Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Origin of Multicellular Eukaryotes

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 22 Feb 2024 at 01:51 Created: 

Origin of Multicellular Eukaryotes

Created with PubMed® Query: ( (origin OR evolution) AND (eukaryotes OR eukaryota) AND (multicelluarity OR multicellular) NOT 33634751[PMID] ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-02-21

Mikhailovsky GE (2024)

Life, its definition, origin, evolution, and four-dimensional hierarchical structure.

Bio Systems pii:S0303-2647(24)00043-1 [Epub ahead of print].

The main unique features of biological systems are reviewed, and four necessary and sufficient attributes of life are formulated, based on the ideas of Ervin Bauer. The possibility of the occurrence of each of these attributes during the origin of life is analyzed. As a result, different scenarios for the origin of life are presented, with all their pros and cons. Next, the mainstream of biological evolution is discussed, considering it as a special case of general complexification, and structuredness is defined as a quantitative measure of structural complexity. By introducing the concepts of post-dissipative structure and ratcheting process based on "frozen" patterns, their role in the generation of biological structures underlying biological evolution is demonstrated. Furthermore, it is proposed that all living things can be divided into micro- (unicellular) and macro- (multicellular) creatures, which differ from each other even more radically than the difference between prokaryotes and unicellular eukaryotes. Then the fifth, sufficient, but not necessary attribute of life, hierarchicality, is formulated, which is fully applicable only to macrolife. It is also shown that living organisms are primarily chemodynamic rather than thermodynamic systems, and three basic laws of biochemodynamics are formulated. Finally, fifteen basic features of living beings, grouped into four basic blocks, are summarized.

RevDate: 2024-02-20

Edelbroek B, Kjellin J, Biryukova I, et al (2024)

Evolution of microRNAs in Amoebozoa and implications for the origin of multicellularity.

Nucleic acids research pii:7611030 [Epub ahead of print].

MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.

RevDate: 2024-02-14
CmpDate: 2024-02-14

Zhang C, Zhu Z, Jiang A, et al (2023)

Genome-wide identification of the mitogen-activated kinase gene family from Limonium bicolor and functional characterization of LbMAPK2 under salt stress.

BMC plant biology, 23(1):565.

BACKGROUND: Mitogen-activated protein kinases (MAPKs) are ubiquitous signal transduction components in eukaryotes. In plants, MAPKs play an essential role in growth and development, phytohormone regulation, and abiotic stress responses. The typical recretohalophyte Limonium bicolor (Bunge) Kuntze has multicellular salt glands on its stems and leaves; these glands secrete excess salt ions from its cells to mitigate salt damage. The number, type, and biological function of L. bicolor MAPK genes are unknown.

RESULTS: We identified 20 candidate L. bicolor MAPK genes, which can be divided into four groups. Of these 20 genes, 17 were anchored to 7 chromosomes, while LbMAPK18, LbMAPK19, and LbMAPK20 mapped to distinct scaffolds. Structure analysis showed that the predicted protein LbMAPK19 contains the special structural motif TNY in its activation loop, whereas the other LbMAPK members harbor the conserved TEY or TDY motif. The promoters of most LbMAPK genes carry cis-acting elements related to growth and development, phytohormones, and abiotic stress. LbMAPK1, LbMAPK2, LbMAPK16, and LbMAPK20 are highly expressed in the early stages of salt gland development, whereas LbMAPK4, LbMAPK5, LbMAPK6, LbMAPK7, LbMAPK11, LbMAPK14, and LbMAPK15 are highly expressed during the late stages. These 20 LbMAPK genes all responded to salt, drought and ABA stress. We explored the function of LbMAPK2 via virus-induced gene silencing: knocking down LbMAPK2 transcript levels in L. bicolor resulted in fewer salt glands, lower salt secretion ability from leaves, and decreased salt tolerance. The expression of several genes [LbTTG1 (TRANSPARENT TESTA OF GL1), LbCPC (CAPRICE), and LbGL2 (GLABRA2)] related to salt gland development was significantly upregulated in LbMAPK2 knockdown lines, while the expression of LbEGL3 (ENHANCER OF GL3) was significantly downregulated.

CONCLUSION: These findings increase our understanding of the LbMAPK gene family and will be useful for in-depth studies of the molecular mechanisms behind salt gland development and salt secretion in L. bicolor. In addition, our analysis lays the foundation for exploring the biological functions of MAPKs in an extreme halophyte.

RevDate: 2024-02-08
CmpDate: 2024-02-08

Donoghue PCJ, JW Clark (2024)

Plant evolution: Streptophyte multicellularity, ecology, and the acclimatisation of plants to life on land.

Current biology : CB, 34(3):R86-R89.

Land plants are celebrated as one of the three great instances of complex multicellularity, but new phylogenomic and phenotypic analyses are revealing deep evolutionary roots of multicellularity among algal relatives, prompting questions about the causal basis of this major evolutionary transition.

RevDate: 2024-02-08
CmpDate: 2024-02-08

Bierenbroodspot MJ, Darienko T, de Vries S, et al (2024)

Phylogenomic insights into the first multicellular streptophyte.

Current biology : CB, 34(3):670-681.e7.

Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).[1][,][2][,][3][,][4] Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.[5][,][6] Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.

RevDate: 2024-02-08
CmpDate: 2024-02-08

Corrales J, Ramos-Alonso L, González-Sabín J, et al (2024)

Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole.

Microbiology spectrum, 12(2):e0259423.

Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.

RevDate: 2024-02-05

Bingham EP, WC Ratcliff (2024)

A nonadaptive explanation for macroevolutionary patterns in the evolution of complex multicellularity.

Proceedings of the National Academy of Sciences of the United States of America, 121(7):e2319840121.

"Complex multicellularity," conventionally defined as large organisms with many specialized cell types, has evolved five times independently in eukaryotes, but never within prokaryotes. A number of hypotheses have been proposed to explain this phenomenon, most of which posit that eukaryotes evolved key traits (e.g., dynamic cytoskeletons, alternative mechanisms of gene regulation, or subcellular compartments) which were a necessary prerequisite for the evolution of complex multicellularity. Here, we propose an alternative, nonadaptive hypothesis for this broad macroevolutionary pattern. By binning cells into groups with finite genetic bottlenecks between generations, the evolution of multicellularity greatly reduces the effective population size (Ne) of cellular populations, increasing the role of genetic drift in evolutionary change. While both prokaryotes and eukaryotes experience this phenomenon, they have opposite responses to drift: eukaryotes tend to undergo genomic expansion, providing additional raw genetic material for subsequent multicellular innovation, while prokaryotes generally face genomic erosion. Taken together, we hypothesize that these idiosyncratic lineage-specific evolutionary dynamics play a fundamental role in the long-term divergent evolution of complex multicellularity across the tree of life.

RevDate: 2024-02-05
CmpDate: 2024-02-05

Siljestam M, I Martinossi-Allibert (2024)

Anisogamy Does Not Always Promote the Evolution of Mating Competition Traits in Males.

The American naturalist, 203(2):230-253.

AbstractAnisogamy has evolved in most sexually reproducing multicellular organisms allowing the definition of male and female sexes, producing small and large gametes. Anisogamy, as the initial sexual dimorphism, is a good starting point to understand the evolution of further sexual dimorphisms. For instance, it is generally accepted that anisogamy sets the stage for more intense mating competition in males than in females. We argue that this idea stems from a restrictive assumption on the conditions under which anisogamy evolved in the first place: the absence of sperm limitation (assuming that all female gametes are fertilized). Here, we relax this assumption and present a model that considers the coevolution of gamete size with a mating competition trait, starting in a population without dimorphism. We vary gamete density to produce different scenarios of gamete limitation. We show that while at high gamete density the evolution of anisogamy always results in male investment in competition, gamete limitation at intermediate gamete densities allows for either females or males to invest more into mating competition. Our results thus suggest that anisogamy does not always promote mating competition among males. The conditions under which anisogamy evolves matter, as does the competition trait.

RevDate: 2024-02-01
CmpDate: 2024-02-01

Dadras N, Hasanpur K, Razeghi J, et al (2024)

Different transcription of novel, functional long non-coding RNA genes by UV-B in green algae, Volvox carteri.

International microbiology : the official journal of the Spanish Society for Microbiology, 27(1):213-225.

Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.

RevDate: 2024-01-29
CmpDate: 2024-01-29

Pennisi E (2024)

Tiny fossils upend timeline of multicellular life.

Science (New York, N.Y.), 383(6681):352-353.

Eukaryotes organized into multicellular forms 1.6 billion years ago.

RevDate: 2024-01-26
CmpDate: 2024-01-26

Chapman H, Hsiung KC, Rawlinson I, et al (2024)

Colony level fitness analysis identifies a trade-off between population growth rate and dauer yield in Caenorhabditis elegans.

BMC ecology and evolution, 24(1):13.

BACKGROUND: In the evolution from unicellular to multicellular life forms, natural selection favored reduced cell proliferation and even programmed cell death if this increased organismal fitness. Could reduced individual fertility or even programmed organismal death similarly increase the fitness of colonies of closely-related metazoan organisms? This possibility is at least consistent with evolutionary theory, and has been supported by computer modelling. Caenorhabditis elegans has a boom and bust life history, where populations of nematodes that are sometimes near clonal subsist on and consume food patches, and then generate dauer larva dispersal propagules. A recent study of an in silico model of C. elegans predicted that one determinant of colony fitness (measured as dauer yield) is minimization of futile food consumption (i.e. that which does not contribute to dauer yield). One way to achieve this is to optimize colony population structure by adjustment of individual fertility.

RESULTS: Here we describe development of a C. elegans colony fitness assay, and its use to investigate the effect of altering population structure on colony fitness after population bust. Fitness metrics measured were speed of dauer production, and dauer yield, an indirect measure of efficiency of resource utilization (i.e. conversion of food into dauers). We find that with increasing founder number, speed of dauer production increases (due to earlier bust) but dauer yield rises and falls. In addition, some dauer recovery was detected soon after the post-colony bust peak of dauer yield, suggesting possible bet hedging among dauers.

CONCLUSIONS: These results suggest the presence of a fitness trade-off at colony level between speed and efficiency of resource utilization in C. elegans. They also provide indirect evidence that population structure is a determinant of colony level fitness, potentially by affecting level of futile food consumption.

RevDate: 2024-01-24
CmpDate: 2024-01-24

Gazzellone A, E Sangiorgi (2024)

From Churchill to Elephants: The Role of Protective Genes against Cancer.

Genes, 15(1): pii:genes15010118.

Richard Peto's paradox, first described in 1975 from an epidemiological perspective, established an inverse correlation between the probability of developing cancer in multicellular organisms and the number of cells. Larger animals exhibit fewer tumors compared to smaller ones, though exceptions exist. Mice are more susceptible to cancer than humans, while elephants and whales demonstrate significantly lower cancer prevalence rates than humans. How nature and evolution have addressed the issue of cancer in the animal kingdom remains largely unexplored. In the field of medicine, much attention has been devoted to cancer-predisposing genes, as they offer avenues for intervention, including blocking, downregulating, early diagnosis, and targeted treatment. Predisposing genes also tend to manifest clinically earlier and more aggressively, making them easier to identify. However, despite significant strides in modern medicine, the role of protective genes lags behind. Identifying genes with a mild predisposing effect poses a significant challenge. Consequently, comprehending the protective function conferred by genes becomes even more elusive, and their very existence is subject to questioning. While the role of variable expressivity and penetrance defects of the same variant in a family is well-documented for many hereditary cancer syndromes, attempts to delineate the function of protective/modifier alleles have been restricted to a few instances. In this review, we endeavor to elucidate the role of protective genes observed in the animal kingdom, within certain genetic syndromes that appear to act as cancer-resistant/repressor alleles. Additionally, we explore the role of protective alleles in conditions predisposing to cancer. The ultimate goal is to discern why individuals, like Winston Churchill, managed to live up to 91 years of age, despite engaging in minimal physical activity, consuming large quantities of alcohol daily, and not abstaining from smoking.

RevDate: 2024-01-22
CmpDate: 2024-01-22

Sarabia-Sánchez MA, M Robles-Flores (2024)

WNT Signaling in Stem Cells: A Look into the Non-Canonical Pathway.

Stem cell reviews and reports, 20(1):52-66.

Tissue homeostasis is crucial for multicellular organisms, wherein the loss of cells is compensated by generating new cells with the capacity for proliferation and differentiation. At the origin of these populations are the stem cells, which have the potential to give rise to cells with both capabilities, and persevere for a long time through the self-renewal and quiescence. Since the discovery of stem cells, an enormous effort has been focused on learning about their functions and the molecular regulation behind them. Wnt signaling is widely recognized as essential for normal and cancer stem cell. Moreover, β-catenin-dependent Wnt pathway, referred to as canonical, has gained attention, while β-catenin-independent Wnt pathways, known as non-canonical, have remained conspicuously less explored. However, recent evidence about non-canonical Wnt pathways in stem cells begins to lay the foundations of a conceivably vast field, and on which we aim to explain this in the present review. In this regard, we addressed the different aspects in which non-canonical Wnt pathways impact the properties of stem cells, both under normal conditions and also under disease, specifically in cancer.

RevDate: 2024-01-16
CmpDate: 2024-01-16

Kotarska K, Gąsior Ł, Rudnicka J, et al (2024)

Long-run real-time PCR analysis of repetitive nuclear elements as a novel tool for DNA damage quantification in single cells: an approach validated on mouse oocytes and fibroblasts.

Journal of applied genetics, 65(1):181-190.

Since DNA damage is of great importance in various biological processes, its rate is frequently assessed both in research studies and in medical diagnostics. The most precise methods of quantifying DNA damage are based on real-time PCR. However, in the conventional version, they require a large amount of genetic material and therefore their usefulness is limited to multicellular samples. Here, we present a novel approach to long-run real-time PCR-based DNA-damage quantification (L1-LORD-Q), which consists in amplification of long interspersed nuclear elements (L1) and allows for analysis of single-cell genomes. The L1-LORD-Q was compared with alternative methods of measuring DNA breaks (Bioanalyzer system, γ-H2AX foci staining), which confirmed its accuracy. Furthermore, it was demonstrated that the L1-LORD-Q is sensitive enough to distinguish between different levels of UV-induced DNA damage. The method was validated on mouse oocytes and fibroblasts, but the general idea is universal and can be applied to various types of cells and species.

RevDate: 2024-01-11
CmpDate: 2024-01-11

Howe J, Cornwallis CK, AS Griffin (2024)

Conflict-reducing innovations in development enable increased multicellular complexity.

Proceedings. Biological sciences, 291(2014):20232466.

Obligately multicellular organisms, where cells can only reproduce as part of the group, have evolved multiple times across the tree of life. Obligate multicellularity has only evolved when clonal groups form by cell division, rather than by cells aggregating, as clonality prevents internal conflict. Yet obligately multicellular organisms still vary greatly in 'multicellular complexity' (the number of cells and cell types): some comprise a few cells and cell types, while others have billions of cells and thousands of types. Here, we test whether variation in multicellular complexity is explained by two conflict-suppressing mechanisms, namely a single-cell bottleneck at the start of development, and a strict separation of germline and somatic cells. Examining the life cycles of 129 lineages of plants, animals, fungi and algae, we show using phylogenetic comparative analyses that an early segregation of the germline stem-cell lineage is key to the evolution of more cell types, driven by a strong correlation in the Metazoa. By contrast, the presence of a strict single-cell bottleneck was not related to either the number of cells or the number of cell types, but was associated with early germline segregation. Our results suggest that segregating the germline earlier in development enabled greater evolutionary innovation, although whether this is a consequence of conflict reduction or other non-conflict effects, such as developmental flexibility, is unclear.

RevDate: 2024-01-11
CmpDate: 2024-01-11

Pequeno PACL (2024)

Resource adaptation drives the size-complexity rule in termites.

Proceedings. Biological sciences, 291(2014):20232363.

The size-complexity rule posits that the evolution of larger cooperative groups should favour more division of labour. Examples include more cell types in larger multicellular organisms, and more polymorphic castes in larger eusocial colonies. However, a correlation between division of labour and group size may reflect a shared response of both traits to resource availability and/or profitability. Here, this possibility was addressed by investigating the evolution of sterile caste number (worker and soldier morphotypes) in termites, a major clade of eusocial insects in which the drivers of caste polymorphism are poorly understood. A novel dataset on 90 termite species was compiled from the published literature. The analysis showed that sterile caste number did increase markedly with colony size. However, after controlling for resource adaptations and phylogeny, there was no evidence for this relationship. Rather, sterile caste number increased with increasing nest-food separation and decreased with soil-feeding, through changes in worker (but not soldier) morphotype number. Further, colony size increased with nest-food separation, thus driving the false correlation between sterile caste number and colony size. These findings support adaptation to higher energy acquisition as key to the rise of complex insect societies, with larger size being a by-product.

RevDate: 2024-01-10
CmpDate: 2024-01-10

Kong Z, Zhu L, Liu Y, et al (2024)

Effects of azithromycin exposure during pregnancy at different stages, doses and courses on testicular development in fetal mice.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 170:116063.

Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFβ/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.

RevDate: 2024-01-08
CmpDate: 2024-01-08

Qi Z, Lu P, Long X, et al (2024)

Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs.

Science advances, 10(1):eadk6130.

RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.

RevDate: 2024-01-08
CmpDate: 2024-01-08

Ma Q, Li Q, Zheng X, et al (2024)

CellCommuNet: an atlas of cell-cell communication networks from single-cell RNA sequencing of human and mouse tissues in normal and disease states.

Nucleic acids research, 52(D1):D597-D606.

Cell-cell communication, as a basic feature of multicellular organisms, is crucial for maintaining the biological functions and microenvironmental homeostasis of cells, organs, and whole organisms. Alterations in cell-cell communication contribute to many diseases, including cancers. Single-cell RNA sequencing (scRNA-seq) provides a powerful method for studying cell-cell communication by enabling the analysis of ligand-receptor interactions. Here, we introduce CellCommuNet (http://www.inbirg.com/cellcommunet/), a comprehensive data resource for exploring cell-cell communication networks in scRNA-seq data from human and mouse tissues in normal and disease states. CellCommuNet currently includes 376 single datasets from multiple sources, and 118 comparison datasets between disease and normal samples originating from the same study. CellCommuNet provides information on the strength of communication between cells and related signalling pathways and facilitates the exploration of differences in cell-cell communication between healthy and disease states. Users can also search for specific signalling pathways, ligand-receptor pairs, and cell types of interest. CellCommuNet provides interactive graphics illustrating cell-cell communication in different states, enabling differential analysis of communication strength between disease and control samples. This comprehensive database aims to be a valuable resource for biologists studying cell-cell communication networks.

RevDate: 2024-01-08
CmpDate: 2024-01-08

Ros-Rocher N, T Brunet (2023)

What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals.

Animal cognition, 26(6):1767-1782.

All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.

RevDate: 2024-01-04
CmpDate: 2024-01-04

Ekdahl LI, Salcedo JA, Dungan MM, et al (2023)

Selection on plastic adherence leads to hyper-multicellular strains and incidental virulence in the budding yeast.

eLife, 12:.

Many disease-causing microbes are not obligate pathogens; rather, they are environmental microbes taking advantage of an ecological opportunity. The existence of microbes whose life cycle does not require a host and are not normally pathogenic, yet are well-suited to host exploitation, is an evolutionary puzzle. One hypothesis posits that selection in the environment may favor traits that incidentally lead to pathogenicity and virulence, or serve as pre-adaptations for survival in a host. An example of such a trait is surface adherence. To experimentally test the idea of 'accidental virulence', replicate populations of Saccharomyces cerevisiae were evolved to attach to a plastic bead for hundreds of generations. Along with plastic adherence, two multicellular phenotypes- biofilm formation and flor formation- increased; another phenotype, pseudohyphal growth, responded to the nutrient limitation. Thus, experimental selection led to the evolution of highly-adherent, hyper-multicellular strains. Wax moth larvae injected with evolved hyper-multicellular strains were significantly more likely to die than those injected with evolved non-multicellular strains. Hence, selection on plastic adherence incidentally led to the evolution of enhanced multicellularity and increased virulence. Our results support the idea that selection for a trait beneficial in the open environment can inadvertently generate opportunistic, 'accidental' pathogens.

RevDate: 2024-01-01
CmpDate: 2024-01-01

Walker LM, Sherpa RN, Ivaturi S, et al (2023)

Parallel evolution of the G protein-coupled receptor GrlG and the loss of fruiting body formation in the social amoeba Dictyostelium discoideum evolved under low relatedness.

G3 (Bethesda, Md.), 14(1):.

Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5' half of grlG-the region encoding the signal peptide and the extracellular binding domain-were significantly associated with the loss of fruiting body formation; the association was not significant in the 3' half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5' half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something-likely cheating-during the multicellular stage.

RevDate: 2024-01-01
CmpDate: 2024-01-01

Wang S, Chan SY, Deng Y, et al (2024)

Oxidative stress induced by Etoposide anti-cancer chemotherapy drives the emergence of tumor-associated bacteria resistance to fluoroquinolones.

Journal of advanced research, 55:33-44.

INTRODUCTION: Antibiotic-resistant bacterial infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, are prevalent in lung cancer patients, resulting in poor clinical outcomes and high mortality. Etoposide (ETO) is an FDA-approved chemotherapy drug that kills cancer cells by damaging DNA through oxidative stress. However, it is unclear if ETO can cause unintentional side effects on tumor-associated microbial pathogens, such as inducing antibiotic resistance.

OBJECTIVES: We aimed to show that prolonged ETO treatment could unintendedly confer fluoroquinolone antibiotic resistance to P. aeruginosa, and evaluate the effect of tumor-associated P. aeruginosa on tumor progression.

METHODS: We employed experimental evolution assay to treat P. aeruginosa with prolonged ETO exposure, evaluated the ciprofloxacin resistance, and elucidated the gene mutations by DNA sequencing. We also established a lung tumor-P. aeruginosa bacterial model to study the role of ETO-evolved intra-tumoral bacteria in tumor progression using immunostaining and confocal microscopy.

RESULTS: ETO could generate oxidative stress and lead to gene mutations in P. aeruginosa, especially the gyrase (gyrA) gene, resulting in acquired fluoroquinolone resistance. We further demonstrated using a microfluidic-based lung tumor-P. aeruginosa coculture model that bacteria can evolve ciprofloxacin (CIP) resistance in a tumor microenvironment. Moreover, ETO-induced CIP-resistant (EICR) mutants could form multicellular biofilms which protected tumor cells from ETO killing and enabled tumor progression.

CONCLUSION: Overall, our preclinical proof-of-concept provides insights into how anti-cancer chemotherapy could inadvertently allow tumor-associated bacteria to acquire antibiotic resistance mutations and shed new light on the development of novel anti-cancer treatments based on anti-bacterial strategies.

RevDate: 2024-01-01
CmpDate: 2024-01-01

Niklas KJ, BH Tiffney (2023)

Viridiplantae Body Plans Viewed Through the Lens of the Fossil Record and Molecular Biology.

Integrative and comparative biology, 63(6):1316-1330.

A review of the fossil record coupled with insights gained from molecular and developmental biology reveal a series of body plan transformations that gave rise to the first land plants. Across diverse algal clades, including the green algae and their descendants, the plant body plan underwent a unicellular $\to $ colonial $\to $ simple multicellular → complex multicellular transformation series. The colonization of land involved increasing body size and associated cell specialization, including cells capable of hydraulic transport. The evolution of the life-cycle that characterizes all known land plant species involved a divergence in body plan phenotypes between the haploid and diploid generations, one adapted to facilitate sexual reproduction (a free-water dependent gametophyte) and another adapted to the dissemination of spores (a more water-independent sporophyte). The amplification of this phenotypic divergence, combined with indeterminate growth in body size, resulted in a desiccation-adapted branched sporophyte with a cuticularized epidermis, stomates, and vascular tissues. Throughout the evolution of the land plants, the body plans of the sporophyte generation involved "axiation," i.e., the acquisition of a cylindrical geometry and subsequent organographic specializations.

RevDate: 2023-12-29
CmpDate: 2023-12-29

Bich L (2023)

Integrating Multicellular Systems: Physiological Control and Degrees of Biological Individuality.

Acta biotheoretica, 72(1):1.

This paper focuses on physiological integration in multicellular systems, a notion often associated with biological individuality, but which has not received enough attention and needs a thorough theoretical treatment. Broadly speaking, physiological integration consists in how different components come together into a cohesive unit in which they are dependent on one another for their existence and activity. This paper argues that physiological integration can be understood by considering how the components of a biological multicellular system are controlled and coordinated in such a way that their activities can contribute to the maintenance of the system. The main implication of this perspective is that different ways of controlling their parts may give rise to multicellular organizations with different degrees of integration. After defining control, this paper analyses how control is realized in two examples of multicellular systems located at different ends of the spectrum of multicellularity: biofilms and animals. It focuses on differences in control ranges, and it argues that a high degree of integration implies control exerted at both medium and long ranges, and that insofar as biofilms lack long-range control (relative to their size) they can be considered as less integrated than other multicellular systems. It then discusses the implication of this account for the debate on physiological individuality and the idea that degrees of physiological integration imply degrees of individuality.

RevDate: 2023-12-28
CmpDate: 2023-12-28

Pinion AK, Britz R, Kubicek KM, et al (2023)

The larval attachment organ of the bowfin Amia ocellicauda Richardson, 1836 (Amiiformes: Amiidae) and its phylogenetic significance.

Journal of fish biology, 103(6):1300-1311.

Larval attachment organs (LAOs) are unicellular or multicellular organs that enable the larvae of many actinopterygian fishes to adhere to a substrate before yolk-sac absorption and the free-swimming stage. Bowfins (Amiiformes) exhibit a sizable LAO on the snout, which was first described in the late 19th and early 20th centuries. In this study, we document the LAO of Amia ocellicauda (Richardson, 1836) using a combination of scanning electron microscopy (SEM) and light microscopy, and histochemistry. We examined material representing three stages with SEM ranging in size from 5.8 to 11.2 mm in notochord length and one stage histochemically. We compare the LAO of A. ocellicauda to that of the lepisosteid Atractosteus tropicus Gill, 1863 and show that although the LAOs of A. ocellicauda and A. tropicus are both super-organs, the two differ in the ultrastructure of the entire organ. A. ocellicauda possesses two distinct lobes, with the organs arranged on the periphery with none in the middle, whereas A. tropicus also possesses two lobes, but with the organs scattered evenly across the super-organ. The individual organs of A. ocellicauda possess adhesive cells set deep to support cells with the adhesive substance released through a pore, whereas A. tropicus possesses both support cells and adhesive cells sitting at a similar level, with the adhesive substance released directly onto the surface of the organ. We additionally provide a table summarizing vertebrate genera in which attachment organs have been documented and discuss the implications of our study for hypotheses of the homology of attachment organs in the Holostei.

RevDate: 2023-12-16

Yu Y, Li YP, Ren K, et al (2023)

A brief history of metal recruitment in protozoan predation.

Trends in microbiology pii:S0966-842X(23)00326-8 [Epub ahead of print].

Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.

RevDate: 2023-12-21
CmpDate: 2023-12-21

Romei M, Carpentier M, Chomilier J, et al (2023)

Origins and Functional Significance of Eukaryotic Protein Folds.

Journal of molecular evolution, 91(6):854-864.

Folds are the architecture and topology of a protein domain. Categories of folds are very few compared to the astronomical number of sequences. Eukaryotes have more protein folds than Archaea and Bacteria. These folds are of two types: shared with Archaea and/or Bacteria on one hand and specific to eukaryotic clades on the other hand. The first kind of folds is inherited from the first endosymbiosis and confirms the mixed origin of eukaryotes. In a dataset of 1073 folds whose presence or absence has been evidenced among 210 species equally distributed in the three super-kingdoms, we have identified 28 eukaryotic folds unambiguously inherited from Bacteria and 40 eukaryotic folds unambiguously inherited from Archaea. Compared to previous studies, the repartition of informational function is higher than expected for folds originated from Bacteria and as high as expected for folds inherited from Archaea. The second type of folds is specifically eukaryotic and associated with an increase of new folds within eukaryotes distributed in particular clades. Reconstructed ancestral states coupled with dating of each node on the tree of life provided fold appearance rates. The rate is on average twice higher within Eukaryota than within Bacteria or Archaea. The highest rates are found in the origins of eukaryotes, holozoans, metazoans, metazoans stricto sensu, and vertebrates: the roots of these clades correspond to bursts of fold evolution. We could correlate the functions of some of the fold synapomorphies within eukaryotes with significant evolutionary events. Among them, we find evidence for the rise of multicellularity, adaptive immune system, or virus folds which could be linked to an ecological shift made by tetrapods.

RevDate: 2023-12-21
CmpDate: 2023-12-21

Mulvey H, L Dolan (2023)

RHO of plant signaling was established early in streptophyte evolution.

Current biology : CB, 33(24):5515-5525.e4.

The algal ancestors of land plants underwent a transition from a unicellular to a multicellular body plan.[1] This transition likely took place early in streptophyte evolution, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage.[2] How this transition was brought about is unknown; however, it was likely facilitated by the evolution of novel mechanisms to spatially regulate morphogenesis. In land plants, RHO of plant (ROP) signaling plays a conserved role in regulating polarized cell growth and cell division orientation to orchestrate morphogenesis.[3][,][4][,][5][,][6][,][7][,][8] ROP constitutes a plant-specific subfamily of the RHO GTPases, which are more widely conserved throughout eukaryotes.[9][,][10] Although the RHO family originated in early eukaryotes,[11][,][12] how and when the ROP subfamily originated had remained elusive. Here, we demonstrate that ROP signaling was established early in the streptophyte lineage, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage. This period corresponds to when the unicellular-to-multicellular transition likely took place in the streptophytes. In addition to being critical for the complex morphogenesis of extant land plants, we speculate that ROP signaling contributed to morphological evolution in early streptophytes.

RevDate: 2023-12-14

Bingham EP, WC Ratcliff (2023)

A non-adaptive explanation for macroevolutionary patterns in the evolution of complex multicellularity.

bioRxiv : the preprint server for biology.

"Complex multicellularity", conventionally defined as large organisms with many specialized cell types, has evolved five times independently in eukaryotes, but never within prokaryotes. A number hypotheses have been proposed to explain this phenomenon, most of which posit that eukaryotes evolved key traits (e.g., dynamic cytoskeletons, alternative mechanisms of gene regulation, or subcellular compartments) which were a necessary prerequisite for the evolution of complex multicellularity. Here we propose an alternative, non-adaptive hypothesis for this broad macroevolutionary pattern. By binning cells into groups with finite genetic bottlenecks between generations, the evolution of multicellularity greatly reduces the effective population size (Ne) of cellular populations, increasing the role of genetic drift in evolutionary change. While both prokaryotes and eukaryotes experience this phenomenon, they have opposite responses to drift: mutational biases in eukaryotes tend to drive genomic expansion, providing additional raw genetic material for subsequent multicellular innovation, while prokaryotes generally face genomic erosion. These effects become more severe as organisms evolve larger size and more stringent genetic bottlenecks between generations- both of which are hallmarks of complex multicellularity. Taken together, we hypothesize that it is these idiosyncratic lineage-specific mutational biases, rather than cell-biological innovations within eukaryotes, that underpins the long-term divergent evolution of complex multicellularity across the tree of life.

RevDate: 2023-11-29
CmpDate: 2023-11-27

Toch K, Buczek M, MK Labocha (2023)

Genetic Interactions in Various Environmental Conditions in Caenorhabditis elegans.

Genes, 14(11):.

Although it is well known that epistasis plays an important role in many evolutionary processes (e.g., speciation, evolution of sex), our knowledge on the frequency and prevalent sign of epistatic interactions is mainly limited to unicellular organisms or cell cultures of multicellular organisms. This is even more pronounced in regard to how the environment can influence genetic interactions. To broaden our knowledge in that respect we studied gene-gene interactions in a whole multicellular organism, Caenorhabditis elegans. We screened over one thousand gene interactions, each one in standard laboratory conditions, and under three different stressors: heat shock, oxidative stress, and genotoxic stress. Depending on the condition, between 7% and 22% of gene pairs showed significant genetic interactions and an overall sign of epistasis changed depending on the condition. Sign epistasis was quite common, but reciprocal sign epistasis was extremally rare. One interaction was common to all conditions, whereas 78% of interactions were specific to only one environment. Although epistatic interactions are quite common, their impact on evolutionary processes will strongly depend on environmental factors.

RevDate: 2023-11-27
CmpDate: 2023-11-27

Spradling AC (2024)

The Ancient Origin and Function of Germline Cysts.

Results and problems in cell differentiation, 71:3-21.

Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.

RevDate: 2023-11-25
CmpDate: 2023-11-24

Nicolas E, Simion P, Guérineau M, et al (2023)

Horizontal acquisition of a DNA ligase improves DNA damage tolerance in eukaryotes.

Nature communications, 14(1):7638.

Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.

RevDate: 2023-11-24
CmpDate: 2023-11-23

Jin H, Zhang W, Liu H, et al (2023)

Genome-wide identification and characteristic analysis of ETS gene family in blood clam Tegillarca granosa.

BMC genomics, 24(1):700.

BACKGROUND: ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking.

RESULTS: The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation.

CONCLUSION: Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.

RevDate: 2023-12-22
CmpDate: 2023-12-22

Tissot S, Guimard L, Meliani J, et al (2023)

The impact of food availability on tumorigenesis is evolutionarily conserved.

Scientific reports, 13(1):19825.

The inability to control cell proliferation results in the formation of tumors in many multicellular lineages. Nonetheless, little is known about the extent of conservation of the biological traits and ecological factors that promote or inhibit tumorigenesis across the metazoan tree. Particularly, changes in food availability have been linked to increased cancer incidence in humans, as an outcome of evolutionary mismatch. Here, we apply evolutionary oncology principles to test whether food availability, regardless of the multicellular lineage considered, has an impact on tumorigenesis. We used two phylogenetically unrelated model systems, the cnidarian Hydra oligactis and the fish Danio rerio, to investigate the impact of resource availability on tumor occurrence and progression. Individuals from healthy and tumor-prone lines were placed on four diets that differed in feeding frequency and quantity. For both models, frequent overfeeding favored tumor emergence, while lean diets appeared more protective. In terms of tumor progression, high food availability promoted it, whereas low resources controlled it, but without having a curative effect. We discuss our results in light of current ideas about the possible conservation of basic processes governing cancer in metazoans (including ancestral life history trade-offs at the cell level) and in the framework of evolutionary medicine.

RevDate: 2023-12-17
CmpDate: 2023-12-07

Liu D, Vargas-García CA, Singh A, et al (2023)

A cell-based model for size control in the multiple fission alga Chlamydomonas reinhardtii.

Current biology : CB, 33(23):5215-5224.e5.

Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology.[1][,][2][,][3][,][4][,][5][,][6][,][7] The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2[n] daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle. A mitotic sizer couples mother-cell size to division number (n) such that daughter size distributions are uniform regardless of mother size distributions. Although daughter size distributions were highly robust to altered growth conditions, ∼40% of daughter cells fell outside of the 2-fold range expected from a "perfect" multiple fission sizer.[7][,][8] A simple intuitive power law model with stochastic noise failed to reproduce individual division behaviors of tracked single cells. Through additional iterative modeling, we identified an alternative modified threshold (MT) model, where cells need to cross a threshold greater than 2-fold their median starting size to become division-competent (i.e., Committed), after which their behaviors followed a power law model. The Commitment versus mitotic size threshold uncoupling in the MT model was likely a key pre-adaptation in the evolution of volvocine algal multicellularity. A similar experimental approach was used in size mutants mat3/rbr and dp1 that are, respectively, missing repressor or activator subunits of the retinoblastoma tumor suppressor complex (RBC). Both mutants showed altered relationships between Commitment and mitotic sizer, suggesting that RBC functions to decouple the two sizers.

RevDate: 2023-11-17
CmpDate: 2023-11-13

Wang X, Xu X, Z Wang (2023)

The Post-Translational Role of UFMylation in Physiology and Disease.

Cells, 12(21):.

Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.

RevDate: 2023-11-28
CmpDate: 2023-11-28

Dupouy G, Cashell R, Brychkova G, et al (2023)

PICKLE RELATED 2 is a Neofunctionalized Gene Duplicate Under Positive Selection With Antagonistic Effects to the Ancestral PICKLE Gene on the Seed Transcriptome.

Genome biology and evolution, 15(11):.

The evolution and diversification of proteins capable of remodeling domains has been critical for transcriptional reprogramming during cell fate determination in multicellular eukaryotes. Chromatin remodeling proteins of the CHD3 family have been shown to have important and antagonistic impacts on seed development in the model plant, Arabidopsis thaliana, yet the basis of this functional divergence remains unknown. In this study, we demonstrate that genes encoding the CHD3 proteins PICKLE (PKL) and PICKLE-RELATED 2 (PKR2) originated from a duplication event during the diversification of crown Brassicaceae, and that these homologs have undergone distinct evolutionary trajectories since this duplication, with PKR2 fast evolving under positive selection, while PKL is subject to purifying selection. We find that the rapid evolution of PKR2 under positive selection reduces the encoded protein's intrinsic disorder, possibly suggesting a tertiary structure configuration which differs from that of PKL. Our whole genome transcriptome analysis in seeds of pkr2 and pkl mutants reveals that they act antagonistically on the expression of specific sets of genes, providing a basis for their differing roles in seed development. Our results provide insights into how gene duplication and neofunctionalization can lead to differing and antagonistic selective pressures on transcriptomes during plant reproduction, as well as on the evolutionary diversification of the CHD3 family within seed plants.

RevDate: 2023-11-07
CmpDate: 2023-11-07

Fung L, Konkol A, Ishikawa T, et al (2023)

Swimming, Feeding, and Inversion of Multicellular Choanoflagellate Sheets.

Physical review letters, 131(16):168401.

The recent discovery of the striking sheetlike multicellular choanoflagellate species Choanoeca flexa that dynamically interconverts between two hemispherical forms of opposite orientation raises fundamental questions in cell and evolutionary biology, as choanoflagellates are the closest living relatives of animals. It similarly motivates questions in fluid and solid mechanics concerning the differential swimming speeds in the two states and the mechanism of curvature inversion triggered by changes in the geometry of microvilli emanating from each cell. Here we develop fluid dynamical and mechanical models to address these observations and show that they capture the main features of the swimming, feeding, and inversion of C. flexa colonies, which can be viewed as active, shape-shifting polymerized membranes.

RevDate: 2023-11-02
CmpDate: 2023-11-01

Balasubramanian RN, Gao M, J Umen (2023)

Identification of cell-type specific alternative transcripts in the multicellular alga Volvox carteri.

BMC genomics, 24(1):654.

BACKGROUND: Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI).

METHODS: We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type.

RESULTS: Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteri predicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants.

CONCLUSIONS: We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.

RevDate: 2023-11-13
CmpDate: 2023-10-30

Ashouri A, Zhang C, F Gaiti (2023)

Decoding Cancer Evolution: Integrating Genetic and Non-Genetic Insights.

Genes, 14(10):.

The development of cancer begins with cells transitioning from their multicellular nature to a state akin to unicellular organisms. This shift leads to a breakdown in the crucial regulators inherent to multicellularity, resulting in the emergence of diverse cancer cell subpopulations that have enhanced adaptability. The presence of different cell subpopulations within a tumour, known as intratumoural heterogeneity (ITH), poses challenges for cancer treatment. In this review, we delve into the dynamics of the shift from multicellularity to unicellularity during cancer onset and progression. We highlight the role of genetic and non-genetic factors, as well as tumour microenvironment, in promoting ITH and cancer evolution. Additionally, we shed light on the latest advancements in omics technologies that allow for in-depth analysis of tumours at the single-cell level and their spatial organization within the tissue. Obtaining such detailed information is crucial for deepening our understanding of the diverse evolutionary paths of cancer, allowing for the development of effective therapies targeting the key drivers of cancer evolution.

RevDate: 2023-11-07
CmpDate: 2023-10-30

Pentz JT, MacGillivray K, DuBose JG, et al (2023)

Evolutionary consequences of nascent multicellular life cycles.

eLife, 12:.

A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing 'snowflake' yeast (Δace2/∆ace2) and aggregative 'floc' yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift-a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.

RevDate: 2023-12-16
CmpDate: 2023-12-16

Morreale DP, St Geme Iii JW, PJ Planet (2023)

Phylogenomic analysis of the understudied Neisseriaceae species reveals a poly- and paraphyletic Kingella genus.

Microbiology spectrum, 11(6):e0312323.

Understanding the evolutionary relationships between the species in the Neisseriaceae family has been a persistent challenge in bacterial systematics due to high recombination rates in these species. Previous studies of this family have focused on Neisseria meningitidis and N. gonorrhoeae. However, previously understudied Neisseriaceae species are gaining new attention, with Kingella kingae now recognized as a common human pathogen and with Alysiella and Simonsiella being unique in the bacterial world as multicellular organisms. A better understanding of the genomic evolution of the Neisseriaceae can lead to the identification of specific genes and traits that underlie the remarkable diversity of this family.

RevDate: 2023-11-15
CmpDate: 2023-11-15

Liu Y, Liu Y, Chen S, et al (2023)

Prenatal exposure to acetaminophen at different doses, courses and time causes testicular dysplasia in offspring mice and its mechanism.

Chemosphere, 345:140496.

Epidemiological investigation suggested that the use of acetaminophen during pregnancy may cause offspring testicular dysplasia, but no systematic study has been conducted. In this study, Kunming mice were given acetaminophen at different doses (100/200/400 mg/kg.d), courses (single/multiple), time (second/third trimester) during pregnancy. Fetal blood and testes were collected on gestaional day 18 for detection. The results indicated abnormal testicular development in the PAcE (prenatal acetaminophen exposure) groups. The maximum diameter/cross-sectional area decreased, the interstitial space widened, and decreased proliferation/increased apoptosis were observed, especially in the high-dose, multi-course and second-trimester groups. Meanwhile, the serum testosterone level decreased in PAcE groups, and the steroid synthesis function in Leydig cells, Sertoli and spermatogenic cell function were inhibited, it was more significant in high-dose, multi-course and second-trimester groups. Furthermore, Wnt signal pathway was activated but Notch signal pathway was inhibited in the PAcE groups. Finally, in vitro experiment, acetaminophen could inhibit spermatogonial cell proliferation, enhance apoptosis, and change Wnt/Notch signal pathway. In conclusion, this study confirmed that PAcE can change fetal testicular development in a dose, course and time-dependent manner, and found that multicellular function impaired. This study provides theoretical and experimental basis for systematically elucidating the developmental toxicity of acetaminophen in testis.

RevDate: 2023-11-23
CmpDate: 2023-11-23

Mishina T, Chiu MC, Hashiguchi Y, et al (2023)

Massive horizontal gene transfer and the evolution of nematomorph-driven behavioral manipulation of mantids.

Current biology : CB, 33(22):4988-4994.e5.

To complete their life cycle, a wide range of parasites must manipulate the behavior of their hosts.[1] This manipulation is a well-known example of the "extended phenotype,[2]" where genes in one organism have phenotypic effects on another organism. Recent studies have explored the parasite genes responsible for such manipulation of host behavior, including the potential molecular mechanisms.[3][,][4] However, little is known about how parasites have acquired the genes involved in manipulating phylogenetically distinct hosts.[4] In a fascinating example of the extended phenotype, nematomorph parasites have evolved the ability to induce their terrestrial insect hosts to enter bodies of water, where the parasite then reproduces. Here, we comprehensively analyzed nematomorphs and their mantid hosts, focusing on the transcriptomic changes associated with host manipulations and sequence similarity between host and parasite genes to test molecular mimicry. The nematomorph's transcriptome changed during host manipulation, whereas no distinct changes were found in mantids. We then discovered numerous possible host-derived genes in nematomorphs, and these genes were frequently up-regulated during host manipulation. Our findings suggest a possible general role of horizontal gene transfer (HGT) in the molecular mechanisms of host manipulation, as well as in the genome evolution of manipulative parasites. The evidence of HGT between multicellular eukaryotes remains scarce but is increasing and, therefore, elucidating its mechanisms will advance our understanding of the enduring influence of HGT on the evolution of the web of life.

RevDate: 2023-10-23
CmpDate: 2023-10-23

Arenzon JJ, L Peliti (2023)

Emergent cooperative behavior in transient compartments.

Physical review. E, 108(3-1):034409.

We introduce a minimal model of multilevel selection on structured populations, considering the interplay between game theory and population dynamics. Through a bottleneck process, finite groups are formed with cooperators and defectors sampled from an infinite pool. After the fragmentation, these transient compartments grow until the maximal number of individuals per compartment is attained. Eventually, all compartments are merged and well mixed, and the whole process is repeated. We show that cooperators, even if interacting only through mean-field intragroup interactions that favor defectors, may perform well because of the intergroup competition and the size diversity among the compartments. These cycles of isolation and coalescence may therefore be important in maintaining diversity among different species or strategies and may help to understand the underlying mechanisms of the scaffolding processes in the transition to multicellularity.

RevDate: 2023-11-05
CmpDate: 2023-10-23

Horinouchi Y, T Togashi (2023)

Unicellular and multicellular developmental variations in algal zygotes produce sporophytes.

Biology letters, 19(10):20230313.

The emergence of sporophytes, that is, diploid multicellular bodies in plants, facilitated plant diversification and the evolution of complexity. Although sporophytes may have evolved in an ancestral alga exhibiting a haplontic life cycle with a unicellular diploid and multicellular haploid (gametophyte) phase, the mechanism by which this novelty originated remains largely unknown. Ulotrichalean marine green algae (Ulvophyceae) are one of the few extant groups with haplontic-like life cycles. In this study, we show that zygotes of the ulotrichalean alga Monostroma angicava, which usually develop into unicellular cysts, exhibit a developmental variation producing multicellular reproductive sporophytes. Multicellular development likely occurred stochastically in individual zygotes, but its ratio responded plastically to growth conditions. Sporophytes showed identical morphological development to gametophytes, which should reflect the expression of the same genetic programme directing multicellular development. Considering that sporophytes were evolutionarily derived in Ulotrichales, this implies that sporophytes emerged by co-opting the gametophyte developmental programme to the diploid phase. This study suggests a possible mechanism of sporophyte formation in haplontic life cycles, contributing to the understanding of the evolutionary transition from unicellular to multicellular diploid body plans in green plants.

RevDate: 2023-11-01
CmpDate: 2023-11-01

Borodulina OR, Ustyantsev IG, DA Kramerov (2023)

SINEs as Potential Expression Cassettes: Impact of Deletions and Insertions on Polyadenylation and Lifetime of B2 and Ves SINE Transcripts Generated by RNA Polymerase III.

International journal of molecular sciences, 24(19):.

Short Interspersed Elements (SINEs) are common in the genomes of most multicellular organisms. They are transcribed by RNA polymerase III from an internal promoter comprising boxes A and B. As transcripts of certain SINEs from mammalian genomes can be polyadenylated, such transcripts should contain the AATAAA sequence as well as those called β- and τ-signals. One of the goals of this work was to evaluate how autonomous and independent other SINE parts are β- and τ-signals. Extended regions outside of β- and τ-signals were deleted from SINEs B2 and Ves and the derived constructs were used to transfect HeLa cells in order to evaluate the relative levels of their transcripts as well as their polyadenylation efficiency. If the deleted regions affected boxes A and B, the 5'-flanking region of the U6 RNA gene with the external promoter was inserted upstream. Such substitution of the internal promoter in B2 completely restored its transcription. Almost all tested deletions/substitutions did not reduce the polyadenylation capacity of the transcripts, indicating a weak dependence of the function of β- and τ-signals on the neighboring sequences. A similar analysis of B2 and Ves constructs containing a 55-bp foreign sequence inserted between β- and τ-signals showed an equal polyadenylation efficiency of their transcripts compared to those of constructs without the insertion. The acquired poly(A)-tails significantly increased the lifetime and thus the cellular level of such transcripts. The data obtained highlight the potential of B2 and Ves SINEs as cassettes for the expression of relatively short sequences for various applications.

RevDate: 2023-10-13
CmpDate: 2023-10-12

Bourke AFG (2023)

Conflict and conflict resolution in the major transitions.

Proceedings. Biological sciences, 290(2008):20231420.

Conflict and conflict resolution have been argued to be fundamental to the major transitions in evolution. These were key events in life's history in which previously independently living individuals cooperatively formed a higher-level individual, such as a multicellular organism or eusocial colony. Conflict has its central role because, to proceed stably, the evolution of individuality in each major transition required within-individual conflict to be held in check. This review revisits the role of conflict and conflict resolution in the major transitions, addressing recent work arguing for a minor role. Inclusive fitness logic suggests that differences between the kin structures of clones and sexual families support the absence of conflict at the origin of multicellularity but, by contrast, suggest that key conflicts existed at the origin of eusociality. A principal example is conflict over replacing the founding queen (queen replacement). Following the origin of each transition, conflict remained important, because within-individual conflict potentially disrupts the attainment of maximal individuality (organismality) in the system. The conclusion is that conflict remains central to understanding the major transitions, essentially because conflict arises from differences in inclusive fitness optima while conflict resolution can help the system attain a high degree of coincidence of inclusive fitness interests.

RevDate: 2023-11-20
CmpDate: 2023-11-20

Igamberdiev AU, R Gordon (2023)

Macroevolution, differentiation trees, and the growth of coding systems.

Bio Systems, 234:105044.

An open process of evolution of multicellular organisms is based on the rearrangement and growth of the program of differentiation that underlies biological morphogenesis. The maintenance of the final (adult) stable non-equilibrium state (stasis) of a developmental system determines the direction of the evolutionary process. This state is achieved via the sequence of differentiation events representable as differentiation trees. A special type of morphogenetic code, acting as a metacode governing gene expression, may include electromechanical signals appearing as differentiation waves. The excessive energy due to the incorporation of mitochondria in eukaryotic cells resulted not only in more active metabolism but also in establishing the differentiation code for interconnecting cells and forming tissues, which fueled the evolutionary process. The "invention" of "continuing differentiation" distinguishes multicellular eukaryotes from other organisms. The Janus-faced control, involving both top-down control by differentiation waves and bottom-up control via the mechanical consequences of cell differentiations, underlies the process of morphogenesis and results in the achievement of functional stable final states. Duplications of branches of the differentiation tree may be the basis for continuing differentiation and macroevolution, analogous to gene duplication permitting divergence of genes. Metamorphoses, if they are proven to be fusions of disparate species, may be classified according to the topology of fusions of two differentiation trees. In the process of unfolding of morphogenetic structures, microevolution can be defined as changes of the differentiation tree that preserve topology of the tree, while macroevolution represents any change that alters the topology of the differentiation tree.

RevDate: 2023-10-03

Wegner L, Porth ML, K Ehlers (2023)

Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections.

Plants (Basel, Switzerland), 12(18):.

In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.

RevDate: 2023-11-13
CmpDate: 2023-11-13

Zhang Z, Huo W, Wang X, et al (2023)

Origin, evolution, and diversification of the wall-associated kinase gene family in plants.

Plant cell reports, 42(12):1891-1906.

The study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear. Here, we performed a comprehensive analysis of the WAK family to reveal its origin, evolution, and diversification in green plants. In total, 1061 WAK genes were identified in 37 species from unicellular algae to multicellular plants, and the results showed that WAK genes probably originated before bryophyte differentiation and were widely distributed in land plants, especially angiosperms. The phylogeny indicated that the land plant WAKs gave rise to five clades and underwent lineage-specific expansion after species differentiation. Cis-acting elements and expression patterns analyses of WAK genes in Arabidopsis and rice demonstrated the functional diversity of WAK genes in these two species. Many gene gains and losses have occurred in angiosperms, leading to an increase in the number of gene copies. The evolutionary trajectory of the WAK family during polyploidization was uncovered using Gossypium species. Our results provide insights into the evolution of WAK genes in green plants, facilitating their functional investigations in the future.

RevDate: 2023-10-23
CmpDate: 2023-10-23

Ma C, Li X, Xiao H, et al (2023)

Course-, dose-, and stage-dependent toxic effects of prenatal acetaminophen exposure on fetal long bone development.

Toxicology letters, 387:50-62.

Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.

RevDate: 2023-12-05

Craig JM, Kumar S, SB Hedges (2023)

The origin of eukaryotes and rise in complexity were synchronous with the rise in oxygen.

Frontiers in bioinformatics, 3:1233281.

The origin of eukaryotes was among the most important events in the history of life, spawning a new evolutionary lineage that led to all complex multicellular organisms. However, the timing of this event, crucial for understanding its environmental context, has been difficult to establish. The fossil and biomarker records are sparse and molecular clocks have thus far not reached a consensus, with dates spanning 2.1-0.91 billion years ago (Ga) for critical nodes. Notably, molecular time estimates for the last common ancestor of eukaryotes are typically hundreds of millions of years younger than the Great Oxidation Event (GOE, 2.43-2.22 Ga), leading researchers to question the presumptive link between eukaryotes and oxygen. We obtained a new time estimate for the origin of eukaryotes using genetic data of both archaeal and bacterial origin, the latter rarely used in past studies. We also avoided potential calibration biases that may have affected earlier studies. We obtained a conservative interval of 2.2-1.5 Ga, with an even narrower core interval of 2.0-1.8 Ga, for the origin of eukaryotes, a period closely aligned with the rise in oxygen. We further reconstructed the history of biological complexity across the tree of life using three universal measures: cell types, genes, and genome size. We found that the rise in complexity was temporally consistent with and followed a pattern similar to the rise in oxygen. This suggests a causal relationship stemming from the increased energy needs of complex life fulfilled by oxygen.

RevDate: 2023-09-23
CmpDate: 2023-09-21

Kalambokidis M, M Travisano (2023)

Multispecies interactions shape the transition to multicellularity.

Proceedings. Biological sciences, 290(2007):20231055.

The origin of multicellularity transformed the adaptive landscape on Earth, opening diverse avenues for further innovation. The transition to multicellular life is understood as the evolution of cooperative groups which form a new level of individuality. Despite the potential for community-level interactions, most studies have not addressed the competitive context of this transition, such as competition between species. Here, we explore how interspecific competition shapes the emergence of multicellularity in an experimental system with two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, where multicellularity evolves in response to selection for faster settling ability. We find that the multispecies context slows the rate of the transition to multicellularity, and the transition to multicellularity significantly impacts community composition. Multicellular K. lactis emerges first and sweeps through populations in monocultures faster than in cocultures with S. cerevisiae. Following the transition, the between-species competitive dynamics shift, likely in part to intraspecific cooperation in K. lactis. Hence, we document an eco-evolutionary feedback across the transition to multicellularity, underscoring how ecological context is critical for understanding the causes and consequences of innovation. By including two species, we demonstrate that cooperation and competition across several biological scales shapes the origin and persistence of multicellularity.

RevDate: 2023-11-29
CmpDate: 2023-11-29

Kulkarni M, JM Hardwick (2023)

Programmed Cell Death in Unicellular Versus Multicellular Organisms.

Annual review of genetics, 57:435-459.

Programmed cell death (self-induced) is intrinsic to all cellular life forms, including unicellular organisms. However, cell death research has focused on animal models to understand cancer, degenerative disorders, and developmental processes. Recently delineated suicidal death mechanisms in bacteria and fungi have revealed ancient origins of animal cell death that are intertwined with immune mechanisms, allaying earlier doubts that self-inflicted cell death pathways exist in microorganisms. Approximately 20 mammalian death pathways have been partially characterized over the last 35 years. By contrast, more than 100 death mechanisms have been identified in bacteria and a few fungi in recent years. However, cell death is nearly unstudied in most human pathogenic microbes that cause major public health burdens. Here, we consider how the current understanding of programmed cell death arose through animal studies and how recently uncovered microbial cell death mechanisms in fungi and bacteria resemble and differ from mechanisms of mammalian cell death.

RevDate: 2023-09-21
CmpDate: 2023-09-14

Azimzadeh J, B Durand (2023)

Evolution: The ancient history of cilia assembly regulation.

Current biology : CB, 33(17):R898-R900.

A new study identifies a conserved regulatory mechanism for cilia assembly in the closest unicellular relatives of animals, suggesting that this mechanism was already present in a common unicellular ancestor and was repurposed during the transition to multicellularity.

RevDate: 2023-11-28
CmpDate: 2023-09-06

Garte S (2023)

Targeted Hypermutation as a Survival Strategy: A Theoretical Approach.

Acta biotheoretica, 71(4):20.

Targeted hypermutation has proven to be a useful survival strategy for bacteria under severe stress and is also used by multicellular organisms in specific instances such as the mammalian immune system. This might appear surprising, given the generally observed deleterious effects of poor replication fidelity/high mutation rate. A previous theoretical model designed to explore the role of replication fidelity in the origin of life was applied to a simulated hypermutation scenario. The results confirmed that the same model is useful for analyzing hypermutation and can predict the effects of the same parameters (survival probability, replication fidelity, mutation effect, and others) on the survival of cellular populations undergoing hypermutation as a result of severe stress.

RevDate: 2023-11-29
CmpDate: 2023-10-23

Clark JW, Hetherington AJ, Morris JL, et al (2023)

Evolution of phenotypic disparity in the plant kingdom.

Nature plants, 9(10):1618-1626.

The plant kingdom exhibits diverse bodyplans, from single-celled algae to complex multicellular land plants, but it is unclear how this phenotypic disparity was achieved. Here we show that the living divisions comprise discrete clusters within morphospace, separated largely by reproductive innovations, the extinction of evolutionary intermediates and lineage-specific evolution. Phenotypic complexity correlates not with disparity but with ploidy history, reflecting the role of genome duplication in plant macroevolution. Overall, the plant kingdom exhibits a pattern of episodically increasing disparity throughout its evolutionary history that mirrors the evolutionary floras and reflects ecological expansion facilitated by reproductive innovations. This pattern also parallels that seen in the animal and fungal kingdoms, suggesting a general pattern for the evolution of multicellular bodyplans.

RevDate: 2023-09-24
CmpDate: 2023-09-22

Borg M, Krueger-Hadfield SA, Destombe C, et al (2023)

Red macroalgae in the genomic era.

The New phytologist, 240(2):471-488.

Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.

RevDate: 2023-08-31

Hall G, Kelly S, Schaap P, et al (2022)

Phylogeny-wide analysis of G-protein coupled receptors in social amoebas and implications for the evolution of multicellularity.

Open research Europe, 2:134.

G-protein coupled receptors (GPCRs) are seven-transmembrane proteins and constitute the largest group of receptors within eukaryotes. The presence of a large set of GPCRs in the unicellular Amoebozoa was surprising and is indicative of the largely undiscovered environmental sensing capabilities in this group. Evolutionary transitions from unicellular to multicellular lifestyles, like we see in social amoebas, have occurred several times independently in the Amoebozoa, and GPCRs may have been co-opted for new functions in cell-cell communication. Methods We have analysed a set of GPCRs from fully sequenced Amoebozoan genomes by Bayesian inference, compared their phylogenetic distribution and domain composition, and analysed their temporal and spatial expression patterns in five species of dictyostelids. Results We found evidence that most GPCRs are conserved deeply in the Amoebozoa and are probably performing roles in general cell functions and complex environmental sensing. All families of GPCRs (apart from the family 4 fungal pheromone receptors) are present in dictyostelids with family 5 being the largest and family 2 the one with the fewest members. For the first time, we identify the presence of family 1 rhodopsin-like GPCRs in dictyostelids. Some GPCRs have been amplified in the dictyostelids and in specific lineages thereof and through changes in expression patterns may have been repurposed for signalling in multicellular development. Discussion Our phylogenetic analysis suggests that GPCR families 1, 2 and 6 already diverged early in the Amoebozoa, whereas families 3 and 5 expanded later within the dictyostelids. The family 6 cAMP receptors that have experimentally supported roles in multicellular development in dictyostelids (carA-carD; tasA/B) originated at the root of all dictyostelids and only have weakly associated homologs in Physarum polycephalum. Our analysis identified candidate GPCRs which have evolved in the dictyostelids and could have been co-opted for multicellular development.

RevDate: 2023-10-03
CmpDate: 2023-09-15

Shalev O, Ye X, C Ratzke (2023)

Replaying the evolution of multicellularity.

Trends in ecology & evolution, 38(10):910-912.

The first organisms on Earth were presumably unicellular. At one point, evolution shaped these individual cells into multicellular organisms, which was a significant transition in the history of life on Earth. To investigate how this change happened, Bozdag et al. re-ran evolution in the lab and observed how single-celled yeast forms large multicellular aggregates.

RevDate: 2023-09-08
CmpDate: 2023-08-28

Cervantes S, Kesälahti R, Kumpula TA, et al (2023)

Strong Purifying Selection in Haploid Tissue-Specific Genes of Scots Pine Supports the Masking Theory.

Molecular biology and evolution, 40(8):.

The masking theory states that genes expressed in a haploid stage will be under more efficient selection. In contrast, selection will be less efficient in genes expressed in a diploid stage, where the fitness effects of recessive deleterious or beneficial mutations can be hidden from selection in heterozygous form. This difference can influence several evolutionary processes such as the maintenance of genetic variation, adaptation rate, and genetic load. Masking theory expectations have been confirmed in single-cell haploid and diploid organisms. However, in multicellular organisms, such as plants, the effects of haploid selection are not clear-cut. In plants, the great majority of studies indicating haploid selection have been carried out using male haploid tissues in angiosperms. Hence, evidence in these systems is confounded with the effects of sexual selection and intraspecific competition. Evidence from other plant groups is scarce, and results show no support for the masking theory. Here, we have used a gymnosperm Scots pine megagametophyte, a maternally derived seed haploid tissue, and four diploid tissues to test the strength of purifying selection on a set of genes with tissue-specific expression. By using targeted resequencing data of those genes, we obtained estimates of genetic diversity, the site frequency spectrum of 0-fold and 4-fold sites, and inferred the distribution of fitness effects of new mutations in haploid and diploid tissue-specific genes. Our results show that purifying selection is stronger for tissue-specific genes expressed in the haploid megagametophyte tissue and that this signal of strong selection is not an artifact driven by high expression levels.

RevDate: 2023-12-18
CmpDate: 2023-12-18

Mocarski ES (2023)

Programmed Necrosis in Host Defense.

Current topics in microbiology and immunology, 442:1-40.

Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.

RevDate: 2023-11-29
CmpDate: 2023-11-29

Goehring L, Huang TT, DJ Smith (2023)

Transcription-Replication Conflicts as a Source of Genome Instability.

Annual review of genetics, 57:157-179.

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.

RevDate: 2023-09-21
CmpDate: 2023-08-07

Sartor F, Xu X, Popp T, et al (2023)

The circadian clock of the bacterium B. subtilis evokes properties of complex, multicellular circadian systems.

Science advances, 9(31):eadh1308.

Circadian clocks are pervasive throughout nature, yet only recently has this adaptive regulatory program been described in nonphotosynthetic bacteria. Here, we describe an inherent complexity in the Bacillus subtilis circadian clock. We find that B. subtilis entrains to blue and red light and that circadian entrainment is separable from masking through fluence titration and frequency demultiplication protocols. We identify circadian rhythmicity in constant light, consistent with the Aschoff's rule, and entrainment aftereffects, both of which are properties described for eukaryotic circadian clocks. We report that circadian rhythms occur in wild isolates of this prokaryote, thus establishing them as a general property of this species, and that its circadian system responds to the environment in a complex fashion that is consistent with multicellular eukaryotic circadian systems.

RevDate: 2023-08-01
CmpDate: 2023-07-31

Erenpreisa J, Vainshelbaum NM, Lazovska M, et al (2023)

The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer.

International journal of molecular sciences, 24(14):.

The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.

RevDate: 2023-08-14
CmpDate: 2023-08-14

Ma X, Shi X, Wang Q, et al (2023)

A Reinvestigation of Multiple Independent Evolution and Triassic-Jurassic Origins of Multicellular Volvocine Algae.

Genome biology and evolution, 15(8):.

The evolution of multicellular organisms is considered to be a major evolutionary transition, profoundly affecting the ecology and evolution of nearly all life on earth. The volvocine algae, a unique clade of chlorophytes with diverse cell morphology, provide an appealing model for investigating the evolution of multicellularity and development. However, the phylogenetic relationship and timescale of the volvocine algae are not fully resolved. Here, we use extensive taxon and gene sampling to reconstruct the phylogeny of the volvocine algae. Our results support that the colonial volvocine algae are not monophyletic group and multicellularity independently evolve at least twice in the volvocine algae, once in Tetrabaenaceae and another in the Goniaceae + Volvocaceae. The simulation analyses suggest that incomplete lineage sorting is a major factor for the tree topology discrepancy, which imply that the multispecies coalescent model better fits the data used in this study. The coalescent-based species tree supports that the Goniaceae is monophyletic and Crucicarteria is the earliest diverging lineage, followed by Hafniomonas and Radicarteria within the Volvocales. By considering the multiple uncertainties in divergence time estimation, the dating analyses indicate that the volvocine algae occurred during the Cryogenian to Ediacaran (696.6-551.1 Ma) and multicellularity in the volvocine algae originated from the Triassic to Jurassic. Our phylogeny and timeline provide an evolutionary framework for studying the evolution of key traits and the origin of multicellularity in the volvocine algae.

RevDate: 2023-08-12
CmpDate: 2023-07-28

Fichman Y, Rowland L, Oliver MJ, et al (2023)

ROS are evolutionary conserved cell-to-cell stress signals.

Proceedings of the National Academy of Sciences of the United States of America, 120(31):e2305496120.

Cell-to-cell communication is fundamental to multicellular organisms and unicellular organisms living in a microbiome. It is thought to have evolved as a stress- or quorum-sensing mechanism in unicellular organisms. A unique cell-to-cell communication mechanism that uses reactive oxygen species (ROS) as a signal (termed the "ROS wave") was identified in flowering plants. This process is essential for systemic signaling and plant acclimation to stress and can spread from a small group of cells to the entire plant within minutes. Whether a similar signaling process is found in other organisms is however unknown. Here, we report that the ROS wave can be found in unicellular algae, amoeba, ferns, mosses, mammalian cells, and isolated hearts. We further show that this process can be triggered in unicellular and multicellular organisms by a local stress or H2O2 treatment and blocked by the application of catalase or NADPH oxidase inhibitors and that in unicellular algae it communicates important stress-response signals between cells. Taken together, our findings suggest that an active process of cell-to-cell ROS signaling, like the ROS wave, evolved before unicellular and multicellular organisms diverged. This mechanism could have communicated an environmental stress signal between cells and coordinated the acclimation response of many different cells living in a community. The finding of a signaling process, like the ROS wave, in mammalian cells further contributes to our understanding of different diseases and could impact the development of drugs that target for example cancer or heart disease.

RevDate: 2023-09-18
CmpDate: 2023-09-07

Corallo D, Dalla Vecchia M, Lazic D, et al (2023)

The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma.

Biochemical pharmacology, 215:115696.

Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.

RevDate: 2023-09-13
CmpDate: 2023-09-06

Kato D, Aoyama Y, Nishida K, et al (2023)

Regulation of lipid synthesis in myelin modulates neural activity and is required for motor learning.

Glia, 71(11):2591-2608.

Brain function relies on both rapid electrical communication in neural circuitry and appropriate patterns or synchrony of neural activity. Rapid communication between neurons is facilitated by wrapping nerve axons with insulation by a myelin sheath composed largely of different lipids. Recent evidence has indicated that the extent of myelination of nerve axons can adapt based on neural activity levels and this adaptive myelination is associated with improved learning of motor tasks, suggesting such plasticity may enhance effective learning. In this study, we examined whether another aspect of myelin plasticity-changes in myelin lipid synthesis and composition-may also be associated with motor learning. We combined a motor learning task in mice with in vivo two-photon imaging of neural activity in the primary motor cortex (M1) to distinguish early and late stages of learning and then probed levels of some key myelin lipids using mass spectrometry analysis. Sphingomyelin levels were elevated in the early stage of motor learning while galactosylceramide levels were elevated in the middle and late stages of motor learning, and these changes were correlated across individual mice with both learning performance and neural activity changes. Targeted inhibition of oligodendrocyte-specific galactosyltransferase expression, the enzyme that synthesizes myelin galactosylceramide, impaired motor learning. Our results suggest regulation of myelin lipid composition could be a novel facet of myelin adaptations associated with learning.

RevDate: 2023-11-11
CmpDate: 2023-11-07

Lamża Ł (2023)

Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity.

Biological reviews of the Cambridge Philosophical Society, 98(6):2188-2209.

Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.

RevDate: 2023-07-26
CmpDate: 2023-07-21

Vroomans RMA, ES Colizzi (2023)

Evolution of selfish multicellularity: collective organisation of individual spatio-temporal regulatory strategies.

BMC ecology and evolution, 23(1):35.

BACKGROUND: The unicellular ancestors of modern-day multicellular organisms were remarkably complex. They had an extensive set of regulatory and signalling genes, an intricate life cycle and could change their behaviour in response to environmental changes. At the transition to multicellularity, some of these behaviours were co-opted to organise the development of the nascent multicellular organism. Here, we focus on the transition to multicellularity before the evolution of stable cell differentiation, to reveal how the emergence of clusters affects the evolution of cell behaviour.

RESULTS: We construct a computational model of a population of cells that can evolve the regulation of their behavioural state - either division or migration - and study both a unicellular and a multicellular context. Cells compete for reproduction and for resources to survive in a seasonally changing environment. We find that the evolution of multicellularity strongly determines the co-evolution of cell behaviour, by altering the competition dynamics between cells. When adhesion cannot evolve, cells compete for survival by rapidly migrating towards resources before dividing. When adhesion evolves, emergent collective migration alleviates the pressure on individual cells to reach resources. This allows individual cells to maximise their own replication. Migrating adhesive clusters display striking patterns of spatio-temporal cell state changes that visually resemble animal development.

CONCLUSIONS: Our model demonstrates how emergent selection pressures at the onset of multicellularity can drive the evolution of cellular behaviour to give rise to developmental patterns.

RevDate: 2023-07-18
CmpDate: 2023-07-17

Endres K, K Friedland (2023)

Talk to Me-Interplay between Mitochondria and Microbiota in Aging.

International journal of molecular sciences, 24(13):.

The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.

RevDate: 2023-09-18
CmpDate: 2023-09-18

Huang L, Tu Z, Wei L, et al (2023)

Generating Functional Multicellular Organoids from Human Placenta Villi.

Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(26):e2301565.

The interaction between trophoblasts, stroma cells, and immune cells at the maternal-fetal interface constitutes the functional units of the placenta, which is crucial for successful pregnancy outcomes. However, the investigation of this intricate interplay is restricted due to the absence of efficient experimental models. To address this challenge, a robust, reliable methodology for generating placenta villi organoids (PVOs) from early, late, or diseased pregnancies using air-liquid surface culture is developed. PVOs contain cytotrophoblasts that can self-renew and differentiate directly, along with stromal elements that retain native immune cells. Analysis of scRNA sequencing and WES data reveals that PVOs faithfully recapitulate the cellular components and genetic alterations of the corresponding source tissue. Additionally, PVOs derived from patients with preeclampsia exhibit specific pathological features such as inflammation, antiangiogenic imbalance, and decreased syncytin expression. The PVO-based propagation of primary placenta villi should enable a deeper investigation of placenta development and exploration of the underlying pathogenesis and therapeutics of placenta-originated diseases.

RevDate: 2023-11-09
CmpDate: 2023-07-14

Geng S, Hamaji T, Ferris PJ, et al (2023)

A conserved RWP-RK transcription factor VSR1 controls gametic differentiation in volvocine algae.

Proceedings of the National Academy of Sciences of the United States of America, 120(29):e2305099120.

Volvocine green algae are a model for understanding the evolution of mating types and sexes. They are facultatively sexual, with gametic differentiation occurring in response to nitrogen starvation (-N) in most genera and to sex inducer hormone in Volvox. The conserved RWP-RK family transcription factor (TF) MID is encoded by the minus mating-type locus or male sex-determining region of heterothallic volvocine species and dominantly determines minus or male gametic differentiation. However, the factor(s) responsible for establishing the default plus or female differentiation programs have remained elusive. We performed a phylo-transcriptomic screen for autosomal RWP-RK TFs induced during gametogenesis in unicellular isogamous Chlamydomonas reinhardtii (Chlamydomonas) and in multicellular oogamous Volvox carteri (Volvox) and identified a single conserved ortho-group we named Volvocine Sex Regulator 1 (VSR1). Chlamydomonas vsr1 mutants of either mating type failed to mate and could not induce expression of key mating-type-specific genes. Similarly, Volvox vsr1 mutants in either sex could initiate sexual embryogenesis, but the presumptive eggs or androgonidia (sperm packet precursors) were infertile and unable to express key sex-specific genes. Yeast two-hybrid assays identified a conserved domain in VSR1 capable of self-interaction or interaction with the conserved N terminal domain of MID. In vivo coimmunoprecipitation experiments demonstrated association of VSR1 and MID in both Chlamydomonas and Volvox. These data support a new model for volvocine sexual differentiation where VSR1 homodimers activate expression of plus/female gamete-specific-genes, but when MID is present, MID-VSR1 heterodimers are preferentially formed and activate minus/male gamete-specific-genes.

RevDate: 2023-12-26
CmpDate: 2023-12-26

Mondal A, MS Bansal (2023)

Generalizing the Domain-Gene-Species Reconciliation Framework to Microbial Genes and Domains.

IEEE/ACM transactions on computational biology and bioinformatics, 20(6):3511-3522.

Protein domains play an important role in the function and evolution of many gene families. Previous studies have shown that domains are frequently lost or gained during gene family evolution. Yet, most computational approaches for studying gene family evolution do not account for domain-level evolution within genes. To address this limitation, a new three-level reconciliation framework, called the Domain-Gene-Species (DGS) reconciliation model, has been recently developed to simultaneously model the evolution of a domain family inside one or more gene families and the evolution of those gene families inside a species tree. However, the existing model applies only to multi-cellular eukaryotes where horizontal gene transfer is negligible. In this work, we generalize the existing DGS reconciliation model by allowing for the spread of genes and domains across species boundaries through horizontal transfer. We show that the problem of computing optimal generalized DGS reconciliations, though NP-hard, is approximable to within a constant factor, where the specific approximation ratio depends on the "event costs" used. We provide two different approximation algorithms for the problem and demonstrate the impact of the generalized framework using both simulated and real biological data. Our results show that our new algorithms result in highly accurate reconstructions of domain family evolution for microbes.

RevDate: 2023-10-03
CmpDate: 2023-09-27

Aanen DK, van 't Padje A, B Auxier (2023)

Longevity of Fungal Mycelia and Nuclear Quality Checks: a New Hypothesis for the Role of Clamp Connections in Dikaryons.

Microbiology and molecular biology reviews : MMBR, 87(3):e0002221.

This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.

RevDate: 2023-09-20
CmpDate: 2023-09-18

Ruiz-Trillo I, Kin K, E Casacuberta (2023)

The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event.

Annual review of microbiology, 77:499-516.

The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.

RevDate: 2023-10-21
CmpDate: 2023-10-06

Stevenson ZC, Moerdyk-Schauwecker MJ, Banse SA, et al (2023)

High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS).

eLife, 12:.

High-throughput transgenesis using synthetic DNA libraries is a powerful method for systematically exploring genetic function. Diverse synthesized libraries have been used for protein engineering, identification of protein-protein interactions, characterization of promoter libraries, developmental and evolutionary lineage tracking, and various other exploratory assays. However, the need for library transgenesis has effectively restricted these approaches to single-cell models. Here, we present Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS), a simple yet powerful approach to large-scale transgenesis that overcomes typical limitations encountered in multicellular systems. TARDIS splits the transgenesis process into a two-step process: creation of individuals carrying experimentally introduced sequence libraries, followed by inducible extraction and integration of individual sequences/library components from the larger library cassette into engineered genomic sites. Thus, transformation of a single individual, followed by lineage expansion and functional transgenesis, gives rise to thousands of genetically unique transgenic individuals. We demonstrate the power of this system using engineered, split selectable TARDIS sites in Caenorhabditis elegans to generate (1) a large set of individually barcoded lineages and (2) transcriptional reporter lines from predefined promoter libraries. We find that this approach increases transformation yields up to approximately 1000-fold over current single-step methods. While we demonstrate the utility of TARDIS using C. elegans, in principle the process is adaptable to any system where experimentally generated genomic loci landing pads and diverse, heritable DNA elements can be generated.

RevDate: 2023-12-13
CmpDate: 2023-07-03

Kapsetaki SE, Fortunato A, Compton Z, et al (2023)

Is chimerism associated with cancer across the tree of life?.

PloS one, 18(6):e0287901.

Chimerism is a widespread phenomenon across the tree of life. It is defined as a multicellular organism composed of cells from other genetically distinct entities. This ability to 'tolerate' non-self cells may be linked to susceptibility to diseases like cancer. Here we test whether chimerism is associated with cancers across obligately multicellular organisms in the tree of life. We classified 12 obligately multicellular taxa from lowest to highest chimerism levels based on the existing literature on the presence of chimerism in these species. We then tested for associations of chimerism with tumour invasiveness, neoplasia (benign or malignant) prevalence and malignancy prevalence in 11 terrestrial mammalian species. We found that taxa with higher levels of chimerism have higher tumour invasiveness, though there was no association between malignancy or neoplasia and chimerism among mammals. This suggests that there may be an important biological relationship between chimerism and susceptibility to tissue invasion by cancerous cells. Studying chimerism might help us identify mechanisms underlying invasive cancers and also could provide insights into the detection and management of emerging transmissible cancers.

RevDate: 2023-11-24
CmpDate: 2023-07-03

Römling U, Cao LY, FW Bai (2023)

Evolution of cyclic di-GMP signalling on a short and long term time scale.

Microbiology (Reading, England), 169(6):.

Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.

RevDate: 2023-08-03
CmpDate: 2023-08-03

Saritas T (2023)

The use of tissue clearing to study renal transport mechanisms and kidney remodelling.

Current opinion in nephrology and hypertension, 32(5):458-466.

PURPOSE OF REVIEW: Tissue clearing enables examination of biological structures at subcellular resolution in three dimensions. It uncovered the spatial and temporal plasticity of multicellular kidney structures that occur during homeostatic stress. This article will review the recent development in tissue clearing protocols and how it facilitated the study of renal transport mechanisms and remodelling of the kidney.

RECENT FINDINGS: Tissue clearing methods have evolved from primarily labelling proteins in thin tissue or individual organs to visualizing both RNA and protein simultaneously in whole animals or human organs. The use of small antibody fragments and innovative imaging techniques improved immunolabelling and resolution. These advances opened up new avenues for studying organ crosstalk and diseases that affect multiple parts of the organism. Accumulating evidence suggests that tubule remodelling can occur rapidly in response to homeostatic stress or injury, allowing for adjustments in the quantitative expression of renal transporters. Tissue clearing helped to better understand the development of tubule cystogenesis, renal hypertension and salt wasting syndromes, and revealed potential progenitor cells in the kidney.

SUMMARY: The continued evolution and improvement of tissue clearing methods can help to gain deep biological insights into the structure and function of the kidney, which will have clinical implications.

RevDate: 2023-08-07
CmpDate: 2023-08-07

Zare M, Mirhoseini SZ, Ghovvati S, et al (2023)

The constitutively active pSMAD2/3 relatively improves the proliferation of chicken primordial germ cells.

Molecular reproduction and development, 90(6):339-357.

In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-β signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-β signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-β, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.

RevDate: 2023-11-24
CmpDate: 2023-06-26

Fang H, Sun Q, Zhou J, et al (2023)

m[6]A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma.

Molecular cancer, 22(1):99.

BACKGROUND: Lung adenocarcinoma (LUAD) is a common type of lung cancer with a high risk of metastasis, but the exact molecular mechanisms of metastasis are not yet understood.

METHODS: This study acquired single-cell transcriptomics profiling of 11 distal normal lung tissues, 11 primary LUAD tissues, and 4 metastatic LUAD tissues from the GSE131907 dataset. The lung multicellular ecosystems were characterized at a single-cell resolution, and the potential mechanisms underlying angiogenesis and metastasis of LUAD were explored.

RESULTS: We constructed a global single-cell landscape of 93,610 cells from primary and metastatic LUAD and found that IGF2BP2 was specifically expressed both in a LUAD cell subpopulation (termed as LUAD_IGF2BP2), and an endothelial cell subpopulation (termed as En_IGF2BP2). The LUAD_IGF2BP2 subpopulation progressively formed and dominated the ecology of metastatic LUAD during metastatic evolution. IGF2BP2 was preferentially secreted by exosomes in the LUAD_IGF2BP2 subpopulation, which was absorbed by the En_IGF2BP2 subpopulation in the tumor microenvironment. Subsequently, IGF2BP2 improved the RNA stability of FLT4 through m[6]A modification, thereby activating the PI3K-Akt signaling pathway, and eventually promoting angiogenesis and metastasis. Analysis of clinical data showed that IGF2BP2 was linked with poor overall survival and relapse-free survival for LUAD patients.

CONCLUSIONS: Overall, these findings provide a novel insight into the multicellular ecosystems of primary and metastatic LUAD, and demonstrate that a specific LUAD_IGF2BP2 subpopulation is a key orchestrator promoting angiogenesis and metastasis, with implications for the gene regulatory mechanisms of LUAD metastatic evolution, representing themselves as potential antiangiogenic targets.

RevDate: 2023-10-02
CmpDate: 2023-08-09

Merényi Z, Krizsán K, Sahu N, et al (2023)

Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits.

Nature ecology & evolution, 7(8):1221-1231.

Fungi are ecologically important heterotrophs that have radiated into most niches on Earth and fulfil key ecological services. Despite intense interest in their origins, major genomic trends of their evolutionary route from a unicellular opisthokont ancestor to derived multicellular fungi remain poorly known. Here we provide a highly resolved genome-wide catalogue of gene family changes across fungal evolution inferred from the genomes of 123 fungi and relatives. We show that a dominant trend in early fungal evolution has been the gradual shedding of protist genes and the punctuated emergence of innovation by two main gene duplication events. We find that the gene content of non-Dikarya fungi resembles that of unicellular opisthokonts in many respects, owing to the conservation of protist genes in their genomes. The most rapidly duplicating gene groups included extracellular proteins and transcription factors, as well as ones linked to the coordination of nutrient uptake with growth, highlighting the transition to a sessile osmotrophic feeding strategy and subsequent lifestyle evolution as important elements of early fungal history. These results suggest that the genomes of pre-fungal ancestors evolved into the typical filamentous fungal genome by a combination of gradual gene loss, turnover and several large duplication events rather than by abrupt changes. Consequently, the taxonomically defined Fungi represents a genomically non-uniform assemblage of species.

RevDate: 2023-07-01
CmpDate: 2023-06-22

Caspi Y, Pantazopoulou CK, Prompers JJ, et al (2023)

Why did glutamate, GABA, and melatonin become intercellular signalling molecules in plants?.

eLife, 12:.

Intercellular signalling is an indispensable part of multicellular life. Understanding the commonalities and differences in how signalling molecules function in two remote branches of the tree of life may shed light on the reasons these molecules were originally recruited for intercellular signalling. Here we review the plant function of three highly studied animal intercellular signalling molecules, namely glutamate, γ-aminobutyric acid (GABA), and melatonin. By considering both their signalling function in plants and their broader physiological function, we suggest that molecules with an original function as key metabolites or active participants in reactive ion species scavenging have a high chance of becoming intercellular signalling molecules. Naturally, the evolution of machinery to transduce a message across the plasma membrane is necessary. This fact is demonstrated by three other well-studied animal intercellular signalling molecules, namely serotonin, dopamine, and acetylcholine, for which there is currently no evidence that they act as intercellular signalling molecules in plants.

RevDate: 2023-11-23
CmpDate: 2023-06-21

Sarkar MMH, Rahman MS, Islam MR, et al (2023)

Comparative phylogenetic analysis and transcriptomic profiling of Dengue (DENV-3 genotype I) outbreak in 2021 in Bangladesh.

Virology journal, 20(1):127.

BACKGROUND: The next-generation sequencing (NGS) technology facilitates in-depth study of host-pathogen metatranscriptome. We, therefore, implicated phylodynamic and transcriptomic approaches through NGS technology to know/understand the dengue virus (DENV) origin and host response with dengue fever.

METHODS: In this study, blood serum RNA was extracted from 21 dengue patients and 3 healthy individuals. Total transcriptomic data were analyzed for phylogenetic, phylodynamic, differential express gene (DEG), and gene ontology (GO) using respective bioinformatics tools.

RESULTS: The viral genome sequence revealed dengue viral genome size ranges 10647 to 10707 nucleotide. Phylogenetic and phylodynamic analysis showed that the 2021 epidemic isolates were DENV-3 genotype-I and maintained as a new clade in compared to 2019 epidemic. Transcriptome analysis showed a total of 2686 genes were DEG in dengue patients compared to control with a q-value < 0.05. DESeq2 plot counts function of the top 24 genes with the smallest q-values of differential gene expression of RNA-seq data showed that 11 genes were upregulated, whereas 13 genes were downregulated. GO analysis showed a significant upregulation (p = < 0.001) in a process of multicellular organismal, nervous system, sensory perception of chemical stimulus, and G protein-coupled receptor signaling pathways in the dengue patients. However, there were a significant downregulation (p = < 0.001) of intracellular component, cellular anatomical entity, and protein-containing complex in dengue patients. Most importantly, there was a significant increase of a class of immunoregulatory proteins in dengue patients in compared to the controls, with increased GO of immune system process. In addition, upregulation of toll receptor (TLR) signaling pathways were found in dengue patients. These TLR pathways were particularly involved for the activation of innate system coupled with adaptive immune system that probably involved the rapid elimination of dengue virus infected cells. These differentially expressed genes could be further investigated for target based prophylactic interventions for dengue.

CONCLUSION: This is a first report describing DENV complete genomic features and differentially expressed genes in patients in Bangladesh. These genes may have diagnostic and therapeutic values for dengue infection. Continual genomic surveillance is required to further investigate the shift in dominant genotypes in relation to viral pathogenesis.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12985-023-02030-1.

RevDate: 2023-11-17
CmpDate: 2023-06-19

Chavhan Y, Dey S, PA Lind (2023)

Bacteria evolve macroscopic multicellularity by the genetic assimilation of phenotypically plastic cell clustering.

Nature communications, 14(1):3555.

The evolutionary transition from unicellularity to multicellularity was a key innovation in the history of life. Experimental evolution is an important tool to study the formation of undifferentiated cellular clusters, the likely first step of this transition. Although multicellularity first evolved in bacteria, previous experimental evolution research has primarily used eukaryotes. Moreover, it focuses on mutationally driven (and not environmentally induced) phenotypes. Here we show that both Gram-negative and Gram-positive bacteria exhibit phenotypically plastic (i.e., environmentally induced) cell clustering. Under high salinity, they form elongated clusters of ~ 2 cm. However, under habitual salinity, the clusters disintegrate and grow planktonically. We used experimental evolution with Escherichia coli to show that such clustering can be assimilated genetically: the evolved bacteria inherently grow as macroscopic multicellular clusters, even without environmental induction. Highly parallel mutations in genes linked to cell wall assembly formed the genomic basis of assimilated multicellularity. While the wildtype also showed cell shape plasticity across high versus low salinity, it was either assimilated or reversed after evolution. Interestingly, a single mutation could genetically assimilate multicellularity by modulating plasticity at multiple levels of organization. Taken together, we show that phenotypic plasticity can prime bacteria for evolving undifferentiated macroscopic multicellularity.

RevDate: 2023-11-14
CmpDate: 2023-11-14

Fulda FC (2023)

Agential autonomy and biological individuality.

Evolution & development, 25(6):353-370.

What is a biological individual? How are biological individuals individuated? How can we tell how many individuals there are in a given assemblage of biological entities? The individuation and differentiation of biological individuals are central to the scientific understanding of living beings. I propose a novel criterion of biological individuality according to which biological individuals are autonomous agents. First, I articulate an ecological-dynamical account of natural agency according to which, agency is the gross dynamical capacity of a goal-directed system to bias its repertoire to respond to its conditions as affordances. Then, I argue that agents or agential dynamical systems can be agentially dependent on, or agentially autonomous from, other agents and that this agential dependence/autonomy can be symmetrical or asymmetrical, strong or weak. Biological individuals, I propose, are all and only those agential dynamical systems that are strongly agentially autonomous. So, to determine how many individuals there are in a given multiagent aggregate, such as multicellular organism, a colony, symbiosis, or a swarm, we first have to identify how many agential dynamical systems there are, and then what their relations of agential dependence/autonomy are. I argue that this criterion is adequate to the extent that it vindicates the paradigmatic cases, and explains why the paradigmatic cases are paradigmatic, and why the problematic cases are problematic. Finally, I argue for the importance of distinguishing between agential and causal dependence and show the relevance of agential autonomy for understanding the explanatory structure of evolutionary developmental biology.

RevDate: 2023-07-18
CmpDate: 2023-07-11

Jacob MS (2023)

Toward a Bio-Organon: A model of interdependence between energy, information and knowledge in living systems.

Bio Systems, 230:104939.

What is an organism? In the absence of a fundamental biological definition, what constitutes a living organism, whether it is a unicellular microbe, a multicellular being or a multi-organismal society, remains an open question. New models of living systems are needed to address the scale of this question, with implications for the relationship between humanity and planetary ecology. Here we develop a generic model of an organism that can be applied across multiple scales and through major evolutionary transitions to form a toolkit, or bio-organon, for theoretical studies of planetary-wide physiology. The tool identifies the following core organismic principles that cut across spatial scale: (1) evolvability through self-knowledge, (2) entanglement between energy and information, and (3) extrasomatic "technology" to scaffold increases in spatial scale. Living systems are generally defined by their ability to self-sustain against entropic forces of degradation. Life "knows" how to survive from the inside, not from its genetic code alone, but by utilizing this code through dynamically embodied and functionally specialized flows of information and energy. That is, entangled metabolic and communication networks bring encoded knowledge to life in order to sustain life. However, knowledge is itself evolved and is evolving. The functional coupling between knowledge, energy and information has ancient origins, enabling the original, cellular "biotechnology," and cumulative evolutionary creativity in biochemical products and forms. Cellular biotechnology also enabled the nesting of specialized cells into multicellular organisms. This nested organismal hierarchy can be extended further, suggesting that an organism of organisms, or a human "superorganism," is not only possible, but in keeping with evolutionary trends.

RevDate: 2023-08-29
CmpDate: 2023-06-09

Zhang F, Ji Q, Chaturvedi J, et al (2023)

Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis.

Science advances, 9(23):eadh8502.

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNA[Phe]), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNA[Phe] depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNA[Phe]-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNA[Phe] susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.

RevDate: 2023-06-27
CmpDate: 2023-06-20

Lamolle G, Simón D, Iriarte A, et al (2023)

Main Factors Shaping Amino Acid Usage Across Evolution.

Journal of molecular evolution, 91(4):382-390.

The standard genetic code determines that in most species, including viruses, there are 20 amino acids that are coded by 61 codons, while the other three codons are stop triplets. Considering the whole proteome each species features its own amino acid frequencies, given the slow rate of change, closely related species display similar GC content and amino acids usage. In contrast, distantly related species display different amino acid frequencies. Furthermore, within certain multicellular species, as mammals, intragenomic differences in the usage of amino acids are evident. In this communication, we shall summarize some of the most prominent and well-established factors that determine the differences found in the amino acid usage, both across evolution and intragenomically.

RevDate: 2023-06-12
CmpDate: 2023-06-05

Galand PE, Ruscheweyh HJ, Salazar G, et al (2023)

Diversity of the Pacific Ocean coral reef microbiome.

Nature communications, 14(1):3039.

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.

RevDate: 2023-06-20
CmpDate: 2023-06-15

Blomme J, Wichard T, Jacobs TB, et al (2023)

Ulva: An emerging green seaweed model for systems biology.

Journal of phycology, 59(3):433-440.

Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.

RevDate: 2023-07-04
CmpDate: 2023-06-07

Jiang P, Kreitman M, J Reinitz (2023)

The effect of mutational robustness on the evolvability of multicellular organisms and eukaryotic cells.

Journal of evolutionary biology, 36(6):906-924.

Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype-phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.

RevDate: 2023-07-18
CmpDate: 2023-07-07

Hoch NC (2023)

Tissue Specificity of DNA Damage and Repair.

Physiology (Bethesda, Md.), 38(5):0.

DNA is a remarkable biochemical macromolecule tasked with storing the genetic information that instructs life on planet Earth. However, its inherent chemical instability within the cellular milieu is incompatible with the accurate transmission of genetic information to subsequent generations. Therefore, biochemical pathways that continuously survey and repair DNA are essential to sustain life, and the fundamental mechanisms by which different DNA lesions are repaired have remained well conserved throughout evolution. Nonetheless, the emergence of multicellular organisms led to profound differences in cellular context and physiology, leading to large variations in the predominant sources of DNA damage between different cell types and in the relative contribution of different DNA repair pathways toward genome maintenance in different tissues. While we continue to make large strides into understanding how individual DNA repair mechanisms operate on a molecular level, much less attention is given to these cell type-specific differences. This short review aims to provide a broad overview of DNA damage and repair mechanisms to nonspecialists and to highlight some fundamental open questions in tissue and cell-type-specificity of these processes, which may have profound implications for our understanding of important pathophysiological processes such as cancer, neurodegeneration, and aging.

RevDate: 2023-06-21
CmpDate: 2023-05-31

McCourt RM, Lewis LA, Strother PK, et al (2023)

Green land: Multiple perspectives on green algal evolution and the earliest land plants.

American journal of botany, 110(5):e16175.

Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history. The transition, from unicells or simple filaments to complex multicellular plant bodies with functionally differentiated tissues and organs, was accompanied by innovations built upon a genetic and phenotypic toolkit that have served aquatic green phototrophs successfully for at least a billion years. These innovations opened an enormous array of new, drier places to live on the planet and resulted in a huge diversity of land plants that have dominated terrestrial ecosystems over the past 500 million years. This review examines the greening of the land from several perspectives, from paleontology to phylogenomics, to water stress responses and the genetic toolkit shared by green algae and plants, to the genomic evolution of the sporophyte generation. We summarize advances on disparate fronts in elucidating this important event in the evolution of the biosphere and the lacunae in our understanding of it. We present the process not as a step-by-step advancement from primitive green cells to an inevitable success of embryophytes, but rather as a process of adaptations and exaptations that allowed multiple clades of green plants, with various combinations of morphological and physiological terrestrialized traits, to become diverse and successful inhabitants of the land habitats of Earth.

RevDate: 2023-05-26

Wu N, Wei L, Zhu Z, et al (2023)

Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction.

Protein & cell pii:7180341 [Epub ahead of print].

Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.

RevDate: 2023-05-25

Hengge R, Pruteanu M, Stülke J, et al (2023)

Recent advances and perspectives in nucleotide second messenger signaling in bacteria.

microLife, 4:uqad015.

Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )