Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Evolution of Multicelluarity

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 25 Oct 2021 at 01:42 Created: 

Evolution of Multicelluarity

Created with PubMed® Query: (evolution OR origin) AND (multicellularity OR multicellular) NOT 33634751[PMID] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2021-10-22

Quinting T, Heymann AK, Bicker A, et al (2021)

Myoglobin Protects Breast Cancer Cells Due to Its ROS and NO Scavenging Properties.

Frontiers in endocrinology, 12:732190.

Myoglobin (MB) is an oxygen-binding protein usually found in cardiac myocytes and skeletal muscle fibers. It may function as a temporary storage and transport protein for O2 but could also have scavenging capacity for reactive oxygen and nitrogen species. In addition, MB has recently been identified as a hallmark in luminal breast cancer and was shown to be robustly induced under hypoxia. Cellular responses to hypoxia are regulated by the transcription factor hypoxia-inducible factor (HIF). For exploring the function of MB in breast cancer, we employed the human cell line MDA-MB-468. Cells were grown in monolayer or as 3D multicellular spheroids, which mimic the in vivo avascular tumor architecture and physiology with a heterogeneous cell population of proliferating cells in the rim and non-cycling or necrotic cells in the core region. This central necrosis was increased after MB knockdown, indicating a role for MB in hypoxic tumor regions. In addition, MB knockdown caused higher levels of HIF-1α protein after treatment with NO, which also plays an important role in cancer cell survival. MB knockdown also led to higher reactive oxygen species (ROS) levels in the cells after treatment with H2O2. To further explore the role of MB in cell survival, we performed RNA-Seq after MB knockdown and NO treatment. 1029 differentially expressed genes (DEGs), including 45 potential HIF-1 target genes, were annotated in regulatory pathways that modulate cellular function and maintenance, cell death and survival, and carbohydrate metabolism. Of these target genes, TMEFF1, TREX2, GLUT-1, MKNK-1, and RAB8B were significantly altered. Consistently, a decreased expression of GLUT-1, MKNK-1, and RAB8B after MB knockdown was confirmed by qPCR. All three genes of interest are often up regulated in cancer and correlate with a poor clinical outcome. Thus, our data indicate that myoglobin might influence the survival of breast cancer cells, possibly due to its ROS and NO scavenging properties and could be a valuable target for cancer therapy.

RevDate: 2021-10-23

Ni Z, X Cheng (2021)

Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis.

Cells, 10(10): pii:cells10102750.

Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified.

RevDate: 2021-10-23

Whitworth DE, Sydney N, EJ Radford (2021)

Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies.

Microorganisms, 9(10): pii:microorganisms9102143.

Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein-DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).

RevDate: 2021-10-23

Luna SK, FJJ Chain (2021)

Lineage-Specific Genes and Family Expansions in Dictyostelid Genomes Display Expression Bias and Evolutionary Diversification during Development.

Genes, 12(10): pii:genes12101628.

Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.

RevDate: 2021-10-23

Cock JM (2021)

Evolution of Multicellularity.

Genes, 12(10): pii:genes12101532.

The emergence of multicellular organisms was, perhaps, the most spectacular of the major transitions during the evolutionary history of life on this planet [...].

RevDate: 2021-10-19

Zagoskin MV, J Wang (2021)

Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells.

Biochemical Society transactions pii:229962 [Epub ahead of print].

In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.

RevDate: 2021-10-18

Stüeken EE, Viehmann S, SV Hohl (2021)

Contrasting nutrient availability between marine and brackish waters in the late Mesoproterozoic: Evidence from the Paranoá Group, Brazil.

Geobiology [Epub ahead of print].

Understanding the delayed rise of eukaryotic life on Earth is one of the most fundamental questions about biological evolution. Numerous studies have presented evidence for oxygen and nutrient limitations in seawater during the Mesoproterozoic era, indicating that open marine settings may not have been able to sustain a eukaryotic biosphere with complex, multicellular organisms. However, many of these data sets represent restricted marine basins, which may bias our view of habitability. Furthermore, it remains untested whether rivers could have supplied significant nutrient fluxes to coastal habitats. To better characterize the sources of the major nutrients nitrogen and phosphorus, we turned to the late Mesoproterozoic Paranoá Group in Brazil (~1.1 Ga), which was deposited on a passive margin of the São Francisco craton. We present carbon, nitrogen and sulphur isotope data from an open shelf setting (Fazenda Funil) and from a brackish-water environment with significant riverine input (São Gabriel). Our results show that waters were well-oxygenated and nitrate was bioavailable in the open ocean setting at Fazenda Funil; the redoxcline appears to have been deeper and further offshore compared to restricted marine basins elsewhere in the Mesoproterozoic. In contrast, the brackish site at São Gabriel received only limited input of marine nitrate and sulphate. Nevertheless, previous reports of acritarchs reveal that this brackish-water setting was habitable to eukaryotic life. Paired with previously published cadmium isotope data, which can be used as a proxy for phosphorus cycling, our results suggest that complex organisms were perhaps not strictly dependent on marine nutrient supplies. Riverine influxes of P and possibly other nutrients likely rendered coastal waters perhaps equally habitable to the Mesoproterozoic open ocean. This conclusion supports the notion that eukaryotic organisms may have thrived in brackish or perhaps even freshwater environments.

RevDate: 2021-10-19

Koya J, Saito Y, Kameda T, et al (2021)

Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1.

Blood cancer discovery, 2(5):450-467 pii:BCD-21-0044.

Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)-infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior. Within HTLV-1-infected cells, a regulatory T-cell phenotype associates with premalignant clonal expansion. We also delineate differences between virus- and tumor-related changes in the nonmalignant hematopoietic pool, including tumor-specific myeloid propagation. In a newly generated conditional knockout mouse model recapitulating T-cell-restricted CD274 (encoding PD-L1) gene lesions found in ATL, we demonstrate that PD-L1 overexpressed by T cells is transferred to surrounding cells, leading to their PD-L1 upregulation. Our findings provide insights into clonal evolution and immune landscape of multistep virus carcinogenesis.

Significance: Our multimodal single-cell analyses comprehensively dissect the cellular and molecular alterations of the peripheral blood in HTLV-1 infection, with and without progression to leukemia. This study not only sheds light on premalignant clonal expansion in viral carcinogenesis, but also helps to devise novel diagnostic and therapeutic strategies for HTLV-1-related disorders.

RevDate: 2021-10-19
CmpDate: 2021-10-19

Kaur G, Iyer LM, Burroughs AM, et al (2021)

Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans.

eLife, 10:.

Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.

RevDate: 2021-10-14

Gao Y, Park HJ, Traulsen A, et al (2021)

Evolution of irreversible somatic differentiation.

eLife, 10: pii:66711.

A key innovation emerging in complex animals is irreversible somatic differentiation: daughters of a vegetative cell perform a vegetative function as well, thus, forming a somatic lineage that can no longer be directly involved in reproduction. Primitive species use a different strategy: vegetative and reproductive tasks are separated in time rather than in space. Starting from such a strategy, how is it possible to evolve life forms which use some of their cells exclusively for vegetative functions? Here, we develop an evolutionary model of development of a simple multicellular organism and find that three components are necessary for the evolution of irreversible somatic differentiation: (i) costly cell differentiation, (ii) vegetative cells that significantly improve the organism's performance even if present in small numbers, and (iii) large enough organism size. Our findings demonstrate how an egalitarian development typical for loose cell colonies can evolve into germ-soma differentiation dominating metazoans.

RevDate: 2021-10-13

Wofford HA, Myers-Dean J, Vogel BA, et al (2021)

Domain Analysis and Motif Matcher (DAMM): A Program to Predict Selectivity Determinants in Monosiga brevicollis PDZ Domains Using Human PDZ Data.

Molecules (Basel, Switzerland), 26(19): pii:molecules26196034.

Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.

RevDate: 2021-10-14
CmpDate: 2021-10-14

Thorup C, Petro C, Bøggild A, et al (2021)

How to grow your cable bacteria: Establishment of a stable single-strain culture in sediment and proposal of Candidatus Electronema aureum GS.

Systematic and applied microbiology, 44(5):126236.

Cable bacteria are multicellular filamentous bacteria within the Desulfobulbaceae that couple the oxidation of sulfide to the reduction of oxygen over centimeter distances via long distance electron transport (LDET). So far, none of the freshwater or marine cable bacteria species have been isolated into pure culture. Here we describe a method for establishing a stable single-strain cable bacterium culture in partially sterilized sediment. By repeated transfers of a single cable bacterium filament from freshwater pond sediment into autoclaved sediment, we obtained strain GS, identified by its 16S rRNA gene as a member of Ca. Electronema. This strain was further propagated by transferring sediment clumps, and has now been stable within its semi-natural microbial community for several years. Its metagenome-assembled genome was 93% complete, had a size of 2.76 Mbp, and a DNA G + C content of 52%. Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI) suggest the affiliation of strain GS to Ca. Electronema as a novel species. Cell size, number of outer ridges, and detection of LDET in the GS culture are likewise consistent with Ca. Electronema. Based on these combined features, we therefore describe strain GS as a new cable bacterium species of the candidate genus Electronema, for which we propose the name Candidatus Electronema aureum sp.nov. Although not a pure culture, this stable single-strain culture will be useful for physiological and omics-based studies; similar approaches with single-cell or single-filament transfers into natural medium may also aid the characterization of other difficult-to-culture microbes.

RevDate: 2021-10-14
CmpDate: 2021-10-14

Ginsburg S, E Jablonka (2021)

Evolutionary transitions in learning and cognition.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20190766.

We define a cognitive system as a system that can learn, and adopt an evolutionary-transition-oriented framework for analysing different types of neural cognition. This enables us to classify types of cognition and point to the continuities and discontinuities among them. The framework we use for studying evolutionary transitions in learning capacities focuses on qualitative changes in the integration, storage and use of neurally processed information. Although there are always grey areas around evolutionary transitions, we recognize five major neural transitions, the first two of which involve animals at the base of the phylogenetic tree: (i) the evolutionary transition from learning in non-neural animals to learning in the first neural animals; (ii) the transition to animals showing limited, elemental associative learning, entailing neural centralization and primary brain differentiation; (iii) the transition to animals capable of unlimited associative learning, which, on our account, constitutes sentience and entails hierarchical brain organization and dedicated memory and value networks; (iv) the transition to imaginative animals that can plan and learn through selection among virtual events; and (v) the transition to human symbol-based cognition and cultural learning. The focus on learning provides a unifying framework for experimental and theoretical studies of cognition in the living world. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-10-14
CmpDate: 2021-10-14

Levin M, Keijzer F, Lyon P, et al (2021)

Uncovering cognitive similarities and differences, conservation and innovation.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1821):20200458.

This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

RevDate: 2021-10-12

Lin Y, Alstrup M, Pang JKY, et al (2021)

Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity.

mSystems [Epub ahead of print].

The Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that are vertebrate or invertebrate pathogens. Few isolates from the B. cereus group have however been demonstrated to benefit plant growth. Therefore, it is crucial to explore how bacterial development and pathogenesis evolve during plant colonization. Herein, we investigated Bacillus thuringiensis (Cry-) adaptation to the colonization of Arabidopsis thaliana roots and monitored changes in cellular differentiation in experimentally evolved isolates. Isolates from two populations displayed improved iterative ecesis on roots and increased virulence against insect larvae. Molecular dissection and recreation of a causative mutation revealed the importance of a nonsense mutation in the rho transcription terminator gene. Transcriptome analysis revealed how Rho impacts various B. thuringiensis genes involved in carbohydrate metabolism and virulence. Our work suggests that evolved multicellular aggregates have a fitness advantage over single cells when colonizing plants, creating a trade-off between swimming and multicellularity in evolved lineages, in addition to unrelated alterations in pathogenicity. IMPORTANCE Biologicals-based plant protection relies on the use of safe microbial strains. During application of biologicals to the rhizosphere, microbes adapt to the niche, including genetic mutations shaping the physiology of the cells. Here, the experimental evolution of Bacillus thuringiensis lacking the insecticide crystal toxins was examined on the plant root to reveal how adaptation shapes the differentiation of this bacterium. Interestingly, evolution of certain lineages led to increased hemolysis and insect larva pathogenesis in B. thuringiensis driven by transcriptional rewiring. Further, our detailed study reveals how inactivation of the transcription termination protein Rho promotes aggregation on the plant root in addition to altered differentiation and pathogenesis in B. thuringiensis.

RevDate: 2021-10-12

Schneider C (2021)

Tuft cell integration of luminal states and interaction modules in tissues.

Pflugers Archiv : European journal of physiology [Epub ahead of print].

Chemosensory processes are integral to the physiology of most organisms. This function is typically performed by specialized cells that are able to detect input signals and to convert them to an output dedicated to a particular group of target cells. Tuft cells are cholinergic chemosensory epithelial cells capable of producing immunologically relevant effector molecules. They are scattered throughout endoderm-derived hollow organs and function as sensors of luminal stimuli, which has been best studied in mucosal barrier epithelia. Given their epithelial origin and broad distribution, and based on their interplay with immune pathways, tuft cells can be considered a prototypical example of how complex multicellular organisms engage innate immune mechanisms to modulate and optimize organ physiology. In this review, I provide a concise overview of tuft cells and discuss how these cells influence organ adaptation to dynamic luminal conditions.

RevDate: 2021-10-11

Caetano-Anollés G, Aziz MF, Mughal F, et al (2021)

Tracing protein and proteome history with chronologies and networks: folding recapitulates evolution.

Expert review of proteomics [Epub ahead of print].

INTRODUCTION: While the origin and evolution of proteins remain mysterious, advances in evolutionary genomics and systems biology are facilitating the historical exploration of the structure, function and organization of proteins and proteomes. Molecular chronologies are series of time events describing the history of biological systems and subsystems and the rise of biological innovations. Together with time-varying networks, these chronologies provide a window into the past.

AREAS COVERED: Here, we review molecular chronologies and networks built with modern methods of phylogeny reconstruction. We discuss how chronologies of structural domain families uncover the explosive emergence of metabolism, the late rise of translation, the co-evolution of ribosomal proteins and rRNA, and the late development of the ribosomal exit tunnel; events that coincided with a tendency to shorten folding time. Evolving networks described the early emergence of domains and a late 'big bang' of domain combinations.

EXPERT OPINION: Two processes, folding and recruitment appear central to the evolutionary progression. The former increases protein persistence. The later fosters diversity. Chronologically, protein evolution mirrors folding by combining supersecondary structures into domains, developing translation machinery to facilitate folding speed and stability, and enhancing structural complexity by establishing long-distance interactions in novel structural and architectural designs.

RevDate: 2021-09-30

Shrestha S, AC Clark (2021)

Evolution of the folding landscape of effector caspases.

The Journal of biological chemistry pii:S0021-9258(21)01052-8 [Epub ahead of print].

Caspases are a family of cysteinyl proteases that control programmed cell death and maintain homeostasis in multicellular organisms. The caspase family is an excellent model to study protein evolution because all caspases are produced as zymogens (procaspases) that must be activated to gain full activity; the protein structures are conserved through hundreds of millions of years of evolution; and some allosteric features arose with the early ancestor while others are more recent evolutionary events. The apoptotic caspases evolved from a common ancestor into two distinct subfamilies: monomers (initiator caspases) or dimers (effector caspases). Differences in activation mechanisms of the two subfamilies, and their oligomeric forms, play a central role in the regulation of apoptosis. Here, we examine changes in the folding landscape by characterizing human effector caspases and their common ancestor. The results show that the effector caspases unfold by a minimum three-state equilibrium model at pH 7.5, where the native dimer is in equilibrium with a partially folded monomeric (procaspase-7, common ancestor) or dimeric (procaspase-6) intermediate. In comparison, the unfolding pathway of procaspase-3 contains both oligomeric forms of the intermediate. Overall, the data show that the folding landscape was first established with the common ancestor and was then retained for >650 million years. Partially folded monomeric or dimeric intermediates in the ancestral ensemble provide mechanisms for evolutionary changes that affect stability of extant caspases. The conserved folding landscape allows for the fine-tuning of enzyme stability in a species-dependent manner while retaining the overall caspase-hemoglobinase fold.

RevDate: 2021-09-30

Sego TJ, Mochan ED, Bard Ermentrout G, et al (2021)

A Multiscale Multicellular Spatiotemporal Model of Local Influenza Infection and Immune Response.

Journal of theoretical biology pii:S0022-5193(21)00337-4 [Epub ahead of print].

Respiratory viral infections pose a serious public health concern, from mild seasonal influenza to pandemics like those of SARS-CoV-2. Spatiotemporal dynamics of viral infection impact nearly all aspects of the progression of a viral infection, like the dependence of viral replication rates on the type of cell and pathogen, the strength of the immune response and localization of infection. Mathematical modeling is often used to describe respiratory viral infections and the immune response to them using ordinary differential equation (ODE) models. However, ODE models neglect spatially-resolved biophysical mechanisms like lesion shape and the details of viral transport, and so cannot model spatial effects of a viral infection and immune response. In this work, we develop a multiscale, multicellular spatiotemporal model of influenza infection and immune response by combining non-spatial ODE modeling and spatial, cell-based modeling. We employ cellularization, a recently developed method for generating spatial, cell-based, stochastic models from non-spatial ODE models, to generate much of our model from a calibrated ODE model that describes infection, death and recovery of susceptible cells and innate and adaptive responses during influenza infection, and develop models of cell migration and other mechanisms not explicitly described by the ODE model. We determine new model parameters to generate agreement between the spatial and original ODE models under certain conditions, where simulation replicas using our model serve as microconfigurations of the ODE model, and compare results between the models to investigate the nature of viral exposure and impact of heterogeneous infection on the time-evolution of the viral infection. We found that using spatially homogeneous initial exposure conditions consistently with those employed during calibration of the ODE model generates far less severe infection, and that local exposure to virus must be multiple orders of magnitude greater than a uniformly applied exposure to all available susceptible cells. This strongly suggests a prominent role of localization of exposure in influenza A infection. We propose that the particularities of the microenvironment to which a virus is introduced plays a dominant role in disease onset and progression, and that spatially resolved models like ours may be important to better understand and more reliably predict future health states based on susceptibility of potential lesion sites using spatially resolved patient data of the state of an infection. We can readily integrate the immune response components of our model into other modeling and simulation frameworks of viral infection dynamics that do detailed modeling of other mechanisms like viral internalization and intracellular viral replication dynamics, which are not explicitly represented in the ODE model. We can also combine our model with available experimental data and modeling of exposure scenarios and spatiotemporal aspects of mechanisms like mucociliary clearance that are only implicitly described by the ODE model, which would significantly improve the ability of our model to present spatially resolved predictions about the progression of influenza infection and immune response.

RevDate: 2021-09-28

Gostinčar C, Stajich JE, Kejžar A, et al (2021)

Seven Years at High Salinity-Experimental Evolution of the Extremely Halotolerant Black Yeast Hortaea werneckii.

Journal of fungi (Basel, Switzerland), 7(9): pii:jof7090723.

The experimental evolution of microorganisms exposed to extreme conditions can provide insight into cellular adaptation to stress. Typically, stress-sensitive species are exposed to stress over many generations and then examined for improvements in their stress tolerance. In contrast, when starting with an already stress-tolerant progenitor there may be less room for further improvement, it may still be able to tweak its cellular machinery to increase extremotolerance, perhaps at the cost of poorer performance under non-extreme conditions. To investigate these possibilities, a strain of extremely halotolerant black yeast Hortaea werneckii was grown for over seven years through at least 800 generations in a medium containing 4.3 M NaCl. Although this salinity is well above the optimum (0.8-1.7 M) for the species, the growth rate of the evolved H. werneckii did not change in the absence of salt or at high concentrations of NaCl, KCl, sorbitol, or glycerol. Other phenotypic traits did change during the course of the experimental evolution, including fewer multicellular chains in the evolved strains, significantly narrower cells, increased resistance to caspofungin, and altered melanisation. Whole-genome sequencing revealed the occurrence of multiple aneuploidies during the experimental evolution of the otherwise diploid H. werneckii. A significant overrepresentation of several gene groups was observed in aneuploid regions. Taken together, these changes suggest that long-term growth at extreme salinity led to alterations in cell wall and morphology, signalling pathways, and the pentose phosphate cycle. Although there is currently limited evidence for the adaptive value of these changes, they offer promising starting points for future studies of fungal halotolerance.

RevDate: 2021-09-28

Buravkova L, Larina I, Andreeva E, et al (2021)

Microgravity Effects on the Matrisome.

Cells, 10(9): pii:cells10092226.

Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the "gravisensors" in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth.

RevDate: 2021-09-28

Reuveni M (2021)

Sex and Regeneration.

Biology, 10(9): pii:biology10090937.

Regeneration is usually regarded as a unique plant or some animal species process. In reality, regeneration is a ubiquitous process in all multicellular organisms. It ranges from response to wounding by healing the wounded tissue to whole body neoforming (remaking of the new body). In a larger context, regeneration is one facet of two reproduction schemes that dominate the evolution of life. Multicellular organisms can propagate their genes asexually or sexually. Here I present the view that the ability to regenerate tissue or whole-body regeneration is also determined by the sexual state of the multicellular organisms (from simple animals such as hydra and planaria to plants and complex animals). The above idea is manifested here by showing evidence that many organisms, organs, or tissues show inhibited or diminished regeneration capacity when in reproductive status compared to organs or tissues in nonreproductive conditions or by exposure to sex hormones.

RevDate: 2021-09-27

Qu F, Zhao S, Cheng G, et al (2021)

Double emulsion-pretreated microwell culture for the in vitro production of multicellular spheroids and their in situ analysis.

Microsystems & nanoengineering, 7:38 pii:267.

Multicellular spheroids have served as a promising preclinical model for drug efficacy testing and disease modeling. Many microfluidic technologies, including those based on water-oil-water double emulsions, have been introduced for the production of spheroids. However, sustained culture and the in situ characterization of the generated spheroids are currently unavailable for the double emulsion-based spheroid model. This study presents a streamlined workflow, termed the double emulsion-pretreated microwell culture (DEPMiC), incorporating the features of (1) effective initiation of uniform-sized multicellular spheroids by the pretreatment of double emulsions produced by microfluidics without the requirement of biomaterial scaffolds; (2) sustained maintenance and culture of the produced spheroids with facile removal of the oil confinement; and (3) in situ characterization of individual spheroids localized in microwells by a built-in analytical station. Characterized by microscopic observations and Raman spectroscopy, the DEPMiC cultivated spheroids accumulated elevated lipid ordering on the apical membrane, similar to that observed in their Matrigel counterparts. Made possible by the proposed technological advancement, this study subsequently examined the drug responses of these in vitro-generated multicellular spheroids. The developed DEPMiC platform is expected to generate health benefits in personalized cancer treatment by offering a pre-animal tool to dissect heterogeneity from individual tumor spheroids.

RevDate: 2021-09-26

Campbell FC (2021)

Untangling the complexities of micropapillary cancer†.

The Journal of pathology [Epub ahead of print].

Distinct morphological subtypes of colorectal cancer (CRC) confer a bleak clinical outlook. In a recent issue of The Journal of Pathology, Onuma et al. investigated morphological evolution of a highly fatal CRC subtype known as micropapillary cancer (MPC). This study enhances understanding of MPC biology including essential regulatory signals, cellular and multicellular phenotypes as well as cancer behaviour. Iterative modelling in three-dimensional (3D) patient-derived CRC tissue-originated spheroids (CTOS) revealed spatiotemporal oscillations of Rho-ROCK hyperactivity underlying reversal of membrane polarity and suppression of lumen formation during development of multicellular MPC morphology. Corroborative studies in CTOS, xenografts and archival human CRCs confirm human disease relevance. Although cancer morphology has previously been considered irreversible, targeted inhibition of Rho-ROCK activity restored membrane polarity, lumenized multicellular assembly and suppressed MPC morphology in 3D CTOS cultures and xenografts. Collectively, the study identifies molecular, biophysical and multicellular mechanisms implicated in morphological evolution of micropapillary CRC. This article is protected by copyright. All rights reserved.

RevDate: 2021-09-24

Krishna A, Gardiner J, Donner TJ, et al (2021)

Control of vein-forming, striped gene expression by auxin signaling.

BMC biology, 19(1):213.

BACKGROUND: Activation of gene expression in striped domains is a key building block of biological patterning, from the recursive formation of veins in plant leaves to that of ribs and vertebrae in our bodies. In animals, gene expression is activated in striped domains by the differential affinity of broadly expressed transcription factors for their target genes and the combinatorial interaction between such target genes. In plants, how gene expression is activated in striped domains is instead unknown. We address this question for the broadly expressed MONOPTEROS (MP) transcription factor and its target gene ARABIDOPSIS THALIANA HOMEOBOX FACTOR8 (ATHB8).

RESULTS: We find that ATHB8 promotes vein formation and that such vein-forming function depends on both levels of ATHB8 expression and width of ATHB8 expression domains. We further find that ATHB8 expression is activated in striped domains by a combination of (1) activation of ATHB8 expression through binding of peak levels of MP to a low-affinity MP-binding site in the ATHB8 promoter and (2) repression of ATHB8 expression by MP target genes of the AUXIN/INDOLE-3-ACETIC-ACID-INDUCIBLE family.

CONCLUSIONS: Our findings suggest that a common regulatory logic controls activation of gene expression in striped domains in both plants and animals despite the independent evolution of their multicellularity.

RevDate: 2021-09-21

Kun Á (2021)

The major evolutionary transitions and codes of life.

Bio Systems pii:S0303-2647(21)00192-1 [Epub ahead of print].

Major evolutionary transitions as well as the evolution of codes of life are key elements in macroevolution which are characterized by increase in complexity Major evolutionary transitions ensues by a transition in individuality and by the evolution of a novel mode of using, transmitting or storing information. Here is where codes of life enter the picture: they are arbitrary mappings between different (mostly) molecular species. This flexibility allows information to be employed in a variety of ways, which can fuel evolutionary innovation. The collation of the list of major evolutionary transitions and the list of codes of life show a clear pattern: codes evolved prior to a major evolutionary transition and then played roles in the transition and/or in the transformation of the new individual. The evolution of a new code of life is in itself not a major evolutionary transition but allow major evolutionary transitions to happen. This could help us to identify new organic codes.

RevDate: 2021-09-21

Umen J, MD Herron (2021)

Green Algal Models for Multicellularity.

Annual review of genetics [Epub ahead of print].

The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2021-09-21

Maryenti T, Ishii T, T Okamoto (2021)

Development and regeneration of wheat-rice hybrid zygotes produced by in vitro fertilization system.

The New phytologist [Epub ahead of print].

Hybridization plays a decisive role in the evolution and diversification of angiosperms. However, the mechanisms of wide hybridization remain open because pre- and post-fertilization barriers limit the production and development of inter-subfamily/intergeneric zygotes, respectively. We examined hybridization between wheat and rice using in vitro fertilization (IVF) system to bypass those barriers. Several gamete combinations of allopolyploid wheat-rice hybrid zygotes were successfully produced, and the developmental profiles of hybrid zygotes were analyzed. Hybrid zygotes derived from one rice egg and one wheat sperm cells ceased at the multicellular embryo-like structure stage. This developmental barrier was overcome by adding one wheat egg cell to the wheat-rice hybrid zygote. In the reciprocal combination, one wheat egg and one rice sperm cells, the resulting hybrid zygotes failed to divide. However, doubling the dosage of rice sperm cell allowed the hybrid zygotes to develop into plantlets. Rice chromosomes appeared to be progressively eliminated during early developmental stage of these hybrid embryos, and approximately 20% of regenerated plants showed abnormal morphology. These results suggest that hybrid breakdown can be overcome through optimization of gamete combinations, and the present hybrid will provide a new horizon for utilization of inter-subfamily genetic resources.

RevDate: 2021-09-16

Turney PD (2021)

Evolution of Autopoiesis and Multicellularity in the Game of Life.

Artificial life, 27(1):26-43.

Recently we introduced a model of symbiosis, Model-S, based on the evolution of seed patterns in Conway's Game of Life. In the model, the fitness of a seed pattern is measured by one-on-one competitions in the Immigration Game, a two-player variation of the Game of Life. Our previous article showed that Model-S can serve as a highly abstract, simplified model of biological life: (1) The initial seed pattern is analogous to a genome. (2) The changes as the game runs are analogous to the development of the phenome. (3) Tournament selection in Model-S is analogous to natural selection in biology. (4) The Immigration Game in Model-S is analogous to competition in biology. (5) The first three layers in Model-S are analogous to biological reproduction. (6) The fusion of seed patterns in Model-S is analogous to symbiosis. The current article takes this analogy two steps further: (7) Autopoietic structures in the Game of Life (still lifes, oscillators, and spaceships-collectively known as ashes) are analogous to cells in biology. (8) The seed patterns in the Game of Life give rise to multiple, diverse, cooperating autopoietic structures, analogous to multicellular biological life. We use the apgsearch software (Ash Pattern Generator Search), developed by Adam Goucher for the study of ashes, to analyze autopoiesis and multicellularity in Model-S. We find that the fitness of evolved seed patterns in Model-S is highly correlated with the diversity and quantity of multicellular autopoietic structures.

RevDate: 2021-09-21

Elsner D, Hartfelder K, J Korb (2021)

Molecular underpinnings of division of labour among workers in a socially complex termite.

Scientific reports, 11(1):18269.

Division of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building. While mechanisms underlying task division are intensively studied in social Hymenoptera, less is known for termites, which independently evolved eusociality. We investigated molecular mechanisms underlying task division in termite workers to test for communality with social Hymenoptera. We compared similar-aged foraging workers with builders of the fungus-growing termite Macrotermes bellicosus using transcriptomes, endocrine measures and estimators of physiological condition. Based on results for social Hymenoptera and theory, we tested the hypotheses that (i) foragers are in worse physiological conditions than builders, (ii) builders are more similar in their gene expression profile to queens than foragers are, and (iii) builders invest more in anti-ageing mechanism than foragers. Our results support all three hypotheses. We found storage proteins to underlie task division of these similar-aged termite workers and these genes also characterize reproductive division of labour between queens and workers. This implies a co-option of nutrient-based pathways to regulate division of labour across lineages of termites and social Hymenoptera, which are separated by more than 133 million years.

RevDate: 2021-09-14

Steventon B, Busby L, AM Arias (2021)

Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis.

Developmental cell, 56(17):2405-2418.

A striking property of vertebrate embryos is the emergence of a conserved body plan across a wide range of organisms through the process of gastrulation. As the body plan unfolds, gene regulatory networks (GRNs) and multicellular interactions (cell regulatory networks, CRNs) combine to generate a conserved set of morphogenetic events that lead to the phylotypic stage. Interrogation of these multilevel interactions requires manipulation of the mechanical environment, which is difficult in vivo. We review recent studies of stem cell models of early embryogenesis from different species showing that, independent of species origin, cells in culture form similar structures. The main difference between embryos and in vitro models is the boundary conditions of the multicellular ensembles. We discuss these observations and suggest that the mechanical and geometric boundary conditions of different embryos before gastrulation hide a morphogenetic ground state that is revealed in the stem-cell-based models of embryo development.

RevDate: 2021-09-25

Henriques GJB, van Vliet S, M Doebeli (2021)

Multilevel selection favors fragmentation modes that maintain cooperative interactions in multispecies communities.

PLoS computational biology, 17(9):e1008896.

Reproduction is one of the requirements for evolution and a defining feature of life. Yet, across the tree of life, organisms reproduce in many different ways. Groups of cells (e.g., multicellular organisms, colonial microbes, or multispecies biofilms) divide by releasing propagules that can be single-celled or multicellular. What conditions determine the number and size of reproductive propagules? In multicellular organisms, existing theory suggests that single-cell propagules prevent the accumulation of deleterious mutations (e.g., cheaters). However, groups of cells, such as biofilms, sometimes contain multiple metabolically interdependent species. This creates a reproductive dilemma: small daughter groups, which prevent the accumulation of cheaters, are also unlikely to contain the species diversity that is required for ecological success. Here, we developed an individual-based, multilevel selection model to investigate how such multi-species groups can resolve this dilemma. By tracking the dynamics of groups of cells that reproduce by fragmenting into smaller groups, we identified fragmentation modes that can maintain cooperative interactions. We systematically varied the fragmentation mode and calculated the maximum mutation rate that communities can withstand before being driven to extinction by the accumulation of cheaters. We find that for groups consisting of a single species, the optimal fragmentation mode consists of releasing single-cell propagules. For multi-species groups we find various optimal strategies. With migration between groups, single-cell propagules are favored. Without migration, larger propagules sizes are optimal; in this case, group-size dependent fissioning rates can prevent the accumulation of cheaters. Our work shows that multi-species groups can evolve reproductive strategies that allow them to maintain cooperative interactions.

RevDate: 2021-09-13

Yeung W, Kwon A, Taujale R, et al (2021)

Evolution of functional diversity in the holozoan tyrosine kinome.

Molecular biology and evolution pii:6369520 [Epub ahead of print].

The emergence of multicellularity is strongly correlated with the expansion of tyrosine kinases, a conserved family of signaling enzymes that regulates pathways essential for cell-to-cell communication. Although tyrosine kinases have been classified from several model organisms, a molecular-level understanding of tyrosine kinase evolution across all holozoans is currently lacking. Using a hierarchical sequence constraint-based classification of diverse holozoan tyrosine kinases, we construct a new phylogenetic tree that identifies two ancient clades of cytoplasmic and receptor tyrosine kinases separated by the presence of an extended insert segment in the kinase domain connecting the D and E-helices. Present in nearly all receptor tyrosine kinases, this fast-evolving insertion imparts diverse functionalities such as post-translational modification sites and regulatory interactions. Eph and EGFR receptor tyrosine kinases are two exceptions which lack this insert, each forming an independent lineage characterized by unique functional features. We also identify common constraints shared across multiple tyrosine kinase families which warrant the designation of three new subgroups: Src Module (SrcM), Insulin Receptor Kinase-Like (IRKL), and Fibroblast, Platelet-derived, Vascular, and growth factor Receptors (FPVR). Subgroup-specific constraints reflect shared autoinhibitory interactions involved in kinase conformational regulation. Conservation analyses describe how diverse tyrosine kinase signaling functions arose through the addition of family-specific motifs upon subgroup-specific features and co-evolving protein domains. We propose the oldest tyrosine kinases, IRKL, SrcM, and Csk, originated from unicellular pre-metazoans and were co-opted for complex multicellular functions. The increased frequency of oncogenic variants in more recent tyrosine kinases suggests that lineage-specific functionalities are selectively altered in human cancers.

RevDate: 2021-09-14

Lemoine M (2021)

The Evolution of the Hallmarks of Aging.

Frontiers in genetics, 12:693071.

The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.

RevDate: 2021-09-18

Roy SW (2021)

Digest: Three sexes from two loci in one genome: A haploid alga expands the diversity of trioecious species.

Multicellular eukaryotes exhibit a remarkable diversity of sexual systems; however, trioecy, the coexistence of male, female, and cosexual or hermaphrodite individuals in a single species, is remarkably rare. Takahashi et al. (2021) report the first known instance of trioecy in a haploid organism. In contrast to other known cases of trioecy, the authors report evidence for genetic control of all three sexes by two loci. These results complicate models for sexual system turnover and expand the known diversity of trioecy species in several ways.

RevDate: 2021-09-07

Gómez DP, F Boudreau (2021)

Organoids and Their Use in Modeling Gut Epithelial Cell Lineage Differentiation and Barrier Properties During Intestinal Diseases.

Frontiers in cell and developmental biology, 9:732137.

Maintenance of intestinal epithelium homeostasis is a complex process because of the multicellular and molecular composition of the gastrointestinal wall and the involvement of surrounding interactive signals. The complex nature of this intestinal barrier system poses challenges in the detailed mechanistic understanding of intestinal morphogenesis and the onset of several gut pathologies, including intestinal inflammatory disorders, food allergies, and cancer. For several years, the gut scientific community has explored different alternatives in research involving animals and in vitro models consisting of cultured monolayers derived from the immortalized or cancerous origin cell lines. The recent ability to recapitulate intestinal epithelial dynamics from mini-gut cultures has proven to be a promising step in the field of scientific research and biomedicine. The organoids can be grown as two- or three-dimensional structures, and are derived from adult or pluripotent stem cells that ultimately establish an intestinal epithelium that is composed of all differentiated cell types present in the normal epithelium. In this review, we summarize the different origins and recent use of organoids in modeling intestinal epithelial differentiation and barrier properties.

RevDate: 2021-09-07

Marshall PJ, Houser TM, SM Weiss (2021)

The Shared Origins of Embodiment and Development.

Frontiers in systems neuroscience, 15:726403.

As a domain of study centering on the nature of the body in the functioning of the individual organism, embodiment encompasses a diverse array of topics and questions. One useful organizing framework places embodiment as a bridge construct connecting three standpoints on the body: the form of the body, the body as actively engaged in and with the world, and the body as lived experience. Through connecting these standpoints, the construct of embodiment shows that they are not mutually exclusive: inherent in form is the capacity for engagement, and inherent in engagement is a lived perspective that confers agency and meaning. Here, we employ this framework to underscore the deep connections between embodiment and development. We begin with a discussion of the origins of multicellularity, highlighting how the evolution of bodies was the evolution of development itself. The evolution of the metazoan (animal) body is of particular interest, because most animals possess complex bodies with sensorimotor capacities for perceiving and acting that bring forth a particular sort of embodiment. However, we also emphasize that the thread of embodiment runs through all living things, which share an organizational property of self-determination that endows them with a specific kind of autonomy. This realization moves us away from a Cartesian machine metaphor and instead puts an emphasis on the lived perspective that arises from being embodied. This broad view of embodiment presents opportunities to transcend the boundaries of individual disciplines to create a novel integrative vision for the scientific study of development.

RevDate: 2021-09-17

Mani S, T Tlusty (2021)

A topological look into the evolution of developmental programs.

Biophysical journal pii:S0006-3495(21)00730-X [Epub ahead of print].

Rapid advance of experimental techniques provides an unprecedented in-depth view into complex developmental processes. Still, little is known on how the complexity of multicellular organisms evolved by elaborating developmental programs and inventing new cell types. A hurdle to understanding developmental evolution is the difficulty of even describing the intertwined network of spatiotemporal processes underlying the development of complex multicellular organisms. Nonetheless, an overview of developmental trajectories can be obtained from cell type lineage maps. Here, we propose that these lineage maps can also reveal how developmental programs evolve: the modes of evolving new cell types in an organism should be visible in its developmental trajectories and therefore in the geometry of its cell type lineage map. This idea is demonstrated using a parsimonious generative model of developmental programs, which allows us to reliably survey the universe of all possible programs and examine their topological features. We find that, contrary to belief, tree-like lineage maps are rare, and lineage maps of complex multicellular organisms are likely to be directed acyclic graphs in which multiple developmental routes can converge on the same cell type. Although cell type evolution prescribes what developmental programs come into existence, natural selection prunes those programs that produce low-functioning organisms. Our model indicates that additionally, lineage map topologies are correlated with such a functional property: the ability of organisms to regenerate.

RevDate: 2021-09-03

Swiatczak B (2021)

Struggle within: evolution and ecology of somatic cell populations.

Cellular and molecular life sciences : CMLS [Epub ahead of print].

The extent to which normal (nonmalignant) cells of the body can evolve through mutation and selection during the lifetime of the organism has been a major unresolved issue in evolutionary and developmental studies. On the one hand, stable multicellular individuality seems to depend on genetic homogeneity and suppression of evolutionary conflicts at the cellular level. On the other hand, the example of clonal selection of lymphocytes indicates that certain forms of somatic mutation and selection are concordant with the organism-level fitness. Recent DNA sequencing and tissue physiology studies suggest that in addition to adaptive immune cells also neurons, epithelial cells, epidermal cells, hematopoietic stem cells and functional cells in solid bodily organs are subject to evolutionary forces during the lifetime of an organism. Here we refer to these recent studies and suggest that the expanding list of somatically evolving cells modifies idealized views of biological individuals as radically different from collectives.

RevDate: 2021-09-04

Boedicker JQ, Gangan M, Naughton K, et al (2021)

Engineering Biological Electron Transfer and Redox Pathways for Nanoparticle Synthesis.

Bioelectricity, 3(2):126-135.

Many species of bacteria are naturally capable of types of electron transport not observed in eukaryotic cells. Some species live in environments containing heavy metals not typically encountered by cells of multicellular organisms, such as arsenic, cadmium, and mercury, leading to the evolution of enzymes to deal with these environmental toxins. Bacteria also inhabit a variety of extreme environments, and are capable of respiration even in the absence of oxygen as a terminal electron acceptor. Over the years, several of these exotic redox and electron transport pathways have been discovered and characterized in molecular-level detail, and more recently synthetic biology has begun to utilize these pathways to engineer cells capable of detecting and processing a variety of metals and semimetals. One such application is the biologically controlled synthesis of nanoparticles. This review will introduce the basic concepts of bacterial metal reduction, summarize recent work in engineering bacteria for nanoparticle production, and highlight the most cutting-edge work in the characterization and application of bacterial electron transport pathways.

RevDate: 2021-09-01

Wang X, Dong F, Liu J, et al (2021)

The self-healing of Bacillus subtilis biofilms.

Archives of microbiology [Epub ahead of print].

Self-healing is an intrinsic ability that exists widely in every multicellular biological organism. Our recent experiments have shown that bacterial biofilms also have the ability to self-heal after man-make cuts, but the mechanism of biofilm self-healing have not been studied. We find that the healing process of cuts on the biofilm depends on cut geometries like its location or direction, the biofilm itself like the biofilm age, the growing substrate properties like its hardness, and also the environments such as the competitive growth of multiple biofilms. What is more, the healing rate along the cut is heterogeneous, and the maximum healing rate can reach 260 μm/h, which is three times the undestroyed biofilm expansion rate. The cut does not change the rounded shape growth of biofilms. Further study of phenotypic evolution shows that the cut delays bacterial differentiation; motile cells perceive the cut and move to the cut area, while the cut only heals when there are enough matrix-producing cells in the cut area. Our work suggests new ideas for developing self-healing materials.

RevDate: 2021-09-04

Lindsey CR, Rosenzweig F, MD Herron (2021)

Phylotranscriptomics points to multiple independent origins of multicellularity and cellular differentiation in the volvocine algae.

BMC biology, 19(1):182.

BACKGROUND: The volvocine algae, which include the single-celled species Chlamydomonas reinhardtii and the colonial species Volvox carteri, serve as a model in which to study the evolution of multicellularity and cellular differentiation. Studies reconstructing the history of this group have by and large relied on datasets of one to a few genes for phylogenetic inference and ancestral character state reconstruction. As a result, volvocine phylogenies lack concordance depending on the number and/or type of genes (i.e., chloroplast vs nuclear) chosen for phylogenetic inference. While multiple studies suggest that multicellularity evolved only once in the volvocine algae, that each of its three colonial families is monophyletic, and that there have been at least three independent origins of cellular differentiation in the group, other studies call into question one or more of these conclusions. An accurate assessment of the evolutionary history of the volvocine algae requires inference of a more robust phylogeny.

RESULTS: We performed RNA sequencing (RNA-seq) on 55 strains representing 47 volvocine algal species and obtained similar data from curated databases on 13 additional strains. We then compiled a dataset consisting of transcripts for 40 single-copy, protein-coding, nuclear genes and subjected the predicted amino acid sequences of these genes to maximum likelihood, Bayesian inference, and coalescent-based analyses. These analyses show that multicellularity independently evolved at least twice in the volvocine algae and that the colonial family Goniaceae is not monophyletic. Our data further indicate that cellular differentiation arose independently at least four, and possibly as many as six times, within the volvocine algae.

CONCLUSIONS: Altogether, our results demonstrate that multicellularity and cellular differentiation are evolutionarily labile in the volvocine algae, affirming the importance of this group as a model system for the study of major transitions in the history of life.

RevDate: 2021-09-02

Mikhalevich VI (2021)

Aromorphoses in the Evolution of Unicellular Eukaryotes (as Exemplified by Foraminifera D'orbigny, 1826).

Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections, 499(1):105-108.

Aromorphoses of unicellular organisms are almost unexplored. Foraminifera provide a unique opportunity of such studies, having the most complex structure and being most fully represented in the geological record. In their development, more than 10 aromorphoses (key advances) have first been discovered, which arose in different classes of Foraminifera independently and in parallel. Of these, the key ones are the emergence of an agglutinated and then secreted calcareous shell, a bifontinal (bilamellar) wall, multichamberedness, differentiation of chambers, an integrating system of channels and nuclear dualism. They represent peculiar ways of evolution at the unicellular level. Multicameredness can be compared with multicellularity; differentiation of chambers, with differentiation of tissues; a system of channels, striking in its complexity and carrying O2, with the Metazoa circulatory system.

RevDate: 2021-08-31

Pellissier L, Koval A, Marcourt L, et al (2021)

Isolation and Identification of Isocoumarin Derivatives With Specific Inhibitory Activity Against Wnt Pathway and Metabolome Characterization of Lasiodiplodia venezuelensis.

Frontiers in chemistry, 9:664489.

The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancers are dependent on Wnt pathway overactivation mostly through dysregulation of pathway component protein expression, which necessitates the search for therapeutically relevant compounds targeting them. Highly diverse microorganisms as endophytes represent an underexplored field in the therapeutic natural products research. In the present work, the objective was to explore the chemical diversity and presence of selective Wnt inhibitors within a unique collection of fungi isolated as foliar endophytes from the long-lived tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted with ethyl acetate, and screened for their effects on the Wnt pathway and cell proliferation. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation based on its selective activity. Application of geometric transfer from analytical HPLC conditions to semi-preparative scale and use of dry load sample introduction enabled the isolation of 15 pure compounds in a single step. Among the molecules identified, five are original natural products described for the first time, and six are new to this species. An active fraction obtained by semi-preparative HPLC was re-purified by UHPLC-PDA using a 1.7 µm phenyl column. 75 injections of 8 µg were necessary to obtain sufficient amounts of each compound for structure elucidation and bioassays. Using this original approach, in addition to the two major compounds, a third minor compound identified as (R)-(-)-5-hydroxymellein (18) was obtained, which was found to be responsible for the significant Wnt inhibition activity recorded. Further studies of this compound and its structural analogs showed that only 18 acts in a highly specific manner, with no acute cytotoxicity. This compound is notably selective for upstream components of the Wnt pathway and is able to inhibit the proliferation of three triple negative breast cancer cell lines. In addition to the discovery of Wnt inhibitors of interest, this study contributes to better characterize the biosynthetic potential of L. venezuelensis.

RevDate: 2021-08-30

Louka A, Takan I, Pavlopoulou A, et al (2021)

Bioinformatic approaches to the investigation of the atavistic genes implicated in cancer.

Frontiers in bioscience (Landmark edition), 26(8):279-311.

Introduction: Cancer is a widespread phenomenon occurring across multicellular organisms and represents a condition of atavism, wherein cells follow a path of reverse evolution that unlocks a toolkit of ancient pre-existing adaptations by disturbing hub genes of the human gene network. This results to a primitive cellular phenotype which resembles a unicellular life form. Methods: In the present study, we have employed bioinformatic approaches for the in-depth investigation of twelve atavistic hub genes (ACTG1, CTNNA1, CTNND1, CTTN, DSP, ILK, PKN2, PKP3, PLEC, RCC2, TLN1 and VASP), which exhibit highly disrupted interactions in diverse types of cancer and are associated with the formation of metastasis. To this end, phylogenetic analyses were conducted towards unravelling the evolutionary history of those hubs and tracing the origin of cancer in the Tree of Life. Results: Based on our results, most of those genes are of unicellular origin, and some of them can be traced back to the emergence of cellular life itself (atavistic theory). Our findings indicate how deep the evolutionary roots of cancer actually are, and may be exploited in the clinical setting for the design of novel therapeutic approaches and, particularly, in overcoming resistance to antineoplastic treatment.

RevDate: 2021-08-30

Mandujano-Tinoco EA, Sultan E, Ottolenghi A, et al (2021)

Evolution of Cellular Immunity Effector Cells; Perspective on Cytotoxic and Phagocytic Cellular Lineages.

Cells, 10(8):.

The immune system has evolved to protect organisms from infections caused by bacteria, viruses, and parasitic pathogens. In addition, it provides regenerative capacities, tissue maintenance, and self/non-self recognition of foreign tissues. Phagocytosis and cytotoxicity are two prominent cellular immune activities positioned at the base of immune effector function in mammals. Although these immune mechanisms have diversified into a wide heterogeneous repertoire of effector cells, it appears that they share some common cellular and molecular features in all animals, but also some interesting convergent mechanisms. In this review, we will explore the current knowledge about the evolution of phagocytic and cytotoxic immune lineages against pathogens, in the clearance of damaged cells, for regeneration, for histocompatibility recognition, and in killing virally infected cells. To this end, we give different immune examples of multicellular organism models, ranging from the roots of bilateral organisms to chordate invertebrates, comparing to vertebrates' lineages. In this review, we compare cellular lineage homologies at the cellular and molecular levels. We aim to highlight and discuss the diverse function plasticity within the evolved immune effector cells, and even suggest the costs and benefits that it may imply for organisms with the meaning of greater defense against pathogens but less ability to regenerate damaged tissues and organs.

RevDate: 2021-08-22

Leray M, Wilkins LGE, Apprill A, et al (2021)

Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution.

PLoS biology, 19(8):e3001322.

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.

RevDate: 2021-08-20

Schapheer C, Pellens R, R Scherson (2021)

Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation.

Frontiers in microbiology, 12:702763.

Recent reports indicate that the health of our planet is getting worse and that genuine transformative changes are pressing. So far, efforts to ameliorate Earth's ecosystem crises have been insufficient, as these often depart from current knowledge of the underlying ecological processes. Nowadays, biodiversity loss and the alterations in biogeochemical cycles are reaching thresholds that put the survival of our species at risk. Biological interactions are fundamental for achieving biological conservation and restoration of ecological processes, especially those that contribute to nutrient cycles. Microorganism are recognized as key players in ecological interactions and nutrient cycling, both free-living and in symbiotic associations with multicellular organisms. This latter assemblage work as a functional ecological unit called "holobiont." Here, we review the emergent ecosystem properties derived from holobionts, with special emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms. We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin and cellulose). Finally, based on the interconnection between biodiversity and nutrient cycling, we propose that a multicellular organism and its associates constitute an Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out key ecosystem processes. We emphasize that in order to meet the challenge to restore the health of our planet it is critical to reduce anthropic pressures that may threaten not only individual entities (known as "bionts") but also the stability of the associations that give rise to EH and their ecological functions.

RevDate: 2021-09-03
CmpDate: 2021-08-30

Galindo LJ, López-García P, Torruella G, et al (2021)

Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota.

Nature communications, 12(1):4973.

Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.

RevDate: 2021-08-17

Richter M, Piwocka O, Musielak M, et al (2021)

From Donor to the Lab: A Fascinating Journey of Primary Cell Lines.

Frontiers in cell and developmental biology, 9:711381.

Primary cancer cell lines are ex vivo cell cultures originating from resected tissues during biopsies and surgeries. Primary cell cultures are objects of intense research due to their high impact on molecular biology and oncology advancement. Initially, the patient-derived specimen must be subjected to dissociation and isolation. Techniques for tumour dissociation are usually reliant on the organisation of connecting tissue. The most common methods include enzymatic digestion (with collagenase, dispase, and DNase), chemical treatment (with ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid), or mechanical disaggregation to obtain a uniform cell population. Cells isolated from the tissue specimen are cultured as a monolayer or three-dimensional culture, in the form of multicellular spheroids, scaffold-based cultures (i.e., organoids), or matrix-embedded cultures. Every primary cell line must be characterised to identify its origin, purity, and significant features. The process of characterisation should include different assays utilising specific (extra- and intracellular) markers. The most frequently used approaches comprise immunohistochemistry, immunocytochemistry, western blot, flow cytometry, real-time polymerase chain reaction, karyotyping, confocal microscopy, and next-generation sequencing. The growing body of evidence indicates the validity of the usage of primary cancer cell lines in the formulation of novel anti-cancer treatments and their contribution to drug development.

RevDate: 2021-08-14

Zhang W, Wang Y, Liu L, et al (2021)

Identification and Genomic Characterization of Two Previously Unknown Magnetotactic Nitrospirae.

Frontiers in microbiology, 12:690052.

Magnetotactic bacteria (MTB) are a group of microbes that biomineralize membrane-bound, nanosized magnetite (Fe3O4), and/or greigite (Fe3S4) crystals in intracellular magnetic organelle magnetosomes. MTB belonging to the Nitrospirae phylum can form up to several hundreds of Fe3O4 magnetosome crystals and dozens of sulfur globules in a single cell. These MTB are widespread in aquatic environments and sometimes account for a significant proportion of microbial biomass near the oxycline, linking these lineages to the key steps of global iron and sulfur cycling. Despite their ecological and biogeochemical importance, our understanding of the diversity and ecophysiology of magnetotactic Nitrospirae is still very limited because this group of MTB remains unculturable. Here, we identify and characterize two previously unknown MTB populations within the Nitrospirae phylum through a combination of 16S rRNA gene-based and genome-resolved metagenomic analyses. These two MTB populations represent distinct morphotypes (rod-shaped and coccoid, designated as XYR, and XYC, respectively), and both form more than 100 bullet-shaped magnetosomal crystals per cell. High-quality draft genomes of XYR and XYC have been reconstructed, and they represent a novel species and a novel genus, respectively, according to their average amino-acid identity values with respect to available genomes. Accordingly, the names Candidatus Magnetobacterium cryptolimnobacter and Candidatus Magnetomicrobium cryptolimnococcus for XYR and XYC, respectively, were proposed. Further comparative genomic analyses of XYR, XYC, and previously reported magnetotactic Nitrospirae reveal the general metabolic potential of this MTB group in distinct microenvironments, including CO2 fixation, dissimilatory sulfate reduction, sulfide oxidation, nitrogen fixation, or denitrification processes. A remarkably conserved magnetosome gene cluster has been identified across Nitrospirae MTB genomes, indicating its putative important adaptive roles in these bacteria. Taken together, the present study provides novel insights into the phylogenomic diversity and ecophysiology of this intriguing, yet poorly understood MTB group.

RevDate: 2021-09-26

Cisbani G, Metherel AH, Smith ME, et al (2021)

Murine and human microglial cells are relatively enriched with eicosapentaenoic acid compared to the whole brain.

Neurochemistry international, 150:105154 pii:S0197-0186(21)00200-X [Epub ahead of print].

The brain is a multicellular organ enriched with lipids. While the fatty acid composition of gross cerebral tissue is well characterized, the fatty acid composition of specific brain cells, particularly microglia cells, is less well characterized. Microglia cells are the innate immune cells of the brain, and a paucity of studies measuring their fatty acid composition using either immortalized or primary microglia cells report a higher ratio of eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) than widely observed in whole brain tissue. Here we further characterize the fatty acid composition of murine microglia cells from young male and female mice as well as of human origin and compared it with a myelin-enriched fraction from the same mice. Our results show that saturated and monounsaturated fatty acids are the most abundant followed by polyunsaturated fatty acids (PUFA), with no statistical differences between sexes. Regarding PUFA, although DHA levels did not differ between human and murine cells, EPA was statistically higher in murine microglia. Notably, the DHA to EPA ratio was about 400 times higher in microglial cells compared to the myelin-enriched fraction. Thus, our results suggest that as compared to whole brain tissue EPA is relatively abundant in microglia cells, particularly in comparison to other n-3 PUFA such as DHA. Since the fatty acid composition of microglia can influence their functionality, a better understanding of EPA and DHA metabolism in microglia and the brain could identify new targets to modify microglial activity.

RevDate: 2021-08-12

Baluška F, AS Reber (2021)

CBC-Clock Theory of Life - Integration of cellular circadian clocks and cellular sentience is essential for cognitive basis of life.

BioEssays : news and reviews in molecular, cellular and developmental biology [Epub ahead of print].

Cellular circadian clocks represent ancient anticipatory systems which co-evolved with the first cells to safeguard their survival. Cyanobacteria represent one of the most ancient cells, having essentially invented photosynthesis together with redox-based cellular circadian clocks some 2.7 billion years ago. Bioelectricity phenomena, based on redox homeostasis associated electron transfers in membranes and within protein complexes inserted in excitable membranes, play important roles, not only in the cellular circadian clocks and in anesthetics-sensitive cellular sentience (awareness of environment), but also in the coupling of single cells into tissues and organs of unitary multicellular organisms. This integration of cellular circadian clocks with cellular basis of sentience is an essential feature of the cognitive CBC-Clock basis of cellular life.

RevDate: 2021-09-07

Dzik J (2021)

Metabolic evolutionary roots of the macrophage immune response in amoeba-bacteria interactions: The conserved role of hypoxia-induced Factor and AMP kinase.

Acta biochimica Polonica, 68(3):457-476.

The bacteria Legionella, being able to infect both macrophages and protozoans, reduce oxidative phosphorylation and induce glycolysis, which allows pathogens to grow and replicate in these cells. In amoeba-like inflammatory macrophages (M1), the phagocytizing cells of the primary immune defense, an increase in the rate of glycolysis is followed by a decrease of oxidative phosphorylation. The opposite takes place in anti-inflammatory macrophages (M2). They change from glycolysis to oxidative metabolism when AMP-dependent kinase (AMPK) is activated by a high ratio of AMP/ATP. Stimulation of macrophages with anti-inflammatory cytokines causes activation of AMPK. Infection of macrophages with the parasitic flagellate Leishmania infantum induces a switch from an initial glycolytic phase to oxidative phase with the essential role of AMPK in this change. Activated AMPK induces catabolic pathways effectively producing ATP as well as processes requiring the energy supply. AMPK regulates the migration of cells and enhances the phagocytic activity of macrophages. In macrophages, bacterial products activate TLRs and NF-κB signaling, causing an increase of transcription of hypoxia-induced factor HIF-1α (a subunit of HIF-1). This brings about induction of the enzyme and transporter expression essential for glycolysis and the pentose phosphate pathway to proceed and makes biosynthetic processes and ROS production in macrophages possible. Hypoxia augments macrophage phagocytosis in a HIF-1α-dependent manner. Multicellular parasites experience changes in the availability of oxygen in their life cycle. In the nematode Ascaris suum, HIF participates in the pre-adaptation to hypoxic conditions after infection of their hosts. Also, the freshwater and marine invertebrates meet changes of oxygen concentrations. In the anaerobic branch of the respiratory chain of these invertebrates, fumarate serves as the terminal electron acceptor that is reduced to succinate in complex II of the ETC. In mammalian cells, accumulation of succinate under hypoxic conditions suggests that the mammalian complex II may reduce fumarate to succinate, too. The data reviewed here show that the ability to shift the cell metabolism towards glycolysis observed in activated macrophages can be traced back in evolution to metabolic changes characterizing protozoans infected with bacteria. Anabolic needs of multiplying bacteria direct host metabolism to glycolysis that produces, aside from ATP, precursors of the amino acids used by the pathogen for its protein synthesis. M1-activated mammalian macrophages behave in the same way. Regulation of metabolism in M1 and M2 macrophages is further enhanced by HIF-1 and AMPK, respectively. These archaic functions of AMPK and HIF, important also to control phagocytosis and cell migration were extended to embryonic development in multicellular organisms.

RevDate: 2021-08-31

Cao Q, Wu S, Xiao C, et al (2021)

Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization.

Cell discovery, 7(1):64.

Coronavirus disease 2019 (COVID-19), driven by SARS-CoV-2, is a severe infectious disease that has become a global health threat. Vaccines are among the most effective public health tools for combating COVID-19. Immune status is critical for evaluating the safety and response to the vaccine, however, the evolution of the immune response during immunization remains poorly understood. Single-cell RNA sequencing (scRNA-seq) represents a powerful tool for dissecting multicellular behavior and discovering therapeutic antibodies. Herein, by performing scRNA/V(D)J-seq on peripheral blood mononuclear cells from four COVID-19 vaccine trial participants longitudinally during immunization, we revealed enhanced cellular immunity with concerted and cell type-specific IFN responses as well as boosted humoral immunity with SARS-CoV-2-specific antibodies. Based on the CDR3 sequence and germline enrichment, we were able to identify several potential binding antibodies. We synthesized, expressed and tested 21 clones from the identified lineages. Among them, one monoclonal antibody (P3V6-1) exhibited relatively high affinity with the extracellular domain of Spike protein, which might be a promising therapeutic reagent for COVID-19. Overall, our findings provide insights for assessing vaccine through the novel scRNA/V(D)J-seq approach, which might facilitate the development of more potent, durable and safe prophylactic vaccines.

RevDate: 2021-08-09

Van Goor J, Shakes DC, ES Haag (2021)

Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them.

Cells, 10(7):.

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.

RevDate: 2021-08-09

Kloareg B, Badis Y, Cock JM, et al (2021)

Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective.

Genes, 12(7):.

Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.

RevDate: 2021-08-09

Petroll R, Schreiber M, Finke H, et al (2021)

Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity.

Genes, 12(7):.

Red algae (Rhodophyta) belong to the superphylum Archaeplastida, and are a species-rich group exhibiting diverse morphologies. Theory has it that the unicellular red algal ancestor went through a phase of genome contraction caused by adaptation to extreme environments. More recently, the classes Porphyridiophyceae, Bangiophyceae, and Florideophyceae experienced genome expansions, coinciding with an increase in morphological complexity. Transcription-associated proteins (TAPs) regulate transcription, show lineage-specific patterns, and are related to organismal complexity. To better understand red algal TAP complexity and evolution, we investigated the TAP family complement of uni- and multi-cellular red algae. We found that the TAP family complement correlates with gain of morphological complexity in the multicellular Bangiophyceae and Florideophyceae, and that abundance of the C2H2 zinc finger transcription factor family may be associated with the acquisition of morphological complexity. An expansion of heat shock transcription factors (HSF) occurred within the unicellular Cyanidiales, potentially as an adaption to extreme environmental conditions.

RevDate: 2021-08-03

Moroz LL, Nikitin MA, Poličar PG, et al (2021)

Evolution of glutamatergic signaling and synapses.

Neuropharmacology pii:S0028-3908(21)00295-1 [Epub ahead of print].

Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.

RevDate: 2021-08-03

Anda S, Boye E, Schink KO, et al (2021)

Cosegregation of asymmetric features during cell division.

Open biology, 11(8):210116.

Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes 'old' from 'new' and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish 'old' from 'new' and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.

RevDate: 2021-09-03
CmpDate: 2021-08-19

Li XG, Tang HZ, Zhang WJ, et al (2021)

Thermococcus aciditolerans sp. nov., a piezotolerant, hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent chimney in the Southwest Indian Ridge.

International journal of systematic and evolutionary microbiology, 71(8):.

A hyperthermophilic, strictly anaerobic archaeon, designated strain SY113T, was isolated from a deep-sea hydrothermal vent chimney on the Southwest Indian Ridge at a water depth of 2770 m. Enrichment and isolation of strain SY113T were performed at 85 °C at 0.1 MPa. Cells of strain SY113T were irregular motile cocci with peritrichous flagella and generally 0.8-2.4 µm in diameter. Growth was observed at temperatures between 50 and 90 °C (optimum at 85 °C) and under hydrostatic pressures of 0.1-60 MPa (optimum, 27 MPa). Cells of SY113T grew at pH 4.0-9.0 (optimum, pH 5.5) and a NaCl concentration of 0.5-5.5 % (w/v; optimum concentration, 3.0 % NaCl). Strain SY113T was an anaerobic chemoorganoheterotroph and grew on complex proteinaceous substrates such as yeast extract and tryptone, as well as on maltose and starch. Elemental sulphur stimulated growth, but not obligatory for its growth. The G+C content of the genomic DNA was 55.0 mol%. Phylogenetic analysis of the 16S rRNA sequence of strain SY113T showed that the novel isolate belonged to the genus Thermococcus. On the basis of physiological characteristics, average nucleotide identity values and in silico DNA-DNA hybridization results, we propose a novel species, named Thermococcus aciditolerans sp. nov. The type strain is SY113T (=MCCC 1K04190T=JCM 39083T).

RevDate: 2021-08-02

Ramalho JJ, Jones VAS, Mutte S, et al (2021)

Pole position: How plant cells polarize along the axes.

The Plant cell pii:6335687 [Epub ahead of print].

Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function, and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization. Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the regulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and discuss the evolution of polarity machineries in plants.

RevDate: 2021-07-29

Zhang WJ, Zhang C, Zhou S, et al (2021)

Comparative genomic analysis of obligately piezophilic Moritella yayanosii DB21MT-5 reveals bacterial adaptation to the Challenger Deep, Mariana Trench.

Microbial genomics, 7(7):.

Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium Moritella yayanosii DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic Moritella strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other Moritella strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other Moritella strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain Moritella yayanosii DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.

RevDate: 2021-08-03
CmpDate: 2021-08-03

Chen L, JJ Wiens (2021)

Multicellularity and sex helped shape the Tree of Life.

Proceedings. Biological sciences, 288(1955):20211265.

Across the Tree of Life, there are dramatic differences in species numbers among groups. However, the factors that explain the differences among the deepest branches have remained unknown. We tested whether multicellularity and sexual reproduction might explain these patterns, since the most species-rich groups share these traits. We found that groups with multicellularity and sexual reproduction have accelerated rates of species proliferation (diversification), and that multicellularity has a stronger effect than sexual reproduction. Patterns of species richness among clades are then strongly related to these differences in diversification rates. Taken together, these results help explain patterns of biodiversity among groups of organisms at the very broadest scales. They may also help explain the mysterious preponderance of sexual reproduction among species (the 'paradox of sex') by showing that organisms with sexual reproduction proliferate more rapidly.

RevDate: 2021-09-17

Waldvogel AM, M Pfenninger (2021)

Temperature dependence of spontaneous mutation rates.

Genome research, 31(9):1582-1589.

Mutation is the source of genetic variation and the fundament of evolution. Temperature has long been suggested to have a direct impact on realized spontaneous mutation rates. If mutation rates vary in response to environmental conditions, such as the variation of the ambient temperature through space and time, they should no longer be described as species-specific constants. By combining mutation accumulation with whole-genome sequencing in a multicellular organism, we provide empirical support to reject the null hypothesis of a constant, temperature-independent mutation rate. Instead, mutation rates depended on temperature in a U-shaped manner with increasing rates toward both temperature extremes. This relation has important implications for mutation-dependent processes in molecular evolution, processes shaping the evolution of mutation rates, and even the evolution of biodiversity as such.

RevDate: 2021-07-22

Kożyczkowska A, Najle SR, Ocaña-Pallarès E, et al (2021)

Stable transfection in protist Corallochytriumlimacisporum identifies novel cellular features among unicellular animals relatives.

Current biology : CB pii:S0960-9822(21)00890-3 [Epub ahead of print].

The evolutionary path from protists to multicellular animals remains a mystery. Recent work on the genomes of several unicellular relatives of animals has shaped our understanding of the genetic changes that may have occurred in this transition.1-3 However, the specific cellular modifications that took place to accommodate these changes remain unclear. To address this, we need to compare metazoan cells with those of their extant relatives, which are choanoflagellates, filastereans, ichthyosporeans, and corallochytreans/pluriformeans. Interestingly, these lineages display a range of developmental patterns potentially homologous to animal ones. Genetic tools have already been established in three of those lineages.4-7 However, there are no genetic tools available for Corallochytrea. We here report the development of stable transfection in the corallochytrean Corallochytrium limacisporum. Using these tools, we discern previously unknown biological features of C. limacisporum. In particular, we identify two different paths for cell division-binary fission and coenocytic growth-that reveal a non-linear life cycle. Additionally, we found that C. limacisporum is binucleate for most of its life cycle, and that, contrary to what happens in most eukaryotes, nuclear division is decoupled from cellular division. Moreover, its actin cytoskeleton shares characteristics with both fungal and animal cells. The establishment of these tools in C. limacisporum fills an important gap in the unicellular relatives of animals, opening up new avenues of research to elucidate the specific cellular changes that occurred in the evolution of animals.

RevDate: 2021-07-23

de Souza ID, Reis CF, Morais DAA, et al (2021)

Ancestry analysis indicates two different sets of essential genes in eukaryotic model species.

Functional & integrative genomics, 21(3-4):523-531.

Essential genes are so-called because they are crucial for organism perpetuation. Those genes are usually related to essential functions to cellular metabolism or multicellular homeostasis. Deleterious alterations on essential genes produce a spectrum of phenotypes in multicellular organisms. The effects range from the impairment of the fertilization process, disruption of fetal development, to loss of reproductive capacity. Essential genes are described as more evolutionarily conserved than non-essential genes. However, there is no consensus about the relationship between gene essentiality and gene age. Here, we identified essential genes in five model eukaryotic species (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) and estimate their evolutionary ancestry and their network properties. We observed that essential genes, on average, are older than other genes in all species investigated. The relationship of network properties and gene essentiality convey with previous findings, showing essential genes as important nodes in biological networks. As expected, we also observed that essential orthologs shared by the five species evaluated here are old. However, all the species evaluated here have a specific set of young essential genes not shared among them. Additionally, these two groups of essential genes are involved with distinct biological functions, suggesting two sets of essential genes: (i) a set of old essential genes common to all the evaluated species, regulating basic cellular functions, and (ii) a set of young essential genes exclusive to each species, which perform specific essential functions in each species.

RevDate: 2021-09-17
CmpDate: 2021-09-17

Bik HM (2021)

Just keep it simple? Benchmarking the accuracy of taxonomy assignment software in metabarcoding studies.

Molecular ecology resources, 21(7):2187-2189.

How do you put a name on an unknown piece of DNA? From microbes to mammals, high-throughput metabarcoding studies provide a more objective view of natural communities, overcoming many of the inherent limitations of traditional field surveys and microscopy-based observations (Deiner et al., 2017). Taxonomy assignment is one of the most critical aspects of any metabarcoding study, yet this important bioinformatics task is routinely overlooked. Biodiversity surveys and conservation efforts often depend on formal species inventories: the presence (or absence) of species, and the number of individuals reported across space and time. However, computational workflows applied in eukaryotic metabarcoding studies were originally developed for use with bacterial/archaeal data sets, where microbial researchers rely on one conserved locus (nuclear 16S rRNA) and have access to vast databases with good coverage across most prokaryotic lineages - a situation not mirrored in most multicellular taxa. In this issue of Molecular Ecology Resources, Hleap et al. (2021) carry out an extensive benchmarking exercise focused on taxonomy assignment strategies for eukaryotic metabarcoding studies utilizing the mitochondrial Cytochrome C oxidase I marker gene (COI). They assess the performance and accuracy of software tools representing diverse methodological approaches: from "simple" strategies based on sequence similarity and composition, to model-based phylogenetic and probabilistic classification tools. Contrary to popular assumptions, less complex approaches (BLAST and the QIIME2 feature classifier) consistently outperformed more sophisticated mathematical algorithms and were highly accurate for assigning taxonomy at higher levels (e.g. family). Lower-level assignments at the genus and species level still pose significant challenge for most existing algorithms, and sparse eukaryotic reference databases further limit software performance. This study illuminates current best practices for metabarcoding taxonomy assignments, and underscores the need for community-driven efforts to expand taxonomic and geographic representation in reference DNA barcode databases.

RevDate: 2021-07-29

Loidl J (2021)

Tetrahymena meiosis: Simple yet ingenious.

PLoS genetics, 17(7):e1009627.

The presence of meiosis, which is a conserved component of sexual reproduction, across organisms from all eukaryotic kingdoms, strongly argues that sex is a primordial feature of eukaryotes. However, extant meiotic structures and processes can vary considerably between organisms. The ciliated protist Tetrahymena thermophila, which diverged from animals, plants, and fungi early in evolution, provides one example of a rather unconventional meiosis. Tetrahymena has a simpler meiosis compared with most other organisms: It lacks both a synaptonemal complex (SC) and specialized meiotic machinery for chromosome cohesion and has a reduced capacity to regulate meiotic recombination. Despite this, it also features several unique mechanisms, including elongation of the nucleus to twice the cell length to promote homologous pairing and prevent recombination between sister chromatids. Comparison of the meiotic programs of Tetrahymena and higher multicellular organisms may reveal how extant meiosis evolved from proto-meiosis.

RevDate: 2021-07-17

Bestová H, Segrestin J, von Schwartzenberg K, et al (2021)

Biological scaling in green algae: the role of cell size and geometry.

Scientific reports, 11(1):14425.

The Metabolic Scaling Theory (MST), hypothesizes limitations of resource-transport networks in organisms and predicts their optimization into fractal-like structures. As a result, the relationship between population growth rate and body size should follow a cross-species universal quarter-power scaling. However, the universality of metabolic scaling has been challenged, particularly across transitions from bacteria to protists to multicellulars. The population growth rate of unicellulars should be constrained by external diffusion, ruling nutrient uptake, and internal diffusion, operating nutrient distribution. Both constraints intensify with increasing size possibly leading to shifting in the scaling exponent. We focused on unicellular algae Micrasterias. Large size and fractal-like morphology make this species a transitional group between unicellular and multicellular organisms in the evolution of allometry. We tested MST predictions using measurements of growth rate, size, and morphology-related traits. We showed that growth scaling of Micrasterias follows MST predictions, reflecting constraints by internal diffusion transport. Cell fractality and density decrease led to a proportional increase in surface area with body mass relaxing external constraints. Complex allometric optimization enables to maintain quarter-power scaling of population growth rate even with a large unicellular plan. Overall, our findings support fractality as a key factor in the evolution of biological scaling.

RevDate: 2021-07-24
CmpDate: 2021-07-20

Bernardes JP, John U, Woltermann N, et al (2021)

The evolution of convex trade-offs enables the transition towards multicellularity.

Nature communications, 12(1):4222.

The evolutionary transition towards multicellular life often involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. Theory predicts that germ soma differentiation is facilitated by a convex trade-off between survival and reproduction. However, this has never been tested and these transitions remain poorly understood at the ecological and genetic level. Here, we study the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirm that growth in cell groups is heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolve in all cell group isolates; these are linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.

RevDate: 2021-07-08

Vigneau J, M Borg (2021)

The epigenetic origin of life history transitions in plants and algae.

Plant reproduction [Epub ahead of print].

Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.

RevDate: 2021-07-24
CmpDate: 2021-07-13

Mitchell RN, Gernon TM, Cox GM, et al (2021)

Orbital forcing of ice sheets during snowball Earth.

Nature communications, 12(1):4187.

The snowball Earth hypothesis-that a runaway ice-albedo feedback can cause global glaciation-seeks to explain low-latitude glacial deposits, as well as geological anomalies including the re-emergence of banded iron formation and "cap" carbonates. One of the most significant challenges to snowball Earth has been sedimentological cyclicity that has been taken to imply more climate dynamics than expected when the ocean is completely covered in ice. However, recent climate models suggest that as atmospheric CO2 accumulates, the snowball climate system becomes sensitive to orbital forcing. Here we show the presence of nearly all Milankovitch (orbital) cycles preserved in stratified banded iron formation deposited during the Sturtian snowball Earth. These results provide evidence for orbitally forced cyclicity of global ice sheets that resulted in periodic oxidation of ferrous iron. Orbital glacial advance and retreat cycles provide a simple mechanism to reconcile both the sedimentary dynamics and the enigmatic survival of multicellular life during snowball Earth.

RevDate: 2021-08-09
CmpDate: 2021-07-06

Machado SR, TM Rodrigues (2021)

Apoplasmic barrier in the extrafloral nectary of Citharexylum myrianthum (Verbenaceae).

Planta, 254(2):19.

MAIN CONCLUSION: The cytological changes underlying the formation of an apoplasmic barrier in the multi-layered extrafloral nectaries of Citharexylum myrianthum are compatible with the synthesis, transport and deposition of suberin. In terms of ontogenesis and function, the intermediate layers of these nectaries are homologous with the stalks of nectar-secreting trichomes. Anticlinal cell wall impregnations are common in trichomatic nectaries and their functions as endodermis-like barriers have been discussed because of possible direct effects on the nectary physiology, mainly in the nectar secretion and resorption. However, the cytological events linked to nectary wall impregnations remain little explored. This study documents the ontogenesis and the fine structure of the EFN cells, and cytological events linked to the wall impregnations of multi-layered extrafloral nectaries (EFNs) in Citharexylum myrianthum Cham. (Verbenaceae). EFNs are patelliform, and differentiated into (a) a multicellular foot, which is compound in structure and vascularised with phloem strands, (b) a bi-layered intermediate region with thickened cell walls and (c) a single-layered secretory region with palisade-like cells. EFNs are protodermal in origin, starting with a single protodermal cell and ending with the complex, multi-layered structure. The cell wall impregnations first appear in the very young EFN and increase towards maturity. Lipid patches (assumed to be suberin) are deposited on the inner faces of the primary walls, first along the anticlinal walls and then extend to the periclinal walls. On both walls, plasmodesmata remain apparently intact during the maturation of the EFNs. In the peripheral cytoplasm there are abundant polymorphic plastids, well-developed Golgi bodies often close to rough endoplasmic reticulum profiles, mitochondria and polyribosomes. Cytological events linked to the wall impregnations are consistent with suberin synthesis, transport and deposition. Our findings offer new insights into the structure-properties of specialised nectary cell walls and so should contribute to our knowledge of the physiological and protective roles of this structure in nectar glands.

RevDate: 2021-07-05

Francés-Herrero E, Juárez-Barber E, Campo H, et al (2021)

Improved Models of Human Endometrial Organoids Based on Hydrogels from Decellularized Endometrium.

Journal of personalized medicine, 11(6):.

Organoids are three-dimensional (3D) multicellular tissue models that mimic their corresponding in vivo tissue. Successful efforts have derived organoids from primary tissues such as intestine, liver, and pancreas. For human uterine endometrium, the recent generation of 3D structures from primary endometrial cells is inspiring new studies of this important tissue using precise preclinical models. To improve on these 3D models, we decellularized pig endometrium containing tissue-specific extracellular matrix and generated a hydrogel (EndoECM). Next, we derived three lines of human endometrial organoids and cultured them in optimal and suboptimal culture expansion media with or without EndoECM (0.01 mg/mL) as a soluble additive. We characterized the resultant organoids to verify their epithelial origin, long-term chromosomal stability, and stemness properties. Lastly, we determined their proliferation potential under different culture conditions using proliferation rates and immunohistochemical methods. Our results demonstrate the importance of a bioactive environment for the maintenance and proliferation of human endometrial organoids.

RevDate: 2021-07-16
CmpDate: 2021-07-16

Cricrì G, Bellucci L, Montini G, et al (2021)

Urinary Extracellular Vesicles: Uncovering the Basis of the Pathological Processes in Kidney-Related Diseases.

International journal of molecular sciences, 22(12):.

Intercellular communication governs multicellular interactions in complex organisms. A variety of mechanisms exist through which cells can communicate, e.g., cell-cell contact, the release of paracrine/autocrine soluble molecules, or the transfer of extracellular vesicles (EVs). EVs are membrane-surrounded structures released by almost all cell types, acting both nearby and distant from their tissue/organ of origin. In the kidney, EVs are potent intercellular messengers released by all urinary system cells and are involved in cell crosstalk, contributing to physiology and pathogenesis. Moreover, urine is a reservoir of EVs coming from the circulation after crossing the glomerular filtration barrier-or originating in the kidney. Thus, urine represents an alternative source for biomarkers in kidney-related diseases, potentially replacing standard diagnostic techniques, including kidney biopsy. This review will present an overview of EV biogenesis and classification and the leading procedures for isolating EVs from body fluids. Furthermore, their role in intra-nephron communication and their use as a diagnostic tool for precision medicine in kidney-related disorders will be discussed.

RevDate: 2021-07-05

Mikuła A, Tomaszewicz W, Dziurka M, et al (2021)

The Origin of the Cyathea delgadii Sternb. Somatic Embryos Is Determined by the Developmental State of Donor Tissue and Mutual Balance of Selected Metabolites.

Cells, 10(6):.

Somatic embryogenesis is the formation of a plant embryo from a cell other than the product of gametic fusion. The need to recognize the determinants of somatic cell fate has prompted investigations on how endogenous factors of donor tissues can determine the pattern of somatic embryo origin. The undertaking of this study was enabled by the newly developed experimental system of somatic embryogenesis of the tree fern Cyathea delgadii Sternb., in which the embryos are produced in hormone-free medium. The contents of 89 endogenous compounds (such as sugars, auxins, cytokinins, gibberellins, stress-related hormones, phenolic acids, polyamines, and amino acids) and cytomorphological features were compared between two types of explants giving rise to somatic embryos of unicellular or multicellular origin. We found that a large content of maltose, 1-kestose, abscisic acid, biologically active gibberellins, and phenolic acids was characteristic for single-cell somatic embryo formation pattern. In contrast, high levels of starch, callose, kinetin riboside, arginine, and ethylene promoted their multicellular origin. Networks for visualization of the relations between studied compounds were constructed based on the data obtained from analyses of a Pearson correlation coefficient heatmap. Our findings present for the first time detailed features of donor tissue that can play an important role in the somatic-to-embryogenic transition and the somatic embryo origin.

RevDate: 2021-06-29

Ellis MA, Dalwadi MP, Ellis MJ, et al (2021)

A Systematically Reduced Mathematical Model for Organoid Expansion.

Frontiers in bioengineering and biotechnology, 9:670186.

Organoids are three-dimensional multicellular tissue constructs. When cultured in vitro, they recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine, demand has increased for low-cost and efficient methods of producing them in a reproducible manner and at scale. Here we focus on a bioreactor technology for organoid production, which exploits fluid flow to enhance mass transport to and from the organoids. To ensure large numbers of organoids can be grown within the bioreactor in a reproducible manner, nutrient delivery to, and waste product removal from, the organoids must be carefully controlled. We develop a continuum mathematical model to investigate how mass transport within the bioreactor depends on the inlet flow rate and cell seeding density, focusing on the transport of two key metabolites: glucose and lactate. We exploit the thin geometry of the bioreactor to systematically simplify our model. This significantly reduces the computational cost of generating model solutions, and provides insight into the dominant mass transport mechanisms. We test the validity of the reduced models by comparison with simulations of the full model. We then exploit our reduced mathematical model to determine, for a given inlet flow rate and cell seeding density, the evolution of the spatial metabolite distributions throughout the bioreactor. To assess the bioreactor transport characteristics, we introduce metrics quantifying glucose conversion (the ratio between the total amounts of consumed and supplied glucose), the maximum lactate concentration, the proportion of the bioreactor with intolerable lactate concentrations, and the time when intolerable lactate concentrations are first experienced within the bioreactor. We determine the dependence of these metrics on organoid-line characteristics such as proliferation rate and rate of glucose consumption per cell. Finally, for a given organoid line, we determine how the distribution of metabolites and the associated metrics depend on the inlet flow rate. Insights from this study can be used to inform bioreactor operating conditions, ultimately improving the quality and number of bioreactor-expanded organoids.

RevDate: 2021-06-22

Martínez-Reina J, Calvo-Gallego JL, P Pivonka (2021)

Combined Effects of Exercise and Denosumab Treatment on Local Failure in Post-menopausal Osteoporosis-Insights from Bone Remodelling Simulations Accounting for Mineralisation and Damage.

Frontiers in bioengineering and biotechnology, 9:635056.

Denosumab has been shown to increase bone mineral density (BMD) and reduce the fracture risk in patients with post-menopausal osteoporosis (PMO). Increase in BMD is linked with an increase in bone matrix mineralisation due to suppression of bone remodelling. However, denosumab anti-resorptive action also leads to an increase in fatigue microdamage, which may ultimately lead to an increased fracture risk. A novel mechanobiological model of bone remodelling was developed to investigate how these counter-acting mechanisms are affected both by exercise and long-term denosumab treatment. This model incorporates Frost's mechanostat feedback, a bone mineralisation algorithm and an evolution law for microdamage accumulation. Mechanical disuse and microdamage were assumed to stimulate RANKL production, which modulates activation frequency of basic multicellular units in bone remodelling. This mechanical feedback mechanism controls removal of excess bone mass and microdamage. Furthermore, a novel measure of bone local failure due to instantaneous overloading was developed. Numerical simulations indicate that trabecular bone volume fraction and bone matrix damage are determined by the respective bone turnover and homeostatic loading conditions. PMO patients treated with the currently WHO-approved dose of denosumab (60 mg administrated every 6 months) exhibit increased BMD, increased bone ash fraction and damage. In untreated patients, BMD will significantly decrease, as will ash fraction; while damage will increase. The model predicted that, depending on the time elapsed between the onset of PMO and the beginning of treatment, BMD slowly converges to the same steady-state value, while damage is low in patients treated soon after the onset of the disease and high in patients having PMO for a longer period. The simulations show that late treatment PMO patients have a significantly higher risk of local failure compared to patients that are treated soon after the onset of the disease. Furthermore, overloading resulted in an increase of BMD, but also in a faster increase of damage, which may consequently promote the risk of fracture, specially in late treatment scenarios. In case of mechanical disuse, the model predicted reduced BMD gains due to denosumab, while no significant change in damage occurred, thus leading to an increased risk of local failure compared to habitual loading.

RevDate: 2021-06-22

Sánchez-Romero MA, J Casadesús (2021)

Waddington's Landscapes in the Bacterial World.

Frontiers in microbiology, 12:685080.

Conrad Waddington's epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Shang-Guan XY, Cai YJ, Xu HZ, et al (2021)

A C-type lectin with a single CRD from Onychostoma macrolepis mediates immune recognition against bacterial challenge.

Fish & shellfish immunology, 115:160-170.

C-type lectins (CTL) are a large group of pattern-recognition proteins and to play important roles in glycoprotein metabolism, multicellular integration, and immunity. Based on their overall domain structure, they can be classified as different groups that possess different physiological functions. A typical C-type lectin (named as OmLec1) was identified from the fish, Onychostoma macrolepis, an important cultured fish in China. Open reading frame of OmLec1 contains a 570 bp, encoding a protein of 189 amino acids that includes a signal peptide and a single carbohydrate-recognition domain. The phylogenetic analysis showed that OmLec1 could be grouped with C-type lectin from other fish. OmLec1 was expressed in all the tissues in our study, and the expression level was highest in liver. And its relative expression levels were significantly upregulated following infection with Aeromonas hydrophila. The recombinant OmLec1 protein (rOmLec1) could agglutinate some Gram-negative bacteria and Gram-positive bacteria in vitro in the presence of Ca2+, showing a typical Ca2+-dependent carbohydrate-binding protein. Furthermore, rOmLec1 purified from E. coli BL21 (DE3), strongly bound to LPS and PGN, as well as all tested bacteria in a Ca2+-dependent manner. These results indicate that OmLec1 plays a central role in the innate immune response and as a pattern recognition receptor that recognizes diverse pathogens among O. macrolepis.

RevDate: 2021-06-19

Caipa Garcia AL, Arlt VM, DH Phillips (2021)

Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis.

Mutagenesis pii:6306522 [Epub ahead of print].

Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared to organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefited the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.

RevDate: 2021-06-19

Kreider JJ, Pen I, BH Kramer (2021)

Antagonistic pleiotropy and the evolution of extraordinary lifespans in eusocial organisms.

Evolution letters, 5(3):178-186.

Queens of eusocial species live extraordinarily long compared to their workers. So far, it has been argued that these lifespan divergences are readily explained by the classical evolutionary theory of ageing. As workers predominantly perform risky tasks, such as foraging and nest defense, and queens stay in the well-protected nests, selection against harmful genetic mutations expressed in old age should be weaker in workers than in queens due to caste differences in extrinsic mortality risk, and thus, lead to the evolution of longer queen and shorter worker lifespans. However, these arguments have not been supported by formal models. Here, we present a model for the evolution of caste-specific ageing in social insects, based on Williams' antagonistic pleiotropy theory of ageing. In individual-based simulations, we assume that mutations with antagonistic fitness effects can act within castes, that is, mutations in early life are accompanied by an antagonistic effect acting in later life, or between castes, where antagonistic effects emerge due to caste antagonism or indirect genetic effects between castes. In monogynous social insect species with sterile workers, large lifespan divergences between castes evolved under all different scenarios of antagonistic effects, but regardless of the degree of caste-specific extrinsic mortality. Mutations with antagonistic fitness effects within castes reduced lifespans of both castes, while mutations with between-caste antagonistic effects decreased worker lifespans more than queen lifespans, and consequently increased lifespan divergences. Our results challenge the central explanatory role of extrinsic mortality for caste-specific ageing in eusocial organisms and suggest that antagonistic pleiotropy affects castes differently due to reproductive monopolization by queens, hence, reproductive division of labor. Finally, these findings provide new insights into the evolution of tissue-specific ageing in multicellular organisms in general.

RevDate: 2021-08-04

Puzakov MV, Puzakova LV, Cheresiz SV, et al (2021)

The IS630/Tc1/mariner transposons in three ctenophore genomes.

Molecular phylogenetics and evolution, 163:107231.

Transposable elements (TEs) exert a significant effect on the structure and functioning of the genomes and also serve as a source of the new genes. The study of the TE diversity and evolution in different taxa is indispensable for the fundamental understanding of their roles in the genomes. IS630/Tc1/mariner (ITm) transposable elements represent the most prevalent and diverse group of DNA transposons. In this work, we studied the diversity, evolutionary dynamics and the phylogenetic relationships of the ITm transposons found in three ctenophore species: Mnemiopsis leidyi, Pleurobrachia bachei, Beroe ovata. We identified 29 ITm transposons, seven of which possess the terminal inverted repeats (TIRs) and an intact transposase, and, thus, are, presumably, active. Four other ITm transposons have the features of domesticated TEs. According to the results of the phylogenetic analysis, the ITm transposons of the ctenophores represent five groups - MLE/DD34D, TLE/DD34-38E, mosquito/DD37E, Visiror/DD41D and pogo/DDxD. Pogo/DDxD superfamily turnes out to be the most diverse and prevalent, since it accounts for more than 40% of the TEs identified. The data obtained in this research will fill the gap of knowledge of the diversity and evolution of the ITm transposons in the multicellular genomes and will lay the ground for the study of the TE effects on the evolution of the ctenophores.

RevDate: 2021-09-24

Opazo JC, Vandewege MW, Gutierrez J, et al (2021)

Independent duplications of the Golgi phosphoprotein 3 oncogene in birds.

Scientific reports, 11(1):12483.

Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.

RevDate: 2021-08-10

Miguel-Tomé S, RR Llinás (2021)

Broadening the definition of a nervous system to better understand the evolution of plants and animals.

Plant signaling & behavior, 16(10):1927562.

Most textbook definitions recognize only animals as having nervous systems. However, for the past couple decades, botanists have been meticulously studying long-distance signaling systems in plants, and some researchers have stated that plants have a simple nervous system. Thus, an academic conflict has emerged between those who defend and those who deny the existence of a nervous system in plants. This article analyses that debate, and we propose an alternative to answering yes or no: broadening the definition of a nervous system to include plants. We claim that a definition broader than the current one, which is based only on a phylogenetic viewpoint, would be helpful in obtaining a deeper understanding of how evolution has driven the features of signal generation, transmission and processing in multicellular beings. Also, we propose two possible definitions and exemplify how broader a definition allows for new viewpoints on the evolution of plants, animals and the nervous system.

RevDate: 2021-07-14

Aevarsson A, Kaczorowska AK, Adalsteinsson BT, et al (2021)

Going to extremes - a metagenomic journey into the dark matter of life.

FEMS microbiology letters, 368(12):.

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.

RevDate: 2021-06-11

Márquez-Zacarías P, Conlin PL, Tong K, et al (2021)

Why have aggregative multicellular organisms stayed simple?.

Current genetics [Epub ahead of print].

Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.

RevDate: 2021-08-05
CmpDate: 2021-08-05

Amaral-Zettler LA, Zettler ER, Mincer TJ, et al (2021)

Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point?.

Water research, 201:117289.

Biofouling causing an increase in plastic density and sinking is one of the hypotheses to account for the unexpectedly low amount of buoyant plastic debris encountered at the ocean surface. Field surveys show that polyethylene and polypropylene, the two most abundant buoyant plastics, both occur below the surface and in sediments, and experimental studies confirm that biofouling can cause both of these plastics to sink. However, studies quantifying the actual density of fouled plastics are rare, despite the fact that density will determine the transport and eventual fate of plastic in the ocean. Here we investigated the role of microbial biofilms in sinking of polyethylene microplastic and quantified the density changes natural biofouling communities cause in the coastal waters of the North Sea. Molecular data confirmed the variety of bacteria and eukaryotes (including animals and other multicellular organisms) colonizing the plastic over time. Fouling communities increased the density of plastic and caused sinking, and the plastic remained negatively buoyant even during the winter with lower growth rates. Relative surface area alone, however, did not predict whether a plastic piece sank. Due to patchy colonization, fragmentation of sinking pieces may result in smaller pieces regaining buoyancy and returning to the surface. Our results suggest that primarily multicellular organisms cause sinking of plastic pieces with surface area to volume ratios (SA:V) below 100 (generally pieces above a couple hundred micrometers in size), and that this is a "tipping point" at which microbial biofilms become the key players causing sinking of smaller pieces with higher SA:V ratios, including most fibers that are too small for larger (multicellular) organisms to colonize.

RevDate: 2021-06-14

Torday JS (2021)

Cellular evolution of language.

The evolutionary origin of language remains unknown despite many efforts to determine the origin of this signature human trait. Based on epigenetic inheritance, the current article hypothesizes that language evolved from cell-cell communication as the basis for generating structure and function embryologically and phylogenetically, as did all physiologic traits. Beginning with lipids forming the first micelle, a vertical integration of the evolved properties of the cell, from multicellular organisms to the introduction of cholesterol into the cell membrane, to the evolution of the peroxisome, the water-land transition and duplication of the βAdrenergic Receptor, the evolution of endothermy, leading to bipedalism, freeing the forelimbs for toolmaking and language, selection pressure for myelinization of the central nervous system to facilitate calcium flux, bespeaks human expression, culminating in the evolution of civilization. This process is epitomized by the Area of Broca as the structural-functional site for both motor control and language formation. The mechanistic interrelationship between motor control and language formation is underscored by the role of FoxP2 gene expression in both bipedalism and language. The effect of endothermy on bipedalism, freeing the forelimbs for toolmaking and language as the vertical integration from Cosmology to Physiology as the basis for language bespeaks human expression.

RevDate: 2021-08-03

Li Y, Shen XX, Evans B, et al (2021)

Rooting the animal tree of life.

Molecular biology and evolution pii:6294409 [Epub ahead of print].

Identifying our most distant animal relatives has emerged as one of the most challenging problems in phylogenetics. This debate has major implications for our understanding of the origin of multicellular animals and of the earliest events in animal evolution, including the origin of the nervous system. Some analyses identify sponges as our most distant animal relatives (Porifera-sister hypothesis), and others identify comb jellies (Ctenophora-sister hypothesis). These analyses vary in many respects, making it difficult to interpret previous tests of these hypotheses. To gain insight into why different studies yield different results, an important next step in the ongoing debate, we systematically test these hypotheses by synthesizing 15 previous phylogenomic studies and performing new standardized analyses under consistent conditions with additional models. We find that Ctenophora-sister is recovered across the full range of examined conditions, and Porifera-sister is recovered in some analyses under narrow conditions when most outgroups are excluded and site-heterogeneous CAT models are used. We additionally find that the number of categories in site-heterogenous models is sufficient to explain the Porifera-sister results. Furthermore, our cross-validation analyses show CAT models that recover Porifera-sister have hundreds of additional categories and fail to fit significantly better than site-heterogeneous models with far fewer categories. Systematic and standardized testing of diverse phylogenetic models suggests that we should be skeptical of Porifera-sister results both because they are recovered under such narrow conditions and because the models in these conditions fit the data no better than other models that recover Ctenophora-sister.

RevDate: 2021-07-28

Kang S, Tice AK, Stairs CW, et al (2021)

The integrin-mediated adhesive complex in the ancestor of animals, fungi, and amoebae.

Current biology : CB, 31(14):3073-3085.e3.

Integrins are transmembrane receptors that activate signal transduction pathways upon extracellular matrix binding. The integrin-mediated adhesive complex (IMAC) mediates various cell physiological processes. Although the IMAC was thought to be specific to animals, in the past ten years these complexes were discovered in other lineages of Obazoa, the group containing animals, fungi, and several microbial eukaryotes. Very recently, many genomes and transcriptomes from Amoebozoa (the eukaryotic supergroup sister to Obazoa), other obazoans, orphan protist lineages, and the eukaryotes' closest prokaryotic relatives, have become available. To increase the resolution of where and when IMAC proteins exist and have emerged, we surveyed these newly available genomes and transcriptomes for the presence of IMAC proteins. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought and that co-option of this apparently ancient protein complex was key to the emergence of animal-type multicellularity. The role of the IMACs in amoebozoans is unknown, but they play critical adhesive roles in at least some unicellular organisms.

RevDate: 2021-08-12
CmpDate: 2021-08-12

Badis Y, Scornet D, Harada M, et al (2021)

Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus.

The New phytologist, 231(5):2077-2091.

Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here, we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.

RevDate: 2021-06-15

Elders H, F Hennicke (2021)

The Pacific Tree-Parasitic Fungus Cyclocybe parasitica Exhibits Monokaryotic Fruiting, Showing Phenotypes Known from Bracket Fungi and from Cyclocybe aegerita.

Journal of fungi (Basel, Switzerland), 7(5):.

Cyclocybe parasitica is a wood-destroying parasitic edible mushroom growing on diverse broad-leafed trees in New Zealand and other Pacific areas. Recent molecular systematics of European Cyclocybe aegerita, a newly delimited Asian phylum and of related species, corroborated the distinction of the chiefly saprobic cultivated edible mushroom C. aegerita from C. parasitica. Here, we show that C. parasitica exhibits a morpho-physiological trait characteristic to its European cousin, i.e., monokaryotic fruiting sensu stricto (basidiome formation without mating). Monokaryotic fruiting structures formed by C. parasitica ICMP 11668-derived monokaryons were categorized into four phenotypes. One of them displays ulcer-like structures previously reported from bracket fungi. Histology of dikaryotic and monokaryotic C. parasitica fruiting structures revealed anatomical commonalities and differences between them, and towards monokaryotic fruiting structures of C. aegerita. Mating experiments with C. parasitica strains representative of each fruiting phenotype identified compatible sibling monokaryons. Given reports on hypothetically monokaryotic basidiome field populations of 'C. aegerita sensu lato', it seems worthwhile to prospectively investigate whether monokaryotic fruiting s.str. occurs in nature. Sampling from such populations including karyotyping, comparative -omics, and competition assays may help to answer this question and provide evidence whether this trait may confer competitive advantages to a species capable of it.

RevDate: 2021-09-17

Miller WB, Enguita FJ, AL Leitão (2021)

Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution.

Cells, 10(5):.

Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.

RevDate: 2021-09-09

Grandhi TSP, To J, Romero A, et al (2021)

High-throughput CRISPR-mediated 3D enrichment platform for functional interrogation of chemotherapeutic resistance.

Biotechnology and bioengineering, 118(8):3187-3199.

Cancer is a disease of somatic mutations. These cellular mutations compete to dominate their microenvironment and dictate the disease outcome. While a therapeutic approach to target-specific oncogenic driver mutations helps to manage the disease, subsequent molecular evolution of tumor cells threatens to overtake therapeutic progress. There is a need for rapid, high-throughput, unbiased in vitro discovery screening platforms that capture the native complexities of the tumor and rapidly identify mutations that confer chemotherapeutic drug resistance. Taking the example of the CDK4/6 inhibitor (CDK4/6i) class of drugs, we show that the pooled in vitro CRISPR screening platform enables rapid discovery of drug resistance mutations in a three-dimensional (3D) setting. Gene-edited cancer cell clones assembled into an organotypic multicellular tumor spheroid (MCTS), exposed to CDK4/6i caused selection and enrichment of the most drug-resistant phenotypes, detectable by next-gen sequencing after a span of 28 days. The platform was sufficiently sensitive to enrich for even a single drug-resistant cell within a large, drug-responsive complex 3D tumor spheroid. The genome-wide 3D CRISPR-mediated knockout screen (>18,000 genes) identified several genes whose disruptions conferred resistance to CDK4/6i. Furthermore, multiple novel candidate genes were identified as top hits only in the microphysiological 3D enrichment assay platform and not the conventional 2D assays. Taken together, these findings suggest that including phenotypic 3D resistance profiling in decision trees could improve discovery and reconfirmation of drug resistance mechanisms and afford a platform for exploring noncell autonomous interactions, selection pressures, and clonal competition.

RevDate: 2021-08-20

Sheng Y, Pan B, Wei F, et al (2021)

Case Study of the Response of N6-Methyladenine DNA Modification to Environmental Stressors in the Unicellular Eukaryote Tetrahymena thermophila.

mSphere, 6(3):e0120820.

Rediscovered as a potential epigenetic mark, N6-methyladenine DNA modification (6mA) was recently reported to be sensitive to environmental stressors in several multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive. Here, we characterized the dynamic changes of 6mA under starvation in the unicellular model organism Tetrahymena thermophila. Single-molecule, real-time (SMRT) sequencing reveals that DNA 6mA levels in starved cells are significantly reduced, especially symmetric 6mA, compared to those in vegetatively growing cells. Despite a global 6mA reduction, the fraction of asymmetric 6mA with a high methylation level was increased, which might be the driving force for stronger nucleosome positioning in starved cells. Starvation affects expression of many metabolism-related genes, the expression level change of which is associated with the amount of 6mA change, thereby linking 6mA with global transcription and starvation adaptation. The reduction of symmetric 6mA and the increase of asymmetric 6mA coincide with the downregulation of AMT1 and upregulation of AMT2 and AMT5, which are supposedly the MT-A70 methyltransferases required for symmetric and asymmetric 6mA, respectively. These results demonstrated that a regulated 6mA response to environmental cues is evolutionarily conserved in eukaryotes. IMPORTANCE Increasing evidence indicated that 6mA could respond to environmental stressors in multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive. In the present work, we characterized the dynamic changes of 6mA under starvation in the unicellular model organism Tetrahymena thermophila. Our results provide insights into how Tetrahymena fine-tunes its 6mA level and composition upon starvation, suggesting that a regulated 6mA response to environmental cues is evolutionarily conserved in eukaryotes.

RevDate: 2021-08-16
CmpDate: 2021-08-16

Kumari P, Dahiya P, Livanos P, et al (2021)

IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation.

Nature plants, 7(6):739-747.

Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.

RevDate: 2021-06-10

Jiang S, Li H, Zeng Q, et al (2021)

The Dynamic Counterbalance of RAC1-YAP/OB-Cadherin Coordinates Tissue Spreading with Stem Cell Fate Patterning.

Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(10):2004000.

Tissue spreading represents a key morphogenetic feature of embryonic development and regenerative medicine. However, how molecular signaling orchestrates the spreading dynamics and cell fate commitment of multicellular tissue remains poorly understood. Here, it is demonstrated that the dynamic counterbalance between RAC1-YAP and OB-cadherin plays a key role in coordinating heterogeneous spreading dynamics with distinct cell fate patterning during collective spreading. The spatiotemporal evolution of individual stem cells in spheroids during collective spreading is mapped. Time-lapse cell migratory trajectory analysis combined with in situ cellular biomechanics detection reveal heterogeneous patterns of collective spreading characteristics, where the cells at the periphery are faster, stiffer, and directional compared to those in the center of the spheroid. Single-cell sequencing shows that the divergent spreading result in distinct cell fate patterning, where differentiation, proliferation, and metabolism are enhanced in peripheral cells. Molecular analysis demonstrates that the increased expression of RAC1-YAP rather than OB-cadherin facilitated cell spreading and induced differentiation, and vice versa. The in vivo wound healing experiment confirms the functional role of RAC1-YAP signaling in tissue spreading. These findings shed light on the mechanism of tissue morphogenesis in the progression of development and provide a practical strategy for desirable regenerative therapies.

RevDate: 2021-09-01
CmpDate: 2021-09-01

Schneider P, SE Reece (2021)

The private life of malaria parasites: Strategies for sexual reproduction.

Molecular and biochemical parasitology, 244:111375.

Malaria parasites exhibit a complex lifecycle, requiring extensive asexual replication in the liver and blood of the vertebrate host, and in the haemocoel of the insect vector. Yet, they must also undergo a single round of sexual reproduction, which occurs in the vector's midgut upon uptake of a blood meal. Sexual reproduction is obligate for infection of the vector and thus, is essential for onwards transmission to new hosts. Sex in malaria parasites involves several bottlenecks in parasite number, making the stages involved attractive targets for blocking disease transmission. Malaria parasites have evolved a suite of adaptations ("strategies") to maximise the success of sexual reproduction and transmission, which could undermine transmission-blocking interventions. Yet, understanding parasite strategies may also reveal novel opportunities for such interventions. Here, we outline how evolutionary and ecological theories, developed to explain reproductive strategies in multicellular taxa, can be applied to explain two reproductive strategies (conversion rate and sex ratio) expressed by malaria parasites within the vertebrate host.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )