Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 19 Mar 2019 at 01:31 Created: 


While genomics is the study of DNA extracted from individuals — individual cells, tissues, or organisms — metagenomics is a more recent refinement that analyzes samples of pooled DNA taken from the environment, not from an individual. Like genomics, metagenomic methods have great potential in many areas of biology, but none so much as in providing access to the hitherto invisible world of unculturable microbes, often estimated to comprise 90% or more of bacterial species and, in some ecosystems, the bulk of the biomass. A recent describes how this new science of metagenomics is beginning to reveal the secrets of our microbial world: The opportunity that stands before microbiologists today is akin to a reinvention of the microscope in the expanse of research questions it opens to investigation. Metagenomics provides a new way of examining the microbial world that not only will transform modern microbiology but has the potential to revolutionize understanding of the entire living world. In metagenomics, the power of genomic analysis is applied to entire communities of microbes, bypassing the need to isolate and culture individual bacterial community members.

Created with PubMed® Query: metagenomic OR metagenomics OR metagenome NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-03-18

Ikawa T, Watanabe Y, Okuzaki D, et al (2019)

A new approach to identifying hypertension-associated genes in the mesenteric artery of spontaneously hypertensive rats and stroke-prone spontaneously hypertensive rats.

Journal of hypertension [Epub ahead of print].

OBJECTIVE: Hypertension is one of the most prevalent diseases in humans who live a modern lifestyle. Alongside more effective care, clarification of the genetic background of hypertension is urgently required. Gene expression in mesenteric resistance arteries of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and two types of renal hypertensive Wistar Kyoto rats (WKY), two kidneys and one clip renal hypertensive rat (2K1C) and one kidney and one clip renal hypertensive rat (1K1C), was compared using DNA microarrays.

METHODS: We used a simultaneous equation and comparative selection method to identify genes associated with hypertension using the Reactome analysis tool and GenBank database.

RESULTS: The expression of 298 genes was altered between SHR and WKY (44 upregulated and 254 downregulated), while the expression of 290 genes was altered between SHRSP and WKY (83 upregulated and 207 downregulated). For SHRSP versus SHR, the expression of 60 genes was altered (36 upregulated and 24 downregulated). Several genes expressed in SHR and SHRSP were also expressed in the renovascular hypertensive 2K1C and 1K1C rats, indicative of the existence of hyper-renin and/or hypervolemic pathophysiological changes in SHR and SHRSP.

CONCLUSION: The overexpression of Kcnq1, Crlf1, Alb and Xirp1 and the inhibition of Galr2, Kcnh1, Ache, Chrm2 and Slc5a7 expression may indicate that a relationship exists between these genes and the cause and/or worsening of hypertension in SHR and SHRSP.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

RevDate: 2019-03-18

Tribble GD, Angelov N, Weltman R, et al (2019)

Frequency of Tongue Cleaning Impacts the Human Tongue Microbiome Composition and Enterosalivary Circulation of Nitrate.

Frontiers in cellular and infection microbiology, 9:39.

The oral microbiome has the potential to provide an important symbiotic function in human blood pressure physiology by contributing to the generation of nitric oxide (NO), an essential cardiovascular signaling molecule. NO is produced by the human body via conversion of arginine to NO by endogenous nitric oxide synthase (eNOS) but eNOS activity varies by subject. Oral microbial communities are proposed to supplement host NO production by reducing dietary nitrate to nitrite via bacterial nitrate reductases. Unreduced dietary nitrate is delivered to the oral cavity in saliva, a physiological process termed the enterosalivary circulation of nitrate. Previous studies demonstrated that disruption of enterosalivary circulation via use of oral antiseptics resulted in increases in systolic blood pressure. These previous studies did not include detailed information on the oral health of enrolled subjects. Using 16S rRNA gene sequencing and analysis, we determined whether introduction of chlorhexidine antiseptic mouthwash for 1 week was associated with changes in tongue bacterial communities and resting systolic blood pressure in healthy normotensive individuals with documented oral hygiene behaviors and free of oral disease. Tongue cleaning frequency was a predictor of chlorhexidine-induced changes in systolic blood pressure and tongue microbiome composition. Twice-daily chlorhexidine usage was associated with a significant increase in systolic blood pressure after 1 week of use and recovery from use resulted in an enrichment in nitrate-reducing bacteria on the tongue. Individuals with relatively high levels of bacterial nitrite reductases had lower resting systolic blood pressure. These results further support the concept of a symbiotic oral microbiome contributing to human health via the enterosalivary nitrate-nitrite-NO pathway. These data suggest that management of the tongue microbiome by regular cleaning together with adequate dietary intake of nitrate provide an opportunity for the improvement of resting systolic blood pressure.

RevDate: 2019-03-17

Rowe WP, Carrieri AP, Alcon-Giner C, et al (2019)

Streaming histogram sketching for rapid microbiome analytics.

Microbiome, 7(1):40 pii:10.1186/s40168-019-0653-2.

BACKGROUND: The growth in publically available microbiome data in recent years has yielded an invaluable resource for genomic research, allowing for the design of new studies, augmentation of novel datasets and reanalysis of published works. This vast amount of microbiome data, as well as the widespread proliferation of microbiome research and the looming era of clinical metagenomics, means there is an urgent need to develop analytics that can process huge amounts of data in a short amount of time. To address this need, we propose a new method for tyrhe compact representation of microbiome sequencing data using similarity-preserving sketches of streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid microbiome catalogue searching and classification of microbiome samples in near real time.

RESULTS: We apply streaming histogram sketching to microbiome samples as a form of dimensionality reduction, creating a compressed 'histosketch' that can efficiently represent microbiome k-mer spectra. Using public microbiome datasets, we show that histosketches can be clustered by sample type using the pairwise Jaccard similarity estimation, consequently allowing for rapid microbiome similarity searches via a locality sensitive hashing indexing scheme. Furthermore, we use a 'real life' example to show that histosketches can train machine learning classifiers to accurately label microbiome samples. Specifically, using a collection of 108 novel microbiome samples from a cohort of premature neonates, we trained and tested a random forest classifier that could accurately predict whether the neonate had received antibiotic treatment (97% accuracy, 96% precision) and could subsequently be used to classify microbiome data streams in less than 3 s.

CONCLUSIONS: Our method offers a new approach to rapidly process microbiome data streams, allowing samples to be rapidly clustered, indexed and classified. We also provide our implementation, Histosketching Using Little K-mers (HULK), which can histosketch a typical 2 GB microbiome in 50 s on a standard laptop using four cores, with the sketch occupying 3000 bytes of disk space. (

RevDate: 2019-03-16

Gómez-Acata ES, Centeno CM, LI Falcón (2019)

Methods for extracting 'omes from microbialites.

Journal of microbiological methods pii:S0167-7012(18)31046-7 [Epub ahead of print].

Microbialites are organo-sedimentary structures formed by complex microbial communities that interact with abiotic factors to form carbonate rich fabrics. Extraction of DNA or total RNA from microbialites can be difficult because of the high carbonate mineral concentration and exopolymeric substances. The methods employed until now include substances such as cetyltrimethylammonium bromide, sodium dodecyl sulfate, xanthogenate, lysozyme and proteinase K, as well as mechanical disruption. Additionally, several commercial kits have been used to improve DNA and total RNA extraction. This minireview presents different methods applied for DNA and RNA extraction from microbialites and discusses their advantages and disadvantages. Moreover, extraction of all 'omes (DNA, RNA, Protein, Lipids, polar metabolites) using multiomic extraction methods (MPlex), as well as the state of art for extraction of viruses from microbialites, are also discussed.

RevDate: 2019-03-16

Uritskiy G, J DiRuggiero (2019)

Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome.

Genes, 10(3): pii:genes10030220.

In the past decades, the study of microbial life through shotgun metagenomic sequencing has rapidly expanded our understanding of environmental, synthetic, and clinical microbial communities. Here, we review how shotgun metagenomics has affected the field of halophilic microbial ecology, including functional potential reconstruction, virus⁻host interactions, pathway selection, strain dispersal, and novel genome discoveries. However, there still remain pitfalls and limitations from conventional metagenomic analysis being applied to halophilic microbial communities. Deconvolution of halophilic metagenomes has been difficult due to the high G + C content of these microbiomes and their high intraspecific diversity, which has made both metagenomic assembly and binning a challenge. Halophiles are also underrepresented in public genome databases, which in turn slows progress. With this in mind, this review proposes experimental and analytical strategies to overcome the challenges specific to the halophilic microbiome, from experimental designs to data acquisition and the computational analysis of metagenomic sequences. Finally, we speculate about the potential applications of other next-generation sequencing technologies in halophilic communities. RNA sequencing, long-read technologies, and chromosome conformation assays, not initially intended for microbiomes, are becoming available in the study of microbial communities. Together with recent analytical advancements, these new methods and technologies have the potential to rapidly advance the field of halophile research.

RevDate: 2019-03-15

Kumar S, Suyal DC, Yadav A, et al (2019)

Microbial diversity and soil physiochemical characteristic of higher altitude.

PloS one, 14(3):e0213844 pii:PONE-D-18-24017.

Altitude is the major factor affecting both biodiversity and soil physiochemical properties of soil ecosystems. In order to understand the effect of altitude on soil physiochemical properties and bacterial diversity across the Himalayan cold desert, high altitude Gangotri soil ecosystem was studied and compared with the moderate altitude Kandakhal soil. Soil physiochemical analysis showed that altitude was positively correlated with soil pH, organic matter and total nitrogen content. However soil mineral nutrients and soil phosphorus were negatively correlated to the altitude. RT-PCR based analysis revealed the decreased bacterial and diazotrophic abundance at high altitude. Metagenomic study showed that Proteobacteria, Acidobacteria and Actinobacteria were dominant bacteria phyla at high altitude soil while Bacteroidetes and Fermicutes were found dominant at low altitude. High ratio of Gram-negative to Gram positive bacteria at Gangotri suggests the selective proliferation of Gram negative bacteria at high altitude with decrease in Gram positive bacteria. Moreover, Alphaproteobacteria was found more abundant at high altitude while the opposite was true for Betaproteobacteria. Abundance of Cytophaga, Flavobacterium and Bacteroides (CFB) were also found comparatively high at high altitude. Presence of many taxonomically unclassified sequences in Gangotri soil indicates the presence of novel bacterial diversity at high altitude. Further, isolation of bacteria through indigenously designed diffusion chamber revealed the existence of bacteria which has been documented in unculturable study of WIH (Western Indian Himalaya) but never been cultivated from WIH. Nevertheless, diverse functional free-living psychrotrophic diazotrophs were isolated only from the high altitude Gangotri soil. Molecular characterization revealed them as Arthrobacter humicola, Brevibacillus invocatus, Pseudomonas mandelii and Pseudomonas helmanticensis. Thus, this study documented the bacterial and psychrophilic diazotrophic diversity at high altitude and is an effort for exploration of low temperature bacteria in agricultural productivity with the target for sustainable hill agriculture.

RevDate: 2019-03-15

Taylor SL, Leong LEX, Mobegi FM, et al (2019)

Long-Term Azithromycin Reduces Haemophilus influenzae and Increases Antibiotic Resistance in Severe Asthma.

American journal of respiratory and critical care medicine [Epub ahead of print].

Rationale The macrolide antibiotic, azithromycin, reduces exacerbations in adults with persistent symptomatic asthma. However, owing to the pleotropic properties of macrolides, unintended bacteriological consequences such as augmented pathogen colonization or dissemination of antibiotic-resistant organisms can occur, calling into question the long-term safety of azithromycin maintenance therapy. Objectives To assess the effects of azithromycin on the airway microbiota, pathogen abundance, and carriage of antibiotic-resistance genes. Methods 16S rRNA sequencing and quantitative PCR (qPCR) were performed to assess the effect of azithromycin on sputum microbiology from participants of the AMAZES trial: a 48-week, double-blind, placebo-controlled trial of thrice-weekly 500mg oral azithromycin in adults with persistent uncontrolled asthma. Pooled-template shotgun metagenomic sequencing, qPCR, and isolate whole genome sequencing were performed to assess antibiotic resistance. Measurements and Main Results Paired sputum was available from 61 patients (n=34 placebo, n=27 azithromycin). Azithromycin did not affect bacterial load (p=0.37) but did significantly decrease Faith's bacterial diversity (p=0.026) and Haemophilus influenzae load (p<0.001). Azithromycin did not significantly affect levels of Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa or Moraxella catarrhalis. Of the 89 antibiotic resistance genes detected, macrolide resistance genes (erm(B), erm(F), msr(E), mef(A), and mel) and tetracycline resistance genes (tet(M) and tet(W)) were increased significantly. Conclusions In patients with persistent uncontrolled asthma, addition of azithromycin reduced airway H. influenzae load, with no changes to total or pathogenic bacterial loads. Macrolide resistance increased, reflecting previous studies. These results highlight the need for studies assessing the efficacy of non-antibiotic macrolides as long-term therapy for patients with persistent uncontrolled asthma.

RevDate: 2019-03-15

Epp LS, Zimmermann HH, KR Stoof-Leichsenring (2019)

Sampling and Extraction of Ancient DNA from Sediments.

Methods in molecular biology (Clifton, N.J.), 1963:31-44.

Environmental DNA preserved in sediments is rapidly gaining importance as a tool in paleoecology. Sampling procedures for sedimentary ancient DNA (sedaDNA) have to be well planned to ensure clean subsampling of the inside of sediment cores and avoid introducing contamination. Additionally, ancient DNA extraction protocols may need to be optimized for the recovery of DNA from sediments, which may contain inhibitors. Here we describe procedures for subsampling both nonfrozen and frozen sediment cores, and we describe an efficient method for ancient DNA extraction from such samples.

RevDate: 2019-03-15

Al-Masaudi S, El Kaoutari A, Drula E, et al (2019)

A metagenomics investigation of carbohydrate-active enzymes along the goat and camel intestinal tract.

International microbiology : the official journal of the Spanish Society for Microbiology pii:10.1007/s10123-019-00068-2 [Epub ahead of print].

Studies of the digestive microbiota of ruminant animals most often focus on the bacterial diversity in the rumen or the feces of the animals, but little is known about the diversity and functions of their distal intestine. Here, the bacterial microbiota of the distal intestinal tract of two goats and two camels was investigated by metagenomics techniques. The bacterial taxonomic diversity and carbohydrate-active enzyme profile were estimated for samples taken from the small intestine, the large intestine, and the rectum of each animal. The bacterial diversity and abundance in the small intestine were lower than in the rectal and large intestinal samples. Analysis of the carbohydrate-active enzyme profiles at each site revealed a comparatively low abundance of enzymes targeting xylan and cellulose in all animals examined, similar to what has been reported earlier for sheep and therefore suggesting that plant cell wall digestion probably takes place elsewhere, such as in the rumen.

RevDate: 2019-03-15

Zhang M, Hill JE, Fernando C, et al (2019)

Respiratory viruses identified in western Canadian beef cattle by metagenomic sequencing and their association with bovine respiratory disease.

Transboundary and emerging diseases [Epub ahead of print].

Bovine respiratory disease (BRD) causes considerable economic losses in North America. The pathogenesis involves interactions between bacteria, viruses, environment and management factors. Primary viral infection can increase the risk of secondary fatal bacterial infection. The objective of this study was to use metagenomic sequencing to characterize the respiratory viromes of paired nasal swabs and tracheal washes from western Canadian feedlot cattle, with or without BRD. A total of 116 cattle (116 nasal swabs and 116 tracheal washes) were analyzed. The presence of influenza D virus (IDV), bovine rhinitis A virus (BRAV), bovine rhinitis B virus (BRBV), bovine coronavirus (BCV) and bovine respiratory syncytial virus (BRSV) was associated with BRD. Agreement between identification of viruses in nasal swabs and tracheal washes was generally weak, indicating that sampling location may affect detection of infection. This study reported several viruses for the first time in Canada and provides a basis for further studies investigating candidate viruses important to the prevention of BRD. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-15

Thomas F, Corre E, A Cébron (2019)

Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil.

The ISME journal pii:10.1038/s41396-019-0394-z [Epub ahead of print].

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.

RevDate: 2019-03-15

Fones EM, Colman DR, Kraus EA, et al (2019)

Physiological adaptations to serpentinization in the Samail Ophiolite, Oman.

The ISME journal pii:10.1038/s41396-019-0391-2 [Epub ahead of print].

Hydration of ultramafic rock during the geologic process of serpentinization can generate reduced substrates that microorganisms may use to fuel their carbon and energy metabolisms. However, serpentinizing environments also place multiple constraints on microbial life by generating highly reduced hyperalkaline waters that are limited in dissolved inorganic carbon. To better understand how microbial life persists under these conditions, we performed geochemical measurements on waters from a serpentinizing environment and subjected planktonic microbial cells to metagenomic and physiological analyses. Metabolic potential inferred from metagenomes correlated with fluid type, and genes involved in anaerobic metabolisms were enriched in hyperalkaline waters. The abundance of planktonic cells and their rates of utilization of select single-carbon compounds were lower in hyperalkaline waters than alkaline waters. However, the ratios of substrate assimilation to dissimilation were higher in hyperalkaline waters than alkaline waters, which may represent adaptation to minimize energetic and physiologic stress imposed by highly reducing, carbon-limited conditions. Consistent with this hypothesis, estimated genome sizes and average oxidation states of carbon in inferred proteomes were lower in hyperalkaline waters than in alkaline waters. These data suggest that microorganisms inhabiting serpentinized waters exhibit a unique suite of physiological adaptations that allow for their persistence under these polyextremophilic conditions.

RevDate: 2019-03-15

Perz AI, Giles CB, Brown CA, et al (2019)

MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations.

BMC bioinformatics, 20(Suppl 2):96 pii:10.1186/s12859-019-2623-x.

BACKGROUND: The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance.

RESULTS: We propose a novel framework for comparing microbial shifts between conditions. Using data from one of the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance vectors for microbes using experimental condition information provided with the AGP metadata, such as patient age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts.

CONCLUSIONS: Without comparison to prior data, it is difficult for experimentalists to know if their observed changes in species abundance have been observed by others, both in their conditions and in others they would never consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift. We've proposed and tested an algorithmic solution to this problem, which also allows for comparing the metagenomic signature shifts between conditions in the existing body of data.

RevDate: 2019-03-15

Thrash A, Arick M, Barbato RA, et al (2019)

Keanu: a novel visualization tool to explore biodiversity in metagenomes.

BMC bioinformatics, 20(Suppl 2):103 pii:10.1186/s12859-019-2629-4.

BACKGROUND: One of the main challenges when analyzing complex metagenomics data is the fact that large amounts of information need to be presented in a comprehensive and easy-to-navigate way. In the process of analyzing FASTQ sequencing data, visualizing which organisms are present in the data can be useful, especially with metagenomics data or data suspected to be contaminated. Here, we describe the development and application of a command-line tool, Keanu, for visualizing and exploring sample content in metagenomics data. We developed Keanu as an interactive tool to make viewing complex data easier.

RESULTS: Keanu, a tool for exploring sequence content, helps a user to understand the presence and abundance of organisms in a sample by analyzing alignments against a database that contains taxonomy data and displaying them in an interactive web page. The content of a sample can be presented either as a collapsible tree, with node size indicating abundance, or as a bilevel partition graph, with arc size indicating abundance. Here, we illustrate how Keanu works by exploring shotgun metagenomics data from a sample collected from a bluff that contained paleosols and a krotovina in an alpine site in Ft. Greely, Alaska.

CONCLUSIONS: Keanu provides a simple means by which researchers can explore and visualize species present in sequence data generated from complex communities and environments. Keanu is written in Python and is freely available at .

RevDate: 2019-03-15

Gurwara S, Ajami NJ, Jang A, et al (2019)

Dietary Nutrients Involved in One-Carbon Metabolism and Colonic Mucosa-Associated Gut Microbiome in Individuals with an Endoscopically Normal Colon.

Nutrients, 11(3): pii:nu11030613.

One carbon (1C) metabolism nutrients influence epigenetic regulation and they are supplied by diet and synthesized by gut microbiota. We examined the association between dietary consumption of methyl donors (methionine, betaine and choline) and B vitamins (folate, B2, B6, and B12) and the community composition and structure of the colonic mucosa-associated gut microbiota determined by 16S rRNA gene sequencing in 97 colonic biopsies of 35 men. We used the food frequency questionnaire to assess daily consumption of nutrients, and the UPARSE and SILVA databases for operational taxonomic unit classification. The difference in bacterial diversity and taxonomic relative abundance were compared between low versus high consumption of these nutrients. False discover rate (FDR) adjusted p value < 0.05 indicated statistical significance. The bacterial richness and composition differed significantly by the consumption of folate and B vitamins (p < 0.001). Compared with higher consumption, a lower consumption of these nutrients was associated with a lower abundance of Akkermansia (folate), Roseburia (vitamin B2), and Faecalibacterium (vitamins B2, B6, and B12) but a higher abundance of Erysipelatoclostridium (vitamin B2) (FDR p values < 0.05). The community composition and structure of the colonic bacteria differed significantly by dietary consumption of folate and B vitamins.

RevDate: 2019-03-15

Lin JH, Wu ZY, Gong L, et al (2019)

Complex Microbiome in Brain Abscess Revealed by Whole-Genome Culture-Independent and Culture-Based Sequencing.

Journal of clinical medicine, 8(3): pii:jcm8030351.

Brain abscess is a severe infectious disease with high mortality and mobility. Although culture-based techniques have been widely used for the investigation of microbial composition of brain abscess, these approaches are inherent biased. Recent studies using 16S ribosomal sequencing approaches revealed high complexity of the bacterial community involved in brain abscess but fail to detect fungal and viral composition. In the study, both culture-independent nanopore metagenomic sequencing and culture-based whole-genome sequencing using both the Illumina and the Nanopore platforms were conducted to investigate the microbial composition and genomic characterization in brain abscess. Culture-independent metagenomic sequencing revealed not only a larger taxonomic diversity of bacteria but also the presence of fungi and virus communities. The culture-based whole-genome sequencing identified a novel species in Prevotella and reconstructs a Streptococcus constellatus with a high GC-skew genome. Antibiotic-resistance genes CfxA and ErmF associated with resistance to penicillin and clindamycin were also identified in culture-based and culture-free sequencing. This study implies current understanding of brain abscess need to consider the broader diversity of microorganisms.

RevDate: 2019-03-15
CmpDate: 2019-03-15

Waseem H, Jameel S, Ali J, et al (2019)

Contributions and Challenges of High Throughput qPCR for Determining Antimicrobial Resistance in the Environment: A Critical Review.

Molecules (Basel, Switzerland), 24(1): pii:molecules24010163.

Expansion in whole genome sequencing and subsequent increase in antibiotic resistance targets have paved the way of high throughput qPCR (HT-qPCR) for analyzing hundreds of antimicrobial resistance genes (ARGs) in a single run. A meta-analysis of 51 selected studies is performed to evaluate ARGs abundance trends over the last 7 years. WaferGenTM SmartChip is found to be the most widely used HT-qPCR platform among others for evaluating ARGs. Up till now around 1000 environmental samples (excluding biological replicates) from different parts of the world have been analyzed on HT-qPCR. Calculated detection frequency and normalized ARGs abundance (ARGs/16S rRNA gene) reported in gut microbiome studies have shown a trend of low ARGs as compared to other environmental matrices. Disparities in the HT-qPCR data analysis which are causing difficulties to researchers in precise interpretation of results have been highlighted and a possible way forward for resolving them is also suggested. The potential of other amplification technologies and point of care or field deployable devices for analyzing ARGs have also been discussed in the review. Our review has focused on updated information regarding the role, current status and future perspectives of HT-qPCR in the field of antimicrobial resistance.

RevDate: 2019-03-15
CmpDate: 2019-03-15

Wang J, Chen L, Zhao N, et al (2018)

Of genes and microbes: solving the intricacies in host genomes.

Protein & cell, 9(5):446-461.

Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.

RevDate: 2019-03-15
CmpDate: 2019-03-15

Jiang J, Song Z, Yang X, et al (2017)

Microbial community analysis of apple rhizosphere around Bohai Gulf.

Scientific reports, 7(1):8918.

Bohai Gulf is the main area for apple tree cultivation in China. Consecutive replanting significantly affects the yield and quality of apple trees in this area. Microecological imbalance in apple trees' rhizospheres caused by variation in the soil microbial community is considered the primary cause of apple replant disease (ARD). This study analysed the microbial communities of the rhizospheres of perennial apple trees (PAT) and apple tree saplings under replanting (ATS) around Bohai Gulf using high-throughput sequencing. The results revealed increased populations of typical pathogenic fungi Verticillium and bacteria Xanthomonadaceae, and decreased populations of beneficial bacterial populations Pseudomonas and Bacillus with replanting, suggesting that competition between pathogens and beneficial microbes varies according to the ratio of pathogens to beneficial microbes in rhizosphere soil under the replanting system. Meanwhile, replanting was accompanied by an increase in the antagonistic bacteria Arthrobacter and fungus Chaetomium, suggesting that increased numbers of pathogens can lead to more instances of antagonism. Redundancy analysis (RDA) revealed site position and the main soil properties (pH, organic matter, available N, available K, available P, and moisture) affected the microbial community composition. It found clear differences in soil microbial communities and demonstrated a better understanding of the causes for ARD.

RevDate: 2019-03-15
CmpDate: 2019-03-15

Nakagawa S, Saito H, Tame A, et al (2017)

Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon.

Scientific reports, 7(1):8764.

Marine invertebrates associate with diverse microorganisms. Microorganisms even inhabit coelomic fluid (CF), namely, the fluid filling the main body cavity of echinoderms. The CF microbiota potentially impacts host health and disease. Here, we analysed the CF microbiota in two common coastal starfish species, Patiria pectinifera and Asterias amurensis. Although microbial community structures were highly variable among individual starfish, those of P. pectinifera were compositionally similar to those in the surrounding seawater. By contrast, many A. amurensis individuals harboured unique microbes in the CF, which was dominated by the unclassified Thiotrichales or previously unknown Helicobacter-related taxon. In some individuals, the Helicobacter-related taxon was the most abundant genus-level taxon, accounting for up to 97.3% of reads obtained from the CF microbial community. Fluorescence in situ hybridization using a Helicobacter-related-taxon-specific probe suggested that probe-reactive cells in A. amurensis were spiral-shaped, morphologically similar to known Helicobacter species. Electron microscopy revealed that the spiral cells had a prosthecate-like polar appendage that has never been reported in Helicobacter species. Although culture of Helicobacter-related taxon was unsuccessful, this is the first report of the dominance of a Helicobacter-related taxon in invertebrates and non-digestive organs, reshaping our knowledge of the phylogeography of Helicobacter-related taxa.

RevDate: 2019-03-15
CmpDate: 2019-03-15

Fang D, Shi D, Lv L, et al (2017)

Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota.

Scientific reports, 7(1):8770.

The gut microbiota is altered in liver diseases, and several probiotics have been shown to reduce the degree of liver damage. We hypothesized that oral administration of specific Bifidobacterium strains isolated from healthy guts could attenuate liver injury. Five strains were tested in this study. Acute liver injury was induced by D-galactosamine after pretreating Sprague-Dawley rats with the Bifidobacterium strains, and liver function, liver and ileum histology, plasma cytokines, bacterial translocation and the gut microbiome were assessed. Two strains, Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10, conferred liver protection, as well as alleviated the increase in plasma M-CSF, MIP-1α and MCP-1 and bacterial translocation. They also ameliorated ileal mucosal injury and gut flora dysbiosis, especially the enrichment of the opportunistic pathogen Parasutterella and the depletion of the SCFA-producing bacteria Anaerostipes, Coprococcus and Clostridium XI. Negative correlations were found between MIP-1α / MCP-1 and Odoribacter (LI09 group) and MIP-1α / M-CSF and Flavonifractor (LI10 group). Our results indicate that the liver protection effects might be mediated through gut microbiota modification, which thus affect the host immune profile. The desirable characteristics of these two strains may enable them to serve as potential probiotics for the prevention or adjuvant treatment of liver injury.

RevDate: 2019-03-14

Liu ZX, Xu J, Sun W, et al (2019)

[Application of DNA metabarcoding in species identification of Chinese herbal medicines].

Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 44(1):1-8.

DNA metabarcoding,one rapid and robust method using specific standard DNA fragments,has been widely used for rapid species identification of a bulk sample through high-throughput sequencing technologies.While it has been widely used in the studies of metagenomics,animal and plant biodiversity,it has gradually come to be used as a profitable method in species identification of mixed Chinese herbal medicines.In this paper,we mainly summarize the current studies of the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines.Moreover,high-throughput sequencing technologies adopted in those studies,such as Sanger,the next-generation,and third-generation sequencing technologies,are discussed.It is conducted to provide a theoretical guidance for the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines and in more other biodiversity studies.

RevDate: 2019-03-14

Smith AR, Kieft B, Mueller R, et al (2019)

Carbon fixation and energy metabolisms of a subseafloor olivine biofilm.

The ISME journal pii:10.1038/s41396-019-0385-0 [Epub ahead of print].

Earth's largest aquifer ecosystem resides in igneous oceanic crust, where chemosynthesis and water-rock reactions provide the carbon and energy that support an active deep biosphere. The Calvin Cycle is the predominant carbon fixation pathway in cool, oxic, crust; however, the energy and carbon metabolisms in the deep thermal basaltic aquifer are poorly understood. Anaerobic carbon fixation pathways such as the Wood-Ljungdahl pathway, which uses hydrogen (H2) and CO2, may be common in thermal aquifers since water-rock reactions can produce H2 in hydrothermal environments and bicarbonate is abundant in seawater. To test this, we reconstructed the metabolisms of eleven bacterial and archaeal metagenome-assembled genomes from an olivine biofilm obtained from a Juan de Fuca Ridge basaltic aquifer. We found that the dominant carbon fixation pathway was the Wood-Ljungdahl pathway, which was present in seven of the eight bacterial genomes. Anaerobic respiration appears to be driven by sulfate reduction, and one bacterial genome contained a complete nitrogen fixation pathway. This study reveals the potential pathways for carbon and energy flux in the deep anoxic thermal aquifer ecosystem, and suggests that ancient H2-based chemolithoautotrophy, which once dominated Earth's early biosphere, may thus remain one of the dominant metabolisms in the suboceanic aquifer today.

RevDate: 2019-03-14

Amato P, Besaury L, Joly M, et al (2019)

Metatranscriptomic exploration of microbial functioning in clouds.

Scientific reports, 9(1):4383 pii:10.1038/s41598-019-41032-4.

Clouds constitute the uppermost layer of the biosphere. They host diverse communities whose functioning remains obscure, although biological activity potentially participates to atmospheric chemical and physical processes. In order to gain information on the metabolic functioning of microbial communities in clouds, we conducted coordinated metagenomics/metatranscriptomics profiling of cloud water microbial communities. Samples were collected from a high altitude atmospheric station in France and examined for biological content after untargeted amplification of nucleic acids. Living microorganisms, essentially bacteria, maintained transcriptional and translational activities and expressed many known complementary physiological responses intended to fight oxidants, osmotic variations and cold. These included activities of oxidant detoxification and regulation, synthesis of osmoprotectants/cryoprotectants, modifications of membranes, iron uptake. Consistently these energy-demanding processes were fueled by central metabolic routes involved in oxidative stress response and redox homeostasis management, such as pentose phosphate and glyoxylate pathways. Elevated binding and transmembrane ion transports demonstrated important interactions between cells and their cloud droplet chemical environments. In addition, polysaccharides, potentially beneficial for survival like exopolysaccharides, biosurfactants and adhesins, were synthesized. Our results support a biological influence on cloud physical and chemical processes, acting notably on the oxidant capacity, iron speciation and availability, amino-acids distribution and carbon and nitrogen fates.

RevDate: 2019-03-14

Tu P, Gao B, Chi L, et al (2019)

Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice.

Scientific reports, 9(1):4363 pii:10.1038/s41598-019-40776-3.

The gut microbiota critically confers various health benefits, whereas environmental chemicals can affect its constitution and functionality thereby increasing disease risk. In the present study, we aim to evaluate the toxic effects of a wildly-used herbicide 2,4-D (2,4-dichlorophenoxyacetic acid) on the gut microbiome and host using an occupationally relevant dose. A mouse model was used combined with metagenomic sequencing and metabolomic profiling to examine the alterations induced by subchronic low-dose 2,4-D exposure in fecal and plasma samples. The metagenomics results revealed a distinct gut microbial community with profound changes in diverse microbial pathways including urea degradation, amino acid and carbohydrate metabolism in 2,4-D-treated mice. Moreover, the metabolomics results revealed that the metabolic profiles in treatment group were differentiated from control group in both fecal and plasma samples. Toxic effects on the host of 2,4-D at an occupationally relevant dose were observed indicated by decreased acylcarnitine levels in plasma. These findings indicated that 2,4-D can cause toxicity and substantially impact the gut microbiome in mice at occupationally relevant doses, inferring that the relationship between environmental contaminants and microbiota is largely underestimated calling for more comprehensive consideration of the toxicity of occupational exposures.

RevDate: 2019-03-14

Chong R, Shi M, Grueber CE, et al (2019)

Fecal viral diversity of captive and wild Tasmanian devils characterized using virion-enriched metagenomics and meta-transcriptomics.

Journal of virology pii:JVI.00205-19 [Epub ahead of print].

The Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumour disease (DFTD). While research on DFTD has been extensive, little is known about viruses in devils, and whether any are of potential conservation relevance for this endangered species. Using both metagenomics based on virion enrichment and sequence-independent amplification (virion-enriched metagenomics) and meta-transcriptomics based on bulk RNA sequencing, we characterized and compared the fecal viromes of captive and wild devils. A total of 54 fecal samples collected from 2 captive and 4 wild populations were processed for virome characterization using both approaches. In total, 24 novel marsupial-related viruses, comprising a sapelovirus, astroviruses, rotaviruses, picobirnaviruses, parvoviruses, papillomaviruses, polyomaviruses and a gammaherpesvirus were identified, as well as known mammalian pathogens such as rabbit haemorrhagic disease virus 2. Captive devils showed significantly lower viral diversity than wild devils. Comparison of the two virus discovery approaches revealed substantial differences in the number and types of viruses detected, with meta-transcriptomics better suited for RNA viruses and virion-enriched metagenomics largely identifying more DNA viruses. Thus, the viral communities revealed by virion-enriched metagenomics and meta-transcriptomics were not interchangeable and neither approach was able to detect all viruses present. An integrated approach using both virion-enriched metagenomics and meta-transcriptomics constitutes a powerful tool for obtaining a complete overview of both the taxonomic and functional profiles of viral communities within a sample.Importance: The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumour disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (DaHV-2), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and meta-transcriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities.

RevDate: 2019-03-14

Das P, Babaei P, J Nielsen (2019)

Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome.

BMC genomics, 20(1):208 pii:10.1186/s12864-019-5591-7.

BACKGROUND: Human gut microbial communities have been known to produce vitamins, which are subsequently absorbed by the host in the large intestine. However, the relationship between species with vitamin pathway associated functional features or their gene abundance in different states of health and disease is lacking. Here, we analyzed shotgun fecal metagenomes of individuals from four different countries for genes that are involved in vitamin biosynthetic pathways and transport mechanisms and corresponding species' abundance.

RESULTS: We found that the prevalence of these genes were found to be distributed across the dominant phyla of gut species. The number of positive correlations were high between species harboring genes related to vitamin biosynthetic pathways and transporter mechanisms than that with either alone. Although, the range of total gene abundances remained constant across healthy populations at the global level, species composition and their presence for metabolic pathway related genes determine the abundance and functional genetic content of vitamin metabolism. Based on metatranscriptomics data, the equation between abundance of vitamin-biosynthetic enzymes and vitamin-dependent enzymes suggests that the production and utilization potential of these enzymes seems way more complex usage allocations than just mere direct linear associations.

CONCLUSIONS: Our findings provide a rationale to examine and disentangle the interrelationship between B-vitamin dosage (dietary or microbe-mediated) on gut microbial members and the host, in the gut microbiota of individuals with under- or overnutrition.

RevDate: 2019-03-14

Li J, Cui L, Deng X, et al (2019)

Canine bufavirus in faeces and plasma of dogs with diarrhoea, China.

Emerging microbes & infections, 8(1):245-247.

RevDate: 2019-03-14

Park H, Laffin MR, Jovel J, et al (2019)

The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor: a retrospective cohort study.

Gut microbes [Epub ahead of print].

BACKGROUND: Fecal microbial transplantation (FMT) is used in the treatment of relapsing Clostridium difficile infection (rCDI). Failure rate for FMT is as high as 10% but the mechanisms contributing to a failed FMT are not understood. We utilized metagenomic data to identify the role of bacteria and bacteriophages on FMT success.

RESULTS: Subjects with rCDI (n = 19) received FMT from volunteer donors (n = 7) via colonoscopy. Twelve patients fully recovered after a single FMT, while seven patients required a subsequent FMT. DNA was extracted from patient and donor stool samples for shotgun metagenomic analysis. Metagenomics libraries were analyzed focusing on bacterial taxonomy and bacteriophage sequences. Gammaproteobacteria were dominant in rCDI patients prior to FMT largely due to elevated levels of Klebsiella and Escherichia. A successful FMT led to increased levels of Clostridia and Bacteroidia and a reduction in Gammaproteobacteria. In contrast, a failed FMT led to no significant changes in bacterial composition. Bacteriophages were classified during whole metagenomic analysis of each sample and were markedly different between rCDI patients, donors, and a healthy control cohort (n = 96). Bacteriophage sequence reads were increased in CDI patients compared with donors and healthy controls. Successful FMT donors had higher bacteriophage α-diversity and lower relative abundance compared to the donors of a failed initial FMT.

CONCLUSIONS: In this retrospective analysis, FMTs with increased bacteriophage α-diversity were more likely to successfully treat rCDI. In addition, the relative number of bacteriophage reads was lower in donations leading to a successful FMT. These results suggest that bacteriophage abundance may have some role in determining the relative success of FMT.

RevDate: 2019-03-14

François S, Mutuel D, Duncan AB, et al (2019)

A New Prevalent Densovirus Discovered in Acari. Insight from Metagenomics in Viral Communities Associated with Two-Spotted Mite (Tetranychus urticae) Populations.

Viruses, 11(3): pii:v11030233.

Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.

RevDate: 2019-03-14

Amor Stander E, Williams W, Rautenbach F, et al (2019)

Visualization of Aspalathin in Rooibos (Aspalathus linearis) Plant and Herbal Tea Extracts Using Thin-Layer Chromatography.

Molecules (Basel, Switzerland), 24(5): pii:molecules24050938.

Aspalathin, the main polyphenol of rooibos (Aspalathus linearis), is associated with diverse health promoting properties of the tea. During fermentation, aspalathin is oxidized and concentrations are significantly reduced. Standardized methods for quality control of rooibos products do not investigate aspalathin, since current techniques of aspalathin detection require expensive equipment and expertise. Here, we describe a simple and fast thin-layer chromatography (TLC) method that can reproducibly visualize aspalathin in rooibos herbal tea and plant extracts at a limit of detection (LOD) equal to 178.7 ng and a limit of quantification (LOQ) equal to 541.6 ng. Aspalathin is a rare compound, so far only found in A. linearis and its (rare) sister species A. pendula. Therefore, aspalathin could serve as a marker compound for authentication and quality control of rooibos products, and the described TLC method represents a cost-effective approach for high-throughput screening of plant and herbal tea extracts.

RevDate: 2019-03-14
CmpDate: 2019-03-14

Procopio N, Ghignone S, Williams A, et al (2019)

Metabarcoding to investigate changes in soil microbial communities within forensic burial contexts.

Forensic science international. Genetics, 39:73-85.

The estimation of the time elapsed since death (post-mortem interval, or PMI) is one of the key themes that forensic scientists have to address frequently. However, the estimation of PMI still suffers from poor accuracy and biases especially when decomposition stages are prolonged, so further improvements in methods for PMI estimation are desirable. Soil microbial communities associated with decomposing bodies have been shown to be good candidates for the estimation of the PMI of exposed bodies. Nevertheless, further research is required to better understand the bacterial succession associated with decomposition of buried carcasses in order to test its reliability and applicability for the estimation of PMI and to better understand the dynamics involved with decomposition within this particular scenario. Therefore we explored the succession of soil microbial communities associated with four decomposing pig carcasses (from one to six months PMI) using a metabarcoding approach. The sequencing of the bacterial 16S rRNA variable region 4 (V4) revealed trends linking particular microbial taxa with specific PMIs, and notably an increase in Proteobacteria, Firmicutes and Bacteroidetes at specific PMIs as well as a decrease in Acidobacteria. Our results, in accordance with previous studies conducted on exposed bodies of different mammalian species (including humans), also showed a general reduction of the taxonomic richness from two months PMI onwards, as well as an incomplete re-establishment of the starting soil microbial conditions after six months PMI. We also found specific mammal-derived taxa, such as Bacteroides spp., being still present in the soil after six months PMI. As such, this study serves as a baseline for additional research to allow the characterisation of biomarkers associated with specific PMIs. Due to the similarity between the results presented here and those reported in other types of decomposition studies we believe that the metabarcoding approach has considerable potential in the estimation of the PMI, particularly to clarify cases involving heavily skeletonised bodies or for the investigation of clandestine graves in which the carcass has been moved from its original place of deposition.

RevDate: 2019-03-14
CmpDate: 2019-03-14

Shoko R, Manasa J, Maphosa M, et al (2018)

Strategies and opportunities for promoting bioinformatics in Zimbabwe.

PLoS computational biology, 14(11):e1006480 pii:PCOMPBIOL-D-18-00568.

RevDate: 2019-03-13

Zhang W, Gu J, Li Y, et al (2019)

New Insights into Sediment Transport in Interconnected River-Lake Systems Through Tracing Microorganisms.

Environmental science & technology [Epub ahead of print].

A growing awareness of the wider environmental significance of diffuse sediment pollution in interconnected river-lake systems has generated the need for reliable provenance information. Owing to their insufficient ability to distinguish between multiple sources, common sediment source apportionment methods would rarely be a practical solution. Based on the inseparable relationships between sediment and adsorbed microorganisms, community-based microbial source tracking may be a novel method of identifying dominant sediment sources in the era of high-throughput sequencing. Dongting Lake was selected as a study area as it receives considerable sediment import from its inflowing rivers during the flood season. This study was conducted to characterize the bacterial community composition of sediment samples from the inflow-river estuaries and quantify their sediment microbe contributions to the central lake. Metagenomic analysis revealed that the community compositions of source sediment samples were significantly different, allowing specific sources to be identified with the machine learning classification program SourceTracker. Modified analysis using SourceTracker found that the major contributors to three major lake districts were the Songzi, Zishui, and Xinqiang Rivers. The impacts of hydrodynamic conditions on source apportionment were further verified, and suggested the practicability of this method to offer a systematic and comprehensive understanding of sediment sources, pathways, and transport dynamics. Finally, a novel framework for sediment source-tracking was established to develop effective sediment management and control strategies in river-lake systems.

RevDate: 2019-03-13

Gürsoy G, Harmanci A, Tang H, et al (2019)

When Biology Gets Personal: Hidden Challenges of Privacy and Ethics in Biological Big Data.

Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 24:386-390.

High-throughput technologies for biological data acquisition are advancing at an increasing pace. Most prominently, the decreasing cost of DNA sequencing has led to an exponential growth of sequence information, including individual human genomes. This session of the 2019 Pacific Symposium on Biocomputing presents the distinctive privacy and ethical challenges related to the generation, storage, processing, study, and sharing of individuals' biological data generated by multitude of technologies including but not limited to genomics, proteomics, metagenomics, bioimaging, biosensors, and personal health trackers. The mission is to bring together computational biologists, experimental biologists, computer scientists, ethicists, and policy and lawmakers to share ideas, discuss the challenges related to biological data and privacy.

RevDate: 2019-03-13

Han W, Y Ye (2019)

A repository of microbial marker genes related to human health and diseases for host phenotype prediction using microbiome data.

Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 24:236-247.

The microbiome research is going through an evolutionary transition from focusing on the characterization of reference microbiomes associated with different environments/hosts to the translational applications, including using microbiome for disease diagnosis, improving the effcacy of cancer treatments, and prevention of diseases (e.g., using probiotics). Microbial markers have been identified from microbiome data derived from cohorts of patients with different diseases, treatment responsiveness, etc, and often predictors based on these markers were built for predicting host phenotype given a microbiome dataset (e.g., to predict if a person has type 2 diabetes given his or her microbiome data). Unfortunately, these microbial markers and predictors are often not published so are not reusable by others. In this paper, we report the curation of a repository of microbial marker genes and predictors built from these markers for microbiome-based prediction of host phenotype, and a computational pipeline called Mi2P (from Microbiome to Phenotype) for using the repository. As an initial effort, we focus on microbial marker genes related to two diseases, type 2 diabetes and liver cirrhosis, and immunotherapy efficacy for two types of cancer, non-small-cell lung cancer (NSCLC) and renal cell carcinoma (RCC). We characterized the marker genes from metagenomic data using our recently developed subtractive assembly approach. We showed that predictors built from these microbial marker genes can provide fast and reasonably accurate prediction of host phenotype given microbiome data. As understanding and making use of microbiome data (our second genome) is becoming vital as we move forward in this age of precision health and precision medicine, we believe that such a repository will be useful for enabling translational applications of microbiome data.

RevDate: 2019-03-13

Zhang Y, Zhao R, Shi D, et al (2019)

Characterization of the Circulating Microbiome in Acute-on-chronic Liver Failure Associated with Hepatitis B.

Liver international : official journal of the International Association for the Study of the Liver [Epub ahead of print].

BACKGROUND: Patients with hepatitis B-related acute-on-chronic liver failure (HB-ACLF) may have an increased circulating microbial burden. This study aimed to assess circulating microbial load and composition and to explore the association between the circulating microbiome and both systemic inflammation and clinical outcome in HB-ACLF.

METHODS: Plasma from 50 HB-ACLF patients, 23 healthy controls (HCs) and 25 patients with compensated liver cirrhosis (C-LC) was analyzed for chemokines/cytokines and bacterial DNA and further analysed by 16S rDNApyrosequencing. Linear discriminant analysis effect size (LEfSe) and inferred metagenomics analyses were performed.

RESULTS: The circulating bacterial DNA was significantly increased in HB-ACLF patients compared to that in the control groups. The overall microbial diversity was significantly decreased in HB-ACLF patients. HB-ACLF patients were enriched with Moraxellaceae, Sulfurovum, Comamonas, and Burkholderiaceae but were depleted in Actinobacteria, Deinococcus-Thermus, Alphaproteobacteria, Xanthomonadaceae and Enterobacteriaceae compared to controls. Networkanalysis revealed a direct positive correlation between Burkholderiaceae and chemokine IP-10 in HB-ACLF patients. The relative abundance of Prevotellaceae independently predicted 28-day mortality. Inferred functional metagenomics predicted an enrichment of bacteria with genes related to methane, alanine, aspartate, glutamate, pyrimidine, purine and energy metabolism.

CONCLUSIONS: HB-ACLF patients display increased circulating microbial burden, altered microbiome composition and a shift in microbiome functionality. The alteration in circulating microbiota is associated with systemic inflammation (SI) and clinical outcome in HB-ACLF. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-13

Iyer LR, Verma AK, Paul J, et al (2019)

Phagocytosis of Gut Bacteria by Entamoeba histolytica.

Frontiers in cellular and infection microbiology, 9:34.

The protist parasite Entamoeba histolytica causes amoebiasis, a major public health problem in developing countries. Only a small fraction of patients infected with the parasite display invasive disease involving colon or extra intestinal tissues such as liver. E. histolytica exists as two distinct forms, cysts, the infective form, and trophozoites, that are responsible for disease pathology. The latter multiply in the large intestine occasionally causing disease. The large intestine in humans is populated by a number of different bacterial communities and amoebic cells grow in their midst using some as food material. Several studies have shown relationship between bacteria and E. histolytica growth and virulence. However, an understanding of this relationship in human gut environment is not clear. We have investigated the possibility that there may be specific interaction of amoeba with different bacteria present in the gut environment by using a metagenomic pipe line. This was done by incubating bacteria isolated from human fecal material with E. histolytica and then identifying the bacterial population isolated from amoebic cells using a rRNA based metagenomic approach. Our results show that the parasite prefers a few bacterial species. One of these species is Lactobacillus ruminus which has never shown to be associated with E. histolytica.

RevDate: 2019-03-13

Gupta V, Singh I, Kumar P, et al (2019)

A hydrolase with esterase activity expressed from a fosmid gene bank prepared from DNA of a North West Himalayan glacier frozen soil sample.

3 Biotech, 9(3):107.

Screening of 20,000 clones of a fosmid gene bank, constructed from DNA extracted from North West Himalaya (NWH) glacier soil sample, using functional approach identified 10 esterase/lipase-producing clones. Of these, a clone designated pFG43 with an insert size of 45 kb which produced the highest concentration of enzyme (467.43 U/mg) was sequenced. Clone pFG43 contained 61 open reading frames (ORF) and of these an ORF of 1155 bp designated ME-003, was found to be closely related to a hydrolase from Acidobacteria sps (77% sequence identity and E value = 1e-164) and subsequently identified as a putative cocaine esterase. ORF ME-003 was amplified and sub-cloned using a TA vector system into E. coli (DH5α). The purified recombinant enzyme with a molecular weight of 43 kDa had optimal activity at 40 °C, pH 6 and the highest activity with shorter chain fatty acids than with higher chain length fatty acids. There is insignificant effect of inhibitors on the enzyme activity of ME-003, except PMSF which completely inhibited its activity. ME-003 activity was also inhibited in the presence of copper oxide but remained stable in presence of other metal ions. The enzyme activity was also inhibited in the presence of organic solvents; however, in the presence of 10% isopropanol, 12% of enzymatic activity was retained. Among various detergents, SDS completely inhibited enzymatic activity. The recombinant enzyme also shows enantio-specific activity against the racemic drug intermediates/precursors and exhibited 90% ee against racemic 1-phenyl ethanol and fluoxetine.

RevDate: 2019-03-13

Klimina KM, Kasianov AS, Poluektova EU, et al (2019)

Employing toxin-antitoxin genome markers for identification of Bifidobacterium and Lactobacillus strains in human metagenomes.

PeerJ, 7:e6554 pii:6554.

Recent research has indicated that in addition to the unique genotype each individual may also have a unique microbiota composition. Difference in microbiota composition may emerge from both its species and strain constituents. It is important to know the precise composition especially for the gut microbiota (GM), since it can contribute to the health assessment, personalized treatment, and disease prevention for individuals and groups (cohorts). The existing methods for species and strain composition in microbiota are not always precise and usually not so easy to use. Probiotic bacteria of the genus Bifidobacterium and Lactobacillus make an essential component of human GM. Previously we have shown that in certain Bifidobacterium and Lactobacillus species the RelBE and MazEF superfamily of toxin-antitoxin (TA) systems may be used as functional biomarkers to differentiate these groups of bacteria at the species and strain levels. We have composed a database of TA genes of these superfamily specific for all lactobacilli and bifidobacteria species with complete genome sequence and confirmed that in all Lactobacillus and Bifidobacterium species TA gene composition is species and strain specific. To analyze composition of species and strains of two bacteria genera, Bifidobacterium and Lactobacillus, in human GM we developed TAGMA (toxin antitoxin genes for metagenomes analyses) software based on polymorphism in TA genes. TAGMA was tested on gut metagenomic samples. The results of our analysis have shown that TAGMA can be used to characterize species and strains of Lactobacillus and Bifidobacterium in metagenomes.

RevDate: 2019-03-13

Yang W, Wang L, Hu Q, et al (2019)

Identification of Bacterial Composition in Freeze-Dried Agaricus bisporus During Storage and the Resultant Odor Deterioration.

Frontiers in microbiology, 10:349.

Moisture absorption and bacterial growth are critical factors for quality deterioration of freeze-dried Agaricus bisporus. In order to explore the bacterial composition and the resultant odor changes in freeze-dried A. bisporus during storage under three typical conditions (RT: 25°C, 55% RH; HT: 37°C, 85% RH; AT: ambient temperature), bacterial diversity and communities were analyzed using metagenomics. Moreover, volatile compounds were determined using SPME-GC-MS. The results demonstrated that the bacterial composition in freeze-dried A. bisporus was dominated by Pseudomonas, followed by Rhizobium and Pedobacter. In addition, Mucilaginibacter, Flavobacterium, and Thermus were a few other genera more dominant in HT samples, Chryseobacterium was the other genera more dominant in AT samples, while, Sphingobacterium and Chryseobacterium were a few other genera more dominant in RT samples. Furthermore, the increase of benzaldehyde content in HT samples may have been induced by the growth of Pseudomonads and the esters production in RT and AT samples might have been induced by Chryseobacterium. This study provided comprehensive information on exogenous bacterial composition and the resultant odor in freeze-dried A. bisporus. These results may be a theoretical basis for quality control and quick quality detection based on volatiles of freeze-dried A. bisporus.

RevDate: 2019-03-13

Takhampunya R, Korkusol A, Pongpichit C, et al (2019)

Metagenomic Approach to Characterizing Disease Epidemiology in a Disease-Endemic Environment in Northern Thailand.

Frontiers in microbiology, 10:319.

In this study, we used a metagenomic approach to analyze bacterial communities from diverse populations (humans, animals, and vectors) to investigate the role of these microorganisms as causative agents of disease in human and animal populations. Wild rodents and ectoparasites were collected from 2014 to 2018 in Nan province, Thailand where scrub typhus is highly endemic. Samples from undifferentiated febrile illness (UFI) patients were obtained from a local hospital. A total of 200 UFI patient samples were obtained and 309 rodents and 420 pools of ectoparasites were collected from rodents (n = 285) and domestic animals (n = 135). The bacterial 16S rRNA gene was amplified and sequenced with the Illumina. Real-time PCR and Sanger sequencing were used to confirm the next-generation sequencing (NGS) results and to characterize pathogen species. Several pathogens were detected by NGS in all populations studied and the most common pathogens identified included Bartonella spp., Rickettsia spp., Leptospira spp., and Orientia tsutsugamushi. Interestingly, Anaplasma spp. was detected in patient, rodent and tick populations, although they were not previously known to cause human disease from this region. Candidatus Neoehrlichia, Neorickettsia spp., Borrelia spp., and Ehrlichia spp. were detected in rodents and their associated ectoparasites. The same O. tsutsugamushi genotypes were shared among UFI patients, rodents, and chiggers in a single district indicating that the chiggers found on rodents were also likely responsible for transmitting to people. Serological testing using immunofluorescence assays in UFI samples showed high prevalence (IgM/IgG) of Rickettsia and Orientia pathogens, most notably among samples collected during September-November. Additionally, a higher number of seropositive samples belonged to patients in the working age population (20-60 years old). The results presented in this study demonstrate that the increased risk of human infection or exposure to chiggers and their associated pathogen (O. tsutsugamushi) resulted in part from two important factors; working age group and seasons for rice cultivation and harvesting. Evidence of pathogen exposure was shown to occur as there was seropositivity (IgG) in UFI patients for bartonellosis as well as for anaplasmosis. Using a metagenomic approach, this study demonstrated the circulation and transmission of several pathogens in the environment, some of which are known causative agents of illness in human populations.

RevDate: 2019-03-13

Advani J, Verma R, Chatterjee O, et al (2019)

Whole Genome Sequencing of Mycobacterium tuberculosis Clinical Isolates From India Reveals Genetic Heterogeneity and Region-Specific Variations That Might Affect Drug Susceptibility.

Frontiers in microbiology, 10:309.

Whole genome sequencing (WGS) of Mycobacterium tuberculosis has been constructive in understanding its evolution, genetic diversity and the mechanisms involved in drug resistance. A large number of sequencing efforts from across the globe have revealed genetic diversity among clinical isolates and the genetic determinants for their resistance to anti-tubercular drugs. Considering the high TB burden in India, the availability of WGS studies is limited. Here we present, WGS results of 200 clinical isolates of M. tuberculosis from North India which are categorized as sensitive to first-line drugs, mono-resistant, multi-drug resistant and pre-extensively drug resistant isolates. WGS revealed that 20% of the isolates were co-infected with M. tuberculosis and non-tuberculous mycobacteria species. We identified 12,802 novel genetic variations in M. tuberculosis isolates including 343 novel SNVs in 38 genes which are known to be associated with drug resistance and are not currently used in the diagnostic kits for detection of drug resistant TB. We also identified M. tuberculosis lineage 3 to be predominant in the northern region of India. Additionally, several novel SNVs, which may potentially confer drug resistance were found to be enriched in the drug resistant isolates sampled. This study highlights the significance of employing WGS in diagnosis and for monitoring further development of MDR-TB strains.

RevDate: 2019-03-13

Allemann A, Kraemer JG, Korten I, et al (2019)

Nasal Resistome Development in Infants With Cystic Fibrosis in the First Year of Life.

Frontiers in microbiology, 10:212.

Polymicrobial infections of the respiratory tract due to antibiotic resistant bacteria are a great concern in patients with cystic fibrosis (CF). We therefore aimed at establishing a functional metagenomic method to analyze the nasal resistome in infants with CF within the first year of life. We included samples from patients before antibiotic treatment, which allowed obtaining information regarding natural status of the resistome. In total, we analyzed 130 nasal swabs from 26 infants with CF and screened for β-lactams (ampicillin, amoxicillin-clavulanic acid, and cefuroxime) and other classes of antibiotic resistances (tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole). For 69 swabs (53% of total), we found at least one non-susceptible phenotype. Analyses of the inserts recovered from non-susceptible clones by nanopore MinION sequencing revealed a large reservoir of resistance genes including mobile elements within the antibiotic naïve samples. Comparing the data of the resistome with the microbiota composition showed that the bacterial phyla and operational taxonomic units (OTUs) of the microbiota rather than the antibiotic treatment were associated with the majority of non-susceptible phenotypes in the resistome. Future studies will reveal if characterization of the resistome can help in clinical decision-making in patients with CF.

RevDate: 2019-03-12

Xu R, Yang ZH, Zheng Y, et al (2019)

Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk.

Bioresource technology, 282:179-188 pii:S0960-8524(19)30328-1 [Epub ahead of print].

Continuous stirred-tank digesters with tetracyclines and sulfonamides were operated to investigate the impacts of antibiotic pressure on sludge anaerobic digestion. The versatile methanogen Methanosarcinales and strictly hydrogenotrophic methanogen Methanobacteriales increased and decreased by 21.1% and 10.9% under antibiotic pressure, respectively. KEGG analysis revealed that hydrogenotrophic and acetoclastic methanogenesis pathways were all affected. The decrease in abundance of function genes involved in lipid metabolism, carbohydrate metabolism, and fatty acid degradation, would lead to a reduction in methane production by 25%. Network analysis indicated positive associations among tetracycline residuals, abundance of resistance genes (ARGs), and specific member of potential hosts. Over 1000 ARG subtypes were widely detected in sludge, including macrolide (28%), tetracycline (24%), fluoroquinolone (20%), and peptide (20%) resistance genes. AD process exposed to long-term antibiotic would increase the diversity and abundance of ARG, enhance the association of ARG with specific microbes, and select bacteria able to perform chemotaxis mechanism.

RevDate: 2019-03-12

Larsen IS, Fritzen AM, Carl CS, et al (2019)

Human Paneth cell α-defensin 5 treatment reverses dyslipidemia and improves glucoregulatory capacity in diet-induced obese mice.

American journal of physiology. Endocrinology and metabolism [Epub ahead of print].

OBJECTIVE: Overnutrition is the principal cause of insulin resistance (IR) and dyslipidemia, which drive non-alcoholic fatty liver disease (NAFLD). Overnutrition is further linked to disrupted bowel function, microbiota alterations and change-of-function in gut-lining cell populations including Paneth cells of the small intestine. Paneth cells regulate microbial diversity through expression of antimicrobial peptides, particularly human alpha-defensin-5 (HD-5), and have shown repressed secretory capacity in human obesity.

METHODS: Mice were fed a 60%HFD for 13 weeks and subsequently treated with physiologically relevant amounts of HD-5 (0,001%) or vehicle for 10 weeks. The glucoregulatory capacity was determined by glucose tolerance tests and measurements of corresponding insulin concentrations both before and during intervention. Gut microbiome composition was examined by 16S rRNA gene amplicon sequencing. Fresh fecal samples were collected immediately before and after intervention. Small intestine samples were harvested at necropsy. Plasma and liver lipid and protein profiles were determined by biochemical analyses.

RESULTS: HD-5 treated mice exhibited improved glucoregulatory capacity along with an ameliorated plasma- and liver lipid profile. This was accompanied by specific decrease in jejunal inflammation and gut microbiota alterations including increased Bifidobacterium abundances, whichcorrelated inversely with metabolic dysfunctions.

CONCLUSION: This study provides proof-of-concept for the use of human defensins to improve host metabolism by mitigating the triad cluster of dyslipidemia, IR and NAFLD.

RevDate: 2019-03-12

Wang Z, Wang Y, Fuhrman JA, et al (2019)

Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences.

Briefings in bioinformatics pii:5371422 [Epub ahead of print].

In metagenomic studies of microbial communities, the short reads come from mixtures of genomes. Read assembly is usually an essential first step for the follow-up studies in metagenomic research. Understanding the power and limitations of various read assembly programs in practice is important for researchers to choose which programs to use in their investigations. Many studies evaluating different assembly programs used either simulated metagenomes or real metagenomes with unknown genome compositions. However, the simulated datasets may not reflect the real complexities of metagenomic samples and the estimated assembly accuracy could be misleading due to the unknown genomes in real metagenomes. Therefore, hybrid strategies are required to evaluate the various read assemblers for metagenomic studies. In this paper, we benchmark the metagenomic read assemblers by mixing reads from real metagenomic datasets with reads from known genomes and evaluating the integrity, contiguity and accuracy of the assembly using the reads from the known genomes. We selected four advanced metagenome assemblers, MEGAHIT, MetaSPAdes, IDBA-UD and Faucet, for evaluation. We showed the strengths and weaknesses of these assemblers in terms of integrity, contiguity and accuracy for different variables, including the genetic difference of the real genomes with the genome sequences in the real metagenomic datasets and the sequencing depth of the simulated datasets. Overall, MetaSPAdes performs best in terms of integrity and continuity at the species-level, followed by MEGAHIT. Faucet performs best in terms of accuracy at the cost of worst integrity and continuity, especially at low sequencing depth. MEGAHIT has the highest genome fractions at the strain-level and MetaSPAdes has the overall best performance at the strain-level. MEGAHIT is the most efficient in our experiments. Availability: The source code is available at

RevDate: 2019-03-12

Watanabe T, Kojima H, Umezawa K, et al (2019)

Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera.

Frontiers in microbiology, 10:316.

Even in the current era of metagenomics, the interpretation of nucleotide sequence data is primarily dependent on knowledge obtained from a limited number of microbes isolated in pure culture. Thus, it is of fundamental importance to expand the variety of strains available in pure culture, to make reliable connections between physiological characteristics and genomic information. In this study, two sulfur oxidizers that potentially represent two novel species were isolated and characterized. They were subjected to whole-genome sequencing together with 7 neutrophilic and chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in the obtained genomes were identified and compared with those of isolated sulfur oxidizers in the classes Betaproteobacteria and Gammaproteobacteria. Although the combinations of these genes in the respective genomes are diverse, typical combinations corresponding to three types of core sulfur oxidation pathways were identified. Each pathway involves one of three specific sets of proteins, SoxCD, DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by soeABC is a conserved component in the core pathways lacking SoxCD. Phylogenetically close organisms share same core sulfur oxidation pathway, but a notable exception was observed in the family 'Sulfuricellaceae'. In this family, some strains have either core pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both pathways. A proteomics analysis showed that proteins constituting the core pathways were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is similar to that of Dsr system, both sets of proteins were detected with high relative abundances in the proteome of a strain possessing genes for these proteins. In addition to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the sequenced genomes. As a result, two strains belonging to the families Thiobacillaceae and Sterolibacteriaceae were observed to harbor genes encoding ArxAB, a type of arsenite oxidase that has been identified in a limited number of bacteria. These findings were made with the newly obtained genomes, including those from 6 genera from which no genome sequence of an isolated organism was previously available. These genomes will serve as valuable references to interpret nucleotide sequences.

RevDate: 2019-03-12

Kessler AJ, Chen YJ, Waite DW, et al (2019)

Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments.

Nature microbiology pii:10.1038/s41564-019-0391-z [Epub ahead of print].

Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic-anoxic transitions. Here, we show that molecular hydrogen (H2) accumulates in silicate sand sediments due to decoupling of bacterial fermentation and respiration processes following anoxia. In situ measurements show that H2 is 250-fold supersaturated in the water column overlying these sediments and has an isotopic composition consistent with fermentative production. Genome-resolved shotgun metagenomic profiling suggests that the sands harbour diverse and specialized microbial communities with a high abundance of [NiFe]-hydrogenase genes. Hydrogenase profiles predict that H2 is primarily produced by facultatively fermentative bacteria, including the dominant gammaproteobacterial family Woeseiaceae, and can be consumed by aerobic respiratory bacteria. Flow-through reactor and slurry experiments consistently demonstrate that H2 is rapidly produced by fermentation following anoxia, immediately consumed by aerobic respiration following reaeration and consumed by sulfate reduction only during prolonged anoxia. Hydrogenotrophic sulfur, nitrate and nitrite reducers were also detected, although contrary to previous hypotheses there was limited capacity for microalgal fermentation. In combination, these experiments confirm that fermentation dominates anoxic carbon mineralization in these permeable sediments and, in contrast to the case in cohesive sediments, is largely uncoupled from anaerobic respiration. Frequent changes in oxygen availability in these sediments may have selected for metabolically flexible bacteria while excluding strict anaerobes.

RevDate: 2019-03-12

Ghanbari M, Klose V, Crispie F, et al (2019)

The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline.

Scientific reports, 9(1):4062 pii:10.1038/s41598-019-40496-8.

In this study, shotgun metagenomics was employed to monitor the effect of oxytetracycline, administered at a therapeutic dose, on the dynamics of the microbiota and resistome in the feces of weaned pigs. Sixteen weaning pigs were assigned to one of two treatments including standard starter diet for 21 days or antibiotic-supplemented diet (10 g oxytetracycline/100 kg body weight/day) for 7 days, followed by 14 days of standard starter diet. Feces were collected from the pigs on days 0, 8, and 21 for microbiota and resistome profiling. Pigs receiving oxytetracycline exhibited a significantly greater richness (ANOVA, P = 0.034) and diversity (ANOVA, P = 0.048) of antibiotic resistance genes (ARGs) than the control pigs. Antibiotic administration significantly enriched the abundances of 41 ARGs, mainly from the tetracycline, betalactam and multidrug resistance classes. Compositional shifts in the bacterial communities were observed following 7 days of antibiotic adminstration, with the medicated pigs showing an increase in Escherichia (Proteobacteria) and Prevotella (Bacteroidetes) populations compared with the nonmedicated pigs. This might be explained by the potential of these taxa to carry ARGs that may be transferred to other susceptible bacteria in the densely populated gut environment. These findings will help in the optimization of therapeutic schemes involving antibiotic usage in swine production.

RevDate: 2019-03-12

Yang P, Tan GA, Aslam M, et al (2019)

Metatranscriptomic evidence for classical and RuBisCO-mediated CO2 reduction to methane facilitated by direct interspecies electron transfer in a methanogenic system.

Scientific reports, 9(1):4116 pii:10.1038/s41598-019-40830-0.

In a staged anaerobic fluidized-bed ceramic membrane bioreactor, metagenomic and metatranscriptomic analyses were performed to decipher the microbial interactions on the granular activated carbon. Metagenome bins, representing the predominating microbes in the bioreactor: syntrophic propionate-oxidizing bacteria (SPOB), acetoclastic Methanothrix concilii, and exoelectrogenic Geobacter lovleyi, were successfully recovered for the reconstruction and analysis of metabolic pathways involved in the transformation of fatty acids to methane. In particular, SPOB degraded propionate into acetate, which was further converted into methane and CO2 by M. concilii via the acetoclastic methanogenesis. Concurrently, G. lovleyi oxidized acetate into CO2, releasing electrons into the extracellular environment. By accepting these electrons through direct interspecies electron transfer (DIET), M. concilii was capable of performing CO2 reduction for further methane formation. Most notably, an alternative RuBisCO-mediated CO2 reduction (the reductive hexulose-phosphate (RHP) pathway) is transcriptionally-active in M. concilii. This RHP pathway enables M. concilii dominance and energy gain by carbon fixation and methanogenesis, respectively via a methyl-H4MPT intermediate, constituting the third methanogenesis route. The complete acetate reduction (2 mole methane formation/1 mole acetate consumption), coupling of acetoclastic methanogenesis and two CO2 reduction pathways, are thermodynamically favorable even under very low substrate condition (down to to 10-5 M level). Such tight interactions via both mediated and direct interspecies electron transfer (MIET and DIET), induced by the conductive GAC promote the overall efficiency of bioenergy processes.

RevDate: 2019-03-12

Castelán-Sánchez HG, Lopéz-Rosas I, García-Suastegui WA, et al (2019)

Extremophile deep-sea viral communities from hydrothermal vents: Structural and functional analysis.

Marine genomics pii:S1874-7787(18)30256-3 [Epub ahead of print].

Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.

RevDate: 2019-03-12
CmpDate: 2019-03-12

Bylstra Y, Kuan JL, Lim WK, et al (2019)

Population genomics in South East Asia captures unexpectedly high carrier frequency for treatable inherited disorders.

Genetics in medicine : official journal of the American College of Medical Genetics, 21(1):207-212.

PURPOSE: Genomic studies have demonstrated the necessity of ethnicity-specific population data to ascertain variant pathogenicity for disease diagnosis and treatment. This study examined the carrier prevalence of treatable inherited disorders (TIDs), where early diagnosis of at-risk offspring can significantly improve clinical outcomes.

METHODS: Existing exome/ genome sequencing data of 831 Singaporeans were aggregated and examined for disease causing variants in 104 genes associated with 80 TIDs.

RESULTS: Among the 831 Singaporean participants, genomic variant filtering and analysis identified 1 in 18 individuals (6%) to be carriers amongst one of 13 TIDs. Citrin deficiency and Wilson disease had the highest carrier frequency of 1 in 41, and 1 in 103 individuals, respectively. The pathogenic variants associated with citrin deficiency were 24 times more prevalent in our local cohorts when compared to Western cohorts.

CONCLUSION: This study demonstrates the value of a population specific genomic database to determine true disease prevalence and has enabled the discovery of carrier frequencies of treatable genetic conditions specific to South East Asian populations, which are currently underestimated in existing data sources. This study framework can be adapted to other population groups and expanded to multiple genetic conditions to inform health policies directing precision medicine.

RevDate: 2019-03-11

Omori WP, Pinheiro DG, Kishi LT, et al (2019)

Draft genome of Thermomonospora sp. CIT 1 (Thermomonosporaceae) and in silico evidence of its functional role in filter cake biomass deconstruction.

Genetics and molecular biology pii:S1415-47572019005011105 [Epub ahead of print].

The filter cake from sugar cane processing is rich in organic matter and nutrients, which favors the proliferation of microorganisms with potential to deconstruct plant biomass. From the metagenomic data of this material, we assembled a draft genome that was phylogenetically related to Thermomonospora curvata DSM 43183, which shows the functional and ecological importance of this bacterium in the filter cake. Thermomonospora is a gram-positive bacterium that produces cellulases in compost, and it can survive temperatures of 60 ºC. We identified a complete set of biomass depolymerizing enzymes in the draft genome of Thermomonospora sp. CIT 1, such as α-amylase, catalase-peroxidases, β-mannanase, and arabinanase, demonstrating the potential of this bacterium to deconstruct the components of starch, lignin, and hemicellulose. In addition, the draft genome of Thermomonospora sp. CIT 1 contains 18 genes that do not share identity with five other species of Thermomonospora, suggesting that this bacterium has different genetic characteristics than those present in genomes reported so far for this genus. These findings add a new dimension to the current understanding of the functional profile of this microorganism that inhabits agro-industrial waste, which may boost new gene discoveries and be of importance for application in the production of bioethanol.

RevDate: 2019-03-11

Salgado-Flores A, Tveit AT, Wright AD, et al (2019)

Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway.

PloS one, 14(3):e0213503 pii:PONE-D-18-16597.

Rock ptarmigans (Lagopus muta) are gallinaceous birds inhabiting arctic and sub-arctic environments. Their diet varies by season, including plants or plant parts of high nutritional value, but also toxic plant secondary metabolites (PSMs). Little is known about the microbes driving organic matter decomposition in the cecum of ptarmigans, especially the last steps leading to methanogenesis. The cecum microbiome in wild rock ptarmigans from Arctic Norway was characterized to unveil their functional potential for PSM detoxification, methanogenesis and polysaccharides degradation. Cecal samples were collected from wild ptarmigans from Svalbard (L. m. hyperborea) and northern Norway (L. m. muta) during autumn/winter (Sept-Dec). Samples from captive Svalbard ptarmigans fed commercial pelleted feed were included to investigate the effect of diet on microbial composition and function. Abundances of methanogens and bacteria were determined by qRT-PCR, while microbial community composition and functional potential were studied using 16S rRNA gene sequencing and shotgun metagenomics. Abundances of bacteria and methanogenic Archaea were higher in wild ptarmigans compared to captive birds. The ceca of wild ptarmigans housed bacterial groups involved in PSM-degradation, and genes mediating the conversion of phenol compounds to pyruvate. Methanomassiliicoccaceae was the major archaeal family in wild ptarmigans, carrying the genes for methanogenesis from methanol. It might be related to increased methanol production from pectin degradation in wild birds due to a diet consisting of primarily fresh pectin-rich plants. Both wild and captive ptarmigans possessed a broad suite of genes for the depolymerization of hemicellulose and non-cellulosic polysaccharides (e.g. starch). In conclusion, there were no physiological and phenotypical dissimilarities in the microbiota found in the cecum of wild ptarmigans on mainland Norway and Svalbard. While substantial differences in the functional potential for PSM degradation and methanogenesis in wild and captive birds seem to be a direct consequence of their dissimilar diets.

RevDate: 2019-03-11

Jaiswal S, Singh DK, P Shukla (2019)

Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review.

Frontiers in microbiology, 10:87.

Bioremediation is the degradation potential of microorganisms to dissimilate the complex chemical compounds from the surrounding environment. The genetics and biochemistry of biodegradation processes in datasets opened the way of systems biology. Systemic biology aid the study of interacting parts involved in the system. The significant keys of system biology are biodegradation network, computational biology, and omics approaches. Biodegradation network consists of all the databases and datasets which aid in assisting the degradation and deterioration potential of microorganisms for bioremediation processes. This review deciphers the bio-degradation network, i.e., the databases and datasets (UM-BBD, PAN, PTID, etc.) aiding in assisting the degradation and deterioration potential of microorganisms for bioremediation processes, computational biology and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation experiments. Besides, the present review also describes the gene editing tools like CRISPR Cas, TALEN, and ZFNs which can possibly make design microbe with functional gene of interest for degradation of particular recalcitrant for improved bioremediation.

RevDate: 2019-03-11

Watahiki S, Kimura N, Yamazoe A, et al (2019)

Ecological impact assessment of a bioaugmentation site on remediation of chlorinated ethylenes by multi-omics analysis.

The Journal of general and applied microbiology [Epub ahead of print].

Bioremediation may affect the ecological system around bioremediation sites. However, little is known about how microbial community structures change over time after the initial injection of degraders. In this study, we have assessed the ecological impact of bioaugmentation using metagenomic and metatranscriptomic approaches to remove trichlorinated ethylene/cis-dichloroethylene (TCE/cDCE) by Rhodococcus jostii strain RHA1 as an aerobic chemical compound degrader. Metagenomic analysis showed that the number of organisms belonging to the genus Rhodococcus, including strain RHA1, increased from 0.1% to 76.6% of the total microbial community on day 0 at the injection site. Subsequently, the populations of strain RHA1 and other TCE/cDCE-degrading bacteria gradually decreased over time, whereas the populations of the anaerobic dechlorinators Geobacter and Dehalococcoides increased at later stages. Metatranscriptomic analysis revealed a high expression of aromatic compound-degrading genes (bphA1-A4) in strain RHA1 after RHA1 injection. From these results, we concluded that the key dechlorinators of TCE/cDCE were mainly aerobic bacteria, such as RHA1, until day 1, after which the key dechlorinators changed to anaerobic bacteria, such as Geobacter and Dehalococcocides, after day 6 at the injection well. Based on the α-diversity, the richness levels of the microbial community were increased after injection of strain RHA1, and the microbial community composition had not been restored to that of the original composition during the 19 days after treatment. These results provide insights into the assessment of the ecological impact and bioaugmentation process of RHA1 at bioremediation sites.

RevDate: 2019-03-11

Accetto T, G Avguštin (2019)

The diverse and extensive plant polysaccharide degradative apparatuses of the rumen and hindgut Prevotella species: A factor in their ubiquity?.

Systematic and applied microbiology, 42(2):107-116.

Although the Prevotella are commonly observed in high shares in the mammalian hindgut and rumen studies using NGS approach, the knowledge on their actual role, though postulated to lie in soluble fibre degradation, is scarce. Here we analyse in total 23, more than threefold of hitherto known rumen and hindgut Prevotella species and show that rumen/hindgut Prevotella generally possess extensive repertoires of polysaccharide utilization loci (PULs) and carbohydrate active enzymes targeting various plant polysaccharides. These PUL repertoires separate analysed Prevotella into generalists and specialists yet a finer diversity among generalists is evident too, both in range of substrates targeted and in PUL combinations targeting the same broad substrate classes. Upon evaluation of the shares of species analysed in this study in rumen metagenomes we found firstly, that they contributed significantly to total Prevotella abundance though much of rumen Prevotella diversity may still be unknown. Secondly, the hindgut Prevotella species originally isolated in pigs and humans occasionally dominated among the Prevotella with surprisingly high metagenome read shares and were consistently found in rumen metagenome samples from sites as apart as New Zealand and Scotland. This may indicate frequent passage between different hosts and relatively low barriers to their successful establishment in rumen versus the hindgut.

RevDate: 2019-03-11

Yason JA, Liang YR, Png CW, et al (2019)

Interactions between a pathogenic Blastocystis subtype and gut microbiota: in vitro and in vivo studies.

Microbiome, 7(1):30 pii:10.1186/s40168-019-0644-3.

BACKGROUND: Blastocystis is a common gut eukaryote detected in humans and animals. It has been associated with gastrointestinal disease in the past although recent metagenomic studies also suggest that it is a member of normal microbiota. This study investigates interactions between pathogenic human isolates belonging to Blastocystis subtype 7 (ST7) and bacterial representatives of the gut microbiota.

RESULTS: Generally, Blastocystis ST7 exerts a positive effect on the viability of representative gut bacteria except on Bifidobacterium longum. Gene expression analysis and flow cytometry indicate that the bacterium may be undergoing oxidative stress in the presence of Blastocystis. In vitro assays demonstrate that Blastocystis-induced host responses are able to decrease Bifidobacterium counts. Mice infected with Blastocystis also reveal a decrease in beneficial bacteria Bifidobacterium and Lactobacillus.

CONCLUSIONS: This study shows that particular isolates of Blastocystis ST7 cause changes in microbiota populations and potentially lead to an imbalance of the gut microbiota. This study suggests that certain isolates of Blastocystis exert their pathogenic effects through disruption of the gut microbiota and provides a counterpoint to the increasing reports indicating the commensal nature of this ubiquitous parasite.

RevDate: 2019-03-11
CmpDate: 2019-03-11

Glover AG, Wiklund H, Chen C, et al (2018)

Managing a sustainable deep-sea 'blue economy' requires knowledge of what actually lives there.

eLife, 7:.

Ensuring that the wealth of resources contained in our oceans are managed and developed in a sustainable manner is a priority for the emerging 'blue economy'. However, modern ecosystem-based management approaches do not translate well to regions where we know almost nothing about the individual species found in the ecosystem. Here, we propose a new taxon-focused approach to deep-sea conservation that includes regulatory oversight to set targets for the delivery of taxonomic data. For example, a five-year plan to deliver taxonomic and genomic knowledge on a thousand species in regions of the ocean earmarked for industrial activity is an achievable target. High-throughput, integrative taxonomy can, therefore, provide the data that is needed to monitor various ecosystem services (such as the natural history, connectivity, value and function of species) and to help break the regulatory deadlock of high-seas conservation.

RevDate: 2019-03-11
CmpDate: 2019-03-11

Concheri G, Stevanato P, Zaccone C, et al (2017)

Rapid peat accumulation favours the occurrence of both fen and bog microbial communities within a Mediterranean, free-floating peat island.

Scientific reports, 7(1):8511.

The unique environment of a 4m-thick, free-floating peat island within the Posta Fibreno lake (Central Italy) was analyzed using DNA-based techniques to assess bacterial and fungal community members identity and abundance. Two depths were sampled at 41 and 279 cm from the surface, the former corresponding to an emerged portion of Sphagnum residues accumulated less than 30 yrs ago, and the latter mainly consisting of silty peat belonging to the deeply submerged part of the island, dating back to 1520-1660 AD. The corresponding communities were very diverse, each of them dominated by a different member of the Delta-proteobacteria class for prokaryotes. Among Eukaryotes, Ascomycota prevailed in the shallow layer while Basidiomycota were abundant in the deep sample. The identity of taxa partitioning between acidic surface layer and neutral core is very reminiscent of the differences reported between bogs and fens respectively, supporting the view of Posta Fibreno as a relic transitional floating mire. Moreover, some microbial taxa show an unusual concurrent species convergence between this sub-Mediterranean site and far Nordic or circumpolar environments. This study represents the first report describing the biotic assemblages of such a peculiar environment, and provides some insights into the possible mechanisms of its evolution.

RevDate: 2019-03-11
CmpDate: 2019-03-11

Lim Y, Totsika M, Morrison M, et al (2017)

The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols.

Scientific reports, 7(1):8523.

Saliva has attracted attention as a diagnostic fluid due to the association of oral microbiota with systemic diseases. However, the lack of standardised methods for saliva collection has led to the slow uptake of saliva in microbiome research. The aim of this study was to systematically evaluate the potential effects on salivary microbiome profiles using different methods of saliva collection, storage and gDNA extraction. Three types of saliva fractions were collected from healthy individuals with or without the gDNA stabilising buffer. Subsequently, three types of gDNA extraction methods were evaluated to determine the gDNA extraction efficiencies from saliva samples. The purity of total bacterial gDNA was evaluated using the ratio of human β-globin to bacterial 16S rRNA PCR while 16S rRNA gene amplicon sequencing was carried out to identify the bacterial profiles present in these samples. The quantity and quality of extracted gDNA were similar among all three gDNA extraction methods and there were no statistically significant differences in the bacterial profiles among different saliva fractions at the genus-level of taxonomic classification. In conclusion, saliva sampling, processing and gDNA preparation do not have major influence on microbiome profiles.

RevDate: 2019-03-10

Gao H, Mao Y, Zhao X, et al (2019)

Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess.

Water research, 155:275-287 pii:S0043-1354(19)30145-9 [Epub ahead of print].

Denitrification is the stepwise microbial reduction of nitrate or nitrite (NO2-) to nitrogen gas via the obligate intermediates nitric oxide (NO) and nitrous oxide (N2O). Substantial N2O accumulation has been reported in denitrifying enhanced biological phosphorus removal (EBPR) bioreactors enriched in denitrifying polyphosphate accumulating organisms (DPAOs), but little is known about underlying mechanisms for N2O generation, prevalence of complete versus truncated denitrification pathways, or the impact of NO2- feed on DPAO-enriched consortia. To address this knowledge gap, we employed genome-resolved metagenomics to investigate nitrogen transformation potential in a NO2- fed denitrifying EBPR bioreactor enriched in Candidatus Accumulibacter and prone to N2O accumulation. Our analysis yielded 41 near-complete metagenome-assembled genomes (MAGs), including two co-occurring Accumulibacter strains affiliated with clades IA and IC (the first published genome from this clade) and 39 non-PAO flanking bacterial genomes. The dominant Accumulibacter clade IA encoded genes for complete denitrification, while the lower abundance Accumulibacter clade IC harbored all denitrification genes except for a canonical respiratory NO reductase. Analysis of the 39 non-PAO MAGs revealed a high prevalence of taxa harboring an incomplete denitrification pathway. Of the 27 MAGs harboring capacity for at least one step in the denitrification pathway, 10 were putative N2O producers lacking N2O reductase, 16 were putative N2O reducers that lacked at least one upstream denitrification gene, and only one harbored a complete denitrification pathway. We also documented increasing abundance over the course of reactor operation of putative N2O producers. Our results suggest that the unusually high levels of N2O production observed in this Accumulibacter-enriched consortium are linked in part to the selection for non-PAO flanking microorganisms with truncated denitrification pathways.

RevDate: 2019-03-10

Garau G, Porceddu A, Sanna M, et al (2019)

Municipal solid wastes as a resource for environmental recovery: Impact of water treatment residuals and compost on the microbial and biochemical features of As and trace metal-polluted soils.

Ecotoxicology and environmental safety, 174:445-454 pii:S0147-6513(19)30269-6 [Epub ahead of print].

In this study we evaluated the microbiological and biochemical impact of iron-based water treatment residuals (Fe-WTRs) and municipal solid waste compost (MSWC), alone and combined, on three different soils co-contaminated with arsenic (As) and trace-metals (TM), i.e. Pb, Cu and Zn. Overall, all the amendments considered significantly increased the abundance of culturable heterotrophic bacteria, with MSWC showing the greatest impact across all soils (up to a 24% increase). In most of treated soils this was accompanied by a significant reduction of both the (culturable) fungal/bacterial ratio, and the proportion of culturable As(V)- and As(III)-resistant bacteria with respect to total bacterial population. The catabolic potential and versatility of the resident microbial communities (assessed by community level physiological profile) was highly soil-dependent and substantial increases of both parameters were observed in the amended soils with the higher total As concentration (from approx. 749 to 22,600 mg kg-1). Moreover, both carbon source utilisation profile and 16S rRNA soil metagenome sequencing indicated a significant impact of MSWC and Fe-WTRs on the structure and diversity of soil microbial communities, with Proteobacteria, Actinobacteria and Firmicutes being the most affected taxa. The assessment of selected soil enzyme activities (dehydrogenase, urease and β-glucosidase) indicated an increase of metabolic functioning especially in soils treated with MSWC (e.g. dehydrogenase activity increased up to 19.5-fold in the most contaminated soil treated with MSWC). Finally, the microbial and biochemical features of treated (and untreated) contaminated soils (i.e. total bacterial counts, catabolic potential and versatility and soil enzyme activities) were highly correlated with the concentrations of labile As and TM in these latter soils and supported a clear role of the tested amendments (especially MSWC) as As- and TM-immobilising agents.

RevDate: 2019-03-09

Nadeau SA, Roco CA, Debenport SJ, et al (2019)

Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients.

Environmental microbiology [Epub ahead of print].

This study coupled a landscape-scale metagenomic survey of denitrification gene abundance in soils with in-situ denitrification measurements to show how environmental factors shape distinct denitrification communities that exhibit varying denitrification activity. Across a hydrologic gradient, the distribution of total denitrification genes (nap/nar + nirK/nirS + cNor/qNor + nosZ) inferred from metagenomic read abundance exhibited no consistent patterns. However, when genes were considered independently, nirS, cNor, and nosZ read abundance was positively associated with areas of higher soil moisture, higher nitrate, and higher annual denitrification rates, while nirK and qNor read abundance was negatively associated with these factors. These results suggest that environmental conditions, in particular soil moisture and nitrate, select for distinct denitrification communities that are characterized by differential abundance of genes encoding apparently functionally redundant proteins. In contrast, taxonomic analysis did not identify notable variability in denitrifying community composition across sites. While the capacity to denitrify was ubiquitous across sites, denitrification genes with higher energetic costs, like nirS and cNor, appear to confer a selective advantage in microbial communities experiencing more frequent soil saturation and greater nitrate inputs. This study suggests metagenomics can help identify denitrification hotspots that could be protected or enhanced to treat nonpoint source nitrogen pollution. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-09

Slavov SN, Rodrigues ES, Sauvage V, et al (2019)


Journal of medical virology [Epub ahead of print].

Usually transmitted via respiratory droplets, parvovirus B19 (B19V) can also be acquired by blood transfusion especially because of viral persistency, resistance to blood treatment procedures, and high viral load during the early infection phase. This is particularly problematic in immunocompromised or anemic patients where the infection can have severe outcome. As B19V DNA was detected in blood donations from South Brazil during a viral metagenomic survey performed by Next Generation Sequencing, the objective of this retrospective study was to evaluate the seroprevalence, B19V DNA presence, and circulating genotypes in a Hospital Blood Transfusion Service in Santa Maria city in South Brazil (Rio Grande do Sul State). Among 480 volunteer blood donors, 53.9% (n=258/479) were anti-B19V IgG positive, and 9 (1.9%) plasma samples presented B19V DNA. In almost all cases (n=7/9, 77.8%), B19V DNA load was accompanied by the presence of anti-B19V IgG suggesting a persistent infection. The sequencing of the strains demonstrated that all belong to genotype 1 which is the most prevalent worldwide. The analysis of the recipient information of the positive for B19V DNA units, revealed no related post-transfusion adverse effects. Our results demonstrate for the first time, B19V seroprevalence, viral load and genotypes among blood donors from South Brazil and give a light for the circulation and impact of this B19V in this part of the country. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-09

Calderon D, Peña L, Suarez A, et al (2019)

Recovery and functional validation of hidden soil enzymes in metagenomic libraries.

MicrobiologyOpen [Epub ahead of print].

The vast microbial diversity on the planet represents an invaluable source for identifying novel activities with potential industrial and therapeutic application. In this regard, metagenomics has emerged as a group of strategies that have significantly facilitated the analysis of DNA from multiple environments and has expanded the limits of known microbial diversity. However, the functional characterization of enzymes, metabolites, and products encoded by diverse microbial genomes is limited by the inefficient heterologous expression of foreign genes. We have implemented a pipeline that combines NGS and Sanger sequencing as a way to identify fosmids within metagenomic libraries. This strategy facilitated the identification of putative proteins, subcloning of targeted genes and preliminary characterization of selected proteins. Overall, the in silico approach followed by the experimental validation allowed us to efficiently recover the activity of previously hidden enzymes derived from agricultural soil samples. Therefore, the methodology workflow described herein can be applied to recover activities encoded by environmental DNA from multiple sources.

RevDate: 2019-03-09

Hendriksen RS, Munk P, Njage P, et al (2019)

Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage.

Nature communications, 10(1):1124 pii:10.1038/s41467-019-08853-3.

Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.

RevDate: 2019-03-09

Graham EB, Yang F, Bell S, et al (2019)

High Genetic Potential for Proteolytic Decomposition in Northern Peatland Ecosystems.

Applied and environmental microbiology pii:AEM.02851-18 [Epub ahead of print].

Nitrogen (N) is a scarce nutrient commonly limiting primary productivity. Microbial decomposition of complex carbon (C) into small organic molecules (e.g., free amino acids) has been suggested to supplement biologically-fixed N in northern peatlands. We evaluated the microbial (fungal, bacterial, and archaeal) genetic potential for organic N depolymerization in peatlands at Marcell Experimental Forest (MEF) in northern Minnesota. We used guided gene assembly to examine the abundance and diversity of protease genes; and further compared to those of N-fixing (nifH) genes in shotgun metagenomic data collected across depths and in two distinct peatland environments (bogs and fens). Microbial proteases greatly outnumbered nifH genes with the most abundant genes (archaeal M1 and bacterial trypsin (S01)) each containing more sequences than all sequences attributed to nifH Bacterial protease gene assemblies were diverse and abundant across depth profiles, indicating a role for bacteria in releasing free amino acids from peptides through depolymerization of older organic material and contrasting the paradigm of fungal dominance in depolymerization in forest soils. Although protease gene assemblies for fungi were much less abundant overall than for bacteria, fungi were prevalent in surface samples and therefore may be vital in degrading large soil polymers from fresh plant inputs during early stage of depolymerization. In total, we demonstrate that depolymerization enzymes from a diverse suite of microorganisms, including understudied bacterial and archaeal lineages, are prevalent within northern peatlands and likely to influence C and N cycling.Importance Nitrogen (N) is a common limitation on primary productivity, and its source remains unresolved in northern peatlands that are vulnerable to environmental change. Decomposition of complex organic matter into free amino acids has been proposed as an important N source, but the genetic potential of microorganisms mediating this process has not been examined. Such information can elucidate possible responses of northern peatlands to environmental change. We show high genetic potential for microbial production of free amino acids across a range of microbial guilds in northern peatlands. In particular, the abundance and diversity of bacterial genes encoding proteolytic activity suggests a predominant role for bacteria in regulating productivity and contrasts a paradigm of fungal dominance of organic N decomposition. Our results expand our current understanding of coupled carbon and nitrogen cycles in north peatlands and indicate that understudied bacterial and archaeal lineages may be central in this ecosystem's response to environmental change.

RevDate: 2019-03-08

Valles SM, AR Rivers (2019)

Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range.

Virus genes pii:10.1007/s11262-019-01652-4 [Epub ahead of print].

The red imported fire ant (Solenopsis invicta) escaped its natural enemies when it was introduced into North America in the 1930s from South America. US efforts have focused on discovery of natural enemies, like viruses, to provide sustainable control of the ant. Nine new virus genomes were sequenced from the invasive fire ant Solenopsis invicta using metagenomic RNA sequencing. The virus genomes were verified by Sanger sequencing and random amplification of cDNA ends reactions. In addition to the nine new virus genomes, the previously described Solenopsis viruses were also detected, including Solenopsis invicta virus 1 (SINV-1), SINV-2, SINV-3, SINV-4, SINV-5, and Solenopsis invicta densovirus. The virus sequences came from S. invicta workers, larvae, pupae, and dead workers taken from midden piles collected from across the ant's native range in Formosa, Argentina. One of the new virus genomes (Solenopsis invicta virus 6) was also detected in populations of North American S. invicta. Phylogenetic analysis of the RNA dependent RNA polymerase, the entire nonstructural polyprotein, and genome characteristics were used to tentatively taxonomically place these new virus genome sequences; these include four new species of Dicistroviridae, one Polycipiviridae, one Iflaviridae, one Totiviridae, and two genome sequences that were too taxonomically divergent to be placed with certainty. The S. invicta virome is the best characterized from any ant species and includes 13 positive-sense, single-stranded RNA viruses (Solenopsis invicta virus 1 to Solenopsis invicta virus 13), one double-stranded RNA virus (Solenopsis midden virus), and one double-stranded DNA virus (Solenopsis invicta densovirus). These new additions to the S. invicta virome offer potentially new classical biological control agents for S. invicta.

RevDate: 2019-03-08

Dietrich M, W Markotter (2019)

Studying the microbiota of bats: Accuracy of direct and indirect samplings.

Ecology and evolution, 9(4):1730-1735 pii:ECE34842.

Given the recurrent bat-associated disease outbreaks in humans and recent advances in metagenomics sequencing, the microbiota of bats is increasingly being studied. However, obtaining biological samples directly from wild individuals may represent a challenge, and thus, indirect passive sampling (without capturing bats) is sometimes used as an alternative. Currently, it is not known whether the bacterial community assessed using this approach provides an accurate representation of the bat microbiota. This study was designed to compare the use of direct sampling (based on bat capture and handling) and indirect sampling (collection of bat's excretions under bat colonies) in assessing bacterial communities in bats. Using high-throughput 16S rRNA sequencing of urine and feces samples from Rousettus aegyptiacus, a cave-dwelling fruit bat species, we found evidence of niche specialization among different excreta samples, independent of the sampling approach. However, sampling approach influenced both the alpha- and beta-diversity of urinary and fecal microbiotas. In particular, increased alpha-diversity and more overlapping composition between urine and feces samples was seen when direct sampling was used, suggesting that cross-contamination may occur when collecting samples directly from bats in hand. In contrast, results from indirect sampling in the cave may be biased by environmental contamination. Our methodological comparison suggested some influence of the sampling approach on the bat-associated microbiota, but both approaches were able to capture differences among excreta samples. Assessment of these techniques opens an avenue to use more indirect sampling, in order to explore microbial community dynamics in bats.

RevDate: 2019-03-08

Kuntal BK, Gadgil C, SS Mande (2019)

Web-gLV: A Web Based Platform for Lotka-Volterra Based Modeling and Simulation of Microbial Populations.

Frontiers in microbiology, 10:288.

The affordability of high throughput DNA sequencing has allowed us to explore the dynamics of microbial populations in various ecosystems. Mathematical modeling and simulation of such microbiome time series data can help in getting better understanding of bacterial communities. In this paper, we present Web-gLV-a GUI based interactive platform for generalized Lotka-Volterra (gLV) based modeling and simulation of microbial populations. The tool can be used to generate the mathematical models with automatic estimation of parameters and use them to predict future trajectories using numerical simulations. We also demonstrate the utility of our tool on few publicly available datasets. The case studies demonstrate the ease with which the current tool can be used by biologists to model bacterial populations and simulate their dynamics to get biological insights. We expect Web-gLV to be a valuable contribution in the field of ecological modeling and metagenomic systems biology.

RevDate: 2019-03-08

Cárcel-Márquez J, Flores A, Martín-Cabello G, et al (2019)

Development of an inducible lytic system for functional metagenomic screening.

Scientific reports, 9(1):3887 pii:10.1038/s41598-019-40470-4.

Functional metagenomic is a powerful tool that allows the discovery of new enzymes with biotechnological potential. During functional screenings of enzymes, the ability of the substrate to enter the surrogate host or the ability of this bacterium to export heterologous extracellular enzymes may hamper the technique. Here we have used an inducible autolysis system that lyses bacteria thus releasing its content in both, liquid and solid cultures, in response to anhydrotetracycline. The lytic cluster is tightly regulated to prevent impaired bacterial growth in absence of the inducer and produced very efficient though not complete bacterial lysis upon induction, which allowed the recovery of live bacteria. The system can be used in combination with specialised fosmids and E. coli strains that maximize transcription of metagenomic DNA. Our results show that colony-lysis on plates allows detection of an endogenous intracellular amylase activity naturally present in E. coli and clearly increased detection of clones coding for cellulase activities in a metagenomic screening, while allowing recovery of survivor positive clones from the lysed colonies in all cases. Therefore, this tool represents an important step towards the effective access to the extraordinary potential of the uncultivated bacteria genetic resources.

RevDate: 2019-03-08
CmpDate: 2019-03-08

Kocarnik JM, Richard M, Graff M, et al (2018)

Discovery, fine-mapping, and conditional analyses of genetic variants associated with C-reactive protein in multiethnic populations using the Metabochip in the Population Architecture using Genomics and Epidemiology (PAGE) study.

Human molecular genetics, 27(16):2940-2953.

C-reactive protein (CRP) is a circulating biomarker indicative of systemic inflammation. We aimed to evaluate genetic associations with CRP levels among non-European-ancestry populations through discovery, fine-mapping and conditional analyses. A total of 30 503 non-European-ancestry participants from 6 studies participating in the Population Architecture using Genomics and Epidemiology study had serum high-sensitivity CRP measurements and ∼200 000 single nucleotide polymorphisms (SNPs) genotyped on the Metabochip. We evaluated the association between each SNP and log-transformed CRP levels using multivariate linear regression, with additive genetic models adjusted for age, sex, the first four principal components of genetic ancestry, and study-specific factors. Differential linkage disequilibrium patterns between race/ethnicity groups were used to fine-map regions associated with CRP levels. Conditional analyses evaluated for multiple independent signals within genetic regions. One hundred and sixty-three unique variants in 12 loci in overall or race/ethnicity-stratified Metabochip-wide scans reached a Bonferroni-corrected P-value <2.5E-7. Three loci have no (HACL1, OLFML2B) or only limited (PLA2G6) previous associations with CRP levels. Six loci had different top hits in race/ethnicity-specific versus overall analyses. Fine-mapping refined the signal in six loci, particularly in HNF1A. Conditional analyses provided evidence for secondary signals in LEPR, IL1RN and HNF1A, and for multiple independent signals in CRP and APOE. We identified novel variants and loci associated with CRP levels, generalized known CRP associations to a multiethnic study population, refined association signals at several loci and found evidence for multiple independent signals at several well-known loci. This study demonstrates the benefit of conducting inclusive genetic association studies in large multiethnic populations.

RevDate: 2019-03-08
CmpDate: 2019-03-08

Finotello F, Mastrorilli E, B Di Camillo (2018)

Measuring the diversity of the human microbiota with targeted next-generation sequencing.

Briefings in bioinformatics, 19(4):679-692.

The human microbiota is a complex ecological community of commensal, symbiotic and pathogenic microorganisms harboured by the human body. Next-generation sequencing (NGS) technologies, in particular targeted amplicon sequencing of the 16S ribosomal RNA gene (16S-seq), are enabling the identification and quantification of human-resident microorganisms at unprecedented resolution, providing novel insights into the role of the microbiota in health and disease. Once microbial abundances are quantified through NGS data analysis, diversity indices provide valuable mathematical tools to describe the ecological complexity of a single sample or to detect species differences between samples. However, diversity is not a determined physical quantity for which a consensus definition and unit of measure have been established, and several diversity indices are currently available. Furthermore, they were originally developed for macroecology and their robustness to the possible bias introduced by sequencing has not been characterized so far. To assist the reader with the selection and interpretation of diversity measures, we review a panel of broadly used indices, describing their mathematical formulations, purposes and properties, and characterize their behaviour and criticalities in dependence of the data features using simulated data as ground truth. In addition, we make available an R package, DiversitySeq, which implements in a unified framework the full panel of diversity indices and a simulator of 16S-seq data, and thus represents a valuable resource for the analysis of diversity from NGS count data and for the benchmarking of computational methods for 16S-seq.

RevDate: 2019-03-07

Yun Y, Kim HN, Chang Y, et al (2019)

Characterization of the Blood Microbiota in Korean Females with Rosacea.

RevDate: 2019-03-07

Haleyur N, Shahsavari E, Jain SS, et al (2019)

Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community.

Journal of environmental management, 238:49-58 pii:S0301-4797(19)30275-0 [Epub ahead of print].

Polycyclic aromatic hydrocarbons (PAHs) represent a group of hazardous compounds that are ubiquitous and persistent. The main aim of this study was to investigate the degradation of PAHs in chronically contaminated, aged and weathered soils obtained from a former gas plant of Australia. Biostimulation and bioaugmentation using individual isolates (Rhodococcus sp. (NH2), Achromobacter sp. (NH13), Oerskovia paurometabola (NH11), Pantoea sp. (NH15), Sejongia sp. (NH20), Microbacterium maritypicum (NH30) and Arthrobacter equi (NH21)) and a consortium of these isolates were tested during mesocosm studies. A significant reduction (99%) in PAH concentration was observed in all the treatments. In terms of the abundance of PAH-degrading genes and microbial community structure during PAH degradation, qPCR results revealed that Gram-positive bacteria were dominant over other bacterial communities in all the treatments. 16S sequencing results revealed that the inoculated organisms did not establish themselves during the treatment. However, substantial bacterial community changes during the treatments were observed, suggesting that the natural community exhibited sufficient resilience and diversity to enable an active, but changing degrading community at all stages of the degradation process. Consequently, biostimulation is proposed as the best strategy to remediate PAHs in aged, weathered and chronically contaminated soils.

RevDate: 2019-03-07

Amrane S, Lagier JC, D Raoult (2019)

Failure of metagenomics in detecting emerging pathogens, the Clostridium difficile paradigm.

RevDate: 2019-03-07

Fritz B, Stavnsbjerg C, Markvart M, et al (2019)

Shotgun sequencing of clinical biofilm following scanning electron microscopy identifies bacterial community composition.

Pathogens and disease pii:5371122 [Epub ahead of print].

Bacterial biofilm infections often involve aggregates of bacteria heterogeneously distributed throughout a tissue or on a surface (such as an implanted medical device). Identification of a biofilm infection requires direct visualization via microscopy, followed by characterization of the microbial community by culturing or sequencing-based approaches. A sample, therefore, must be divided prior to analysis, often leading to inconsistent results. We demonstrate a combined approach, using scanning electron microscopy and next-generation shotgun sequencing, to visually identify a biofilm and characterize the microbial community, without dividing the sample. A clinical sample recovered from a patient following a dental root-filling procedure was prepared and visualized by scanning electron microscopy. DNA was then extracted from the sample several years later and analyzed by shotgun sequencing. The method was subsequently validated on in vitro cultures of Pseudomonas aeruginosa biofilm. Between 19 and 21 different genera and species were identified in the clinical sample with an estimated relative abundance greater than 1% by two different estimation approaches. Only eight genera identified were not associated with endodontic infections. This provides a proof-of-concept for a dual, microscopy and sequencing-based approach to identify and characterize bacterial biofilms, which could also easily be implemented in other scientific fields.

RevDate: 2019-03-07

More KD, Giosan L, Grice K, et al (2019)

Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea.

Geobiology [Epub ahead of print].

Subsurface microbial communities are generally thought to be structured through in situ environmental conditions such as the availability of electron acceptors and donors and porosity, but recent studies suggest that the vertical distribution of a subset of subseafloor microbial taxa, which were present at the time of deposition, were selected by the paleodepositional environment. However, additional highly resolved temporal records of subsurface microbiomes and paired paleoenvironmental reconstructions are needed to justify this claim. Here, we performed a highly resolved shotgun metagenomics survey to study the taxonomic and functional diversity of the subsurface microbiome in Holocene sediments underlying the permanently stratified and anoxic Black Sea. Obligate aerobic bacteria made the largest contribution to the observed shifts in microbial communities associated with known Holocene climate stages and transitions. This suggests that the aerobic fraction of the subseafloor microbiome was seeded from the water column and did not undergo post-depositional selection. In contrast, obligate and facultative anaerobic bacteria showed the most significant response to the establishment of modern-day environmental conditions 5.2 ka ago that led to a major shift in planktonic communities and in the type of sequestered organic matter available for microbial degradation. No significant shift in the subseafloor microbiome was observed as a result of environmental changes that occurred shortly after the marine reconnection, 9 ka ago. This supports the general view that the marine reconnection was a gradual process. We conclude that a high-resolution analysis of downcore changes in the subseafloor microbiome can provide detailed insights into paleoenvironmental conditions and biogeochemical processes that occurred at the time of deposition.

RevDate: 2019-03-07

Stewart LC, Algar CK, Fortunato CS, et al (2019)

Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents.

The ISME journal pii:10.1038/s41396-019-0382-3 [Epub ahead of print].

The size and biogeochemical impact of the subseafloor biosphere in oceanic crust remain largely unknown due to sampling limitations. We used reactive transport modeling to estimate the size of the subseafloor methanogen population, volume of crust occupied, fluid residence time, and nature of the subsurface mixing zone for two low-temperature hydrothermal vents at Axial Seamount. Monod CH4 production kinetics based on chemostat H2 availability and batch-culture Arrhenius growth kinetics for the hyperthermophile Methanocaldococcus jannaschii and thermophile Methanothermococcus thermolithotrophicus were used to develop and parameterize a reactive transport model, which was constrained by field measurements of H2, CH4, and metagenome methanogen concentration estimates in 20-40 °C hydrothermal fluids. Model results showed that hyperthermophilic methanogens dominate in systems where a narrow flow path geometry is maintained, while thermophilic methanogens dominate in systems where the flow geometry expands. At Axial Seamount, the residence time of fluid below the surface was 29-33 h. Only 1011 methanogenic cells occupying 1.8-18 m3 of ocean crust per m2 of vent seafloor area were needed to produce the observed CH4 anomalies. We show that variations in local geology at diffuse vents can create fluid flow paths that are stable over space and time, harboring persistent and distinct microbial communities.

RevDate: 2019-03-07

Chatterjee A, Sicheritz-Pontén T, Yadav R, et al (2019)

Genomic and metagenomic signatures of giant viruses are ubiquitous in water samples from sewage, inland lake, waste water treatment plant, and municipal water supply in Mumbai, India.

Scientific reports, 9(1):3690 pii:10.1038/s41598-019-40171-y.

We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.

RevDate: 2019-03-07

Zuo T, Lu XJ, Zhang Y, et al (2019)

Gut mucosal virome alterations in ulcerative colitis.

Gut pii:gutjnl-2018-318131 [Epub ahead of print].

OBJECTIVE: The pathogenesis of UC relates to gut microbiota dysbiosis. We postulate that alterations in the viral community populating the intestinal mucosa play an important role in UC pathogenesis. This study aims to characterise the mucosal virome and their functions in health and UC.

DESIGN: Deep metagenomics sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on the rectal mucosa of 167 subjects from three different geographical regions in China (UC=91; healthy controls=76). Virome and bacteriome alterations in UC mucosa were assessed and correlated with patient metadata. We applied partition around medoids clustering algorithm and classified mucosa viral communities into two clusters, referred to as mucosal virome metacommunities 1 and 2.

RESULTS: In UC, there was an expansion of mucosa viruses, particularly Caudovirales bacteriophages, and a decrease in mucosa Caudovirales diversity, richness and evenness compared with healthy controls. Altered mucosal virome correlated with intestinal inflammation. Interindividual dissimilarity between mucosal viromes was higher in UC than controls. Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than controls. Compared with metacommunity 1, metacommunity 2 was predominated by UC subjects and displayed a significant loss of various viral species. Patients with UC showed substantial abrogation of diverse viral functions, whereas multiple viral functions, particularly functions of bacteriophages associated with host bacteria fitness and pathogenicity, were markedly enriched in UC mucosa. Intensive transkingdom correlations between mucosa viruses and bacteria were significantly depleted in UC.

CONCLUSION: We demonstrated for the first time that UC is characterised by substantial alterations of the mucosa virobiota with functional distortion. Enrichment of Caudovirales bacteriophages, increased phage/bacteria virulence functions and loss of viral-bacterial correlations in the UC mucosa highlight that mucosal virome may play an important role in UC pathogenesis.

RevDate: 2019-03-07

Kwon M, Seo SS, Kim MK, et al (2019)

Compositional and Functional Differences between Microbiota and Cervical Carcinogenesis as Identified by Shotgun Metagenomic Sequencing.

Cancers, 11(3): pii:cancers11030309.

Recent studies have reported the potential role of microbiomes in cervical disease. However, little is known about the microbiome composition and function in cervical carcinogenesis. We aimed to identify the compositional and functional alterations of cervical microbiomes in cases of cervical carcinogenesis of Korean women using shotgun metagenomic sequencing. In this study, using shotgun sequencing, we sequenced the cervical metagenomes of cervical intraneoplasia 2/3 (n = 17), cervical cancer (n = 12), and normal controls (n = 18) to identify the microbial abundances and enriched metabolic functions in cervical metagenomes. At the genus level, the microbiota of cervical cancer were differentially enriched with genera Alkaliphilus, Pseudothermotoga, and Wolbachia. Cervical intraepithelial neoplasia (CIN) 2/3 were enriched with Lactobacillus, Staphylococcus, and Candidatus Endolissoclinum. The normal group was enriched with Pseudoalteromonas and Psychrobacter. Further characterization of the functionalities of the metagenomes may suggest that six Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) that are involved in 10 pathways are associated with an increased risk of CIN2/3 and cervical cancer. Specifically, cervical metagenomes were enriched in the course of peptidoglycan synthesis and depleted by dioxin degradation and 4-oxalocrotonate tautomerase. The Cluster of Orthologous Groups (COG) category 'Defense mechanisms' was depleted in cervical cancer patients. Our findings based on shotgun metagenomic sequencing suggest that cervical microbiome community compositions and their metagenomics profiles differed between cervical lesions and normal subjects. Future studies should have larger sample sizes and/or aggregate their results to have sufficient power to detect reproducible and significant associations.

RevDate: 2019-03-07

Sanborn MA, Klein TA, Kim HC, et al (2019)

Metagenomic Analysis Reveals Three Novel and Prevalent Mosquito Viruses from a Single Pool of Aedes vexans nipponii Collected in the Republic of Korea.

Viruses, 11(3): pii:v11030222.

Arboviruses continue to be a significant global health concern. The unbiased metagenomic analyses of mosquito-borne and mosquito-specific viruses are useful to understand viral diversity and for the surveillance of pathogens of medical and veterinary importance. Metagenomic analysis was conducted on 6368 mosquitoes (736 pools), covering 16 species from 18 locations throughout the Republic of Korea (ROK) in 2016. In this report, we describe three viruses detected in a single pool of Aedes vexans nipponii collected at Yongsan U.S. Army Garrison, located in a densely populated district of Seoul, the ROK. The three novel viruses, designated as Yongsan bunyavirus 1 (YBV1), Yongsan picorna-like virus 3 (YPLV3) and Yongsan sobemo-like virus 1 (YSLV1), share sequence and structural characteristics with members belonging to the family Bunyaviridae, order Picornavirales, and family Solemoviridae, with shared RNA-dependent RNA polymerase (RdRp) amino acid identities of 40%, 42% and 86%, respectively. The real-time reverse transcription and polymerase chain reaction (RT-PCR) of 3493 Aedes vexans nipponii (257 pools) showed a high prevalence of YBV1 and YSLV1 viruses, which were present in 65% and 62% of tested pools, respectively. This study highlighted the utility of a metagenomic sequencing approach for arbovirus discovery and for a better understanding of the virome of potential medically relevant vectors.

RevDate: 2019-03-07

Seifert J, T Muth (2019)

Editorial for Special Issue: Metaproteomics.

Proteomes, 7(1): pii:proteomes7010009.

As the proteome-level counterpart of metagenomics, metaproteomics extends conventional single-organism proteomics and allows researchers to characterize the entire protein complement of complex microbiomes on a large scale [...].

RevDate: 2019-03-07

Cordeiro MC, Garcia GD, Rocha AM, et al (2019)

Insights on the freshwater microbiomes metabolic changes associated with the world's largest mining disaster.

The Science of the total environment, 654:1209-1217.

To evaluate the impacts of the Fundão tailings dam failure (Minas Gerais, Brazil) on water quality of the Doce River, we analyzed metagenomics and physicochemical parameters during the month of the disaster and again 6 and 10 months after the disaster. To compare dam conditions before and after the failure, we performed a meta-analysis of physicochemical data from a public database. Immediately after the failure, suspended particulate matter (SPM) in the Doce River was 225-1877 mg L-1. Turbidity and dissolved aluminum and iron concentrations were extremely high, whereas dissolved oxygen was below Brazilian legislation norm (<5 mg L-1) in several locations. Six months later, physicochemical values were below thresholds set by Brazilian guidelines (e.g., SPM = 8-166 mg L-1). Short-term impacts on microbial communities included an increase in Actinobacteria and Bacteroidetes and gene sequences related to microbial virulence, motility, respiration, membrane transport, iron and nitrogen metabolism, suggesting changes in microbial metabolic profiles. The 11 recovered partial genomes from metagenomes (MAGs) had genes related to Fe cycle and metal resistance.

RevDate: 2019-03-07
CmpDate: 2019-03-07

Chen ZT, Lü L, Lu MX, et al (2017)

Comparative mitogenomic analysis of Aposthonia borneensis and Aposthonia japonica (Embioptera: Oligotomidae) reveals divergent evolution of webspinners.

Scientific reports, 7(1):8279.

In this study, we report the complete mitochondrial genome (mitogenome, mtDNA) of Aposthonia borneensis and compare it with another sequenced webspinner, Aposthonia japonica. The A. borneensis mitogenome is smaller than A. japonica, but the size of each gene and the A + T content of protein-coding genes (PCGs) are almost identical in the two mitogenomes. Among the PCGs, atp6 shows the highest evolutionary rate and cox1 the lowest. The mtDNA map in A. borneensis is similar to Drosophila yakuba, but distinctly different from A. japonica, which has extensive rearrangement. Phylogenetic analyses dated the divergence time of the two webspinners at ca. 103 Ma. We speculate that the most recent common ancestor (MRCA) of A. borneensis and A. japonica was divided into several geographic groups during the Pangea breakup. Geographic isolation between the Japanese islands and the continental southeastern Asia resulted in the divergent evolution of A. borneensis and A. japonica, thus generating mtDNA structural variations between the two species. Based on the phylogenetic analyses and specific distributional features, the genus Aposthonia was supported as non-monophyly, and we speculate that both highly rearranged and relatively conserved mitogenomes exist in other webspinners.

RevDate: 2019-03-07
CmpDate: 2019-03-07

Chen CH, Lin YL, Chen KH, et al (2017)

Bacterial diversity among four healthcare-associated institutes in Taiwan.

Scientific reports, 7(1):8230.

Indoor microbial communities have important implications for human health, especially in health-care institutes (HCIs). The factors that determine the diversity and composition of microbiomes in a built environment remain unclear. Herein, we used 16S rRNA amplicon sequencing to investigate the relationships between building attributes and surface bacterial communities among four HCIs located in three buildings. We examined the surface bacterial communities and environmental parameters in the buildings supplied with different ventilation types and compared the results using a Dirichlet multinomial mixture (DMM)-based approach. A total of 203 samples from the four HCIs were analyzed. Four bacterial communities were grouped using the DMM-based approach, which were highly similar to those in the 4 HCIs. The α-diversity and β-diversity in the naturally ventilated building were different from the conditioner-ventilated building. The bacterial source composition varied across each building. Nine genera were found as the core microbiota shared by all the areas, of which Acinetobacter, Enterobacter, Pseudomonas, and Staphylococcus are regarded as healthcare-associated pathogens (HAPs). The observed relationship between environmental parameters such as core microbiota and surface bacterial diversity suggests that we might manage indoor environments by creating new sanitation protocols, adjusting the ventilation design, and further understanding the transmission routes of HAPs.

RevDate: 2019-03-06

Divaris K, Shungin D, Rodríguez-Cortés A, et al (2019)

The Supragingival Biofilm in Early Childhood Caries: Clinical and Laboratory Protocols and Bioinformatics Pipelines Supporting Metagenomics, Metatranscriptomics, and Metabolomics Studies of the Oral Microbiome.

Methods in molecular biology (Clifton, N.J.), 1922:525-548.

Early childhood caries (ECC) is a biofilm-mediated disease. Social, environmental, and behavioral determinants as well as innate susceptibility are major influences on its incidence; however, from a pathogenetic standpoint, the disease is defined and driven by oral dysbiosis. In other words, the disease occurs when the natural equilibrium between the host and its oral microbiome shifts toward states that promote demineralization at the biofilm-tooth surface interface. Thus, a comprehensive understanding of dental caries as a disease requires the characterization of both the composition and the function or metabolic activity of the supragingival biofilm according to well-defined clinical statuses. However, taxonomic and functional information of the supragingival biofilm is rarely available in clinical cohorts, and its collection presents unique challenges among very young children. This paper presents a protocol and pipelines available for the conduct of supragingival biofilm microbiome studies among children in the primary dentition, that has been designed in the context of a large-scale population-based genetic epidemiologic study of ECC. The protocol is being developed for the collection of two supragingival biofilm samples from the maxillary primary dentition, enabling downstream taxonomic (e.g., metagenomics) and functional (e.g., transcriptomics and metabolomics) analyses. The protocol is being implemented in the assembly of a pediatric precision medicine cohort comprising over 6000 participants to date, contributing social, environmental, behavioral, clinical, and biological data informing ECC and other oral health outcomes.

RevDate: 2019-03-06

Miller IJ, Rees ER, Ross J, et al (2019)

Autometa: automated extraction of microbial genomes from individual shotgun metagenomes.

Nucleic acids research pii:5369936 [Epub ahead of print].

Shotgun metagenomics is a powerful, high-resolution technique enabling the study of microbial communities in situ. However, species-level resolution is only achieved after a process of 'binning' where contigs predicted to originate from the same genome are clustered. Such culture-independent sequencing frequently unearths novel microbes, and so various methods have been devised for reference-free binning. As novel microbiomes of increasing complexity are explored, sometimes associated with non-model hosts, robust automated binning methods are required. Existing methods struggle with eukaryotic contamination and cannot handle highly complex single metagenomes. We therefore developed an automated binning pipeline, termed 'Autometa', to address these issues. This command-line application integrates sequence homology, nucleotide composition, coverage and the presence of single-copy marker genes to separate microbial genomes from non-model host genomes and other eukaryotic contaminants, before deconvoluting individual genomes from single metagenomes. The method is able to effectively separate over 1000 genomes from a metagenome, allowing the study of previously intractably complex environments at the level of single species. Autometa is freely available at and as a docker image at under the GNU Affero General Public License 3 (AGPL 3).

RevDate: 2019-03-06

Nearing JT, Connors J, Whitehouse S, et al (2019)

Infectious Complications Are Associated With Alterations in the Gut Microbiome in Pediatric Patients With Acute Lymphoblastic Leukemia.

Frontiers in cellular and infection microbiology, 9:28.

Acute lymphoblastic leukemia is the most common pediatric cancer. Fortunately, survival rates exceed 90%, however, infectious complications remain a significant issue that can cause reductions in the quality of life and prognosis of patients. Recently, numerous studies have linked shifts in the gut microbiome composition to infection events in various hematological malignances including acute lymphoblastic leukemia (ALL). These studies have been limited to observing broad taxonomic changes using 16S rRNA gene profiling, while missing possible differences within microbial functions encoded by individual species. In this study we present the first combined 16S rRNA gene and metagenomic shotgun sequencing study on the gut microbiome of an independent pediatric ALL cohort during treatment. In this study we found distinctive differences in alpha diversity and beta diversity in samples from patients with infectious complications in the first 6 months of therapy. We were also able to find specific species and functional pathways that were significantly different in relative abundance between samples that came from patients with infectious complications. Finally, machine learning models based on patient metadata and bacterial species were able to classify samples with high accuracy (84.09%), with bacterial species being the most important classifying features. This study strengthens our understanding of the association between infection and pediatric acute lymphoblastic leukemia treatment and warrants further investigation in the future.

RevDate: 2019-03-06

Covasa M, Stephens RW, Toderean R, et al (2019)

Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides.

Frontiers in endocrinology, 10:82.

There are more than 2 billion overweight and obese individuals worldwide, surpassing for the first time, the number of people affected by undernutrition. Obesity and its comorbidities inflict a heavy burden on the global economies and have become a serious threat to individuals' wellbeing with no immediate cure available. The causes of obesity are manifold, involving several factors including physiological, metabolic, neural, psychosocial, economic, genetics and the environment, among others. Recent advances in genome sequencing and metagenomic profiling have added another dimension to this complexity by implicating the gut microbiota as an important player in energy regulation and the development of obesity. As such, accumulating evidence demonstrate the impact of the gut microbiota on body weight, adiposity, glucose, lipid metabolism, and metabolic syndrome. This also includes the role of microbiota as a modulatory signal either directly or through its bioactive metabolites on intestinal lumen by releasing chemosensing factors known to have a major role in controlling food intake and regulating body weight. The importance of gut signaling by microbiota signaling is further highlighted by the presence of taste and nutrient receptors on the intestinal epithelium activated by the microbial degradation products as well as their role in release of peptides hormones controlling appetite and energy homeostasis. This review present evidence on how gut microbiota interacts with intestinal chemosensing and modulates the release and activity of gut peptides, particularly GLP-1 and PYY.

RevDate: 2019-03-06

Gałan W, Bąk M, M Jakubowska (2019)

Host Taxon Predictor - A Tool for Predicting Taxon of the Host of a Newly Discovered Virus.

Scientific reports, 9(1):3436 pii:10.1038/s41598-019-39847-2.

Recent advances in metagenomics provided a valuable alternative to culture-based approaches for better sampling viral diversity. However, some of newly identified viruses lack sequence similarity to any of previously sequenced ones, and cannot be easily assigned to their hosts. Here we present a bioinformatic approach to this problem. We developed classifiers capable of distinguishing eukaryotic viruses from the phages achieving almost 95% prediction accuracy. The classifiers are wrapped in Host Taxon Predictor (HTP) software written in Python which is freely available at . HTP's performance was later demonstrated on a collection of newly identified viral genomes and genome fragments. In summary, HTP is a culture- and alignment-free approach for distinction between phages and eukaryotic viruses. We have also shown that it is possible to further extend our method to go up the evolutionary tree and predict whether a virus can infect narrower taxa.

RevDate: 2019-03-06

Nasko DJ, Ferrell BD, Moore RM, et al (2019)

CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes.

mBio, 10(2): pii:mBio.02651-18.

Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.

RevDate: 2019-03-06

Bäckström D, Yutin N, Jørgensen SL, et al (2019)

Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism.

mBio, 10(2): pii:mBio.02497-18.

The nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes (proposed order, "Megavirales") include the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, and Mimiviridae, as well as still unclassified pithoviruses, pandoraviruses, molliviruses, and faustoviruses. Several of these virus groups include giant viruses, with genome and particle sizes exceeding those of many bacterial and archaeal cells. We explored the diversity of the NCLDV in deep sea sediments from the Loki's Castle hydrothermal vent area. Using metagenomics, we reconstructed 23 high-quality genomic bins of novel NCLDV, 15 of which are related to pithoviruses, 5 to marseilleviruses, 1 to iridoviruses, and 2 to klosneuviruses. Some of the identified pithovirus-like and marseillevirus-like genomes belong to deep branches in the phylogenetic tree of core NCLDV genes, substantially expanding the diversity and phylogenetic depth of the respective groups. The discovered viruses, including putative giant members of the family Marseilleviridae, have a broad range of apparent genome sizes, in agreement with the multiple, independent origins of gigantism in different branches of the NCLDV. Phylogenomic analysis reaffirms the monophyly of the pithovirus-iridovirus-marseillevirus branch of the NCLDV. Similarly to other giant viruses, the pithovirus-like viruses from Loki's Castle encode translation systems components. Phylogenetic analysis of these genes indicates a greater bacterial contribution than had been detected previously. Genome comparison suggests extensive gene exchange between members of the pithovirus-like viruses and Mimiviridae Further exploration of the genomic diversity of Megavirales in additional sediment samples is expected to yield new insights into the evolution of giant viruses and the composition of the ocean megavirome.IMPORTANCE Genomics and evolution of giant viruses are two of the most vigorously developing areas of virus research. Lately, metagenomics has become the main source of new virus genomes. Here we describe a metagenomic analysis of the genomes of large and giant viruses from deep sea sediments. The assembled new virus genomes substantially expand the known diversity of the nucleocytoplasmic large DNA viruses of eukaryotes. The results support the concept of independent evolution of giant viruses from smaller ancestors in different virus branches.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Yi X, Yuan J, Zhu Y, et al (2018)

Comparison of the Abundance and Community Structure of N-Cycling Bacteria in Paddy Rhizosphere Soil under Different Rice Cultivation Patterns.

International journal of molecular sciences, 19(12): pii:ijms19123772.

Eco-agricultural systems aim to reduce the use of chemical fertilizers in order to improve sustainable production and maintain a healthy ecosystem. The aim of this study was to explore the effects of rice-frog farming on the bacterial community and N-cycling microbes in paddy rhizosphere soil. This experiment involved three rice cultivation patterns: Conventionally cultivated rice (CR), green rice-frog farming (GR), and organic rice-frog farming (OR). The rice yield, paddy soil enzyme activities, physicochemical variables and bacterial and N-cycling bacterial abundances were quantitatively analyzed. Rice-frog cultivations significantly increased soil protease, nitrate and reductase activity. Additionally, the nirS gene copy number and the relative abundance of denitrifying bacteria also increased, however urease activity and the relative abundance of nitrifying bacteria significantly decreased. The bacterial community richness and diversity of OR soil was significantly higher than that of the GR or CR soil. Nitrogen use efficiency (NUE) of GR was highest. The N-cycling bacterial community was positively correlated with the total carbon (TC), total nitrogren (TN) and carbon to nitrogen (C:N) ratio. The present work strengthens our current understanding of the soil bacterial community structure and its functions under rice-frog farming. The present work also provides certain theoretical support for the selection of rational rice cultivation patterns.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Amedei A, F Boem (2018)

I've Gut A Feeling: Microbiota Impacting the Conceptual and Experimental Perspectives of Personalized Medicine.

International journal of molecular sciences, 19(12): pii:ijms19123756.

In recent years, the human microbiota has gained increasing relevance both in research and clinical fields. Increasing studies seem to suggest the centrality of the microbiota and its composition both in the development and maintenance of what we call "health" and in generating and/or favoring (those cases in which the microbiota's complex relational architecture is dysregulated) the onset of pathological conditions. The complex relationships between the microbiota and human beings, which invest core notions of biomedicine such as "health" and "individual," do concern not only problems of an empirical nature but seem to require the need to adopt new concepts and new perspectives in order to be properly analysed and utilized, especially for their therapeutic implementation. In this contribution we report and discuss some of the theoretical proposals and innovations (from the ecological component to the notion of polygenomic organism) aimed at producing this change of perspective. In conclusion, we summarily analyze what impact and what new challenges these new approaches might have on personalized/person centred/precision medicine.

RevDate: 2019-03-06
CmpDate: 2019-03-06

Poirier S, Rué O, Peguilhan R, et al (2018)

Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: A comparative analysis with 16S rDNA V3-V4 amplicon sequencing.

PloS one, 13(9):e0204629.

Meat and seafood spoilage ecosystems harbor extensive bacterial genomic diversity that is mainly found within a small number of species but within a large number of strains with different spoilage metabolic potential. To decipher the intraspecies diversity of such microbiota, traditional metagenetic analysis using the 16S rRNA gene is inadequate. We therefore assessed the potential benefit of an alternative genetic marker, gyrB, which encodes the subunit B of DNA gyrase, a type II DNA topoisomerase. A comparison between 16S rDNA-based (V3-V4) amplicon sequencing and gyrB-based amplicon sequencing was carried out in five types of meat and seafood products, with five mock communities serving as quality controls. Our results revealed that bacterial richness in these mock communities and food samples was estimated with higher accuracy using gyrB than using16S rDNA. However, for Firmicutes species, 35% of putative gyrB reads were actually identified as sequences of a gyrB paralog, parE, which encodes subunit B of topoisomerase IV; we therefore constructed a reference database of published sequences of both gyrB and pare for use in all subsequent analyses. Despite this co-amplification, the deviation between relative sequencing quantification and absolute qPCR quantification was comparable to that observed for 16S rDNA for all the tested species. This confirms that gyrB can be used successfully alongside 16S rDNA to determine the species composition (richness and evenness) of food microbiota. The major benefit of gyrB sequencing is its potential for improving taxonomic assignment and for further investigating OTU richness at the subspecies level, thus allowing more accurate discrimination of samples. Indeed, 80% of the reads of the 16S rDNA dataset were represented by thirteen 16S rDNA-based OTUs that could not be assigned at the species-level. Instead, these same clades corresponded to 44 gyrB-based OTUs, which differentiated various lineages down to the subspecies level. The increased ability of gyrB-based analyses to track and trace phylogenetically different groups of strains will generate improved resolution and more reliable results for studies of the strains implicated in food processes.

RevDate: 2019-03-05

Ruppé E, J Schrenzel (2019)

Messages from the third International Conference on Clinical Metagenomics (ICCMg3).

Microbes and infection pii:S1286-4579(19)30026-7 [Epub ahead of print].

Clinical metagenomics (CMg), referring to as the application of metagenomic sequencing of clinical samples in order to recover clinically-relevant information, has been rapidly evolving these last years. Following this trend, we held the third International Conference on Clinical Metagenomics (ICCMg3) in Geneva in October 2018. During the two days of the conference, several aspects of CMg were addressed, which we propose to summarize in the present manuscript. During this ICCMg3, we kept on following the progresses achieved worldwide on clinical metagenomics, but also this year in clinical genomics. Besides, the use of metagenomics in cancer diagnostic and management was addressed. Some new challenges have also been raised such as the way to report clinical (meta)genomics output to clinicians and the pivotal place of ethics in this expandng field.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )