Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 25 Oct 2021 at 01:47 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: "microbial ecology" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2021-10-22

de Freitas Nunes Oliveira A, Saboya de Sousa LI, Silva da Costa VA, et al (2021)

Long-term effects of grazing on the biological, chemical, and physical soil properties of the Caatinga biome.

Microbiological research, 253:126893 pii:S0944-5013(21)00199-3 [Epub ahead of print].

Soil degradation is a global issue that affects both plant productivity and human life. Intensive grazing practices can accelerate this process, mainly due to rapid removal of biomass from the soil surface. However, the long-term effects of grazing on biological, chemical, and physical properties remain poorly understood, particularly in tropical drylands, such as the Caatinga biome. Our aim was to evaluate the soil properties and combine both culture-dependent and -independent analyses to assess metabolic activity and bacterial community structure. We collected samples (0-20 cm) of three different types of soil in the Caatinga biome: secondary Caatinga forest (NC), grazing exclusion (GE), and degraded areas by overgrazing (OG). We sought to investigate how grazing affects soil properties to determine the effectiveness of grazing exclusion in the restoration of soil fertility/functions. Redundancy analysis demonstrated NC were positively correlated with organic carbon (λ = 0.18, p = 0.0012) and total nitrogen (λ = 0.16, p = 0.0011), while OG was correlated with harmful soil parameters such as Na+ (λ = 0.08, p = 0.0400), electric conductivity (λ = 0.13, p = 0.0060) and exchangeable acidity (λ = 0.11, p = 0.0030). In addition, GE showed lower aluminum content and saturation, reducing these harmful parameters by 48 % and 34 %, respectively. Also, GE showed the highest values for the β-glucosidase (63.62 mg ρ-nitrophenol kg-1 h-1) and arylsulfatase (5.8 mg ρ-nitrophenol kg-1 h-1) activities. Changes in bacterial community structure were significant (p = 0.0096), with a higher difference comparing GE and OG (p = 0.0135). The GE area showed 20 % more phosphate solubilizers than OG, but there were no differences for siderophores production. All isolates were halotolerant and had at least 60 % nitrogen fixers. Our findings indicate that while soil recovery is slow, with grazing-exclusion areas presenting 18 years of implantation, it seems to improve in subsequent years. Finally, our results provide evidence that microbe-based technologies can mitigate soil degradation in the Caatinga biome.

RevDate: 2021-10-22

Alderliesten JB, Zwart MP, de Visser JAGM, et al (2021)

Second compartment widens plasmid invasion conditions: two-compartment pair-formation model of conjugation in the gut.

Journal of theoretical biology pii:S0022-5193(21)00356-8 [Epub ahead of print].

Understanding under which conditions conjugative plasmids encoding antibiotic resistance can invade bacterial communities in the gut is of particular interest to combat the spread of antibiotic resistance within and between animals and humans. We extended a one-compartment model of conjugation to a two-compartment model, to analyse how differences in plasmid dynamics in the gut lumen and at the gut wall affect the invasion of plasmids. We compared scenarios with one and two compartments, different migration rates between the lumen and wall compartments, and different population dynamics. We focused on the effect of attachment and detachment rates on plasmid dynamics, explicitly describing pair formation followed by plasmid transfer in the pairs. The parameter space allowing plasmid invasion in the one-compartment model is affected by plasmid costs and intrinsic conjugation rates of the transconjugant, but not by these properties of the donor. The parameter space allowing plasmid invasion in the two-compartment model is affected by attachment and detachment rates in the lumen and wall compartment, and by bacterial density at the wall. The one- and two-compartment models predict the same parameter space for plasmid invasion if the conditions in both compartments are equal to the conditions in the one-compartment model. In contrast, the addition of the wall compartment widens the parameter space allowing invasion compared with the one-compartment model, if the density at the wall is higher than in the lumen, or if the attachment rate at the wall is high and the detachment rate at the wall is low. We also compared the pair-formation models with bulk-conjugation models that describe conjugation by instantaneous transfer of the plasmid at contact between cells, without explicitly describing pair formation. Our results show that pair-formation and bulk-conjugation models predict the same parameter space for plasmid invasion. From our simulations, we conclude that conditions at the gut wall should be taken into account to describe plasmid dynamics in the gut and that transconjugant characteristics rather than donor characteristics should be used to parameterize the models.

RevDate: 2021-10-22

Sadiq FA, Wenwei L, Wei C, et al (2021)

Transcriptional Changes in Bifidobacterium bifidum Involved in Synergistic Multispecies Biofilms.

Microbial ecology [Epub ahead of print].

Bifidobacterium bifidum is part of the core microbiota of healthy infant guts where it may form biofilms on epithelial cells, mucosa, and food particles in the gut lumen. Little is known about transcriptional changes in B. bifidum engaged in synergistic multispecies biofilms with ecologically relevant species of the human gut. Recently, we reported prevalence of synergism in mixed-species biofilms formed by the human gut microbiota. This study represents a comparative gene expression analysis of B. bifidum when grown in a single-species biofilm and in two multispecies biofilm consortia with Bifidobacterium longum subsp. infantis, Bacteroides ovatus, and Parabacteroides distasonis in order to identify genes involved in this adaptive process in mixed biofilms and the influence on its metabolic and functional traits. Changes up to 58% and 43% in its genome were found when it grew in three- and four-species biofilm consortia, respectively. Upregulation of genes of B. bifidum involved in carbohydrate metabolism (particularly the galE gene), quorum sensing (luxS and pfs), and amino acid metabolism (especially branched chain amino acids) in both multispecies biofilms, compared to single-species biofilms, suggest that they may be contributing factors for the observed synergistic biofilm production when B. bifidum coexists with other species in a biofilm.

RevDate: 2021-10-21

Agbulu V, Zaman R, Ishangulyyeva G, et al (2021)

Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.

Microbial ecology [Epub ahead of print].

Successful host plant colonization by tree-killing bark beetle-symbiotic fungal complexes depends on host suitability, which is largely determined by host defense metabolites such as monoterpenes. Studies have shown the ability of specific blends of host monoterpenes to influence bark beetles or their fungal symbionts, but how biologically relevant blends of host monoterpenes influence bark beetle-symbiotic fungal interaction is unknown. We tested how interactions between two host species (lodgepole pine or jack pine) and two fungal symbionts of mountain pine beetle (Grosmannia clavigera or Ophiostoma montium) affect the performance of adult female beetles in vitro. Beetles treated with the propagules of G. clavigera or O. montium or not treated (natural fungal load) were introduced into media amended with a blend of the entire monoterpene profile of either host species and beetle performance was compared. Overall, host blends altered beetle performance depending on the fungal species used in the beetle amendment. When beetles were amended with G. clavigera, their performance was superior over beetles amended with O. montium in either host blend. Furthermore, G. clavigera-amended beetles performed better in media amended with host blends than without a host blend; in contrast, O. montium-amended beetles performed better in media without a host blend than with a host blend. Overall, this study showed that host defense metabolites affect host suitability to bark beetles through influencing their fungal symbionts and that different species of fungal symbionts respond differentlly to host defense metabolites.

RevDate: 2021-10-21

Wang D, Du Y, Huang S, et al (2021)

Combined supplementation of sodium humate and glutamine reduced diarrhea incidence of weaned calves by intestinal microbiota and metabolites changes.

Journal of animal science pii:6407716 [Epub ahead of print].

This study was conducted to investigate the effects of combined supplementation of sodium humate (HNa) and glutamine (Gln) on growth performance, diarrhea incidence, serum parameters, intestinal microbiome, and metabolites of weaned calves. In Exp. 1, 40 calves were randomly assigned to 4 treatments (1) NC (negative control, basal diet), (2) 1% H+1% G (basal diet extra orally gavaged with 1 g of HNa and 1 g of Gln daily), (3) 3% H+1% G (basal diet extra orally gavaged with 3 g of HNa and 1 g of Gln daily), and (4) 5% H+1% G (basal diet extra orally gavaged with 5 g of HNa and 1 g of Gln daily). The HNa and Gln were together mixed with 100 mL of milk replacer (51-58 days of age) or water (59-72 days of age) and orally administrated to each calf from a bottle before morning feeding. In a 21-day trial, calves on the 5% HNa+1% Gln group had higher (P < 0.05) average daily gain (ADG) and lower (P < 0.05) diarrhea incidence than those in the control group. In Exp. 2, 20 calves were randomly assigned to 2 treatments fed with a basal diet and a basal diet supplemented with 100 mL of 5% HNa+1% Gln. In a 21-day trial, calves supplemented with HNa and Gln had higher (P < 0.05) ADG, IgG concentration and glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) activities in the serum, but lower (P < 0.05) diarrhea incidence, as well as serum diamine oxidase (DAO), D-isomer of lactic acid (D-lac), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) concentrations compared to control group. Results of intestinal microbiota indicated that supplementation with HNa and Gln significantly increased (P < 0.05) the abundance of intestinal beneficial microbiota. Moreover, supplementation with HNa and Gln altered 18 metabolites and enriched 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in weaned calves. In conclusion, combined supplementation with HNa and Gln could decrease diarrhea incidence of weaned calves via altering intestinal microbial ecology and metabolism profile.

RevDate: 2021-10-21

Hussain FA, Dubert J, Elsherbini J, et al (2021)

Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages.

Science (New York, N.Y.), 374(6566):488-492.

[Figure: see text].

RevDate: 2021-10-21

Carbajal-Valenzuela IA, Muñoz-Sanchez AH, Hernández-Hernández J, et al (2021)

Microbial Diversity in Cultivated and Feral Vanilla Vanilla planifolia Orchids Affected by Stem and Rot Disease.

Microbial ecology [Epub ahead of print].

The worldwide production of vanilla, a native orchid from Mexico, is greatly affected by stem and root rot disease (SRD), typically associated with Fusarium oxysporum fungi. We hypothesized that the presence of Fusarium species in vanilla is not sufficient for the plant to express symptoms of the disease. We described the taxonomic composition of endophytic microbiomes in symptomatic and asymptomatic vanilla plants using 16S and ITS rDNA metabarcoding, and ITS Sanger sequences generated from fungal isolates. We compared the bacterial and fungal diversity in vanilla plants from a long-term plantation, and from feral plants found near abandoned plantations that did not present SRD symptoms. No significant differences were found in the species richness of the bacterial and fungal microbiome among feral, or asymptomatic and symptomatic cultivated vanilla. However, significant differences were detected in both fungal and bacterial diversity from different organs in the same plant, with roots being more diverse than stems. We found that Proteobacteria and Actinobacteria, as well as the fungal families Nectriaceae and Xylariaceae, constitute the core of the vanilla microbiome that inhabits the root and stem of both cultivated and feral plants. Our work provides information on the microbial diversity associated to root and stem rot in vanilla and lays the groundwork for a better understanding of the role of the microbiome in vanilla fungal diseases.

RevDate: 2021-10-21

Neely WJ, Greenspan SE, Stahl LM, et al (2021)

Habitat Disturbance Linked with Host Microbiome Dispersion and Bd Dynamics in Temperate Amphibians.

Microbial ecology [Epub ahead of print].

Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter host-associated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a field survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed the effects of habitat disturbance and connectivity on environmental bacterial reservoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community variability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communities. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting greater isolation of bacterial assemblages in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. Combined, our findings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.

RevDate: 2021-10-21

Liu L, Wang S, Yang J, et al (2021)

Nutrient Removal in Eutrophic Water Promotes Stability of Planktonic Bacterial and Protist Communities.

Microbial ecology [Epub ahead of print].

Nutrient (nitrogen and phosphorus) removal by using bioremediation technologies in eutrophic water alters bacterial and protist community structure and function, but how it changes the stability of community remains unclear. To fill this gap, in this study, bacterial and protist communities were investigated using 16S and 18S rRNA gene high-throughput sequencing during the nutrient removal by using ecological floating beds of Canna indica L. Our results showed that both bacterial and protist community compositions in the treatment group were similar to those in the control group at the beginning of the experiment (day 1 to day 11), but then bacterial and protist community compositions became more stable with the removal of nutrients in the treatment group than those in the control group (day 12 to day 18). We further explored the mechanisms for this increased stability and found that the contribution of the stochastic process to bacterial and protist community variations was higher in the control group than that in the treatment group. This suggests that the high nutrient concentration in the control group might increase the random colonization or extinction, and therefore resulted in the high temporal variability (i.e., unstable) of bacterial and protist communities. Our findings suggest that bioremediation for eutrophication can promote the stability of aquatic communities, and therefore potentially maintain aquatic ecosystem functions and services to humanity.

RevDate: 2021-10-21

Song C, Fu F, Yang L, et al (2021)

Taxus yunnanensis genome offers insights into gymnosperm phylogeny and taxol production.

Communications biology, 4(1):1203.

Taxol, a natural product derived from Taxus, is one of the most effective natural anticancer drugs and the biosynthetic pathway of Taxol is the basis of heterologous bio-production. Here, we report a high-quality genome assembly and annotation of Taxus yunnanensis based on 10.7 Gb sequences assembled into 12 chromosomes with contig N50 and scaffold N50 of 2.89 Mb and 966.80 Mb, respectively. Phylogenomic analyses show that T. yunnanensis is most closely related to Sequoiadendron giganteum among the sampled taxa, with an estimated divergence time of 133.4-213.0 MYA. As with most gymnosperms, and unlike most angiosperms, there is no evidence of a recent whole-genome duplication in T. yunnanensis. Repetitive sequences, especially long terminal repeat retrotransposons, are prevalent in the T. yunnanensis genome, contributing to its large genome size. We further integrated genomic and transcriptomic data to unveil clusters of genes involved in Taxol synthesis, located on the chromosome 12, while gene families encoding hydroxylase in the Taxol pathway exhibited significant expansion. Our study contributes to the further elucidation of gymnosperm relationships and the Taxol biosynthetic pathway.

RevDate: 2021-10-23

Uroosa , Kazmi SSUH, Zhong X, et al (2021)

An approach to evaluating the acute toxicity of nitrofurazone on community functioning using protozoan periphytons.

Marine pollution bulletin, 173(Pt B):113066 pii:S0025-326X(21)01100-0 [Epub ahead of print].

The acute toxicity of nitrofurazone on community functioning was studied using an acute toxicity test. Consequently, 14-day protozoan periphyton assemblages were used as test organism communities, under a range of nitrofurazone concentrations including 0 (control), 0.5, 3, 6, and 12 mg ml-1 within 0, 2, 4, 6, 8, 10, and 12 h time duration. Fuzzy coding system of functional traits classified the test protozoan periphyton community into six major traits and 15 categories. Briefly, community-weighted means (CWM) were used to identify the community functioning of test protozoan assemblage. Inferences demonstrate a drastic/significant variation in the functional patterns of the test organisms at a high concentration (12 mg ml-1) after an exposure time of 12 h, but the functional diversity indices leveled off at the exposure time of 10 h and then dropped sharply. These results suggested that nitrofurazone may significantly influence the community functioning in marine ecosystems.

RevDate: 2021-10-23

Macías-Pérez LA, Levard C, Barakat M, et al (2021)

Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context.

Journal of hazardous materials, 424(Pt B):127470 pii:S0304-3894(21)02438-9 [Epub ahead of print].

Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.

RevDate: 2021-10-23

McLeish AG, Gong S, Greenfield P, et al (2021)

Microbial Community Shifts on Organic Rocks of Different Maturities Reveal potential Catabolisers of Organic Matter in Coal.

Microbial ecology [Epub ahead of print].

The global trend of transiting to more renewable energy sources requires transition fuels, such as coal seam gas, to supplement and secure energy needs. In order to optimise strategies and technologies for enhancing gas production, an understanding of the fundamental microbial processes and interactions would be advantageous. Models have recently begun mapping the microbial roles and interactions in coal seam environments, from direct coal degradation to methanogenesis. This study seeks to expand those models by observing community compositional shifts in the presence of differing organic matter by conducting 16S rRNA microbial surveys using formation water from the Surat and Sydney Basins grown on varying types of organic matter (black and brown coal, oil shale, humic acid, and lignin). A total of 135 microbes were observed to become enriched in the presence of added organic matter in comparison to carbon-free treatments. These surveys allowed detailed analysis of microbial compositions in order to extrapolate which taxa favour growth in the presence of differing organic matter. This study has experimentally demonstrated shifts in the microbial community composition due to differing carbon sources and, for the first time, generated a conceptual model to map putative degradation pathways regarding subsurface microbial consortia.

RevDate: 2021-10-23

Qi R, Xue N, Zhou X, et al (2021)

Distinct Composition and Assembly Processes of Bacterial Communities in a River from the Arid Area: Ecotypes or Habitat Types?.

Microbial ecology [Epub ahead of print].

The composition, function, and assembly mechanism of the bacterial community are the focus of microbial ecology. Unsupervised machine learning may be a better way to understand the characteristics of bacterial metacommunities compared to the empirical habitat types. In this study, the composition, potential function, and assembly mechanism of the bacterial community in the arid river were analysed. The Dirichlet multinomial mixture method recognised four ecotypes across the three habitats (biofilm, water, and sediment). The bacterial communities in water are more sensitive to human activities. Bacterial diversity and richness in water decreased as the intensity of human activities increased from the region of water II to water I. Significant differences in the composition and potential function profile of bacterial communities between water ecotypes were also observed, such as higher relative abundance in the taxonomic composition of Firmicutes and potential function of plastic degradation in water I than those in water II. Habitat filtering may play a more critical role in the assembly of bacterial communities in the river biofilm, while stochastic processes dominate the assembly process of bacterial communities in water and sediment. In water I, salinity and mean annual precipitation were the main drivers shaping the biogeography of taxonomic structure, while mean annual temperature, total organic carbon, and ammonium nitrogen were the main environmental factors influencing the taxonomic structure in water II. These results would provide conceptual frameworks about choosing habitat types or ecotypes for the research of microbial communities among different niches in the aquatic environment.

RevDate: 2021-10-23

Van den Abbeele P, Duysburgh C, Cleenwerck I, et al (2021)

Consistent Prebiotic Effects of Carrot RG-I on the Gut Microbiota of Four Human Adult Donors in the SHIME® Model despite Baseline Individual Variability.

Microorganisms, 9(10): pii:microorganisms9102142.

The human gut microbiome is currently recognized to play a vital role in human biology and development, with diet as a major modulator. Therefore, novel indigestible polysaccharides that confer a health benefit upon their fermentation by the microbiome are under investigation. Based on the recently demonstrated prebiotic potential of a carrot-derived pectin extract enriched for rhamnogalacturonan I (cRG-I), the current study aimed to assess the impact of cRG-I upon repeated administration using the M-SHIME technology (3 weeks at 3g cRG-I/d). Consistent effects across four simulated adult donors included enhanced levels of acetate (+21.1 mM), propionate (+17.6 mM), and to a lesser extent butyrate (+4.1 mM), coinciding with a marked increase of OTUs related to Bacteroides dorei and Prevotella species with versatile enzymatic potential likely allowing them to serve as primary degraders of cRG-I. These Bacteroidetes members are able to produce succinate, explaining the consistent increase of an OTU related to the succinate-converting Phascolarctobacterium faecium (+0.47 log10(cells/mL)). While the Bifidobacteriaceae family remained unaffected, a specific OTU related to Bifidobacterium longum increased significantly upon cRG-I treatment (+1.32 log10(cells/mL)). Additional monoculture experiments suggested that Bifidobacterium species are unable to ferment cRG-I structures as such and that B. longum probably feeds on arabinan and galactan side chains of cRG-I, released by aforementioned Bacteroidetes members. Overall, this study confirms the prebiotic potential of cRG-I and additionally highlights the marked consistency of the microbial changes observed across simulated subjects, suggesting the involvement of a specialized consortium in cRG-I fermentation by the human gut microbiome.

RevDate: 2021-10-23

Bi S, Lai H, Guo D, et al (2021)

The Characteristics of Intestinal Bacterial Community in Three Omnivorous Fishes and Their Interaction with Microbiota from Habitats.

Microorganisms, 9(10): pii:microorganisms9102125.

Artificial fishery habitats have been extensively used for fishery resource protection and water habitat restoration, and they could attract a large number of omnivorous fishes to gather together. This study intended to reveal the relationship between bacterial communities in the habitats (water and sediment) and intestines of omnivorous fishes (Oreochromis mossambicus, Toxabramis houdemeri and Hemiculter leucisculus). Therefore, we investigated the bacterial communities of samples collected from intestines, water, and sediments in artificial fishery habitats via 16S rRNA metabarcoding high-throughput sequencing technology. The results showed that there were significant differences in the composition, core indicators, diversity and prediction functions in water, sediments, and intestinal microbial communities of the three omnivorous fish. The microbial diversities were significantly higher in habitats than in intestines. The analysis of similarity (ANOSIM) and nonmetric multidimensional scaling (NMDS) results indicated that the intestine microbial communities (T. houdemeri and H. leucisculus) were more similar to the water microbiota, but the intestine microbial communities (O. mossambicus) were more similar to the sediments. Source tracking analysis also confirmed that the contribution of habitat characteristics to omnivorous fish intestinal microorganisms was different; the sediment had a greater contribution than water to the intestinal microbiota of O. mossambicus, which was consistent with their benthic habit. Moreover, the functional prediction results showed that there were unique core indicators and functions between the bacterial community of habitats and intestines. Altogether, these results can enhance our understanding of the bacterial composition and functions about omnivorous fish intestines and their living with habitats, which have provided new information for the ecological benefits of artificial fishery habitats from the perspective of bacterial ecology and contributed to apply artificial fishery habitats in more rivers.

RevDate: 2021-10-23

Wang Y, Brons JK, JD van Elsas (2021)

Considerations on the Identity and Diversity of Organisms Affiliated with Sphingobacterium multivorum-Proposal for a New Species, Sphingobacterium paramultivorum.

Microorganisms, 9(10): pii:microorganisms9102057.

Plant biomass offers great potential as a sustainable resource, and microbial consortia are primordial in its bioconversion. The wheat-straw-biodegradative bacterial strain w15 has drawn much attention as a result of its biodegradative potential and superior degradation performance in bacterial-fungal consortia. Strain w15 was originally assigned to the species Sphingobacterium multivorum based on its 16S ribosomal RNA (rRNA) gene sequence. A closer examination of this taxonomic placement revealed that the sequence used has 98.9% identity with the 'divergent' 16S rRNA gene sequence of S. multivorum NCTC 11343T, yet lower relatedness with the canonical 16S rRNA sequence. A specific region of the gene, located between positions 186 and 210, was found to be highly variable and determinative for the divergence. To solve the identity of strain w15, genome metrics and analyses of ecophysiological niches were undertaken on a selection of strains assigned to S. multivorum and related species. These analyses separated all strains into three clusters, with strain w15, together with strain BIGb0170, constituting a separate radiation, next to S. multivorum and S. siyangense. Moreover, the strains denoted FDAARGOS 1141 and 1142 were placed inside S. siyangense. We propose the renaming of strains w15 and BIGb0170 as members of the novel species, coined Sphingobacterium paramultivorum.

RevDate: 2021-10-23

Amat S, Holman DB, Schmidt K, et al (2021)

The Nasopharyngeal, Ruminal, and Vaginal Microbiota and the Core Taxa Shared across These Microbiomes in Virgin Yearling Heifers Exposed to Divergent In Utero Nutrition during Their First Trimester of Gestation and in Pregnant Beef Heifers in Response to Mineral Supplementation.

Microorganisms, 9(10): pii:microorganisms9102011.

In the present study, we evaluated whether the nasopharyngeal, ruminal, and vaginal microbiota would diverge (1) in virgin yearling beef heifers (9 months old) due to the maternal restricted gain during the first trimester of gestation; and (2) in pregnant beef heifers in response to the vitamin and mineral (VTM) supplementation during the first 6 months of pregnancy. As a secondary objective, using the microbiota data obtained from these two cohorts of beef heifers managed at the same location and sampled at the same time, we performed a holistic assessment of the microbial ecology residing within the respiratory, gastrointestinal, and reproductive tract of cattle. Our 16S rRNA gene sequencing results revealed that both α and β-diversity of the nasopharyngeal, ruminal and vaginal microbiota did not differ between virgin heifers raised from dams exposed to either a low gain (targeted average daily gain of 0.28 kg/d, n = 22) or a moderate gain treatment (0.79 kg/d, n = 23) during the first 84 days of gestation. Only in the vaginal microbiota were there relatively abundant genera that were affected by maternal rate of gain during early gestation. Whilst there was no significant difference in community structure and diversity in any of the three microbiota between pregnant heifers received no VTM (n = 15) and VTM supplemented (n = 17) diets, the VTM supplementation resulted in subtle compositional alterations in the nasopharyngeal and ruminal microbiota. Although the nasopharyngeal, ruminal, and vaginal microbiota were clearly distinct, a total of 41 OTUs, including methanogenic archaea, were identified as core taxa shared across the respiratory, gastrointestinal, and reproductive tracts of both virgin and pregnant heifers.

RevDate: 2021-10-23

Li H, Sun J, Wang X, et al (2021)

Oral microbial diversity analysis among atrophic glossitis patients and healthy individuals.

Journal of oral microbiology, 13(1):1984063.

Atrophic glossitis is a common disease in oral mucosal diseases. The Current studies have found the human oral cavity contains numerous and diverse microorganisms, their composition and diversity can be changed by various oral diseases. To understand the composition and diversity of oral microbiome in atrophic glossitis is better to explore the cause and mechanism of atrophic glossitis. The salivary microbiome is comprised of indigenous oral microorganisms that are specific to each person, exhibits long-term stability. We used llumina MiSeq high-throughput sequencing based on the V3-V4 region of the bacterial 16S rRNA gene and the internal transcribed spacer (ITS) region of fungal rRNA genes from saliva in atrophic glossitis patients and healthy individuals to explore the composition and diversity of oral microbiome. In our reports, it showed a lower diversity of bacteria and fungi in atrophic glossitis patients than in healthy individuals. The data further suggests that Lactobacillus and Saccharomycetales were potential indicators for the initiation and development of atrophic glossitis. Moreover, we also discuss the relationship between the oral microbial ecology and atrophic glossitis.

RevDate: 2021-10-20

Luna E, Parkar SG, Kirmiz N, et al (2021)

Utilization efficiency of human milk oligosaccharides by human-associated Akkermansia is strain-dependent.

Applied and environmental microbiology [Epub ahead of print].

Akkermansia muciniphila are mucin degrading bacteria found in the human gut and are often associated with positive human health. However, despite being detected as early as one month of age, little is known about the role of Akkermansia in the infant gut. Human milk oligosaccharides (HMOs) are abundant components of human milk and are structurally similar to the oligosaccharides that comprise mucin, the preferred growth substrate of human-associated Akkermansia. A limited subset of intestinal bacteria has been shown to grow well on HMOs and mucin. We therefore examined the ability of genomically diverse strains of Akkermansia to grow on HMOs. First, we screened 85 genomes representing the four known Akkermansia phylogroups to examine their metabolic potential to degrade HMOs. Furthermore, we examined the ability of representative isolates to grow on individual HMOs in a mucin background and analyzed the resulting metabolites. All Akkermansia genomes were equipped with an array of glycoside hydrolases associated with HMO-deconstruction. Representative strains were all able to grow on HMOs with varying efficiency and growth yield. Strain CSUN-19 belonging to the AmIV phylogroup, grew to the highest level in the presence of fucosylated and sialylated HMOs. This activity may be partially related to the increased copy numbers and/or the enzyme activities of the α-fucosidases, α-sialidases, and β-galactosidases. This examines the utilization of individual purified HMOs by Akkermansia strains representing all known phylogroups. Further studies are required to examine how HMO ingestion influences gut microbial ecology in infants harboring different Akkermansia phylogroups. Importance Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk and provide several benefits to developing infants including recruitment of beneficial bacteria to the human gut. Akkermansia are largely considered beneficial bacteria and have been detected in colostrum, breast milk, and young infants. A. muciniphila MucT belonging to the AmI phylogroup contribute to the HMO deconstruction capacity of the infant. Here, using phylogenomics, we examined the genomic capacity of four Akkermansia phylogroups to deconstruct HMOs. Indeed, each phylogroup contained differences in the genomic capacity to deconstruct HMOs and representative strains of each phylogroup were able to grow using HMOs. These Akkermansia-HMO interactions potentially influence gut microbial ecology in early life - a critical time for the development of the gut microbiome and infant health.

RevDate: 2021-10-20

Kim T, Behrens S, TM LaPara (2021)

Microbial Community Composition in Municipal Wastewater Treatment Bioreactors Follows a Distance Decay Pattern Primarily Controlled by Environmental Heterogeneity.

mSphere [Epub ahead of print].

Understanding spatiotemporal patterns in microbial community composition is a central goal of microbial ecology. The objective of this study was to better understand the biogeography of activated sludge microbial communities, which are important for the protection of surface water quality. Monthly samples were collected from 20 facilities (25 bioreactors) within 442 km of each other for 1 year. Microbial community composition was characterized by sequencing of PCR-amplified 16S rRNA gene fragments. Statistically significant distance decay of community similarity was observed in these bioreactors independent of clustering method (operational taxonomic units [OTUs] at 97% similarity, genus-level phylotypes) and community dissimilarity metric (Sørensen, Bray-Curtis, and weighted Unifrac). Universal colonizers (i.e., detected in all samples) and ubiquitous genus-level phylotypes (i.e., detected in every facility at least once) also exhibited a significant distance decay relationship. Variation partitioning analysis of community composition showed that environmental characteristics (temperature, influent characteristics, etc.) explained more of the variance in community composition than geographic distance did, suggesting that environmental heterogeneity is more important than dispersal limitation as a mechanism for determining microbial community composition. Distance decay relationships also became stronger with increasing distance between facilities. Seasonal variation in community composition was also observed from selected bioreactors, but there was no clear seasonal pattern in the distance decay relationships. IMPORTANCE Understanding the spatiotemporal patterns of biodiversity is a central goal of ecology. The distance decay of community similarity is one of the spatial scaling patterns observed in many forms of life, including plants, animals, and microbial communities. Municipal wastewater treatment relies on microorganisms to prevent the release of excessive quantities of nutrients and other pollutants, but relatively few studies have explored distance decay relationships in wastewater treatment bioreactors. Our results demonstrate a strong distance decay pattern in wastewater treatment bioreactors, regardless of the sequence clustering method or the community dissimilarity metric. Our results suggest that microbial communities in wastewater treatment bioreactors are not randomly assembled but rather exhibit a statistically significant spatial pattern.

RevDate: 2021-10-20

Coleman A, Zaugg J, Wood A, et al (2021)

Upper Respiratory Tract Microbiome of Australian Aboriginal and Torres Strait Islander Children in Ear and Nose Health and Disease.

Microbiology spectrum [Epub ahead of print].

The objective of this study was to examine the nasal microbiota in relation to otitis media (OM) status and nose health in Indigenous Australian children. Children 2 to 7 years of age were recruited from two northern Australian (Queensland) communities. Clinical histories were obtained through parent interviews and reviews of the medical records. Nasal cavity swab samples were obtained, and the children's ears, nose, and throat were examined. DNA was extracted and analyzed by 16S rRNA amplicon next-generation sequencing of the V3/V4 region, in combination with previously generated culture data. A total of 103 children were recruited (mean age, 4.7 years); 17 (16.8%) were healthy, i.e., normal examination results and no history of OM. The nasal microbiota differed significantly in relation to OM status and nose health. Children with historical OM had greater relative abundance of Moraxella, compared to healthy children, despite both having healthy ears at the time of swabbing. Children with healthy noses had greater relative abundance of Staphylococcus aureus, compared to those with rhinorrhea. Dolosigranulum was correlated with Corynebacterium in healthy children. Haemophilus and Streptococcus were correlated across phenotypes. Ornithobacterium was absent or was present with low relative abundance in healthy children and clustered around otopathogens. It correlated with Helcococcus and Dichelobacter. Dolosigranulum and Corynebacterium form a synergism that promotes upper respiratory tract (URT)/ear health in Indigenous Australian children. Ornithobacterium likely represents "Candidatus Ornithobacterium hominis" and in this population is correlated with a novel bacterium that appears to be related to poor URT/ear health. IMPORTANCE Recurring and chronic infections of the ear (OM) are disproportionately prevalent in disadvantaged communities across the globe and, in particular, within Indigenous communities. Despite numerous intervention strategies, OM persists as a major health issue and is the leading cause of preventable hearing loss. In disadvantaged communities, this hearing loss is associated with negative educational and social development outcomes, and consequently, poorer employment prospects and increased contact with the justice system in adulthood. Thus, a better understanding of the microbial ecology is needed in order to identify new targets to treat, as well as to prevent the infections. This study used a powerful combination of 16S rRNA gene sequencing and extended culturomics to show that Dolosigranulum pigrum, a bacterium previously identified as a candidate protective species, may require cocolonization with Corynebacterium pseudodiphtheriticum in order to prevent OM. Additionally, emerging and potentially novel pathogens and bacteria were identified.

RevDate: 2021-10-21
CmpDate: 2021-10-21

Abello JJM, Malajacan GT, Labrador KL, et al (2021)

Library-independent source tracking of fecal contamination in selected stations and tributaries of Laguna Lake, Philippines.

Journal of water and health, 19(5):846-854.

Laguna Lake is the largest inland freshwater body in the Philippines. Although it is classified to be usable for agricultural and recreational purposes by the country's Department of Environment and Natural Resources (DENR), studies looking at lake ecology revealed severe fecal contamination which contributes to the deterioration of water quality. Determining the sources of fecal contamination is necessary for lake protection and management. This study utilized a library-independent method of microbial source tracking (LIM-MST) to identify sources of fecal contamination in selected Laguna Lake stations and tributaries. Genetic markers of the host-associated Escherichia coli, heat-labile toxin (LTIIA) and heat-stable II (STII), were used to identify cattle and swine fecal contaminations, respectively. Meanwhile, human mitochondrial DNA (mtDNA) was used to identify human fecal contamination. Results identified the presence of agricultural and human fecal contamination in Laguna Lake Stations 1 and 5, Mangangate River, and Alabang River. The selected sites are known to be surrounded by residential and industrial complexes, and most of their discharges find their way into the lake. The identification of the specific sources of fecal contamination will guide management practices that aim to regulate the discharges in order to improve the water quality of Laguna Lake.

RevDate: 2021-10-19

Xie W, Yan Y, Hu J, et al (2021)

Ecological Dynamics and Co-occurrences Among Prokaryotes and Microeukaryotes in a Diatom Bloom Process in Xiangshan Bay, China.

Microbial ecology [Epub ahead of print].

Diatom blooms can significantly affect the succession of microbial communities, yet little is known about the assembly processes and interactions of microbial communities during autumn bloom events. In this study, we investigated the ecological effects of an autumn diatom bloom on prokaryotic communities (PCCs) and microeukaryotic communities (MECs), focusing on their assembly processes and interactions. The PCCs were largely dominated by Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria, and Flavobacteria, while the MECs primarily included Diatomea, Dinoflagellata, and Chlorophyta. The succession of both PCCs and MECs was mainly driven by this diatom bloom and environmental factors, such as nitrate and silicate. Null modeling revealed that homogeneous selection had a more pronounced impact on the structure of PCCs compared with that of MECs. In particular, drift and dispersal limitation cannot be neglected in the assembly processes of MECs. Co-occurrence network analyses showed that Litorimicrobium, Cercozoa, Marine Group I (MGI), Cryptomonadales, Myrionecta, and Micromonas may affect the bloom process. In summary, these results elucidated the complex, robust interactions and obviously distinct assembly mechanisms of PCCs and MECs during a diatom bloom and extend our current comprehension of the ecological mechanisms and microbial interactions involved in an autumn diatom bloom process.

RevDate: 2021-10-18

Jones ML, Rivett DW, Pascual-García A, et al (2021)

Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms.

eLife, 10: pii:71811.

Common garden experiments that inoculate a standardised growth medium with synthetic microbial communities (i.e. constructed from individual isolates or using dilution cultures) suggest that the ability of the community to resist invasions by additional microbial taxa can be predicted by the overall community productivity (broadly defined as cumulative cell density and/or growth rate). However, to the best of our knowledge, no common garden study has yet investigated the relationship between microbial community composition and invasion resistance in microcosms whose compositional differences reflect natural, rather than laboratory-designed, variation. We conducted experimental invasions of two bacterial strains (Pseudomonas fluorescens and Pseudomonas putida) into laboratory microcosms inoculated with 680 different mixtures of bacteria derived from naturally occurring microbial communities collected in the field. Using 16S rRNA gene amplicon sequencing to characterise microcosm starting composition, and high-throughput assays of community phenotypes including productivity and invader survival, we determined that productivity is a key predictor of invasion resistance in natural microbial communities, substantially mediating the effect of composition on invasion resistance. The results suggest that similar general principles govern invasion in artificial and natural communities, and that factors affecting resident community productivity should be a focal point for future microbial invasion experiments.

RevDate: 2021-10-18

Znój A, Gawor J, Gromadka R, et al (2021)

Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis-a Comparison.

Microbial ecology [Epub ahead of print].

Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. are the only Magnoliophyta to naturally colonize the Antarctic region. The reason for their sole presence in Antarctica is still debated as there is no definitive consensus on how only two unrelated flowering plants managed to establish breeding populations in this part of the world. In this study, we have explored and compared the rhizosphere and root-endosphere dwelling microbial community of C. quitensis and D. antarctica specimens sampled in maritime Antarctica from sites displaying contrasting edaphic characteristics. Bacterial phylogenetic diversity (high-throughput 16S rRNA gene fragment targeted sequencing) and microbial metabolic activity (Biolog EcoPlates) with a geochemical soil background were assessed. Gathered data showed that the microbiome of C. quitensis root system was mostly site-dependent, displaying different characteristics in each of the examined locations. This plant tolerated an active bacterial community only in severe conditions (salt stress and nutrient deprivation), while in other more favorable circumstances, it restricted microbial activity, with a possibility of microbivory-based nutrient acquisition. The microbial communities of D. antarctica showed a high degree of similarity between samples within a particular rhizocompartment. The grass' endosphere was significantly enriched in plant beneficial taxa of the family Rhizobiaceae, which displayed obligatory endophyte characteristics, suggesting that at least part of this community is transmitted vertically. Ultimately, the ecological success of C. quitensis and D. antarctica in Antarctica might be largely attributed to their associations and management of root-associated microbiota.

RevDate: 2021-10-18

Gloder G, Bourne ME, Verreth C, et al (2021)

Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars.

Animal microbiome, 3(1):73.

BACKGROUND: The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture.

RESULTS: Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids.

CONCLUSION: We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.

RevDate: 2021-10-15

Srinivasan VN, Li G, Wang D, et al (2021)

Oligotyping and metagenomics reveal distinct Candidatus Accumulibacter communities in side-stream versus conventional full-scale enhanced biological phosphorus removal (EBPR) systems.

Water research, 206:117725 pii:S0043-1354(21)00919-2 [Epub ahead of print].

Candidatus Accumulibacter phosphatis (CAP) and its clade-level micro-diversity has been associated with and implicated in functional differences in phosphorus removal performance in enhanced biological phosphorus removal (EBPR) systems. Side-stream EBPR (S2EBPR) is an emerging process that has been shown to present a suite of advantages over the conventional EBPR design, however, large knowledge gaps remain in terms of its underlying ecological mechanisms. Here, we compared and revealed the higher-resolution differences in microbial ecology of CAP between a full-scale side-stream EBPR configuration and a conventional A2O EBPR process that were operated in parallel and with the same influent feed. Even though the relative abundance of CAP, revealed by 16S rRNA gene amplicon sequencing, was similar in both treatment trains, a clade-level analysis, using combined 16S rRNA-gene based amplicon sequencing and oligotyping analysis and metagenomics analysis, revealed the distinct CAP microdiversity between the S2EBPR and A2O configurations that likely attributed to the improved performance in S2EBPR in comparison to conventional EBPR. Furthermore, genome-resolved metagenomics enabled extraction of three metagenome-assembled genomes (MAGs) belonging to CAP clades IIB (RCAB4-2), IIC (RC14) and II (RC18), from full-scale EBPR sludge for the first time, including a distinct Ca. Accumulibacter clade that is dominant and associated only with the S2EBPR configuration. The results also revealed the temporally increasing predominance of RC14, which belonged to Clade IIC, during the implementation of the S2EBPR configuration. Finally, we also show the existence of previously uncharacterized diversity of clades of CAP, namely the clades IIB and as yet unidentified clade of type II, in full-scale EBPR communities, highlighting the unknown diversity of CAP communities in full-scale EBPR systems.

RevDate: 2021-10-15

She Z, Pan X, Wang J, et al (2021)

Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake.

Water research, 206:117739 pii:S0043-1354(21)00933-7 [Epub ahead of print].

Acid mine drainage (AMD) lakes are typical hydrologic features caused by open pit mining and represent extreme ecosystems and environmental challenges. Little is known about microbial distribution and community assembly in AMD lakes, especially in deep layers. Here, we investigated prokaryotic microbial diversity and community assembly along a depth profile in a stratified AMD lake using 16S rRNA gene sequencing combined with multivariate ecological and statistical methods. The water column in the AMD lake exhibited tight geochemical gradients, with more acidic surface water. Coupled with vertical hydrochemical variations, prokaryotic microbial community structure changed significantly, and was accompanied by increased diversity with depth. In the surface water, heterogeneous selection was the most important assembly process, whereas stochastic processes gained importance with depth. Meanwhile, microbial co-occurrences, especially positive interactions, were more frequent in the stressful surface water with reduced network modularity and keystone taxa. The pH was identified as the key driver of microbial diversity and community assembly along the vertical profile based on random forest analysis. Taken together, environmental effects dominated by acid stress drove the community assembly and species coexistence that underpinned the spatial scaling patterns of AMD microbiota in the lake. These findings demonstrate the distinct heterogeneity of local prokaryotic microbial community in AMD lake, and provide new insights into the mechanism to maintain microbial diversity in extreme acidic environments.

RevDate: 2021-10-14

Suyal DC, Joshi D, Kumar S, et al (2021)

Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges.

Microbial ecology [Epub ahead of print].

The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.

RevDate: 2021-10-14

Glowacki RWP, Engelhart MJ, PP Ahern (2021)

Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology.

Frontiers in microbiology, 12:735562.

The profound impact of the gut microbiome on host health has led to a revolution in biomedical research, motivating researchers from disparate fields to define the specific molecular mechanisms that mediate host-beneficial effects. The advent of genomic technologies allied to the use of model microbiomes in gnotobiotic mouse models has transformed our understanding of intestinal microbial ecology and the impact of the microbiome on the host. However, despite incredible advances, our understanding of the host-microbiome dialogue that shapes host physiology is still in its infancy. Progress has been limited by challenges associated with developing model systems that are both tractable enough to provide key mechanistic insights while also reflecting the enormous complexity of the gut ecosystem. Simplified model microbiomes have facilitated detailed interrogation of transcriptional and metabolic functions of the microbiome but do not recapitulate the interactions seen in complex communities. Conversely, intact complex communities from mice or humans provide a more physiologically relevant community type, but can limit our ability to uncover high-resolution insights into microbiome function. Moreover, complex microbiomes from lab-derived mice or humans often do not readily imprint human-like phenotypes. Therefore, improved model microbiomes that are highly defined and tractable, but that more accurately recapitulate human microbiome-induced phenotypic variation are required to improve understanding of fundamental processes governing host-microbiome mutualism. This improved understanding will enhance the translational relevance of studies that address how the microbiome promotes host health and influences disease states. Microbial exposures in wild mice, both symbiotic and infectious in nature, have recently been established to more readily recapitulate human-like phenotypes. The development of synthetic model communities from such "wild mice" therefore represents an attractive strategy to overcome the limitations of current approaches. Advances in microbial culturing approaches that allow for the generation of large and diverse libraries of isolates, coupled to ever more affordable large-scale genomic sequencing, mean that we are now ideally positioned to develop such systems. Furthermore, the development of sophisticated in vitro systems is allowing for detailed insights into host-microbiome interactions to be obtained. Here we discuss the need to leverage such approaches and highlight key challenges that remain to be addressed.

RevDate: 2021-10-14

Cobo-Díaz JF, Alvarez-Molina A, Alexa EA, et al (2021)

Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity.

Microbiome, 9(1):204.

BACKGROUND: The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity.

RESULTS: We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains.

CONCLUSIONS: The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility. Video Abstract.

RevDate: 2021-10-13

Tan H, Liu T, Yu Y, et al (2021)

Morel Production Related to Soil Microbial Diversity and Evenness.

Microbiology spectrum [Epub ahead of print].

Black morel is a widely prized ascomycetous mushroom with culinary value. It was once uncultivable but can now be cultivated routinely in ordinary farmland soils. Large-scale morel farming sometimes encounters nonfructification for unknown reasons. In spring 2020, many morel farms in the area of Chengdu-Plain, China, exhibited no fructification at all, causing disastrous economic loss to the farmers. To determine potential ecological factors associated with the different performance of morel production in these farms, 21 affected sites versus 11 sites with normal fructification performance were analyzed to compare soil microbiota and physiochemical characteristics during fructification. The results indicated that soil physiochemical characteristics were unlikely to be a major reason for the difference between successful fructification and nonfructification. The soils with successful fructification had significantly higher diversity in both the fungal and bacterial communities than those with nonfructification. Morel yield was positively correlated with the α-diversity of fungal communities. The higher diversity of the successfully fructified soils was contributed by community evenness rather than taxonomic richness. In contrast, most nonfructification soils were dominated by a high proportion of a certain fungal genus, typically Acremonium or Mortierella, in the fungal communities. Our findings demonstrate the importance of microbial ecology to the large-scale agroindustry of soil-cultivated mushrooms. IMPORTANCE Saprotrophic mushrooms cultivated in soils are subject to complex influences from soil microbial communities. Research on growing edible mushrooms has revealed connections between fungi and a few species of growth-promoting bacteria colonizing the mycosphere. The composition and diversity of the whole microbial community may also have an influence on the growth and production of soil-saprotrophic mushrooms. Morel mushrooms (Morchella spp.) are economically and culturally important and are widely prized throughout the world. This study used the large-scale farming of morels as an example of an agroecosystem for soil-saprotrophic mushroom cultivation. It demonstrated a typical pattern of how the microbial ecology in soil agroecosystems, especially the α-diversity level and community evenness among soil fungal taxa, could affect the production of high-value cash crops and the income of farmers.

RevDate: 2021-10-12

Farrell ML, Joyce A, Duane S, et al (2021)

Evaluating the potential for exposure to organisms of public health concern in naturally occurring bathing waters in Europe: A scoping review.

Water research, 206:117711 pii:S0043-1354(21)00905-2 [Epub ahead of print].

Globally, water-based bathing pastimes are important for both mental and physical health. However, exposure to waterborne organisms could present a substantial public health issue. Bathing waters are shown to contribute to the transmission of illness and disease and represent a reservoir and pathway for the dissemination of antimicrobial resistant (AMR) organisms. Current bathing water quality regulations focus on enumeration of faecal indicator organisms and are not designed for detection of specific waterborne organisms of public health concern (WOPHC), such as antimicrobial resistant (AMR)/pathogenic bacteria, or viruses. This investigation presents the first scoping review of the occurrence of waterborne organisms of public health concern (WOPHC) in identified natural bathing waters across the European Union (EU), which aimed to critically evaluate the potential risk of human exposure and to assess the appropriateness of the current EU bathing water regulations for the protection of public health. Accordingly, this review sought to identify and synthesise all literature pertaining to a selection of bacterial (Campylobacter spp., Escherichia coli, Salmonella spp., Shigella spp., Vibrio spp., Pseudomonas spp., AMR bacteria), viral (Hepatitis spp., enteroviruses, rotavirus, adenovirus, norovirus), and protozoan (Giardia spp., and Cryptosporidium spp.) contaminants in EU bathing waters. Sixty investigations were identified as eligible for inclusion and data was extracted. Peer-reviewed investigations included were from 18 countries across the EU, totalling 87 investigations across a period of 35 years, with 30% published between 2011 and 2015. A variety of water bodies were identified, with 27 investigations exclusively assessing coastal waters. Waterborne organisms were classified into three categories; bacteria, viruses, and protozoa; amounting to 58%, 36% and 17% of the total investigations, respectively. The total number of samples across all investigations was 8,118, with detection of one or more organisms in 2,449 (30%) of these. Viruses were detected in 1281 (52%) of all samples where WOPHC were found, followed by bacteria (865(35%)) and protozoa (303(12%)). Where assessed (442 samples), AMR bacteria had a 47% detection rate, emphasising their widespread occurrence in bathing waters. Results of this scoping review highlight the potential public health risk of exposure to WOPHC in bathing waters that normally remain undetected within the current monitoring parameters.

RevDate: 2021-10-12

Manus MB (2021)

Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity.

Microbial ecology [Epub ahead of print].

Metacommunity theory dictates that a microbial community is supported both by local ecological processes and the dispersal of microbes between neighboring communities. Studies that apply this perspective to human-associated microbial communities are thus far limited to the gut microbiome. Yet, the skin serves as the primary barrier between the body and the external environment, suggesting frequent opportunities for microbial dispersal to the variable microbial communities that are housed across skin sites. This paper applies metacommunity theory to understand the dispersal of microbes to the skin from the physical and social environment, as well as between different skin sites on an individual's body. This includes highlighting the role of human behavior in driving microbial dispersal, as well as shaping physiological properties of skin that underscore local microbial community dynamics. By leveraging data from research on the skin microbiomes of amphibians and other animals, this paper provides recommendations for future research on the skin microbial metacommunity, including generating testable predictions about the ecological underpinnings of the skin microbiome.

RevDate: 2021-10-12

Tran PQ, K Anantharaman (2021)

Biogeochemistry Goes Viral: towards a Multifaceted Approach To Study Viruses and Biogeochemical Cycling.

mSystems [Epub ahead of print].

Viruses are ubiquitous on Earth and are keystone components of environments, ecosystems, and human health. Yet, viruses remain poorly studied because most cannot be isolated in a laboratory. In the field of biogeochemistry, which aims to understand the interactions between biology, geology, and chemistry, there is progress to be made in understanding the different roles played by viruses in nutrient cycling, food webs, and elemental transformations. In this commentary, we outline current microbial ecology frameworks for understanding biogeochemical cycling in aquatic ecosystems. Next, we review some existing experimental and computational techniques that are enabling us to study the role of viruses in biogeochemical cycling, using examples from aquatic environments. Finally, we provide a conceptual model that balances limitations of computational tools when combined with biogeochemistry and ecological data. We envision meeting the grand challenge of understanding how viruses impact biogeochemical cycling by using a multifaceted approach to viral ecology.

RevDate: 2021-10-11

Piperagkas O, N Papageorgiou (2021)

Changes in (micro and macro) plastic pollution in the sediment of three sandy beaches in the Eastern Mediterranean Sea, in relation to seasonality, beach use and granulometry.

Marine pollution bulletin, 173(Pt A):113014 pii:S0025-326X(21)01048-1 [Epub ahead of print].

Smaller sized plastics (microplastics or MPs <5 mm) are ubiquitous in nature and have been found to interact in diverse ways with most biotic and abiotic systems globally. Most MPs in the seas have a land-based source, however, little is known about how the transfer occurs. In our study, we used three sandy beaches to describe the process of how MPs travel from accumulation points at the backshore of the beach to the sea, and vice versa. MPs differed significantly in all three beaches (both in quantitative and qualitative terms) between the summer and the winter samplings. During the summer, heavy MPs are the majority, while during the winter, lightweight microplastics are predominant, and the ratio of heavy per lightweight MPs is affected by the sediment median diameter after the summer sampling. Macroplastics follow a similar pattern to MPs and appear to provide a source of MPs for the sea.

RevDate: 2021-10-11

Nasreen T, Islam MT, Liang KYH, et al (2021)

Dynamic Subspecies Population Structure of Vibrio cholerae in Dhaka, Bangladesh.

Microbial ecology [Epub ahead of print].

Cholera has been endemic to the Ganges Delta for centuries. Although the causative agent, Vibrio cholerae, is autochthonous to coastal and brackish water, cholera occurs continually in Dhaka, the inland capital city of Bangladesh which is surrounded by fresh water. Despite the persistence of this problem, little is known about the environmental abundance and distribution of lineages of V. cholerae, the most important being the pandemic generating (PG) lineage consisting mostly of serogroup O1 strains. To understand spatial and temporal dynamics of PG lineage and other lineages belonging to the V. cholerae species in surface water in and around Dhaka City, we used qPCR and high-throughput amplicon sequencing. Seven different freshwater sites across Dhaka were investigated for six consecutive months, and physiochemical parameters were measured in situ. Total abundance of V. cholerae was found to be relatively stable throughout the 6-month sampling period, with 2 × 105 to 4 × 105 genome copies/L at six sites and around 5 × 105 genome copies/L at the site located in the most densely populated part of Dhaka City. PG O1 V. cholerae was present in high abundance during the entire sampling period and composed between 24 and 92% of the total V. cholerae population, only showing occasional but sudden reductions in abundance. In instances where PG O1 lost its dominance, other lineages underwent a rapid expansion while the size of the total V. cholerae population remained almost unchanged. Intraspecies richness of V. cholerae was positively correlated with salinity, conductivity, and total dissolved solids (TDS), while it was negatively correlated with dissolved oxygen (DO) concentration in water. Interestingly, negative correlation was observed specifically between PG O1 and salinity, even though the changes in this variable were minor (0-0.8 ppt). Observations in this study suggest that at the subspecies level, population composition of naturally occurring V. cholerae can be influenced by fluctuations in environmental factors, which can lead to altered competition dynamics among the lineages.

RevDate: 2021-10-11

Manning-Berg A, Selly T, JK Bartley (2021)

Actualistic approaches to interpreting the role of biological decomposition in microbial preservation.

Geobiology [Epub ahead of print].

Taphonomic processes, especially post-mortem biological decomposition, act as crucial controls on the microbial fossil record. Information loss during the fossilization process obscures interpretation of ancient microbial ecology and limits our view of preserved ecosystems. Conversely, taphonomic information can itself provide insight into fossilization pathways and processes. This information-gain approach requires specific attention to taphonomic patterns in ancient assemblages and robust modern analogue data to serve as points of reference. In this study, we combine experimental taphonomy with decomposition models in order to constrain taphonomic hypotheses regarding Proterozoic microfossil assemblages. Several filamentous and coccoidal prokaryotic and eukaryotic phototrophs were evaluated for taphonomic pattern over the course of a short (~100 days) decomposition experiment. In parallel, simple numerical models were constructed to explain potential taphonomic pathways. These analogue data were then compared to two Mesoproterozoic fossil assemblages, the ~1.5 Ga Kotuikan Formation, Siberia, and the ~1 Ga Angmaat Formation, Canada. Concordant with previous experiments and observations, our results suggest that sheath morphology is more persistent than cell/trichome morphology during early stages of decomposition. These experiments also suggest that taphonomic change in cell morphology may follow one of several trajectories, resulting in distinct taphonomic endpoints. Model output suggests two categories of underlying mechanism and resultant taphonomic trajectory: (1) uniform decomposition, resulting in a low overall taphonomic grade and poor preservation, and (2) faster decomposition of structurally compromised individuals, producing a final population with better overall preservation of very few individuals. In this experiment, cells of coccoidal organisms exhibit the first pattern and trichomes of filamentous organisms and some sheaths exhibit the second. Comparison with preserved microfossil assemblages suggests that differences in taphonomic pattern between parts of an assemblage could be useful in assessing taphonomic processes or degree of taphonomic loss in an entire assemblage.

RevDate: 2021-10-10

Bottery MJ, Matthews JL, Wood AJ, et al (2021)

Inter-species interactions alter antibiotic efficacy in bacterial communities.

The ISME journal [Epub ahead of print].

The efficacy of antibiotic treatments targeting polymicrobial communities is not well predicted by conventional in vitro susceptibility testing based on determining minimum inhibitory concentration (MIC) in monocultures. One reason for this is that inter-species interactions can alter the community members' susceptibility to antibiotics. Here we quantify, and identify mechanisms for, community-modulated changes of efficacy for clinically relevant antibiotics against the pathogen Pseudomonas aeruginosa in model cystic fibrosis (CF) lung communities derived from clinical samples. We demonstrate that multi-drug resistant Stenotrophomonas maltophilia can provide high levels of antibiotic protection to otherwise sensitive P. aeruginosa. Exposure protection to imipenem was provided by chromosomally encoded metallo-β-lactamase that detoxified the environment; protection was dependent upon S. maltophilia cell density and was provided by S. maltophilia strains isolated from CF sputum, increasing the MIC of P. aeruginosa by up to 16-fold. In contrast, the presence of S. maltophilia provided no protection against meropenem, another routinely used carbapenem. Mathematical ordinary differential equation modelling shows that the level of exposure protection provided against different carbapenems can be explained by differences in antibiotic efficacy and inactivation rate. Together, these findings reveal that exploitation of pre-occurring antimicrobial resistance, and inter-specific competition, can have large impacts on pathogen antibiotic susceptibility, highlighting the importance of microbial ecology for designing successful antibiotic treatments for multispecies communities.

RevDate: 2021-10-09

Xu Q, Luo G, Guo J, et al (2021)

Microbial generalist or specialist: intraspecific variation and dormancy potential matter.

Molecular ecology [Epub ahead of print].

Microbial generalists and specialists coexist in the soil environment while having distinctive impacts on microbial community dynamics. In microbial ecology, the underlying mechanisms as to why a species is a generalist or a specialist remain ambiguous. Herein, we collected soils across a national scale and identified bacterial generalists and specialists according to niche breadth at the species level (OTU level), and the single-nucleotide differences in each species were measured to investigate intraspecific variation (at zero-radius OTU level). Compared with that of the specialists, the intraspecific variation of the generalists was much higher, which ensured their wider niche breadth and lower variability. The higher asynchrony and different niche preferences of conspecific individuals and the higher dormancy potential within the generalists further contributed to their stability in varying environments. Besides, generalists were less controlled by environmental filtering, which was indicated by the stronger signature of stochastic processes in their assembly, and had higher diversification and transition rates that allowed them to adapt to environmental changes to a greater extent than specialists. Overall, this study provides a new comprehensive understanding of the rules of assembly and the evolutionary roles of bacterial generalists and specialists. It also highlights the importance of intraspecific variation and the dormancy potential in the stability of species.

RevDate: 2021-10-09

Bouhnik O, Alami S, Lamin H, et al (2021)

The Fodder Legume Chamaecytisus albidus Establishes Functional Symbiosis with Different Bradyrhizobial Symbiovars in Morocco.

Microbial ecology [Epub ahead of print].

In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 T (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3T, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 T and Bradyrhizobium. retamae Ro19T, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.

RevDate: 2021-10-08

Wang S, De Paepe K, Van de Wiele T, et al (2021)

Starch Microspheres Entrapped with Chitosan Delay In Vitro Fecal Fermentation and Regulate Human Gut Microbiota Composition.

Journal of agricultural and food chemistry [Epub ahead of print].

A slow dietary fiber fermentation rate is desirable to obtain a steady metabolite release and even distribution throughout the entire colon, ensuring to meet the energy needs in the distal colon. In this study, we prepared starch-entrapped microspheres with a variable chitosan-to-starch ratio by means of electrospraying and investigated the fermentability by human fecal microbiota in an in vitro batch system. Starch encapsulation reduced microbial gas production and the concentration of short-chain fatty acids. Butyrate production, in particular, gradually decreased with increasing chitosan proportions. Moreover, the starch and chitosan composites induced a synergistic effect on the gut microbiota composition. Roseburia, Lachnospiraceae, and Clostridiales were promoted by all of the microspheres, and the abundance of the aforementioned health-promoting taxa reached a maximum in chitosan/starch microspheres with a 1:6 (w/w) ratio. Our findings highlight the possible benefits of rationally designing functional foods targeting functional and taxonomic gut microbiota modulation.

RevDate: 2021-10-08

Ezzedine JA, Janicot A, Rasconi S, et al (2021)

Short-Term Dynamics of Bdellovibrio and Like Organisms in Lake Geneva in Response to a Simulated Climatic Extreme Event.

Microbial ecology [Epub ahead of print].

The short time-scale dynamics of three families of Bdellovibrio and like organisms (i.e. Bdellovibrionaceae, Peredibacteraceae, and Bacteriovoracaceae) were studied on the surface waters of Lake Geneva in summer. Using mesocosms deployed nearshore in July 2019, we simulated an extreme climatic event (an input of carbon from the watershed in response to runoff from the catchment, light reduction, and mixing in response to stormy conditions) and aimed to study the impact of both abiotic and biotic factors on their dynamics. The three families of Bdellovibrio and like organisms (BALOs) showed different dynamics during the experiment. Peredibacteraceae was the most abundant group, whereas Bacteriovoracaceae was the least abundant. Compared with the other two families, the abundance of Bdellovibrionaceae did not fluctuate, remaining relatively stable over time. Environmental variables only partially explained the dynamics of these families; in particular, temperature, pH, and chloride concentrations were positively correlated with Bacteriovoracaceae, Bdellovibrionaceae, and Peredibacteraceae abundance, respectively. Prokaryote-like particles (PLPs), such as those with high DNA content (HDNA), were strongly and positively correlated with Peredibacteraceae and Bacteriovoracaceae. In contrast, no relationships were found between Bdellovibrionaceae and PLP abundance, nor between the virus-like particles (VLPs) and the different BALOs. Overall, the experiment revealed that predation was stable in the face of the simulated climatic events. In addition, we observed that Peredibacteraceae and Bacteriovoracaceae share common traits, while Bdellovibrionaceae seems to constitute a distinct category.

RevDate: 2021-10-08

Brigham LM, Bueno de Mesquita CP, Smith JG, et al (2021)

Do plant-soil interactions influence how the microbial community responds to environmental change?.

Ecology [Epub ahead of print].

Global change alters ecosystems and their functioning, and biotic interactions can either buffer or amplify such changes. We utilized a long-term nitrogen (N) addition and species removal experiment in the Front Range of Colorado, USA to determine whether a co-dominant forb and a co-dominant grass, with different effects on nutrient cycling and plant community structure, would buffer or amplify the effects of simulated N deposition on soil bacterial and fungal communities. While the plant communities were strongly shaped by both the presence of dominant species and N addition, we did not find a mediating effect of the plant community on soil microbial response to N. In contrast to our hypothesis, we found a decoupling of the plant and microbial communities such that the soil microbial community shifted under N independently of directional shifts in the plant community. These findings suggest there are not strong cascading effects of N deposition across the plant-soil interface in our system.

RevDate: 2021-10-08

Li WL, Dong X, Lu R, et al (2021)

Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments.

Environmental microbiology [Epub ahead of print].

Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. 110 genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyles. 68% of the MAGs were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments. This article is protected by copyright. All rights reserved.

RevDate: 2021-10-07

Thiriet-Rupert S, Gain G, Jadoul A, et al (2021)

Long-term acclimation to cadmium exposure reveals extensive phenotypic plasticity in Chlamydomonas.

Plant physiology pii:6353050 [Epub ahead of print].

Increasing industrial and anthropogenic activities are producing and releasing more and more pollutants in the environment. Among them, toxic metals are one of the major threats for human health and natural ecosystems. Because photosynthetic organisms play a critical role in primary productivity and pollution management, investigating their response to metal toxicity is of major interest. Here, the green microalga Chlamydomonas (Chlamydomonas reinhardtii) was subjected to short (3 d) or chronic (6 months) exposure to 50 µM cadmium (Cd), and the recovery from chronic exposure was also examined. An extensive phenotypic characterization and transcriptomic analysis showed that the impact of Cd on biomass production of short-term (ST) exposed cells was almost entirely abolished by long-term (LT) acclimation. The underlying mechanisms were initiated at ST and further amplified after LT exposure resulting in a reversible equilibrium allowing biomass production similar to control condition. This included modification of cell wall-related gene expression and biofilm-like structure formation, dynamics of metal ion uptake and homeostasis, photosynthesis efficiency recovery and Cd acclimation through metal homeostasis adjustment. The contribution of the identified coordination of phosphorus and iron homeostasis (partly) mediated by the main phosphorus homeostasis regulator, Phosphate Starvation Response 1, and a basic Helix-Loop-Helix transcription factor (Cre05.g241636) was further investigated. The study reveals the highly dynamic physiological plasticity enabling algal cell growth in an extreme environment.

RevDate: 2021-10-07

Medeiros MCI, Seabourn PS, Rollins RL, et al (2021)

Mosquito Microbiome Diversity Varies Along a Landscape-Scale Moisture Gradient.

Microbial ecology [Epub ahead of print].

Microorganisms live in close association with metazoan hosts and form symbiotic microbiotas that modulate host biology. Although the function of host-associated microbiomes may change with composition, hosts within a population can exhibit high turnover in microbiome composition among individuals. However, environmental drivers of this variation are inadequately described. Here, we test the hypothesis that this diversity among the microbiomes of Aedes albopictus (a mosquito disease vector) is associated with the local climate and land-use patterns on the high Pacific island of O 'ahu, Hawai 'i. Our principal finding demonstrates that the relative abundance of several bacterial symbionts in the Ae. albopictus microbiome varies in response to a landscape-scale moisture gradient, resulting in the turnover of the mosquito microbiome composition across the landscape. However, we find no evidence that mosquito microbiome diversity is tied to an index of urbanization. This result has implications toward understanding the assembly of host-associated microbiomes, especially during an era of rampant global climate change.

RevDate: 2021-10-07

Pace RM, Chu DM, Prince AL, et al (2021)

Complex species and strain ecology of the vaginal microbiome from pregnancy to postpartum and association with preterm birth.

Med (New York, N.Y.), 2(9):1027-1049.

Background: Lactobacillus was described as a keystone bacterial taxon in the human vagina over 100 years ago. Using metagenomics, we and others have characterized lactobacilli and other vaginal taxa across health and disease states, including pregnancy. While shifts in community membership have been resolved at the genus/species level, strain dynamics remain poorly characterized.

Methods: We performed a metagenomic analysis of the complex ecology of the vaginal econiche during and after pregnancy in a large U.S. based longitudinal cohort of women who were initially sampled in the third trimester of pregnancy, then validated key findings in a second cohort of women initially sampled in the second trimester of pregnancy.

Findings: First, we resolved microbial species and strains, interrogated their co-occurrence patterns, and probed the relationship between keystone species and preterm birth outcomes. Second, to determine the role of human heredity in shaping vaginal microbial ecology in relation to preterm birth, we performed a mtDNA-bacterial species association analysis. Finally, we explored the clinical utility of metagenomics in detection and co-occurrence patterns for the pathobiont Group B Streptococcus (causative bacterium of invasive neonatal sepsis).

Conclusions: Our highly refined resolutions of the vaginal ecology during and post-pregnancy provide insights into not only structural and functional community dynamics, but highlight the capacity of metagenomics to reveal finer aspects of the vaginal microbial ecologic framework.

Funding: NIH-NINR R01NR014792, NIH-NICHD R01HD091731, NIH National Children's Study Formative Research, Burroughs Wellcome Fund Preterm Birth Initiative, March of Dimes Preterm Birth Research Initiative, NIH-NIGMS (K12GM084897, T32GM007330, T32GM088129).

RevDate: 2021-10-07

Huang K, Tang J, Zou Y, et al (2021)

Whole Genome Sequence of Alternaria alternata, the Causal Agent of Black Spot of Kiwifruit.

Frontiers in microbiology, 12:713462.

Alternaria alternata is a pathogen in a wide range of agriculture crops and causes significant economic losses. A strain of A. alternata (Y784-BC03) was isolated and identified from "Hongyang" kiwifruit and demonstrated to cause black spot infections on fruits. The genome sequence of Y784-BC03 was obtained using Nanopore MinION technology. The assembled genome is composed of 33,869,130bp (32.30Mb) comprising 10 chromosomes and 11,954 genes. A total of 2,180 virulence factors were predicted to be present in the obtained genome sequence. The virulence factors comprised genes encoding secondary metabolites, including non-host-specific toxins, cell wall-degrading enzymes, and major transcriptional regulators. The predicted gene clusters encoding genes for the biosynthesis and export of secondary metabolites in the genome of Y784-BC03 were associated with non-host-specific toxins, including cercosporin, dothistromin, and versicolorin B. Major transcriptional regulators of different mycotoxin biosynthesis pathways were identified, including the transcriptional regulators, polyketide synthase, P450 monooxygenase, and major facilitator superfamily transporters.

RevDate: 2021-10-07

Wang Y, Ye J, Ju F, et al (2021)

Successional dynamics and alternative stable states in a saline activated sludge microbial community over 9 years.

Microbiome, 9(1):199.

BACKGROUND: Microbial communities in both natural and applied settings reliably carry out myriads of functions, yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale wastewater treatment plant to answer how complex AS communities evolve in the long term and how the community functions change when there is a disturbance in operational parameters.

RESULTS: Here, we show that a microbial community in activated sludge (AS) system fluctuated around a stable average for 3 years but was then abruptly pushed into an alternative stable state by a simple transient disturbance (bleaching). While the taxonomic composition rapidly turned into a new state following the disturbance, the metabolic profile of the community and system performance remained remarkably stable. A total of 920 metagenome-assembled genomes (MAGs), representing approximately 70% of the community in the studied AS ecosystem, were recovered from the 97 monthly AS metagenomes. Comparative genomic analysis revealed an increased ability to aggregate in the cohorts of MAGs with correlated dynamics that are dominant after the bleaching event. Fine-scale analysis of dynamics also revealed cohorts that dominated during different periods and showed successional dynamics on seasonal and longer time scales due to temperature fluctuation and gradual changes in mean residence time in the reactor, respectively.

CONCLUSIONS: Our work highlights that communities can assume different stable states under highly similar environmental conditions and that a specific disturbance threshold may lead to a rapid shift in community composition. Video Abstract.

RevDate: 2021-10-06

Avalos M, Garbeva P, Vader L, et al (2021)

Biosynthesis, evolution and ecology of microbial terpenoids.

Natural product reports [Epub ahead of print].

Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.

RevDate: 2021-10-05

Masetti R, Muratore E, Leardini D, et al (2021)

Gut microbiome in pediatric acute leukemia: from predisposition to cure.

Blood advances pii:477172 [Epub ahead of print].

The gut microbiome (GM) has emerged as a key factor in the genesis and progression of many diseases. The intestinal bacterial composition is also able to influence treatment-related side effects and even efficacy of oncological therapies. Acute leukemia (AL) is the most common cancer among children and the most frequent cause of death from cancer during childhood. Outcome has improved considerably over the past four decades, with the current long-term survival for acute lymphoblastic leukemia being approximately 90%. However, several acute toxicities and long-term sequela are associated with the multimodal therapy-protocols applied in these patients. Specific GM configurations could contribute in the multistep developmental hypothesis for leukemogenesis. Moreover, GM alterations occur during the AL therapeutic course and are associated with treatment-related complications, especially during hematopoietic stem cell transplantation. The GM perturbation could last even after the removal of microbiome-modifying factors, like antibiotics, chemotherapeutic drugs or allo-immune reactions, contributing to several health-related issues in AL survivors. The aim of this paper is to provide a comprehensive review of the chronological changes of GM in children with AL, from predisposition to cure. The underpinning biological processes and the potential interventions to modulate the GM towards a potentially health-promoting configuration are also highlighted.

RevDate: 2021-10-05

Bartolomé C, Buendía-Abad M, Ornosa C, et al (2021)

Bee Trypanosomatids: First Steps in the Analysis of the Genetic Variation and Population Structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae.

Microbial ecology [Epub ahead of print].

Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) - and a mutation frequency distribution compatible with a population expansion after a bottleneck - that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.

RevDate: 2021-10-05

Deng Y, Borewicz K, van Loo J, et al (2021)

In-Situ Biofloc Affects the Core Prokaryotes Community Composition in Gut and Enhances Growth of Nile Tilapia (Oreochromis niloticus).

Microbial ecology [Epub ahead of print].

Biofloc technology is commonly applied in intensive tilapia (Oreochromis niloticus) culture to maintain water quality, supply the fish with extra protein, and improve fish growth. However, the effect of dietary supplementation of processed biofloc on the gut prokaryotic (bacteria and archaea) community composition of tilapia is not well understood. In this study one recirculating aquaculture system was used to test how biofloc, including in-situ biofloc, dietary supplementation of ex-situ live or dead biofloc, influence fish gut prokaryotic community composition and growth performance in comparison to a biofloc-free control treatment. A core gut prokaryotic community was identified among all treatments by analyzing the temporal variations in gut prokaryotes. In-situ produced biofloc significantly increased the prokaryotic diversity in the gut by reducing the relative abundance of dominant Cetobacterium and increasing the relative abundance of potentially beneficial bacteria. The in-situ biofloc delivered a unique prokaryotic community in fish gut, while dietary supplementation of tilapias with 5% and 10% processed biofloc (live or dead) only changed the relative abundance of minor prokaryotic taxa outside the gut core microbiota. The modulatory effect of in-situ biofloc on tilapia gut microbiota was associated with the distinct microbial community in the biofloc water and undisturbed biofloc. The growth-promoting effect on tilapia was only detected in the in-situ biofloc treatment, while dietary supplementation of processed biofloc had no effect on fish growth performance as compared to the control treatment.

RevDate: 2021-10-05

Wiles TJ (2021)

Cultivating Healthy Connections: Exploring and Engineering the Microbial Flow That Shapes Microbiomes.

mSystems [Epub ahead of print].

Our view of the microbial world has undergone a radical transformation over the past decade. For most of the 20th century, medical microbiological research was focused on understanding the virulent nature of disease-causing pathogens. More recently, advances in DNA sequencing methodologies have exposed a wider diversity of microscopic wildlife that associate with our bodies and the environments around us, and the unexpected roles they play in supporting our health. Our expanding view of the microbial world is now motivating therapeutic interventions that are based not just on the elimination of nefarious pathogens but the nurturing of beneficial microbiomes. In this Commentary, I consider how our historically pathogen-based view of host-microbe interactions may be limiting the scope of new and alternative strategies for engineering microbiomes. I suggest that recognizing the therapeutic potential of the ongoing microbial transmission that connects microbiomes could illuminate unexplored opportunities for cultivating healthy host-microbe relationships.

RevDate: 2021-10-05

Bouma-Gregson K, Crits-Christoph A, Olm MR, et al (2021)

Microcoleus (Cyanobacteria) form watershed-wide populations without strong gradients in population structure.

Molecular ecology [Epub ahead of print].

The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome-resolved metagenomic analyses of benthic Microcoleus-dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64 Microcoleus genomes were clustered into three species that shared > 96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (> 300 km). Within the most common Microcoleus species, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometers), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π) as mats in larger downstream subwatersheds, within-mat genetic diversity does not appear to depend on the downstream accumulation of upstream-derived strains. The four-gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene-flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed.

RevDate: 2021-10-05

Alguacil MDM, Schlaeppi K, López-García Á, et al (2021)

Contrasting Responses of Arbuscular Mycorrhizal Fungal Families to Simulated Climate Warming and Drying in a Semiarid Shrubland.

Microbial ecology [Epub ahead of print].

We carried out a 4-year manipulative field experiment in a semiarid shrubland in southeastern Spain to assess the impacts of experimental warming (W), rainfall reduction (RR), and their combination (W + RR) on the composition and diversity of arbuscular mycorrhizal fungal (AMF) communities in rhizosphere soil of H. syriacum and G. struthium shrubs using single-molecule real-time (SMRT) DNA sequencing. Across climate treatments, we encountered 109 AMF operational taxonomic units (OTUs) that were assigned to four families: Glomeraceae (93.94%), Gigasporaceae (2.19%), Claroideoglomeraceae (1.95%), and Diversisporaceae (1.92%). AMF community composition and diversity at OTU level were unaffected by the climate manipulation treatments, except for a significant decrease in AMF OTU richness in the W treatment relative to the control. However, we found a significant decrease of AMF family richness in all climate manipulation treatments relative to the control treatment. Members of the Gigasporaceae and Diversisporaceae families appeared to be highly vulnerable to intensification of heat and drought stress, as their abundances decreased by 67% and 77%, respectively, in the W + RR treatment relative to current ambient conditions. In contrast, the relative abundance and dominance of the Glomeraceae family within the AMF community increased significantly under the W + RR treatment, with Glomeraceae being the indicator family for the W + RR treatment. The interaction between warming and rainfall reduction had a significant effect on AMF community structure at family level. These findings provide new insights to help in the conservation of the soil biodiversity facing climate change in dryland ecosystems.

RevDate: 2021-10-04

Webster TM, McFarland A, Gebert MJ, et al (2021)

Structure and Functional Attributes of Bacterial Communities in Premise Plumbing Across the United States.

Environmental science & technology [Epub ahead of print].

Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.

RevDate: 2021-10-04

Zöhrer PA, Hana CA, Seyed Khoei N, et al (2021)

Gilbert's Syndrome and the Gut Microbiota - Insights From the Case-Control BILIHEALTH Study.

Frontiers in cellular and infection microbiology, 11:701109.

The heme catabolite bilirubin has anti-inflammatory, anti-oxidative and anti-mutagenic effects and its relation to colorectal cancer (CRC) risk is currently under evaluation. Although the main metabolic steps of bilirubin metabolism, including the formation of stercobilin and urobilin, take place in the human gastrointestinal tract, potential interactions with the human gut microbiota are unexplored. This study investigated, whether gut microbiota composition is altered in Gilbert's Syndrome (GS), a mild form of chronically elevated serum unconjugated bilirubin (UCB) compared to matched controls. Potential differences in the incidence of CRC-associated bacterial species in GS were also assessed. To this end, a secondary investigation of the BILIHEALTH study was performed, assessing 45 adults with elevated UCB levels (GS) against 45 age- and sex-matched controls (C). Fecal microbiota analysis was performed using 16S rRNA gene sequencing. No association between mildly increased UCB and the composition of the gut microbiota in this healthy cohort was found. The alpha and beta diversity did not differ between C and GS and both groups showed a typical representation of the known dominant phyla. Furthermore, no difference in abundance of Firmicutes and Proteobacteria, which have been associated with the mucosa of CRC patients were observed between the groups. A sequence related to the Christensenella minuta strain YIT 12065 was identified with a weak association value of 0.521 as an indicator species in the GS group. This strain has been previously associated with a lower body mass index, which is typical for the GS phenotype. Overall, sex was the only driver for an identifiable difference in the study groups, as demonstrated by a greater bacterial diversity in women. After adjusting for confounding factors and multiple testing, we can conclude that the GS phenotype does not affect the composition of the human gut microbiota in this generally healthy study group.

RevDate: 2021-10-04

Cai S, Fan Y, Zhang B, et al (2021)

Appendectomy Is Associated With Alteration of Human Gut Bacterial and Fungal Communities.

Frontiers in microbiology, 12:724980.

Recent research has revealed the importance of the appendix in regulating the intestinal microbiota and mucosal immunity. However, the changes that occur in human gut microbial communities after appendectomy have never been analyzed. We assessed the alterations in gut bacterial and fungal populations associated with a history of appendectomy. In this cross-sectional study, we investigated the association between appendectomy and the gut microbiome using 16S and ITS2 sequencing on fecal samples from 30 healthy individuals with prior appendectomy (HwA) and 30 healthy individuals without appendectomy (HwoA). Analysis showed that the gut bacterial composition of samples from HwA was less diverse than that of samples from HwoA and had a lower abundance of Roseburia, Barnesiella, Butyricicoccus, Odoribacter, and Butyricimonas species, most of which were short-chain fatty acids-producing microbes. The HwA subgroup analysis indicated a trend toward restoration of the HwoA bacterial microbiome over time after appendectomy. HwA had higher gut fungi composition and diversity than HwoA, even 5 years after appendectomy. Compared with those in samples from HwoA, the abundance correlation networks in samples from HwA displayed more complex fungal-fungal and fungal-bacterial community interactions. This study revealed a marked impact of appendectomy on gut bacteria and fungi, which was particularly durable for fungi.

RevDate: 2021-10-04

Delago A, Gregor R, Dubinsky L, et al (2021)

A Bacterial Quorum Sensing Molecule Elicits a General Stress Response in Saccharomyces cerevisiae.

Frontiers in microbiology, 12:632658.

Bacteria assess their population density through a chemical communication mechanism termed quorum sensing, in order to coordinate group behavior. Most research on quorum sensing has focused primarily on its role as an intraspecies chemical signaling mechanism that enables the regulation of certain phenotypes through targeted gene expression. However, in recent years several seminal studies have revealed important phenomena in which quorum sensing molecules appear to serve additional roles as interspecies signals that may regulate microbial ecology. In this study, we asked whether the budding yeast Saccharomyces cerevisiae can sense chemical signals from prokaryotes. When exposed to a variety of quorum sensing molecules from different bacterial species and from Candida albicans we found that N-(3-oxododecanoyl)-L-homoserine lactone (C12) from the opportunistic human pathogen Pseudomonas aeruginosa induces a remarkable stress response in yeast. Microarray experiments confirmed and aided in interpreting these findings, showing a unique and specific expression pattern that differed significantly from the response to previously described stress factors. We further characterized this response and report preliminary findings on the molecular basis for the recognition of C12 by the yeast.

RevDate: 2021-10-04

Mauger S, Monard C, Thion C, et al (2021)

Contribution of single-cell omics to microbial ecology.

Trends in ecology & evolution pii:S0169-5347(21)00249-4 [Epub ahead of print].

Micro-organisms play key roles in various ecosystems, but many of their functions and interactions remain undefined. To investigate the ecological relevance of microbial communities, new molecular tools are being developed. Among them, single-cell omics assessing genetic diversity at the population and community levels and linking each individual cell to its functions is gaining interest in microbial ecology. By giving access to a wider range of ecological scales (from individual to community) than culture-based approaches and meta-omics, single-cell omics can contribute not only to micro-organisms' genomic and functional identification but also to the testing of concepts in ecology. Here, we discuss the contribution of single-cell omics to possible breakthroughs in concepts and knowledge on microbial ecosystems and ecoevolutionary processes.

RevDate: 2021-10-03

Shi B, Cheng C, Zhang Y, et al (2021)

Effects of 3,6-dichlorocarbazole on microbial ecology and its degradation in soil.

Journal of hazardous materials, 424(Pt A):127315 pii:S0304-3894(21)02283-4 [Epub ahead of print].

The emerging contaminants polyhalogenated carbazoles (PHCZs) have been verified to be present in soils and sediments globally, and they show dioxin-like toxicity. However, there is a lack of soil ecological risk assessments on PHCZs despite their high detection rate and concentration in soils. The present study investigated the degradation and soil microbial influence of 3,6-dichlorocarbazole (3,6-DCCZ, a frequently detected PHCZ) in soil. The results showed that the half-lives of 3,6-DCCZ at concentrations of 0.100 mg/kg and 1.00 mg/kg were 7.75 d and 16.73 d, respectively. We found that 3,6-DCCZ was transformed into 3-chlorocarbazole (3-CCZ) by dehalogenation in soil. Additionally, intermediate products with higher molecular weights were detected, presumably because the -H on the carbazole ring was replaced by -CH3, -CH2-O-CH3, or -CH2-O-CH2CH3. 3,6-DCCZ exposure slightly increased the soil bacterial abundance and diversity and clearly changed the soil bacterial community structure. Through a comprehensive analysis of FAPROTAX, functional gene qPCR and soil enzyme tests, we concluded that 3,6-DCCZ exposure inhibited nitrification and nitrogen fixation but promoted denitrification, carbon dioxide fixation and hydrocarbon degradation processes in soil. This study provides valuable data for clarifying the PHCZ ecological risk in soil.

RevDate: 2021-10-03

Marzorati M, Van den Abbeele P, Bubeck S, et al (2021)

Treatment with a spore-based probiotic containing five strains of Bacillus induced changes in the metabolic activity and community composition of the gut microbiota in a SHIME® model of the human gastrointestinal system.

Food research international (Ottawa, Ont.), 149:110676.

MegaSporeBiotic™ is an oral, spore-based probiotic comprised of five Bacillus spp. (Bacillus indicus HU36, Bacillus subtilis HU58, Bacillus coagulans SC208, Bacillus licheniformis SL307, and Bacillus clausii SC109). The effects of MegaSporeBiotic™ on gut microbiota activity and community composition were evaluated for the first time using an in vitro model of the human gastrointestinal tract, the simulator of the human intestinal microbial ecosystem (SHIME®), under healthy conditions. Following a stabilization period and a control period (2 weeks each), the reactor feed was supplemented with daily MegaSporeBiotic™ for 3 weeks (treatment period). Changes in microbial community activity and composition between the control and treatment periods were evaluated for each colon compartment (ascending [AC], transverse [TC], and descending colon [DC]). Propionate levels increased significantly in the TC (week 2, P = 0.02; week 3, P = 0.0019) and DC (week 2, P = 0.03) with treatment while lactate levels significantly decreased in the TC (week 3, P = 0.03). Ammonium levels were significantly decreased during the final week of treatment (TC, P = 0.02; DC, P = 0.03). Overall, Akkermansia muciniphila, Bifidobacteria spp., and Firmicutes increased with treatment while Lactobacillus spp. and Bacteroidetes decreased. The Firmicutes:Bacteroidetes ratio increased with treatment in the AC compartment. MegaSporeProbiotic™ treatment resulted in changes in metabolism and increased bacterial diversity.

RevDate: 2021-10-03

Deng X, Si J, Qu Y, et al (2021)

Vegetarian diet duration's influence on women's gut environment.

Genes & nutrition, 16(1):16.

BACKGROUND: Nutrient composition of vegetarian diets is greatly different from that of omnivore diets, which may fundamentally influence the gut microbiota and fecal metabolites. The interactions between diet pattern and gut environment need further illustration. This study aims to compare the difference in the gut microbiota and fecal metabolites between vegetarian and omnivore female adults and explore associations between dietary choices/duration and gut environment changes.

METHODS: In this study, investigations on the fecal metabolome together with the gut microbiome were performed to describe potential interactions with quantitative functional annotation. In order to eliminate the differences brought by factors of gender and living environment, 80 female adults aged 20 to 48 were recruited in the universities in Beijing, China. Quantitative Insights Into Microbial Ecology (QIIME) analysis and Ingenuity Pathway Analysis (IPA) were applied to screen differential data between groups from gut microbiota and fecal metabolites. Furthermore, weighted gene correlation network analysis (WGCNA) was employed as the bioinformatics analysis tool for describing the correlations between gut microbiota and fecal metabolites. Moreover, participants were further subdivided by the vegetarian diet duration for analysis.

RESULTS: GPCR-mediated integration of enteroendocrine signaling was predicted to be one of the regulatory mechanisms of the vegetarian diet. Intriguingly, changes in the gut environment which occurred along with the vegetarian diet showed attenuated trend as the duration increased. A similar trend of returning to "baseline" after a 10-year vegetarian diet was detected in both gut microbiota and fecal metabolome.

CONCLUSIONS: The vegetarian diet is beneficial more than harmful to women. Gut microbiota play roles in the ability of the human body to adapt to external changes.

RevDate: 2021-09-30

Ge W, Zhang ZY, Dong CB, et al (2021)

Bacterial Community Analysis and Potential Functions of Core Taxa in Different Parts of the Fungus Cantharellus cibarius.

Polish journal of microbiology, 70(3):373-385.

Cantharellus cibarius is a widely distributed, popular, edible fungus with high nutritional and economic value. However, significant challenges persist in the microbial ecology and artificial cultivation of C. cibarius. Based on the 16S rRNA sequencing data, this study analyzed bacterial community structures and diversity of fruit bodies and rhizomorph parts of C. cibarius and mycosphere samples (collected in the Wudang District, Guiyang, Guizhou Province, China). It explored the composition and function of the core bacterial taxa. The analyzed results showed that the rhizomorph bacterial community structure was similar to mycosphere, but differed from the fruit bodies. Members of the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex had the highest abundance in the fruit bodies. However, they were either absent or low in abundance in the rhizomorphs and mycosphere. At the same time, members of the Burkholderia-Caballeronia-Paraburkholderia complex were abundant in the fruit bodies and rhizomorphs parts of C. cibarius, as well as mycosphere. Through functional annotation of core bacterial taxa, we found that there was an apparent trend of potential functional differentiation of related bacterial communities in the fruit body and rhizomorph: potential functional groups of core bacterial taxa in the fruit bodies centered on nitrogen fixation, nitrogen metabolism, and degradation of aromatic compounds, while those in rhizomorphs focused on aerobic chemoheterotrophy, chemoheterotrophy, defense against soil pathogens, decomposition of complex organic compounds, and uptake of insoluble inorganic compounds. The analysis of functional groups of bacteria with different structures is of great significance to understand that bacteria promote the growth and development of C. cibarius.

RevDate: 2021-10-02

Fehlauer T, Collin B, Angeletti B, et al (2021)

Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site.

Chemosphere pii:S0045-6535(21)02787-9 [Epub ahead of print].

The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.

RevDate: 2021-10-02

Aivelo T, Lemoine M, B Tschirren (2021)

Elevational Changes in Bacterial Microbiota Structure and Diversity in an Arthropod-Disease Vector.

Microbial ecology [Epub ahead of print].

Environmental conditions change rapidly along elevational gradients and have been found to affect community composition in macroscopic taxa, with lower diversity typically observed at higher elevations. In contrast, microbial community responses to elevation are still poorly understood. Specifically, the effects of elevation on vector-associated microbiota have not been studied to date, even though the within-vector microbial community is known to influence vector competence for a range of zoonotic pathogens. Here we characterize the structure and diversity of the bacterial microbiota in an important zoonotic disease vector, the sheep tick Ixodes ricinus, along replicated elevational gradient (630-1673 m) in the Swiss Alps. 16S rRNA sequencing of the whole within-tick bacterial microbiota of questing nymphs and adults revealed a decrease in Faith's phylogenetic microbial alpha diversity with increasing elevation, while beta diversity analyses revealed a lower variation in microbial community composition at higher elevations. We also found a higher microbial diversity later in the season and significant differences in microbial diversity among tick life stages and sexes, with lowest microbial alpha diversity observed in adult females. No associations between tick genetic diversity and bacterial diversity were observed. Our study demonstrates systematic changes in tick bacterial microbiota diversity along elevational gradients. The observed patterns mirror diversity changes along elevational gradients typically observed in macroscopic taxa, and they highlight the key role of environmental factors in shaping within-host microbial communities in ectotherms.

RevDate: 2021-10-02

Almendras K, Iannuzzi S, Carú M, et al (2021)

Diversity of Microbial Functional Genes Should Be Considered During the Interpretation of the qPCR Melting Curves.

Microbial ecology [Epub ahead of print].

Soil microorganisms play an essential role in biogeochemical cycles. One approach to study these microbial communities is quantifying functional genes by quantitative PCR (qPCR), in which a melting curve analysis is usually assessed to confirm that a single PCR product is being quantified. However, the high diversity of functional genes in environmental samples could generate more than one peak in those curves, so the presence of two or multiple peaks does not always indicate nonspecific amplification. Here, we analyzed the taxonomic diversity of soil microorganisms harboring functional genes involved in nitrogen (N) and phosphorus (P) cycles, based on a database of genomes and metagenomes, and predicted the melting curve profiles of these genes. These functional genes were spread across many bacterial phyla, but mainly Proteobacteria and Actinobacteria. In general, the melting curves exhibited more than one peak or peaks with shoulders, mainly related to the variation of the nucleotide composition of the genes and the expected size of the amplicons. These results indicate that the melting curves of functional genes from environmental samples should be carefully evaluated, being in silico analyses a cost-effective way to identify inherent sequence diversity and avoid interpreting multiple peaks always as unspecific amplifications.

RevDate: 2021-10-01

Wang Y, Elzenga T, JD van Elsas (2021)

Effect of culture conditions on the performance of lignocellulose-degrading synthetic microbial consortia.

Applied microbiology and biotechnology [Epub ahead of print].

In this study, we examined a synthetic microbial consortium, composed of two selected bacteria, i.e., Citrobacter freundii so4 and Sphingobacterium multivorum w15, next to the fungus Coniochaeta sp. 2T2.1, with respect to their fate and roles in the degradation of wheat straw (WS). A special focus was placed on the effects of pH (7.2, 6.2, or 5.2), temperature (25 versus 28 °C), and shaking speed (60 versus 180 rpm). Coniochaeta sp. 2T2.1 consistently had a key role in the degradation process, with the two bacteria having additional roles. Whereas temperature exerted only minor effects on the degradation, pH and shaking speed were key determinants of both organismal growth and WS degradation levels. In detail, the three-partner degrader consortium showed significantly higher WS degradation values at pH 6.2 and 5.2 than at pH 7.2. Moreover, the two bacteria revealed up to tenfold enhanced final cell densities (ranging from log8.0 to log9.0 colony forming unit (CFU)/mL) in the presence of Coniochaeta sp. 2T2.1 than when growing alone or in a bacterial bi-culture, regardless of pH range or shaking speed. Conversely, at 180 rpm, fungal growth was clearly suppressed by the presence of the bacteria at pH 5.2 and pH 6.2, but not at pH 7.2. In contrast, at 60 rpm, the presence of the bacteria fostered fungal growth. In these latter cultures, oxygen levels were significantly lowered as compared to the maximal levels found at 180 rpm (about 5.67 mg/L, ~ 62% of saturation). Conspicuous effects on biomass appearance pointed to a fungal biofilm-modulating role of the bacteria.Key points• Coniochaeta sp. 2T2.1 has a key role in wheat straw (WS) degradation.• Bacterial impact shifts when conditions change.• pH and shaking speed are key drivers of the growth dynamics and WS degradation.

RevDate: 2021-10-01

Russell KA, QS McFrederick (2021)

Elevated Temperature May Affect Nectar Microbes, Nectar Sugars, and Bumble Bee Foraging Preference.

Microbial ecology [Epub ahead of print].

Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens. The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus. Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.

RevDate: 2021-10-01

Zhang M, Gao ZC, Chi Z, et al (2021)

Massoia Lactone Displays Strong Antifungal Property Against Many Crop Pathogens and Its Potential Application.

Microbial ecology [Epub ahead of print].

Massoia lactone could be released from liamocins produced by Aureobasidium melanogenum M39. The obtained Massoia lactone was very stable and highly active against many fungal crop pathogens which cause many plant diseases and food unsafety. Massoia lactone treatment not only could effectively inhibit their hyphal growth and spore germination, but also caused pore formation in cell membrane, reduction of ergosterol content, rise in intracellular ROS levels, and leakage of intracellular components, consequently leading to cellular necrosis and cell death. The direct contact of Massoia lactone with Fusarium graminearum spores could stop the development of Fusarium head blight symptom in the diseased wheats. Therefore, Massoia lactone could be a promising candidate for development as an effective and green bio-fungicide because of its high anti-fungal activity and the multiplicity of mode of its action.

RevDate: 2021-10-01

Banister RB, Schwarz MT, Fine M, et al (2021)

Instability and Stasis Among the Microbiome of Seagrass Leaves, Roots and Rhizomes, and Nearby Sediments Within a Natural pH Gradient.

Microbial ecology [Epub ahead of print].

Seagrass meadows are hotspots of biodiversity with considerable economic and ecological value. The health of seagrass ecosystems is influenced in part by the makeup and stability of their microbiome, but microbiome composition can be sensitive to environmental change such as nutrient availability, elevated temperatures, and reduced pH. The objective of the present study was to characterize the bacterial community of the leaves, bulk samples of roots and rhizomes, and proximal sediment of the seagrass species Cymodocea nodosa along the natural pH gradient of Levante Bay, Vulcano Island, Italy. The bacterial community was determined by characterizing the 16S rRNA amplicon sequencing and analyzing the operational taxonomic unit classification of bacterial DNA within samples. Statistical analyses were used to explore how life-long exposure to different pH/pCO2 conditions may be associated with significant differences in microbial communities, dominant bacterial classes, and microbial diversity within each plant section and sediment. The microbiome of C. nodosa significantly differed among all sample types and site-specific differences were detected within sediment and root/rhizome microbial communities, but not the leaves. These results show that C. nodosa leaves have a consistent microbial community even across a pH range of 8.15 to 6.05. The ability for C. nodosa to regulate and maintain microbial structure may indicate a semblance of resilience within these vital ecosystems under projected changes in environmental conditions such as ocean acidification.

RevDate: 2021-09-30

Castillo DJ, Van Goethem MW, TP Makhalanyane (2021)

Three Draft Single-Cell Genome Sequences of Novel SAR324 Strains Isolated from the Abyssopelagic Southern Ocean.

Microbiology resource announcements, 10(39):e0075921.

SAR324 is a ubiquitous and phylogenetically distinct clade of Deltaproteobacteria in marine environments. Here, we present three single-cell amplified genome sequences from the SAR324 lineage, obtained from the abyssopelagic zone of the Indian sector of the Southern Ocean.

RevDate: 2021-09-30

Villegas-Plazas M, Sanabria J, Arbeli Z, et al (2021)

Metagenomic Analysis of Biochemical Passive Reactors During Acid Mine Drainage Bioremediation Reveals Key Co-selected Metabolic Functions.

Microbial ecology [Epub ahead of print].

Acid mine drainage (AMD) is the major pollutant generated by the mining industry, and it is characterized by low pH and high concentration of metals and sulfate. The use of biochemical passive reactors (BPRs) is a promising strategy for its bioremediation. To date, there are various studies describing the taxonomical composition of BPR microbial communities, generally consisting of an assemblage of sulfate-reducing organisms inside Deltaproteobacteria, and a diverse set of anaerobic (ligno)cellulolytic bacteria; however, insights about its functional metagenomic content are still scarce. In previous studies, a laboratory-scale AMD bioremediation using biochemical passive reactors was designed and performed, tracking operation parameters, chemical composition, and changes, together with taxonomic composition of the microbiomes harbored in these systems. In order to reveal the main functional content of these communities, we used shotgun metagenomics analyses to explore genes of higher relative frequencies and their inferred functions during the AMD bioremediation from three BPRs representing the main microbiome compositions detected in the system. Remarkably, genes encoding for two-component regulatory systems and ABC transporters related to metal and inorganic ions, cellulose degradation enzymes, dicarboxylic acid production, and sulfite reduction complex were all detected at increased frequency. Our results evidenced that higher taxonomic diversity of the microbiome was arising together with a functional redundancy of the specific metabolic roles, indicating its co-selection and suggesting that its enrichment on BPRs may be implicated in the cumulative efficiency of these systems.

RevDate: 2021-09-30

Hovens IB, van Leeuwen BL, Falcao-Salles J, et al (2021)

Enteral enriched nutrition to prevent cognitive dysfunction after surgery; a study in rats.

Brain, behavior, & immunity - health, 16:100305 pii:S2666-3546(21)00108-3.

Background: Inflammation plays an important role in postoperative cognitive dysfunction (POCD), particularly in elderly patients. Enteral enriched nutrition was shown to inhibit the response on inflammatory stimuli. Aim of the present study was to explore the therapeutic potential of enteral enriched nutrition in our rat model for POCD. The anticipated mechanism of action was examined in young rats, while responses in the target group of elderly patients were evaluated in old rats.

Methods: Male 3 and 23 months old Wistar rats received a bolus of enteral fat/protein-enriched nutrition 2 ​h and 30 ​min before surgery. The inflammatory response was evaluated by systemic inflammation markers and brain microglia activity. Additionally, in old rats, the role of the gut-brain axis was studied by microbiome analyses of faecal samples. Days 9-14 after surgery, rats were subjected to cognitive testing. Day 16, rats were sacrificed and brains were collected for immunohistochemistry.

Results: In young rats, enriched nutrition improved long-term spatial learning and memory in the Morris Water Maze, reduced plasma IL1-β and VEGF levels, but left microglia activity and neurogenesis unaffected. In contrast, in old rats, enriched nutrition improved short-term memory in the novel object- and novel location recognition tests, but impaired development of long-term memory in the Morris Water Maze. Systemic inflammation was not affected, but microglia activity seemed even increased. Gut integrity and microbiome were not affected.

Conclusion: Enteral enriched nutrition before surgery in young rats indeed reduced systemic inflammation and improved cognitive performance after surgery, whereas old rats showed a mixed favorable/unfavorable cognitive response, without effect on systemic inflammation. Anti-inflammatory effects of enriched nutrition were not reflected in decreased microglia activity. Neither was an important role for the gut-brain axis observed. Since the relatively straight forward effects of enriched nutrition in young rats could not be shown in old rats, as indicated by a mixed beneficial/detrimental cognitive outcome in the latter, caution is advised by translating effects seen in younger patients to older ones.

RevDate: 2021-09-30

Agarwala S, Naik B, NB Ramachandra (2021)

Mucosa-associated specific bacterial species disrupt the intestinal epithelial barrier in the autism phenome.

Brain, behavior, & immunity - health, 15:100269 pii:S2666-3546(21)00072-7.

Gut-Brain Axis provides a bidirectional communicational route, an imbalance of which can have pathophysiological consequences. Differential gut microbiome studies have become a frontier in autism research, affecting 85% of autistic children. The present study aims to understand how gut microbiota of autism subjects differ from their neurotypical counterparts. This study would help to identify the abundance of bacterial signature species in autism and their associated metabolites. 16S rRNA metagenomic sequence datasets of 30 out of 206 autism subjects were selected from the American Gut Project Archive. First, the taxonomic assignment was inferred by similarity-based methods using the Quantitative Insights into Microbial Ecology (QIIME) toolkit. Next, species abundance was characterized, and a co-occurrence network was built to infer species interaction using measures of diversity. Thirdly, statistical parameters were incorporated to validate the findings. Finally, the identification of metabolites associated with these bacterial signature species connects with biological processes in the host through pathway analysis. Gut microbiome data revealed Akkermansia sp. and Faecalibacterium prausnitzii to be statistically lower in abundance in autistic children than their neurotypical peers with a five and two-fold decrease, respectively. While Prevotella sp. and Sutterella sp. showed a five and a two-fold increase in cases, respectively. The constructed pathway revealed succinate and butyrate as the significant metabolites for the bacterial signature species identified. The present study throws light on the role of mucosa-associated bacterial species: Veillonella sp., Prevotella sp., Akkermansia sp., Sutterella sp., Faecalibacterium prausnitzii, Lactobacillus sp., which can act as diagnostic criteria for detection of gut dysbiosis in autism.

RevDate: 2021-09-29

Martínez-López V, Ruiz C, Muñoz I, et al (2021)

Detection of Microsporidia in Pollinator Communities of a Mediterranean Biodiversity Hotspot for Wild Bees.

Microbial ecology [Epub ahead of print].

Insect pollination is crucial for the maintenance of natural and managed ecosystems but the functioning of this ecosystem service is threatened by a worldwide decline of pollinators. Key factors in this situation include the spread and interspecific transmission of pathogens worldwide through the movement of managed pollinators. Research on this field has been mainly conducted in some particular species, while studies assessing the interspecific transmission of pathogens at a community level are scarce. However, this information is pivotal to design strategies to protect pollinators. Herein, we analysed the prevalence of two common microsporidia pathogens of managed honey bees (Nosema ceranae and N. apis) in bee communities of semiarid Mediterranean areas from the Southeast of the Iberian Peninsula. Our results confirm the ability of N. ceranae to disperse across wild bee communities in semiarid Mediterranean ecosystems since it was detected in 36 Apoidea species (39% of the sampling; for the first time in nine genera). The prevalence of the pathogen did not show any phylogenetic signal which suggests a superfamily host range of the pathogen or that wild bees may be acting only as vectors of N. ceranae. In addition, N. apis was detected in an Eucera species, which is the second time it has been detected by molecular techniques in a host other than the honey bee. Our study represents the primary assessment of the prevalence of microsporidia at community level in Mediterranean areas and provides outstanding results on the ability of Nosema pathogens to spread across the landscape.

RevDate: 2021-09-29

Kaushal M, Kolombia Y, Alakonya AE, et al (2021)

Subterranean Microbiome Affiliations of Plantain (Musa spp.) Under Diverse Agroecologies of Western and Central Africa.

Microbial ecology [Epub ahead of print].

Plantain (Musa spp.) is a staple food crop and an important source of income for millions of smallholder farmers in sub-Saharan Africa (SSA). However, there is a paucity of knowledge on soil microbial diversity in agroecologies where plantains are grown. Microbial diversity that increases plant performance with multi-trophic interactions involving resiliency to environmental constraints is greatly needed. For this purpose, the bacterial and fungal communities of plantain fields in high rainfall forests (HR) and derived savannas (SV) were studied using Illumina MiSeq for 16S rDNA and ITS amplicon deep sequencing. Microbial richness (α- and β-diversity), operational taxonomic units, and Simpson and Shannon-Wiener indexes (observed species (Sobs), Chao, ACE; P < 0.05) suggested that there were significant differences between HR and SV agroecologies among the most abundant bacterial communities, and some specific dynamic response observed from fungal communities. Proteobacteria formed the predominant bacterial phylum (43.7%) succeeded by Firmicutes (24.7%), and Bacteroidetes (17.6%). Ascomycota, Basidiomycota, and Zygomycota were the three most dominant fungal phyla in both agroecologies. The results also revealed an immense array of beneficial microbes in the roots and rhizosphere of plantain, including Acinetobacter, Bacillus, and Pseudomonas spp. COG and KEGG Orthology database depicted significant variations in the functional attributes of microbes found in the rhizosphere to roots. This result indicates that the different agroecologies and host habitats differentially support the dynamic microbial profile and that helps in altering the structure in the rhizosphere zone for the sake of promoting synergistic host-microbe interactions particularly under resource-poor conditions of SSA.

RevDate: 2021-09-29

Cao X, Zhao D, Li C, et al (2021)

Regime transition Shapes the Composition, Assembly Processes, and Co-occurrence Pattern of Bacterioplankton Community in a Large Eutrophic Freshwater Lake.

Microbial ecology [Epub ahead of print].

At certain nutrient concentrations, shallow freshwater lakes are generally characterized by two contrasting ecological regimes with disparate patterns of biodiversity and biogeochemical cycles: a macrophyte-dominated regime (MDR) and a phytoplankton-dominated regime (PDR). To reveal ecological mechanisms that affect bacterioplankton along the regime shift, Illumina MiSeq sequencing of the 16S rRNA gene combined with a novel network clustering tool (Manta) were used to identify patterns of bacterioplankton community composition across the regime shift in Taihu Lake, China. Marked divergence in the composition and ecological assembly processes of bacterioplankton community was observed under the regime shift. The alpha diversity of the bacterioplankton community consistently and continuously decreased with the regime shift from MDR to PDR, while the beta diversity presents differently. Moreover, as the regime shifted from MDR to PDR, the contribution of deterministic processes (such as environmental selection) to the assembly of bacterioplankton community initially decreased and then increased again as regime shift from MDR to PDR, most likely as a consequence of differences in nutrient concentration. The topological properties, including modularity, transitivity and network diameter, of the bacterioplankton co-occurrence networks changed along the regime shift, and the co-occurrences among species changed in structure and were significantly shaped by the environmental variables along the regime transition from MDR to PDR. The divergent environmental state of the regimes with diverse nutritional status may be the most important factor that contributes to the dissimilarity of bacterioplankton community composition along the regime shift.

RevDate: 2021-09-28

Wu MR, Hou TT, Liu Y, et al (2021)

Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N2 with a previously unknown pathway.

Environmental microbiology [Epub ahead of print].

Heterotrophic nitrifiers are able to oxidize and remove ammonia from nitrogen-rich wastewaters but the genetic elements of heterotrophic ammonia oxidation are poorly understood. Here, we isolated and identified a novel heterotrophic nitrifier, Alcaligenes ammonioxydans sp. nov. strain HO-1, oxidizing ammonia to hydroxylamine and ending in the production of N2 gas. Genome analysis revealed that strain HO-1 encoded a complete denitrification pathway but lacks any genes coding for homologous to known ammonia monooxygenases or hydroxylamine oxidoreductases. Our results demonstrated strain HO-1 denitrified nitrite (not nitrate) to N2 and N2 O at anaerobic and aerobic conditions respectively. Further experiments demonstrated that inhibition of aerobic denitrification did not stop ammonia oxidation and N2 production. A gene cluster (dnfT1RT2ABCD) was cloned from strain HO-1 and enabled E. coli accumulated hydroxylamine. Sub-cloning showed that genetic cluster dnfAB or dnfABC already enabled E. coli cells to produce hydroxylamine and further to 15 N2 from (15 NH4)2 SO4 . Transcriptome analysis revealed these three genes dnfA, dnfB and dnfC were significantly upregulated in response to ammonia stimulation. Taken together, we concluded that strain HO-1 has a novel dnf genetic cluster for ammonia oxidation and this dnf genetic cluster encoded a previously unknown pathway of direct ammonia oxidation (Dirammox) to N2 .

RevDate: 2021-09-28

Zayed N, Boon N, Bernaerts K, et al (2021)

Differences in chlorhexidine mouthrinses formulations influence the quantitative and qualitative changes in in-vitro oral biofilms.

Journal of periodontal research [Epub ahead of print].

OBJECTIVE: Chlorhexidine mouthrinses are marketed in different formulations. This study aimed at investigating qualitative and quantitative changes in in-vitro multispecies oral biofilms, induced by different chlorhexidine-containing mouthrinses.

BACKGROUND DATA: Earlier studies comparing chlorhexidine mouthrinses are either clinical studies or in-vitro studies assessing the antimicrobial efficacy of the mouthrinses. However, no clear investigations are available regarding ecological impact of different chlorhexidine formulations on in-vitro multispecies oral biofilms after rinsing with different chlorhexidine formulations.

METHODS: Nine commercially available chlorhexidine mouthrinses were selected. Multispecies oral communities (14 species) were grown for 48 h in a Biostat-B Twin bioreactor. After that, they were used to develop biofilms on the surface of hydroxyapatite disks in 24-well pates for 48 h. Biofilms were then rinsed once or multiple times with the corresponding mouthrinse. Biofilms were collected before starting the rinsing experiment and every 24 h for 3 days and vitality quantitative PCR was performed. The experiment was repeated 3 independent times on 3 different days and the results were analyzed using a linear mixed model.

RESULTS: The mouthrinses provoked different effects in terms of change in total viable bacterial load (VBL), ecology, and community structure of the multispecies biofilms. There was no relation between chlorhexidine concentrations, presence, or absence of cetylpyridinium chloride and/or alcohol, and the observed effects. Some tested chlorhexidine mouthrinses (MC, HG, HH, and HI) strongly lowered the total VBL (≈1007 Geq/ml), but disrupted biofilm symbiosis (≥40% of the biofilms communities are pathobionts). On the other hand, other tested chlorhexidine mouthrinses (MD, ME, and HF) had limited impact on total VBL (≥1010 Geq/ml), but improved the biofilm ecology and community structure (≤10% of the biofilms communities are pathobionts).

CONCLUSION: Not all chlorhexidine mouthrinses have the same effect on oral biofilms. Their effect seems to be strongly product dependent and vary according to their compositions and formulations.

RevDate: 2021-09-28

Yang SH, Qin ZS, MC Liang (2021)

[Meta-analysis of Microbial Communities in the Activated Sludge of Wastewater Treatment Plants Under Different Climate Types].

Huan jing ke xue= Huanjing kexue, 42(10):4844-4852.

Microbial communities in wastewater treatment plants(WWTPs) are very important for water purification in the context of public drinking water safety and environmental health. Therefore, it is necessary to explore the trends in microbial community structure and diversity in sewage treatment plants and their main environmental impact factors under different climates in China. Based on high-throughput sequencing techniques, a meta-analysis was conducted to screen the 16S rRNA genes in an open database. We analyzed the trends in microbial community structure and diversity in WWTPs under three climate types(Dwa, Cfa, and Cwa) in China. We then constructed cohesion models to examine the core microbial taxa and their interactions within the communities. We also used a piecewise structural equation model(PSEM) to examine the effects of different climate types on microbial community structure. The three climate types significantly affected the structure and diversity of the microbial communities, with patterns correlated with influent pH, mixed liquid temperature, conductivity, and nitrogen concentrations(P<0.05). Based on the PSEM analysis, the β-diversity of the microbial communities was directly correlated with latitude, while α-diversity was indirectly correlated with latitude through conductivity and water temperature. Based on the cohesion modeling, microbial community stability was the highest under Dwa climate followed by the Cfa climate. This could be explained by a small subset of highly connected taxa capable of withstanding disturbance, indicating an important stability role. In contrast, the stability of the microbial communities under the Cwa climate was low, and no species with strong negative cohesion were observed. Overall, the structure, diversity, and stability of microbial community in WWTPs were found to be sensitive to climate, and the responsive mechanisms of α-diversity and β-diversity with respect to latitude were distinct.

RevDate: 2021-09-28

Garcia-Vozmediano A, Tomassone L, Fonville M, et al (2021)

The Genetic Diversity of Rickettsiella Symbionts in Ixodes ricinus Throughout Europe.

Microbial ecology [Epub ahead of print].

Rickettsiella species are bacterial symbionts that are present in a great variety of arthropod species, including ixodid ticks. However, little is known about their genetic diversity and distribution in Ixodes ricinus, as well as their relationship with other tick-associated bacteria. In this study, we investigated the occurrence and the genetic diversity of Rickettsiella spp. in I. ricinus throughout Europe and evaluated any preferential and antagonistic associations with Candidatus Midichloria mitochondrii and the pathogens Borrelia burgdorferi sensu lato and Borrelia miyamotoi. Rickettsiella spp. were detected in most I. ricinus populations investigated, encompassing a wide array of climate types and environments. The infection prevalence significantly differed between geographic locations and was significantly higher in adults than in immature life stages. Phylogenetic investigations and protein characterization disclosed four Rickettsiella clades (I-IV). Close phylogenetic relations were observed between Rickettsiella strains of I. ricinus and other arthropod species. Isolation patterns were detected for Clades II and IV, which were restricted to specific geographic areas. Lastly, although coinfections occurred, we did not detect significant associations between Rickettsiella spp. and the other tick-associated bacteria investigated. Our results suggest that Rickettsiella spp. are a genetically and biologically diverse facultative symbiont of I. ricinus and that their distribution among tick populations could be influenced by environmental components.

RevDate: 2021-09-28

Frederickson ME, AT Reese (2021)

Microbial Ecology and Evolution Are Essential for Understanding Pandemics.

mBio [Epub ahead of print].

Ecology and evolution, especially of microbes, have never been more relevant than in our global fight against SARS-CoV-2, the virus that causes COVID-19. Understanding how populations of SARS-CoV-2 grow, disperse, and evolve is of critical importance to managing the COVID-19 pandemic, and these questions are fundamentally ecological and evolutionary in nature. We compiled data from bioRxiv and medRxiv preprint abstracts and US National Institutes of Health Research Project grant abstracts to visualize the impact that the pivot to COVID-19 research has had on the study of microbes across biological disciplines. Finding that the pivot appears weaker in ecology and evolutionary biology than in other areas of biology, we discuss why the ecology and evolution of microbes, both pathogenic and otherwise, need renewed attention and investment going forward.

RevDate: 2021-09-28

Bosch TCG, M Zasloff (2021)

Antimicrobial Peptides-or How Our Ancestors Learned to Control the Microbiome.

mBio [Epub ahead of print].

Antimicrobial peptides (AMPs) are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Their wide range of activity against pathogens, including Gram-positive and -negative bacteria, yeasts, fungi, and enveloped viruses makes them a fundamental component of innate immunity. Marra et al. (A. Marra, M. A. Hanson, S. Kondo, B. Erkosar, B. Lemaitre, mBio 12:e0082421, 2021, https://doi.org/10.1128/mBio.00824-21) use the analytical potential of Drosophila to show that AMPs and lysozymes play a direct role in controlling the composition and abundance of the beneficial gut microbiome. By comparing mutant and wild-type flies, they demonstrated that the specific loss of AMPs and lysozyme production results in changes in microbiome abundance and composition. Furthermore, they established that AMPs and lysozyme are particularly essential in aging flies. Studies of early emerging metazoans, other invertebrates, and humans support the view of an ancestral function of AMPs in controlling microbial colonization.

RevDate: 2021-09-28

Smulders L, Benítez E, Moreno B, et al (2021)

Tomato Domestication Affects Potential Functional Molecular Pathways of Root-Associated Soil Bacteria.

Plants (Basel, Switzerland), 10(9): pii:plants10091942.

While it has been well evidenced that plant domestication affects the structure of the root-associated microbiome, there is a poor understanding of how domestication-mediated differences between rhizosphere microorganisms functionally affect microbial ecosystem services. In this study, we explore how domestication influenced functional assembly patterns of bacterial communities in the root-associated soil of 27 tomato accessions through a transect of evolution, from plant ancestors to landraces to modern cultivars. Based on molecular analysis, functional profiles were predicted and co-occurrence networks were constructed based on the identification of co-presences of functional units in the tomato root-associated microbiome. The results revealed differences in eight metabolic pathway categories and highlighted the influence of the host genotype on the potential functions of soil bacterial communities. In general, wild tomatoes differed from modern cultivars and tomato landraces which showed similar values, although all ancestral functional characteristics have been conserved across time. We also found that certain functional groups tended to be more evolutionarily conserved in bacterial communities associated with tomato landraces than those of modern varieties. We hypothesize that the capacity of soil bacteria to provide ecosystem services is affected by agronomic practices linked to the domestication process, particularly those related to the preservation of soil organic matter.

RevDate: 2021-09-28

Ruebel ML, Gilley SP, Sims CR, et al (2021)

Associations between Maternal Diet, Body Composition and Gut Microbial Ecology in Pregnancy.

Nutrients, 13(9): pii:nu13093295.

Maternal body composition, gestational weight gain (GWG) and diet quality influence offspring obesity risk. While the gut microbiome is thought to play a crucial role, it is understudied in pregnancy. Using a longitudinal pregnancy cohort, maternal anthropometrics, body composition, fecal microbiome and dietary intake were assessed at 12, 24 and 36 weeks of gestation. Fecal samples (n = 101, 98 and 107, at each trimester, respectively) were utilized for microbiome analysis via 16S rRNA amplicon sequencing. Data analysis included alpha- and beta-diversity measures and assessment of compositional changes using MaAsLin2. Correlation analyses of serum metabolic and anthropometric markers were performed against bacterial abundance and predicted functional pathways. α-diversity was unaltered by pregnancy stage or maternal obesity status. Actinobacteria, Lachnospiraceae, Akkermansia, Bifidobacterium, Streptococcus and Anaerotuncus abundances were associated with gestation stage. Maternal obesity status was associated with increased abundance of Lachnospiraceae, Bilophila, Dialister and Roseburia. Maternal BMI, fat mass, triglyceride and insulin levels were positively associated with Bilophila. Correlations of bacterial abundance with diet intake showed that Ruminococcus and Paraprevotella were associated with total fat and unsaturated fatty acid intake, while Collinsella and Anaerostipes were associated with protein intake. While causal relationships remain unclear, collectively, these findings indicate pregnancy- and maternal obesity-dependent interactions between dietary factors and the maternal gut microbiome.

RevDate: 2021-09-28

Calatayud M, Verstrepen L, Ghyselinck J, et al (2021)

Chitin Glucan Shifts Luminal and Mucosal Microbial Communities, Improve Epithelial Barrier and Modulates Cytokine Production In Vitro.

Nutrients, 13(9): pii:nu13093249.

The human gut microbiota has been linked to the health status of the host. Modulation of human gut microbiota through pro- and prebiotic interventions has yielded promising results; however, the effect of novel prebiotics, such as chitin-glucan, on gut microbiota-host interplay is still not fully characterized. We assessed the effect of chitin-glucan (CG) and chitin-glucan plus Bifidobacterium breve (CGB) on human gut microbiota from the luminal and mucosal environments in vitro. Further, we tested the effect of filter-sterilized fecal supernatants from CG and CGB fermentation for protective effects on inflammation-induced barrier disruption and cytokine production using a co-culture of enterocytes and macrophage-like cells. Overall, CG and CGB promote health-beneficial short-chain fatty acid production and shift human gut microbiota composition, with a consistent effect increasing Roseburia spp. and butyrate producing-bacteria. In two of three donors, CG and CGB also stimulated Faecalibacterium prausniitzi. Specific colonization of B. breve was observed in the lumen and mucosal compartment; however, no synergy was detected for different endpoints when comparing CGB and CG. Both treatments included a significant improvement of inflammation-disrupted epithelial barrier and shifts on cytokine production, especially by consistent increase in the immunomodulatory cytokines IL10 and IL6.

RevDate: 2021-09-28

Sauvaitre T, Durif C, Sivignon A, et al (2021)

In Vitro Evaluation of Dietary Fiber Anti-Infectious Properties against Food-Borne Enterotoxigenic Escherichia coli.

Nutrients, 13(9): pii:nu13093188.

Dietary fibers have well-known beneficial effects on human health, but their anti-infectious properties against human enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is the main agent of travelers' diarrhea, against which targeted preventive strategies are currently lacking. ETEC pathogenesis relies on multiple virulence factors allowing interactions with the intestinal mucosal layer and toxins triggering the onset of diarrheal symptoms. Here, we used complementary in vitro assays to study the antagonistic properties of eight fiber-containing products from cereals, legumes or microbes against the prototypical human ETEC strain H10407. Inhibitory effects of these products on the pathogen were tested through growth, toxin production and mucus/cell adhesion inhibition assays. None of the tested compounds inhibited ETEC strain H10407 growth, while lentil extract was able to decrease heat labile toxin (LT) concentration in culture media. Lentil extract and specific yeast cell walls also interfered with ETEC strain H10407 adhesion to mucin beads and human intestinal cells. These results constitute a first step in the use of dietary fibers as a nutritional strategy to prevent ETEC infection. Further work will be dedicated to the study of fiber/ETEC interactions within a complex gut microbial background.

RevDate: 2021-09-28

Zhang D, Verstrepen L, De Medts J, et al (2021)

A Cranberry Concentrate Decreases Adhesion and Invasion of Escherichia coli (AIEC) LF82 In Vitro.

Pathogens (Basel, Switzerland), 10(9): pii:pathogens10091217.

While many beneficial host-microbiota interactions have been described, imbalanced microbiota in the gut is speculated to contribute to the progression and recurrence of chronic inflammatory diseases such as Crohn's disease (CD). This in vitro study evaluated the impact of a cranberry concentrate Type M (CTM) on adherent-invasive Escherichia coli (AIEC) LF82, a pathobiont associated with CD. Different stages of pathogenic infection were investigated: (i) colonization of the mucus layer, and (ii) adhesion to and (iii) invasion of the epithelial cells. Following 48 h of fecal batch incubation, 0.5 and 1 mM of CTM significantly altered AIEC LF82 levels in a simulated mucus layer, resulting in a decrease of 50.5% in the untreated blank, down to 43.0% and 11.4%, respectively. At 1 mM of CTM, the significant decrease in the levels of AIEC LF82 coincided with a stimulation of the metabolic activity of the background microbiota. The increased levels of health-associated acetate (+7.9 mM) and propionate levels (+3.5 mM) suggested selective utilization of CTM by host microorganisms. Furthermore, 1 mM of both fermented and unfermented CTM decreased the adhesion and invasion of human-derived epithelial Caco-2 cells by AIEC LF82. Altogether, this exploratory in vitro study demonstrates the prebiotic potential of CTM and supports its antipathogenic effects through direct and/or indirect modulation of the gut microbiome.

RevDate: 2021-09-28

Foltz M, Zahradnik AC, Van den Abbeele P, et al (2021)

A Pectin-Rich, Baobab Fruit Pulp Powder Exerts Prebiotic Potential on the Human Gut Microbiome In Vitro.

Microorganisms, 9(9): pii:microorganisms9091981.

Increasing insight into the impact of the gut microbiota on human health has sustained the development of novel prebiotic ingredients. This exploratory study evaluated the prebiotic potential of baobab fruit pulp powder, which consists of pectic polysaccharides with unique composition as compared to other dietary sources, given that it is rich in low methoxylated homogalacturonan (HG). After applying dialysis procedures to remove simple sugars from the product (simulating their absorption along the upper gastrointestinal tract), 48 h fecal batch incubations were performed. Baobab fruit pulp powder boosted colonic acidification across three simulated human adult donors due to the significant stimulation of health-related metabolites acetate (+18.4 mM at 48 h), propionate (+5.5 mM at 48 h), and to a lesser extent butyrate (0.9 mM at 48 h). Further, there was a trend of increased lactate levels (+2.7 mM at 6h) and reduced branched chain fatty acid (bCFA) levels (-0.4 mM at 48 h). While Bacteroidetes levels increased for all donors, donor-dependent increases in Bifidobacteria, Lactobacilli, and Firmicutes were observed, stressing the potential interindividual differences in microbial composition modulation upon Baobab fruit pulp powder treatment. Overall, Baobab fruit pulp powder fermentation displayed features of selective utilization by host microorganisms and, thus, has promising prebiotic potential (also in comparison with the 'gold standard' prebiotic inulin). Further research will be required to better characterize this prebiotic potential, accounting for the interindividual differences, while aiming to unravel the potential resulting health benefits.

RevDate: 2021-09-28

Lavoie C, Wellband K, Perreault A, et al (2021)

Artificial Rearing of Atlantic Salmon Juveniles for Supportive Breeding Programs Induces Long-Term Effects on Gut Microbiota after Stocking.

Microorganisms, 9(9): pii:microorganisms9091932.

In supportive breeding programs for wild salmon populations, stocked parr experience higher mortality rates than wild ones. Among other aspects of phenotype, the gut microbiota of artificially raised parr differs from that of wild parr before stocking. Early steps of microbiota ontogeny are tightly dependent upon environmental conditions, both of which exert long-term effects on host physiology. Therefore, our objective was to assess to what extent the resilience capacity of the microbiota of stocked salmon may prevent taxonomic convergence with that of their wild congeners after two months in the same natural environment. Using the 16S SSU rRNA marker gene, we tested the general hypothesis that environmental conditions during the very first steps of microbiota ontogeny imprint a permanent effect on later stages of microbiota recruitment. Our results first showed that gut microbiota composition of stocked and wild parr from the same genetic population, and sharing the same environment, was dependent on the early rearing environment. In contrast, skin microbiota in stocked individuals converged to that of wild individuals. Taxonomic composition and co-occurrence network analyses suggest an impairment of wild bacteria recruitment and a higher instability for the gut microbiota of stocked parr. This study is the first to demonstrate the long-term effect of early microbiota ontogeny in artificial rearing for natural population conservation programs, raising the need to implement microbial ecology.

RevDate: 2021-09-28

Gnangui SLE, Fossou RK, Ebou A, et al (2021)

The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d'Ivoire.

Microorganisms, 9(9): pii:microorganisms9091842.

Over the past decade, many projects have been initiated worldwide to decipher the composition and function of the soil microbiome, including the African Soil Microbiome (AfSM) project that aims at providing new insights into the presence and distribution of key groups of soil bacteria from across the African continent. In this national study, carried out under the auspices of the AfSM project, we assessed the taxonomy, diversity and distribution of rhizobial genera in soils from the tropical savannah zones in Northern Côte d'Ivoire. Genomic DNA extracted from seven sampled soils was analyzed by sequencing the V4-V5 variable region of the 16S rDNA using Illumina's MiSeq platform. Subsequent bioinformatic and phylogenetic analyses showed that these soils harbored 12 out of 18 genera of Proteobacteria harboring rhizobia species validly published to date and revealed for the first time that the Bradyrhizobium genus dominates in tropical savannah soils, together with Microvirga and Paraburkholderia. In silico comparisons of different 16S rRNA gene variable regions suggested that the V5-V7 region could be suitable for differentiating rhizobia at the genus level, possibly replacing the use of the V4-V5 region. These data could serve as indicators for future rhizobial microbiome explorations and for land-use decision-making.

RevDate: 2021-09-28

Gresse R, Garrido JJ, Jiménez-Marín A, et al (2021)

Saccharomyces Cerevisiae Var Boulardii CNCM I-1079 Reduces Expression of Genes Involved in Inflammatory Response in Porcine Cells Challenged by Enterotoxigenic E. Coli and Influences Bacterial Communities in an In Vitro Model of the Weaning Piglet Colon.

Antibiotics (Basel, Switzerland), 10(9): pii:antibiotics10091101.

Enterotoxigenic Escherichia coli (ETEC) is the main infectious agent responsible for piglet post-weaning diarrhea with high mortality rates. Antimicrobials represent the current principal strategy for treating ETEC infections in pig farms, but the occurrence of multi-resistant bacterial strains has considerably increased in the last decades. Thus, finding non-antibiotic alternatives becomes a real emergency. In this context, we investigated the effect of a live yeast strain, Saccharomyces cerevisiae var boulardii CNCM I-1079 (SB) in an in vitro model of the weaning piglet colon implemented with a mucus phase (MPigut-IVM) inoculated with ETEC and coupled with an intestinal porcine cell line IPI-2I. We showed that SB was able to modulate the in vitro microbiota through an increase in Bacteroidiaceae and a decrease in Prevotellaceae families. Effluents collected from the SB treated bioreactors were able to mitigate the expression level of genes encoding non-gel forming mucins, tight junction proteins, innate immune pathway, and pro-inflammatory response in IPI-2I cells. Furthermore, SB exerted a significant protective effect against ETEC adhesion on porcine IPEC-J2 intestinal cells in a dose-dependent manner and showed a positive effect on ETEC-challenged IPEC-J2 by lowering expression of genes involved in pro-inflammatory immune responses. Our results showed that the strain SB CNCM I-1079 could prevent microbiota dysbiosis associated with weaning and protect porcine enterocytes from ETEC infections by reducing bacterial adhesion and modulating the inflammatory response.

RevDate: 2021-09-27

Pérez J, Ferreira V, Graça MAS, et al (2021)

Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study.

Microbial ecology [Epub ahead of print].

Litter decomposition is an ecological process of key importance for forest headwater stream functioning, with repercussions for the global carbon cycle. The process is directly and indirectly mediated by microbial decomposers, mostly aquatic hyphomycetes, and influenced by environmental and biological factors such as water temperature and litter quality. These two factors are forecasted to change globally within the next few decades, in ways that may have contrasting effects on microbial-induced litter decomposition: while warming is expected to enhance microbial performance, the reduction in litter quality due to increased atmospheric carbon dioxide and community composition alteration may have the opposite outcome. We explored this issue through a microcosm experiment focused on early microbial-mediated litter decomposition under stream oligotrophic conditions, by simultaneously manipulating water temperature (10 °C and 15 °C) and litter quality (12 broadleaf plant species classified into 4 categories based on initial concentrations of nitrogen and tannins). We assessed potential changes in microbial-mediated litter decomposition and the performance of fungal decomposers (i.e., microbial respiration, biomass accrual, and sporulation rate) and species richness. We found stronger effects of litter quality, which enhanced the performance of microbial decomposers and decomposition rates, than temperature, which barely influenced any of the studied variables. Our results suggest that poorer litter quality associated with global change will have a major repercussion on stream ecosystem functioning.

RevDate: 2021-09-27

Hale I, Ma X, Melo ATO, et al (2021)

Genomic Resources to Guide Improvement of the Shea Tree.

Frontiers in plant science, 12:720670.

A defining component of agroforestry parklands across Sahelo-Sudanian Africa (SSA), the shea tree (Vitellaria paradoxa) is central to sustaining local livelihoods and the farming environments of rural communities. Despite its economic and cultural value, however, not to mention the ecological roles it plays as a dominant parkland species, shea remains semi-domesticated with virtually no history of systematic genetic improvement. In truth, shea's extended juvenile period makes traditional breeding approaches untenable; but the opportunity for genome-assisted breeding is immense, provided the foundational resources are available. Here we report the development and public release of such resources. Using the FALCON-Phase workflow, 162.6 Gb of long-read PacBio sequence data were assembled into a 658.7 Mbp, chromosome-scale reference genome annotated with 38,505 coding genes. Whole genome duplication (WGD) analysis based on this gene space revealed clear signatures of two ancient WGD events in shea's evolutionary past, one prior to the Astrid-Rosid divergence (116-126 Mya) and the other at the root of the order Ericales (65-90 Mya). In a first genome-wide look at the suite of fatty acid (FA) biosynthesis genes that likely govern stearin content, the primary determinant of shea butter quality, relatively high copy numbers of six key enzymes were found (KASI, KASIII, FATB, FAD2, FAD3, and FAX2), some likely originating in shea's more recent WGD event. To help translate these findings into practical tools for characterization, selection, and genome-wide association studies (GWAS), resequencing data from a shea diversity panel was used to develop a database of more than 3.5 million functionally annotated, physically anchored SNPs. Two smaller, more curated sets of suggested SNPs, one for GWAS (104,211 SNPs) and the other targeting FA biosynthesis genes (90 SNPs), are also presented. With these resources, the hope is to support national programs across the shea belt in the strategic, genome-enabled conservation and long-term improvement of the shea tree for SSA.

RevDate: 2021-09-26

Fournier C, Riehle E, Dietrich DR, et al (2021)

Is Toxin-Producing Planktothrix sp. an Emerging Species in Lake Constance?.

Toxins, 13(9): pii:toxins13090666.

Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC-MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake.

RevDate: 2021-09-26

Shalev O, C Ratzke (2021)

A holistic view of host-associated microbial evolution.

Trends in microbiology pii:S0966-842X(21)00214-6 [Epub ahead of print].

Microbes often live associated with other organisms. Whereas the impact of microbes on their hosts is well studied, what such a lifestyle means for the microbes is poorly understood. To address this gap, Bansept et al. explore how microbes could evolve to cope with altering between host-associated and host-free lifestyles.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )