Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 20 Nov 2019 at 01:42 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: "microbial ecology" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-11-19

Weber L, González-Díaz P, Armenteros M, et al (2019)

Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys.

Environmental microbiology [Epub ahead of print].

There are few baseline reef-systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrography. Seawater from the highly protected 'crown jewel' offshore reefs in Jardines de la Reina, Cuba had low concentrations of nutrients and organic carbon, abundant Prochlorococcus, and high microbial community alpha diversity. Seawater from the less protected system of Los Canarreos, Cuba had elevated microbial community beta diversity whereas waters from the most impacted nearshore reefs in the Florida Keys contained high organic carbon and nitrogen concentrations and potential microbial functions characteristic of microbialized reefs. Each reef-system had distinct microbial signatures and within this context, we propose that the protection and offshore nature of Jardines de la Reina may preserve the oligotrophic paradigm and the metabolic dependence of the community on primary production by picocyanobacteria. This article is protected by copyright. All rights reserved.

RevDate: 2019-11-19

Geesink P, Wegner CE, Probst AJ, et al (2019)

Genome-inferred spatio-temporal resolution of an uncultivated Roizmanbacterium reveals its ecological preferences in groundwater.

Environmental microbiology [Epub ahead of print].

Subsurface ecosystems like groundwater harbor diverse microbial communities, including small-sized, putatively symbiotic organisms of the Candidate Phyla Radiation, yet little is known about their ecological preferences and potential microbial partners. Here, we investigated a member of the superphylum Microgenomates (Cand. Roizmanbacterium ADI133) from oligotrophic groundwater using mini-metagenomics and monitored its spatio-temporal distribution using 16S rRNA gene analyses. A Roizmanbacteria-specific quantitative PCR assay allowed us to track its abundance over the course of one year within eight groundwater wells along a 5.4 km hillslope transect, where Roizmanbacteria reached maximum relative abundances of 2.3 %. In-depth genomic analyses suggested that Cand. Roizmanbacterium ADI133 is a lactic acid fermenter, potentially able to utilize a range of complex carbon substrates, including cellulose We hypothesize that it attaches to host cells using a trimeric autotransporter adhesin and inhibits their cell wall biosynthesis using a toxin-antitoxin system. Network analyses based on correlating Cand. Roizmanbacterium ADI133 abundances with amplicon sequencing derived microbial community profiles suggested one potential host organism, classified as a member of the class Thermodesulfovibrionia (Nitrospirae). By providing lactate as an electron donor Cand. Roizmanbacterium ADI133 potentially mediates the transfer of carbon to other microorganisms and thereby is an important connector in the microbial community. This article is protected by copyright. All rights reserved.

RevDate: 2019-11-19

Alves KJ, da Silva MCP, Cotta SR, et al (2019)

Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] pii:10.1007/s42770-019-00162-7 [Epub ahead of print].

Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.

RevDate: 2019-11-19

Hayek M, Baraquet C, Lami R, et al (2019)

The Marine Bacterium Shewanella woodyi Produces C8-HSL to Regulate Bioluminescence.

Microbial ecology pii:10.1007/s00248-019-01454-z [Epub ahead of print].

Quorum sensing (QS), a cell-to-cell communication system involved in the synchronization of bacterial behavior in a cell-density-dependent manner has been shown to control phenotypes such as luminescence, virulence, and biofilm formation. The marine strain, Shewanella woodyi MS32 has been identified as a luminous bacterium. Very little information is known on this bacterium, in particular if its luminescence and biofilm formation are controlled by QS. In this study, we have demonstrated that S. woodyi MS32 emits luminescence in planktonic and sessile conditions. The putative QS regulatory genes homologous to luxI and luxR identified in the S. woodyi MS32 genome, named swoI and swoR, are divergently transcribed and are not genetically linked to the lux operon in contrast with its closest parent Shewanella hanedai and with Aliivibrio fischeri. Interestingly, the phylogenetic analysis based on the SwoI and SwoR sequences shows that a separate horizontal gene transfer (HGT) occurred for the regulatory genes and for the lux operon. Functional analyses demonstrate that the swoI and swoR mutants were non-luminescent. Expression of lux genes was impaired in the QS regulatory mutants. N-octanoyl-L-homoserine lactone (C8-HSL) identified using liquid chromatography mass spectrometry in the wild-type strain (but not in ΔswoI) can induce S. woodyi luminescence. No significant difference has been detected between the wild-type and mutants on adhesion and biofilm formation in the conditions tested. Therefore, we have demonstrated that the luxCDABEG genes of S. woodyi MS32 are involved in luminescence emission and that the swoR/swoI genes, originated from a separate HGT, regulate luminescence through C8-HSL production.

RevDate: 2019-11-18

Khan S, Voordouw MJ, JE Hill (2019)

Competition Among Gardnerella Subgroups From the Human Vaginal Microbiome.

Frontiers in cellular and infection microbiology, 9:374.

Gardnerella spp. are hallmarks of bacterial vaginosis, a clinically significant dysbiosis of the vaginal microbiome. Gardnerella has four subgroups (A, B, C, and D) based on cpn60 sequences. Multiple subgroups are often detected in individual women, and interactions between these subgroups are expected to influence their population dynamics and associated clinical signs and symptoms of bacterial vaginosis. In the present study, contact-independent and contact-dependent interactions between the four Gardnerella subgroups were investigated in vitro. The cell free supernatants of mono- and co-cultures had no effect on growth rates of the Gardnerella subgroups suggesting that there are no contact-independent interactions (and no contest competition). For contact-dependent interactions, mixed communities of 2, 3, or 4 subgroups were created and the initial (0 h) and final population sizes (48 h) were quantified using subgroup-specific PCR. Compared to the null hypothesis of neutral interactions, most (69.3%) of the mixed communities exhibited competition. Competition reduced the growth rates of subgroups A, B, and C. In contrast, the growth rate of subgroup D increased in the presence of the other subgroups. All subgroups were able to form biofilm alone and in mixed communities. Our study suggests that there is scramble competition among Gardnerella subgroups, which likely contributes to the observed distributions of Gardnerella spp. in vaginal microbiomes and the formation of the multispecies biofilms characteristic of bacterial vaginosis.

RevDate: 2019-11-18

Del Frari G, Gobbi A, Aggerbeck MR, et al (2019)

Fungicides and the Grapevine Wood Mycobiome: A Case Study on Tracheomycotic Ascomycete Phaeomoniella chlamydospora Reveals Potential for Two Novel Control Strategies.

Frontiers in plant science, 10:1405.

Phaeomoniella chlamydospora is a tracheomycotic fungus that colonizes the xylem of grapevines (Vitis vinifera L.), causing wood discoloration, brown wood streaking, gummosis, and wood necrosis, which negatively affect the overall health, productivity, and life span of vines. Current control strategies to prevent or cope with P. chlamydospora infections are frequently ineffective. Moreover, it is unclear how fungicides commonly applied in vineyards against downy and powdery mildew agents affect the wood mycobiome, including wood pathogens such as P. chlamydospora. In this study, we used next-generation sequencing to assess the effects of foliar spray of grapevines with inorganic (copper oxychloride and sulfur), synthetic (penconazole and fosetyl-aluminum), and natural (Blad) fungicides currently used against the downy and powdery mildews. The subjects of our investigation were (i) the resident wood mycobiome, (ii) the early colonization by a consortium of fungal wood endophytes (ACEA1), (iii) the wood colonization success of P. chlamydospora, and (iv) the in planta interaction between P. chlamydospora and ACEA1, under greenhouse conditions, in rooted grapevine cuttings of cv. Cabernet Sauvignon. The data obtained suggest that the resident mycobiome is affected by different fungicide treatments. In addition, the early colonization success of the endophytes composing ACEA1 varied in response to fungicides, with relative abundances of some taxa being overrepresented or underrepresented when compared with the control. The wood colonization by P. chlamydospora comported significant changes in the mycobiome composition, and in addition, it was greatly affected by the foliar spray with Blad, which decreased the relative abundance of this pathogen 12-fold (4.9%) when compared with the control (60.7%) and other treatments. The presence of the pathogen also decreased considerably when co-inoculated into the plant with ACEA1, reaching relative abundances between 13.9% and 2.0%, depending on the fungicide treatment applied. This study shows that fungicides sprayed to prevent infections of powdery and downy mildews have an effect on non-target fungi that colonize the endosphere of grapevines. We suggest two potential control strategies to fight P. chlamydospora, namely, the foliar spray with Blad and the use of ACEA1. Further studies to confirm these results are required.

RevDate: 2019-11-18

Villela HDM, Vilela CLS, Assis JM, et al (2019)

Prospecting Microbial Strains for Bioremediation and Probiotics Development for Metaorganism Research and Preservation.

Journal of visualized experiments : JoVE.

Pollution affects all biomes. Marine environments have been particularly impacted, especially coral reefs, one of the most sensitive ecosystems on Earth. Globally, 4.5 billion people are economically dependent on the sea, where most of their livelihood is provided by coral reefs. Corals are of great importance and therefore their extinction leads to catastrophic consequences. There are several possible solutions to remediate marine pollutants and local contamination, including bioremediation. Bioremediation is the capacity of organisms to degrade contaminants. The approach presents several advantages, such as sustainability, relatively low cost, and the fact that it can be applied in different ecosystems, causing minimal impacts to the environment. As an extra advantage, the manipulation of endogenous microbiomes, including putative beneficial microorganisms for corals (pBMCs), may have probiotic effects for marine animals. In this context, the use of the two approaches, bioremediation and pBMC inoculation combined, could be promising. This strategy would promote the degradation of specific pollutants that can be harmful to corals and other metaorganisms while also increasing host resistance and resilience to deal with pollution and other threats. This method focuses on the selection of pBMCs to degrade two contaminants: the synthetic estrogen 17a-ethinylestradiol (EE2) and crude oil. Both have been reported to negatively impact marine animals, including corals, and humans. The protocol describes how to isolate and test bacteria capable of degrading the specific contaminants, followed by a description of how to detect some putative beneficial characteristics of these associated microbes to their coral host. The methodologies described here are relatively cheap, easy to perform, and highly adaptable. Almost any kind of soluble target compound can be used instead of EE2 and oil.

RevDate: 2019-11-18

Paver SF, Newton RJ, ML Coleman (2019)

Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry.

Environmental microbiology [Epub ahead of print].

The Laurentian Great Lakes are a vast, interconnected freshwater system spanning strong physicochemical gradients, thus constituting a powerful natural laboratory for addressing fundamental questions about microbial ecology and evolution. We present a comparative analysis of pelagic microbial communities across all five Laurentian Great Lakes, focusing on Bacterial and Archaeal picoplankton characterized via 16S rRNA amplicon sequencing. We collected samples throughout the water column from the major basins of each lake in spring and summer over two years. Two oligotypes, classified as LD12 (Alphaproteobacteria) and acI-B1 (Actinobacteria), were among the most abundant in every sample. At the same time, microbial communities showed distinct patterns with depth during summer stratification. Deep hypolimnion samples were frequently dominated by a Chloroflexi oligotype that reached up to 19% relative abundance. Stratified surface communities differed between the colder, less productive upper lakes (Superior, Michigan, Huron) and warmer, more productive lower lakes (Erie, Ontario), in part due to an Actinobacteria oligotype (acI-C2) that averaged 7.7% of sequences in the lower lakes but <0.2% in the upper lakes. Together, our findings suggest that both hydrologic connectivity and local selective pressures shape microbial communities in the Great Lakes and establish a framework for future investigations. This article is protected by copyright. All rights reserved.

RevDate: 2019-11-17

Sikder MNA, H Xu (2019)

Seasonal variations in colonization dynamics of periphytic protozoa in coastal waters of the Yellow Sea, northern China.

European journal of protistology, 72:125643 pii:S0932-4739(19)30080-X [Epub ahead of print].

The colonization features of periphytic protozoa have proved to be a useful tool for indicating water quality status in aquatic ecosystems. In order to reveal the seasonal variations in colonization dynamics of the protozoa, a 1-year baseline survey was carried out in coastal waters of the Yellow Sea, northern China. Using glass slides as artificial substrates, a total of 240 slides were collected at a depth of 1 m in four seasons after colonization periods of 3, 7, 10, 14, 21, and 28 days. A total of 122 ciliate species were identified with 21 dominant species. The colonization dynamics of the protozoa were well fitted to the MacArthur-Wilson and logistic models in all four seasons (P < 0.05). However, the equilibrium species numbers (Seq), colonization rates (G), and the time to 90% Seq (T90%) represented a clear seasonal variability: (1) more or less similar levels in spring and autumn (Seq = 29/23; G = 0.301/0.296; T90%=7.650/7.779); (2) with a significant difference in summer and winter (Seq = 32/121; G = 0.708/0.005; T90% = 3.252/479.705). Multivariate approaches demonstrated that the exposure time for the species composition and community structure of the protozoa to an equilibrium period were 10-14 days in spring and autumn, but less and more time periods were needed in summer and winter, respectively. Based on the results, we suggest that the colonization dynamics of periphytic protozoa were different within four seasons, and an optimal sampling strategy for monitoring surveys should be modified during different seasons in marine ecosystems.

RevDate: 2019-11-17

Clauwaert P, De Paepe J, Jiang F, et al (2019)

Electrochemical tap water softening: A zero chemical input approach.

Water research, 169:115263 pii:S0043-1354(19)31037-1 [Epub ahead of print].

Electrochemical water softening was proposed as a sustainable alternative for ion exchange softening, avoiding the input of salt to drinking water and the production of a concentrated brine. Here we demonstrated two novel modes of operation combining an electrochemical cell with a fluidized bed crystallizer. The first approach relied on an electrochemical cell consisting of an anode and cathode separated by a cation or anion exchange membrane. The feed water was first directed into a crystallizer where it was blended with alkaline cathode effluent. The effluent of the crystallizer, softened water, was in part recirculated to the cathode to generate alkalinity, in part to the anode compartment, where the pH was again decreased. Average removal efficiencies for calcium and magnesium of 75-86% and 7-21% respectively, could be sustainably reached, at a specific energy consumption of 7.0-10.1 kWh kg-1 CaCO3 (0.86-1.39 kWh m-3 water). This configuration allowed reagent-free water softening, albeit with an effluent with a pH between 3.0 and 3.6. In a second mode of operation, the process influent to soften was also directed to the crystallizer and recirculated over the cathode, which was separated from the anode using an anion exchange membrane. In this mode of operation, the cathode effluent was sent through the crystallizing unit, and the anode compartment was operated in closed-loop. Average calcium and magnesium removal efficiencies of 73-78% and 40-44% were obtained at specific energy consumptions of 5.8-7.5 kWh kg-1 CaCO3 (0.77-0.88 kWh m-3 water). Although the softened water had an elevated pH (∼9.4), the advantage of this configuration is concomitant removal of anions and the formation of acids/disinfectant in the anode compartment. Both methods of operation thus showed reagent-free water softening at a relatively low specific energy consumption. These novel methods of softening could be used in remote locations where access to chemicals or discharge of ion exchange brines proves to be difficult, or in case addition of chemicals for softening is unwanted. Further research is needed to further decrease the specific energy consumption during long-term operation.

RevDate: 2019-11-16

Dutzan N, L Abusleme (2019)

T Helper 17 Cells as Pathogenic Drivers of Periodontitis.

Advances in experimental medicine and biology, 1197:107-117.

T helper 17 (Th17) cells were first described as a T helper subset involved in the pathogenesis of experimental autoimmune inflammation. Since then, these cells have been described as orchestrators of immunopathology in several human inflammatory conditions including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. More recently, the crucial role of Th17 cells in the regulation of immunity and protection of barrier sites has been unveiled. In the present work, we review the available evidence regarding Th17 cells in health and disease with a focus on the oral mucosa and their role in periodontitis pathogenesis. Recent mechanistic studies in animal models have demonstrated that interleukin-17A (IL-17A) and Th17 cells are critical mediators for alveolar bone destruction during periodontal inflammation. Observations in a cohort of patients with naturally occurring impaired Th17 cell differentiation supported these findings. However, interventional studies are needed to conclusively implicate Th17 cells in the immunopathogenesis of human alveolar bone and tissue destruction that characterize periodontitis.

RevDate: 2019-11-16

Lee M, Song JH, Park JM, et al (2019)

Bacterial diversity in Korean temple kimchi fermentation.

Food research international (Ottawa, Ont.), 126:108592.

Kimchi is manufactured using salted vegetables and various seasonings, including garlic, scallion, and jeotgal (fermented seafood). However, similar to vegan diets, Korean temple food does not contain animal products (meat- and seafood-free) and is restricted to five pungent herbs: garlic, scallion, leek, onions, and chives. In this study, we investigated the fermentation characteristics of 25 kimchi samples from traditional Korean temples or commercial sources using Illumina MiSeq sequencing. The initial pH of the kimchi samples ranged from 5.05 to 5.95 and the bacterial diversity-index showed a significantly high value in temple-style kimchi. Moreover, differences in microbial community were significantly reflected in kimchi types using non-metric multidimensional scaling plots and analysis of similarity. Additionally, the distribution patterns of the core bacterial genera differed according to kimchi type, especially during early phases of fermentation. These findings offer novel insights into the microbial ecology and quality characteristics of kimchi lacking vital ingredients, which are generally reported based on the origin of the microorganisms.

RevDate: 2019-11-15

Ma W, Li J, Gao Y, et al (2019)

Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem.

The Science of the total environment, 703:134691 pii:S0048-9697(19)34682-0 [Epub ahead of print].

Both atmospheric nitrogen (N) deposition and precipitation can strongly impact below-ground biogeochemical processes. Soil extracellular enzymes activities (EEAs) and microorganisms are considered as the key agents in ecosystem nutrient cycling. However, how the interaction between increasing N deposition and precipitation may affect soil EEAs and microbes remain poorly understood. In a 5-year field experiment in a meadow steppe in northern China, we tested the effects of N addition (N0, 0; N1, 5; N2, 10 g N m-2 yr-1) and increased precipitation (W0, ambient precipitation; W1, increase of 15% ambient precipitation; W2, increase of 30% ambient precipitation) on soil EEAs, microbial and chemical properties. Results showed that their interaction significantly affected all hydrolase activities, except for β-1,4-xylosidase (βX). Furthermore, increased precipitation and N addition interactively affected bacterial gene copies (P ≤ 0.05), and increased precipitation comparatively had a stronger effects. The results on the combination of N addition and increased precipitation showed that increased precipitation alleviated the positive effects of N addition on soil EEAs. This implies that the effects of either treatment alone on grassland biogeochemical processes may be alleviated by their simultaneous occurrence. Our results suggested that soil EEAs were mainly controlled by the content of N and phosphorus (P), and the ratio of C: N and C: P. Therefore, soil element content and stoichiometry could better explain the responses of EEAs to global changes. Moreover, soil microbial communities were mainly controlled by soil P content. Overall, our study highlights that the interaction between N deposition and precipitation may play a vital role in predicting the responses of soil enzyme activities to global changes in grassland ecosystems.

RevDate: 2019-11-15

Salazar G, Paoli L, Alberti A, et al (2019)

Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome.

Cell, 179(5):1068-1083.e21.

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.

RevDate: 2019-11-15

Hofmann K, Huptas C, Doll EV, et al (2019)

Pseudomonas saxonica sp. nov., isolated from raw milk and skimmed milk concentrate.

International journal of systematic and evolutionary microbiology [Epub ahead of print].

A polyphasic approach was used to investigate the taxonomic status of two bacterial strains, WS 5072T and WS 5092, isolated from skimmed milk concentrate and raw cow's milk. The 16S rRNA and rpoD gene sequences affiliated the strains to the same, hitherto unknown, Pseudomonas species. Further examinations of the draft genomes based on multilocus sequence analysis and average nucleotide identity confirmed the presence of a novel Pseudomonas species. It was most closely related to Pseudomonas fragi DSM 3456T with 86.3 % ANIm. The DNA G+C content of strain WS 5072T was 56.3 mol%. Cells were aerobic, Gram-negative, catalase and oxidase positive, rod-shaped and motile. Growth occurred at 4-34 °C, pH 5.5-8.0 and with salt concentrations of up to 7 %. The major cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The dominating quinone was Q-9 with 94 %, with noticeable amounts of Q-8 (5 %) and traces of Q-7 and Q-10. Fatty acid profiles showed a composition common for Pseudomonas with the major component C16 : 0. Based on these results, the novel species Pseudomonas saxonica sp. nov. is proposed, with the type strain WS 5072T (=DSM 108989T=LMG 31234T) and the additional strain WS 5092 (=DSM 108990=LMG 31235).

RevDate: 2019-11-15

Quero GM, Celussi M, Relitti F, et al (2019)

Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait).

Microbial ecology pii:10.1007/s00248-019-01451-2 [Epub ahead of print].

The deep Arctic Ocean is increasingly vulnerable to climate change effects, yet our understanding of its microbial processes is limited. We collected samples from shelf waters, mesopelagic Atlantic Waters (AW) and bathypelagic Norwegian Sea Deep Waters (NSDW) in the eastern Fram Strait, along coast-to-offshore transects off Svalbard during boreal summer. We measured community respiration, heterotrophic carbon production (HCP), and dissolved inorganic carbon utilization (DICu) together with prokaryotic abundance, diversity, and metagenomic predictions. In deep samples, HCP was significantly faster in AW than in NSDW, while we observed no differences in DICu rates. Organic carbon uptake was higher than its inorganic counterpart, suggesting a major reliance of deep microbial Arctic communities on heterotrophic metabolism. Community structure and spatial distribution followed the hydrography of water masses. Distinct from other oceans, the most abundant OTU in our deep samples was represented by the archaeal MG-II. To address the potential biogeochemical role of each water mass-specific microbial community, as well as their link with the measured rates, PICRUSt-based predicted metagenomes were built. The results showed that pathways of auto- and heterotrophic carbon utilization differed between the deep water masses, although this was not reflected in measured DICu rates. Our findings provide new insights to understand microbial processes and diversity in the dark Arctic Ocean and to progress toward a better comprehension of the biogeochemical cycles and their trends in light of climate changes.

RevDate: 2019-11-15

Chen H, Wang L, Wang X, et al (2019)

Distribution and Strain Diversity of Immunoregulating Segmented Filamentous Bacteria in Human Intestinal Lavage Samples.

Microbial ecology pii:10.1007/s00248-019-01441-4 [Epub ahead of print].

Segmented filamentous bacteria (SFB) are well known for their functions in the immunoregulation of hosts including the promotion of Th17 cell differentiation, B cell maturation, and immune system development. However, most analyses of SFB have focused on animal models, and thus, investigation of SFB prevalence in humans and their roles in human immunoregulation and health is needed. Although little is known overall of SFB prevalence in humans, they are characteristically abundant in animals during weaning. In this study, SFB-like bacteria were detected in ileal lavage samples from human children that were aged between 1 to 17 years old by scanning electron microscopy (SEM) analysis, and their insertion into the mucosa was also observed. In addition, the expression of SFB flagellin at the human bacterial interface was observed by immunohistochemistry (IHC) and western blot. Moreover, two pairs of primers specific for SFB, but targeting different genes, were used to detect SFB in human intestinal lavage samples. These analyses indicated that SFB were present in over 50% of patient ileal samples independent of age. High-throughput gene sequencing indicated that different SFB strains were detected among samples. Between nine and 23 SFB flagellin gene operational taxonomic units were identified. In addition to evaluating the prevalence of SFB in human samples, correlations between SFB presence and chief complaints of clinical symptoms were evaluated, as well as the relationship between SFB and patient serum immunoglobulin concentrations. SFB prevalence was significantly higher in hematochezia patients (68%) than in abdominal pain (56.10%) and diarrhea (43.75%) patients. Furthermore, the concentrations of serum IgA, IgM, and IgE, were similar between SFB-positive and SFB-negative patient groups, although IgG concentrations were significantly higher in the SFB-negative group.

RevDate: 2019-11-15

Corrêa FB, Saraiva JP, Stadler PF, et al (2019)

TerrestrialMetagenomeDB: a public repository of curated and standardized metadata for terrestrial metagenomes.

Nucleic acids research pii:5625925 [Epub ahead of print].

Microbiome studies focused on the genetic potential of microbial communities (metagenomics) became standard within microbial ecology. MG-RAST and the Sequence Read Archive (SRA), the two main metagenome repositories, contain over 202 858 public available metagenomes and this number has increased exponentially. However, mining databases can be challenging due to misannotated, misleading and decentralized data. The main goal of TerrestrialMetagenomeDB is to make it easier for scientists to find terrestrial metagenomes of interest that could be compared with novel datasets in meta-analyses. We defined terrestrial metagenomes as those that do not belong to marine environments. Further, we curated the database using text mining to assign potential descriptive keywords that better contextualize environmental aspects of terrestrial metagenomes, such as biomes and materials. TerrestrialMetagenomeDB release 1.0 includes 15 022 terrestrial metagenomes from SRA and MG-RAST. Together, the downloadable data amounts to 68 Tbp. In total, 199 terrestrial terms were divided into 14 categories. These metagenomes span 83 countries, 30 biomes and 7 main source materials. The TerrestrialMetagenomeDB is publicly available at

RevDate: 2019-11-15

Wu L, Ning D, Zhang B, et al (2019)

Author Correction: Global diversity and biogeography of bacterial communities in wastewater treatment plants.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2019-11-15

Aremu BR, Prigent-Combaret C, OO Babalola (2019)

Draft Genome Sequence of Bacillus velezensis Strain ZeaDK315Endo16.

Microbiology resource announcements, 8(46): pii:8/46/e00136-19.

Here, we report the draft genome sequence of the endophytic Bacillus velezensis strain ZeaDK315Endo16, isolated from DK315 maize from Lyon, France. B. velezensis ZeaDK315Endo16 exhibits a suppressive ability toward Fusarium graminearum, a widely known threat to maize production and quality.

RevDate: 2019-11-15

Werner J, Géron A, Kerssemakers J, et al (2019)

mPies: a novel metaproteomics tool for the creation of relevant protein databases and automatized protein annotation.

Biology direct, 14(1):21 pii:10.1186/s13062-019-0253-x.

Metaproteomics allows to decipher the structure and functionality of microbial communities. Despite its rapid development, crucial steps such as the creation of standardized protein search databases and reliable protein annotation remain challenging. To overcome those critical steps, we developed a new program named mPies (metaProteomics in environmental sciences). mPies allows the creation of protein databases derived from assembled or unassembled metagenomes, and/or public repositories based on taxon IDs, gene or protein names. For the first time, mPies facilitates the automatization of reliable taxonomic and functional consensus annotations at the protein group level, minimizing the well-known protein inference issue, which is commonly encountered in metaproteomics. mPies' workflow is highly customizable with regards to input data, workflow steps, and parameter adjustment. mPies is implemented in Python 3/Snakemake and freely available on GitHub: REVIEWER: This article was reviewed by Dr. Wilson Wen Bin Goh.

RevDate: 2019-11-15

Boada E, Santos-Clotas E, Bertran S, et al (2020)

Potential use of Methylibium sp. as a biodegradation tool in organosilicon and volatile compounds removal for biogas upgrading.

Chemosphere, 240:124908.

Organosilicon compounds are the most undesirable compounds for the energy recovery of biogas. These compounds are still resistant to biodegradation when biotechnologies are considered for biogas purification. Herein we isolated 52 bacterial species from anaerobic batch enrichment cultures (BEC) saturated with D4 and from an anaerobic lab-scale biotrickling filter (BTF) fed with a gas flow containing D4 as unique carbon source. Among those Methylibium sp. and Pseudomonas aeruginosa showed the highest capacity to remove D4 (53.04% ± 0.03 and 24.42% ± 0.02, respectively). Contrarily, co-culture evaluation treatment for the biodegradation of siloxanes together with volatile organic compounds removed a lower concentration of D4 compared to toluene and limonene, which were completely removed. Remarkably, the siloxane D5 proved to be more biodegradable than D4. Substrates removal values achieved by Methylibium sp. suggested that this bacterial isolate could be used in biological removal technologies of siloxanes.

RevDate: 2019-11-15

Joyce RE, Lavender H, Farrar J, et al (2019)

Biological Ice-Nucleating Particles Deposited Year-Round in Subtropical Precipitation.

Applied and environmental microbiology, 85(23): pii:AEM.01567-19.

Airborne bacteria that nucleate ice at relatively warm temperatures (>-10°C) can interact with cloud water droplets, affecting the formation of ice in clouds and the residency time of the cells in the atmosphere. We sampled 65 precipitation events in southeastern Louisiana over 2 years to examine the effect of season, meteorological conditions, storm type, and ecoregion source on the concentration and type of ice-nucleating particles (INPs) deposited. INPs sensitive to heat treatment were inferred to be biological in origin, and the highest concentrations of biological INPs (∼16,000 INPs liter-1 active at ≥-10°C) were observed in snow and sleet samples from wintertime nimbostratus clouds with cloud top temperatures as warm as -7°C. Statistical analysis revealed three temperature classes of biological INPs (INPs active from -5 to -10°C, -11 to -12°C, and -13 to -14°C) and one temperature class of INPs that were sensitive to lysozyme (i.e., bacterial INPs, active from -5 to -10°C). Significant correlations between the INP data and abundances of taxa in the Bacteroidetes, Firmicutes, and unclassified bacterial divisions implied that certain members of these phyla may possess the ice nucleation phenotype. The interrelation between the INP classes and fluorescent dissolved organic matter, major ion concentrations (Na+, Cl-, SO42-, and NO3-), and backward air mass trajectories indicated that the highest concentrations of INPs were sourced from high-latitude North American and Asian continental environments, whereas the lowest values were observed when air was sourced from marine ecoregions. The intra- and extracontinental regions identified as sources of biological INPs in precipitation deposited in the southeastern United States suggests that these bioaerosols can disperse and affect meteorological conditions thousands of kilometers from their terrestrial points of origin.IMPORTANCE The particles most effective at inducing the freezing of water in the atmosphere are microbiological in origin; however, information on the species harboring this phenotype, their environmental distribution, and ecological sources are very limited. Analysis of precipitation collected over 2 years in Louisiana showed that INPs active at the warmest temperatures were sourced from terrestrial ecosystems and displayed behaviors that implicated specific bacterial taxa as the source of the ice nucleation activity. The abundance of biological INPs was highest in precipitation from winter storms and implied that their in-cloud concentrations were sufficient to affect the formation of ice and precipitation in nimbostratus clouds.

RevDate: 2019-11-14

Rolhion N, Chassaing B, Nahori MA, et al (2019)

A Listeria monocytogenes Bacteriocin Can Target the Commensal Prevotella copri and Modulate Intestinal Infection.

Cell host & microbe, 26(5):691-701.e5.

Understanding the role of the microbiota components in either preventing or favoring enteric infections is critical. Here, we report the discovery of a Listeria bacteriocin, Lmo2776, which limits Listeria intestinal colonization. Oral infection of conventional mice with a Δlmo2776 mutant leads to a thinner intestinal mucus layer and higher Listeria loads both in the intestinal content and deeper tissues compared to WT Listeria. This latter difference is microbiota dependent, as it is not observed in germ-free mice. Strikingly, it is phenocopied by pre-colonization of germ-free mice before Listeria infection with Prevotella copri, an abundant gut-commensal bacteria, but not with the other commensals tested. We further show that Lmo2776 targets P. copri and reduces its abundance. Together, these data unveil a role for P.copri in exacerbating intestinal infection, highlighting that pathogens such as Listeria may selectively deplete microbiota bacterial species to avoid excessive inflammation.

RevDate: 2019-11-14

Schada von Borzyskowski L, Severi F, Krüger K, et al (2019)

Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle.

Nature pii:10.1038/s41586-019-1748-4 [Epub ahead of print].

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the β-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.

RevDate: 2019-11-14

Dominguez-Mirazo M, Jin R, JS Weitz (2019)

Functional and Comparative Genomic Analysis of Integrated Prophage-Like Sequences in "Candidatus Liberibacter asiaticus".

mSphere, 4(6): pii:4/6/e00409-19.

Huanglongbing disease (HLB; yellow shoot disease) is a severe worldwide infectious disease for citrus family plants. The pathogen "Candidatus Liberibacter asiaticus" is an alphaproteobacterium of the Rhizobiaceae family that has been identified as the causative agent of HLB. The virulence of "Ca. Liberibacter asiaticus" has been attributed, in part, to prophage-carried genes. Prophage and prophage-like elements have been identified in 12 of the 15 available "Ca. Liberibacter asiaticus" genomes and are classified into three prophage types. Here, we reexamined all 15 "Ca. Liberibacter asiaticus" genomes using a de novo prediction approach and expanded the number of prophage-like elements from 16 to 33. Further, we found that all of the "Ca. Liberibacter asiaticus" genomes contained at least one prophage-like sequence. Comparative analysis revealed a prevalent, albeit previously unknown, prophage-like sequence type that is a remnant of an integrated prophage. Notably, this remnant prophage is found in the Ishi-1 "Ca. Liberibacter asiaticus" strain that had previously been reported as lacking prophages. Our findings provide both a resource for data and new insights into the evolutionary relationship between phage and "Ca. Liberibacter asiaticus" pathogenicity.IMPORTANCE Huanglongbing (HLB) disease is threatening citrus production worldwide. The causative agent is "Candidatus Liberibacter asiaticus." Prior work using mapping-based approaches identified prophage-like sequences in some "Ca. Liberibacter asiaticus" genomes but not all. Here, we utilized a de novo approach that expands the number of prophage-like elements found in "Ca. Liberibacter asiaticus" from 16 to 33 and identified at least one prophage-like sequence in all "Ca. Liberibacter asiaticus" strains. Furthermore, we identified a prophage-like sequence type that is a remnant of an integrated prophage-expanding the number of prophage types in "Ca. Liberibacter asiaticus" from 3 to 4. Overall, the findings will help researchers investigate the role of prophage in the ecology, evolution, and pathogenicity of "Ca. Liberibacter asiaticus."

RevDate: 2019-11-13

Tyc O, Putra R, Gols R, et al (2019)

The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom.

MicrobiologyOpen [Epub ahead of print].

Endophytic bacteria are known for their ability in promoting plant growth and defense against biotic and abiotic stress. However, very little is known about the microbial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds of five different populations of wild cabbage (Brassica oleracea L) that grow within 15 km of each other along the Dorset coast in the UK. The seeds of each plant population contained a unique microbiome. Sequencing of the 16S rRNA genes revealed that these bacteria belong to three different phyla (Actinobacteria, Firmicutes, and Proteobacteria). Isolated endophytic bacteria were grown in monocultures or mixtures and the effects of bacterial volatile organic compounds (VOCs) on the growth and development on B. oleracea and on resistance against a insect herbivore was evaluated. Our results reveal that the VOCs emitted by the endophytic bacteria had a profound effect on plant development but only a minor effect on resistance against an herbivore of B. oleracea. Plants exposed to bacterial VOCs showed faster seed germination and seedling development. Furthermore, seed endophytic bacteria exhibited activity via volatiles against the plant pathogen F. culmorum. Hence, our results illustrate the ecological importance of the bacterial seed microbiome for host plant health and development.

RevDate: 2019-11-13

Scheepers M, Spielmann J, Boulanger M, et al (2019)

Intertwined metal homeostasis, oxidative and biotic stress responses in the Arabidopsis frd3 mutant.

The Plant journal : for cell and molecular biology [Epub ahead of print].

FRD3 (FERRIC REDUCTASE DEFECTIVE 3) plays a major role in iron (Fe) and zinc (Zn) homeostasis in Arabidopsis. It transports citrate, which enables metal distribution in the plant. A frd3 mutant is dwarf and chlorotic and displays constitutive Fe deficiency response and strongly altered metal distribution in tissues. Here, we have examined the interaction between Fe and Zn homeostasis in a frd3 mutant exposed to varying Zn supply. Detailed phenotyping using transcriptomic, ionomic, histochemical and spectroscopic approaches revealed the full complexity of the frd3 mutant phenotype, which resulted from altered transition metal homeostasis, manganese toxicity, oxidative and biotic stress responses. The cell wall played a key role in these processes, as a site for Fe and hydrogen peroxide accumulation, and displayed modified structure in the mutant. Finally, we showed that Zn excess interfered with these mechanisms and partially restored root growth of the mutant, without reverting the Fe deficiency response. In conclusion, the frd3 mutant molecular phenotype is more complex than previously described, and illustrates how the response to metal imbalance depends on multiple signaling pathways.

RevDate: 2019-11-13

Kreth J, Abdelrahman YM, J Merritt (2020)

Multiplex Imaging of Polymicrobial Communities-Murine Models to Study Oral Microbiome Interactions.

Methods in molecular biology (Clifton, N.J.), 2081:107-126.

Similar to other mucosal surfaces of the body, the oral cavity hosts a diverse microbial flora that live in polymicrobial biofilm communities. It is the ecology of these communities that are the primary determinants of oral health (symbiosis) or disease (dysbiosis). As such, both symbiosis and dysbiosis are inherently polymicrobial phenomena. In an effort to facilitate studies of polymicrobial communities within rodent models, we developed a suite of synthetic luciferases suitable for multiplexed in situ analyses of microbial ecology and specific gene expression. Using this approach, it is feasible to noninvasively measure multiple luciferase signals in vivo with both spatial and temporal resolution. In the following chapter, we describe the relevant details and protocols used to establish a biophotonic imaging platform for the study of experimental polymicrobial oral biofilms and abscesses in mice. The protocols described here are specifically tailored for use with oral streptococci, but the general strategies are adaptable for a wide range of polymicrobial infection studies using other species.

RevDate: 2019-11-13

Thomas P, SP Shaik (2019)

Molecular Profiling on Surface-Disinfected Tomato Seeds Reveals High Diversity of Cultivation-Recalcitrant Endophytic Bacteria with Low Shares of Spore-Forming Firmicutes.

Microbial ecology pii:10.1007/s00248-019-01440-5 [Epub ahead of print].

Seeds are known to harbor diverse microorganisms offering protective effects on them with the prospects of quick root colonization at germination, selective recruitment as endophytes, and possible vertical transmission. The study was undertaken to assess the gross seed-internal bacterial community in tomato and to confirm if spore-forming Firmicutes constituted major seed endophytes adopting cultivation versus molecular approach on surface-sterilized seeds. Testing the initial seed wash solutions of "Arka Vikas" and "Arka Abha" cultivars showed > 1000 bacterial cfu per dry seed, largely Bacillus spp. Tissue homogenates from surface-disinfected seeds did not show any cultivable bacteria on enriched media for 1-2 weeks, while 16S rRNA V3-V4 taxonomic profiling revealed a huge bacterial diversity (10-16 phyla per cultivar). Proteobacteria formed the dominant phylum (65.7-69.6% OTUs) followed by Firmicutes, Actinobacteria, Bacteroidetes, and a notable share of Euryarchaeota (1.1-3.1%). Five more phyla appeared common to both cultivars in minor shares (Acidobacteria, Planctomycetes, Chloroflexi, Spirochaetes, Verrucomicrobia) with the ten phyla together constituting 99.6-99.9% OTUs. Class level and family level, the cultivars displayed elevated bacterial diversity, but similar taxonomic profiles. Arka Vikas and Arka Abha showed 114 and 107 genera, respectively, with 63 common genera constituting 96-97% OTUs. Psychrobacter formed the dominant genus. Bacillus and related genera constituted only negligible OTU share (0.16-0.28%). KEGG functional analysis showed metabolism as the major bacterial community role. One-month-old in vitro seedlings showed the activation of some originally uncultivable bacteria uninfluenced by the OTU share. The study reveals a high diversity of cultivation-recalcitrant endophytic bacteria prevailing in tomato seeds with possible vertical transmission and significant roles in plant biology.

RevDate: 2019-11-13

Liu L, Wang S, J Chen (2019)

Hysteretic response of Microbial Eukaryotic Communities to Gradually Decreased Nutrient Concentrations in Eutrophic Water.

Microbial ecology pii:10.1007/s00248-019-01457-w [Epub ahead of print].

External environments to microbial eukaryotic communities often change gradually with time. However, whether the responses of microbial eukaryotic communities to these gradually changed environments are continuous or hysteretic and the mechanisms underlying these responses are largely unknown. Here, we used a microcosm to investigate the temporal variation of microbial eukaryotic communities with the gradually decreased nutrient concentrations (nitrogen and phosphorus). We found the differences of microbial eukaryotic community composition and species richness between the control and treatment groups were low during the days 0 to 12, although the nutrient concentrations decreased rapidly during this period in treatment group. However, these differences were clear during the days 14 to 18, although the nutrient concentrations decreased slowly during this period in treatment group. The mechanisms for these results are that the strong homogenous selection (perhaps due to the biotic factors) during the days 8 to 10 in treatment group might enhance the stability of microbial eukaryotic communities. However, the continuously decreased nutrient concentrations weakened the homogenous selection and promoted the strength of environmental filtering, and therefore resulted in the distinct change of microbial eukaryotic communities during the days 14 to 18 in treatment group. Fungi, Chlorophyta and Chrysophyta which associated with the nutrient removal played important roles in this hysteretic change of microbial eukaryotic communities. Overall, our findings suggest that disentangling the non-linear response of communities to gradual environmental changes is essential for understanding ecosystem restoration and degradation in future.

RevDate: 2019-11-13

DAS B, GB Nair (2019)

Homeostasis and dysbiosis of the gut microbiome in health and disease.

Journal of biosciences, 44(5):.

The human gastrointestinal tract (GIT) harbors taxonomically and functionally complex microbial ecosystem. The composition of the microbial species in the GIT ecosystem varies among individuals and throughout development. Both environmental factors as well as host genetics influence the composition and homeostasis of GIT microbiome. Intrinsic GIT microbiome can be characterized in terms of diversity, richness, dynamics and resilience. In healthy individual, microbial communities maintain homeostatic equilibrium and are resistant against perturbations. The resilience and resistance to perturbations of the GIT microbial ecosystem are robust but not absolute. Several factors can affect the homeostatic equilibrium of GIT microbiome and lead to dysbiotic microbiome configuration. Taxonomic and/or functional dysbiosis in the GIT microbiome is associated with numerous health disorders like inflammatory bowel disease (IBD), malnutrition, metabolic disorders, asthma and neurodegenerative diseases. In this review, we discuss our current understanding of homeostasis and dysbiosis of the microbial ecology in the human gut and health disorders that are associated with the microbiome dysbiosis.

RevDate: 2019-11-13

Senapati T, Kothidar A, Banerjee SK, et al (2019)

Insights into the gastrointestinal tract microbiomes of Indian population.

Journal of biosciences, 44(5):.

Trillions of microbes living in the gastrointestinal tract (GIT) of the human body finely tune homeostatic equilibrium in the GIT ecosystem and encode key functionalities that play crucial role in host metabolic functions, synthesis of macro- and micronutrients, xenobiotics metabolisms, development of innate and adaptive immune systems, tissue and organ developments and resistance against invasion of enteric pathogens. The microbial diversity and richness of GIT ecosystem varies greatly between individuals and over time. Extent of taxonomic and functional variations in GIT ecosystem is linked with dietary habit, pharmaceuticals usages, age, sex, body mass index, ethnicity, geography, altitude and civilization. Understanding a holistic picture of GIT microbiome of healthy people living across geography and identifying population specific 'keystone' taxa is of immense importance for identifying microbial species that may provide protection against chronic and metabolic diseases. Knowledge on geographic or ethnicity specific microbial signatures may also help us to understand the varied efficacy of different drugs and vaccines in different population. India is the home of more than 1.36 billion people belonging to 2000 human communities residing in well distinct geography. In the present review, we discuss the microbial signatures in health and diseases of the rural and urban Indians living in sea level and high altitude areas.

RevDate: 2019-11-13

An B, Sam C, Dries V, et al (2019)

Comparison of Six Commercial Meat Starter Cultures for the Fermentation of Yellow Mealworm (Tenebrio molitor) Paste.

Microorganisms, 7(11): pii:microorganisms7110540.

In this study, six commercial meat starters, each consisting of a pure strain of a lactic acid-fermenting bacterium (including Lactococcus lactis, Lactobacillus curvatus, L. farciminis, L. plantarum, L. sakei, and Pediococcus acidilactici), were tested for their ability to ferment a paste produced from the yellow mealworm (Tenebrio molitor). During fermentation, microbial counts, pH, and the bacterial community composition were determined. In addition, UPLC-MS was applied to monitor the consumption of glucose and the production of glutamic (Glu) and aspartic (Asp) acid. All tested starters were able to ferment the mealworm paste, judged by a pH reduction from 6.68 to 4.60-4.95 within 72 h. Illumina amplicon sequencing showed that all starters were able to colonize the substrate eciently. Moreover, the introduction of the starter cultures led to the disappearance of Bacillus and Clostridium species, which were the dominant microorganisms in un-inoculated samples. Of the six cultures tested, Lactobacillus farciminis was most promising as its application resulted in the largest increase (±25 mg/100 g of paste) in the content of free glutamic and aspartic acid. These amino acids are responsible for the appreciated umami flavour in fermented food products and might stimulate the acceptance of insects and their consumption.

RevDate: 2019-11-14

Þorsteinsdóttir GV, Blischke A, Sigurbjörnsdóttir MA, et al (2019)

Gas seepage pockmark microbiomes suggest the presence of sedimentary coal seams in the Öxarfjörður graben of northeastern Iceland.

Canadian journal of microbiology [Epub ahead of print].

Natural gas seepage pockmarks are found off- and onshore in the Öxarfjörður graben, Iceland. The bacterial communities of two onshore seepage sites were analysed by 16S rRNA gene amplicon sequencing; the geochemical characteristics, hydrocarbon content, and the carbon isotope composition of the sites were also determined. While one site was found to be characterised by biogenic origin of methane gas, with a carbon isotope ratio (δ13C (‰)) of -63.2, high contents of organic matter and complex hydrocarbons, the other site showed a mixed origin of the methane gas (δ13C (‰) = -26.6) with geothermal characteristics and lower organic matter content. While both sites harboured Proteobacteria as the most abundant bacterial phyla, the Deltaproteobacteria were more abundant at the geothermal site and the Alphaproteobacteria at the biogenic site. The Dehalococcoidia class of phylum Chloroflexi was abundant at the geothermal site while the Anaerolineae class was more abundant at the biogenic site. Bacterial strains from the seepage pockmarks were isolated on a variety of selective media targeting bacteria with bioremediation potential. A total of 106 strains were isolated and characterised, including representatives from the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. This article describes the first microbial study on gas seepage pockmarks in Iceland.

RevDate: 2019-11-12

Saiman L (2019)

Improving outcomes of infections in cystic fibrosis in the era of CFTR modulator therapy.

Pediatric pulmonology, 54 Suppl 3:S18-S26.

Currently, available single and dual-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies have favorably altered the life course of individuals with cystic fibrosis (CF) by decreasing morbidities and increasing survival. However, even with CFTR modulator use, questions and challenges remain to optimize the management of lung infections. This review (a) identifies these ongoing challenges and discusses the current understanding of the potential impact of CFTR modulator therapy on infections; (b) describes ongoing research to optimize detection, diagnosis, and treatment of CF microorganisms; and (c) discusses strategies to develop new anti-infective therapies. The CF Foundation has launched the Infection Research Initiative to fund research that will improve our understanding of the complex microbial ecology within the CF lung, improve detection of CF pathogens, optimize current treatment, including long-term chronic therapies, and develop new anti-infective therapies. Ongoing clinical trials to determine the optimal duration of treatment of pulmonary exacerbations and to diagnose and treat nontuberculous mycobacteria represent clinical research paradigms that could be used to answer other complex treatment questions. The anti-infective pipeline includes both existing anti-infective and non-anti-infective agents, many of which are proposed to have unique mechanisms of action in CF. Future studies plan to evaluate short- and long-term clinical effectiveness and impact on infections, of the next generation of CFTR modulator therapy, the highly effective triple-combination therapy, for individuals with CF, homozygous or heterozygous for F508del.

RevDate: 2019-11-12

De Paepe K, Verspreet J, Courtin CM, et al (2019)

Microbial succession during wheat bran fermentation and colonisation by human faecal microbiota as a result of niche diversification.

The ISME journal pii:10.1038/s41396-019-0550-5 [Epub ahead of print].

The human gut can be viewed as a flow-through system with a short residence time, a high turnover rate and a spatial gradient of physiological conditions. As a consequence, the gut microbiota is exposed to highly fluctuating environmental determinants presented by the host and diet. Here, we assessed the fermentation and colonisation of insoluble wheat bran by faecal microbiota of three individuals at an unprecedented sampling intensity. Time-resolved 16S rRNA gene amplicon sequencing, revealed a dynamic microbial community, characterised by abrupt shifts in composition, delimiting states with a more constant community, giving rise to a succession of bacterial taxa alternately dominating the community over a 72 h timespan. Early stages were dominated by Enterobacteriaceae and Fusobacterium species, growing on the carbohydrate-low, protein rich medium to which wheat bran was supplemented. The onset of wheat bran fermentation, marked by a spike in short chain fatty acid production with an increasing butyrate proportion and an increased endo-1,4-β-xylanase activity, corresponded to donor-dependent proportional increases of Bacteroides ovatus/stercoris, Prevotella copri and Firmicutes species, which were strongly enriched in the bran-attached community. Literature and database searches provided novel insights into the metabolic and growth characteristics underlying the observed succession and colonisation, illustrating the potency of a time-resolved analysis to increase our understanding of gut microbiota dynamics upon dietary modulations.

RevDate: 2019-11-12

Bencivenga-Barry NA, Lim B, Herrera CM, et al (2019)

Genetic manipulation of wild human gut Bacteroides.

Journal of bacteriology pii:JB.00544-19 [Epub ahead of print].

Bacteroides are one of the most prominent genera in the human gut microbiome, and study of this bacterial group provides insight into gut microbial ecology and pathogenesis. In this report, we introduce a negative selection system for rapid and efficient allelic exchange in wild Bacteroides that does not require any alterations to the genetic background or nutritionally defined culture medium. In this approach, dual antibacterial effectors normally delivered via Type VI secretion are targeted to the bacterial periplasm under the control of tightly regulated anhydrotetracycline (aTC)-inducible promoters. Introduction of aTC selects for recombination events producing the desired genetic modification, and the dual-effector design allows for broad applicability across strains that may have immunity to one counterselection effector. We demonstrate the utility of this approach across 21 human gut Bacteroides isolates representing diverse species, including strains isolated directly from human donors. We use this system to establish that antimicrobial peptide resistance in Bacteroides vulgatus is determined by the product of a gene that is not encoded in the genomes of previously genetically tractable members of the human gut microbiome.Importance Human gut Bacteroides exhibit strain-level differences in their physiology, ecology, and impact on human health and disease. However, existing approaches for genetic manipulation generally require construction of genetically modified parental strains for each microbe of interest or defined media formulations. In this report, we introduce a robust and efficient strategy for targeted genetic manipulation of wildtype human gut Bacteroides from diverse species. This system enables genetic dissection of members of human and animal microbiomes outside of existing model organisms.

RevDate: 2019-11-11

Wilkins LGE, Leray M, O'Dea A, et al (2019)

Host-associated microbiomes drive structure and function of marine ecosystems.

PLoS biology, 17(11):e3000533 pii:PBIOLOGY-D-19-02223 [Epub ahead of print].

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.

RevDate: 2019-11-11

Bai J, Jhaney I, J Wells (2019)

Developing a Reproducible Microbiome Data Analysis Pipeline Using the Amazon Web Services Cloud for a Cancer Research Group: Proof-of-Concept Study.

JMIR medical informatics, 7(4):e14667 pii:v7i4e14667.

BACKGROUND: Cloud computing for microbiome data sets can significantly increase working efficiencies and expedite the translation of research findings into clinical practice. The Amazon Web Services (AWS) cloud provides an invaluable option for microbiome data storage, computation, and analysis.

OBJECTIVE: The goals of this study were to develop a microbiome data analysis pipeline by using AWS cloud and to conduct a proof-of-concept test for microbiome data storage, processing, and analysis.

METHODS: A multidisciplinary team was formed to develop and test a reproducible microbiome data analysis pipeline with multiple AWS cloud services that could be used for storage, computation, and data analysis. The microbiome data analysis pipeline developed in AWS was tested by using two data sets: 19 vaginal microbiome samples and 50 gut microbiome samples.

RESULTS: Using AWS features, we developed a microbiome data analysis pipeline that included Amazon Simple Storage Service for microbiome sequence storage, Linux Elastic Compute Cloud (EC2) instances (ie, servers) for data computation and analysis, and security keys to create and manage the use of encryption for the pipeline. Bioinformatics and statistical tools (ie, Quantitative Insights Into Microbial Ecology 2 and RStudio) were installed within the Linux EC2 instances to run microbiome statistical analysis. The microbiome data analysis pipeline was performed through command-line interfaces within the Linux operating system or in the Mac operating system. Using this new pipeline, we were able to successfully process and analyze 50 gut microbiome samples within 4 hours at a very low cost (a c4.4xlarge EC2 instance costs $0.80 per hour). Gut microbiome findings regarding diversity, taxonomy, and abundance analyses were easily shared within our research team.

CONCLUSIONS: Building a microbiome data analysis pipeline with AWS cloud is feasible. This pipeline is highly reliable, computationally powerful, and cost effective. Our AWS-based microbiome analysis pipeline provides an efficient tool to conduct microbiome data analysis.

RevDate: 2019-11-11

Joshipura K, Muñoz-Torres F, Fernández-Santiago J, et al (2019)

Over-the-counter mouthwash use, nitric oxide and hypertension risk.

Blood pressure [Epub ahead of print].

Purpose: Mouthwash is used by a large population. Short-term clinical trials have shown that antibacterial mouthwash deplete oral nitrate-reducing bacteria, and decrease systemic nitric oxide bioavailability. Our previous publication from the San Juan Overweight Adults Longitudinal Study (SOALS) was the first to show frequent over-the-counter mouthwash use was independently associated with increased risk of prediabetes/diabetes. This manuscript evaluates whether over-the-counter mouthwash was associated with increased risk of hypertension.Materials and methods: SOALS recruited 40-65 year old overweight/obese individuals; baseline evaluations started in 2011 and the 3-year follow-up exam was completed by 2016. From the 1028 participants (76%) who completed follow-up, we excluded people with reported physician diagnosis of hypertension or systolic or diastolic BP at or above the hypertension cut-offs (n = 481), missing smoking (n = 1), missing physical activity (n = 1) and missing alcohol intake (n = 5) at baseline; 540 participants were included. The primary exposure was mouthwash use twice daily or more. The primary outcome for this manuscript is self-reported physician-diagnosed hypertension over the follow-up. We used Poisson regression controlling for age, sex, smoking, physical activity, waist circumference, alcohol intake, systolic blood pressure, pre-diabetes/diabetes status and cardiac medication use. We additionally evaluated other mouthwash use categorizations.Results: Twelve percent (66/540) developed hypertension over follow-up. People who used mouthwash twice/day or more had higher incidence of hypertension compared to less frequent users (Incidence Rate Ratio = 1.85; 95% Confidence Interval: 1.17, 2.94), and compared to non-users (IRR = 2.17; 95% CI: 1.27, 3.71). Several additional potential confounders evaluated did not impact these associations. Associations persisted among never smokers. Additional outcomes including BP assessed at a single study visit did not show associations.Conclusion: In this study, frequent regular use of over-the-counter mouthwash was associated with increased risk of hypertension, independent of major risk factors for hypertension and several other potential confounders.

RevDate: 2019-11-11

Crone S, Vives-Flórez M, Kvich L, et al (2019)

The environmental occurrence of Pseudomonas aeruginosa.

APMIS : acta pathologica, microbiologica, et immunologica Scandinavica [Epub ahead of print].

Pseudomonas aeruginosa is generally described as ubiquitous in natural settings, such as soil and water. However, because anecdotal observations and published reports have questioned whether or not this description is true, we undertook a rigorous study using three methods to investigate the occurrence of P. aeruginosa: we investigated environmental samples, analyzed 16S rRNA data, and undertook a systematic review and meta-analysis of published data. The environmental sample screening identified P. aeruginosa as significantly associated with hydrocarbon and pesticide contaminated environments and feces, as compared to uncontaminated environments in which its prevalence was relatively low. The 16S rRNA data analysis showed that P. aeruginosa sequences were present in all habitats but were most abundant in samples from human and animals. Similarly, the meta-analysis revealed that samples obtained from environments with intense human contact had a higher prevalence of P. aeruginosa compared to those with less human contact. Thus, we found a clear tendency of P. aeruginosa to be present in places closely linked with human activity. Although P. aeruginosa may be ubiquitous in nature, it is usually scarce in pristine environments. Thus, we suggest that P. aeruginosa should be described as a bacterium largely found in locations associated with human activity.

RevDate: 2019-11-11

Navarro MOP, Simionato AS, Pérez JCB, et al (2019)

Fluopsin C for Treating Multidrug-Resistant Infections: In vitro Activity Against Clinically Important Strains and in vivo Efficacy Against Carbapenemase-Producing Klebsiella pneumoniae.

Frontiers in microbiology, 10:2431.

The increasing emergence of multidrug-resistant (MDR) organisms in hospital infections is causing a global public health crisis. The development of drugs with effective antibiotic action against such agents is of the highest priority. In the present study, the action of Fluopsin C against MDR clinical isolates was evaluated under in vitro and in vivo conditions. Fluopsin C was produced in cell suspension culture of Pseudomonas aeruginosa LV strain, purified by liquid adsorption chromatography and identified by mass spectrometric analysis. Bioactivity, bacterial resistance development risk against clinically important pathogenic strains and toxicity in mammalian cell were initially determined by in vitro models. In vivo toxicity was evaluated in Tenebrio molitor larvae and mice. The therapeutic efficacy of intravenous Fluopsin C administration was evaluated in a murine model of Klebsiella pneumoniae (KPC) acute sepsis, using six different treatments. The in vitro results indicated MIC and MBC below 2 μg/mL and low bacterial resistance development frequency. Electron microscopy showed that Fluopsin C may have altered the exopolysaccharide matrix and caused disruption of the cell wall of MDR bacteria. Best therapeutic results were achieved in mice treated with a single dose of 2 mg/kg and in mice treated with two doses of 1 mg/kg, 8 h apart. Furthermore, acute and chronic histopathological studies demonstrated absent nephrotoxicity and moderate hepatotoxicity. The results demonstrated the efficacy of Fluopsin C against MDR organisms in in vitro and in vivo models, and hence it can be a novel therapeutic agent for the control of severe MDR infections.

RevDate: 2019-11-11

Géron A, Werner J, Wattiez R, et al (2019)

Deciphering the Functioning of Microbial Communities: Shedding Light on the Critical Steps in Metaproteomics.

Frontiers in microbiology, 10:2395.

Unraveling the complex structure and functioning of microbial communities is essential to accurately predict the impact of perturbations and/or environmental changes. From all molecular tools available today to resolve the dynamics of microbial communities, metaproteomics stands out, allowing the establishment of phenotype-genotype linkages. Despite its rapid development, this technology has faced many technical challenges that still hamper its potential power. How to maximize the number of protein identification, improve quality of protein annotation, and provide reliable ecological interpretation are questions of immediate urgency. In our study, we used a robust metaproteomic workflow combining two protein fractionation approaches (gel-based versus gel-free) and four protein search databases derived from the same metagenome to analyze the same seawater sample. The resulting eight metaproteomes provided different outcomes in terms of (i) total protein numbers, (ii) taxonomic structures, and (iii) protein functions. The characterization and/or representativeness of numerous proteins from ecologically relevant taxa such as Pelagibacterales, Rhodobacterales, and Synechococcales, as well as crucial environmental processes, such as nutrient uptake, nitrogen assimilation, light harvesting, and oxidative stress response, were found to be particularly affected by the methodology. Our results provide clear evidences that the use of different protein search databases significantly alters the biological conclusions in both gel-free and gel-based approaches. Our findings emphasize the importance of diversifying the experimental workflow for a comprehensive metaproteomic study.

RevDate: 2019-11-11

Del Campo J, Heger TJ, Rodríguez-Martínez R, et al (2019)

Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework.

Frontiers in microbiology, 10:2373.

Apicomplexans are a group of microbial eukaryotes that contain some of the most well-studied parasites, including the causing agents of toxoplasmosis and malaria, and emergent diseases like cryptosporidiosis or babesiosis. Decades of research have illuminated the pathogenic mechanisms, molecular biology, and genomics of model apicomplexans, but we know little about their diversity and distribution in natural environments. In this study we analyze the distribution of apicomplexans across a range of both host-associated and free-living environments. Using publicly available small subunit (SSU) rRNA gene databases, high-throughput environmental sequencing (HTES) surveys, and our own generated HTES data, we developed an apicomplexan reference database, which includes the largest apicomplexan SSU rRNA tree available to date and encompasses comprehensive sampling of this group and their closest relatives. This tree allowed us to identify and correct incongruences in the molecular identification of apicomplexan sequences. Analyzing the diversity and distribution of apicomplexans in HTES studies with this curated reference database also showed a widespread, and quantitatively important, presence of apicomplexans across a variety of free-living environments. These data allow us to describe a remarkable molecular diversity of this group compared with our current knowledge, especially when compared with that identified from described apicomplexan species. This is most striking in marine environments, where potentially the most diverse apicomplexans apparently exist, but have not yet been formally recognized. The new database will be useful for microbial ecology and epidemiological studies, and provide valuable reference for medical and veterinary diagnosis especially in cases of emerging, zoonotic, and cryptic infections.

RevDate: 2019-11-11

Smyth EM, Chattopadhyay S, Babik K, et al (2019)

The Bacterial Communities of Little Cigars and Cigarillos Are Dynamic Over Time and Varying Storage Conditions.

Frontiers in microbiology, 10:2371.

Despite their potential importance with regard to tobacco-related health outcomes, as well as their hypothesized role in the production of tobacco-specific N-nitrosamines, bacterial constituents of tobacco products lack characterization. Specifically, to our knowledge, there has been no comprehensive characterization of the effects of storage conditions on the bacterial communities associated with little cigars and cigarillos. To address this knowledge gap, we characterized the bacterial community composition of the tobacco and wrapper components of the following four products: Swisher Sweets Original; Swisher Sweets, Sweet Cherry; Cheyenne Cigars Full Flavor 100's; and Cheyenne Menthol Box. Each product was stored under three different conditions of temperature and relative humidity to mimic different user storage conditions: room (20°C 50% RH), refrigerator (5°C 18% RH) and pocket (25°C 30% RH). On days 0, 5, 9 and 14, subsamples were collected, the wrapper and tobacco were separated, and their total DNA was extracted separately and purified. Resulting DNA was then used in PCR assays targeting the V3 V4 region of the bacterial 16S rRNA gene, followed by sequencing using Illumina HiSeq 300bp PE. Resulting sequences were processed using the Quantitative Insights Into Microbial Ecology (QIIME) software package, followed by analyses in R using the Phyloseq and Vegan packages. A single bacterial phylum, Firmicutes, dominated in the wrapper subsamples whereas the tobacco subsamples were dominated by Proteobacteria. Cheyenne Menthol Box (CMB) samples were characterized by significant differential abundances for 23 bacterial operational taxonomic units (OTUs) in tobacco subsamples and 27 OTUs in the wrapper subsamples between day 0 and day 14 under all conditions. OTUs from the genera Acinetobacter and Bacillus significantly increased in the CMB tobacco subsamples, and OTUs from Bacillus, Streptococcus, Lactobacillus, and Enterococcus significantly increased in the CMB wrapper subsamples over time. These initial results suggest that the bacterial communities of little cigars and cigarillos are dynamic over time and varying storage conditions.

RevDate: 2019-11-10

Polonca S (2019)

Environment Shapes the Intra-species Diversity of Bacillus subtilis Isolates.

Microbial ecology pii:10.1007/s00248-019-01455-y [Epub ahead of print].

Cosmopolitan bacteria are those that are found practically everywhere in the world. One of them is Bacillus subtilis, which can travel around the world through dust storms rising from various deserts. Upon landing, bacterial survival is determined by the ability to adjust to the heterogonous environments and bacteria isolated from extremely different environments, such as desert and riverbank soil, are expected to be less related due to the environmental pressure of each region. However, little is known about the influence of soil and habitat on B. subtilis evolution. Here, we show that desert and riverbank B. subtilis strains differ in genetic relatedness and physiological traits, such as biofilm morphology and utilisation of carbon sources. Desert strains showed more diversity at the genetic level and were able to utilise more carbon sources than riverbank strains which were highly genetically conserved. Biofilm morphologies of desert and riverbank strains generally segregated and both groups formed different morphology clusters despite the astonishing diversity observed among riverbank strains. We also show that relatedness of B. subtilis strains does not decrease with distance inside the same habitat, which, together with diversity data implies that the difference in environmental selection pressures plays a fundamental role in the evolution of this species.

RevDate: 2019-11-09

Queiroz LL, Costa MS, de Abreu Pereira A, et al (2019)

Dynamics of microbial contaminants is driven by selection during ethanol production.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] pii:10.1007/s42770-019-00147-6 [Epub ahead of print].

Brazil is the second largest ethanol producer in the world and largest using sugarcane feedstock. Bacteria contamination is one of the most important issues faced by ethanol producers that seek to increase production efficiency. Each step of production is a selection event due to the environmental and biological changes that occur. Therefore, we evaluated the influence of the selection arising from the ethanol production process on diversity and composition of bacteria. Our objectives were to test two hypotheses, (1) that species richness will decrease during the production process and (2) that lactic acid bacteria will become dominant with the advance of ethanol production. Bacterial community assemblage was accessed using 16S rRNA gene sequencing from 19 sequential samples. Temperature is of great importance in shaping microbial communities. Species richness increased between the decanter and must steps of the process. Low Simpson index values were recorded at the fermentation step, indicating a high dominance of Lactobacillus. Interactions between Lactobacillus and yeast may be impairing the efficiency of industrial ethanol production.

RevDate: 2019-11-09

Jeong SY, Choi JY, TG Kim (2019)

Coordinated Metacommunity Assembly and Spatial Distribution of Multiple Microbial Kingdoms within a Lake.

Microbial ecology pii:10.1007/s00248-019-01453-0 [Epub ahead of print].

Freshwater planktonic communities comprise a tremendous diversity of microorganisms. This study investigated the distribution patterns of microbial kingdoms (bacteria, fungi, protists, and microbial metazoans) within a lake ecosystem. Water samples were collected from 50 sites along the shoreline in a lake during an early eutrophication period, and MiSeq sequencing was performed with different marker genes. Metacommunity analyses revealed a bimodal occupancy-frequency distribution and a Clementsian gradient persisting throughout all microbial kingdoms, suggesting similar regional processes in all kingdoms. Variation partitioning revealed that environmental characteristics, macrophyte/macroinvertebrate composition, space coordinates, and distance-based Moran's eigenvector maps (dbMEM) together could explain up to 29% of the community variances in microbial kingdoms. Kingdom synchrony results showed strong couplings between kingdoms (R2 ≥ 0.31), except between Fungi and Metazoa (R2 = 0.09). Another variation partitioning revealed that microbial kingdoms could well explain their community variances up to 73%. Interestingly, the kingdom Protista was best synchronized with the other kingdoms. A correlation network showed that positive associations between kingdoms outnumbered the negative ones and that the kingdom Protista acted as a hub among kingdoms. Module analysis showed that network modules included multi-kingdom associations that were prevalent. Our findings suggest that protists coordinate community assembly and distribution of other kingdoms, and inter-kingdom interactions are a key determinant in shaping their community structures in a freshwater lake.

RevDate: 2019-11-09

Fu S, Hao J, Yang Q, et al (2019)

Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: a potential threat to the public health.

Scientific reports, 9(1):16303 pii:10.1038/s41598-019-52791-5.

A potential mechanism for the global distribution of waterborne pathogens is through carriage by the migratory waterbirds. However, this mode of transmission has yet been confirmed epidemiologically. Here, we conducted whole genome sequencing of Vibrio spp. collected from waterbirds, sediments, and mollusks in the estuary of the Liaohe River in China to investigate this transmission mode. We found that a V. parahaemolyticus strain isolated from a waterbird was clonally related to the other V. parahaemolyticus strains obtained from the sediments and mollusks, and three V. mimicus strains isolated from bird feces were genomically related to those found in the mollusks and upstream groundwater, suggesting that the bird-carried Vibrio strains were acquired through the direct predation of the local mollusks. Surprisingly, two bird-carried V. parahaemolyticus strains belonging to the same clone were identified in Panjin and Shanghai, which are over 1,150 km apart, and another two were found at two locations 50 km apart, further supporting that waterbirds are capable of carrying and disseminating these pathogens over long distances. Our results provide the first evidence of direct transmission from mollusks to waterbirds and confirm that waterbirds act as disseminating vehicles of waterborne pathogens. Effective surveillance of migratory waterbirds along their routes will be valuable for predicting future epidemics of infectious diseases.

RevDate: 2019-11-09

Schloss PD (2019)

Reintroducing mothur: 10 years later.

Applied and environmental microbiology pii:AEM.02343-19 [Epub ahead of print].

More than 10 years ago, we published the manuscript describing the mothur software package in Applied and Environmental Microbiology Our goal was to create a comprehensive package that allowed users to analyze amplicon sequence data using the most robust methods available. mothur has helped lead the community through the ongoing sequencing revolution and continues to provide this service to the microbial ecology community. Beyond its success and impact on the field, mothur's development exposed a series of observations that are generally translatable across science. Perhaps the observation that stands out the most is that all science is done in the context of prevailing ideas and available technologies. Although it is easy to criticize choices that were made 10 years ago through a modern lens, if we were to wait for all of the possible limitations to be solved before proceeding, science would stall. Even preceding the development of mothur, it was necessary to address the most important problems and work backwards to other problems that limited access to robust sequence analysis tools. At the same time, we strive to expand mothur's capabilities in a data-driven manner to incorporate new ideas and accommodate changes in data and desires of the research community. It has been edifying to see the benefit that a simple set of tools can bring to so many other researchers.

RevDate: 2019-11-09

Coggins LX, Larma I, Hinchliffe A, et al (2019)

Flow cytometry for rapid characterisation of microbial community dynamics in waste stabilisation ponds.

Water research, 169:115243 pii:S0043-1354(19)31017-6 [Epub ahead of print].

Algal and bacterial communities play a major role in the treatment performance and efficiency of waste stabilisation ponds (WSPs); however, the study of these WSP microbial communities has been challenging. Flow cytometry (FCM) has been used widely as a rapid, culture-independent method of characterising algae and/or bacteria in a range of freshwater and marine environments, and in conventional wastewater treatment processes, but its application to WSP wastewater has been underexplored. In this study, a method for the characterisation of both algal and bacterial microbial populations in WSP wastewater is presented and standardised, using cultures and field samples. We show that SYTO 16 dye is more effective than SYBR Green I for the concurrent detection of both algae and bacteria in samples. Through gating and phenotypic diversity analysis, the FCM results show both spatial and temporal shifts in pond microbial communities. The ability to rapidly determine the spatiotemporal shifts in pond populations is not only important for the improvement of pond operation and monitoring strategies, but also for the planning and management. Flow cytometry has the potential to become a diagnostic tool for ponds to assess treatment performance and determine the most optimal operating conditions.

RevDate: 2019-11-09

Aldrete-Tapia JA, Escalante-Minakata P, Martínez-Peniche RA, et al (2020)

Yeast and bacterial diversity, dynamics and fermentative kinetics during small-scale tequila spontaneous fermentation.

Food microbiology, 86:103339.

The study of microbial communities associated with spontaneous fermentation of agave juice for tequila production is required to develop starter cultures that improve both yield and quality of the final product. Quantification by HPLC of primary metabolites produced during the fermentations was determined. A polyphasic approach using plate count, isolation and identification of microorganisms, denaturing gradient gel electrophoresis and next generation sequencing was carried out to describe the diversity and dynamics of yeasts and bacteria during small-scale spontaneous fermentations of agave juice from two-year samplings. High heterogeneity in microbial populations and fermentation parameters were observed, with bacteria showing higher diversity than yeast. The core microorganisms identified were Saccharomyces cerevisiae and Lactobacillus fermentum. Practices in tequila production changed during the two-year period, which affected microbial community structure and the time to end fermentation. Bacterial growth and concomitant lactic acid production were associated with low ethanol production, thus bacteria could be defined as contaminants in tequila fermentation and efforts to control them should be implemented.

RevDate: 2019-11-08

Ni J, Hatori S, Wang Y, et al (2019)

Uncovering Viable Microbiome in Anaerobic Sludge Digesters by Propidium Monoazide (PMA)-PCR.

Microbial ecology pii:10.1007/s00248-019-01449-w [Epub ahead of print].

Use of anaerobic sludge digester is a common practice around the world for solids digestion and methane generation from municipal sewage sludge. Understanding microbial community structure is vital to get better insight into the anaerobic digestion process and to gain better process control. However, selective analysis of viable microorganisms is limited by DNA-based assays. In this study, propidium monoazide (PMA)-PCR with 16S rRNA gene sequencing analysis was used to distinguish live and dead microorganisms based on cell membrane integrity. Microbial community structures of PMA-treated and PMA-untreated anaerobic digester sludge samples were compared. Quantitative PCR revealed that 5-30% of the rRNA genes were derived from inactive or dead cells in anaerobic sludge digesters. This caused a significant decrease in the numbers of operational taxonomic units and Chao1 and Shannon indices compared with that of the PMA-untreated sludge. Microbial community analysis showed that majority of the viable microbiome consisted of Euryarchaeota, Bacteroidetes, Deltaproteobacteria, Chloroflexi, Firmicutes, WWE1, Spirochaetes, Synergistetes, and Caldiserica. On the other hand, after the PMA treatment, numbers of Alphaproteobacteria and Betaproteobacteria declined. These were considered residual microbial members. The network analysis also revealed a relationship among the OTUs belonging to WWE1 and Bacteroidales. PMA-PCR-based 16S rRNA gene sequencing analysis is an effective tool for uncovering viable microbiome in complex environmental samples.

RevDate: 2019-11-08

Testa S, Berger S, Piccardi P, et al (2019)

Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa.

Communications biology, 2:405 pii:633.

Bacterial viruses, or phage, are key members of natural microbial communities. Yet much research on bacterial-phage interactions has been conducted in liquid cultures involving single bacterial strains. Here we explored how bacterial diversity affects the success of lytic phage in structured communities. We infected a sensitive Pseudomonas aeruginosa strain PAO1 with a lytic phage Pseudomonas 352 in the presence versus absence of an insensitive P. aeruginosa strain PA14, in liquid culture versus colonies on agar. We found that both in liquid and in colonies, inter-strain competition reduced resistance evolution in the susceptible strain and decreased phage population size. However, while all sensitive bacteria died in liquid, bacteria in colonies could remain sensitive yet escape phage infection, due mainly to reduced growth in colony centers. In sum, spatial structure can protect bacteria against phage infection, while the presence of competing strains reduces the evolution of resistance to phage.

RevDate: 2019-11-08

Han MM, Zhu XY, Peng YF, et al (2019)

The alterations of gut microbiota in mice with chronic pancreatitis.

Annals of translational medicine, 7(18):464.

Background: The changes of intestinal microbiome are associated with inflammatory, metabolic, and malignant disorders, and there are no studies assessing the intestinal microbiota of mice with chronic pancreatitis (CP). Thus, we aim to investigate the variations in diversity, composition and function of intestinal microbiota in CP mice.

Methods: Sixteen male C57BL/6 mice were randomly selected, and divided into two groups, treated intraperitoneally with saline (normal control group, CT group) or ethanol + cerulein (experimental group, CP group) for 6 weeks. Body weight as measured in entire processes. Histopathological examination of CP index was conducted to verify the CP induction. Extracted DNA from colon samples was used for Illumina HiSeq sequencing of the bacterial V4 region of 16S rRNA gene and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Functional profiling of microbial communities was predicted with BugBase.

Results: Significant alterations of the gut microbiota were found in the CP mice compared to CT groups, as revealed by significant decrease in bacterial richness and diversity, declined the relative abundance of Lachnospiraceae_NK4A136, Ruminiclostridium and Roseburia, and increased the relative abundances of Bacteroides and Alloprevotella genera. Analysis of microbial community-level phenotypes revealed significant differences in nine phenotypes (aerobic, anaerobic, containing mobile elements, facultatively anaerobic, biofilm forming, gram-negative, gram-positive, potentially pathogenic, and stress tolerant) between CP group and CT group.

Conclusions: This study indicated that mice with CP had a distinct microbiota profile.

RevDate: 2019-11-08

Zheng Q, Hu Y, Zhang S, et al (2019)

Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity.

Soil biology & biochemistry, 136:107521.

Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.

RevDate: 2019-11-08

Avalos M, Garbeva P, Raaijmakers JM, et al (2019)

Production of ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces species.

The ISME journal pii:10.1038/s41396-019-0537-2 [Epub ahead of print].

Soil-inhabiting streptomycetes are nature's medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatiles, molecules that disperse through the soil matrix and may impact other (micro)organisms from a distance. Here, we show that soil- and surface-grown streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile ammonia, dispersing over long distances to inhibit the growth of Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of the glycine cleavage system nullified ammonia biosynthesis and concomitantly air-borne antibiosis. Reduced expression of the porin master regulator OmpR and its cognate kinase EnvZ is used as a resistance strategy by E. coli cells to survive ammonia-mediated antibiosis. Finally, ammonia was shown to enhance the activity of canonical antibiotics, suggesting that streptomycetes adopt a low-cost strategy to sensitize competitors for antibiosis from a distance.

RevDate: 2019-11-08

Park R, Dzialo MC, Spaepen S, et al (2019)

Microbial communities of the house fly Musca domestica vary with geographical location and habitat.

Microbiome, 7(1):147 pii:10.1186/s40168-019-0748-9.

House flies (Musca domestica) are widespread, synanthropic filth flies commonly found on decaying matter, garbage, and feces as well as human food. They have been shown to vector microbes, including clinically relevant pathogens. Previous studies have demonstrated that house flies carry a complex and variable prokaryotic microbiota, but the main drivers underlying this variability and the influence of habitat on the microbiota remain understudied. Moreover, the differences between the external and internal microbiota and the eukaryotic components have not been examined. To obtain a comprehensive view of the fly microbiota and its environmental drivers, we sampled over 400 flies from two geographically distinct countries (Belgium and Rwanda) and three different environments-farms, homes, and hospitals. Both the internal as well as external microbiota of the house flies were studied, using amplicon sequencing targeting both bacteria and fungi. Results show that the house fly's internal bacterial community is very diverse yet relatively consistent across geographic location and habitat, dominated by genera Staphylococcus and Weissella. The external bacterial community, however, varies with geographic location and habitat. The fly fungal microbiota carries a distinct signature correlating with the country of sampling, with order Capnodiales and genus Wallemia dominating Belgian flies and genus Cladosporium dominating Rwandan fly samples. Together, our results reveal an intricate country-specific pattern for fungal communities, a relatively stable internal bacterial microbiota and a variable external bacterial microbiota that depends on geographical location and habitat. These findings suggest that vectoring of a wide spectrum of environmental microbes occurs principally through the external fly body surface, while the internal microbiome is likely more limited by fly physiology.

RevDate: 2019-11-08

Yuen B, Polzin J, JM Petersen (2019)

Organ transcriptomes of the lucinid clam Loripes orbiculatus (Poli, 1791) provide insights into their specialised roles in the biology of a chemosymbiotic bivalve.

BMC genomics, 20(1):820 pii:10.1186/s12864-019-6177-0.

BACKGROUND: The lucinid clam Loripes orbiculatus lives in a nutritional symbiosis with sulphur-oxidizing bacteria housed in its gills. Although our understanding of the lucinid endosymbiont physiology and metabolism has made significant progress, relatively little is known about how the host regulates the symbiosis at the genetic and molecular levels. We generated transcriptomes from four L. orbiculatus organs (gills, foot, visceral mass, and mantle) for differential expression analyses, to better understand this clam's physiological adaptations to a chemosymbiotic lifestyle, and how it regulates nutritional and immune interactions with its symbionts.

RESULTS: The transcriptome profile of the symbiont-housing gill suggests the regulation of apoptosis and innate immunity are important processes in this organ. We also identified many transcripts encoding ion transporters from the solute carrier family that possibly allow metabolite exchange between host and symbiont. Despite the clam holobiont's clear reliance on chemosynthesis, the clam's visceral mass, which contains the digestive tract, is characterised by enzymes involved in digestion, carbohydrate recognition and metabolism, suggesting that L. orbiculatus has a mixotrophic diet. The foot transcriptome is dominated by the biosynthesis of glycoproteins for the construction of mucus tubes, and receptors that mediate the detection of chemical cues in the environment.

CONCLUSIONS: The transcriptome profiles of gills, mantle, foot and visceral mass provide insights into the molecular basis underlying the functional specialisation of bivalve organs adapted to a chemosymbiotic lifestyle.

RevDate: 2019-11-07

Roesch LFW, Dobbler PT, Pylro VS, et al (2019)

PIME: A package for discovery of novel differences among microbial communities.

Molecular ecology resources [Epub ahead of print].

The data used for profiling microbial communities is usually sparse with some microbes having high abundance in a few samples and being nearly absent in others. However, current bioinformatics tools able to deal with this sparsity are missing. PIME (Prevalence Interval for Microbiome Evaluation) was designed for remove those taxa that may be high in relative abundance in just a few samples but have a low prevalence overall. The reliability and robustness of PIME were compared against existing methods and tested using 16S rRNA independent datasets. PIME filters microbial taxa not shared in a per treatment prevalence interval starting at 5% prevalence with increasing increments of 5% at each filtering step. For each prevalence interval, hundreds of decision trees are calculated to predict the likelihood of detecting differences in treatments. The best prevalence-filtered dataset is user-selected by choosing the prevalence interval that keeps a large portion of the 16S rRNA sequences in the dataset while also showing the lowest error rate. To obtain the likelihood of introducing type I error while building prevalence-filtered datasets, an error detection step based is also included. A PIME reanalysis of published datasets uncovered other expected microbial associations then previously reported, which may be masked when only relative abundance was considered.

RevDate: 2019-11-06

Burges A, Fievet V, Oustriere N, et al (2019)

Long-term phytomanagement with compost and a sunflower - Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil.

The Science of the total environment, 700:134529 pii:S0048-9697(19)34520-6 [Epub ahead of print].

At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach. After 9 years of phytomanagement, no overall effect was identified on microbial diversity; the soil amendments, notably the repeated compost application, led to shifts in soil microbial populations. This phytomanagement option induced changes in the composition of soil microbial communities, promoting the growth of microbial groups belonging to Alphaproteobacteria, many being involved in N cycling. Populations of Nitrososphaeria, which are crucial in nitrification, as well as taxa from phyla Planctomycetacia, Chloroflexi and Gemmatimonadetes, which are tolerant to metal contamination and adapted to oligotrophic soil conditions, decreased in amended phytomanaged plots. Our study provides an insight into population dynamics within soil microbial communities under long-term phytomanagement, in line with the assessment of soil ecological functions and their recovery.

RevDate: 2019-11-06

Vera-Gutiérrez T, García-Muñoz MC, Otálvaro-Alvarez AM, et al (2019)

Effect of processing technology and sugarcane varieties on the quality properties of unrefined non-centrifugal sugar.

Heliyon, 5(10):e02667 pii:e02667.

In this research, the unrefined non-centrifugal sugar (UNCS) quality obtained from two sugarcane varieties (RD 7511 and CC 8475) and using two types of technologies (traditional and Ward-Cimpa production facilities) were evaluated. The parameters monitored through the process were impurities, total soluble solids, acidity, pH, and temperature profile. Microbiological analyses were carried out on beating, molding, packing, and storage operations; and finally, an organoleptic analysis was carried out on the final UNCS product. Results showed that the UNCS obtained from variety CC 8475 had higher consumer acceptance; meanwhile, the technologies assessed did not show significant differences in final product quality. However, these technologies showed significant differences in the highest temperature, syrup, and juice properties. Microbiological analyses highlighted beating and molding as the critical points in UNCS production safety. Finally, it was evident that the implementation of new technologies or the improvement of the furnace, as in the Ward-Cimpa production facility, is not enough to achieve food safety requirements, as many other conditions affect the microbiological quality of the product. Although the temperatures reached on the Ward-Cimpa furnace are higher than those reached with the traditional furnace and thus, enough to kill all the harmful microorganisms, contamination in downstream operations still occurs.

RevDate: 2019-11-06

Pernice M, Raina JB, Rädecker N, et al (2019)

Down to the bone: the role of overlooked endolithic microbiomes in reef coral health.

The ISME journal pii:10.1038/s41396-019-0548-z [Epub ahead of print].

Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only 2-3 mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes, often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the "overlooked" coral skeleton.

RevDate: 2019-11-06

Maslov S, K Sneppen (2019)

Regime Shifts in a Phage-Bacterium Ecosystem and Strategies for Its Control.

mSystems, 4(6): pii:4/6/e00470-19.

The competition between bacteria often involves both nutrients and phage predators and may give rise to abrupt regime shifts between the alternative stable states characterized by different species compositions. While such transitions have been previously studied in the context of competition for nutrients, the case of phage-induced bistability between competing bacterial species has not been considered yet. Here we demonstrate a possibility of regime shifts in well-mixed phage-bacterium ecosystems. In one of the bistable states, the fast-growing bacteria competitively exclude the slow-growing ones by depleting their common nutrient. Conversely, in the second state, the slow-growing bacteria with a large burst size generate such a large phage population that the other species cannot survive. This type of bistability can be realized as the competition between a strain of bacteria protected from phage by abortive infection and another strain with partial resistance to phage. It is often desirable to reliably control the state of microbial ecosystems, yet bistability significantly complicates this task. We discuss successes and limitations of one control strategy in which one adds short pulses to populations of individual species. Our study proposes a new type of phage therapy, where introduction of the phage is supplemented by the addition of a partially resistant host bacteria.IMPORTANCE Phage-microbe communities play an important role in human health as well as natural and industrial environments. Here we show that these communities can assume several alternative species compositions separated by abrupt regime shifts. Our model predicts these regime shifts in the competition between bacterial strains protected by two different phage defense mechanisms: abortive infection/CRISPR and partial resistance. The history dependence caused by regime shifts greatly complicates the task of manipulation and control of a community. We propose and study a successful control strategy via short population pulses aimed at inducing the desired regime shifts. In particular, we predict that a fast-growing pathogen could be eliminated by a combination of its phage and a slower-growing susceptible host.

RevDate: 2019-11-05

Wood K (2019)

Microbial Ecology: Complex Bacterial Communities Reduce Selection for Antibiotic Resistance.

Current biology : CB, 29(21):R1143-R1145.

Competition between antibiotic-resistant and -susceptible bacteria is well studied in single-species communities, but less is known about selection for resistance in more complex ecologies. A new experiment shows natural microbial communities can hinder selection by increasing the fitness costs of resistance or by offering protection to drug-sensitive strains.

RevDate: 2019-11-05

Wong YY, Lee CW, Bong CW, et al (2019)

Environmental control of Vibrio spp. abundance and community structure in tropical waters.

FEMS microbiology ecology pii:5613362 [Epub ahead of print].

We measured Vibrio spp. distribution and community profile in the tropical estuary of Port Klang and coastal water of Port Dickson, Malaysia. Vibrio spp. abundance ranged from 15 to 2395 cfu mL⁻¹, and were driven by salinity and chlorophyll a (Chl a) concentration. However, the effect of salinity was pronounced only when salinity was <20 ppt. A total of 27 Vibrio spp. were identified, and Vibrio spp. community at Port Dickson was more diverse (H' = 1.94±0.21). However species composition between Port Dickson and Port Klang were similar. Two frequently occurring Vibrio spp. were V. owensii and V. rotiferianus, which exhibited relatively higher growth rates (ANCOVA: F>4.338, P<0.05). Co‒culture experiments between fast and slow growing Vibrio spp. revealed that fast growing Vibrio spp. (r-strategists) were overwhelmed by slower growing Vibrio spp. (K-strategists) when nutrient conditions were set towards oligotrophy. In response to resource availability, the intrinsic growth strategy of each Vibrio spp. determined their occurrence and the development of Vibrio spp. community composition.

RevDate: 2019-11-05

McCall LI, Callewaert C, Zhu Q, et al (2019)

Home chemical and microbial transitions across urbanization.

Nature microbiology pii:10.1038/s41564-019-0593-4 [Epub ahead of print].

Urbanization represents a profound shift in human behaviour, and has considerable cultural and health-associated consequences1,2. Here, we investigate chemical and microbial characteristics of houses and their human occupants across an urbanization gradient in the Amazon rainforest, from a remote Peruvian Amerindian village to the Brazilian city of Manaus. Urbanization was found to be associated with reduced microbial outdoor exposure, increased contact with housing materials, antimicrobials and cleaning products, and increased exposure to chemical diversity. The degree of urbanization correlated with changes in the composition of house bacterial and microeukaryotic communities, increased house and skin fungal diversity, and an increase in the relative abundance of human skin-associated fungi and bacteria in houses. Overall, our results indicate that urbanization has large-scale effects on chemical and microbial exposures and on the human microbiota.

RevDate: 2019-11-05

Gomes A, Oudot C, Macià A, et al (2019)

Berry-Enriched Diet in Salt-Sensitive Hypertensive Rats: Metabolic Fate of (Poly)Phenols and the Role of Gut Microbiota.

Nutrients, 11(11): pii:nu11112634.

Diets rich in (poly)phenols are associated with a reduced reduction in the incidence of cardiovascular disorders. While the absorption and metabolism of (poly)phenols has been described, it is not clear how their metabolic fate is affected under pathological conditions. This study evaluated the metabolic fate of berry (poly)phenols in an in vivo model of hypertension as well as the associated microbiota response. Dahl salt-sensitive rats were fed either a low-salt diet (0.26% NaCl) or a high-salt diet (8% NaCl), with or without a berry mixture (blueberries, blackberries, raspberries, Portuguese crowberry and strawberry tree fruit) for 9 weeks. The salt-enriched diet promoted an increase in the urinary excretion of berry (poly)phenol metabolites, while the abundance of these metabolites decreased in faeces, as revealed by UPLC-MS/MS. Moreover, salt and berries modulated gut microbiota composition as demonstrated by 16S rRNA analysis. Some changes in the microbiota composition were associated with the high-salt diet and revealed an expansion of the families Proteobacteria and Erysipelotrichaceae. However, this effect was mitigated by the dietary supplementation with berries. Alterations in the metabolic fate of (poly)phenols occur in parallel with the modulation of gut microbiota in hypertensive rats. Thus, beneficial effects of (poly)phenols could be related with these interlinked modifications, between metabolites and microbiota environments.

RevDate: 2019-11-04

Brackmann M, Leib SL, Tonolla M, et al (2019)

Antimicrobial resistance Classification using MALDI-TOF-MS is not that easy: Lessons from vancomycin-resistant Enterococcus faecium.

RevDate: 2019-11-04

Kobayashi K, H Aoyagi (2019)

Microbial community structure analysis in Acer palmatum bark and isolation of novel bacteria IAD-21 of the candidate division FBP.

PeerJ, 7:e7876 pii:7876.

Background: The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark.

Methods: In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed.

Results: At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and candidate division FBP, which contain many uncultured microbial species, existed in the A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, some genera belonging to the phyla mentioned were detected. A total of 70 isolates could be isolated and cultured using the low-nutrient agar media DR2A and PE03. Strains belonging to the phylum Actinobacteria were isolated most frequently. In addition, the newly identified bacterial strain IAP-33, presumed to belong to Acidobacteria, was isolated on PE03 medium. Of the isolated bacteria, 44 strains demonstrated less than 97% 16S rDNA sequence-similarity with type strains. Molecular phylogenetic analysis of IAD-21 showed the lowest similarity (79%), and analyses suggested it belongs to candidate division FBP. Culture of the strain IAD-21 was deposited in Japan Collection of Microorganisms (JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as JCM 32665 and DSM 108248, respectively.

Discussion: Our results suggest that a variety of uncultured microorganisms exist in A. palmatum bark. Microorganisms acquirable from the bark may prove valuable for academic pursuits, such as studying microbial ecology, and the bark might be a promising source of uncultured bacterial isolates.

RevDate: 2019-11-04

He H, Fu L, Liu Q, et al (2019)

Community Structure, Abundance and Potential Functions of Bacteria and Archaea in the Sansha Yongle Blue Hole, Xisha, South China Sea.

Frontiers in microbiology, 10:2404.

The Sansha Yongle Blue Hole is the deepest blue hole in the world and exhibits unique environmental characteristics. In this paper, Illumina sequencing and qPCR analysis were conducted to obtain the microbial information in this special ecosystem. The results showed that the richness and diversity of bacterial communities in the hole was greater than those of archaeal communities, and bacterial and archaeal communities were dominated by Proteobacteria and Euryarchaeota, respectively. Temperature and nitrate concentration significantly contributed to the heterogeneous distribution of major bacterial clades; salinity explained most variations of the archaeal communities, but not significant. A sudden increase of bacterial 16S rRNA, archaeal 16S rRNA, ANAMMOX 16S rRNA, nirS and dsrB gene was noticed from 90 to 100 m in the hole probably due to more phytoplankton at this depth. Sulfur oxidation and nitrate reduction were the most abundant predicted ecological functions in the hole, while lots of archaea were predicted to be involved in aerobic ammonia oxidation and methanogenesis. The co-occurrence network analysis illustrated that a synergistic effect between sulfate reduction and sulfur oxidation, and between nitrogen fixation and denitrification, a certain degree of coupling between sulfur and nitrogen cycle was also observed in the hole. The comparisons of bacterial and archaeal communities between the hole and other caves in the world (or other areas of the South China Sea) suggest that similar conditions are hypothesized to give rise to similar microbial communities, and environmental conditions may contribute significantly to the bacterial and archaeal communities.

RevDate: 2019-11-04

Temkin MI, Carlson CM, Stubbendieck AL, et al (2019)

High Throughput Co-culture Assays for the Investigation of Microbial Interactions.

Journal of visualized experiments : JoVE.

The study of interactions between microorganisms has led to numerous discoveries, from novel antimicrobials to insights in microbial ecology. Many approaches used for the study of microbial interactions require specialized equipment and are expensive and time intensive. This paper presents a protocol for co-culture interaction assays that are inexpensive, scalable to large sample numbers, and easily adaptable to numerous experimental designs. Microorganisms are cultured together, with each well representing one pairwise combination of microorganisms. A test organism is cultured on one side of each well and first incubated in monoculture. Subsequently, target organisms are simultaneously inoculated onto the opposite side of each well using a 3D-printed inoculation stamp. After co-culture, the completed assays are scored for visual phenotypes, such as growth or inhibition. These assays can be used to confirm phenotypes or identify patterns among isolates of interest. Using this simple and effective method, users can analyze combinations of microorganisms rapidly and efficiently. This co-culture approach is applicable to antibiotic discovery as well as culture-based microbiome research and has already been successfully applied to both applications.

RevDate: 2019-11-03

Hourcade MG, Braga MR, Campo EMD, et al (2019)

Ultrastructural and biochemical analyses reveal cell wall remodelling in lichen-forming microalga submitted to cyclic desiccation-rehydration.

Annals of botany pii:5611312 [Epub ahead of print].

BACKGROUND AND AIMS: One of the most distinctive features of desiccation-tolerant plants is their high cell wall (CW) flexibility. Most lichen microalgae can tolerate drastic dehydration-rehydration (D/R) conditions, however their mechanisms of D/R tolerance are scarcely understood. We tested the hypothesis that D/R-tolerant microalgae would have flexible CWs due to species-specific CW ultrastructure and biochemical composition, which could be remodelled by exposure to cyclic D/R.

METHODS: Two lichen microalgae, Trebouxia sp. TR9 (TR9, adapted to rapid D/R cycles) and Coccomyxa simplex (Csol, adapted to seasonal dry periods) were exposed to 0 or 4 cycles of desiccation [25-30% RH (TR9) or 55-60% RH (Csol)] and 16 h rehydration (100% RH). LTSEM, ESEM and freeze-substitution TEM were employed to visualize structural alterations induced by D/R. Besides, CWs were extracted, sequentially fractionated with hot water and KOH, and the gel permeation profile of polysaccharides was analysed in each fraction. The glycosyl composition and linkage of the main polysaccharides of each CW fraction were analysed by GC-MS.

KEY RESULTS: All ultrastructural analyses consistently showed that desiccation caused progressive cell shrinkage and deformation in both microalgae, which could be rapidly reversed when water availability increased. Notably, TR9 and Csol plasma membrane remained in close contact with the deformed CW. Exposure to D/R strongly altered the size distribution of TR9 hot water-soluble polysaccharides composed mainly of a β-3-linked rhamnogalactofuranan and Csol KOH-soluble β-glucans.

CONCLUSIONS: Cyclic D/R induces biochemical remodelling of the CW that could increase CW flexibility, allowing regulated shrinkage and expansion of D/R-tolerant microalgae.

RevDate: 2019-11-03

Contreras-Dávila CA, Carrión VJ, Vonk VR, et al (2019)

Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation.

Water research, 169:115215 pii:S0043-1354(19)30989-3 [Epub ahead of print].

The production of biochemicals from renewables through biorefinery processes is important to reduce the anthropogenic impact on the environment. Chain elongation processes based on microbiomes have been successfully developed to produce medium-chain fatty acids (MCFA) from organic waste streams. Yet, the sustainability of chain elongation can still be improved by reducing the use of electron donors and additional chemicals. This work aimed to couple lactate production and subsequent chain elongation to decrease chemicals input such as electron donors and hydroxide for pH control in repeated-batch food waste fermentation. Food waste with adjusted pH was used as substrate and fermentation proceeded without pH control. During fermentation, lactate was first formed through the homolactic pathway and then converted to fatty acids (FA), mainly n-butyrate and n-caproate. The highest n-caproate carbon selectivities (mmol C/mmol CFA) and production rates were 38% and 4.2 g COD/L-d, respectively. Hydroxide input was reduced over time to a minimum of 0.47 mol OH-/mol MCFA or 0.79 mol OH-/kg CODFA. Lactate was a key electron donor for chain elongation and its conversion was observed at pH as low as 4.3. The microbiome enriched in this work was dominated by Lactobacillus spp. and Caproiciproducens spp. The high abundance of Caproiciproducens spp. and their co-occurrence with Lactobacillus spp. suggest Caproiciproducens spp. used lactate as electron donor for chain elongation. This work shows the production of n-caproate from food waste with decreased use of hydroxide and no use of exogenous electron donors.

RevDate: 2019-11-02

Dumack K, Fiore-Donno AM, Bass D, et al (2019)

Making sense of environmental sequencing data: ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria).

Molecular ecology resources [Epub ahead of print].

We compiled a database of functional traits for a widespread and ecologically important group of protists, Cercozoa and Endomyxa (Rhizaria). Functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro- and macroorganisms, but yet rarely applied to protists. Our database provides functional and ecologically significant traits linked to morphology, nutrition, locomotion, and habitats. We discuss how the use of functional traits may help to unveil underlying ecosystem processes. This database is intended as a common reference for the molecular ecology community and will boost the understanding of ecosystem functions, especially those driven by biological interactions.

RevDate: 2019-11-02

Kublanovskaya A, Solovchenko A, Fedorenko T, et al (2019)

Natural Communities of Carotenogenic Chlorophyte Haematococcus lacustris and Bacteria from the White Sea Coastal Rock Ponds.

Microbial ecology pii:10.1007/s00248-019-01437-0 [Epub ahead of print].

Haematococcus lacustris is a biotechnologically important green unicellular alga producing widely used keta-karotenoid astaxanthin. In natural habitats, it exists in the form of algal-bacterial community, and under laboratory conditions, it is also accompanied by bacteria. The issue of the bacterial composition of industrial algal cultures is widely recognized as important. However, there is a dearth of information about bacterial composition of H. lacustris communities. In current work, we analyze the composition of natural H. lacustris communities from the White Sea coastal temporal rock ponds. For the first time, a 16S rRNA gene-based metagenome of natural H. lacustris bacterial communities has been generated. Main results of its analysis are as follow. Bacterial families Comamonadaceae, Cytophagaceae, Xanthomonadaceae, Acetobacteraceae, Rhodobacteraceae, and Rhodocyclaceae were observed in all studied H. lacustris natural communities. They also contained genera Hydrogenophaga and Cytophaga. Bacteria from the Hydrogenophaga genus were present in H. lacustris cultures after their isolation under the conditions of laboratory cultivation. Similar to other planktonic microalgae, H. lacustris forms a phycosphere around the cells. In this zone, bacteria attached to the algal surface. The contact between H. lacustris and bacteria is maintained even after sample drying. The study provides information about possible members of H. lacustris core microbiome, which can be presented in the industrial and laboratory cultures of the microalga.

RevDate: 2019-11-01

Carrión VJ, Perez-Jaramillo J, Cordovez V, et al (2019)

Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome.

Science (New York, N.Y.), 366(6465):606-612.

Microorganisms living inside plants can promote plant growth and health, but their genomic and functional diversity remain largely elusive. Here, metagenomics and network inference show that fungal infection of plant roots enriched for Chitinophagaceae and Flavobacteriaceae in the root endosphere and for chitinase genes and various unknown biosynthetic gene clusters encoding the production of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). After strain-level genome reconstruction, a consortium of Chitinophaga and Flavobacterium was designed that consistently suppressed fungal root disease. Site-directed mutagenesis then revealed that a previously unidentified NRPS-PKS gene cluster from Flavobacterium was essential for disease suppression by the endophytic consortium. Our results highlight that endophytic root microbiomes harbor a wealth of as yet unknown functional traits that, in concert, can protect the plant inside out.

RevDate: 2019-10-31

Ouoba LII, Vouidibio Mbozo AB, Anyogu A, et al (2019)

Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements.

International journal of food microbiology, 311:108356 pii:S0168-1605(19)30286-7 [Epub ahead of print].

Different samples of three products including Bikalga and Soumbala from Burkina Faso (West Africa) and Ntoba Mbodi from Congo-Brazzaville (Central Africa) were evaluated. The bacteria (400) were phenotyped and genotypically characterized by Rep-PCR, PFGE, 16S rRNA and rpoB gene sequencing and spa typing. Their PFGE profiles were compared with those of 12,000 isolates in the Center for Disease Control (CDC, USA) database. They were screened for the production of enterotoxins, susceptibility to 19 antimicrobials, presence of 12 staphylococcal toxin and 38 AMR genes and the ability to transfer erythromycin and tetracycline resistance genes to Enterococcus faecalis JH2-2. Fifteen coagulase negative (CoNS) and positive (CoPS) species characterized by 25 Rep-PCR/PFGE clusters were identified: Staphylococcus arlettae, S. aureus, S. cohnii, S. epidermidis, S. gallinarum, S. haemolyticus, S. hominis, S. pasteuri, S. condimenti, S. piscifermentans, S. saprophyticus, S. sciuri, S. simulans, S. warneri and Macrococcus caseolyticus. Five species were specific to Soumbala, four to Bikalga and four to Ntoba Mbodi. Two clusters of S. gallinarum and three of S. sciuri were particular to Burkina Faso. The S. aureus isolates exhibited a spa type t355 and their PFGE profiles did not match any in the CDC database. Bacteria from the same cluster displayed similar AMR and toxin phenotypes and genotypes, whereas clusters peculiar to a product or a location generated distinct profiles. The toxin genes screened were not detected and the bacteria did not produce the staphylococcal enterotoxins A, B, C and D. AMR genes including blazA, cat501, dfr(A), dfr(G), mecA, mecA1, msr(A) and tet(K) were identified in CoNS and CoPS. Conjugation experiments produced JH2-2 isolates that acquired resistance to erythromycin and tetracycline, but no gene transfer was revealed by PCR. The investigation of the heterogeneity of Staphylococcus species from alkaline fermented foods, their relationship with clinical and environmental isolates and their safety in relation to antimicrobial resistance (AMR) and toxin production is anticipated to contribute to determining the importance of staphylococci in alkaline fermented foods, especially in relation to the safety of the consumers.

RevDate: 2019-10-31

Sharma NC, Kumar D, Sarkar A, et al (2019)

Prevalence of MDR salmonellae with increasing frequency of S. Kentucky and S. Virchow serovars among hospitalized diarrheal cases in and around Delhi, India.

Japanese journal of infectious diseases [Epub ahead of print].

Non-typhoidal salmonellae (NTS) are a major cause of acute diarrhea with characteristic multidrug resistance. In a hospital based study, 81 NTS were isolated and tested for serotypes and antimicrobial resistance (AMR). Salmonella enterica isolates were classified into 7 different typable serovars and 19 (23%) isolates remained untypable. The most common serovars were S. Kentucky (48%), and S. Virchow (22%). Most of the NTS isolates displayed resistance to nalidixic acid (73%), ciprofloxacin (48%), ampicillin and norfloxacin (36% each) and gentamicin (31%). The AMR profiles for gentamicin and nalidixic acid (CN-NA) and ampicillin, ciprofloxacin, nalidixic acid and norfloxacin (AM-CIP-NA-NOR) were found to be high in S. Virchow (83%) and S. Kentucky (43%), respectively. Analysis of pulsed-field gel electrophoresis patterns of S. Kentucky revealed three clusters. The appearance of closely related clones of S. Kentucky in Delhi has been prominent in recent years. The AMR appears to be constant with a change in MDR patterns during 2014-2017. Prevalence of S. Kentucky, S. Virchow in large number of diarrheal cases was recorded for the first time. The NTS are mostly resistant to fluoroquinolones, which is the current drug of choice for treating diarrheal cases. MDR is very common among clonally related S. Kentucky.

RevDate: 2019-10-30

Wuyts K, Smets W, Lebeer S, et al (2019)

Green infrastructure and atmospheric pollution shape diversity and composition of phyllosphere bacterial communities in an urban landscape.

FEMS microbiology ecology pii:5607792 [Epub ahead of print].

The microbial habitat on leaf surfaces, also called the phyllosphere, is a selective environment for bacteria, harbouring specific phyllosphere bacterial communities (PBCs). These communities influence plant health, plant-community diversity, ecosystem functioning and ecosystem services. Host plants in an urban environment accommodate different PBCs than those in non-urban environments, but previous studies did not address individual urban factors. In this study, the PBC composition and diversity of 55 London plane (Platanus x acerifolia) trees throughout an urban landscape (Antwerp, Belgium) was determined using 16S rRNA amplicon sequencing. An increasing proportion of green infrastructure in the surrounding of the trees, and subsequently decreasing proportion of anthropogenic land use, was linked with taxa loss, expressed in lower phyllosphere alpha diversity and higher abundances of typical phyllosphere bacteria such as Hymenobacter, Pseudomonas and Beijerinckia. Although air pollution exposure, as assessed by leaf magnetic analysis, did not link with alpha diversity, it correlated with shifts in PBC composition in form of turnover, an equilibrium of taxa gain and taxa loss. We found that both urban landscape composition and air pollution exposure-each in their own unique way-influence bacterial communities in the urban tree phyllosphere.

RevDate: 2019-10-30

Kieran TJ, Arnold KMH, Thomas JC, et al (2019)

Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens.

Parasites & vectors, 12(1):504 pii:10.1186/s13071-019-3761-8.

BACKGROUND: Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama.

METHODS: We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software.

RESULTS: We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48-72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status.

CONCLUSIONS: We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.

RevDate: 2019-10-30

Kolátková V, Čepička I, Gargiulo GM, et al (2019)

Enigmatic Phytomyxid Parasite of the Alien Seagrass Halophila stipulacea: New Insights into Its Ecology, Phylogeny, and Distribution in the Mediterranean Sea.

Microbial ecology pii:10.1007/s00248-019-01450-3 [Epub ahead of print].

Marine phytomyxids represent often overlooked obligate biotrophic parasites colonizing diatoms, brown algae, and seagrasses. An illustrative example of their enigmatic nature is the phytomyxid infecting the seagrass Halophila stipulacea (a well-known Lessepsian migrant from the Indo-Pacific to the Mediterranean Sea). In the Mediterranean, the occurrence of this phytomyxid was first described in 1995 in the Strait of Messina (southern Italy) and the second time in 2017 in the Aegean coast of Turkey. Here we investigated, using scuba diving, stereomicroscopy, light and scanning electron microscopy, and molecular methods, whether the symbiosis is still present in southern Italy, its distribution in this region and its relation to the previous reports. From the total of 16 localities investigated, the symbiosis has only been found at one site. A seasonal pattern was observed with exceptionally high abundance (> 40% of the leaf petioles colonized) in September 2017, absence of the symbiosis in May/June 2018, and then again high infection rates (~ 30%) in September 2018. In terms of anatomy and morphology as well as resting spore dimensions and arrangement, the symbiosis seems to be identical to the preceding observations in the Mediterranean. According to the phylogenetic analyses of the 18S rRNA gene, the phytomyxid represents the first characterized member of the environmental clade "TAGIRI-5". Our results provide new clues about its on-site ecology (incl. possible dispersal mechanisms), hint that it is rare but established in the Mediterranean, and encourage further research into its distribution, ecophysiology, and taxonomy.

RevDate: 2019-10-30

Chase AB, Arevalo P, Brodie EL, et al (2019)

Maintenance of Sympatric and Allopatric Populations in Free-Living Terrestrial Bacteria.

mBio, 10(5): pii:mBio.02361-19.

For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance).IMPORTANCE Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms.

RevDate: 2019-10-30

Madison JD, Ouellette SP, Schmidt EL, et al (2019)

Serratia marcescens shapes cutaneous bacterial communities and influences survival of an amphibian host.

Proceedings. Biological sciences, 286(1914):20191833.

Ongoing investigations into the interactions between microbial communities and their associated hosts are changing how emerging diseases are perceived and ameliorated. Of the numerous host-microbiome-disease systems of study, the emergence of chytridiomycosis (caused by Batrachochytrium dendrobatidis, hereafter Bd) has been implicated in ongoing declines and extinction events of amphibians worldwide. Interestingly, there has been differential survival among amphibians in resisting Bd infection and subsequent disease. One factor thought to contribute to this resistance is the host-associated cutaneous microbiota. This has raised the possibility of using genetically modified probiotics to restructure the host-associated microbiota for desired anti-fungal outcomes. Here, we use a previously described strain of Serratia marcescens (Sm) for the manipulation of amphibian cutaneous microbiota. Sm was genetically altered to have a dysfunctional pathway for the production of the extracellular metabolite prodigiosin. This genetically altered strain (Δpig) and the functional prodigiosin producing strain (wild-type, WT) were compared for their microbial community and anti-Bd effects both in vitro and in vivo. In vitro, Bd growth was significantly repressed in the presence of prodigiosin. In vivo, the inoculation of both Sm strains was shown to significantly influence amphibian microbiota diversity with the Δpig-Sm treatment showing increasing alpha diversity, and the WT-Sm having no temporal effect on diversity. Differences were also seen in host mortality with Δpig-Sm treatments exhibiting significantly decreased survival probability when compared with WT-Sm in the presence of Bd. These results are an important proof-of-concept for linking the use of genetically modified probiotic bacteria to host microbial community structure and disease outcomes, which in the future may provide a way to ameliorate disease and address critical frontiers in disease and microbial ecology.

RevDate: 2019-10-29

Waters JL, RE Ley (2019)

The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health.

BMC biology, 17(1):83 pii:10.1186/s12915-019-0699-4.

The Christensenellaceae, a recently described family in the phylum Firmicutes, is emerging as an important player in human health. The relative abundance of Christensenellaceae in the human gut is inversely related to host body mass index (BMI) in different populations and multiple studies, making its relationship with BMI the most robust and reproducible link between the microbial ecology of the human gut and metabolic disease reported to date. The family is also related to a healthy status in a number of other different disease contexts, including obesity and inflammatory bowel disease. In addition, Christensenellaceae is highly heritable across multiple populations, although specific human genes underlying its heritability have so far been elusive. Further research into the microbial ecology and metabolism of these bacteria should reveal mechanistic underpinnings of their host-health associations and enable their development as therapeutics.

RevDate: 2019-10-29

Gusareva ES, Acerbi E, Lau KJX, et al (2019)

Microbial communities in the tropical air ecosystem follow a precise diel cycle.

Proceedings of the National Academy of Sciences of the United States of America pii:1908493116 [Epub ahead of print].

The atmosphere is vastly underexplored as a habitable ecosystem for microbial organisms. In this study, we investigated 795 time-resolved metagenomes from tropical air, generating 2.27 terabases of data. Despite only 9 to 17% of the generated sequence data currently being assignable to taxa, the air harbored a microbial diversity that rivals the complexity of other planetary ecosystems. The airborne microbial organisms followed a clear diel cycle, possibly driven by environmental factors. Interday taxonomic diversity exceeded day-to-day and month-to-month variation. Environmental time series revealed the existence of a large core of microbial taxa that remained invariable over 13 mo, thereby underlining the long-term robustness of the airborne community structure. Unlike terrestrial or aquatic environments, where prokaryotes are prevalent, the tropical airborne biomass was dominated by DNA from eukaryotic phyla. Specific fungal and bacterial species were strongly correlated with temperature, humidity, and CO2 concentration, making them suitable biomarkers for studying the bioaerosol dynamics of the atmosphere.

RevDate: 2019-10-28

Ilgrande C, Defoirdt T, Vlaeminck SE, et al (2019)

Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems.

Astrobiology, 19(11):1353-1362.

Urine is a major waste product of human metabolism and contains essential macro- and micronutrients to produce edible microorganisms and crops. Its biological conversion into a stable form can be obtained through urea hydrolysis, subsequent nitrification, and organics removal, to recover a nitrate-enriched stream, free of oxygen demand. In this study, the utilization of a microbial community for urine nitrification was optimized with the focus for space application. To assess the role of selected parameters that can impact ureolysis in urine, the activity of six ureolytic heterotrophs (Acidovorax delafieldii, Comamonas testosteroni, Cupriavidus necator, Delftia acidovorans, Pseudomonas fluorescens, and Vibrio campbellii) was tested at different salinities, urea, and amino acid concentrations. The interaction of the ureolytic heterotrophs with a nitrifying consortium (Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25931) was also tested. Lastly, microgravity was simulated in a clinostat utilizing hardware for in-flight experiments with active microbial cultures. The results indicate salt inhibition of the ureolysis at 30 mS cm-1, while amino acid nitrogen inhibits ureolysis in a strain-dependent manner. The combination of the nitrifiers with C. necator and V. campbellii resulted in a complete halt of the urea hydrolysis process, while in the case of A. delafieldii incomplete nitrification was observed, and nitrite was not oxidized further to nitrate. Nitrate production was confirmed in all the other communities; however, the other heterotrophic strains most likely induced oxygen competition in the test setup, and nitrite accumulation was observed. Samples exposed to low-shear modeled microgravity through clinorotation behaved similarly to the static controls. Overall, nitrate production from urea was successfully demonstrated with synthetic microbial communities under terrestrial and simulated space gravity conditions, corroborating the application of this process in space.

RevDate: 2019-10-28

Otto-Hanson LK, LL Kinkel (2019)

Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats.

Microbial ecology pii:10.1007/s00248-019-01443-2 [Epub ahead of print].

Streptomyces spp. perform vital roles in natural and agricultural soil ecosystems including in decomposition and nutrient cycling, promotion of plant growth and fitness, and plant disease suppression. Streptomyces densities can vary across the landscape, and inhibitory phenotypes are often a result of selection mediated by microbial competitive interactions in soil communities. Diverse environmental factors, including those specific to habitat, are likely to determine microbial densities in the soil and the outcomes of microbial species interactions. Here, we characterized indigenous Streptomyces densities and inhibitory phenotypes from soil samples (n = 82) collected in 6 distinct habitats across the Cedar Creek Ecosystem Science Reserve (CCESR; agricultural, prairie, savanna, wetland, wet-woodland, and forest). Significant variation in Streptomyces density and the frequency of antagonistic Streptomyces were observed among habitats. There was also significant variation in soil chemical properties among habitats, including percent carbon, percent nitrogen, available phosphorus, extractable potassium, and pH. Density and frequency of antagonists were significantly correlated with one or more environmental parameters across all habitats, though relationships with some parameters differed among habitats. In addition, we found that habitat rather than spatial proximity was a better predictor of variation in Streptomyces density and inhibitory phenotypes. Moreover, habitats least conducive for Streptomyces growth and proliferation, as determined by population density, had increased frequencies of inhibitory phenotypes. Identifying environmental parameters that structure variation in density and frequency of antagonistic Streptomyces can provide insight for determining factors that mediate selection for inhibitory phenotypes across the landscape.

RevDate: 2019-10-27

Farias GC, Nunes KG, Soares MA, et al (2019)

Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] pii:10.1007/s42770-019-00173-4 [Epub ahead of print].

The association of plant with microorganisms, such as dark septate endophytic fungi, has mitigated the harmful effects of chemical, physical, and biological agents on the host. The objective of this work was to evaluate the interaction of the dark septate endophytic fungi with cowpea plants under salt stress. Endophytic fungi were isolated from Vochysia divergens root system, and molecular identification of fungi was performed by sequencing the ITS region. We selected and identified Sordariomycetes sp1-B'2 and Melanconiella elegans-21W2 for their ability to infect V. divergens root in vitro with development of typical dark septate fungi structures. Cowpea plants-inoculated or not inoculated with Sordariomycetes sp1-B'2 and M. elegans 21W2-were cultivated in 5-L pots under greenhouse conditions and submitted to four different electrical conductivities of irrigation water (1.2, 2.2, 3.6, and 5.0 dS m-1). The salinity caused decrease in leaf concentration of K and increased leaf concentration of calcium, sodium, and chlorine; and no influence of dark septate endophytic fungi was observed in these responses. On the other hand, root colonization with Sordariomycetes sp1-B'2 and M. elegans 21W2 resulted in improved nutrition with N and P in cowpea under salt stress, favoring the growth and rate of liquid photosynthesis. However, such positive responses were evident only at moderate levels of salinity.

RevDate: 2019-10-27

Biedunkiewicz A, Sucharzewska E, Kulesza K, et al (2019)

Phyllosphere of Submerged Plants in Bathing Lakes as a Reservoir of Fungi-Potential Human Pathogens.

Microbial ecology pii:10.1007/s00248-019-01447-y [Epub ahead of print].

This study analysed whether the littoral zone in the immediate vicinity of bathing sites retains potentially pathogenic yeasts on the phyllosphere surface and to what extent the species composition of microfungi in the phyllosphere and in surface waters is similar. The research was carried out in selected lakes located within the administrative boundaries of the city of Olsztyn, the largest city in the Masurian Lake District (NE Poland). The experiment was conducted in three summer seasons near bathing sites in three lakes, which are the most popular as recreational sites (Lake Kortowskie, Lake Tyrsko, and Lake Skanda). Microfungi isolated from the phyllosphere of 13 plant species of the littoral zone from dropped leaves of coast plants with no disease symptoms were used as the study material. The isolated fungi were identified in accordance with the accepted diagnostic procedures applied in mycological laboratories. A total of 36 yeast species of 16 genera were identified. Fungi found earlier at the bathing sites of the lakes were identified in 60% of the cases. Nine species were categorised as class BSL-2 fungi. This study provides a valuable complement of data concerning the natural composition of the littoral microbiota.

RevDate: 2019-10-26

Masteling R, Lombard L, de Boer W, et al (2019)

Harnessing the microbiome to control plant parasitic weeds.

Current opinion in microbiology, 49:26-33 pii:S1369-5274(19)30047-5 [Epub ahead of print].

Microbiomes can significantly expand the genomic potential of plants, contributing to nutrient acquisition, plant growth promotion and tolerance to (a)biotic stresses. Among biotic stressors, root parasitic weeds (RPWs), mainly of the genera Orobanche, Phelipanche and Striga, are major yield-limiting factors of a wide range of staple crops, particularly in developing countries. Here, we provide a conceptual synthesis of putative mechanisms by which soil and plant microbiomes could be harnessed to control RPWs. These mechanisms are partitioned in direct and indirect modes of action and discussed in the context of past and present studies on microbe-mediated suppression of RPWs. Specific emphasis is given to the large but yet unexplored potential of root-associated microorganisms to interfere with the chemical signalling cascade between the host plant and the RPWs. We further provide concepts and ideas for future research directions and prospective designs of novel control strategies.

RevDate: 2019-10-26

Reyns W, Rineau F, Spaak JW, et al (2019)

Food Web Uncertainties Influence Predictions of Climate Change Effects on Soil Carbon Sequestration in Heathlands.

Microbial ecology pii:10.1007/s00248-019-01444-1 [Epub ahead of print].

Carbon cycling models consider soil carbon sequestration a key process for climate change mitigation. However, these models mostly focus on abiotic soil processes and, despite its recognized critical mechanistic role, do not explicitly include interacting soil organisms. Here, we use a literature study to show that even a relatively simple soil community (heathland soils) contains large uncertainties in temporal and spatial food web structure. Next, we used a Lotka-Volterra-based food web model to demonstrate that, due to these uncertainties, climate change can either increase or decrease soil carbon sequestration to varying extents. Both the strength and direction of changes strongly depend on (1) the main consumer's (enchytraeid worms) feeding preferences and (2) whether decomposers (fungi) or enchytraeid worms are more sensitive to stress. Hence, even for a soil community with a few dominant functional groups and a simulation model with a few parameters, filling these knowledge gaps is a critical first step towards the explicit integration of soil food web dynamics into carbon cycling models in order to better assess the role soils play in climate change mitigation.

RevDate: 2019-10-26

Schappe T, Albornoz FE, Turner BL, et al (2019)

Co-occurring Fungal Functional Groups Respond Differently to Tree Neighborhoods and Soil Properties Across Three Tropical Rainforests in Panama.

Microbial ecology pii:10.1007/s00248-019-01446-z [Epub ahead of print].

Abiotic and biotic drivers of co-occurring fungal functional guilds across regional-scale environmental gradients remain poorly understood. We characterized fungal communities using Illumina sequencing from soil cores collected across three Neotropical rainforests in Panama that vary in soil properties and plant community composition. We classified each fungal OTU into different functional guilds, namely plant pathogens, saprotrophs, arbuscular mycorrhizal (AM), or ectomycorrhizal (ECM). We measured soil properties and nutrients within each core and determined the tree community composition and richness around each sampling core. Canonical correspondence analyses showed that soil pH and moisture were shared potential drivers of fungal communities for all guilds. However, partial the Mantel tests showed different strength of responses of fungal guilds to composition of trees and soils. Plant pathogens and saprotrophs were more strongly correlated with soil properties than with tree composition; ECM fungi showed a stronger correlation with tree composition than with soil properties; and AM fungi were correlated with soil properties, but not with trees. In conclusion, we show that co-occurring fungal guilds respond differently to abiotic and biotic environmental factors, depending on their ecological function. This highlights the joint role that abiotic and biotic factors play in determining composition of fungal communities, including those associated with plant hosts.

RevDate: 2019-10-26

Sonner JK, Keil M, Falk-Paulsen M, et al (2019)

Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology.

Nature communications, 10(1):4877 pii:10.1038/s41467-019-12776-4.

The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan - from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.

RevDate: 2019-10-25

Bennett JA, Koch AM, Forsythe J, et al (2019)

Resistance of soil biota and plant growth to disturbance increases with plant diversity.

Ecology letters [Epub ahead of print].

Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long-term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant-feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity.

RevDate: 2019-10-25

Wagg C, Schlaeppi K, Banerjee S, et al (2019)

Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning.

Nature communications, 10(1):4841 pii:10.1038/s41467-019-12798-y.

The soil microbiome is highly diverse and comprises up to one quarter of Earth's diversity. Yet, how such a diverse and functionally complex microbiome influences ecosystem functioning remains unclear. Here we manipulated the soil microbiome in experimental grassland ecosystems and observed that microbiome diversity and microbial network complexity positively influenced multiple ecosystem functions related to nutrient cycling (e.g. multifunctionality). Grassland microcosms with poorly developed microbial networks and reduced microbial richness had the lowest multifunctionality due to fewer taxa present that support the same function (redundancy) and lower diversity of taxa that support different functions (reduced functional uniqueness). Moreover, different microbial taxa explained different ecosystem functions pointing to the significance of functional diversity in microbial communities. These findings indicate the importance of microbial interactions within and among fungal and bacterial communities for enhancing ecosystem performance and demonstrate that the extinction of complex ecological associations belowground can impair ecosystem functioning.

RevDate: 2019-10-24

Tortosa G, Torralbo F, Maza-Márquez P, et al (2019)

Assessment of the diversity and abundance of the total and active fungal population and its correlation with humification during two-phase olive mill waste (''alperujo") composting.

Bioresource technology, 295:122267 pii:S0960-8524(19)31497-X [Epub ahead of print].

Metagenomic and transcriptomic techniques applied to composting could increase our understanding of the overall microbial ecology and could help us to optimise operational conditions which are directly related with economic interest. In this study, the fungal diversity and abundance of two-phase olive mill waste ("alperujo") composting was studied using Illumina MiSeq sequencing and quantitative PCR, respectively. The results showed an increase of the fungal diversity during the process, with Ascomycota being the predominant phylum. Penicillium was the main genera identified at the mesophilic and maturation phases, with Debaryomyces and Sarocladium at the thermophilic phase, respectively. The fungal abundance was increased during composting, which confirms their important role during thermophilic and maturation phases. Some Basidiomycota showed an increased during the process, which showed a positive correlation with the humification parameters. According to that, the genus Cystofilobasidium could be used as a potential fungal biomarker to assess alperujo compost maturation.

RevDate: 2019-10-23

Landberg R, Manach C, Kerckhof FM, et al (2019)

Future prospects for dissecting inter-individual variability in the absorption, distribution and elimination of plant bioactives of relevance for cardiometabolic endpoints.

European journal of nutrition pii:10.1007/s00394-019-02095-1 [Epub ahead of print].

PURPOSE: The health-promoting potential of food-derived plant bioactive compounds is evident but not always consistent across studies. Large inter-individual variability may originate from differences in digestion, absorption, distribution, metabolism and excretion (ADME). ADME can be modulated by age, sex, dietary habits, microbiome composition, genetic variation, drug exposure and many other factors. Within the recent COST Action POSITIVe, large-scale literature surveys were undertaken to identify the reasons and extent of inter-individual variability in ADME of selected plant bioactive compounds of importance to cardiometabolic health. The aim of the present review is to summarize the findings and suggest a framework for future studies designed to investigate the etiology of inter-individual variability in plant bioactive ADME and bioefficacy.

RESULTS: Few studies have reported individual data on the ADME of bioactive compounds and on determinants such as age, diet, lifestyle, health status and medication, thereby limiting a mechanistic understanding of the main drivers of variation in ADME processes observed across individuals. Metabolomics represent crucial techniques to decipher inter-individual variability and to stratify individuals according to metabotypes reflecting the intrinsic capacity to absorb and metabolize bioactive compounds.

CONCLUSION: A methodological framework was developed to decipher how the contribution from genetic variants or microbiome variants to ADME of bioactive compounds can be predicted. Future study design should include (1) a larger number of study participants, (2) individual and full profiling of all possible determinants of internal exposure, (3) the presentation of individual ADME data and (4) incorporation of omics platforms, such as genomics, microbiomics and metabolomics in ADME and efficacy studies.

RevDate: 2019-10-23

Yuan Y, Zheng Y, Zhou J, et al (2019)

Polyphenol-rich extracts from brown macroalgae Lessonia trabeculate attenuate hyperglycemia and modulate gut microbiota in high fat diet and streptozotocin-induced diabetic rats.

Journal of agricultural and food chemistry [Epub ahead of print].

Brown macroalgae is an important source of polyphenols with multiple health functions. In this work, polyphenol extracts from Lessonia trabeculate were purified and investigated for the anti-diabetic activity in vitro and in vivo. The purified polyphenol extracts exhibited good antioxidant activities, α-glucosidase and lipase inhibition activities ((IC50<0.25 mg/mL). The HPLC-DAD-ESI-MS/MS analysis indicated that the compounds in polyphenol extracts were mainly phlorotannin derivatives, phenolic acid derivatives, and gallocatechin derivatives. In vivo, C57BL/6J rats treated with polyphenol extracts for 4 weeks had lower fasting blood glucose (FBG) levels, insulin levels as well as better serum lipid profiles and antioxidant stress parameters, compared with diabetic control (DC) group. Histopathology revealed that polyphenol extracts preserved the architecture and function of liver. Short chain fatty acids (SCFAs) contents in rats' fecal samples with polyphenols administration were significantly recovered as compared with DC group. Furthermore, the gut microflora of rats was investigated with high-throughput 16S rRNA gene sequencing and results indicated that polyphenol extracts had a positive effect on regulating the dysbiosis of the microbial ecology in diabetic rats. All the results from study provided a scientific reference of the potentially beneficial effects of Lessonia trabeculate polyphenols on diabetes management.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )