Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Microbial Ecology

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 16 Jun 2024 at 01:50 Created: 

Microbial Ecology

Wikipedia: Microbial Ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life — Eukaryota, Archaea, and Bacteria — as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine. As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe) microbes, by virtue of their biomass alone, constitute a significant carbon sink. Aside from carbon fixation, microorganisms' key collective metabolic processes (including nitrogen fixation, methane metabolism, and sulfur metabolism) control global biogeochemical cycling. The immensity of microorganisms' production is such that, even in the total absence of eukaryotic life, these processes would likely continue unchanged.

Created with PubMed® Query: ( "microbial ecology" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-06-13

Dyczko D, Krysmann A, Kolanek A, et al (2024)

Bacterial pathogens in Ixodes ricinus collected from lizards Lacerta agilis and Zootoca vivipara in urban areas of Wrocław, SW Poland- preliminary study.

Experimental & applied acarology [Epub ahead of print].

The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wrocław (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.

RevDate: 2024-06-14

Riello GBC, da Silva PM, da Silva Oliveira FA, et al (2024)

Gut Microbiota Composition Correlates with Disease Severity in Myelodysplastic Syndrome.

International journal of hematology-oncology and stem cell research, 18(2):192-201.

The myelodysplastic syndrome (MDS) is a heterogeneous group of clonal disorders of hematopoietic progenitor cells related to ineffective hematopoiesis and an increased risk of transformation to acute myelogenous leukemia. MDS is divided into categories, namely lineage dysplasia (MDS-SLD), MDS with ring sideroblasts (MDS-RS), MDS with multilineage dysplasia (MDS-MLD), MDS with excess blasts (MDS-EB). The International Prognostic Classification System (IPSS) ranks the patients as very low, low, intermediate, high, and very high based on disease evolution and survival rates. Evidence points to toll-like receptor (TLR) abnormal signaling as an underlying mechanism of this disease, providing a link between MDS and immune dysfunction. Microbial signals, such as lipopolysaccharides from gram-negative bacteria, can activate or suppress TLRs. Therefore, we hypothesized that MDS patients present gut microbiota alterations associated with disease subtypes and prognosis. To test this hypothesis, we sequenced the 16S rRNA gene from fecal samples of 30 MDS patients and 16 healthy elderly controls. We observed a negative correlation between Prevotella spp. and Akkermansia spp. in MDS patients compared with the control group. High-risk patients presented a significant increase in the genus Prevotella spp. compared to the other risk categories. There was a significant reduction in the abundance of the genus Akkermansia spp. in high-risk patients compared with low- and intermediate-risk. There was a significant decrease in the genus Ruminococcus spp. in MDS-EB patients compared with controls. Our findings show a new association between gut dysbiosis and higher-risk MDS, with a predominance of gram-negative bacteria.

RevDate: 2024-06-14

Li M, Hu J, Wei Z, et al (2024)

Synthetic microbial communities: Sandbox and blueprint for soil health enhancement.

iMeta, 3(1):e172.

We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.

RevDate: 2024-06-14

Fu S, Wang R, Xu Z, et al (2023)

Metagenomic sequencing combined with flow cytometry facilitated a novel microbial risk assessment framework for bacterial pathogens in municipal wastewater without cultivation.

iMeta, 2(1):e77.

A workflow that combined metagenomic sequencing with flow cytometry was developed. The absolute abundance of pathogens was accurately estimated in mock communities and real samples. Metagenome-assembled genomes binned from metagenomic data set is robust in phylogenetic analysis and virulence profiling.

RevDate: 2024-06-14

Xi J, Lei B, Liu YX, et al (2022)

Microbial community roles and chemical mechanisms in the parasitic development of Orobanche cumana.

iMeta, 1(3):e31.

Orobanche cumana Wallr. is a holoparasite weed that extracts water and nutrients from its host the sunflower, thereby causing yield reductions and quality losses. However, the number of O. cumana parasites in the same farmland is distinctly different. The roots of some hosts have been heavily parasitized, while others have not been parasitized. What are the factors contributing to this phenomenon? Is it possible that sunflower interroot microorganisms are playing a regulatory role in this phenomenon? The role of the microbial community in this remains unclear. In this study, we investigated the rhizosphere soil microbiome for sunflowers with different degrees of O. cumana parasitism, that is, healthy, light infection, moderate infection, and severe infection on the sunflower roots. The microbial structures differed significantly according to the degree of parasitism, where Xanthomonadaceae was enriched in severe infections. Metagenomic analyses revealed that amino acid, carbohydrate, energy, and lipid metabolism were increased in the rhizosphere soils of severely infected sunflowers, which were attributed to the proliferation of Lysobacter. Lysobacter antibioticus (HX79) was isolated and its capacity to promote O. cumana seed germination and increase the germ tube length was confirmed by germination and pot experiments. Cyclo(Pro-Val), an active metabolite of strain HX79, was identified and metabolomic and molecular docking approaches confirmed it was responsible for promoting O. cumana seed germination and growth. And we found that Pseudomonas mandelii HX1 inhibited the growth of O. cumana in the host rhizosphere soil. Our findings clarify the role of rhizosphere microbiota in regulating the parasite O. cumana to possibly facilitate the development of a new weed suppression strategy.

RevDate: 2024-06-12

Mahjoubi M, Cherif H, Aliyu H, et al (2024)

Brucella pituitosa strain BU72, a new hydrocarbonoclastic bacterium through exopolysaccharide-based surfactant production.

International microbiology : the official journal of the Spanish Society for Microbiology [Epub ahead of print].

Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm[-1] generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.

RevDate: 2024-06-12

Wang L, Lee E, Barlaz MA, et al (2024)

Linking microbial population dynamics in anaerobic bioreactors to food waste type and decomposition stage.

Waste management (New York, N.Y.), 186:77-85 pii:S0956-053X(24)00359-3 [Epub ahead of print].

A key question in anaerobic microbial ecology is how microbial communities develop over different stages of waste decomposition and whether these changes are specific to waste types. We destructively sampled over time 26 replicate bioreactors cultivated on fruit/vegetable waste (FVW) and meat waste (MW) based on pre-defined waste components and composition. To characterize community shifts, we examined 16S rRNA genes from both the leachate and solid fractions of the waste. Waste decomposition occurred faster in FVW than MW, as accumulation of ammonia in MW reactors led to inhibition of methanogenesis. We identified population succession during different stages of waste decomposition and linked specific populations to different waste types. Community analyses revealed underrepresentation of methanogens in the leachate fractions, emphasizing the importance of consistent and representative sampling when characterizing microbial communities in solid waste.

RevDate: 2024-06-11

Wutkowska M, Tláskal V, Bordel S, et al (2024)

Leveraging genome-scale metabolic models to understand aerobic methanotrophs.

The ISME journal pii:7691183 [Epub ahead of print].

Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidisers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarising recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidisers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidising bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidisers as model organisms and to provide an outlook for future studies.

RevDate: 2024-06-11
CmpDate: 2024-06-11

Deehan EC, Zhang Z, Nguyen NK, et al (2024)

Adaptation to tolerate high doses of arabinoxylan is associated with fecal levels of Bifidobacterium longum.

Gut microbes, 16(1):2363021.

Dietary fiber supplements are a strategy to close the 'fiber gap' and induce targeted modulations of the gut microbiota. However, higher doses of fiber supplements cause gastrointestinal (GI) symptoms that differ among individuals. What determines these inter-individual differences is insufficiently understood. Here we analyzed findings from a six-week randomized controlled trial that evaluated GI symptoms to corn bran arabinoxylan (AX; n = 15) relative to non-fermentable microcrystalline cellulose (MCC; n = 16) at efficacious supplement doses of 25 g/day (females) or 35 g/day (males) in adults with excess weight. Self-reported flatulence, bloating, and stomach aches were evaluated weekly. Bacterial taxa involved in AX fermentation were identified by bioorthogonal non-canonical amino acid tagging. Associations between GI symptoms, fecal microbiota features, and diet history were systematically investigated. AX supplementation increased symptoms during the first three weeks relative to MCC (p < 0.05, Mann-Whitney tests), but subjects 'adapted' with symptoms reverting to baseline levels toward the end of treatment. Symptom adaptations were individualized and correlated with the relative abundance of Bifidobacterium longum at baseline (rs = 0.74, p = 0.002), within the bacterial community that utilized AX (rs = 0.69, p = 0.006), and AX-induced shifts in acetate (rs = 0.54, p = 0.039). Lower baseline consumption of animal-based foods and higher whole grains associated with less severity and better adaptation. These findings suggest that humans do 'adapt' to tolerate efficacious fiber doses, and this process is linked to their microbiome and dietary factors known to interact with gut microbes, providing a basis for the development of strategies for improved tolerance of dietary fibers.

RevDate: 2024-06-11

Paillet T, Lamy-Besnier Q, Figueroa C, et al (2024)

Dynamics of the viral community on the surface of a French smear-ripened cheese during maturation and persistence across production years.

mSystems [Epub ahead of print].

The surface of smear-ripened cheeses constitutes a dynamic microbial ecosystem resulting from the successive development of different microbial groups such as lactic acid bacteria, fungi, and ripening bacteria. Recent studies indicate that a viral community, mainly composed of bacteriophages, also represents a common and substantial part of the cheese microbiome. However, the composition of this community, its temporal variations, and associations between bacteriophages and their hosts remain poorly characterized. Here, we studied a French smear-ripened cheese by both viral metagenomics and 16S metabarcoding approaches to assess both the succession of phages and bacterial communities on the cheese surface during cheese ripening and their temporal variations in ready-to-eat cheeses over the years of production. We observed a clear transition of the phage community structure during ripening with a decreased relative abundance of viral species (vOTUs) associated with Lactococcus phages, which were replaced by vOTUs associated with phages infecting ripening bacteria such as Brevibacterium, Glutamicibacter, Pseudoalteromonas, and Vibrio. The dynamics of the phage community was strongly associated with bacterial successions observed on the cheese surface. Finally, while some variations in the distribution of phages were observed in ready-to-eat cheeses produced at different dates spanning more than 4 years of production, the most abundant phages were detected throughout. This result revealed the long-term persistence of the dominant phages in the cheese production environment. Together, these findings offer novel perspectives on the ecology of bacteriophages in smear-ripened cheese and emphasize the significance of incorporating bacteriophages in the microbial ecology studies of fermented foods.IMPORTANCEThe succession of diverse microbial populations is critical for ensuring the production of high-quality cheese. We observed a temporal succession of phages on the surface of a smear-ripened cheese, with new phage communities showing up when ripening bacteria start covering this surface. Interestingly, the final phage community of this cheese is also consistent over large periods of time, as the same bacteriophages were found in cheese products from the same manufacturer made over 4 years. This research highlights the importance of considering these bacteriophages when studying the microbial life of fermented foods like cheese.

RevDate: 2024-06-13

Wan W, Grossart HP, He D, et al (2023)

Differentiation strategies for planktonic bacteria and eukaryotes in response to aggravated algal blooms in urban lakes.

iMeta, 2(1):e84 pii:IMT284.

Aggravated algal blooms potentially decreased environmental heterogeneity. Different strategies of planktonic bacteria and eukaryotes in response to aggravated algal blooms. Environmental constraints of plankton showed different patterns over time.

RevDate: 2024-06-13

Li C, Jin L, Zhang C, et al (2023)

Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress.

iMeta, 2(1):e79 pii:IMT279.

Global changes such as seawater intrusion and freshwater resource salinization increase environmental stress imposed on the aquatic microbiome. A strong predictive understanding of the responses of the aquatic microbiome to environmental stress will help in coping with the "gray rhino" events in the environment, thereby contributing to an ecologically sustainable future. Considering that microbial ecological networks are tied to the stability of ecosystem functioning and that abundant and rare biospheres with different biogeographic patterns are important drivers of ecosystem functioning, the roles of abundant and rare biospheres in maintaining ecological networks need to be clarified. Here we showed that, with the increasing salinity stress induced by the freshwater-to-seawater transition, the microbial diversity reduced significantly and the taxonomic structure experienced a strong succession. The complexity and stability of microbial ecological networks were diminished by the increasing stress. The composition of the microorganisms supporting the networks underwent sharp turnovers during the freshwater-to-seawater transition, with the abundant biosphere behaving more robustly than the rare biosphere. Notably, the abundant biosphere played a much more important role than the rare biosphere in stabilizing ecological networks under low-stress environments, but the difference between their relative importance narrowed significantly with the increasing stress, suggesting that the environmental stress weakened the "Matthew effect" in the microbial world. With in-depth insights into the aquatic microbial ecology under stress, our findings highlight the importance of adjusting conservation strategies for the abundant and rare biospheres to maintain ecosystem functions and services in response to rising environmental stress.

RevDate: 2024-06-13

Zhu YX, Yang R, Wang XY, et al (2022)

Gut microbiota composition in the sympatric and diet-sharing Drosophila simulans and Dicranocephalus wallichii bowringi shaped largely by community assembly processes rather than regional species pool.

iMeta, 1(4):e57 pii:IMT257.

Clarifying the mechanisms underlying microbial community assembly from regional microbial pools is a central issue of microbial ecology, but remains largely unexplored. Here, we investigated the gut bacterial and fungal microbiome assembly processes and potential sources in Drosophila simulans and Dicranocephalus wallichii bowringi, two wild, sympatric insect species that share a common diet of waxberry. While some convergence was observed, the diversity, composition, and network structure of the gut microbiota significantly differed between these two host species. Null model analyses revealed that stochastic processes (e.g., drift, dispersal limitation) play a principal role in determining gut microbiota from both hosts. However, the strength of each ecological process varied with the host species. Furthermore, the source-tracking analysis showed that only a minority of gut microbiota within D. simulans and D. wallichii bowringi are drawn from a regional microbial pool from waxberries, leaves, or soil. Results from function prediction implied that host species-specific gut microbiota might arise partly through host functional requirement and specific selection across host-microbiota coevolution. In conclusion, our findings uncover the importance of community assembly processes over regional microbial pools in shaping sympatric insect gut microbiome structure and function.

RevDate: 2024-06-13

Jiao S, Chu H, Zhang B, et al (2022)

Linking soil fungi to bacterial community assembly in arid ecosystems.

iMeta, 1(1):e2 pii:IMT22.

Revealing the roles of biotic factors in driving community assembly, which is crucial for the understanding of biodiversity and ecosystem functions, is a fundamental but infrequently investigated subject in microbial ecology. Here, combining a cross-biome observational study with an experimental microcosm study, we provided evidence to reveal the major roles of biotic factors (i.e., soil fungi and cross-kingdom species associations) in determining soil bacterial biogeography and community assembly in complex terrestrial ecosystems of the arid regions of northwest China. The results showed that the soil fungal richness mediates the balance of assembly processes of bacterial communities, and stochastic assembly processes decreased with increasing fungal richness. Our results further suggest that the predicted increase in aridity conditions due to climate change will reduce bacterial α-diversity, particularly in desert soils and subsurface layer, and induce more negative species associations. Together, our study represents a significant advance in linking soil fungi to the mechanisms underlying bacterial biogeographic patterns and community assembly in arid ecosystems under climate aridity and land-use change scenarios.

RevDate: 2024-06-12

Silva DP, Villela HDM, Santos HF, et al (2024)

Correction: Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites.

Microbiome, 12(1):105.

RevDate: 2024-06-12
CmpDate: 2024-06-10

Martinez-Villegas L, Lado P, Klompen H, et al (2024)

The microbiota of Amblyomma americanum reflects known westward expansion.

PloS one, 19(6):e0304959.

Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.

RevDate: 2024-06-11

Tong L, Jun L, He J, et al (2024)

Differences in environmental microbial community responses under rice-crab co-culture and crab monoculture models under cyanobacterial bloom.

Frontiers in microbiology, 15:1327520.

Cyanobacterial blooms (CBs) present significant challenges to Chinese mitten crab (CMC) culture, posing hazards to the aquatic microbial ecology. However, the current focus on the microbial ecological changes within the CMC culture system under the influence of CBs is somewhat insufficient. There's an urgent need to analyze the microbial ecosystem of the CMC culture system under CBs. This study employed 16S rRNA gene amplicon sequencing to investigate the dynamics of the environmental microbial community in both the rice-crab co-culture (RC) and crab monoculture (CM) models. The results revealed that cyanobacteria reached high levels in the CM water in July, while they began to increase in the RC water in August. Notably, OTU147 (uncultured bacterium g_Planktothrix NIVA-CYA 15), identified as the dominant taxon associated with CBs, showed a significant linear relationship with TP, NO2 [-]-N, and the N:P ratio. TP, TN, NO2 [-]-N, and CODMn had a more pronounced impact on the structure of bacterial communities and cyanobacterial taxa in the water. The bacterial community structure involved in carbon metabolism displayed temporal succession in the water. The co-occurrence network of the bacterial community primarily consisted of Chloroflexi, Proteobacteria, and Firnicutes in the sediment, and Actinobacteria, Proteobacteria, Chloroflexi, and Bacteroidota in the water. In contrast, the co-occurrence network included different peripheral species in the sediment and water. Keystone species were predominantly represented by OTU22 (uncultured actinobacterium g_ hgcI clade) and OTU12 (uncultured Opitutae bacterium g_ norank) in the RC water, and by OTU25 (uncultured bacterium g_ Limnohabitans) in the CM water. TP, TN, NO2 [-]-N, and CODMn were identified as the primary environmental factors influencing these keystone taxa within the culture water. In conclusion, this study on the microbial ecology of the CMC culture system under the influence of CBs provides valuable insights that can be instrumental in subsequent management efforts.

RevDate: 2024-06-09

Xu Y, Yu Z, Liu C, et al (2024)

Variability in soybean yield responses to elevated atmospheric CO2: Insights from non-structural carbohydrate remobilisation during seed filling.

Plant physiology and biochemistry : PPB, 213:108802 pii:S0981-9428(24)00470-4 [Epub ahead of print].

The increasing atmospheric CO2 concentration (e[CO2]) has mixed effects on soybean most varieties' yield. This study elucidated the effect of e[CO2] on soybean yield and the underlying mechanisms related to photosynthetic capacity, non-structural carbohydrate (NSC) accumulation, and remobilisation. Four soybean cultivars were cultivated in open-top chambers at two CO2 levels. Photosynthesis rates were determined from R2 to R6. Plants were sampled at R5 and R8 to determine carbohydrate concentrations. There were significant variations in yield responses among the soybean cultivars under e[CO2], from no change in DS1 to a 22% increase in SN14. DS1 and SN14 had the smallest and largest increase, respectively, in daily carbon assimilation capacity. Under e[CO2], DS1, MF5, and XHJ had an increase in Ci, at which point the transition from Rubisco-limited to ribulose-1,5-bisphosphate regeneration-limited photosynthesis occurred, in contrast with SN14. Thus, the cultivars might have distinct mechanisms that enhance photosynthesis under e[CO2] conditions. A positive correlation was between daily carbon assimilation response to e[CO2] and soybean yield, emphasising the importance of enhanced photosynthate accumulation before the R5 stage in determining yield response to e[CO2]. E[CO2] significantly influenced NSC accumulation in vegetative organs at R5, with variation among cultivars. There was enhanced NSC remobilisation during seed filling, indicating cultivar-specific responses to the remobilisation of sucrose and soluble sugars, excluding sucrose and starch. A positive correlation was between leaf and stem NSC remobilisation and yield response to e[CO2], emphasising the role of genetic differences in carbohydrate remobilisation mechanisms in determining soybean yield variation under elevated CO2 levels.

RevDate: 2024-06-07
CmpDate: 2024-06-07

Doménech-Pascual A, Carrasco-Barea L, Gich F, et al (2024)

Differential response of bacteria and fungi to drought on the decomposition of Sarcocornia fruticosa woody stems in a saline stream.

Environmental microbiology, 26(6):e16661.

Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.

RevDate: 2024-06-07

Papazlatani C, Garbeva P, E Huerta-Lwanga (2024)

Effect of microplastics pollution on the gut microbiome of anecic and endogeic earthworms.

FEMS microbiology letters pii:7689755 [Epub ahead of print].

Microplastic (MP) pollution constitutes an emerging type of pollution threatening both aquatic and terrestrial ecosystems. The impact on aquatic ecosystems has been extensively studied, but the effect on terrestrial ecosystems and their inhabitants is mostly underexplored. In this study we explored the effect of microplastic pollution on gut bacterial microbiome of endogeic (Aporrectodea caliginosa) and anecic (Lumbricus terrestris) earthworms. The experiments were performed in sandy soil with 0.2% of low-density polyethylene microplastics (LDPE MPs). We observed that the endogeic earthworms had 100% survival while anecic earthworms survived 25 days in the control (i.e. absence of MPs) and 21 days in the treatment with LDPE MPs. The main driver of shifts in the diversity and composition of the bacterial communities in the gut of tested earthworms was the life style of the worms, followed by the presence of MPs. The bacterial microbiome diversity was significantly different among the 2 types of earthworms and the highest bacterial diversity was found in the gut of the endogeic earthworms. The effect of microplastics on gut bacterial microbiome was clearly observed in the changes in the relative abundance of several phyla and families of the bacterial communities in both types of earthworms, although it was most evident in the anecic earthworms. The Actinobacteriota, Proteobacteria and Firmicutes were the main groups enhanced in the microplastic treatments, suggesting enrichment of the bacterial communities with potential plastic degraders.

RevDate: 2024-06-09

Serra Moncadas L, Hofer C, Bulzu PA, et al (2024)

Author Correction: Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis.

Nature communications, 15(1):4830 pii:10.1038/s41467-024-49328-4.

RevDate: 2024-06-06

Kortenbosch HH, van Leuven F, van den Heuvel C, et al (2024)

Catching some air: a method to spatially quantify aerial triazole resistance in Aspergillus fumigatus.

Applied and environmental microbiology [Epub ahead of print].

Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (∼4 mg/L) and voriconazole (∼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.

RevDate: 2024-06-06

Olson EG, Dittoe DK, Micciche AC, et al (2024)

Microbiome analyses of poultry feeds: Part II. Comparison of different poultry feeds.

Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes [Epub ahead of print].

Within the realm of poultry feed mill operations, the persistent concern over microbial feed quality necessitates the establishment of a robust baseline for enhancing and sustaining the standards of commercial feeds. This dual-phase investigation, comprising Parts I, was previously published, and the current study presented here as Part II aimed to illuminate this baseline using 16S rRNA gene sequencing. In Part II, nine distinct commercial poultry feeds formulated as starters, growers, starter/growers, or supplements, the selected feeds underwent genomic DNA extraction, amplification with custom dual-indexed primers, and subsequent Illumina MiSeq sequencing. Through data analysis in QIIME2-2021.4 and R Studio, the study unveils alpha (Kruskal-Wallis) and beta (ANOSIM) diversity, taxonomic differences (ANCOM), and core microbiomes (core_members), deeming main and pairwise effects statistically significant at p < 0.05 and Q < 0.05. Notably, the investigation identified 30% common core microbial members across the nine feed types, shedding light on potential foodborne poultry pathogens such as Helicobacter and Campylobacter. Probiotic-associated feeds exhibited distinct microbial communities, emphasizing the need to explore their impact on the early poultry gastrointestinal tract (GIT) further.

RevDate: 2024-06-08
CmpDate: 2024-06-06

Ullah I, Ullah S, Amin F, et al (2024)

Germination responses of Lens Culiunaris L. seeds to osmotic potentials at cardinal temperatures using hydrothermal time model.

BMC plant biology, 24(1):502.

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 [0]С, 20 [0]С, 25 [0]С, 30 [0]С, 35 [0]С, and 40 [0]С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution.

RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 [0]C at (-0.9 MPa) and lowest at 40 [0]C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 [0]C in -1.2 MPa and minimum at 40 [0]C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 [0]C in (0 MPa) and minimum at 15 [0]C in (-0.6 MPa).

CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.

RevDate: 2024-06-08
CmpDate: 2024-06-05

Ray K, Basak SK, Giri CK, et al (2024)

Ecological restoration at pilot-scale employing site-specific rationales for small-patch degraded mangroves in Indian Sundarbans.

Scientific reports, 14(1):12952.

To date, degraded mangrove ecosystem restoration accomplished worldwide primarily aligns towards rehabilitation with monotypic plantations, while ecological restoration principles are rarely followed in these interventions. However, researchers admit that most of these initiatives' success rate is not appreciable often. An integrative framework of ecological restoration for degraded mangroves where site-specific observations could be scientifically rationalized, with co-located reference pristine mangroves as the target ecosystem to achieve is currently distinctively lacking. Through this experimental scale study, we studied the suitability of site-specific strategies to ecologically restore degraded mangrove patches vis-à-vis the conventional mono-species plantations in a highly vulnerable mangrove ecosystem in Indian Sundarbans. This comprehensive restoration framework was trialed in small discrete degraded mangrove patches spanning ~ 65 ha. Site-specific key restoration components applied are statistically validated through RDA analyses and Bayesian t-tests. 25 quantifiable metrics evaluate the restoration success of a ~ 3 ha degraded mangrove patch with Ridgeline distribution, Kolmogorov-Smirnov (K-S) tests, and Mahalanobis Distance (D[2]) measure to prove the site's near-equivalence to pristine reference in multiple ecosystem attributes. This restoration intervention irrevocably establishes the greater potential of this framework in the recovery of ecosystem functions and self-sustenance compared to that of predominant monoculture practices for vulnerable mangroves.

RevDate: 2024-06-05

Ruan SY, Luo HW, Tang XR, et al (2024)

Soil antibiotic resistant genes and virulence factors affected by 3-year organic farming management of double rice cropping system.

The Science of the total environment pii:S0048-9697(24)03869-5 [Epub ahead of print].

Investigating the antibiotic resistance genes (ARGs) and virulence factors (VFs) within soil microbial communities is crucial for understanding microbial ecology and the evolution of antibiotic resistance. However, the study of ARGs, VFs, and their primary soil microbial hosts under organic rice production has not been extensively pursued. To this end, a 3-year field experiment under organic management in South China was conducted. The study revealed that, in contrast to conventional management (CK), organic farming practices did not significantly alter the total reads of ARGs and VFs. However, there was a notable alteration in the ARGs abundance at the antibiotic class level, such as an increase in the abundance of Multidrug ARGs (by 1.7 %) and a decrease in Rifamycin (by 17.5 %) and Fosfomycin ARGs (by 15.3 %). Furthermore, a significant shift in VFs was observed under organic farming compared to CK, characterized by an increase (P < 0.05) in offensive VFs and a decrease (P < 0.05) in nonspecific VFs and the regulation of virulence-associated genes. Key microbial taxa identified as influencing ARGs and VFs in the tested soil samples, e.g., Proteobacteria. The findings suggest that organic rice production in South China requires further attention to soil ecology, particularly concerning the alterations in ARGs and VFs.

RevDate: 2024-06-05

David GM, Pimentel IM, Rehsen PM, et al (2024)

Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment.

The Science of the total environment pii:S0048-9697(24)03816-6 [Epub ahead of print].

A multitude of anthropogenic stressors impact biological communities and ecosystem processes in urban streams. Prominent among them are salinization, increased temperature, and altered flow regimes, all of which can affect microbial decomposer communities and litter decomposition, a fundamental ecosystem process in streams. Impairments caused by these stressors individually or in combination and recovery of communities and ecosystem processes after release from these stressors are not well understood. To improve our understanding of multiple stressors impacts we performed an outdoor stream mesocosm experiment with 64 experimental units to assess the response of microbial litter decomposers and decomposition. The three stressors we applied in a full-factorial design were increased salinity (NaCl addition, 0.53 mS cm[-1] above ambient), elevated temperature (3.5 °C above ambient), and reduced flow velocity (3.5 vs 14.2 cm s[-1]). After two weeks of stressor exposure (first sampling) and two subsequent weeks of recovery (second sampling), we determined leaf-associated microbial respiration, fungal biomass, and the sporulation activity and community composition of aquatic hyphomycetes in addition to decomposition rates of black alder (Alnus glutinosa) leaves confined in fine-mesh litter bags. Microbial colonization of the litter was accompanied by significant mass loss in all mesocosms. However, there was little indication that mass loss, microbial respiration, fungal biomass, sporulation rate or community composition of aquatic hyphomycetes was strongly affected by either single stressors or their interactions. Two exceptions were temperature effects on sporulation and decomposition rate. Similarly, no notable differences among mesocosms were observed after the recovery phase. These results suggest that microbial decomposers and leaf litter decomposition are either barely impaired by exposure to the tested stressors at the levels applied in our experiment, or that communities in restored urban streams are well adapted to cope with these stressor levels.

RevDate: 2024-06-04

Freitas ASd, Zagatto LFG, Rocha GS, et al (2024)

Bacterial genomes recovered from litter's metagenomes in Amazonian Dark Earths.

Microbiology resource announcements [Epub ahead of print].

Here, we report 27 metagenome-assembled bacterial genomes (MAGs) from litter samples of a secondary forest located in Brazil over an Amazonian Dark Earth pool. The data set includes members from the phyla Pseudomonadata (14 MAGs), Actinomycetota (7 MAGs), Bacteroidota (4 MAGs), Bacillota (1 MAG), and Bdellovibrionota (1 MAG).

RevDate: 2024-06-03
CmpDate: 2024-06-03

Chen D, Tian C, Yuan H, et al (2024)

Nitrogen Removal Performance and Microbial Community Structure of IMTA Ponds (Apostistius japonicus-Penaeus japonicus-Ulva).

Microbial ecology, 87(1):82.

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.

RevDate: 2024-06-03
CmpDate: 2024-06-03

Mugani R, El Khalloufi F, Kasada M, et al (2024)

Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms.

Harmful algae, 135:102631.

Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L[-1]. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL[-1], indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.

RevDate: 2024-06-03

Kerfahi D, Dong K, Tripathi B, et al (2024)

Global comparison shows that soil bacterial communities in extreme pH soils are more structured by deterministic processes.

The Science of the total environment pii:S0048-9697(24)03809-9 [Epub ahead of print].

A major aim of microbial ecology is the search for basic 'rules' that dominate variation in microbial communities. An earlier comparison of several soil successional series showed that pH explained variation in the relative importance of stochastic versus deterministic processes in bacterial communities. In neutral pH soils, bacterial communities were more strongly influenced by stochastic processes than in low or high pH soils. Here, we took a broad level approach to attempt a more definitive answer of whether soil pH dominates bacterial community structuring using the global database of 237 samples. The beta-NTI showed that at both a global and continental scale, samples with low pH were dominated by deterministic processes, while in samples at around neutral pH, stochastic processes dominated. At high pH, stochasticity dominated on the global scale, but on several continents, the beta-NTI showed determinism predominating. Overall, it appears that bacterial community structuring is strongly and predictably affected by pH, with the most consistent difference observed between determinism at low pH and stochasticity at neutral pH. There is a need for hypothesis testing to explain why this trend exists. It is possible that at low pH, there is a greater selection for consortia to exploit resources, which leads to more predictable, deterministic combinations of species co-occurring. Additionally, the high energy demands for homeostasis and the constraints from the lack of available nutrient resources may impose greater niche-based competition, resulting in more deterministic community structuring at low pH.

RevDate: 2024-06-03
CmpDate: 2024-06-03

Jurado V, Martin-Pozas T, Fernandez-Cortes A, et al (2024)

Gypsum Cave Biofilm Communities are Strongly Influenced by Bat- And Arthropod-Related Fungi.

Microbial ecology, 87(1):80.

The Gypsum Karst of Sorbas, Almeria, southeast Spain, includes a few caves whose entrances are open and allow the entry and roosting of numerous bats. Caves are characterized by their diversity of gypsum speleothems, such as stalactites, coralloids, gypsum crusts, etc. Colored biofilms can be observed on the walls of most caves, among which the Covadura and C3 caves were studied. The objective was to determine the influence that bat mycobiomes may have on the fungal communities of biofilms. The results indicate that the fungi retrieved from white and yellow biofilms in Covadura Cave (Ascomycota, Mortierellomycota, Basidiomycota) showed a wide diversity, depending on their location, and were highly influenced by the bat population, the guano and the arthropods that thrive in the guano, while C3 Cave was more strongly influenced by soil- and arthropod-related fungi (Ascomycota, Mortierellomycota), due to the absence of roosting bats.

RevDate: 2024-06-03
CmpDate: 2024-06-03

Gwokyalya R, Herren JK, Weldon CW, et al (2024)

Shaping the Microbial Landscape: Parasitoid-Driven Modifications of Bactrocera dorsalis Microbiota.

Microbial ecology, 87(1):81.

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.

RevDate: 2024-06-03

Ramirez-Puebla ST, Mark Welch JL, GG Borisy (2024)

Improved Visualization of Oral Microbial Consortia.

Journal of dental research [Epub ahead of print].

Bacteria on the tongue dorsum (TD) form consortia tens to hundreds of microns in diameter organized around a core of epithelial cells. Whole-mount preparations have been instrumental in revealing their organization and specific microbial associations. However, their thickness and intricate 3-dimensional complexity present challenges for a comprehensive spatial analysis. To overcome these challenges, we employed a complementary approach: embedding in hydrophilic plastic followed by sectioning and postsectioning labeling. Samples were labeled by hybridization with multiplexed fluorescent oligonucleotide probes and visualized by spectral imaging and linear unmixing. Application of this strategy to TD biofilms improved the visualization of bacteria that were difficult to resolve in whole-mount imaging. Actinomyces, previously detected as patches, became resolved at the single-cell level. The filamentous taxa Leptotrichia and Lachnospiraceae, located at the core of the consortium, were regularly visualized whereas previously they were rarely detected when using whole mounts. Streptococcus salivarius, heterogeneously detected in whole mounts, were regularly and homogenously observed. Two-dimensional images provide valuable information about the organization of bacterial biofilms. However, they offer only a single plane of view for objects that can extend to hundreds of microns in thickness, and information obtained from such images may not always reflect the complexity of a 3-dimensional object. We combined serial physical sectioning with optical sectioning to facilitate the 3-dimensional reconstruction of consortia, spanning over 100 µm in thickness. Our work showcases the use of hydrophilic plastic embedding and sectioning for examining the structure of TD biofilms through spectral imaging fluorescence in situ hybridization. The result was improved visualization of important members of the human oral microbiome. This technique serves as a complementary method to the previously employed whole-mount analysis, offering its own set of advantages and limitations. Addressing the spatial complexity of bacterial consortia demands a multifaceted approach for a comprehensive and effective analysis.

RevDate: 2024-06-03

Gupta VVSR, JM Tiedje (2024)

Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales.

mLife, 3(1):21-41.

The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable. Hence, a substantial portion of the community will not correlate to often measured soil attributes. We suggest that the drivers be ranked on the basis of their importance to the fundamental needs of the microbes: (i) those that supply energy, i.e., organic carbon and electron acceptors; (ii) environmental effectors or stressors, i.e., pH, salt, drought, and toxic chemicals; (iii) macro-organism associations, i.e., plants and their seasonality, animals and their fecal matter, and soil fauna; and (iv) nutrients, in order, N, P, and probably of lesser importance, other micronutrients, and metals. The relevance of drivers also varies with spatial and time scales, for example, aggregate to field to regional, and persistent to dynamic populations to transcripts, and with the extent of phylogenetic difference, hence phenotypic differences in organismal groups. We present a summary matrix to provide guidance on which drivers are important for particular studies, with special emphasis on a wide range of spatial and temporal scales, and illustrate this with genomic and population (rRNA gene) data from selected studies.

RevDate: 2024-06-03
CmpDate: 2024-06-03

Viladomat Jasso M, García-Ulloa M, Zapata-Peñasco I, et al (2024)

Metagenomic insight into taxonomic composition, environmental filtering and functional redundancy for shaping worldwide modern non-lithifying microbial mats.

PeerJ, 12:e17412.

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.

RevDate: 2024-06-03
CmpDate: 2024-06-03

Li SQ, Song Y, Zhou F, et al (2024)

[Primary biliary cholangitis and autoimmune hepatitis overlap syndrome complicated with skin and soft tissue infection of lower limb during corticosteroids treatment: a case report].

Zhonghua nei ke za zhi, 63(6):618-620.

RevDate: 2024-05-31

Wang Z, Fu X, EE Kuramae (2024)

Insight into farming native microbiome by bioinoculant in soil-plant system.

Microbiological research, 285:127776 pii:S0944-5013(24)00177-0 [Epub ahead of print].

Applying beneficial microorganisms (BM) as bioinoculants presents a promising soil-amendment strategy while impacting the native microbiome, which jointly alters soil-plant performance. Leveraging the untapped potential of native microbiomes alongside bioinoculants may enable farmers to sustainably regulate soil-plant systems via natural bioresources. This review synthesizes literature on native microbiome responses to BMs and their interactive effects on soil and plant performance. We highlight that native microbiomes harbor both microbial "helpers" that can improve soil fertility and plant productivity, as well as "inhibitors" that hinder these benefits. To harness the full potential of resident microbiome, it is crucial to elucidate their intricate synergistic and antagonistic interplays with introduced BMs and clarify the conditions that facilitate durable BM-microbiome synergies. Hence, we indicate current challenges in predicting these complex microbial interactions and propose corresponding strategies for microbiome breeding via BM bioinoculant. Overall, fully realizing the potential of BMs requires clarifying their interactions with native soil microbiomes and judiciously engineering microbiome to harness helpful microbes already present within agroecosystems.

RevDate: 2024-05-31
CmpDate: 2024-05-31

Sanchez FB, Sato Guima SE, JC Setubal (2024)

How to Obtain and Compare Metagenome-Assembled Genomes.

Methods in molecular biology (Clifton, N.J.), 2802:135-163.

Metagenome-assembled genomes, or MAGs, are genomes retrieved from metagenome datasets. In the vast majority of cases, MAGs are genomes from prokaryotic species that have not been isolated or cultivated in the lab. They, therefore, provide us with information on these species that are impossible to obtain otherwise, at least until new cultivation methods are devised. Thanks to improvements and cost reductions of DNA sequencing technologies and growing interest in microbial ecology, the rise in number of MAGs in genome repositories has been exponential. This chapter covers the basics of MAG retrieval and processing and provides a practical step-by-step guide using a real dataset and state-of-the-art tools for MAG analysis and comparison.

RevDate: 2024-05-31

Sumner DY (2024)

Oxygenation of Earth's atmosphere induced metabolic and ecologic transformations recorded in the Lomagundi-Jatuli carbon isotopic excursion.

Applied and environmental microbiology [Epub ahead of print].

The oxygenation of Earth's atmosphere represents the quintessential transformation of a planetary surface by microbial processes. In turn, atmospheric oxygenation transformed metabolic evolution; molecular clock models indicate the diversification and ecological expansion of respiratory metabolisms in the several hundred million years following atmospheric oxygenation. Across this same interval, the geological record preserves [13]C enrichment in some carbonate rocks, called the Lomagundi-Jatuli excursion (LJE). By combining data from geologic and genomic records, a self-consistent metabolic evolution model emerges for the LJE. First, fermentation and methanogenesis were major processes remineralizing organic carbon before atmospheric oxygenation. Once an ozone layer formed, shallow water and exposed environments were shielded from UVB/C radiation, allowing the expansion of cyanobacterial primary productivity. High primary productivity and methanogenesis led to preferential removal of [12]C into organic carbon and CH4. Extreme and variable [13]C enrichments in carbonates were caused by [13]C-depleted CH4 loss to the atmosphere. Through time, aerobic respiration diversified and became ecologically widespread, as did other new metabolisms. Respiration displaced fermentation and methanogenesis as the dominant organic matter remineralization processes. As CH4 loss slowed, dissolved inorganic carbon in shallow environments was no longer highly [13]C enriched. Thus, the loss of extreme [13]C enrichments in carbonates marks the establishment of a new microbial mat ecosystem structure, one dominated by respiratory processes distributed along steep redox gradients. These gradients allowed the exchange of metabolic by-products among metabolically diverse organisms, providing novel metabolic opportunities. Thus, the microbially induced oxygenation of Earth's atmosphere led to the transformation of microbial ecosystems, an archetypal example of planetary microbiology.IMPORTANCEThe oxygenation of Earth's atmosphere represents the most extensive known chemical transformation of a planetary surface by microbial processes. In turn, atmospheric oxygenation transformed metabolic evolution by providing oxidants independent of the sites of photosynthesis. Thus, the evolutionary changes during this interval and their effects on planetary-scale biogeochemical cycles are fundamental to our understanding of the interdependencies among genomes, organisms, ecosystems, elemental cycles, and Earth's surface chemistry through time.

RevDate: 2024-05-31

Tang S, Wu G, Liu Y, et al (2024)

Guild-level signature of gut microbiome for diabetic kidney disease.

mBio [Epub ahead of print].

UNLABELLED: Current microbiome signatures for chronic diseases such as diabetic kidney disease (DKD) are mainly based on low-resolution taxa such as genus or phyla and are often inconsistent among studies. In microbial ecosystems, bacterial functions are strain specific, and taxonomically different bacteria tend to form co-abundance functional groups called guilds. Here, we identified guild-level signatures for DKD by performing in-depth metagenomic sequencing and conducting genome-centric and guild-based analysis on fecal samples from 116 DKD patients and 91 healthy subjects. Redundancy analysis on 1,543 high-quality metagenome-assembled genomes (HQMAGs) identified 54 HQMAGs that were differentially distributed among the young healthy control group, elderly healthy control group, early-stage DKD patients (EDG), and late-stage DKD patients (LDG). Co-abundance network analysis classified the 54 HQMAGs into two guilds. Compared to guild 2, guild 1 contained more short-chain fatty acid biosynthesis genes and fewer genes encoding uremic toxin indole biosynthesis, antibiotic resistance, and virulence factors. Guild indices, derived from the total abundance of guild members and their diversity, delineated DKD patients from healthy subjects and between different severities of DKD. Age-adjusted partial Spearman correlation analysis showed that the guild indices were correlated with DKD disease progression and with risk indicators of poor prognosis. We further validated that the random forest classification model established with the 54 HQMAGs was also applicable for classifying patients with end-stage renal disease and healthy subjects in an independent data set. Therefore, this genome-level, guild-based microbial analysis strategy may identify DKD patients with different severity at an earlier stage to guide clinical interventions.

IMPORTANCE: Traditionally, microbiome research has been constrained by the reliance on taxonomic classifications that may not reflect the functional dynamics or the ecological interactions within microbial communities. By transcending these limitations with a genome-centric and guild-based analysis, our study sheds light on the intricate and specific interactions between microbial strains and diabetic kidney disease (DKD). We have unveiled two distinct microbial guilds with opposite influences on host health, which may redefine our understanding of microbial contributions to disease progression. The implications of our findings extend beyond mere association, providing potential pathways for intervention and opening new avenues for patient stratification in clinical settings. This work paves the way for a paradigm shift in microbiome research in DKD and potentially other chronic kidney diseases, from a focus on taxonomy to a more nuanced view of microbial ecology and function that is more closely aligned with clinical outcomes.

RevDate: 2024-06-01

Zhu YG, Zhu D, Rillig MC, et al (2023)

Ecosystem Microbiome Science.

mLife, 2(1):2-10.

The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and functions performed by the microbiome and its dynamics at an ecosystem level. We propose that the theory and tools of ecosystem ecology be used to investigate the connectivity of microorganisms and their interactions with the biotic and abiotic environment within entire ecosystems and to examine their contributions to ecosystem services. Impacts of natural and anthropogenic stressors on ecosystems will likely cause cascading effects on the microbiome and lead to unpredictable outcomes, such as outbreaks of emerging infectious diseases or changes in mutualistic interactions. Despite enormous advances in microbial ecology, we are yet to study microbiomes of ecosystems as a whole. Doing so would establish a new framework for microbiome study: Ecosystem Microbiome Science. The advent and application of molecular and genomic technologies, together with data science and modeling, will accelerate progress in this field.

RevDate: 2024-06-01

Fu Y, Dou Q, Smalla K, et al (2023)

Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes.

mLife, 2(4):350-364.

The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.

RevDate: 2024-05-31

Liu J, Xu G, Zhao S, et al (2023)

Resilience and functional redundancy of methanogenic digestion microbiome safeguard recovery of methanogenesis activity under the stress induced by microplastics.

mLife, 2(4):378-388.

Microplastics and nanoplastics are emerging pollutants that substantially influence biological element cycling in natural ecosystems. Plastics are also prevalent in sewage, and they accumulate in waste-activated sludge (WAS). However, the impacts of plastics on the methanogenic digestion of WAS and the underpinning microbiome remain underexplored, particularly during long-term operation. In this study, we found that short-term exposure to individual microplastics and nanoplastics (polyethylene, polyvinyl chloride, polystyrene, and polylactic acid) at a low concentration (10 particles/g sludge) slightly enhanced methanogenesis by 2.1%-9.0%, whereas higher levels (30-200 particles/g sludge) suppressed methanogenesis by 15.2%-30.1%. Notably, the coexistence of multiple plastics, particularly at low concentrations, showed synergistic suppression of methanogenesis. Unexpectedly, methanogenesis activity completely recovered after long-term exposure to plastics, despite obvious suppression of methanogenesis by initial plastic exposure. The inhibition of methanogenesis by plastics could be attributed to the stimulated generation of reactive oxygen species. The stress induced by plastics dramatically decreased the relative abundance of methanogens but showed marginal influence on putative hydrolytic and fermentation populations. Nonetheless, the digestion sludge microbiome exhibited resilience and functional redundancy, contributing to the recovery of methanogenesis during the long-term operation of digesters. Plastics also increased the complexity, modularity, and negative interaction ratios of digestion sludge microbiome networks, but their influence on community assembly varied. Interestingly, a unique plastisphere was observed, the networks and assembly of which were distinct from the sludge microbiome. Collectively, the comprehensive evaluation of the influence of microplastics and nanoplastics on methanogenic digestion, together with the novel ecological insights, contribute to better understanding and manipulating this engineered ecosystem in the face of increasing plastic pollution.

RevDate: 2024-05-31

Wu L, Yang Y, Ning D, et al (2023)

Assessing mechanisms for microbial taxa and community dynamics using process models.

mLife, 2(3):239-252.

Disentangling the assembly mechanisms controlling community composition, structure, distribution, functions, and dynamics is a central issue in ecology. Although various approaches have been proposed to examine community assembly mechanisms, quantitative characterization is challenging, particularly in microbial ecology. Here, we present a novel approach for quantitatively delineating community assembly mechanisms by combining the consumer-resource model with a neutral model in stochastic differential equations. Using time-series data from anaerobic bioreactors that target microbial 16S rRNA genes, we tested the applicability of three ecological models: the consumer-resource model, the neutral model, and the combined model. Our results revealed that model performances varied substantially as a function of population abundance and/or process conditions. The combined model performed best for abundant taxa in the treatment bioreactors where process conditions were manipulated. In contrast, the neutral model showed the best performance for rare taxa. Our analysis further indicated that immigration rates decreased with taxa abundance and competitions between taxa were strongly correlated with phylogeny, but within a certain phylogenetic distance only. The determinism underlying taxa and community dynamics were quantitatively assessed, showing greater determinism in the treatment bioreactors that aligned with the subsequent abnormal system functioning. Given its mechanistic basis, the framework developed here is expected to be potentially applicable beyond microbial ecology.

RevDate: 2024-05-30
CmpDate: 2024-05-30

Saeed S, Ullah S, Amin F, et al (2024)

Salicylic acid and Tocopherol improve wheat (Triticum aestivum L.) Physio-biochemical and agronomic features grown in deep sowing stress: a way forward towards sustainable production.

BMC plant biology, 24(1):477.

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.).

RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress.

CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.

RevDate: 2024-05-30

Tiegs SD, Capps KA, Costello DM, et al (2024)

Human activities shape global patterns of decomposition rates in rivers.

Science (New York, N.Y.) [Epub ahead of print].

Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams. A large number of variables were important for predicting decomposition, highlighting the complexity of this process at the global scale. Predicted cellulose decomposition rates, when combined with genus-level litter quality attributes, explain published leaf-litter-decomposition rates with impressive accuracy (70% variance explained). Our global map provides estimates of rates across vast understudied areas of Earth, and reveals rapid decomposition across continental-scale areas dominated by human activities.

RevDate: 2024-05-30
CmpDate: 2024-05-30

Filek K, Vuković BB, Žižek M, et al (2024)

Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities.

Microbial ecology, 87(1):79.

Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.

RevDate: 2024-05-30

Chen M, Grégoire DS, Bain JG, et al (2024)

Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities.

Applied and environmental microbiology [Epub ahead of print].

The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.

RevDate: 2024-05-31

Zhu W, Chang L, Zhang M, et al (2024)

Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors.

iScience, 27(6):109907.

Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.

RevDate: 2024-05-31

Guo X, Yuan M, Lei J, et al (2022)

Climate warming restructures seasonal dynamics of grassland soil microbial communities.

mLife, 1(3):245-256.

Soil microbial community's responses to climate warming alter the global carbon cycle. In temperate ecosystems, soil microbial communities function along seasonal cycles. However, little is known about how the responses of soil microbial communities to warming vary when the season changes. In this study, we investigated the seasonal dynamics of soil bacterial community under experimental warming in a temperate tall-grass prairie ecosystem. Our results showed that warming significantly (p = 0.001) shifted community structure, such that the differences of microbial communities between warming and control plots increased nonlinearly (R [2] = 0.578, p = 0.021) from spring to winter. Also, warming significantly (p < 0.050) increased microbial network complexity and robustness, especially during the colder seasons, despite large variations in network size and complexity in different seasons. In addition, the relative importance of stochastic processes in shaping the microbial community decreased by warming in fall and winter but not in spring and summer. Our study indicates that climate warming restructures the seasonal dynamics of soil microbial community in a temperate ecosystem. Such seasonality of microbial responses to warming may enlarge over time and could have significant impacts on the terrestrial carbon cycle.

RevDate: 2024-05-30

Liu J, Wu Y, Zhang W, et al (2024)

Podosphaera xanthii Causing Powdery Mildew on Salvia farinacea in Central China.

Plant disease [Epub ahead of print].

Salvia farinacea, commonly referred as mealycup sage, is a perennial herbaceous plant belonging to the Salvia genus of the Lamiaceae family. It originates from the Mediterranean region, North America, and Europe and is globally cultivated due to its appealing and captivating flowers. Moreover, mealycup sage is utilized as traditional Chinese medicinal plant for treatment of cardiovascular diseases (Li et al. 2018). In October 2023, powdery mildew-like symptoms were observed on Salvia farinacea plants cultivated in a garden located in Xinxiang City, Henan Province, China (113.93, 35.29). The leaves were covered with white and thin masses of mycelia, conidiophores and conidia of the fungus. About 100 plants were checked and 90 % were infected. There were a large number of white colonies with irregular or continuous round lesions on the adaxial and abaxial surfaces of the leaves, covering approximately 80% of the leaf area. The slightly or straight curved conidiophores (n = 30) were 46 to 145× 8 to 11 μm in size and consisted of foot cells, shorter cells and conidia. The ellipsoidal to oval conidia (n = 30), containing fibrosin bodies, were 24 to 35 × 12 to 19 μm in size and had a length/width ratio of 1.8 to 2.1. No chasmothecia were observed on leaves. These morphological features were consistent with those of Podosphaera xanthii (Braun and Cook 2012). Following the previously described method (White et al. 1990; Bradshaw et al. 2022; Zhu et al. 2022a), the sequences of ITS and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions were amplified with specific primers ITS1/ITS4 (ITS1 5'-TCCGTAGGTGAACCTGCGG-3' ; ITS4 5'-TCCTCCGCTTATTGATATGC-3') and PMGAPDH1/PMGAPDH3R (PMGAPDH1 5'-GGAATGGCTATGCGTGTACC-3'; PMGAPDH3R 5'-CCCCATTCGTTGTCGTACCATG-3'), and the resulting sequences were uploaded in GenBank (Accession No. OR761885 and PP236082, respectively). BLASTn analysis showed that the sequence shared 560/565 (99%) and 272/272 (100%) homology with P. xanthii (MW301281) on Impatiens balsamina (Zhu et al. 2022b) and with P. xanthii (ON075658) on Cucumis melo (Bradshaw et al. 2022), respectively. The phylogenetic analysis clearly illustrated that the collected isolate of P. xanthii clustered in the same clade. The pathogenicity was tested according to the method previously described (Zhu et al. 2021). The fungus was inoculated onto the leaf surfaces of three healthy plants by blowing conidia from infected leaves with pressurized air. Non-inoculated plants were treated as control. Both the control and inoculated plants were separately placed in growth chambers under 60% humidity; light/dark, 16 h/8 h; and a temperature of 18°C. After a period of 12-15 days, the leaves of the inoculated plants exhibited signs of powdery mildew, whereas the control group remained unaffected. Therefore, the fungal pathogen was identified and confirmed as P. xanthii (isolate PXSF202310). Previously, P. xanthii was reported on Impatiens balsamina and S. farinacea from China and Korea (Zhu et al. 2021; Choi et al. 2022). As far as we know, this is the first documentation of P. xanthii on S. farinacea in central China. The presence of P. xanthii can lead to a deterioration in plant health and stunted growth, thereby negatively impacting both the decorative and medicinal value of S. farinacea. The recognition of P. xanthii on S. farinacea enhances our comprehension of this pathogen hosts and provides fundamental information for forthcoming disease control studies.

RevDate: 2024-05-30

Przybylska MS, Violle C, Vile D, et al (2024)

Can plants build their niche through modulation of soil microbial activities linked with nitrogen cycling? A test with Arabidopsis thaliana.

The New phytologist [Epub ahead of print].

In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.

RevDate: 2024-05-30
CmpDate: 2024-05-29

Eliette AS, Elodie B, Arnaud M, et al (2024)

Idiosyncratic invasion trajectories of human bacterial pathogens facing temperature disturbances in soil microbial communities.

Scientific reports, 14(1):12375.

Current knowledge about effects of disturbance on the fate of invaders in complex microbial ecosystems is still in its infancy. In order to investigate this issue, we compared the fate of Klebsiella pneumoniae (Kp) and Listeria monocytogenes (Lm) in soil microcosms. We then used environmental disturbances (freeze-thaw or heat cycles) to compare the fate of both invaders and manipulate soil microbial diversity. Population dynamics of the two pathogens was assessed over 50 days of invasion while microbial diversity was measured at times 0, 20 and 40 days. The outcome of invasion was strain-dependent and the response of the two invaders to disturbance differed. Resistance to Kp invasion was higher under the conditions where resident microbial diversity was the highest while a significant drop of diversity was linked to a higher persistence. In contrast, Lm faced stronger resistance to invasion in heat-treated microcosms where diversity was the lowest. Our results show that diversity is not a universal proxy of resistance to microbial invasion, indicating the need to properly assess other intrinsic properties of the invader, such as its metabolic repertoire, or the array of interactions between the invader and resident communities.

RevDate: 2024-05-29

Demircan T, Gül S, EA Taşçı (2024)

Can Microbiome Modulate Regenerative Capacity? A Comparative Microbiome Study Reveals a Dominant Presence of Flavobacteriaceae in Blastema Tissue During Axolotl Limb Regeneration.

Omics : a journal of integrative biology [Epub ahead of print].

The axolotl (Ambystoma mexicanum) is renowned for its remarkable regenerative capabilities, which are not diminished by the transition from a neotenic to a metamorphic state. This study explored the microbiome dynamics in axolotl limb regeneration by examining the microbial communities present in neotenic and metamorphic axolotls at two critical stages of limb regeneration: pre-amputation and during blastema formation. Utilizing 16S rRNA amplicon sequencing, we investigated the variations in microbiome profiles associated with different developmental and regenerative states. Our findings reveal a distinct separation in the microbiome profiles of neotenic and metamorphic samples, with a clear demarcation in microbial composition at both the phylum and genus levels. In neotenic 0DPA samples, Proteobacteria and Firmicutes were the most abundant, whereas in neotenic 7DPA samples, Proteobacteria and Bacteroidetes dominated. Conversely, metamorphic samples displayed a higher abundance of Firmicutes and Bacteroidetes at 0DPA and Proteobacteria and Firmicutes at 7DPA. Alpha and beta diversity analyses, along with dendrogram construction, demonstrated significant variations within and between the sample groups, suggesting a strong influence of both developmental stage and regenerative state on the microbiome. Notably, Flavobacterium and Undibacterium emerged as distinctive microbial entities in neotenic 7DPA samples, highlighting potential key players in the microbial ecology of regeneration. These findings suggest that the axolotl's microbiome is dynamically responsive to blastema formation, and they underscore the potential influence of microbial communities on the regeneration process. This study lays the groundwork for future research into the mechanisms by which the microbiome may modulate regenerative capacity.

RevDate: 2024-05-30
CmpDate: 2024-05-28

Banchi E, Manna V, Muggia L, et al (2024)

Marine Fungal Diversity and Dynamics in the Gulf of Trieste (Northern Adriatic Sea).

Microbial ecology, 87(1):78.

Fungi contribute to different important ecological processes, including decomposition of organic matter and nutrient cycling, but in the marine environment the main factors influencing their diversity and dynamics at the spatial and temporal levels are still largely unclear. In this study, we performed DNA metabarcoding on seawater sampled monthly over a year and a half in the Gulf of Trieste (northern Adriatic Sea), targeting the internal transcribed spacer (ITS) and the 18S rRNA gene regions. The fungal communities were diverse, very dynamic, and belonged predominantly to marine taxa. Samples could be clustered in two groups, mainly based on the high (> 30%) or low relative proportion of the ascomycetes Parengyodontium album, which emerged as a key taxon in this area. Dissolved and particulate organic C:N ratio played important roles in shaping the mycoplankton assemblages, suggesting that differently bioavailable organic matter pools may be utilized by different consortia. The proportion of fungal over total reads was 31% for ITS and 0.7% for 18S. ITS had the highest taxonomic resolution but low power to detect early divergent fungal lineages. Our results on composition, distribution, and environmental drivers extended our knowledge of the structure and function of the mycobiome of coastal waters.

RevDate: 2024-05-30
CmpDate: 2024-05-28

Wissner JL, Parada-Fabián JC, Márquez-Velázquez NA, et al (2024)

Diversity and Bioprospection of Gram-positive Bacteria Derived from a Mayan Sinkhole.

Microbial ecology, 87(1):77.

Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.

RevDate: 2024-05-30
CmpDate: 2024-05-28

Fournier C, Fiedler A, Weidele M, et al (2024)

Description of a 'plankton filtration bias' in sequencing-based bacterial community analysis and of an Arduino microcontroller-based flowmeter device that can help to resolve it.

PloS one, 19(5):e0303937.

Diversity studies of aquatic picoplankton (bacterioplankton) communities using size-class filtration, DNA extraction, PCR and sequencing of phylogenetic markers, require a robust methodological pipeline, since biases have been demonstrated essentially at all levels, including DNA extraction, primer choice and PCR. Even different filtration volumes of the same plankton sample and, thus, different biomass loading of the filters, can distort the sequencing results. In this study, we designed an Arduino microcontroller-based flowmeter that records the decrease of initial (maximal) flowrate as proxy for increasing biomass loading and clogging of filters during plankton filtration. The device was tested using freshwater plankton of Lake Constance, and total DNA was extracted and an 16S rDNA amplicon was sequenced. We confirmed that different filtration volumes used for the same water sample affect the sequencing results. Differences were visible in alpha and beta diversities and across all taxonomic ranks. Taxa most affected were typical freshwater Actinobacteria and Bacteroidetes, increasing up to 38% and decreasing up to 29% in relative abundance, respectively. In another experiment, a lake water sample was filtered undiluted and three-fold diluted, and each filtration was stopped once the flowrate had reduced to 50% of initial flowrate, hence, at the same degree of filter clogging. The three-fold diluted sample required three-fold filtration volumes, while equivalent amounts of total DNA were extracted and differences across all taxonomic ranks were not statistically significant compared to the undiluted controls. In conclusion, this work confirms a volume/biomass-dependent bacterioplankton filtration bias for sequencing-based community analyses and provides an improved procedure for controlling biomass loading during filtrations and recovery of equivalent amounts of DNA from samples independent of the plankton density. The application of the device can also avoid the distorting of sequencing results as caused by the plankton filtration bias.

RevDate: 2024-05-28

Lappan R, Thakar J, Moncayo LM, et al (2024)

The atmosphere: a transport medium or an active microbial ecosystem?.

The ISME journal pii:7683485 [Epub ahead of print].

The atmosphere may be Earth's largest microbial ecosystem. It is connected to all of Earth's surface ecosystems and plays an important role in microbial dispersal on local to global scales. Despite this grand scale, surprisingly little is understood about the atmosphere itself as a habitat. A key question remains unresolved: does the atmosphere simply transport microorganisms from one location to another, or does it harbor adapted, resident, and active microbial communities that overcome the physiological stressors and selection pressures the atmosphere poses to life? Advances in extreme microbiology and astrobiology continue to push our understanding of the limits of life towards ever greater extremes of temperature, pressure, salinity, irradiance, pH, and water availability. Earth's atmosphere stands as a challenging, but potentially surmountable, extreme environment to harbour living, active, resident microorganisms. Here we confront the current understanding of the atmosphere as a microbial habitat, highlighting key advances and limitations. We pose major ecological and mechanistic questions about microbial life in the atmosphere that remain unresolved and frame the problems and technical pitfalls that have largely hindered recent developments in this space, providing evidence-based insights to drive future research in this field. New innovations supported by rigorous technical standards are needed to enable progress in understanding atmospheric microorganisms and their influence on global processes of weather, climate, nutrient cycling, biodiversity, and microbial connectivity, especially in the context of rapid global change.

RevDate: 2024-05-28
CmpDate: 2024-05-28

Ochoa-Hueso R, Eldridge DJ, Berdugo M, et al (2024)

Unearthing the soil-borne microbiome of land plants.

Global change biology, 30(5):e17295.

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.

RevDate: 2024-05-28

Owens LA, Thurber MI, TL Goldberg (2024)

CRISPR-Cas9-mediated host signal reduction for 18S metabarcoding of host-associated eukaryotes.

Molecular ecology resources [Epub ahead of print].

Metabarcoding-based methods for identification of host-associated eukaryotes have the potential to revolutionize parasitology and microbial ecology, yet significant technical challenges remain. In particular, highly abundant host reads can mask the presence of less-abundant target organisms, especially for sample types rich in host DNA (e.g., blood and tissues). Here, we present a new CRISPR-Cas9-mediated approach designed to reduce host signal by selective amplicon digestion, thus enriching clinical samples for eukaryotic endosymbiont sequences during metabarcoding. Our method achieves a nearly 76% increased efficiency in host signal reduction compared with no treatment and a nearly 60% increased efficiency in host signal reduction compared with the most commonly used published method. Furthermore, the application of our method to clinical samples allows for the detection of parasite infections that would otherwise have been missed.

RevDate: 2024-05-27

Fu Y, Hu F, Wang F, et al (2024)

Distinct Assembly Patterns of Soil Antibiotic Resistome Revealed by Land-Use Changes over 30 Years.

Environmental science & technology [Epub ahead of print].

Compared with the ever-growing information about the anthropogenic discharge of nutrients, metals, and antibiotics on the disturbance of antibiotic resistance genes (ARGs), less is known about how the potential natural stressors drive the evolutionary processes of antibiotic resistance. This study examined how soil resistomes evolved and differentiated over 30 years in various land use settings with spatiotemporal homogeneity and minimal human impact. We found that the contents of soil organic carbon, nitrogen, soil microbial biomass, and bioavailable heavy metals, as well as related changes in the antibiotic resistome prevalence including diversity and abundance, declined in the order of grassland > cropland > bareland. Sixty-nine remaining ARGs and 14 mobile genetic elements (MGEs) were shared among three land uses. Multiple factors (i.e., soil properties, heavy metals, bacterial community, and MGEs) contributed to the evolutionary changes of the antibiotic resistome, wherein the resistome profile was dominantly driven by MGEs from both direct and indirect pathways, supported by a partial least-squares path model analysis. Our results suggest that pathways to mitigate ARGs in soils can coincide with land degradation processes, posing a challenge to the common goal of managing our environment sustainably.

RevDate: 2024-05-27

Oesterle I, Ayeni KI, Ezekiel CN, et al (2024)

Insights into the early-life chemical exposome of Nigerian infants and potential correlations with the developing gut microbiome.

Environment international, 188:108766 pii:S0160-4120(24)00352-0 [Epub ahead of print].

Early-life exposure to natural and synthetic chemicals can impact acute and chronic health conditions. Here, a suspect screening workflow anchored on high-resolution mass spectrometry was applied to elucidate xenobiotics in breast milk and matching stool samples collected from Nigerian mother-infant pairs (n = 11) at three time points. Potential correlations between xenobiotic exposure and the developing gut microbiome, as determined by 16S rRNA gene amplicon sequencing, were subsequently explored. Overall, 12,192 and 16,461 features were acquired in the breast milk and stool samples, respectively. Following quality control and suspect screening, 562 and 864 features remained, respectively, with 149 of these features present in both matrices. Taking advantage of 242 authentic reference standards measured for confirmatory purposes of food bio-actives and toxicants, 34 features in breast milk and 68 features in stool were identified and semi-quantified. Moreover, 51 and 78 features were annotated with spectral library matching, as well as 416 and 652 by in silico fragmentation tools in breast milk and stool, respectively. The analytical workflow proved its versatility to simultaneously determine a diverse panel of chemical classes including mycotoxins, endocrine-disrupting chemicals (EDCs), antibiotics, plasticizers, perfluorinated alkylated substances (PFAS), and pesticides, although it was originally optimized for polyphenols. Spearman rank correlation of the identified features revealed significant correlations between chemicals of the same classification such as polyphenols. One-way ANOVA and differential abundance analysis of the data obtained from stool samples revealed that molecules of plant-based origin elevated as complementary foods were introduced to the infants' diets. Annotated compounds in the stool, such as tricetin, positively correlated with the genus Blautia. Moreover, vulgaxanthin negatively correlated with Escherichia-Shigella. Despite the limited sample size, this exploratory study provides high-quality exposure data of matched biospecimens obtained from mother-infant pairs in sub-Saharan Africa and shows potential correlations between the chemical exposome and the gut microbiome.

RevDate: 2024-05-27
CmpDate: 2024-05-27

Ramírez-Pool JA, Calderón-Pérez B, Ruiz-Medrano R, et al (2024)

Bacillus Strains as Effective Biocontrol Agents Against Phytopathogenic Bacteria and Promoters of Plant Growth.

Microbial ecology, 87(1):76.

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.

RevDate: 2024-05-28
CmpDate: 2024-05-27

Timmis K, Hallsworth JE, McGenity TJ, et al (2024)

A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society.

Microbial biotechnology, 17(5):e14456.

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient.

ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.

RevDate: 2024-05-28
CmpDate: 2024-05-27

Vargas-Sánchez M, Alcocer J, Puche E, et al (2024)

Abiotic processes control carbon dioxide dynamics in temperate karst lakes.

PeerJ, 12:e17393.

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ[13]C-DIC, δ[13]C-CO2 in lake waters, and δ[13]C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L[-1]). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ[13]C-DIC signatures below -12‰ confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ[13]C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ[13]C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO3[2-] ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.

RevDate: 2024-05-27

Mahalak KK, Liu L, Bobokalonov J, et al (2024)

Supplementation with soluble or insoluble rice-bran fibers increases short-chain fatty acid producing bacteria in the gut microbiota in vitro.

Frontiers in nutrition, 11:1304045.

INTRODUCTION: Studies have shown that a diet high in fiber and prebiotics has a positive impact on human health due largely to the fermentation of these compounds by the gut microbiota. One underutilized source of fiber may be rice bran, a waste product of rice processing that is used most frequently as an additive to livestock feed but may be a good source of fibers and other phenolic compounds as a human diet supplement. Previous studies focused on specific compounds extracted from rice bran showed that soluble fibers extracted from rice bran can improve glucose response and reduce weight gain in mouse models. However, less is known about changes in the human gut microbiota in response to regular rice bran consumption.

METHODS: In this study, we used a Simulator of the Human Intestinal Microbial Ecology (SHIME®) to cultivate the human gut microbiota of 3 different donors in conditions containing either soluble or insoluble fiber fractions from rice bran. Using 16S rRNA amplicon sequencing and targeted metabolomics via Gas Chromatography-Mass Spectrometry, we explored how gut microbial communities developed provided different supplemental fiber sources.

RESULTS: We found that insoluble and soluble fiber fractions increased short-chain fatty acid production, indicating that both fractions were fermented. However, there were differences in response between donors, for example the gut microbiota from donor 1 increased acetic acid production with both fiber types compared with control; whereas for donors 2 and 3, butanoic acid production increased with ISF and SF supplementation. Both soluble and insoluble rice bran fractions increased the abundance of Bifidobacterium and Lachnospiraceae taxa.

DISCUSSION: Overall, analysis of the effect of soluble and insoluble rice bran fractions on the human in vitro gut microbiota and the metabolites produced revealed individually variant responses to these prebiotics.

RevDate: 2024-05-27

Almeida-Silva F, Prost-Boxoen L, Y Van de Peer (2024)

hybridexpress: an R/Bioconductor package for comparative transcriptomic analyses of hybrids and their progenitors.

The New phytologist [Epub ahead of print].

Hybridization, the process of crossing individuals from diverse genetic backgrounds, plays a pivotal role in evolution, biological invasiveness, and crop breeding. At the transcriptional level, hybridization often leads to complex nonadditive effects, presenting challenges for understanding its consequences. Although standard transcriptomic analyses exist to compare hybrids to their progenitors, such analyses have not been implemented in a software package, hindering reproducibility. We introduce hybridexpress, an R/Bioconductor package designed to facilitate the analysis, visualization, and comparison of gene expression patterns in hybrid triplets (hybrids and their progenitors). hybridexpress provides users with a user-friendly and comprehensive workflow that includes all standard comparative analyses steps, including data normalization, calculation of midparent expression values, sample clustering, expression-based gene classification into categories and classes, and overrepresentation analysis for functional terms. We illustrate the utility of hybridexpress through comparative transcriptomic analyses of cotton allopolyploidization and rice root trait heterosis. hybridexpress is designed to streamline comparative transcriptomic studies of hybrid triplets, advancing our understanding of evolutionary dynamics in allopolyploids, and enhancing plant breeding strategies. hybridexpress is freely accessible from Bioconductor (https://bioconductor.org/packages/HybridExpress) and its source code is available on GitHub (https://github.com/almeidasilvaf/HybridExpress).

RevDate: 2024-05-25

Fricker AD, Yao T, Lindemann SR, et al (2024)

Enrichment and characterization of human associated mucin degrading microbial consortia by sequential passage.

FEMS microbiology ecology pii:7681973 [Epub ahead of print].

Mucin is a glycoprotein secreted throughout the mammalian gastrointestinal tract that can support endogenous microorganisms in the absence of complex polysaccharides. While several mucin degrading bacteria have been identified, the inter-individual differences in microbial communities capable of metabolizing this complex polymer are not well described. To determine whether community assembly on mucin is deterministic across individuals or whether taxonomically distinct but functionally similar mucin-degrading communities are selected across fecal inocula, we used a ten-day in vitro sequential batch culture fermentation from three human donors with mucin as the sole carbon source. For each donor, 16S rRNA gene amplicon sequencing was used to characterize microbial community succession, and the short-chain fatty acid profile was determined from the final community. All three communities reached a steady-state by day seven in which the community composition stabilized. Taxonomic comparisons amongst communities revealed that one of the final communities had Desulfovibrio, another had Akkermansia, and all three shared other members, such as Bacteroides. Metabolic output differences were most notable for one of the donor's communities, with significantly less production of acetate and propionate than the other two communities. These findings demonstrate the feasibility of developing stable mucin-degrading communities with shared and unique taxa. Furthermore, the mechanisms and efficiencies of mucin degradation across individuals are important for understanding how this community-level process impacts human health.

RevDate: 2024-05-27

Jiao F, Qian L, Wu J, et al (2024)

Diversity and Composition of Soil Acidobacterial Communities in Different Temperate Forest Types of Northeast China.

Microorganisms, 12(5):.

To gain an in-depth understanding of the diversity and composition of soil Acidobacteria in five different forest types in typical temperate forest ecosystems and to explore their relationship with soil nutrients. The diversity of soil Acidobacteria was determined by high-throughput sequencing technology. Soil Acidobacteria's alpha-diversity index and soil nutrient content differed significantly among different forest types. β-diversity and the composition of soil Acidobacteria also varied across forest types. Acidobacterial genera, such as Acidobacteria_Gp1, Acidobacteria_Gp4, and Acidobacteria_Gp17, play key roles in different forests. The RDA analyses pointed out that the soil pH, available nitrogen (AN), carbon to nitrogen (C/N) ratio, available phosphorus (AP), total carbon (TC), and total phosphorus (TP) were significant factors affecting soil Acidobacteria in different forest types. In this study, the diversity and composition of soil Acidobacteria under different forest types in a temperate forest ecosystem were analyzed, revealing the complex relationship between them and soil physicochemical properties. These findings not only enhance our understanding of soil microbial ecology but also provide important guidance for ecological conservation and restoration strategies for temperate forest ecosystems.

RevDate: 2024-05-27

Roszkowska P, Klimczak E, Ostrycharz E, et al (2024)

Small Intestinal Bacterial Overgrowth (SIBO) and Twelve Groups of Related Diseases-Current State of Knowledge.

Biomedicines, 12(5):.

The human gut microbiota creates a complex microbial ecosystem, characterized by its high population density, wide diversity, and complex interactions. Any imbalance of the intestinal microbiome, whether qualitative or quantitative, may have serious consequences for human health, including small intestinal bacterial overgrowth (SIBO). SIBO is defined as an increase in the number of bacteria (10[3]-10[5] CFU/mL), an alteration in the bacterial composition, or both in the small intestine. The PubMed, Science Direct, Web of Science, EMBASE, and Medline databases were searched for studies on SIBO and related diseases. These diseases were divided into 12 groups: (1) gastrointestinal disorders; (2) autoimmune disease; (3) cardiovascular system disease; (4) metabolic disease; (5) endocrine disorders; (6) nephrological disorders; (7) dermatological diseases; (8) neurological diseases (9); developmental disorders; (10) mental disorders; (11) genetic diseases; and (12) gastrointestinal cancer. The purpose of this comprehensive review is to present the current state of knowledge on the relationships between SIBO and these 12 disease groups, taking into account risk factors and the causal context. This review fills the evidence gap on SIBO and presents a biological-medical approach to the problem, clearly showing the groups and diseases having a proven relationship with SIBO, as well as indicating groups within which research should continue to be expanded.

RevDate: 2024-05-27

Ding Y, Wang L, Wang H, et al (2024)

Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation.

Foods (Basel, Switzerland), 13(10):.

The composition and continuous succession of natural microbial communities during grape growth play important roles in grape health and flavor quality as well as in characterizing the regional wine terroir. This study explored the diversity and dynamics of fruit epidermal microbes at each growth and developmental stage of Ecolly grapes under an extremely simplified eco-cultivation model, analyzed microbial interactions and associations of weather parameters to specific communities, and emphasized metabolic functional characteristics of microecology. The results indicated that the natural microbial community changed significantly during the grape growth phase. The dominant fungal genera mainly included Gibberella, Alternaria, Filobasidium, Naganishia, Ascochyta, Apiotrichum, Comoclathris, and Aureobasidium, and the dominant bacterial genera mainly contained Sediminibacterium, Ralstonia, Pantoea, Bradyrhizobium, Brevundimonas, Mesorhizobium, Planococcus, and Planomicrobium. In summary, filamentous fungi gradually shifted to basidiomycetous yeasts along with fruit ripening, with a decline in the number of Gram-negative bacteria and a relative increase in Gram-positive bacteria. The community assembly process reflects the fact that microbial ecology may be influenced by a variety of factors, but the fungal community was more stable, and the bacterial community fluctuated more from year to year, which may reflect their response to weather conditions over the years. Overall, our study helps to comprehensively profile the ecological characteristics of the grape microbial system, highlights the natural ecological viticulture concept, and promotes the sustainable development of the grape and wine industry.

RevDate: 2024-05-27

Ayed L, M'hir S, Nuzzolese D, et al (2024)

Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review.

Foods (Basel, Switzerland), 13(10):.

This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions in foods and improve their functional properties. In addition, LABs' role as probiotics is known for their promising effects on gut health, immune system modulation, cholesterol control, and general wellbeing. Despite these advantages, several challenges hinder the effective production and use of probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests avenues for future research.

RevDate: 2024-05-24

Liu J, Zhao R, Feng J, et al (2024)

Bacterial assembly and succession patterns in conventional and advanced drinking water systems: From source to tap.

Journal of hazardous materials, 473:134613 pii:S0304-3894(24)01192-0 [Epub ahead of print].

Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.

RevDate: 2024-05-25

Jawień P, Pfitzner WP, Schaffner F, et al (2024)

Mosquitoes (Diptera: Culicidae) of Poland: An Update of Species Diversity and Current Challenges.

Insects, 15(5):.

This article presents the current state of knowledge of mosquito species (Diptera: Culicidae) occurring in Poland. In comparison to the most recently published checklists (1999 and 2007), which listed 47 mosquito species, four species (Aedes japonicus, Anopheles daciae, Anopheles hyrcanus, and Anopheles petragnani) are added to the Polish fauna. Our new checklist of Polish mosquito fauna includes 51 species of mosquitoes from five genera: Aedes (30), Anopheles (8), Coquillettidia (1), Culiseta (7), and Culex (5). Aspects of the ecology and biology of the Polish mosquito fauna, with particular emphasis on newly recorded species, are discussed.

RevDate: 2024-05-25

Dyczko D, Plewa-Tutaj K, D Kiewra (2024)

Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus.

Insects, 15(5):.

(1) Background: In addition to the microclimate, host availability, and tick microbiota, soil environmental microorganisms can affect tick populations. This study aimed to (1) determine the presence and diversity of entomopathogenic fungi (EF) in forests, where ticks are abundant, and (2) estimate the effectiveness of the isolated EF strains against Ixodes ricinus. (2) Methods: EF were isolated using the trap insect method from soil collected from tick sites. A bioassay was used to estimate the effectiveness of EF against ticks. (3) Results: The presence of EF was found in all tested forest habitat types. A total of 53 strains belonging to the genera Metarhizium, Beauveria, and Isaria were isolated. All the six strains subjected to the bioassay showed potential efficacy against both adult and nymphal stages of I. ricinus; however, the strains differed in their effectiveness. The most effective isolate against I. ricinus was the soil environmental strain of Metarhizium anisopliae. (4) Conclusion: The study indicates that tick habitats can be the source of entomopathogenic fungi, which have a lethal effect on ticks, as demonstrated in preliminary laboratory tests with I. ricinus. However, for practical use, extensive field tests and further research on application methods and long-term effects are necessary to develop effective and sustainable tick management strategies.

RevDate: 2024-05-23

Liu Y, Delgado-Baquerizo M, Bing H, et al (2024)

Warming-Induced Shifts in Alpine Soil Microbiome: An Ecosystem-Scale Study with Environmental Context-Dependent Insights.

Environmental research pii:S0013-9351(24)01111-3 [Epub ahead of print].

Climate warming is a pressing global issue with substantial impacts on soil health and function. However, the influence of environmental context on the responses of soil microorganisms to warming remains largely elusive, particularly in alpine ecosystems. This study examined the responses of the soil microbiome to in situ experimental warming across three elevations (3,850 m, 4,100 m, and 4,250 m) in the meadow of Gongga Mountain, eastern Tibetan Plateau. Our findings demonstrate that soil microbial diversity is highly resilient to warming, with significant impacts observed only at specific elevations. Furthermore, the influence of warming on the composition of the soil microbial community is also elevation-dependent, underscoring the importance of local environmental context in shaping microbial evolution in alpine soils under climate warming. Notably, we identified soil moisture at 3,850 m and carbon-to-nitrogen ratio at 4,250 m as indirect predictors regulating the responses of microbial diversity to warming at specific elevations. These findings underscore the paramount importance of considering pre-existing environmental conditions in predicting the response of alpine soil microbiomes to climate warming. Our study provides novel insights into the intricate interactions between climate warming, soil microbiome, and environmental context in alpine ecosystems, illuminating the complex mechanisms governing soil microbial ecology in these fragile and sensitive environments.

RevDate: 2024-05-23

Bouchali R, Mandon C, Danty-Berger E, et al (2024)

Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns.

International journal of hygiene and environmental health, 260:114391 pii:S1438-4639(24)00072-5 [Epub ahead of print].

The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.

RevDate: 2024-05-23

Beaver RC, JD Neufeld (2024)

Microbial ecology of the deep terrestrial subsurface.

The ISME journal pii:7680289 [Epub ahead of print].

The terrestrial subsurface hosts diverse microbial communities that, collectively, are predicted to comprise as many microbial cells as global surface soils. Although initially thought to be associated with deposited organic matter, contemporary research demonstrates that deep subsurface microbial communities are supported by chemolithoautotrophic primary production, with hydrogen serving as an important source of electrons. Despite recent progress, relatively little is known about the deep terrestrial subsurface compared to more commonly studied environments. Understanding the composition of deep terrestrial subsurface microbial communities and the factors that influence them is of importance because of human-associated activities including long-term storage of used nuclear fuel, carbon capture, and storage of hydrogen for use as an energy vector. In addition to identifying deep subsurface microorganisms, recent research focuses on identifying the roles of microorganisms in subsurface communities, as well as elucidating myriad interactions - syntrophic, episymbiotic, and viral - that occur among community members. In recent years, entirely new groups of microorganisms (i.e., CPR bacteria and DPANN archaea) have been discovered in deep terrestrial subsurface environments, suggesting that much remains unknown about this biosphere. This review explores the historical context for deep terrestrial subsurface microbial ecology and highlights recent discoveries that shape current ecological understanding of this poorly explored microbial habitat. Additionally, we highlight the need for multifaceted experimental approaches to observe phenomena such as cryptic cycles, complex interactions, and episymbiosis, which may not be apparent when using single approaches in isolation, but are nonetheless critical to advancing our understanding of this deep biosphere.

RevDate: 2024-05-24
CmpDate: 2024-05-23

Kou Z, Liu K, Qiao Z, et al (2024)

The alterations of oral, airway and intestine microbiota in chronic obstructive pulmonary disease: a systematic review and meta-analysis.

Frontiers in immunology, 15:1407439.

BACKGROUND: Increasing evidence indicates the microbial ecology of chronic obstructive pulmonary disease (COPD) is intricately associated with the disease's status and severity, and distinct microbial ecological variations exist between COPD and healthy control (HC). This systematic review and meta-analysis aimed to summarize microbial diversity indices and taxa relative abundance of oral, airway, and intestine microbiota of different stages of COPD and HC to make comparisons.

METHODS: A comprehensive systematic literature search was conducted in PubMed, Embase, the Web of Science, and the Cochrane Library databases to identify relevant English articles on the oral, airway, and intestine microbiota in COPD published between 2003 and 8 May 2023. Information on microbial diversity indices and taxa relative abundance of oral, airway, and intestine microbiota was collected for comparison between different stages of COPD and HC.

RESULTS: A total of 20 studies were included in this review, involving a total of 337 HC participants, 511 COPD patients, and 154 AECOPD patients. We observed that no significant differences in alpha diversity between the participant groups, but beta diversity was significantly different in half of the included studies. Compared to HC, Prevotella, Streptococcus, Actinomyces, and Veillonella of oral microbiota in SCOPD were reduced at the genus level. Most studies supported that Haemophilus, Lactobacillus, and Pseudomonas were increased, but Veillonella, Prevotella, Actinomyces, Porphyromonas, and Atopobium were decreased at the genus level in the airway microbiota of SCOPD. However, the abundance of Haemophilus, Lactobacillus and Pseudomonas genera exhibited an increase, whereas Actinomyces and Porphyromonas showed a decrease in the airway microbiota of AECOPD compared to HC. And Lachnospira of intestine microbiota in SCOPD was reduced at the genus level.

CONCLUSION: The majority of published research findings supported that COPD exhibited decreased alpha diversity compared to HC. However, our meta-analysis does not confirm it. In order to further investigate the characteristics and mechanisms of microbiome in the oral-airway- intestine axis of COPD patients, larger-scale and more rigorous studies are needed.

PROSPERO (https://www.crd.york.ac.uk/prospero/), identifier CRD42023418726.

RevDate: 2024-05-24

Mellouk A, Mahmood T, Jlali M, et al (2024)

Potential of guar gum as a leaky gut model in broilers: Digestibility, performance, and microbiota responses.

Animal nutrition (Zhongguo xu mu shou yi xue hui), 17:177-187.

Diet is a major modulator of animal resilience and its three pillars: host's immune response, gut microbiota, and intestinal barrier. In the present study, we endeavour to delineate a challenging condition aimed to degrade these pillars and elucidate its impact on broiler performance and nutrient digestibility. To attain this objective, we opted to use guar gum (GG) as a source of galactomannan. A series of three in vivo experiments were conducted employing conventional or semi-purified diets, supplemented with or without GG during the grower phase (14-28 d). Our findings demonstrate a substantial decline in animal performance metrics such as body weight (reduced by 29%, P < 0.001), feed intake (decreased by 12%, P < 0.001), and feed conversion ratio (up to 58% increase, P < 0.001) in the presence of GG at 2%. The supplementation of a semi-purified diet with incremental doses of GG resulted in a linear reduction (P < 0.001) in the apparent total tract digestibility of dry matter and apparent metabolisable energy. Additionally, a marked reduction in ileal endogenous losses, as well as apparent and standardised digestibility of all amino acids with varying proportions (P < 0.05), was observed. These alterations were accompanied by disrupted gut integrity assessed by fluorescein isothiocyanate-dextran (FITC-d) (P < 0.001) as well as an inflammatory status characterised by elevated levels of acute-phase proteins, namely orosomucoid and serum amyloid A in the sera (P = 0.03), and increased mRNA expression levels of IL-1, IL-6, IL-8, Inos, and K203 genes in the ileum, along with a decrease in IgA levels in the gut lumen (P < 0.05). Microbial ecology and activity were characterised by reduced diversity and richness (Shannon index, P = 0.005) in the presence of GG. Consequently, our results revealed diminished levels of short-chain fatty acids (P = 0.01) and their producer genera, such as Clostridium_XIVa and Blautia, in the gut caeca, coupled with excessive accumulation of lactate (17-fold increase, P < 0.01) in the presence of GG at 2%. In addition to providing a more comprehensive characterisation of the GG supplementation as a leaky gut model, our results substantiate a thorough understanding of the intricate adjustments and interplay between the intestinal barrier, immune response, and microbiota. Furthermore, they underscore the significance of feed components in modulating these dynamics.

RevDate: 2024-05-23

Eckmann CA, Bachy C, Wittmers F, et al (2024)

Recurring seasonality exposes dominant species and niche partitioning strategies of open ocean picoeukaryotic algae.

Communications earth & environment, 5(1):266.

Ocean spring phytoplankton blooms are dynamic periods important to global primary production. We document vertical patterns of a diverse suite of eukaryotic algae, the prasinophytes, in the North Atlantic Subtropical Gyre with monthly sampling over four years at the Bermuda Atlantic Time-series Study site. Water column structure was used to delineate seasonal stability periods more ecologically relevant than seasons defined by calendar dates. During winter mixing, tiny prasinophytes dominated by Class II comprise 46 ± 24% of eukaryotic algal (plastid-derived) 16S rRNA V1-V2 amplicons, specifically Ostreococcus Clade OII, Micromonas commoda, and Bathycoccus calidus. In contrast, Class VII are rare and Classes I and VI peak during warm stratified periods when surface eukaryotic phytoplankton abundances are low. Seasonality underpins a reservoir of genetic diversity from multiple prasinophyte classes during warm periods that harbor ephemeral taxa. Persistent Class II sub-species dominating the winter/spring bloom period retreat to the deep chlorophyll maximum in summer, poised to seed the mixed layer upon winter convection, exposing a mechanism for initiating high abundances at bloom onset. Comparisons to tropical oceans reveal broad distributions of the dominant sub-species herein. This unparalleled window into temporal and spatial niche partitioning of picoeukaryotic primary producers demonstrates how key prasinophytes prevail in warm oceans.

RevDate: 2024-05-22
CmpDate: 2024-05-22

Starr K, Montesanto F, Perisho E, et al (2024)

Gut Microbial Composition of Cyprinella lutrensis (Red Shiner) and Notropis stramineus (Sand Shiner): Insights from Wild Fish Populations.

Microbial ecology, 87(1):75.

The gut microbiome is a highly intricate ecosystem that exerts a pivotal influence on the host's physiology. Characterizing fish microbiomes is critical to understanding fish physiology and health, but little is known about the ecology and colonization dynamics of microorganisms inhabiting fish species. In this study, we investigated the bacterial communities of two small-bodied fish species, Cyprinella lutrensis (red shiner) and Notropis stramineus (sand shiner), two fish species where gut microbiomes have not been investigated previously and surrounding waters, collected from rivers in Nebraska, USA. Our study focused on evaluating microbial diversity in small-bodied fish and identifying autochthonous microbes present within these species irrespective of location to better understand bacterial community composition and possible roles of such bacterial species. Our results revealed that both red shiner and sand shiner exhibited gut bacterial communities dominated by typical bacterial phyla found in freshwater fish. The phylum Bacteroidota was minimally abundant in both species and significantly lower in relative abundance compared to the surrounding water microbial community. Furthermore, we found that the gut microbiomes of red shiner and sand shiner differed from the microbial community in the surrounding water, suggesting that these fish species contain host-associated bacterial species that may provide benefits to the host such as nutrient digestion and colonization resistance of environmental pathogens. The fish gut bacterial communities were sensitive to environmental conditions such as turbidity, dissolved oxygen, temperature, and total nitrogen. Our findings also show bacterial community differences between fish species; although they shared notable similarities in bacterial taxa at phyla level composition, ASV level analysis of bacterial taxa displayed compositional differences. These findings contribute to a better understanding of the gut bacterial composition of wild, freshwater, small-bodied fish and highlight the influence of intrinsic (host) and environmental factors on shaping the bacterial composition.

RevDate: 2024-05-23
CmpDate: 2024-05-22

Fischer FC, Schulze-Makuch D, J Heinz (2024)

Microbial preference for chlorate over perchlorate under simulated shallow subsurface Mars-like conditions.

Scientific reports, 14(1):11537.

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.

RevDate: 2024-05-23
CmpDate: 2024-05-21

Huang WRH, Braam C, Kretschmer C, et al (2024)

Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana.

Nature communications, 15(1):4339.

Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.

RevDate: 2024-05-21

Zai X, Cordovez V, Zhu F, et al (2024)

C4 cereal and biofuel crop microbiomes.

Trends in microbiology pii:S0966-842X(24)00093-3 [Epub ahead of print].

Microbiomes provide multiple life-support functions for plants, including nutrient acquisition and tolerance to abiotic and biotic stresses. Considering the importance of C4 cereal and biofuel crops for food security under climate change conditions, more attention has been given recently to C4 plant microbiome assembly and functions. Here, we review the current status of C4 cereal and biofuel crop microbiome research with a focus on beneficial microbial traits for crop growth and health. We highlight the importance of environmental factors and plant genetics in C4 crop microbiome assembly and pinpoint current knowledge gaps. Finally, we discuss the potential of foxtail millet as a C4 model species and outline future perspectives of C4 plant microbiome research.

RevDate: 2024-05-23
CmpDate: 2024-05-21

Van Hee S, Alınç T, Weldegergis BT, et al (2024)

Differential effects of plant-beneficial fungi on the attraction of the egg parasitoid Trissolcus basalis in response to Nezara viridula egg deposition.

PloS one, 19(5):e0304220.

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.

RevDate: 2024-05-21

Song S, Sun Z, Xu G, et al (2024)

Continuous warming drives the colonization dynamics of periphytic ciliate fauna in marine environments.

Environmental science and pollution research international [Epub ahead of print].

In order to evaluate the influence of global warming on the ecosystem processes in marine environments, the changes in colonization dynamics of periphytic microbiota were studied using the periphytic ciliate communities as the test organism fauna under a continuous warming gradient of 22℃ (control), 25℃, 28℃, 31℃, and 34 ℃. The results demonstrated that (1) the test ciliate communities generally showed a similar temporal pattern in within the colonization process under the water temperatures from 22 up to 28℃; however, (2) the colonization dynamics were significantly changed, and the fitness of colonization curves to the MacArthur-Wilson model equation was failed under the temperature increased by 6 ℃, and (3) the loading or assimilative capacity of the test aquatic ecosystem was decreased with the increase of water temperature. Therefore, this study suggests that continuous warming may significantly drive the colonization dynamics of periphytic ciliates in marine ecosystems.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Jiao Y, Zhang G, Ai X, et al (2024)

Comparison of the Effects of LDPE and PBAT Film Residues on Soil Microbial Ecology.

Current microbiology, 81(7):185.

The plastic film is extensively applied with limited recycling, leading to the long-run residue accumulation in soil, which offers a distinctive habitat for microorganisms, and creates a plastisphere. In this study, traditional low-density polyethylene (LDPE) plastic film and biodegradable polybutylene adipate terephthalate (PBAT) plastic film materials were selected to test their effects on soil microbial ecology. Based on high-throughput sequencing, compared to the soil environment, the alpha-diversity of bacterial communities in plastisphere was lower, and the abundance of Actinobacteria increased. Plastic film residues, as bacterial habitats, exhibited greater heterogeneity and harbor unique bacterial communities. The communities were distinguished between plastisphere and soil environment by means of a random-forest (RF) machine-learning model. Prominent distinctions emerged among bacterial functions between soil environment and plastisphere, especially regarding organics degradation. The neutral model and null model indicated that the constitution of bacterial communities was dominated by random processes except in LDPE plastisphere. The bacterial co-occurrence network of the plastisphere exhibited higher complexity and modularity. This study contributes to our comprehending of characteristics of plastisphere bacterial communities in soil environment and the associated ecological risks of plastic film residues accumulation.

RevDate: 2024-05-21
CmpDate: 2024-05-21

Wang Y, Q Zou (2024)

Deciphering Microbial Adaptation in the Rhizosphere: Insights into Niche Preference, Functional Profiles, and Cross-Kingdom Co-occurrences.

Microbial ecology, 87(1):74.

Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.

RevDate: 2024-05-21

Wu S, Qu Z, Chen D, et al (2024)

Deciphering and designing microbial communities by genome-scale metabolic modelling.

Computational and structural biotechnology journal, 23:1990-2000.

Microbial communities are shaped by the complex interactions among organisms and the environment. Genome-scale metabolic models (GEMs) can provide deeper insights into the complexity and ecological properties of various microbial communities, revealing their intricate interactions. Many researchers have modified GEMs for the microbial communities based on specific needs. Thus, GEMs need to be comprehensively summarized to better understand the trends in their development. In this review, we summarized the key developments in deciphering and designing microbial communities using different GEMs. A timeline of selected highlights in GEMs indicated that this area is evolving from the single-strain level to the microbial community level. Then, we outlined a framework for constructing GEMs of microbial communities. We also summarized the models and resources of static and dynamic community-level GEMs. We focused on the role of external environmental and intracellular resources in shaping the assembly of microbial communities. Finally, we discussed the key challenges and future directions of GEMs, focusing on the integration of GEMs with quorum sensing mechanisms, microbial ecology interactions, machine learning algorithms, and automatic modeling, all of which contribute to consortia-based applications in different fields.

RevDate: 2024-05-19

Liu S, Shi Y, Chen J, et al (2024)

Interspecific barrier effect driven by heavy metals makes soil bacterial functional assembly more stochastic.

Environmental research pii:S0013-9351(24)01058-2 [Epub ahead of print].

Residual heavy metals in soils will destroy microbial community stability and influence its aggregation. However, exploring microbial ecology under heavy-metal stress still requires a conjoint analysis of bacterial interspecies communication and the community diversity maintenance mechanism. In this study, soil samples were collected from a heavy-metal-contaminated site in China to investigate the ecological response of indigenous microbial communities through high-throughput sequencing. Results showed that bacterial taxa and functions generated unusual decoupling phenomena. There were no significant differences in the diversity of species with the increase in concentration of heavy metals (Hg, Se, and Cr), but the functional diversity was lost. Also, the average niche breadth of bacterial species increased from 1.70 to 2.28, but community stability declined and the species assembly was always a deterministic process (NST <0.5). After the bacterial functional assembly changed from a stochastic process to a deterministic process (NST <0.5), it was transformed into a stochastic process (NST >0.5) again under the stress of high-concentration heavy metals, indicating that the collective stress resistance of bacterial communities changed from positive mutation into passive functional propagation. The research results can provide new insight into understanding the adaptive evolution of communities and ecosystem restoration under the stress of soil heavy metals.

RevDate: 2024-05-21
CmpDate: 2024-05-18

Awala SI, Gwak JH, Kim Y, et al (2024)

Nitrous oxide respiration in acidophilic methanotrophs.

Nature communications, 15(1):4226.

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.

RevDate: 2024-05-21
CmpDate: 2024-05-18

Min K, Glowacki AJ, Bosma ML, et al (2024)

Quantitative analysis of the effects of essential oil mouthrinses on clinical plaque microbiome: a parallel-group, randomized trial.

BMC oral health, 24(1):578.

BACKGROUND: The rich diversity of microorganisms in the oral cavity plays an important role in the maintenance of oral health and development of detrimental oral health conditions. Beyond commonly used qualitative microbiome metrics, such as relative proportions or diversity, both the species-level identification and quantification of bacteria are key to understanding clinical disease associations. This study reports the first-time application of an absolute quantitative microbiome analysis using spiked DNA standards and shotgun metagenome sequencing to assess the efficacy and safety of product intervention on dental plaque microbiome.

METHODS: In this parallel-group, randomized clinical trial, essential oil mouthrinses, including LISTERINE® Cool Mint Antiseptic (LCM), an alcohol-containing prototype mouthrinse (ACPM), and an alcohol-free prototype mouthrinse (AFPM), were compared against a hydroalcohol control rinse on clinical parameters and the oral microbiome of subjects with moderate gingivitis. To enable a sensitive and clinically meaningful measure of bacterial abundances, species were categorized according to their associations with oral conditions based on published literature and quantified using known amounts of spiked DNA standards.

RESULTS: Multivariate analysis showed that both LCM and ACPM shifted the dysbiotic microbiome composition of subjects with gingivitis to a healthier state after 4 weeks of twice-daily use, resembling the composition of subjects with clinically healthy oral conditions recruited for observational reference comparison at baseline. The essential oil-containing mouthrinses evaluated in this study showed statistically significant reductions in clinical gingivitis and plaque measurements when compared to the hydroalcohol control rinse after 6 weeks of use.

CONCLUSIONS: By establishing a novel quantitative method for microbiome analysis, this study sheds light on the mechanisms of LCM mouthrinse efficacy on oral microbial ecology, demonstrating that repeated usage non-selectively resets a gingivitis-like oral microbiome toward that of a healthy oral cavity.

TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov on 10/06/2021. The registration number is NCT04921371.

RevDate: 2024-05-18

Wang Z, Lü C, Wang Y, et al (2024)

Zero-valent iron (ZVI) facilitated in-situ selenium (Se) immobilization and its recovery by magnetic separation: Mechanisms and implications for microbial ecology.

Journal of hazardous materials, 473:134591 pii:S0304-3894(24)01170-1 [Epub ahead of print].

Selenium (Se(VI)) is environmentally toxic. One of the most popular reducing agents for Se(VI) remediation is zero-valent iron (ZVI). However, most ZVI studies were carried out in water matrices, and the recovery of reduced Se has not been investigated. A water-sediment system constructed using natural sediment was employed here to study in-situ Se remediation and recovery. A combined effect of ZVI and unacclimated microorganisms from natural sediment was found in Se(VI) removal in the water phase with a removal efficiency of 92.7 ± 1.1% within 7 d when 10 mg L[-1] Se(VI) was present. Soluble Se(VI) was removed from the water and precipitated to the sediment phase (74.8 ± 0.1%), which was enhanced by the addition of ZVI (83.3 ± 0.3%). The recovery proportion of the immobilized Se was 34.2 ± 0.1% and 92.5 ± 0.2% through wet and dry magnetic separation with 1 g L[-1] ZVI added, respectively. The 16 s rRNA sequencing revealed the variations in the microbial communities in response to ZVI and Se, which the magnetic separation could potentially mitigate in the long term. This study provides a novel technique to achieve in-situ Se remediation and recovery by combining ZVI reduction and magnetic separation.

RevDate: 2024-05-20
CmpDate: 2024-05-18

Min K, Bosma ML, John G, et al (2024)

Quantitative analysis of the effects of brushing, flossing, and mouthrinsing on supragingival and subgingival plaque microbiota: 12-week clinical trial.

BMC oral health, 24(1):575.

BACKGROUND: Translational microbiome research using next-generation DNA sequencing is challenging due to the semi-qualitative nature of relative abundance data. A novel method for quantitative analysis was applied in this 12-week clinical trial to understand the mechanical vs. chemotherapeutic actions of brushing, flossing, and mouthrinsing against the supragingival dental plaque microbiome. Enumeration of viable bacteria using vPCR was also applied on supragingival plaque for validation and on subgingival plaque to evaluate interventional effects below the gingival margin.

METHODS: Subjects with gingivitis were enrolled in a single center, examiner-blind, virtually supervised, parallel group controlled clinical trial. Subjects with gingivitis were randomized into brushing only (B); brushing and flossing (BF); brushing and rinsing with Listerine® Cool Mint® Antiseptic (BA); brushing and rinsing with Listerine® Cool Mint® Zero (BZ); or brushing, flossing, and rinsing with Listerine® Cool Mint® Zero (BFZ). All subjects brushed twice daily for 1 min with a sodium monofluorophosphate toothpaste and a soft-bristled toothbrush. Subjects who flossed used unflavored waxed dental floss once daily. Subjects assigned to mouthrinses rinsed twice daily. Plaque specimens were collected at the baseline visit and after 4 and 12 weeks of intervention. Bacterial cell number quantification was achieved by adding reference amounts of DNA controls to plaque samples prior to DNA extraction, followed by shallow shotgun metagenome sequencing.

RESULTS: 286 subjects completed the trial. The metagenomic data for supragingival plaque showed significant reductions in Shannon-Weaver diversity, species richness, and total and categorical bacterial abundances (commensal, gingivitis, and malodor) after 4 and 12 weeks for the BA, BZ, and BFZ groups compared to the B group, while no significant differences were observed between the B and BF groups. Supragingival plaque vPCR further validated these results, and subgingival plaque vPCR demonstrated significant efficacy for the BFZ intervention only.

CONCLUSIONS: This publication reports on a successful application of a quantitative method of microbiome analysis in a clinical trial demonstrating the sustained and superior efficacy of essential oil mouthrinses at controlling dental plaque compared to mechanical methods. The quantitative microbiological data in this trial also reinforce the safety and mechanism of action of EO mouthrinses against plaque microbial ecology and highlights the importance of elevating EO mouthrinsing as an integral part of an oral hygiene regimen.

TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov on 31/10/2022. The registration number is NCT05600231.

RevDate: 2024-05-19
CmpDate: 2024-05-17

Nie X, Zhao Z, Zhang X, et al (2024)

Endophytes Alleviate Drought-Derived Oxidative Damage in Achnatherum inebrians Plants Through Increasing Antioxidants and Regulating Host Stress Responses.

Microbial ecology, 87(1):73.

Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.

RevDate: 2024-05-18

Wang F, Xiang L, Sze-Yin Leung K, et al (2024)

Emerging contaminants: A One Health perspective.

Innovation (Cambridge (Mass.)), 5(4):100612.

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

RevDate: 2024-05-17

Akashi M, Takemura M, S Suzuki (2024)

Continuous year-round isolation of giant viruses from brackish shoreline soils.

Frontiers in microbiology, 15:1402690.

Giant viruses, categorized under Nucleocytoviricota, are believed to exist ubiquitously in natural environments. However, comprehensive reports on isolated giant viruses remain scarce, with limited information available on unrecoverable strains, viral proliferation sites, and natural hosts. Previously, the author highlighted Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. styx, isolated from brackish water soil, as potential hotspots for giant virus multiplication. This study presents findings from nearly a year of monthly sampling within the same brackish water region after isolating the three aforementioned strains. This report details the recurrent isolation of a wide range of giant viruses. Each month, four soil samples were randomly collected from an approximately 5 × 10 m plot, comprising three soil samples and one water sample containing sediment from the riverbed. Acanthamoeba castellanii was used as a host for virus isolation. These efforts consistently yielded at least one viral species per month, culminating in a total of 55 giant virus isolates. The most frequently isolated species was Mimiviridae (24 isolates), followed by Marseilleviridae (23 isolates), Pandoravirus (6 isolates), and singular isolates of Pithovirus and Cedratvirus. Notably, viruses were not consistently isolated from any of the four samples every month, with certain sites yielding no viruses. Cluster analysis based on isolate numbers revealed that soil samples from May and water and sediment samples from January produced the highest number of viral strains. These findings underscore brackish coastal soil as a significant site for isolating numerous giant viruses, highlighting the non-uniform distribution along coastlines.

RevDate: 2024-05-18
CmpDate: 2024-05-16

Flores-Almaraz VS, Truong C, Hernández-Oaxaca D, et al (2024)

Foliar mycobiome remains unaltered under urban air-pollution but differentially express stress-related genes.

Microbial ecology, 87(1):72.

Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )