resistance genes are important environmental contaminants. Nonetheless, what drives the evolution, spread and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of antibiotic resistant bacteria and antibiotic resistance genes is often elevated in human impacted areas, especially in environments receiving faecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products (PPCPs). Self-replication, mutation, horizontal gene transfer and adaptation to different environmental conditions contribute to the persistence and proliferation of antibiotic resistant bacteria in habitats under strong anthropogenic influence. This review will discuss the interplay between chemical contaminants and antibiotic resistant bacteria and respective genes, specifically in reference to co-occurrence, potential biostimulation and selective pressure effects, and will overview mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human-health risks due to environmental antibiotic resistance are also debated. This article is protected by copyright. All rights reserved. Environ Toxicol Chem 2022;00:0-0. © 2022 SETAC.

RevDate: 2022-12-27

Chen H, Tao S, Li N, et al (2022)

Anti-restriction protein ArdA promotes clinical Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae spread and its molecular mechanism.

The Journal of antimicrobial chemotherapy pii:6961784 [Epub ahead of print].

BACKGROUND: Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) has spread worldwide and has become a major threat to public health. The restriction modification system provides an innate defence of bacteria against plasmids or transposons, while many different types of plasmid encoding the anti-restriction protein ArdA can specifically affect the restriction activity in bacteria.

OBJECTIVES: To detect the codistribution of ArdA and blaKPC-2 plasmids in KPC-KP and explore the molecular mechanism of ArdA promoting KPC-KP spread.

METHODS: We collected 65 clinical CRKP isolates from Ningbo, China, and 68 cases of plasmid complete sequences in GenBank to determine the prevalence of ArdA gene on the K. pneumoniae blaKPC-2 plasmid. The anti-restriction function of ArdA in promoting horizontal gene transfer (HGT) was verified by transformation, conjugation and transduction methods, and the pull-down experiment was used to investigate the molecular mechanism of ArdA protein in vitro.

RESULTS: We found that ArdA was widely distributed in KPC-KP in 100% of cases, which was detected in 0% of drug susceptible K. pneumoniae, and the plasmids containing the ArdA gene in 90% of the 30 cases randomly retrieved from the database. We also verified that ArdA has a good anti-restriction function (P < 0.05) through two aspects of HGT (transformation, transduction), and explored the non-occurrence interaction of ArdA and the hsdM subunit protein of EcoKI enzyme from the perspective of protein molecules.

CONCLUSIONS: These findings suggest that the coexistence advantage of ArdA with the blaKPC-2 plasmids may provide KPC-producing K. pneumoniae with a very efficient evasion of the restriction of type I systems, which not only favours ArdA-containing mobile genetic elements in the same species HGT between bacteria also facilitates HGT between other bacterial species.

RevDate: 2022-12-27

Bethke JH, Ma HR, Tsoi R, et al (2022)

Vertical and horizontal gene transfer tradeoffs direct plasmid fitness.

Molecular systems biology [Epub ahead of print].

Plasmid fitness is directed by two orthogonal processes-vertical transfer through cell division and horizontal transfer through conjugation. When considered individually, improvements in either mode of transfer can promote how well a plasmid spreads and persists. Together, however, the metabolic cost of conjugation could create a tradeoff that constrains plasmid evolution. Here, we present evidence for the presence, consequences, and molecular basis of a conjugation-growth tradeoff across 40 plasmids derived from clinical Escherichia coli pathogens. We discover that most plasmids operate below a conjugation efficiency threshold for major growth effects, indicating strong natural selection for vertical transfer. Below this threshold, E. coli demonstrates a remarkable growth tolerance to over four orders of magnitude change in conjugation efficiency. This tolerance fades as nutrients become scarce and horizontal transfer attracts a greater share of host resources. Our results provide insight into evolutionary constraints directing plasmid fitness and strategies to combat the spread of antibiotic resistance.

RevDate: 2022-12-26

Beltrán de Heredia I, Garbisu C, Alkorta I, et al (2022)

Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(22)02098-X [Epub ahead of print].

There is a growing concern about the risk of antibiotic resistance emergence and dissemination in the environment. Here, we evaluated the spatio-seasonal patterns of the impact of wastewater treatment plant (WWTP) effluents on antibiotic resistance in river sediments. To this purpose, sediment samples were collected in three river basins affected by WWTP effluents in wet (high-water period) and dry (low-water period) hydrological conditions at three locations: (i) upstream the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream the WWTPs (500 m downriver from the effluent outfall). The absolute and relative abundances of 9 antibiotic resistance genes (ARGs), 3 mobile genetic element (MGE) genes, and 4 metal resistance genes (MRGs) were quantified in sediment samples, as well as a variety of physicochemical parameters, metal contents, and antibiotic concentrations in both sediment and water samples. In sediments, significantly higher relative abundances of most genes were observed in downstream vs. upstream sampling points. Seasonal changes (higher values in low-water vs. high-water period) were observed for both ARG absolute and relative abundances in sediment samples. Chemical data revealed the contribution of effluents from WWTPs as a source of antibiotic and metal contamination in river ecosystems. The observed positive correlations between ARG and MGE genes relative abundances point out to the role of horizontal gene transfer in antibiotic resistance dissemination. Monitoring plans that take into consideration spatio-temporal patterns must be implemented to properly assess the environmental fate of WWTP-related emerging contaminants in river ecosystems.

RevDate: 2022-12-26

Su Z, Wen D, Gu AZ, et al (2022)

Industrial effluents boosted antibiotic resistome risk in coastal environments.

Environment international, 171:107714 pii:S0160-4120(22)00641-9 [Epub ahead of print].

Wastewater treatment plants (WWTPs) have been regarded as an important source of antibiotic resistance genes (ARGs) in environment, but out of municipal domestic WWTPs, few evidences show how environment is affected by industrial WWTPs. Here we chose Hangzhou Bay (HZB), China as our study area, where land-based municipal and industrial WWTPs discharged their effluent into the bay for decades. We adopted high-throughput metagenomic sequencing to examine the antibiotic resistome of the WWTP effluent and coastal sediment samples. And we proposed a conceptual framework for the assessment of antibiotic resistome risk, and a new bioinformatic pipeline for the evaluation of the potential horizontal gene transfer (HGT) frequency. Our results revealed that the diversity and abundance of ARGs in the WWTP's effluent were significantly higher than those in the sediment. Furthermore, the antibiotic resistome in the effluent-receiving area (ERA) showed significant difference from that in HZB. For the first time, we identified that industrial WWTP effluent boosted antibiotic resistome risk in coastal sediment. The crucial evidences included: 1) the proportion of ARGs derived from WWTP activated sludge (WA) was higher (14.3 %) and two high-risky polymyxin resistance genes (mcr-4 and mcr-5) were enriched in the industrial effluent receiving area; 2) the HGT potential was higher between resistant microbiome of the industrial effluent and its ERA sediment; and 3) the highest resistome risk was determined in the industrial effluent, and some biocide resistance genes located on high-risky contigs were related to long-term stress of industrial chemicals. These findings highlight the important effects of industrial activities on the development of environmental antimicrobial resistance.

RevDate: 2022-12-26

Sun M, Yuan S, Xia R, et al (2022)

Underexplored Viral Auxiliary Metabolic Genes in Soil: Diversity and Eco-evolutionary Significance.

Environmental microbiology [Epub ahead of print].

Bacterial viruses are the most abundant biological entities in soil ecosystems. Owing to the advent of metagenomics and viromics approaches, an ever-increasing diversity of virus-encoded auxiliary metabolic genes (AMGs) have been identified in soils, including those involved in the transformation of carbon, phosphorus, and sulfur, degradation of organic pollutants, and antibiotic resistance, among other processes. These viral AMGs can alter soil biogeochemical processes and metabolic activities by interfering with bacterial host metabolism. It is recognized that viral AMGs compensate for host bacterial metabolism outputs by encoding accessory functional genes and are favorable for the hosts' adaptation to stressed soil environments. The eco-evolutionary mechanisms behind this fascinating diversity of viral AMGs in soil microbiomes have begun to emerge, such as horizontal gene transfer (HGT), lytic-lysogenic conversion, and single-nucleotide polymorphisms. In this mini-review, we summarize recent advances in the diversity and function of virus-encoded AMGs in the soil environment, especially focusing on the evolutionary significance of AMGs involved in virus-host interactions. This mini-review also sheds light on the existing gaps and future perspectives that could have major significance for viral AMGs research in soils. This article is protected by copyright. All rights reserved.

RevDate: 2022-12-26

Nayar G, Terrizzano I, Seabolt E, et al (2022)

ggMOB: Elucidation of genomic conjugative features and associated cargo genes across bacterial genera using genus-genus mobilization networks.

Frontiers in genetics, 13:1024577.

Horizontal gene transfer mediated by conjugation is considered an important evolutionary mechanism of bacteria. It allows organisms to quickly evolve new phenotypic properties including antimicrobial resistance (AMR) and virulence. The frequency of conjugation-mediated cargo gene exchange has not yet been comprehensively studied within and between bacterial taxa. We developed a frequency-based network of genus-genus conjugation features and candidate cargo genes from whole-genome sequence data of over 180,000 bacterial genomes, representing 1,345 genera. Using our method, which we refer to as ggMOB, we revealed that over half of the bacterial genomes contained one or more known conjugation features that matched exactly to at least one other genome. Moreover, the proportion of genomes containing these conjugation features varied substantially by genus and conjugation feature. These results and the genus-level network structure can be viewed interactively in the ggMOB interface, which allows for user-defined filtering of conjugation features and candidate cargo genes. Using the network data, we observed that the ratio of AMR gene representation in conjugative versus non-conjugative genomes exceeded 5:1, confirming that conjugation is a critical force for AMR spread across genera. Finally, we demonstrated that clustering genomes by conjugation profile sometimes correlated well with classical phylogenetic structuring; but that in some cases the clustering was highly discordant, suggesting that the importance of the accessory genome in driving bacterial evolution may be highly variable across both time and taxonomy. These results can advance scientific understanding of bacterial evolution, and can be used as a starting point for probing genus-genus gene exchange within complex microbial communities that include unculturable bacteria. ggMOB is publicly available under the GNU licence at https://ruiz-hci-lab.github.io/ggMOB/.

RevDate: 2022-12-25

Feng R, Duan L, Shen S, et al (2022)

Temporal dynamic of antibiotic resistance genes in the Zaohe-Weihe hyporheic zone: driven by oxygen and bacterial community.

Ecotoxicology (London, England) pii:10.1007/s10646-022-02616-5 [Epub ahead of print].

The widespread spread of antibiotic resistance genes (ARGs) in hyporheic zone (HZ) has become an emerging environmental problem due to their potentially harmful nature. In this research, three different oxygen treatment systems were set up to study the effects of oxygen changes on the abundance of ARGs in the HZ. In addition, the effects of temperature and salinity on ARGs were investigated under aerobic and anaerobic systems, respectively. The bacterial community composition of sediment samples and the relationship with ARGs were analyzed. The explanation ratio and causality of the driving factors affecting ARGs were analyzed using variation partitioning analysis (VPA) and structural equation model (SEM). The relative abundance of ARGs and mobile genetic elements (MGEs) in the anaerobic system increased significantly, which was higher than that in the aerobic system and the aerobic-anaerobic interaction system. The experiment of salinity and temperature also further proved this result. There were many bacterial communities that affected tetracycline and sulfonamide ARGs in sediments, and these host bacteria are mainly concentrated in Proteobacteria, Firmicutes and Bacteroidetes. VPA and SEM further revealed that the abundance of ARGs was mainly influenced by changes in bacterial communities and oxygen conditions, and horizontal gene transfer (HGT) of MGEs also had a positive effect on the spread of ARGs. Those findings suggest that complex oxygen conditions in the HZ alter bacterial communities and promote MGEs-mediated horizontal transfer, which together lead to the spread of ARGs. This study has value as a reference for formulating effective strategies to minimize the propagation of ARGs in underground environment.

RevDate: 2022-12-23

Vatanen T, Jabbar KS, Ruohtula T, et al (2022)

Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism.

Cell, 185(26):4921-4936.e15.

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.

RevDate: 2022-12-23

González-Villarreal JA, González-Lozano KJ, Aréchiga-Carvajal ET, et al (2022)

Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review).

Experimental and therapeutic medicine, 24(6):753.

Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.

RevDate: 2022-12-23

Nale JY, Thanki AM, Rashid SJ, et al (2022)

Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages.

Viruses, 14(12):.

Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.

RevDate: 2022-12-23

Ács N, Holohan R, Dunne LJ, et al (2022)

Comparing In Vitro Faecal Fermentation Methods as Surrogates for Phage Therapy Application.

Viruses, 14(12):.

The human microbiome and its importance in health and disease have been the subject of numerous research articles. Most microbes reside in the digestive tract, with up to 10[12] cells per gram of faecal material found in the colon. In terms of gene number, it has been estimated that the gut microbiome harbours >100 times more genes than the human genome. Several human intestinal diseases are strongly associated with disruptions in gut microbiome composition. Less studied components of the gut microbiome are the bacterial viruses called bacteriophages that may be present in numbers equal to or greater than the prokaryotes. Their potential to lyse their bacterial hosts, or to act as agents of horizontal gene transfer makes them important research targets. In this study in vitro faecal fermentation systems were developed and compared for their ability to act as surrogates for the human colon. Changes in bacterial and viral composition occurred after introducing a high-titre single phage preparation both with and without a known bacterial host during the 24 h-long fermentation. We also show that during this timeframe 50 mL plastic tubes can provide data similar to that generated in a sophisticated faecal fermenter system. This knowledge can guide us to a better understanding of the short-term impact of bacteriophage transplants on the bacteriomes and viromes of human recipients.

RevDate: 2022-12-23

de Brito FAE, de Freitas APP, MS Nascimento (2022)

Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain.

Pathogens (Basel, Switzerland), 11(12):.

Biofilms are mono- or multispecies microbial communities enclosed in an extracellular matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition, biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (resistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation methods. These mechanisms coordinate different strategies involved in AMR, such as activation of a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more studies to elucidate the effect and applications of these methods in the food production chain and the possible combination with antimicrobials to establish new strategies to control MDR biofilms are needed.

RevDate: 2022-12-23

Janczarek M (2022)

The Ros/MucR Zinc-Finger Protein Family in Bacteria: Structure and Functions.

International journal of molecular sciences, 23(24): pii:ijms232415536.

Ros/MucR is a widespread family of bacterial zinc-finger-containing proteins that integrate multiple functions, such as symbiosis, virulence, transcription regulation, motility, production of surface components, and various other physiological processes in cells. This regulatory protein family is conserved in bacteria and is characterized by its zinc-finger motif, which has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure has evolved. The first prokaryotic zinc-finger domain found in the transcription regulator Ros was identified in Agrobacterium tumefaciens. In the past decades, a large body of evidence revealed Ros/MucR as pleiotropic transcriptional regulators that mainly act as repressors through oligomerization and binding to AT-rich target promoters. The N-terminal domain and the zinc-finger-bearing C-terminal region of these regulatory proteins are engaged in oligomerization and DNA binding, respectively. These properties of the Ros/MucR proteins are similar to those of xenogeneic silencers, such as H-NS, MvaT, and Lsr2, which are mainly found in other lineages. In fact, a novel functional model recently proposed for this protein family suggests that they act as H-NS-'like' gene silencers. The prokaryotic zinc-finger domain exhibits interesting structural and functional features that are different from that of its eukaryotic counterpart (a βββα topology), as it folds in a significantly larger zinc-binding globular domain (a βββαα topology). Phylogenetic analysis of Ros/MucR homologs suggests an ancestral origin of this type of protein in α-Proteobacteria. Furthermore, multiple duplications and lateral gene transfer events contributing to the diversity and phyletic distribution of these regulatory proteins were found in bacterial genomes.

RevDate: 2022-12-23

Lienen T, Grobbel M, Tenhagen BA, et al (2022)

Plasmid-Coded Linezolid Resistance in Methicillin-Resistant Staphylococcus&nbsp;aureus from Food and Livestock in Germany.

Antibiotics (Basel, Switzerland), 11(12): pii:antibiotics11121802.

Resistance of methicillin-resistant Staphylococcus&nbsp;aureus (MRSA) from food and livestock to last resort antibiotics such as linezolid is highly concerning, since treatment options for infections in humans might be diminished. Known mechanisms of linezolid resistance include point mutations in the 23S rRNA gene and in the ribosomal proteins L3, L4 and L22 as well as an acquisition of the cfr, optrA or poxtA gene. The objective of our study was to characterize antimicrobial resistance (AMR) determinants and phylogenetic relationships among linezolid-resistant (LR-) MRSA from food and livestock. In total, from more than 4000 incoming isolates in the years 2012 to 2021, only two strains from 2015 originating from pig samples exhibited linezolid resistance in the antimicrobial susceptibility testing with MICs of ≥8 mg/L. These LR-MRSA were characterized in detail by whole-genome sequencing and phylogenetic analyses using cgMLST. The LR-MRSA strains showed resistances to ten and eight different antibiotics, respectively. Both strains harbored plasmid-coded cfr genes mediating the linezolid resistance. The cfr genes showed identical sequences in both strains. In addition to the cfr gene, genes for phenicol and clindamycin resistance were detected on the respective plasmids, opening the possibility for a co-selection. The LR-MRSA differed distantly in the phylogenetic analyses and also to other MRSA from pig samples in the year 2015. In conclusion, the occurrence of LR-MRSA in food and livestock seems to be very rare in Germany. However, carriage of plasmids with linezolid resistance determinants could lead to further linezolid-resistant strains by horizontal gene transfer.

RevDate: 2022-12-22

Abudureheman M, Ailijiang N, Mamat A, et al (2022)

Enhanced biodegradation of fluoroquinolone and the changes of bacterial communities and antibiotic-resistant genes under intermittent electrical stimulation.

Environmental research pii:S0013-9351(22)02454-9 [Epub ahead of print].

In this study an anaerobic-aerobic coupling system under intermittent electrical stimulation was used to improve the biodegradation of synthetic wastewater containing fluoroquinolones (FQs). The effect of electrical stimulation on FQ removal performance is more pronounced with appropriate voltage and HRT. In addition, the combination of anaerobic-anodic and aerobic-cathodic chambers is more conducive to improve the removal efficiency of FQs. Under 0.9 V, the removal efficiencies of ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were significantly improved in the anaerobic-anodic and aerobic-cathodic system. The contribution of the anaerobic/aerobic anodic chambers to FQ removal was greater than that of the anaerobic/aerobic cathodic chambers. Electrical stimulation selectively enriched electroactive bacteria related to biodegradation (Desulfovibrio and Terrimonas), antibiotic-resistant bacteria (Atopobium and Neochlamydia), and nitrifying bacteria (SM1A02 and Reyranella). This study indicated the potential effectiveness of intermittent electrical stimulation in treating fluoroquinolone-containing wastewater in a biofilm reactor. However, electrical stimulation led to an increase in mobile genetic elements (MGEs), induced horizontal gene transfer and enriched resistant bacteria, which accelerated the spread of antibiotic-resistant genes (ARGs) in the system, indicating that the diffusion of ARGs remains a challenge.

RevDate: 2022-12-20

Kwun MJ, Ion AV, Cheng HC, et al (2022)

Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA.

Genome medicine, 14(1):144.

BACKGROUND: The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180).

METHODS: A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution.

RESULTS: GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage ϕOXC141. Prior to the introduction of PCV13, this clade's composition shifted towards a ϕOXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also ϕOXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the ~100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage ϕOXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in ~30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation.

CONCLUSION: This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics.

RevDate: 2022-12-20

Lisboa MP, Canal D, Filgueiras JPC, et al (2022)

Molecular evolution and diversification of phytoene synthase (PSY) gene family.

Genetics and molecular biology, 45(4):e20210411 pii:S1415-47572022000500302.

Phytoene synthase (PSY) is a crucial enzyme required for carotenoid biosynthesis, encoded by a gene family conserved in carotenoid-producing organisms. This gene family is diversified in angiosperms through distinct duplication events. Understanding diversification patterns and the evolutionary history of the PSY gene family is important for explaining carotenogenesis in different plant tissues. This study identified 351 PSY genes in 166 species, including Viridiplantae, brown and red algae, cyanobacteria, fungi, arthropods, and bacteria. All PSY genes displayed conserved intron/exon organization. Fungi and arthropod PSY sequences were grouped with prokaryote PSY, suggesting the occurrence of horizontal gene transfer. Angiosperm PSY is split into five subgroups. One includes the putative ortholog of PSY3 (Subgroup E3) from eudicots, and the other four subgroups include PSY from both monocots and eudicots (subgroups E1, E2, M1, and M2). Expression profile analysis revealed that PSY genes are constitutively expressed across developmental stages and anatomical parts, except for the eudicot PSY3, with root-specific expression. This study elucidates the molecular evolution and diversification of the PSY gene family, furthering our understanding of variations in carotenogenesis.

RevDate: 2022-12-19

Camargo AP, de Souza RSC, Jose J, et al (2022)

Plant microbiomes harbor potential to promote nutrient turnover in impoverished substrates of a Brazilian biodiversity hotspot.

The ISME journal [Epub ahead of print].

The substrates of the Brazilian campos rupestres, a grassland ecosystem, have extremely low concentrations of phosphorus and nitrogen, imposing restrictions to plant growth. Despite that, this ecosystem harbors almost 15% of the Brazilian plant diversity, raising the question of how plants acquire nutrients in such a harsh environment. Here, we set out to uncover the taxonomic profile, the compositional and functional differences and similarities, and the nutrient turnover potential of microbial communities associated with two plant species of the campos rupestres-dominant family Velloziaceae that grow over distinct substrates (soil and rock). Using amplicon sequencing data, we show that, despite the pronounced composition differentiation, the plant-associated soil and rock communities share a core of highly efficient colonizers that tend to be highly abundant and is enriched in 21 bacterial families. Functional investigation of metagenomes and 522 metagenome-assembled genomes revealed that the microorganisms found associated to plant roots are enriched in genes involved in organic compound intake, and phosphorus and nitrogen turnover. We show that potential for phosphorus transport, mineralization, and solubilization are mostly found within bacterial families of the shared microbiome, such as Xanthobacteraceae and Bryobacteraceae. We also detected the full repertoire of nitrogen cycle-related genes and discovered a lineage of Isosphaeraceae that acquired nitrogen-fixing potential via horizontal gene transfer and might be also involved in nitrification via a metabolic handoff association with Binataceae. We highlight that plant-associated microbial populations in the campos rupestres harbor a genetic repertoire with potential to increase nutrient availability and that the microbiomes of biodiversity hotspots can reveal novel mechanisms of nutrient turnover.

RevDate: 2022-12-19

Li P, Luo W, Xiang TX, et al (2022)

Horizontal gene transfer via OMVs co-carrying virulence and antimicrobial-resistant genes is a novel way for the dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae.

Frontiers in microbiology, 13:945972.

INTRODUCTION: The rapidly increased isolation rate of CR-HvKP worldwide has brought great difficulties in controlling clinical infection. Moreover, it has been demonstrated that the transmission of drug-resistant genes among bacteria can be mediated by outer membrane vesicles (OMVs), which is a new way of horizontal gene transfer (HGT). The transmission of virulence genes among bacteria has also been well studied; however, it remains unclear whether virulence and drug-resistant genes can be co-transmitted simultaneously. Co-transmission of virulence and drug-resistant genes is essential for the formation and prevalence of CR-HvKP.

METHODS: First, we isolated OMVs from CR-HvKP by cushioned-density gradient ultracentrifugation (C-DGUC). TEM and DLS were used to examine the morphology and size of bacterial OMVs. OMV-mediated gene transfer in liquid cultures and the acquisition of the carbapenem gene and virulence gene was confirmed using colony-PCR. Antimicrobial susceptibility testing, mCIM and eCIM were conducted for the resistance of transformant. Serum killing assay, assessment of the anti-biofilm effect and galleria mellonella infection model, mucoviscosity assay, extraction and quantification of capsules were verified the virulence of transformant. Pulsed-field gel electrophoresis (PFGE), S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting hybridization confirmed the plasmid of transformant.

RESULTS: Firstly, OMVs were isolated from CR-HvKP NUHL30457 (K2, ST86). TEM and DLS analyses revealed the spherical morphology of the vesicles. Secondly, our study demonstrated that CR-HvKP delivered genetic material, incorporated DNA within the OMVs, and protected it from degradation by extracellular exonucleases. Thirdly, the vesicular lumen DNA was delivered to the recipient cells after determining the presence of virulence and carbapenem-resistant genes in the CR-HvKP OMVs. Importantly, S1-PFGE and Southern hybridization analysis of the 700603 transformant strain showed that the transformant contained both drug-resistant and virulence plasmids.

DISCUSSION: In the present study, we aimed to clarify the role of CRHvKP-OMVs in transmitting CR-HvKP among K. pneumoniae. Collectively, our findings provided valuable insights into the evolution of CR-HvKP.

RevDate: 2022-12-19

Pillay S, Calderón-Franco D, Urhan A, et al (2022)

Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings.

Frontiers in microbiology, 13:1066995.

The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

cover-pic

SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

If you thought that the history of life could be organized into a simple tree and that genes only moved from parents to progeny, think again. Recent science has shown that sometimes genes move sideways, skipping the reproductive process, and the tree of life looks more like a tangled bush. David Quammen, a masterful science writer, explains these new findings and more. Read this book and you'll learn about the discovery of the archaea — an entirely different form of life, living right here on this planet, and not noticed until Carl Woese found them, by being among the first to use molecular tools to look at organismal relationships. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )