Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Evolution of Multicelluarity

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 02 Aug 2021 at 01:33 Created: 

Evolution of Multicelluarity

Created with PubMed® Query: (evolution OR origin) AND (multicellularity OR multicellular) NOT 33634751[PMID] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-07-29

Zhang WJ, Zhang C, Zhou S, et al (2021)

Comparative genomic analysis of obligately piezophilic Moritella yayanosii DB21MT-5 reveals bacterial adaptation to the Challenger Deep, Mariana Trench.

Microbial genomics, 7(7):.

Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium Moritella yayanosii DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic Moritella strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other Moritella strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other Moritella strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain Moritella yayanosii DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.

RevDate: 2021-07-24

Waldvogel AM, M Pfenninger (2021)

Temperature-dependence of spontaneous mutation rates.

Genome research pii:gr.275168.120 [Epub ahead of print].

Mutation is the source of genetic variation and the fundament of evolution. Temperature has long been suggested to have a direct impact on realized spontaneous mutation rates. If mutation rates vary in response to environmental conditions, such as the variation of the ambient temperature through space and time, they should no longer be described as species-specific constants. By combining mutation accumulation with whole-genome sequencing in a multicellular organism, we provide empirical support to reject the null hypothesis of a constant, temperature-independent mutation rate. Instead mutation rates depended on temperature in a U-shaped manner with increasing rates towards both temperature extremes. This relation has important implications for mutation-dependent processes in molecular evolution, processes shaping the evolution of mutation rates and even the evolution of biodiversity as such.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Shang-Guan XY, Cai YJ, Xu HZ, et al (2021)

A C-type lectin with a single CRD from Onychostoma macrolepis mediates immune recognition against bacterial challenge.

Fish & shellfish immunology, 115:160-170.

C-type lectins (CTL) are a large group of pattern-recognition proteins and to play important roles in glycoprotein metabolism, multicellular integration, and immunity. Based on their overall domain structure, they can be classified as different groups that possess different physiological functions. A typical C-type lectin (named as OmLec1) was identified from the fish, Onychostoma macrolepis, an important cultured fish in China. Open reading frame of OmLec1 contains a 570 bp, encoding a protein of 189 amino acids that includes a signal peptide and a single carbohydrate-recognition domain. The phylogenetic analysis showed that OmLec1 could be grouped with C-type lectin from other fish. OmLec1 was expressed in all the tissues in our study, and the expression level was highest in liver. And its relative expression levels were significantly upregulated following infection with Aeromonas hydrophila. The recombinant OmLec1 protein (rOmLec1) could agglutinate some Gram-negative bacteria and Gram-positive bacteria in vitro in the presence of Ca2+, showing a typical Ca2+-dependent carbohydrate-binding protein. Furthermore, rOmLec1 purified from E. coli BL21 (DE3), strongly bound to LPS and PGN, as well as all tested bacteria in a Ca2+-dependent manner. These results indicate that OmLec1 plays a central role in the innate immune response and as a pattern recognition receptor that recognizes diverse pathogens among O. macrolepis.

RevDate: 2021-07-22

Kożyczkowska A, Najle SR, Ocaña-Pallarès E, et al (2021)

Stable transfection in protist Corallochytriumlimacisporum identifies novel cellular features among unicellular animals relatives.

Current biology : CB pii:S0960-9822(21)00890-3 [Epub ahead of print].

The evolutionary path from protists to multicellular animals remains a mystery. Recent work on the genomes of several unicellular relatives of animals has shaped our understanding of the genetic changes that may have occurred in this transition.1-3 However, the specific cellular modifications that took place to accommodate these changes remain unclear. To address this, we need to compare metazoan cells with those of their extant relatives, which are choanoflagellates, filastereans, ichthyosporeans, and corallochytreans/pluriformeans. Interestingly, these lineages display a range of developmental patterns potentially homologous to animal ones. Genetic tools have already been established in three of those lineages.4-7 However, there are no genetic tools available for Corallochytrea. We here report the development of stable transfection in the corallochytrean Corallochytrium limacisporum. Using these tools, we discern previously unknown biological features of C. limacisporum. In particular, we identify two different paths for cell division-binary fission and coenocytic growth-that reveal a non-linear life cycle. Additionally, we found that C. limacisporum is binucleate for most of its life cycle, and that, contrary to what happens in most eukaryotes, nuclear division is decoupled from cellular division. Moreover, its actin cytoskeleton shares characteristics with both fungal and animal cells. The establishment of these tools in C. limacisporum fills an important gap in the unicellular relatives of animals, opening up new avenues of research to elucidate the specific cellular changes that occurred in the evolution of animals.

RevDate: 2021-07-22
CmpDate: 2021-07-22

Gonçalves AP, Heller J, Rico-Ramírez AM, et al (2020)

Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi.

Annual review of microbiology, 74:693-712.

Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.

RevDate: 2021-07-21
CmpDate: 2021-07-21

Gaisin VA, Grouzdev DS, Krutkina MS, et al (2020)

'Candidatus Oscillochloris kuznetsovii' a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments.

FEMS microbiology letters, 367(19):.

Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named 'Candidatus Oscillochloris kuznetsovii'. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.

RevDate: 2021-07-19

de Souza ID, Reis CF, Morais DAA, et al (2021)

Ancestry analysis indicates two different sets of essential genes in eukaryotic model species.

Functional & integrative genomics [Epub ahead of print].

Essential genes are so-called because they are crucial for organism perpetuation. Those genes are usually related to essential functions to cellular metabolism or multicellular homeostasis. Deleterious alterations on essential genes produce a spectrum of phenotypes in multicellular organisms. The effects range from the impairment of the fertilization process, disruption of fetal development, to loss of reproductive capacity. Essential genes are described as more evolutionarily conserved than non-essential genes. However, there is no consensus about the relationship between gene essentiality and gene age. Here, we identified essential genes in five model eukaryotic species (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) and estimate their evolutionary ancestry and their network properties. We observed that essential genes, on average, are older than other genes in all species investigated. The relationship of network properties and gene essentiality convey with previous findings, showing essential genes as important nodes in biological networks. As expected, we also observed that essential orthologs shared by the five species evaluated here are old. However, all the species evaluated here have a specific set of young essential genes not shared among them. Additionally, these two groups of essential genes are involved with distinct biological functions, suggesting two sets of essential genes: (i) a set of old essential genes common to all the evaluated species, regulating basic cellular functions, and (ii) a set of young essential genes exclusive to each species, which perform specific essential functions in each species.

RevDate: 2021-07-15

Loidl J (2021)

Tetrahymena meiosis: Simple yet ingenious.

PLoS genetics, 17(7):e1009627 pii:PGENETICS-D-21-00564.

The presence of meiosis, which is a conserved component of sexual reproduction, across organisms from all eukaryotic kingdoms, strongly argues that sex is a primordial feature of eukaryotes. However, extant meiotic structures and processes can vary considerably between organisms. The ciliated protist Tetrahymena thermophila, which diverged from animals, plants, and fungi early in evolution, provides one example of a rather unconventional meiosis. Tetrahymena has a simpler meiosis compared with most other organisms: It lacks both a synaptonemal complex (SC) and specialized meiotic machinery for chromosome cohesion and has a reduced capacity to regulate meiotic recombination. Despite this, it also features several unique mechanisms, including elongation of the nucleus to twice the cell length to promote homologous pairing and prevent recombination between sister chromatids. Comparison of the meiotic programs of Tetrahymena and higher multicellular organisms may reveal how extant meiosis evolved from proto-meiosis.

RevDate: 2021-07-14

Bestová H, Segrestin J, von Schwartzenberg K, et al (2021)

Biological scaling in green algae: the role of cell size and geometry.

Scientific reports, 11(1):14425.

The Metabolic Scaling Theory (MST), hypothesizes limitations of resource-transport networks in organisms and predicts their optimization into fractal-like structures. As a result, the relationship between population growth rate and body size should follow a cross-species universal quarter-power scaling. However, the universality of metabolic scaling has been challenged, particularly across transitions from bacteria to protists to multicellulars. The population growth rate of unicellulars should be constrained by external diffusion, ruling nutrient uptake, and internal diffusion, operating nutrient distribution. Both constraints intensify with increasing size possibly leading to shifting in the scaling exponent. We focused on unicellular algae Micrasterias. Large size and fractal-like morphology make this species a transitional group between unicellular and multicellular organisms in the evolution of allometry. We tested MST predictions using measurements of growth rate, size, and morphology-related traits. We showed that growth scaling of Micrasterias follows MST predictions, reflecting constraints by internal diffusion transport. Cell fractality and density decrease led to a proportional increase in surface area with body mass relaxing external constraints. Complex allometric optimization enables to maintain quarter-power scaling of population growth rate even with a large unicellular plan. Overall, our findings support fractality as a key factor in the evolution of biological scaling.

RevDate: 2021-07-10

Bernardes JP, John U, Woltermann N, et al (2021)

The evolution of convex trade-offs enables the transition towards multicellularity.

Nature communications, 12(1):4222.

The evolutionary transition towards multicellular life often involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. Theory predicts that germ soma differentiation is facilitated by a convex trade-off between survival and reproduction. However, this has never been tested and these transitions remain poorly understood at the ecological and genetic level. Here, we study the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirm that growth in cell groups is heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolve in all cell group isolates; these are linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.

RevDate: 2021-07-08

Vigneau J, M Borg (2021)

The epigenetic origin of life history transitions in plants and algae.

Plant reproduction [Epub ahead of print].

Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.

RevDate: 2021-07-08

Mitchell RN, Gernon TM, Cox GM, et al (2021)

Orbital forcing of ice sheets during snowball Earth.

Nature communications, 12(1):4187.

The snowball Earth hypothesis-that a runaway ice-albedo feedback can cause global glaciation-seeks to explain low-latitude glacial deposits, as well as geological anomalies including the re-emergence of banded iron formation and "cap" carbonates. One of the most significant challenges to snowball Earth has been sedimentological cyclicity that has been taken to imply more climate dynamics than expected when the ocean is completely covered in ice. However, recent climate models suggest that as atmospheric CO2 accumulates, the snowball climate system becomes sensitive to orbital forcing. Here we show the presence of nearly all Milankovitch (orbital) cycles preserved in stratified banded iron formation deposited during the Sturtian snowball Earth. These results provide evidence for orbitally forced cyclicity of global ice sheets that resulted in periodic oxidation of ferrous iron. Orbital glacial advance and retreat cycles provide a simple mechanism to reconcile both the sedimentary dynamics and the enigmatic survival of multicellular life during snowball Earth.

RevDate: 2021-07-03

Machado SR, TM Rodrigues (2021)

Apoplasmic barrier in the extrafloral nectary of Citharexylum myrianthum (Verbenaceae).

Planta, 254(2):19.

MAIN CONCLUSION: The cytological changes underlying the formation of an apoplasmic barrier in the multi-layered extrafloral nectaries of Citharexylum myrianthum are compatible with the synthesis, transport and deposition of suberin. In terms of ontogenesis and function, the intermediate layers of these nectaries are homologous with the stalks of nectar-secreting trichomes. Anticlinal cell wall impregnations are common in trichomatic nectaries and their functions as endodermis-like barriers have been discussed because of possible direct effects on the nectary physiology, mainly in the nectar secretion and resorption. However, the cytological events linked to nectary wall impregnations remain little explored. This study documents the ontogenesis and the fine structure of the EFN cells, and cytological events linked to the wall impregnations of multi-layered extrafloral nectaries (EFNs) in Citharexylum myrianthum Cham. (Verbenaceae). EFNs are patelliform, and differentiated into (a) a multicellular foot, which is compound in structure and vascularised with phloem strands, (b) a bi-layered intermediate region with thickened cell walls and (c) a single-layered secretory region with palisade-like cells. EFNs are protodermal in origin, starting with a single protodermal cell and ending with the complex, multi-layered structure. The cell wall impregnations first appear in the very young EFN and increase towards maturity. Lipid patches (assumed to be suberin) are deposited on the inner faces of the primary walls, first along the anticlinal walls and then extend to the periclinal walls. On both walls, plasmodesmata remain apparently intact during the maturation of the EFNs. In the peripheral cytoplasm there are abundant polymorphic plastids, well-developed Golgi bodies often close to rough endoplasmic reticulum profiles, mitochondria and polyribosomes. Cytological events linked to the wall impregnations are consistent with suberin synthesis, transport and deposition. Our findings offer new insights into the structure-properties of specialised nectary cell walls and so should contribute to our knowledge of the physiological and protective roles of this structure in nectar glands.

RevDate: 2021-07-02

Francés-Herrero E, Juárez-Barber E, Campo H, et al (2021)

Improved Models of Human Endometrial Organoids Based on Hydrogels from Decellularized Endometrium.

Journal of personalized medicine, 11(6): pii:jpm11060504.

Organoids are three-dimensional (3D) multicellular tissue models that mimic their corresponding in vivo tissue. Successful efforts have derived organoids from primary tissues such as intestine, liver, and pancreas. For human uterine endometrium, the recent generation of 3D structures from primary endometrial cells is inspiring new studies of this important tissue using precise preclinical models. To improve on these 3D models, we decellularized pig endometrium containing tissue-specific extracellular matrix and generated a hydrogel (EndoECM). Next, we derived three lines of human endometrial organoids and cultured them in optimal and suboptimal culture expansion media with or without EndoECM (0.01 mg/mL) as a soluble additive. We characterized the resultant organoids to verify their epithelial origin, long-term chromosomal stability, and stemness properties. Lastly, we determined their proliferation potential under different culture conditions using proliferation rates and immunohistochemical methods. Our results demonstrate the importance of a bioactive environment for the maintenance and proliferation of human endometrial organoids.

RevDate: 2021-07-02

Cricrì G, Bellucci L, Montini G, et al (2021)

Urinary Extracellular Vesicles: Uncovering the Basis of the Pathological Processes in Kidney-Related Diseases.

International journal of molecular sciences, 22(12): pii:ijms22126507.

Intercellular communication governs multicellular interactions in complex organisms. A variety of mechanisms exist through which cells can communicate, e.g., cell-cell contact, the release of paracrine/autocrine soluble molecules, or the transfer of extracellular vesicles (EVs). EVs are membrane-surrounded structures released by almost all cell types, acting both nearby and distant from their tissue/organ of origin. In the kidney, EVs are potent intercellular messengers released by all urinary system cells and are involved in cell crosstalk, contributing to physiology and pathogenesis. Moreover, urine is a reservoir of EVs coming from the circulation after crossing the glomerular filtration barrier-or originating in the kidney. Thus, urine represents an alternative source for biomarkers in kidney-related diseases, potentially replacing standard diagnostic techniques, including kidney biopsy. This review will present an overview of EV biogenesis and classification and the leading procedures for isolating EVs from body fluids. Furthermore, their role in intra-nephron communication and their use as a diagnostic tool for precision medicine in kidney-related disorders will be discussed.

RevDate: 2021-07-02

Mikuła A, Tomaszewicz W, Dziurka M, et al (2021)

The Origin of the Cyathea delgadii Sternb. Somatic Embryos Is Determined by the Developmental State of Donor Tissue and Mutual Balance of Selected Metabolites.

Cells, 10(6): pii:cells10061388.

Somatic embryogenesis is the formation of a plant embryo from a cell other than the product of gametic fusion. The need to recognize the determinants of somatic cell fate has prompted investigations on how endogenous factors of donor tissues can determine the pattern of somatic embryo origin. The undertaking of this study was enabled by the newly developed experimental system of somatic embryogenesis of the tree fern Cyathea delgadii Sternb., in which the embryos are produced in hormone-free medium. The contents of 89 endogenous compounds (such as sugars, auxins, cytokinins, gibberellins, stress-related hormones, phenolic acids, polyamines, and amino acids) and cytomorphological features were compared between two types of explants giving rise to somatic embryos of unicellular or multicellular origin. We found that a large content of maltose, 1-kestose, abscisic acid, biologically active gibberellins, and phenolic acids was characteristic for single-cell somatic embryo formation pattern. In contrast, high levels of starch, callose, kinetin riboside, arginine, and ethylene promoted their multicellular origin. Networks for visualization of the relations between studied compounds were constructed based on the data obtained from analyses of a Pearson correlation coefficient heatmap. Our findings present for the first time detailed features of donor tissue that can play an important role in the somatic-to-embryogenic transition and the somatic embryo origin.

RevDate: 2021-06-29

Ellis MA, Dalwadi MP, Ellis MJ, et al (2021)

A Systematically Reduced Mathematical Model for Organoid Expansion.

Frontiers in bioengineering and biotechnology, 9:670186.

Organoids are three-dimensional multicellular tissue constructs. When cultured in vitro, they recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine, demand has increased for low-cost and efficient methods of producing them in a reproducible manner and at scale. Here we focus on a bioreactor technology for organoid production, which exploits fluid flow to enhance mass transport to and from the organoids. To ensure large numbers of organoids can be grown within the bioreactor in a reproducible manner, nutrient delivery to, and waste product removal from, the organoids must be carefully controlled. We develop a continuum mathematical model to investigate how mass transport within the bioreactor depends on the inlet flow rate and cell seeding density, focusing on the transport of two key metabolites: glucose and lactate. We exploit the thin geometry of the bioreactor to systematically simplify our model. This significantly reduces the computational cost of generating model solutions, and provides insight into the dominant mass transport mechanisms. We test the validity of the reduced models by comparison with simulations of the full model. We then exploit our reduced mathematical model to determine, for a given inlet flow rate and cell seeding density, the evolution of the spatial metabolite distributions throughout the bioreactor. To assess the bioreactor transport characteristics, we introduce metrics quantifying glucose conversion (the ratio between the total amounts of consumed and supplied glucose), the maximum lactate concentration, the proportion of the bioreactor with intolerable lactate concentrations, and the time when intolerable lactate concentrations are first experienced within the bioreactor. We determine the dependence of these metrics on organoid-line characteristics such as proliferation rate and rate of glucose consumption per cell. Finally, for a given organoid line, we determine how the distribution of metabolites and the associated metrics depend on the inlet flow rate. Insights from this study can be used to inform bioreactor operating conditions, ultimately improving the quality and number of bioreactor-expanded organoids.

RevDate: 2021-06-22

Martínez-Reina J, Calvo-Gallego JL, P Pivonka (2021)

Combined Effects of Exercise and Denosumab Treatment on Local Failure in Post-menopausal Osteoporosis-Insights from Bone Remodelling Simulations Accounting for Mineralisation and Damage.

Frontiers in bioengineering and biotechnology, 9:635056.

Denosumab has been shown to increase bone mineral density (BMD) and reduce the fracture risk in patients with post-menopausal osteoporosis (PMO). Increase in BMD is linked with an increase in bone matrix mineralisation due to suppression of bone remodelling. However, denosumab anti-resorptive action also leads to an increase in fatigue microdamage, which may ultimately lead to an increased fracture risk. A novel mechanobiological model of bone remodelling was developed to investigate how these counter-acting mechanisms are affected both by exercise and long-term denosumab treatment. This model incorporates Frost's mechanostat feedback, a bone mineralisation algorithm and an evolution law for microdamage accumulation. Mechanical disuse and microdamage were assumed to stimulate RANKL production, which modulates activation frequency of basic multicellular units in bone remodelling. This mechanical feedback mechanism controls removal of excess bone mass and microdamage. Furthermore, a novel measure of bone local failure due to instantaneous overloading was developed. Numerical simulations indicate that trabecular bone volume fraction and bone matrix damage are determined by the respective bone turnover and homeostatic loading conditions. PMO patients treated with the currently WHO-approved dose of denosumab (60 mg administrated every 6 months) exhibit increased BMD, increased bone ash fraction and damage. In untreated patients, BMD will significantly decrease, as will ash fraction; while damage will increase. The model predicted that, depending on the time elapsed between the onset of PMO and the beginning of treatment, BMD slowly converges to the same steady-state value, while damage is low in patients treated soon after the onset of the disease and high in patients having PMO for a longer period. The simulations show that late treatment PMO patients have a significantly higher risk of local failure compared to patients that are treated soon after the onset of the disease. Furthermore, overloading resulted in an increase of BMD, but also in a faster increase of damage, which may consequently promote the risk of fracture, specially in late treatment scenarios. In case of mechanical disuse, the model predicted reduced BMD gains due to denosumab, while no significant change in damage occurred, thus leading to an increased risk of local failure compared to habitual loading.

RevDate: 2021-06-22

Sánchez-Romero MA, J Casadesús (2021)

Waddington's Landscapes in the Bacterial World.

Frontiers in microbiology, 12:685080.

Conrad Waddington's epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.

RevDate: 2021-06-19

Caipa Garcia AL, Arlt VM, DH Phillips (2021)

Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis.

Mutagenesis pii:6306522 [Epub ahead of print].

Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared to organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefited the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.

RevDate: 2021-06-19

Kreider JJ, Pen I, BH Kramer (2021)

Antagonistic pleiotropy and the evolution of extraordinary lifespans in eusocial organisms.

Evolution letters, 5(3):178-186.

Queens of eusocial species live extraordinarily long compared to their workers. So far, it has been argued that these lifespan divergences are readily explained by the classical evolutionary theory of ageing. As workers predominantly perform risky tasks, such as foraging and nest defense, and queens stay in the well-protected nests, selection against harmful genetic mutations expressed in old age should be weaker in workers than in queens due to caste differences in extrinsic mortality risk, and thus, lead to the evolution of longer queen and shorter worker lifespans. However, these arguments have not been supported by formal models. Here, we present a model for the evolution of caste-specific ageing in social insects, based on Williams' antagonistic pleiotropy theory of ageing. In individual-based simulations, we assume that mutations with antagonistic fitness effects can act within castes, that is, mutations in early life are accompanied by an antagonistic effect acting in later life, or between castes, where antagonistic effects emerge due to caste antagonism or indirect genetic effects between castes. In monogynous social insect species with sterile workers, large lifespan divergences between castes evolved under all different scenarios of antagonistic effects, but regardless of the degree of caste-specific extrinsic mortality. Mutations with antagonistic fitness effects within castes reduced lifespans of both castes, while mutations with between-caste antagonistic effects decreased worker lifespans more than queen lifespans, and consequently increased lifespan divergences. Our results challenge the central explanatory role of extrinsic mortality for caste-specific ageing in eusocial organisms and suggest that antagonistic pleiotropy affects castes differently due to reproductive monopolization by queens, hence, reproductive division of labor. Finally, these findings provide new insights into the evolution of tissue-specific ageing in multicellular organisms in general.

RevDate: 2021-07-02

Puzakov MV, Puzakova LV, Cheresiz SV, et al (2021)

The IS630/Tc1/mariner transposons in three ctenophore genomes.

Molecular phylogenetics and evolution, 163:107231 pii:S1055-7903(21)00164-0 [Epub ahead of print].

Transposable elements (TEs) exert a significant effect on the structure and functioning of the genomes and also serve as a source of the new genes. The study of the TE diversity and evolution in different taxa is indispensable for the fundamental understanding of their roles in the genomes. IS630/Tc1/mariner (ITm) transposable elements represent the most prevalent and diverse group of DNA transposons. In this work, we studied the diversity, evolutionary dynamics and the phylogenetic relationships of the ITm transposons found in three ctenophore species: Mnemiopsis leidyi, Pleurobrachia bachei, Beroe ovata. We identified 29 ITm transposons, seven of which possess the terminal inverted repeats (TIRs) and an intact transposase, and, thus, are, presumably, active. Four other ITm transposons have the features of domesticated TEs. According to the results of the phylogenetic analysis, the ITm transposons of the ctenophores represent five groups - MLE/DD34D, TLE/DD34-38E, mosquito/DD37E, Visiror/DD41D and pogo/DDxD. Pogo/DDxD superfamily turnes out to be the most diverse and prevalent, since it accounts for more than 40% of the TEs identified. The data obtained in this research will fill the gap of knowledge of the diversity and evolution of the ITm transposons in the multicellular genomes and will lay the ground for the study of the TE effects on the evolution of the ctenophores.

RevDate: 2021-06-18

Opazo JC, Vandewege MW, Gutierrez J, et al (2021)

Independent duplications of the Golgi phosphoprotein 3 oncogene in birds.

Scientific reports, 11(1):12483.

Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.

RevDate: 2021-06-14

Miguel-Tomé S, RR Llinás (2021)

Broadening the definition of a nervous system to better understand the evolution of plants and animals.

Plant signaling & behavior [Epub ahead of print].

Most textbook definitions recognize only animals as having nervous systems. However, for the past couple decades, botanists have been meticulously studying long-distance signaling systems in plants, and some researchers have stated that plants have a simple nervous system. Thus, an academic conflict has emerged between those who defend and those who deny the existence of a nervous system in plants. This article analyses that debate, and we propose an alternative to answering yes or no: broadening the definition of a nervous system to include plants. We claim that a definition broader than the current one, which is based only on a phylogenetic viewpoint, would be helpful in obtaining a deeper understanding of how evolution has driven the features of signal generation, transmission and processing in multicellular beings. Also, we propose two possible definitions and exemplify how broader a definition allows for new viewpoints on the evolution of plants, animals and the nervous system.

RevDate: 2021-06-25

Aevarsson A, Kaczorowska AK, Adalsteinsson BT, et al (2021)

Going to extremes - a metagenomic journey into the dark matter of life.

FEMS microbiology letters, 368(12):.

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.

RevDate: 2021-06-11

Márquez-Zacarías P, Conlin PL, Tong K, et al (2021)

Why have aggregative multicellular organisms stayed simple?.

Current genetics [Epub ahead of print].

Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.

RevDate: 2021-07-02

Amaral-Zettler LA, Zettler ER, Mincer TJ, et al (2021)

Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point?.

Water research, 201:117289 pii:S0043-1354(21)00487-5 [Epub ahead of print].

Biofouling causing an increase in plastic density and sinking is one of the hypotheses to account for the unexpectedly low amount of buoyant plastic debris encountered at the ocean surface. Field surveys show that polyethylene and polypropylene, the two most abundant buoyant plastics, both occur below the surface and in sediments, and experimental studies confirm that biofouling can cause both of these plastics to sink. However, studies quantifying the actual density of fouled plastics are rare, despite the fact that density will determine the transport and eventual fate of plastic in the ocean. Here we investigated the role of microbial biofilms in sinking of polyethylene microplastic and quantified the density changes natural biofouling communities cause in the coastal waters of the North Sea. Molecular data confirmed the variety of bacteria and eukaryotes (including animals and other multicellular organisms) colonizing the plastic over time. Fouling communities increased the density of plastic and caused sinking, and the plastic remained negatively buoyant even during the winter with lower growth rates. Relative surface area alone, however, did not predict whether a plastic piece sank. Due to patchy colonization, fragmentation of sinking pieces may result in smaller pieces regaining buoyancy and returning to the surface. Our results suggest that primarily multicellular organisms cause sinking of plastic pieces with surface area to volume ratios (SA:V) below 100 (generally pieces above a couple hundred micrometers in size), and that this is a "tipping point" at which microbial biofilms become the key players causing sinking of smaller pieces with higher SA:V ratios, including most fibers that are too small for larger (multicellular) organisms to colonize.

RevDate: 2021-06-14

Torday JS (2021)

Cellular evolution of language.

The evolutionary origin of language remains unknown despite many efforts to determine the origin of this signature human trait. Based on epigenetic inheritance, the current article hypothesizes that language evolved from cell-cell communication as the basis for generating structure and function embryologically and phylogenetically, as did all physiologic traits. Beginning with lipids forming the first micelle, a vertical integration of the evolved properties of the cell, from multicellular organisms to the introduction of cholesterol into the cell membrane, to the evolution of the peroxisome, the water-land transition and duplication of the βAdrenergic Receptor, the evolution of endothermy, leading to bipedalism, freeing the forelimbs for toolmaking and language, selection pressure for myelinization of the central nervous system to facilitate calcium flux, bespeaks human expression, culminating in the evolution of civilization. This process is epitomized by the Area of Broca as the structural-functional site for both motor control and language formation. The mechanistic interrelationship between motor control and language formation is underscored by the role of FoxP2 gene expression in both bipedalism and language. The effect of endothermy on bipedalism, freeing the forelimbs for toolmaking and language as the vertical integration from Cosmology to Physiology as the basis for language bespeaks human expression.

RevDate: 2021-06-07

Li Y, Shen XX, Evans B, et al (2021)

Rooting the animal tree of life.

Molecular biology and evolution pii:6294409 [Epub ahead of print].

Identifying our most distant animal relatives has emerged as one of the most challenging problems in phylogenetics. This debate has major implications for our understanding of the origin of multicellular animals and of the earliest events in animal evolution, including the origin of the nervous system. Some analyses identify sponges as our most distant animal relatives (Porifera-sister hypothesis), and others identify comb jellies (Ctenophora-sister hypothesis). These analyses vary in many respects, making it difficult to interpret previous tests of these hypotheses. To gain insight into why different studies yield different results, an important next step in the ongoing debate, we systematically test these hypotheses by synthesizing 15 previous phylogenomic studies and performing new standardized analyses under consistent conditions with additional models. We find that Ctenophora-sister is recovered across the full range of examined conditions, and Porifera-sister is recovered in some analyses under narrow conditions when most outgroups are excluded and site-heterogeneous CAT models are used. We additionally find that the number of categories in site-heterogenous models is sufficient to explain the Porifera-sister results. Furthermore, our cross-validation analyses show CAT models that recover Porifera-sister have hundreds of additional categories and fail to fit significantly better than site-heterogeneous models with far fewer categories. Systematic and standardized testing of diverse phylogenetic models suggests that we should be skeptical of Porifera-sister results both because they are recovered under such narrow conditions and because the models in these conditions fit the data no better than other models that recover Ctenophora-sister.

RevDate: 2021-06-02

Kang S, Tice AK, Stairs CW, et al (2021)

The integrin-mediated adhesive complex in the ancestor of animals, fungi, and amoebae.

Current biology : CB pii:S0960-9822(21)00623-0 [Epub ahead of print].

Integrins are transmembrane receptors that activate signal transduction pathways upon extracellular matrix binding. The integrin-mediated adhesive complex (IMAC) mediates various cell physiological processes. Although the IMAC was thought to be specific to animals, in the past ten years these complexes were discovered in other lineages of Obazoa, the group containing animals, fungi, and several microbial eukaryotes. Very recently, many genomes and transcriptomes from Amoebozoa (the eukaryotic supergroup sister to Obazoa), other obazoans, orphan protist lineages, and the eukaryotes' closest prokaryotic relatives, have become available. To increase the resolution of where and when IMAC proteins exist and have emerged, we surveyed these newly available genomes and transcriptomes for the presence of IMAC proteins. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought and that co-option of this apparently ancient protein complex was key to the emergence of animal-type multicellularity. The role of the IMACs in amoebozoans is unknown, but they play critical adhesive roles in at least some unicellular organisms.

RevDate: 2021-06-02

Badis Y, Scornet D, Harada M, et al (2021)

Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus.

The New phytologist [Epub ahead of print].

Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.

RevDate: 2021-06-15

Elders H, F Hennicke (2021)

The Pacific Tree-Parasitic Fungus Cyclocybe parasitica Exhibits Monokaryotic Fruiting, Showing Phenotypes Known from Bracket Fungi and from Cyclocybe aegerita.

Journal of fungi (Basel, Switzerland), 7(5):.

Cyclocybe parasitica is a wood-destroying parasitic edible mushroom growing on diverse broad-leafed trees in New Zealand and other Pacific areas. Recent molecular systematics of European Cyclocybe aegerita, a newly delimited Asian phylum and of related species, corroborated the distinction of the chiefly saprobic cultivated edible mushroom C. aegerita from C. parasitica. Here, we show that C. parasitica exhibits a morpho-physiological trait characteristic to its European cousin, i.e., monokaryotic fruiting sensu stricto (basidiome formation without mating). Monokaryotic fruiting structures formed by C. parasitica ICMP 11668-derived monokaryons were categorized into four phenotypes. One of them displays ulcer-like structures previously reported from bracket fungi. Histology of dikaryotic and monokaryotic C. parasitica fruiting structures revealed anatomical commonalities and differences between them, and towards monokaryotic fruiting structures of C. aegerita. Mating experiments with C. parasitica strains representative of each fruiting phenotype identified compatible sibling monokaryons. Given reports on hypothetically monokaryotic basidiome field populations of 'C. aegerita sensu lato', it seems worthwhile to prospectively investigate whether monokaryotic fruiting s.str. occurs in nature. Sampling from such populations including karyotyping, comparative -omics, and competition assays may help to answer this question and provide evidence whether this trait may confer competitive advantages to a species capable of it.

RevDate: 2021-06-15

Miller WB, Enguita FJ, AL Leitão (2021)

Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution.

Cells, 10(5):.

Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.

RevDate: 2021-06-07

Grandhi TSP, To J, Romero A, et al (2021)

High-throughput CRISPR-mediated 3D enrichment platform for functional interrogation of chemotherapeutic resistance.

Biotechnology and bioengineering [Epub ahead of print].

Cancer is a disease of somatic mutations. These cellular mutations compete to dominate their microenvironment and dictate the disease outcome. While a therapeutic approach to target-specific oncogenic driver mutations helps to manage the disease, subsequent molecular evolution of tumor cells threatens to overtake therapeutic progress. There is a need for rapid, high-throughput, unbiased in vitro discovery screening platforms that capture the native complexities of the tumor and rapidly identify mutations that confer chemotherapeutic drug resistance. Taking the example of the CDK4/6 inhibitor (CDK4/6i) class of drugs, we show that the pooled in vitro CRISPR screening platform enables rapid discovery of drug resistance mutations in a three-dimensional (3D) setting. Gene-edited cancer cell clones assembled into an organotypic multicellular tumor spheroid (MCTS), exposed to CDK4/6i caused selection and enrichment of the most drug-resistant phenotypes, detectable by next-gen sequencing after a span of 28 days. The platform was sufficiently sensitive to enrich for even a single drug-resistant cell within a large, drug-responsive complex 3D tumor spheroid. The genome-wide 3D CRISPR-mediated knockout screen (>18,000 genes) identified several genes whose disruptions conferred resistance to CDK4/6i. Furthermore, multiple novel candidate genes were identified as top hits only in the microphysiological 3D enrichment assay platform and not the conventional 2D assays. Taken together, these findings suggest that including phenotypic 3D resistance profiling in decision trees could improve discovery and reconfirmation of drug resistance mechanisms and afford a platform for exploring noncell autonomous interactions, selection pressures, and clonal competition.

RevDate: 2021-07-01

Sheng Y, Pan B, Wei F, et al (2021)

Case Study of the Response of N6-Methyladenine DNA Modification to Environmental Stressors in the Unicellular Eukaryote Tetrahymena thermophila.

mSphere, 6(3):e0120820.

Rediscovered as a potential epigenetic mark, N6-methyladenine DNA modification (6mA) was recently reported to be sensitive to environmental stressors in several multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive. Here, we characterized the dynamic changes of 6mA under starvation in the unicellular model organism Tetrahymena thermophila. Single-molecule, real-time (SMRT) sequencing reveals that DNA 6mA levels in starved cells are significantly reduced, especially symmetric 6mA, compared to those in vegetatively growing cells. Despite a global 6mA reduction, the fraction of asymmetric 6mA with a high methylation level was increased, which might be the driving force for stronger nucleosome positioning in starved cells. Starvation affects expression of many metabolism-related genes, the expression level change of which is associated with the amount of 6mA change, thereby linking 6mA with global transcription and starvation adaptation. The reduction of symmetric 6mA and the increase of asymmetric 6mA coincide with the downregulation of AMT1 and upregulation of AMT2 and AMT5, which are supposedly the MT-A70 methyltransferases required for symmetric and asymmetric 6mA, respectively. These results demonstrated that a regulated 6mA response to environmental cues is evolutionarily conserved in eukaryotes. IMPORTANCE Increasing evidence indicated that 6mA could respond to environmental stressors in multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive. In the present work, we characterized the dynamic changes of 6mA under starvation in the unicellular model organism Tetrahymena thermophila. Our results provide insights into how Tetrahymena fine-tunes its 6mA level and composition upon starvation, suggesting that a regulated 6mA response to environmental cues is evolutionarily conserved in eukaryotes.

RevDate: 2021-06-10

Jiang S, Li H, Zeng Q, et al (2021)

The Dynamic Counterbalance of RAC1-YAP/OB-Cadherin Coordinates Tissue Spreading with Stem Cell Fate Patterning.

Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(10):2004000.

Tissue spreading represents a key morphogenetic feature of embryonic development and regenerative medicine. However, how molecular signaling orchestrates the spreading dynamics and cell fate commitment of multicellular tissue remains poorly understood. Here, it is demonstrated that the dynamic counterbalance between RAC1-YAP and OB-cadherin plays a key role in coordinating heterogeneous spreading dynamics with distinct cell fate patterning during collective spreading. The spatiotemporal evolution of individual stem cells in spheroids during collective spreading is mapped. Time-lapse cell migratory trajectory analysis combined with in situ cellular biomechanics detection reveal heterogeneous patterns of collective spreading characteristics, where the cells at the periphery are faster, stiffer, and directional compared to those in the center of the spheroid. Single-cell sequencing shows that the divergent spreading result in distinct cell fate patterning, where differentiation, proliferation, and metabolism are enhanced in peripheral cells. Molecular analysis demonstrates that the increased expression of RAC1-YAP rather than OB-cadherin facilitated cell spreading and induced differentiation, and vice versa. The in vivo wound healing experiment confirms the functional role of RAC1-YAP signaling in tissue spreading. These findings shed light on the mechanism of tissue morphogenesis in the progression of development and provide a practical strategy for desirable regenerative therapies.

RevDate: 2021-05-22

Tanay A, A Sebé-Pedrós (2021)

Evolutionary Cell Type Mapping with Single-Cell Genomics.

Trends in genetics : TIG pii:S0168-9525(21)00104-9 [Epub ahead of print].

A fundamental characteristic of animal multicellularity is the spatial coexistence of functionally specialized cell types that are all encoded by a single genome sequence. Cell type transcriptional programs are deployed and maintained by regulatory mechanisms that control the asymmetric, differential access to genomic information in each cell. This genome regulation ultimately results in specific cellular phenotypes. However, the emergence, diversity, and evolutionary dynamics of animal cell types remain almost completely unexplored beyond a few species. Single-cell genomics is emerging as a powerful tool to build comprehensive catalogs of cell types and their associated gene regulatory programs in non-traditional model species. We review the current state of sampling efforts across the animal tree of life and challenges ahead for the comparative study of cell type programs. We also discuss how the phylogenetic integration of cell atlases can lead to the development of models of cell type evolution and a phylogenetic taxonomy of cells.

RevDate: 2021-06-03
CmpDate: 2021-06-03

Bozdag GO, Libby E, Pineau R, et al (2021)

Oxygen suppression of macroscopic multicellularity.

Nature communications, 12(1):2838.

Atmospheric oxygen is thought to have played a vital role in the evolution of large, complex multicellular organisms. Challenging the prevailing theory, we show that the transition from an anaerobic to an aerobic world can strongly suppress the evolution of macroscopic multicellularity. Here we select for increased size in multicellular 'snowflake' yeast across a range of metabolically-available O2 levels. While yeast under anaerobic and high-O2 conditions evolved to be considerably larger, intermediate O2 constrained the evolution of large size. Through sequencing and synthetic strain construction, we confirm that this is due to O2-mediated divergent selection acting on organism size. We show via mathematical modeling that our results stem from nearly universal evolutionary and biophysical trade-offs, and thus should apply broadly. These results highlight the fact that oxygen is a double-edged sword: while it provides significant metabolic advantages, selection for efficient use of this resource may paradoxically suppress the evolution of macroscopic multicellular organisms.

RevDate: 2021-06-11

Lu YX, Regan JC, Eßer J, et al (2021)

A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing.

eLife, 10:.

Age-related changes to histone levels are seen in many species. However, it is unclear whether changes to histone expression could be exploited to ameliorate the effects of ageing in multicellular organisms. Here we show that inhibition of mTORC1 by the lifespan-extending drug rapamycin increases expression of histones H3 and H4 post-transcriptionally through eIF3-mediated translation. Elevated expression of H3/H4 in intestinal enterocytes in Drosophila alters chromatin organisation, induces intestinal autophagy through transcriptional regulation, and prevents age-related decline in the intestine. Importantly, it also mediates rapamycin-induced longevity and intestinal health. Histones H3/H4 regulate expression of an autophagy cargo adaptor Bchs (WDFY3 in mammals), increased expression of which in enterocytes mediates increased H3/H4-dependent healthy longevity. In mice, rapamycin treatment increases expression of histone proteins and Wdfy3 transcription, and alters chromatin organisation in the small intestine, suggesting that the mTORC1-histone axis is at least partially conserved in mammals and may offer new targets for anti-ageing interventions.

RevDate: 2021-06-21

Lineweaver CH, Bussey KJ, Blackburn AC, et al (2021)

Cancer progression as a sequence of atavistic reversions.

BioEssays : news and reviews in molecular, cellular and developmental biology, 43(7):e2000305.

It has long been recognized that cancer onset and progression represent a type of reversion to an ancestral quasi-unicellular phenotype. This general concept has been refined into the atavistic model of cancer that attempts to provide a quantitative analysis and testable predictions based on genomic data. Over the past decade, support for the multicellular-to-unicellular reversion predicted by the atavism model has come from phylostratigraphy. Here, we propose that cancer onset and progression involve more than a one-off multicellular-to-unicellular reversion, and are better described as a series of reversionary transitions. We make new predictions based on the chronology of the unicellular-eukaryote-to-multicellular-eukaryote transition. We also make new predictions based on three other evolutionary transitions that occurred in our lineage: eukaryogenesis, oxidative phosphorylation and the transition to adaptive immunity. We propose several modifications to current phylostratigraphy to improve age resolution to test these predictions. Also see the video abstract here:

RevDate: 2021-06-08

van Gestel J, A Wagner (2021)

Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation.

PLoS biology, 19(5):e3001250.

The repeated evolution of multicellularity led to a wide diversity of organisms, many of which are sessile, including land plants, many fungi, and colonial animals. Sessile organisms adhere to a surface for most of their lives, where they grow and compete for space. Despite the prevalence of surface-associated multicellularity, little is known about its evolutionary origin. Here, we introduce a novel theoretical approach, based on spatial lineage tracking of cells, to study this origin. We show that multicellularity can rapidly evolve from two widespread cellular properties: cell adhesion and the regulatory control of adhesion. By evolving adhesion, cells attach to a surface, where they spontaneously give rise to primitive cell collectives that differ in size, life span, and mode of propagation. Selection in favor of large collectives increases the fraction of adhesive cells until a surface becomes fully occupied. Through kin recognition, collectives then evolve a central-peripheral polarity in cell adhesion that supports a division of labor between cells and profoundly impacts growth. Despite this spatial organization, nascent collectives remain cryptic, lack well-defined boundaries, and would require experimental lineage tracking technologies for their identification. Our results suggest that cryptic multicellularity could readily evolve and originate well before multicellular individuals become morphologically evident.

RevDate: 2021-06-17

Joy DA, Libby ARG, TC McDevitt (2021)

Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing morphogenesis.

Stem cell reports, 16(5):1317-1330.

Lineage tracing is a powerful tool in developmental biology to interrogate the evolution of tissue formation, but the dense, three-dimensional nature of tissue limits the assembly of individual cell trajectories into complete reconstructions of development. Human induced pluripotent stem cells (hiPSCs) can recapitulate aspects of developmental processes, providing an in vitro platform to assess the dynamic collective behaviors directing tissue morphogenesis. Here, we trained an ensemble of neural networks to track individual hiPSCs in time-lapse microscopy, generating longitudinal measures of cell and cellular neighborhood properties on timescales from minutes to days. Our analysis reveals that, while individual cell parameters are not strongly affected by pluripotency maintenance conditions or morphogenic cues, regional changes in cell behavior predict cell fate and colony organization. By generating complete multicellular reconstructions of hiPSC behavior, our tracking pipeline enables fine-grained understanding of morphogenesis by elucidating the role of regional behavior in early tissue formation.

RevDate: 2021-06-11
CmpDate: 2021-06-02

Tsutsui K, Machida H, Nakagawa A, et al (2021)

Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions.

Nature communications, 12(1):2577.

Inter-tissue interaction is fundamental to multicellularity. Although the basement membrane (BM) is located at tissue interfaces, its mode of action in inter-tissue interactions remains poorly understood, mainly because the molecular and structural details of the BM at distinct inter-tissue interfaces remain unclear. By combining quantitative transcriptomics and immunohistochemistry, we systematically identify the cellular origin, molecular identity and tissue distribution of extracellular matrix molecules in mouse hair follicles, and reveal that BM composition and architecture are exquisitely specialized for distinct inter-tissue interactions, including epithelial-fibroblast, epithelial-muscle and epithelial-nerve interactions. The epithelial-fibroblast interface, namely, hair germ-dermal papilla interface, makes asymmetrically organized side-specific heterogeneity in the BM, defined by the newly characterized interface, hook and mesh BMs. One component of these BMs, laminin α5, is required for hair cycle regulation and hair germ-dermal papilla anchoring. Our study highlights the significance of BM heterogeneity in distinct inter-tissue interactions.

RevDate: 2021-05-25

Levin M (2021)

Bioelectrical approaches to cancer as a problem of the scaling of the cellular self.

Progress in biophysics and molecular biology pii:S0079-6107(21)00037-7 [Epub ahead of print].

One lens with which to understand the complex phenomenon of cancer is that of developmental biology. Cancer is the inevitable consequence of a breakdown of the communication that enables individual cells to join into computational networks that work towards large-scale, morphogenetic goals instead of more primitive, unicellular objectives. This perspective suggests that cancer may be a physiological disorder, not necessarily due to problems with the genetically-specified protein hardware. One aspect of morphogenetic coordination is bioelectric signaling, and indeed an abnormal bioelectric signature non-invasively reveals the site of incipient tumors in amphibian models. Functionally, a disruption of resting potential states triggers metastatic melanoma phenotypes in embryos with no genetic defects or carcinogen exposure. Conversely, optogenetic or molecular-biological modulation of bioelectric states can override powerful oncogenic mutations and prevent or normalize tumors. The bioelectrically-mediated information flows that harness cells toward body-level anatomical outcomes represent a very attractive and tractable endogenous control system, which is being targeted by emerging approaches to cancer.

RevDate: 2021-05-06

Russo M, Sogari A, A Bardelli (2021)

Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment.

Cancer discovery pii:2159-8290.CD-20-1588 [Epub ahead of print].

Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.

RevDate: 2021-05-05

Li X, Hou Z, Xu C, et al (2021)

Large phylogenomic datasets reveal deep relationships and trait evolution in chlorophyte green algae.

Genome biology and evolution pii:6265471 [Epub ahead of print].

The chlorophyte green algae (Chlorophyta) are species-rich ancient groups ubiquitous in various habitats with high cytological diversity, ranging from microscopic to macroscopic organisms. However, the deep phylogeny within core Chlorophyta remains unresolved, in part due to the relatively sparse taxon and gene sampling in previous studies. Here we contribute new transcriptomic data and reconstruct phylogenetic relationships of core Chlorophyta based on four large datasets up to 2698 genes of 70 species, representing 80% of extant orders. The impacts of outgroup choice, missing data, bootstrap-support cutoffs, and model misspecification in phylogenetic inference of core Chlorophyta are examined. The species tree topologies of core Chlorophyta from different analyses are highly congruent, with strong supports at many relationships (e.g., the Bryopsidales and the Scotinosphaerales-Dasycladales clade). The monophyly of Chlorophyceae and of Trebouxiophyceae as well as the uncertain placement of Chlorodendrophyceae and Pedinophyceae corroborate results from previous studies. The reconstruction of ancestral scenarios illustrates the evolution of the freshwater-sea and microscopic-macroscopic transition in the Ulvophyceae, and the transformation of unicellular→colonial→multicellular in the chlorophyte green algae. In addition, we provided new evidence that serine is encoded by both canonical codons and non-canonical TAG code in Scotinosphaerales, and stop-to-sense codon reassignment in the Ulvophyceae has originated independently at least three times. Our robust phylogenetic framework of core Chlorophyta unveils the evolutionary history of phycoplast, cyto-morphology and non-canonical genetic codes in chlorophyte green algae.

RevDate: 2021-05-22

Hartl B, Hübl M, Kahl G, et al (2021)

Microswimmers learning chemotaxis with genetic algorithms.

Proceedings of the National Academy of Sciences of the United States of America, 118(19):.

Various microorganisms and some mammalian cells are able to swim in viscous fluids by performing nonreciprocal body deformations, such as rotating attached flagella or by distorting their entire body. In order to perform chemotaxis (i.e., to move toward and to stay at high concentrations of nutrients), they adapt their swimming gaits in a nontrivial manner. Here, we propose a computational model, which features autonomous shape adaptation of microswimmers moving in one dimension toward high field concentrations. As an internal decision-making machinery, we use artificial neural networks, which control the motion of the microswimmer. We present two methods to measure chemical gradients, spatial and temporal sensing, as known for swimming mammalian cells and bacteria, respectively. Using the genetic algorithm NeuroEvolution of Augmenting Topologies, surprisingly simple neural networks evolve. These networks control the shape deformations of the microswimmers and allow them to navigate in static and complex time-dependent chemical environments. By introducing noisy signal transmission in the neural network, the well-known biased run-and-tumble motion emerges. Our work demonstrates that the evolution of a simple and interpretable internal decision-making machinery coupled to the environment allows navigation in diverse chemical landscapes. These findings are of relevance for intracellular biochemical sensing mechanisms of single cells or for the simple nervous system of small multicellular organisms such as Caenorhabditis elegans.

RevDate: 2021-05-29

Wang SY, Pollina EA, Wang IH, et al (2021)

Role of epigenetics in unicellular to multicellular transition in Dictyostelium.

Genome biology, 22(1):134.

BACKGROUND: The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity.

RESULTS: While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change. By combining transcriptomics, epigenomics, chromatin accessibility, and orthologous gene analyses with other unicellular and multicellular organisms, we identify 52 conserved genes, which are specifically accessible and expressed during multicellular states. We validated that four of these genes, including the H3K27 deacetylase hdaD, are necessary and that an SMC-like gene, smcl1, is sufficient for multicellularity in Dictyostelium.

CONCLUSIONS: These results highlight the importance of epigenetics in reorganizing chromatin architecture to facilitate multicellularity in Dictyostelium discoideum and raise exciting possibilities about the role of epigenetics in the evolution of multicellularity more broadly.

RevDate: 2021-05-14
CmpDate: 2021-05-14

Orban A, Weber A, Herzog R, et al (2021)

Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis.

BMC genomics, 22(1):324.

BACKGROUND: Cyclocybe aegerita (syn. Agrocybe aegerita) is a commercially cultivated mushroom. Its archetypal agaric morphology and its ability to undergo its whole life cycle under laboratory conditions makes this fungus a well-suited model for studying fruiting body (basidiome, basidiocarp) development. To elucidate the so far barely understood biosynthesis of fungal volatiles, alterations in the transcriptome during different developmental stages of C. aegerita were analyzed and combined with changes in the volatile profile during its different fruiting stages.

RESULTS: A transcriptomic study at seven points in time during fruiting body development of C. aegerita with seven mycelial and five fruiting body stages was conducted. Differential gene expression was observed for genes involved in fungal fruiting body formation showing interesting transcriptional patterns and correlations of these fruiting-related genes with the developmental stages. Combining transcriptome and volatilome data, enzymes putatively involved in the biosynthesis of C8 oxylipins in C. aegerita including lipoxygenases (LOXs), dioxygenases (DOXs), hydroperoxide lyases (HPLs), alcohol dehydrogenases (ADHs) and ene-reductases could be identified. Furthermore, we were able to localize the mycelium as the main source for sesquiterpenes predominant during sporulation in the headspace of C. aegerita cultures. In contrast, changes in the C8 profile detected in late stages of development are probably due to the activity of enzymes located in the fruiting bodies.

CONCLUSIONS: In this study, the combination of volatilome and transcriptome data of C. aegerita revealed interesting candidates both for functional genetics-based analysis of fruiting-related genes and for prospective enzyme characterization studies to further elucidate the so far barely understood biosynthesis of fungal C8 oxylipins.

RevDate: 2021-05-27

Isaksson H, Conlin PL, Kerr B, et al (2021)

The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity.

Genes, 12(5):.

Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.

RevDate: 2021-05-12
CmpDate: 2021-05-12

Romanova MA, Maksimova AI, Pawlowski K, et al (2021)

YABBY Genes in the Development and Evolution of Land Plants.

International journal of molecular sciences, 22(8):.

Mounting evidence from genomic and transcriptomic studies suggests that most genetic networks regulating the morphogenesis of land plant sporophytes were co-opted and modified from those already present in streptophyte algae and gametophytes of bryophytes sensu lato. However, thus far, no candidate genes have been identified that could be responsible for "planation", a conversion from a three-dimensional to a two-dimensional growth pattern. According to the telome theory, "planation" was required for the genesis of the leaf blade in the course of leaf evolution. The key transcription factors responsible for leaf blade development in angiosperms are YABBY proteins, which until recently were thought to be unique for seed plants. Yet, identification of a YABBY homologue in a green alga and the recent findings of YABBY homologues in lycophytes and hornworts suggest that YABBY proteins were already present in the last common ancestor of land plants. Thus, these transcriptional factors could have been involved in "planation", which fosters our understanding of the origin of leaves. Here, we summarise the current data on functions of YABBY proteins in the vegetative and reproductive development of diverse angiosperms and gymnosperms as well as in the development of lycophytes. Furthermore, we discuss a putative role of YABBY proteins in the genesis of multicellular shoot apical meristems and in the evolution of leaves in early divergent terrestrial plants.

RevDate: 2021-05-13
CmpDate: 2021-05-12

Moreira D, Zivanovic Y, López-Archilla AI, et al (2021)

Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii.

Nature communications, 12(1):2454.

The Candidate Phyla Radiation (CPR) constitutes a large group of mostly uncultured bacterial lineages with small cell sizes and limited biosynthetic capabilities. They are thought to be symbionts of other organisms, but the nature of this symbiosis has been ascertained only for cultured Saccharibacteria, which are epibiotic parasites of other bacteria. Here, we study the biology and the genome of Vampirococcus lugosii, which becomes the first described species of Vampirococcus, a genus of epibiotic bacteria morphologically identified decades ago. Vampirococcus belongs to the CPR phylum Absconditabacteria. It feeds on anoxygenic photosynthetic gammaproteobacteria, fully absorbing their cytoplasmic content. The cells divide epibiotically, forming multicellular stalks whose apical cells can reach new hosts. The genome is small (1.3 Mbp) and highly reduced in biosynthetic metabolism genes, but is enriched in genes possibly related to a fibrous cell surface likely involved in interactions with the host. Gene loss has been continuous during the evolution of Absconditabacteria, and generally most CPR bacteria, but this has been compensated by gene acquisition by horizontal gene transfer and de novo evolution. Our findings support parasitism as a widespread lifestyle of CPR bacteria, which probably contribute to the control of bacterial populations in diverse ecosystems.

RevDate: 2021-04-28

Garg R, I Maldener (2021)

The Dual Role of the Glycolipid Envelope in Different Cell Types of the Multicellular Cyanobacterium Anabaena variabilis ATCC 29413.

Frontiers in microbiology, 12:645028.

Anabaena variabilis is a filamentous cyanobacterium that is capable to differentiate specialized cells, the heterocysts and akinetes, to survive under different stress conditions. Under nitrogen limited condition, heterocysts provide the filament with nitrogen by fixing N2. Akinetes are spore-like dormant cells that allow survival during adverse environmental conditions. Both cell types are characterized by the presence of a thick multilayered envelope, including a glycolipid layer. While in the heterocyst this glycolipid layer is required for the maintenance of a microoxic environment and nitrogen fixation, its function in akinetes is completely unknown. Therefore, we constructed a mutant deficient in glycolipid synthesis and investigated the performance of heterocysts and akinetes in that mutant strain. We chose to delete the gene Ava_2595, which is homolog to the known hglB gene, encoding a putative polyketide synthase previously shown to be involved in heterocyst glycolipid synthesis in Anabaena sp. PCC 7120, a species which does not form akinetes. Under the respective conditions, the Ava_2595 null mutant strain formed aberrant heterocysts and akinete-like cells, in which the specific glycolipid layers were absent. This confirmed firstly that both cell types use a glycolipid of identical chemical composition in their special envelopes and, secondly, that HglB is essential for glycolipid synthesis in both types of differentiated cells. As a consequence, the mutant was not able to fix N2 and to grow under diazotrophic conditions. Furthermore, the akinetes lacking the glycolipids showed a severely reduced tolerance to stress conditions, but could germinate normally under standard conditions. This demonstrates the importance of the glycolipid layer for the ability of akinetes as spore-like dormant cells to withstand freezing, desiccation, oxidative stress and attack by lytic enzymes. Our study established the dual role of the glycolipid layer in fulfilling different functions in the evolutionary-related specialized cells of cyanobacteria. It also indicates the existence of a common pathway involving HglB for the synthesis of glycolipids in heterocysts and akinetes.

RevDate: 2021-06-11

Wang Z, Sun X, Zhang X, et al (2021)

Development of a miRNA Sensor by an Inducible CRISPR-Cas9 Construct in Ciona Embryogenesis.

Molecular biotechnology, 63(7):613-620.

MicroRNAs (miRNAs) regulate multicellular processes and diverse signaling pathways in organisms. The detection of the spatiotemporal expression of miRNA in vivo is crucial for uncovering the function of miRNA. However, most of the current detecting techniques cannot reflect the dynamics of miRNA sensitively in vivo. Here, we constructed a miRNA-induced CRISPR-Cas9 platform (MICR) used in marine chordate Ciona. The key component of MICR is a pre-single guide RNA (sgRNA) flanked by miRNA-binding sites that can be released by RNA-induced silencing complex (RISC) cleavage to form functional sgRNA in the presence of complementary miRNA. By using the miRNA-inducible CRISPR-on system (MICR-ON), we successfully detected the dynamic expression of a miRNA csa-miR-4018a during development of Ciona embryo. The detected patterns were validated to be consistent with the results by in situ hybridization. It is worth noting that the expression of csa-miR-4018a was examined by MICR-ON to be present in additional tissues, where no obvious signaling was detected by in situ hybridization, suggesting that the MICR-ON might be a more sensitive approach to detect miRNA signal in living animal. Thus, MICR-ON was demonstrated to be a sensitive and highly efficient approach for monitoring the dynamics of expression of miRNA in vivo and will facilitate the exploration of miRNA functions in biological systems.

RevDate: 2021-06-02

Thongsripong P, Chandler JA, Kittayapong P, et al (2021)

Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes.

Scientific reports, 11(1):8448.

High-throughput nucleic acid sequencing has greatly accelerated the discovery of viruses in the environment. Mosquitoes, because of their public health importance, are among those organisms whose viromes are being intensively characterized. Despite the deluge of sequence information, our understanding of the major drivers influencing the ecology of mosquito viromes remains limited. Using methods to increase the relative proportion of microbial RNA coupled with RNA-seq we characterize RNA viruses and other symbionts of three mosquito species collected along a rural to urban habitat gradient in Thailand. The full factorial study design allows us to explicitly investigate the relative importance of host species and habitat in structuring viral communities. We found that the pattern of virus presence was defined primarily by host species rather than by geographic locations or habitats. Our result suggests that insect-associated viruses display relatively narrow host ranges but are capable of spreading through a mosquito population at the geographical scale of our study. We also detected various single-celled and multicellular microorganisms such as bacteria, alveolates, fungi, and nematodes. Our study emphasizes the importance of including ecological information in viromic studies in order to gain further insights into viral ecology in systems where host specificity is driving both viral ecology and evolution.

RevDate: 2021-06-28
CmpDate: 2021-06-28

Hage H, Rosso MN, L Tarrago (2021)

Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes.

Free radical biology & medicine, 169:187-215.

Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.

RevDate: 2021-05-07

Menichelli C, Guitard V, Martins RM, et al (2021)

Identification of long regulatory elements in the genome of Plasmodium falciparum and other eukaryotes.

PLoS computational biology, 17(4):e1008909.

Long regulatory elements (LREs), such as CpG islands, polydA:dT tracts or AU-rich elements, are thought to play key roles in gene regulation but, as opposed to conventional binding sites of transcription factors, few methods have been proposed to formally and automatically characterize them. We present here a computational approach named DExTER (Domain Exploration To Explain gene Regulation) dedicated to the identification of candidate LREs (cLREs) and apply it to the analysis of the genomes of P. falciparum and other eukaryotes. Our analyses show that all tested genomes contain several cLREs that are somewhat conserved along evolution, and that gene expression can be predicted with surprising accuracy on the basis of these long regions only. Regulation by cLREs exhibits very different behaviours depending on species and conditions. In P. falciparum and other Apicomplexan organisms as well as in Dictyostelium discoideum, the process appears highly dynamic, with different cLREs involved at different phases of the life cycle. For multicellular organisms, the same cLREs are involved in all tissues, but a dynamic behavior is observed along embryonic development stages. In P. falciparum, whose genome is known to be strongly depleted of transcription factors, cLREs are predictive of expression with an accuracy above 70%, and our analyses show that they are associated with both transcriptional and post-transcriptional regulation signals. Moreover, we assessed the biological relevance of one LRE discovered by DExTER in P. falciparum using an in vivo reporter assay. The source code (python) of DExTER is available at

RevDate: 2021-06-23

Strother PK, Brasier MD, Wacey D, et al (2021)

A possible billion-year-old holozoan with differentiated multicellularity.

Current biology : CB, 31(12):2658-2665.e2.

Sediments of the Torridonian sequence of the Northwest Scottish Highlands contain a wide array of microfossils, documenting life in a non-marine setting a billion years ago (1 Ga).1-4 Phosphate nodules from the Diabaig Formation at Loch Torridon preserve microorganisms with cellular-level fidelity,5,6 allowing for partial reconstruction of the developmental stages of a new organism, Bicellum brasieri gen. et sp. nov. The mature form of Bicellum consists of a solid, spherical ball of tightly packed cells (a stereoblast) of isodiametric cells enclosed in a monolayer of elongated, sausage-shaped cells. However, two populations of naked stereoblasts show mixed cell shapes, which we infer to indicate incipient development of elongated cells that were migrating to the periphery of the cell mass. These simple morphogenetic movements could be explained by differential cell-cell adhesion.7,8 In fact, the basic morphology of Bicellum is topologically similar to that of experimentally produced cell masses that were shown to spontaneously segregate into two distinct domains based on differential cadherin-based cell adhesion.9 The lack of rigid cell walls in the stereoblast renders an algal affinity for Bicellum unlikely: its overall morphology is more consistent with a holozoan origin. Unicellular holozoans are known today to form multicellular stages within complex life cycles,10-13 so the occurrence of such simple levels of transient multicellularity seen here is consistent with a holozoan affinity. Regardless of precise phylogenetic placement, these fossils demonstrate simple cell differentiation and morphogenic processes that are similar to those seen in some metazoans today.

RevDate: 2021-05-02
CmpDate: 2021-04-28

Brosnan CA, Palmer AJ, S Zuryn (2021)

Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading.

Nature communications, 12(1):2194.

Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.

RevDate: 2021-07-01
CmpDate: 2021-06-28

Genau AC, Li Z, Renzaglia KS, et al (2021)

HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants.

Plant reproduction, 34(2):149-173.

KEY MESSAGE: Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.

RevDate: 2021-04-21

Kwon HY, Kumar Das R, Jung GT, et al (2021)

Lipid-Oriented Live-Cell Distinction of B and T Lymphocytes.

Journal of the American Chemical Society, 143(15):5836-5844.

The identification of each cell type is essential for understanding multicellular communities. Antibodies set as biomarkers have been the main toolbox for cell-type recognition, and chemical probes are emerging surrogates. Herein we report the first small-molecule probe, CDgB, to discriminate B lymphocytes from T lymphocytes, which was previously impossible without the help of antibodies. Through the study of the origin of cell specificity, we discovered an unexpected novel mechanism of membrane-oriented live-cell distinction. B cells maintain higher flexibility in their cell membrane than T cells and accumulate the lipid-like probe CDgB more preferably. Because B and T cells share common ancestors, we tracked the cell membrane changes of the progenitor cells and disclosed the dynamic reorganization of the membrane properties over the lymphocyte differentiation progress. This study casts an orthogonal strategy for the small-molecule cell identifier and enriches the toolbox for live-cell distinction from complex cell communities.

RevDate: 2021-04-06

Vassalli QA, Colantuono C, Nittoli V, et al (2021)

Onecut Regulates Core Components of the Molecular Machinery for Neurotransmission in Photoreceptor Differentiation.

Frontiers in cell and developmental biology, 9:602450.

Photoreceptor cells (PRC) are neurons highly specialized for sensing light stimuli and have considerably diversified during evolution. The genetic mechanisms that underlie photoreceptor differentiation and accompanied the progressive increase in complexity and diversification of this sensory cell type are a matter of great interest in the field. A role of the homeodomain transcription factor Onecut (Oc) in photoreceptor cell formation is proposed throughout multicellular organisms. However, knowledge of the identity of the Oc downstream-acting factors that mediate specific tasks in the differentiation of the PRC remains limited. Here, we used transgenic perturbation of the Ciona robusta Oc protein to show its requirement for ciliary PRC differentiation. Then, transcriptome profiling between the trans-activation and trans-repression Oc phenotypes identified differentially expressed genes that are enriched in exocytosis, calcium homeostasis, and neurotransmission. Finally, comparison of RNA-Seq datasets in Ciona and mouse identifies a set of Oc downstream genes conserved between tunicates and vertebrates. The transcription factor Oc emerges as a key regulator of neurotransmission in retinal cell types.

RevDate: 2021-04-22
CmpDate: 2021-04-22

Baluška F, Miller WB, AS Reber (2021)

Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains.

International journal of molecular sciences, 22(5):.

Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.

RevDate: 2021-04-28

Kin K, P Schaap (2021)

Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas.

Genes, 12(4):.

Multicellularity evolved repeatedly in the history of life, but how it unfolded varies greatly between different lineages. Dictyostelid social amoebas offer a good system to study the evolution of multicellular complexity, with a well-resolved phylogeny and molecular genetic tools being available. We compare the life cycles of the Dictyostelids with closely related amoebozoans to show that complex life cycles were already present in the unicellular common ancestor of Dictyostelids. We propose frost resistance as an early driver of multicellular evolution in Dictyostelids and show that the cell signalling pathways for differentiating spore and stalk cells evolved from that for encystation. The stalk cell differentiation program was further modified, possibly through gene duplication, to evolve a new cell type, cup cells, in Group 4 Dictyostelids. Studies in various multicellular organisms, including Dictyostelids, volvocine algae, and metazoans, suggest as a common principle in the evolution of multicellular complexity that unicellular regulatory programs for adapting to environmental change serve as "proto-cell types" for subsequent evolution of multicellular organisms. Later, new cell types could further evolve by duplicating and diversifying the "proto-cell type" gene regulatory networks.

RevDate: 2021-04-08

Patthy L (2021)

Exon Shuffling Played a Decisive Role in the Evolution of the Genetic Toolkit for the Multicellular Body Plan of Metazoa.

Genes, 12(3):.

Division of labor and establishment of the spatial pattern of different cell types of multicellular organisms require cell type-specific transcription factor modules that control cellular phenotypes and proteins that mediate the interactions of cells with other cells. Recent studies indicate that, although constituent protein domains of numerous components of the genetic toolkit of the multicellular body plan of Metazoa were present in the unicellular ancestor of animals, the repertoire of multidomain proteins that are indispensable for the arrangement of distinct body parts in a reproducible manner evolved only in Metazoa. We have shown that the majority of the multidomain proteins involved in cell-cell and cell-matrix interactions of Metazoa have been assembled by exon shuffling, but there is no evidence for a similar role of exon shuffling in the evolution of proteins of metazoan transcription factor modules. A possible explanation for this difference in the intracellular and intercellular toolkits is that evolution of the transcription factor modules preceded the burst of exon shuffling that led to the creation of the proteins controlling spatial patterning in Metazoa. This explanation is in harmony with the temporal-to-spatial transition hypothesis of multicellularity that proposes that cell differentiation may have predated spatial segregation of cell types in animal ancestors.

RevDate: 2021-05-12

Vos M (2021)

Myxococcus xanthus.

Trends in microbiology, 29(6):562-563.

RevDate: 2021-05-03

Porfírio-Sousa AL, Tice AK, Brown MW, et al (2021)

Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa.

Small GTPases [Epub ahead of print].

Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.

RevDate: 2021-04-17

Wang S, Liang H, Xu Y, et al (2021)

Genome-wide analyses across Viridiplantae reveal the origin and diversification of small RNA pathway-related genes.

Communications biology, 4(1):412.

Small RNAs play a major role in the post-transcriptional regulation of gene expression in eukaryotes. Despite the evolutionary importance of streptophyte algae, knowledge on small RNAs in this group of green algae is almost non-existent. We used genome and transcriptome data of 34 algal and plant species, and performed genome-wide analyses of small RNA (miRNA & siRNA) biosynthetic and degradation pathways. The results suggest that Viridiplantae started to evolve plant-like miRNA biogenesis and degradation after the divergence of the Mesostigmatophyceae in the streptophyte algae. We identified two major evolutionary transitions in small RNA metabolism in streptophyte algae; during the first transition, the origin of DCL-New, DCL1, AGO1/5/10 and AGO4/6/9 in the last common ancestor of Klebsormidiophyceae and all other streptophytes could be linked to abiotic stress responses and evolution of multicellularity in streptophytes. During the second transition, the evolution of DCL 2,3,4, and AGO 2,3,7 as well as DRB1 in the last common ancestor of Zygnematophyceae and embryophytes, suggests their possible contribution to pathogen defense and antibacterial immunity. Overall, the origin and diversification of DICER and AGO along with several other small RNA pathway-related genes among streptophyte algae suggested progressive adaptations of streptophyte algae during evolution to a subaerial environment.

RevDate: 2021-06-23
CmpDate: 2021-06-23

Roudaire T, Héloir MC, Wendehenne D, et al (2020)

Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death.

Frontiers in immunology, 11:612452.

Both plants and animals are endowed with sophisticated innate immune systems to combat microbial attack. In these multicellular eukaryotes, innate immunity implies the presence of cell surface receptors and intracellular receptors able to detect danger signal referred as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Membrane-associated pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), receptor-like kinases (RLKs), and receptor-like proteins (RLPs) are employed by these organisms for sensing different invasion patterns before triggering antimicrobial defenses that can be associated with a form of regulated cell death. Intracellularly, animals nucleotide-binding and oligomerization domain (NOD)-like receptors or plants nucleotide-binding domain (NBD)-containing leucine rich repeats (NLRs) immune receptors likely detect effectors injected into the host cell by the pathogen to hijack the immune signaling cascade. Interestingly, during the co-evolution between the hosts and their invaders, key cross-kingdom cell death-signaling macromolecular NLR-complexes have been selected, such as the inflammasome in mammals and the recently discovered resistosome in plants. In both cases, a regulated cell death located at the site of infection constitutes a very effective mean for blocking the pathogen spread and protecting the whole organism from invasion. This review aims to describe the immune mechanisms in animals and plants, mainly focusing on cell death signaling pathways, in order to highlight recent advances that could be used on one side or the other to identify the missing signaling elements between the perception of the invasion pattern by immune receptors, the induction of defenses or the transmission of danger signals to other cells. Although knowledge of plant immunity is less advanced, these organisms have certain advantages allowing easier identification of signaling events, regulators and executors of cell death, which could then be exploited directly for crop protection purposes or by analogy for medical research.

RevDate: 2021-05-10
CmpDate: 2021-05-10

Barnett AM, Mullaney JA, Hendriks C, et al (2021)

Porcine colonoids and enteroids keep the memory of their origin during regeneration.

American journal of physiology. Cell physiology, 320(5):C794-C805.

The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell types (stem cells, enterocytes, goblet, and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin and colonoids with enteroids. Colonoids derived from three healthy pigs formed multilobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem cell markers Sox9 and Lgr5 encoding sex-determining region Y-box 9 and leucine-rich repeat-containing G protein-coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1, respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga, and Muc2 encoding atonal homolog 1, chromogranin A, and mucin 2, respectively, were decreased in colonoids, whereas Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A, respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell types with decreased barrier maturation relative to their tissues of origin.

RevDate: 2021-03-23

Dhakshinamoorthy R, SP Singh (2021)

Evolution of Reproductive Division of Labor - Lessons Learned From the Social Amoeba Dictyostelium discoideum During Its Multicellular Development.

Frontiers in cell and developmental biology, 9:599525.

The origin of multicellular life from unicellular beings is an epochal step in the evolution of eukaryotes. There are several factors influencing cell fate choices during differentiation and morphogenesis of an organism. Genetic make-up of two cells that unite and fertilize is the key factor to signal the formation of various cell-types in due course of development. Although ploidy of the cell-types determines the genetics of an individual, the role of ploidy in cell fate decisions remains unclear. Dictyostelium serves as a versatile model to study the emergence of multicellular life from unicellular life forms. In this work, we investigate the role played by ploidy status of a cell on cell fate commitments during Dictyostelium development. To answer this question, we created Dictyostelium cells of different ploidy: haploid parents and derived isogenic diploids, allowing them to undergo development. The diploid strains used in this study were generated using parasexual genetics. The ploidy status of the haploids and diploids were confirmed by microscopy, flow cytometry, and karyotyping. Prior to reconstitution, we labeled the cells by two methods. First, intragenic expression of red fluorescent protein (RFP) and second, staining the amoebae with a vital, fluorescent dye carboxyfluorescein succinimidyl ester (CFSE). RFP labeled haploid cells allowed us to track the haploids in the chimeric aggregates, slugs, and fruiting bodies. The CFSE labeling method allowed us to track both the haploids and the diploids in the chimeric developmental structures. Our findings illustrate that the haploids demonstrate sturdy cell fate commitment starting from the aggregation stage. The haploids remain crowded at the aggregation centers of the haploid-diploid chimeric aggregates. At the slug stage haploids are predominantly occupying the slug posterior, and are visible in the spore population in the fruiting bodies. Our findings show that cell fate decisions during D. discoideum development are highly influenced by the ploidy status of a cell, adding a new aspect to already known factors Here, we report that ploidy status of a cell could also play a crucial role in regulating the cell fate commitments.

RevDate: 2021-04-17
CmpDate: 2021-04-05

Redmond AK, A McLysaght (2021)

Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding.

Nature communications, 12(1):1783.

Resolving the relationships between the major lineages in the animal tree of life is necessary to understand the origin and evolution of key animal traits. Sponges, characterized by their simple body plan, were traditionally considered the sister group of all other animal lineages, implying a gradual increase in animal complexity from unicellularity to complex multicellularity. However, the availability of genomic data has sparked tremendous controversy as some phylogenomic studies support comb jellies taking this position, requiring secondary loss or independent origins of complex traits. Here we show that incorporating site-heterogeneous mixture models and recoding into partitioned phylogenomics alleviates systematic errors that hamper commonly-applied phylogenetic models. Testing on real datasets, we show a great improvement in model-fit that attenuates branching artefacts induced by systematic error. We reanalyse key datasets and show that partitioned phylogenomics does not support comb jellies as sister to other animals at either the supermatrix or partition-specific level.

RevDate: 2021-03-20

Matriano DM, Alegado RA, C Conaco (2021)

Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta.

Scientific reports, 11(1):5993.

Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome-evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.

RevDate: 2021-06-25
CmpDate: 2021-06-25

Ramos-Martínez E, Hernández-González L, Ramos-Martínez I, et al (2021)

Multiple Origins of Extracellular DNA Traps.

Frontiers in immunology, 12:621311.

Extracellular DNA traps (ETs) are evolutionarily conserved antimicrobial mechanisms present in protozoa, plants, and animals. In this review, we compare their similarities in species of different taxa, and put forward the hypothesis that ETs have multiple origins. Our results are consistent with a process of evolutionary convergence in multicellular organisms through the application of a congruency test. Furthermore, we discuss why multicellularity is related to the presence of a mechanism initiating the formation of ETs.

RevDate: 2021-06-24
CmpDate: 2021-06-24

Vijg J (2021)

From DNA damage to mutations: All roads lead to aging.

Ageing research reviews, 68:101316.

Damage to the repository of genetic information in cells has plagued life since its very beginning 3-4 billion years ago. Initially, in the absence of an ozone layer, especially damage from solar UV radiation must have been frequent, with other sources, most notably endogenous sources related to cell metabolism, gaining in importance over time. To cope with this high frequency of damage to the increasingly long DNA molecules that came to encode the growing complexity of cellular functions in cells, DNA repair evolved as one of the earliest genetic traits. Then as now, errors during the repair of DNA damage generated mutations, which provide the substrate for evolution by natural selection. With the emergence of multicellular organisms also the soma became a target of DNA damage and mutations. In somatic cells selection against the adverse effects of DNA damage is greatly diminished, especially in postmitotic cells after the age of first reproduction. Based on an abundance of evidence, DNA damage is now considered as the single most important driver of the degenerative processes that collectively cause aging. Here I will first briefly review the evidence for DNA damage as a cause of aging since the beginning of life. Then, after discussing the possible direct adverse effects of DNA damage and its cellular responses, I will provide an overview of the considerable progress that has recently been made in analyzing a major consequence of DNA damage in humans and other complex organisms: somatic mutations and the resulting genome mosaicism. Recent advances in studying somatic mutagenesis and genome mosaicism in different human and animal tissues will be discussed with a focus on the possible mechanisms through which loss of DNA sequence integrity could cause age-related functional decline and disease.

RevDate: 2021-05-19
CmpDate: 2021-05-19

Darveau RP, MA Curtis (2021)

Oral biofilms revisited: A novel host tissue of bacteriological origin.

Periodontology 2000, 86(1):8-13.

The central theme of this volume of Periodontology 2000 is that the microbial dental plaque biofilm, specifically the subgingival dental plaque biofilm, mimics a human tissue in both structure and function. As a basis for this assertion we use the definition of a tissue as an aggregate of similar cells and cell products forming a defined structure with a specific function, in a multicellular organism. Accordingly, we propose that the dental plaque biofilm represents an acquired human tissue largely of bacterial origin that maintains the health of gingival tissue. Furthermore, we acknowledge that disease can be defined as a deviation from the normal structure or an interruption to the function of any body part, organ, or system, and that is manifested by a characteristic set of symptoms and signs whose etiology, pathology, and prognosis may be known or unknown. Therefore, in this volume we present the concept that periodontitis is a disruption of the normal function of the healthy subgingival plaque biofilm with concomitant disruption to its functional properties in relation to innate defense surveillance and tissue maintenance, leading to excessive, deregulated inflammation and tissue destruction.

RevDate: 2021-05-27

Ben-David Y, D Weihs (2021)

Modeling force application configurations and morphologies required for cancer cell invasion.

Biomechanics and modeling in mechanobiology, 20(3):1187-1194.

We show that cell-applied, normal mechanical stresses are required for cells to penetrate into soft substrates, matching experimental observations in invasive cancer cells, while in-plane traction forces alone reproduce observations in non-cancer/noninvasive cells. Mechanobiological interactions of cells with their microenvironment drive migration and cancer invasion. We have previously shown that invasive cancer cells forcefully and rapidly push into impenetrable, physiological stiffness gels and indent them to cell-scale depths (up to 10 μm); normal, noninvasive cells indent at most to 0.7 μm. Significantly indenting cells signpost increased cancer invasiveness and higher metastatic risk in vitro and in vivo, as verified experimentally in different cancer types, yet the underlying cell-applied, force magnitudes and configurations required to produce the cell-scale gel indentations have yet to be evaluated. Hence, we have developed finite element models of forces applied onto soft, impenetrable gels using experimental cell/gel morphologies, gel mechanics, and force magnitudes. We show that in-plane traction forces can only induce small-scale indentations in soft gels (< 0.7 μm), matching experiments with various single, normal cells. Addition of a normal force (on the scale of experimental traction forces) produced cell-scale indentations that matched observations in invasive cancer cells. We note that normal stresses (force and area) determine the indentation depth, while contact area size and morphology have a minor effect, explaining the origin of experimentally observed cell morphologies. We have thus revealed controlling features facilitating invasive indentations by single cancer cells, which will allow application of our model to complex problems, such as multicellular systems.

RevDate: 2021-04-21

Pen I, T Flatt (2021)

Asymmetry, division of labour and the evolution of ageing in multicellular organisms.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1823):20190729.

Between the 1930s and 1960s, evolutionary geneticists worked out the basic principles of why organisms age. Despite much progress in the evolutionary biology of ageing since that time, however, many puzzles remain. The perhaps most fundamental of these is the question of which organisms should exhibit senescence and which should not (or which should age rapidly and which should not). The evolutionary origin of ageing from a non-senescent state has been conceptually framed, for example, in terms of the separation between germ-line and soma, the distinction between parents and their offspring, and-in unicellular organisms-the unequal distribution of cellular damage at cell division. These ideas seem to be closely related to the concept of 'division of labour' between reproduction and somatic maintenance. Here, we review these concepts and develop a toy model to explore the importance of such asymmetries for the evolution of senescence. We apply our model to the simplest case of a multicellular system: an organism consisting of two totipotent cells. Notably, we find that in organisms which reproduce symmetrically and partition damage equally, senescence is still able to evolve, contrary to previous claims. Our results might have some bearing on understanding the origin of the germ-line-soma separation and the evolution of senescence in multicellular organisms and in colonial species consisting of multiple types of individuals, such as, for example, eusocial insects with their different castes. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'

RevDate: 2021-05-17

Li B, Tian Y, Wen H, et al (2021)

Systematic identification and expression analysis of the Sox gene family in spotted sea bass (Lateolabrax maculatus).

Comparative biochemistry and physiology. Part D, Genomics & proteomics, 38:100817.

The Sox gene family encodes a set of transcription factors characterized by a conserved Sry-related high mobility group (HMG)-box domain, which performs a series of essential biological functions in diverse tissues and developmental processes. In this study, the Sox gene family was systematically characterized in spotted sea bass (Lateolabrax maculatus). A total of 26 Sox genes were identified and classified into eight subfamilies, namely, SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, SoxH and SoxK. The phylogenetic relationship, exon-intron and domain structure analyses supported their annotation and classification. Comparison of gene copy numbers and chromosome locations among different species indicated that except tandem duplicated paralogs of Sox17/Sox32, duplicated Sox genes in spotted sea bass were generated from teleost-specific whole genome duplication during evolution. In addition, qRT-PCR was performed to detect the expression profiles of Sox genes during development and adulthood. The results showed that the expression of 16 out of 26 Sox genes was induced dramatically at different starting points after the multicellular stage, which is consistent with embryogenesis. At the early stage of sex differentiation, 9 Sox genes exhibited sexually dimorphic expression patterns, among which Sox3, Sox19 and Sox6b showed the most significant ovary-biased expression. Moreover, the distinct expression pattern of Sox genes was observed in different adult tissues. Our results provide a fundamental resource for further investigating the functions of Sox genes in embryonic processes, sex determination and differentiation as well as controlling the homeostasis of adult tissues in spotted sea bass.

RevDate: 2021-03-10

Ye M, Wilhelm M, Gentschev I, et al (2021)

A Modified Limiting Dilution Method for Monoclonal Stable Cell Line Selection Using a Real-Time Fluorescence Imaging System: A Practical Workflow and Advanced Applications.

Methods and protocols, 4(1):.

Stable cell lines are widely used in laboratory research and pharmaceutical industry. They are mainly applied in recombinant protein and antibody productions, gene function studies, drug screens, toxicity assessments, and for cancer therapy investigation. There are two types of cell lines, polyclonal and monoclonal origin, that differ regarding their homogeneity and heterogeneity. Generating a high-quality stable cell line, which can grow continuously and carry a stable genetic modification without alteration is very important for most studies, because polyclonal cell lines of multicellular origin can be highly variable and unstable and lead to inconclusive experimental results. The most commonly used technologies of single cell originate monoclonal stable cell isolation in laboratory are fluorescence-activated cell sorting (FACS) sorting and limiting dilution cloning. Here, we describe a modified limiting dilution method of monoclonal stable cell line selection using the real-time fluorescence imaging system IncuCyte®S3.

RevDate: 2021-04-13
CmpDate: 2021-04-13

Rathor P, Borza T, Stone S, et al (2021)

A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana.

International journal of molecular sciences, 22(4):.

Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress.

RevDate: 2021-03-03

Wang J, Sun H, Jiang M, et al (2021)

Tracing cell-type evolution by cross-species comparison of cell atlases.

Cell reports, 34(9):108803.

Cell types are the basic building units of multicellular life, with extensive diversities. The evolution of cell types is a crucial layer of comparative cell biology but is thus far not comprehensively studied. We define a compendium of cell atlases using single-cell RNA-seq (scRNA-seq) data from seven animal species and construct a cross-species cell-type evolutionary hierarchy. We present a roadmap for the origin and diversity of major cell categories and find that muscle and neuron cells are conserved cell types. Furthermore, we identify a cross-species transcription factor (TF) repertoire that specifies major cell categories. Overall, our study reveals conservation and divergence of cell types during animal evolution, which will further expand the landscape of comparative genomics.

RevDate: 2021-06-29

Yang H, Shi X, Chen C, et al (2021)

Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize.

The Plant cell, 33(4):901-916.

The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.

RevDate: 2021-04-06

Junqueira Alves C, Silva Ladeira J, Hannah T, et al (2021)

Evolution and Diversity of Semaphorins and Plexins in Choanoflagellates.

Genome biology and evolution, 13(3):.

Semaphorins and plexins are cell surface ligand/receptor proteins that affect cytoskeletal dynamics in metazoan cells. Interestingly, they are also present in Choanoflagellata, a class of unicellular heterotrophic flagellates that forms the phylogenetic sister group to Metazoa. Several members of choanoflagellates are capable of forming transient colonies, whereas others reside solitary inside exoskeletons; their molecular diversity is only beginning to emerge. Here, we surveyed genomics data from 22 choanoflagellate species and detected semaphorin/plexin pairs in 16 species. Choanoflagellate semaphorins (Sema-FN1) contain several domain features distinct from metazoan semaphorins, including an N-terminal Reeler domain that may facilitate dimer stabilization, an array of fibronectin type III domains, a variable serine/threonine-rich domain that is a potential site for O-linked glycosylation, and a SEA domain that can undergo autoproteolysis. In contrast, choanoflagellate plexins (Plexin-1) harbor a domain arrangement that is largely identical to metazoan plexins. Both Sema-FN1 and Plexin-1 also contain a short homologous motif near the C-terminus, likely associated with a shared function. Three-dimensional molecular models revealed a highly conserved structural architecture of choanoflagellate Plexin-1 as compared to metazoan plexins, including similar predicted conformational changes in a segment that is involved in the activation of the intracellular Ras-GAP domain. The absence of semaphorins and plexins in several choanoflagellate species did not appear to correlate with unicellular versus colonial lifestyle or ecological factors such as fresh versus salt water environment. Together, our findings support a conserved mechanism of semaphorin/plexin proteins in regulating cytoskeletal dynamics in unicellular and multicellular organisms.

RevDate: 2021-05-20
CmpDate: 2021-05-20

Evans SD, Droser ML, DH Erwin (2021)

Developmental processes in Ediacara macrofossils.

Proceedings. Biological sciences, 288(1945):20203055.

The Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms. This analysis demonstrates that the genetic pathways for multicellularity, axial polarity, musculature, and a nervous system were likely present in some of these early animals. Equally meaningful is the absence of evidence for major differentiation of macroscopic body units, including distinct organs, localized sensory machinery or appendages. Together these traits help to better constrain the phylogenetic position of several key Ediacara taxa and inform our views of early metazoan evolution. An apparent lack of heads with concentrated sensory machinery or ventral nerve cords in such taxa supports the hypothesis that these evolved independently in disparate bilaterian clades.

RevDate: 2021-05-15

Ros-Rocher N, Pérez-Posada A, Leger MM, et al (2021)

The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition.

Open biology, 11(2):200359.

How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell-cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.

RevDate: 2021-02-20

Castañeda V, González EM, S Wienkoop (2021)

Phloem Sap Proteins Are Part of a Core Stress Responsive Proteome Involved in Drought Stress Adjustment.

Frontiers in plant science, 12:625224.

During moderate drought stress, plants can adjust by changes in the protein profiles of the different organs. Plants transport and modulate extracellular stimuli local and systemically through commonly induced inter- and intracellular reactions. However, most proteins are frequently considered, cell and organelle specific. Hence, while signaling molecules and peptides can travel systemically throughout the whole plant, it is not clear, whether protein isoforms may exist ubiquitously across organs, and what function those may have during drought regulation. By applying shotgun proteomics, we extracted a core proteome of 92 identical protein isoforms, shared ubiquitously amongst several Medicago truncatula tissues, including roots, phloem sap, petioles, and leaves. We investigated their relative distribution across the different tissues and their response to moderate drought stress. In addition, we functionally compared this plant core stress responsive proteome with the organ-specific proteomes. Our study revealed plant ubiquitous protein isoforms, mainly related to redox homeostasis and signaling and involved in protein interaction networks across the whole plant. Furthermore, about 90% of these identified core protein isoforms were significantly involved in drought stress response, indicating a crucial role of the core stress responsive proteome (CSRP) in the plant organ cross-communication, important for a long-distance stress-responsive network. Besides, the data allowed for a comprehensive characterization of the phloem proteome, revealing new insights into its function. For instance, CSRP protein levels involved in stress and redox are relatively more abundant in the phloem compared to the other tissues already under control conditions. This suggests a major role of the phloem in stress protection and antioxidant activity enabling the plants metabolic maintenance and rapid response upon moderate stress. We anticipate our study to be a starting point for future investigations of the role of the core plant proteome. Under an evolutionary perspective, CSRP would enable communication of different cells with each other and the environment being crucial for coordinated stress response of multicellular organisms.

RevDate: 2021-02-25

McKenna KZ, Wagner GP, KL Cooper (2021)

A developmental perspective of homology and evolutionary novelty.

Current topics in developmental biology, 141:1-38.

The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.

RevDate: 2021-06-18
CmpDate: 2021-06-18

Goldberg Y, J Friedman (2021)

Positive interactions within and between populations decrease the likelihood of evolutionary rescue.

PLoS computational biology, 17(2):e1008732.

Positive interactions, including intraspecies cooperation and interspecies mutualisms, play crucial roles in shaping the structure and function of many ecosystems, ranging from plant communities to the human microbiome. While the evolutionary forces that form and maintain positive interactions have been investigated extensively, the influence of positive interactions on the ability of species to adapt to new environments is still poorly understood. Here, we use numerical simulations and theoretical analyses to study how positive interactions impact the likelihood that populations survive after an environment deteriorates, such that survival in the new environment requires quick adaptation via the rise of new mutants-a scenario known as evolutionary rescue. We find that the probability of evolutionary rescue in populations engaged in positive interactions is reduced significantly. In cooperating populations, this reduction is largely due to the fact that survival may require at least a minimal number of individuals, meaning that adapted mutants must arise and spread before the population declines below this threshold. In mutualistic populations, the rescue probability is decreased further due to two additional effects-the need for both mutualistic partners to adapt to the new environment, and competition between the two species. Finally, we show that the presence of cheaters reduces the likelihood of evolutionary rescue even further, making it extremely unlikely. These results indicate that while positive interactions may be beneficial in stable environments, they can hinder adaptation to changing environments and thereby elevate the risk of population collapse. Furthermore, these results may hint at the selective pressures that drove co-dependent unicellular species to form more adaptable organisms able to differentiate into multiple phenotypes, including multicellular life.

RevDate: 2021-05-20
CmpDate: 2021-05-20

He S, Sieksmeyer T, Che Y, et al (2021)

Evidence for reduced immune gene diversity and activity during the evolution of termites.

Proceedings. Biological sciences, 288(1945):20203168.

The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence.

RevDate: 2021-06-01
CmpDate: 2021-06-01

Pourhasanzade F, SH Sabzpoushan (2021)

A New Mathematical Model for Controlling Tumor Growth Based on Microenvironment Acidity and Oxygen Concentration.

BioMed research international, 2021:8886050.

Hypoxia and the pH level of the tumor microenvironment have a great impact on the treatment of tumors. Here, the tumor growth is controlled by regulating the oxygen concentration and the acidity of the tumor microenvironment by introducing a two-dimensional multiscale cellular automata model of avascular tumor growth. The spatiotemporal evolution of tumor growth and metabolic variations is modeled based on biological assumptions, physical structure, states of cells, and transition rules. Each cell is allocated to one of the following states: proliferating cancer, nonproliferating cancer, necrotic, and normal cells. According to the response of the microenvironmental conditions, each cell consumes/produces metabolic factors and updates its state based on some stochastic rules. The input parameters are compatible with cancer biology using experimental data. The effect of neighborhoods during mitosis and simulating spatial heterogeneity is studied by considering multicellular layer structure of tumor. A simple Darwinist mutation is considered by introducing a critical parameter (Nmm) that affects division probability of the proliferative tumor cells based on the microenvironmental conditions and cancer hallmarks. The results show that Nmm regulation has a significant influence on the dynamics of tumor growth, the growth fraction, necrotic fraction, and the concentration levels of the metabolic factors. The model not only is able to simulate the in vivo tumor growth quantitatively and qualitatively but also can simulate the concentration of metabolic factors, oxygen, and acidity graphically. The results show the spatial heterogeneity effects on the proliferation of cancer cells and the rest of the system. By increasing Nmm, tumor shrinkage and significant increasing in the oxygen concentration and the pH value of the tumor microenvironment are observed. The results demonstrate the model's ability, providing an essential tool for simulating different tumor evolution scenarios of a patient and reliable prediction of spatiotemporal progression of tumors for utilizing in personalized therapy.

RevDate: 2021-07-01
CmpDate: 2021-07-01

Bustamante DE, Yeon Won B, Wynne MJ, et al (2021)

Molecular and morphological analyses reveal new taxa additions to the tribe Streblocladieae (Rhodomelaceae, Rhodophyta).

Journal of phycology, 57(3):817-830.

The recent segregation of 12 genera in the tribe Streblocladieae suggests that the taxonomy of some species belonging to Polysiphonia sensu lato is updated with the transfer and the proposal of new combinations. Accordingly, six new additions to the tribe Streblocladieae on the basis of morphological and molecular analyses are presented as a consequence of this new segregation. These additions include the description of the new species Carradoriella platensis sp. nov., the proposal of the following new combinations Eutrichosiphonia paniculata comb. nov., E. tapinocarpa comb. nov., and the reinstatement of Vertebrata curta, V. decipiens, and V. patersonis. Additionally, our morphological observations identified additional diagnostic features for two genera of the Streblocladieae. Carradoriella has branches with sexual reproductive structures arranged adaxially on branchlets, and the recently described Eutrichosiphonia has rhizoids with multicellular digitate haptera. Our study gives insights in regards to the distribution, the diagnostic features for delimiting genera morphologically, and the molecular evolutionary relationships in the Streblocladieae.

RevDate: 2021-03-24

Prostak SM, Robinson KA, Titus MA, et al (2021)

The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom.

Current biology : CB, 31(6):1192-1205.e6.

Cells from across the eukaryotic tree use actin polymer networks for a wide variety of functions, including endocytosis, cytokinesis, and cell migration. Despite this functional conservation, the actin cytoskeleton has undergone significant diversification, highlighted by the differences in the actin networks of mammalian cells and yeast. Chytrid fungi diverged before the emergence of the Dikarya (multicellular fungi and yeast) and therefore provide a unique opportunity to study actin cytoskeletal evolution. Chytrids have two life stages: zoospore cells that can swim with a flagellum and sessile sporangial cells that, like multicellular fungi, are encased in a chitinous cell wall. Here, we show that zoospores of the amphibian-killing chytrid Batrachochytrium dendrobatidis (Bd) build dynamic actin structures resembling those of animal cells, including an actin cortex, pseudopods, and filopodia-like spikes. In contrast, Bd sporangia assemble perinuclear actin shells and actin patches similar to those of yeast. The use of specific small-molecule inhibitors indicate that nearly all of Bd's actin structures are dynamic and use distinct nucleators: although pseudopods and actin patches are Arp2/3 dependent, the actin cortex appears formin dependent and actin spikes require both nucleators. Our analysis of multiple chytrid genomes reveals actin regulators and myosin motors found in animals, but not dikaryotic fungi, as well as fungal-specific components. The presence of animal- and yeast-like actin cytoskeletal components in the genome combined with the intermediate actin phenotypes in Bd suggests that the simplicity of the yeast cytoskeleton may be due to evolutionary loss.

RevDate: 2021-03-25

Jékely G, Godfrey-Smith P, F Keijzer (2021)

Reafference and the origin of the self in early nervous system evolution.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20190764.

Discussions of the function of early nervous systems usually focus on a causal flow from sensors to effectors, by which an animal coordinates its actions with exogenous changes in its environment. We propose, instead, that much early sensing was reafferent; it was responsive to the consequences of the animal's own actions. We distinguish two general categories of reafference-translocational and deformational-and use these to survey the distribution of several often-neglected forms of sensing, including gravity sensing, flow sensing and proprioception. We discuss sensing of these kinds in sponges, ctenophores, placozoans, cnidarians and bilaterians. Reafference is ubiquitous, as ongoing action, especially whole-body motility, will almost inevitably influence the senses. Corollary discharge-a pathway or circuit by which an animal tracks its own actions and their reafferent consequences-is not a necessary feature of reafferent sensing but a later-evolving mechanism. We also argue for the importance of reafferent sensing to the evolution of the body-self, a form of organization that enables an animal to sense and act as a single unit. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-03-25

Pezzulo G, LaPalme J, Durant F, et al (2021)

Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20190765.

Nervous systems' computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states-in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-03-25

Göhde R, Naumann B, Laundon D, et al (2021)

Choanoflagellates and the ancestry of neurosecretory vesicles.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20190759.

Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell-cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-05-13

Moroz LL, Romanova DY, AB Kohn (2021)

Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20190762.

Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-03-25

Arendt D (2021)

Elementary nervous systems.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20200347.

The evolutionary origin of the nervous system has been a matter of long-standing debate. This is due to the different perspectives taken. Earlier studies addressed nervous system origins at the cellular level. They focused on the selective advantage of the first neuron in its local context, and considered vertical sensory-motor reflex arcs the first nervous system. Later studies emphasized the value of the nervous system at the tissue level. Rather than acting locally, early neurons were seen as part of an elementary nerve net that enabled the horizontal coordination of tissue movements. Opinions have also differed on the nature of effector cells. While most authors have favoured contractile systems, others see the key output of the incipient nervous system in the coordination of motile cilia, or the secretion of antimicrobial peptides. I will discuss these divergent views and explore how they can be validated by molecular and single-cell data. From this survey, possible consensus emerges: (i) the first manifestation of the nervous system likely was a nerve net, whereas specialized local circuits evolved later; (ii) different nerve nets may have evolved for the coordination of contractile or cilia-driven movements; (iii) all evolving nerve nets facilitated new forms of animal behaviour with increasing body size. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-03-25

Jékely G (2021)

The chemical brain hypothesis for the origin of nervous systems.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20190761.

In nervous systems, there are two main modes of transmission for the propagation of activity between cells. Synaptic transmission relies on close contact at chemical or electrical synapses while volume transmission is mediated by diffusible chemical signals and does not require direct contact. It is possible to wire complex neuronal networks by both chemical and synaptic transmission. Both types of networks are ubiquitous in nervous systems, leading to the question which of the two appeared first in evolution. This paper explores a scenario where chemically organized cellular networks appeared before synapses in evolution, a possibility supported by the presence of complex peptidergic signalling in all animals except sponges. Small peptides are ideally suited to link up cells into chemical networks. They have unlimited diversity, high diffusivity and high copy numbers derived from repetitive precursors. But chemical signalling is diffusion limited and becomes inefficient in larger bodies. To overcome this, peptidergic cells may have developed projections and formed synaptically connected networks tiling body surfaces and displaying synchronized activity with pulsatile peptide release. The advent of circulatory systems and neurohemal organs further reduced the constraint imposed on chemical signalling by diffusion. This could have contributed to the explosive radiation of peptidergic signalling systems in stem bilaterians. Neurosecretory centres in extant nervous systems are still predominantly chemically wired and coexist with the synaptic brain. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-02-19
CmpDate: 2021-02-19

Grum-Grzhimaylo AA, Bastiaans E, van den Heuvel J, et al (2021)

Somatic deficiency causes reproductive parasitism in a fungus.

Nature communications, 12(1):783.

Some multicellular organisms can fuse because mergers potentially provide mutual benefits. However, experimental evolution in the fungus Neurospora crassa has demonstrated that free fusion of mycelia favours cheater lineages, but the mechanism and evolutionary dynamics of this exploitation are unknown. Here we show, paradoxically, that all convergently evolved cheater lineages have similar fusion deficiencies. These mutants are unable to initiate fusion but retain access to wild-type mycelia that fuse with them. This asymmetry reduces cheater-mutant contributions to somatic substrate-bound hyphal networks, but increases representation of their nuclei in the aerial reproductive hyphae. Cheaters only benefit when relatively rare and likely impose genetic load reminiscent of germline senescence. We show that the consequences of somatic fusion can be unequally distributed among fusion partners, with the passive non-fusing partner profiting more. We discuss how our findings may relate to the extensive variation in fusion frequency of fungi found in nature.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )