MENU
The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.
More About: ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT
ESP: PubMed Auto Bibliography 01 Jun 2023 at 01:51 Created:
Mitochondrial Evolution
The endosymbiotic hypothesis for the origin of mitochondria (and chloroplasts) suggests that mitochondria are descended from specialized bacteria (probably purple nonsulfur bacteria) that somehow survived endocytosis by another species of prokaryote or some other cell type, and became incorporated into the cytoplasm.
Created with PubMed® Query: ( mitochondria AND evolution NOT 26799652[PMID] NOT 33634751[PMID] ) NOT pmcbook NOT ispreviousversion
Citations The Papers (from PubMed®)
RevDate: 2023-05-30
Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae.
Plant physiology pii:7185866 [Epub ahead of print].
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing datasets. Our analysis revealed that most NOGs were recently transferred and lineage-specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during two rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping inter- and intraspecies genome variation and driving plant genome evolution.
Additional Links: PMID-37249052
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37249052,
year = {2023},
author = {Chen, Y and Guo, Y and Xie, X and Wang, Z and Miao, L and Yang, Z and Jiao, Y and Xie, C and Liu, J and Hu, Z and Xin, M and Yao, Y and Ni, Z and Sun, Q and Peng, H and Guo, W},
title = {Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae.},
journal = {Plant physiology},
volume = {},
number = {},
pages = {},
doi = {10.1093/plphys/kiad319},
pmid = {37249052},
issn = {1532-2548},
abstract = {Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing datasets. Our analysis revealed that most NOGs were recently transferred and lineage-specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during two rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping inter- and intraspecies genome variation and driving plant genome evolution.},
}
RevDate: 2023-05-29
CmpDate: 2023-05-29
Shedding Light on Osteosarcoma Cell Differentiation: Impact on Biomineralization and Mitochondria Morphology.
International journal of molecular sciences, 24(10):.
Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.
Additional Links: PMID-37239904
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37239904,
year = {2023},
author = {Rossi, F and Picone, G and Cappadone, C and Sorrentino, A and Columbaro, M and Farruggia, G and Catelli, E and Sciutto, G and Prati, S and Oliete, R and Pasini, A and Pereiro, E and Iotti, S and Malucelli, E},
title = {Shedding Light on Osteosarcoma Cell Differentiation: Impact on Biomineralization and Mitochondria Morphology.},
journal = {International journal of molecular sciences},
volume = {24},
number = {10},
pages = {},
pmid = {37239904},
issn = {1422-0067},
mesh = {Humans ; Osteogenesis ; Biomineralization ; Cell Line, Tumor ; *Osteosarcoma/metabolism ; Cell Differentiation/physiology ; Mitochondria/metabolism ; *Bone Neoplasms/metabolism ; Cell Proliferation/physiology ; },
abstract = {Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Osteogenesis
Biomineralization
Cell Line, Tumor
*Osteosarcoma/metabolism
Cell Differentiation/physiology
Mitochondria/metabolism
*Bone Neoplasms/metabolism
Cell Proliferation/physiology
RevDate: 2023-05-29
CmpDate: 2023-05-29
Studying Genetic Diversity and Relationships between Mountainous Meihua Chickens Using Mitochondrial DNA Control Region.
Genes, 14(5):.
The Mountainous Meihua chicken is a unique regional germplasm resource from Tongjiang County, Bazhong City, China, but its genetic structure and evolutionary relationships with other native chicken breeds in the Sichuan region remain unclear. Here, we analyzed a total of 469 sequences, including 199 Mountainous Meihua chicken sequences generated in this study, together with 30 sequences representing 13 clades and 240 sequences from seven different Sichuan local chicken breeds downloaded from NCBI. These sequences were further used to analyze genetic diversity, patterns of population differentiation, and phylogenetic relationships between groups. We show that Mountainous Meihua chicken mtDNA sequences have high haplotypic and nucleotide diversity (0.876 and 0.012, respectively) and with a T bias that is suggestive of good breeding potential. Phylogenetic analysis showed that Mountainous Meihua chickens belong to clades A, B, E, and G and have a low affinity to other chicken breeds, with a moderate degree of differentiation. A non-significant Tajima's D indicates that no demographic expansions occurred in the past. Finally, the four maternal lineages identified in Mountainous Meihua chicken showed unique genetic characteristics.
Additional Links: PMID-37239358
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37239358,
year = {2023},
author = {Ran, B and Zhu, W and Zhao, X and Li, L and Yi, Z and Li, M and Wang, T and Li, D},
title = {Studying Genetic Diversity and Relationships between Mountainous Meihua Chickens Using Mitochondrial DNA Control Region.},
journal = {Genes},
volume = {14},
number = {5},
pages = {},
pmid = {37239358},
issn = {2073-4425},
mesh = {Animals ; *DNA, Mitochondrial/genetics ; *Chickens/genetics ; Genetic Variation/genetics ; Phylogeny ; Mitochondria/genetics ; },
abstract = {The Mountainous Meihua chicken is a unique regional germplasm resource from Tongjiang County, Bazhong City, China, but its genetic structure and evolutionary relationships with other native chicken breeds in the Sichuan region remain unclear. Here, we analyzed a total of 469 sequences, including 199 Mountainous Meihua chicken sequences generated in this study, together with 30 sequences representing 13 clades and 240 sequences from seven different Sichuan local chicken breeds downloaded from NCBI. These sequences were further used to analyze genetic diversity, patterns of population differentiation, and phylogenetic relationships between groups. We show that Mountainous Meihua chicken mtDNA sequences have high haplotypic and nucleotide diversity (0.876 and 0.012, respectively) and with a T bias that is suggestive of good breeding potential. Phylogenetic analysis showed that Mountainous Meihua chickens belong to clades A, B, E, and G and have a low affinity to other chicken breeds, with a moderate degree of differentiation. A non-significant Tajima's D indicates that no demographic expansions occurred in the past. Finally, the four maternal lineages identified in Mountainous Meihua chicken showed unique genetic characteristics.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*DNA, Mitochondrial/genetics
*Chickens/genetics
Genetic Variation/genetics
Phylogeny
Mitochondria/genetics
RevDate: 2023-05-29
CmpDate: 2023-05-29
Pathology, epidemiology, and phylogeny of mussel egg disease due to the microsporidian Steinhausia mytilovum (Field, 1924) in the Mediterranean mussel (Mytilus galloprovincialis).
Journal of invertebrate pathology, 198:107927.
Microsporidia are well known fungal pathogens of aquatic animals. However, the taxonomy of microsporidia is generally poorly resolved, which has consequently constrained our understanding of their pathology and epidemiology in marine animals. To date, microsporidia have been reported in both bivalves and gastropods, and microsporidia from mollusks have been classified in different genera. Despite ongoing work to better describe these genera, including detailed microscopic and ultrastructural images, so far we lack information on microsporidian phylogeny and pathogenicity of species within these genera. Here we investigate the microsporidian parasite Steinhausia mytilovum associated with the mussel, Mytilus galloprovincialis, in natural beds and farms along coast of southern Italy. A survey of M. galloprovincialis was conducted in 13 mussel farms and one natural bed between 2009 and 2020. We found the presence of S. mytilovum in 10 of the investigated farms, with a prevalence ranging between 14 and 100% of female mussels, depending on the population and season in which they were sampled. The parasite developed in the oocytes within a sporophorous vesicle (SV) where it produced 1-3 spores per cell, both in the cytoplasm and in the nucleus. Stenhausia mytilovum elicited an infiltrative (24.8%) or a strong capsular inflammatory response (43.4%) at gonadal follicles and surrounding vesicular connective tissue, in some cases accompanied by gonadal atresia (24.8%), leading to loss of gonadal architecture. In 7% of cases no reaction was observed. Ultrastructural observations revealed a mitochondrial re-organization to interact with all the phases of parasite development; the mitochondria were arranged outside the parasitophorous vesicle (PV) or directly interacting with the spore inside vesicle. There are five taxonomic clades of microsporidians as identified by SSU ribosomal gene sequence data. Maximum likelihood analysis assigned S. mytilovum within the Clade IV, defined as the Class Terresporidia, with closest genetic relationship (83.6% identity) to an undetermined invertebrate ovarian microsporidian. The constant presence, prevalence, and severity of S. mytilovum in coastline populations of M. galloprovincialis populations in southern Italy may indirectly reflect immunocompetence at both individual and population levels.
Additional Links: PMID-37087094
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37087094,
year = {2023},
author = {Carella, F and De Vico, G},
title = {Pathology, epidemiology, and phylogeny of mussel egg disease due to the microsporidian Steinhausia mytilovum (Field, 1924) in the Mediterranean mussel (Mytilus galloprovincialis).},
journal = {Journal of invertebrate pathology},
volume = {198},
number = {},
pages = {107927},
doi = {10.1016/j.jip.2023.107927},
pmid = {37087094},
issn = {1096-0805},
mesh = {Female ; Animals ; *Mytilus/microbiology ; *Microsporidia/genetics ; Phylogeny ; Italy ; Seafood ; },
abstract = {Microsporidia are well known fungal pathogens of aquatic animals. However, the taxonomy of microsporidia is generally poorly resolved, which has consequently constrained our understanding of their pathology and epidemiology in marine animals. To date, microsporidia have been reported in both bivalves and gastropods, and microsporidia from mollusks have been classified in different genera. Despite ongoing work to better describe these genera, including detailed microscopic and ultrastructural images, so far we lack information on microsporidian phylogeny and pathogenicity of species within these genera. Here we investigate the microsporidian parasite Steinhausia mytilovum associated with the mussel, Mytilus galloprovincialis, in natural beds and farms along coast of southern Italy. A survey of M. galloprovincialis was conducted in 13 mussel farms and one natural bed between 2009 and 2020. We found the presence of S. mytilovum in 10 of the investigated farms, with a prevalence ranging between 14 and 100% of female mussels, depending on the population and season in which they were sampled. The parasite developed in the oocytes within a sporophorous vesicle (SV) where it produced 1-3 spores per cell, both in the cytoplasm and in the nucleus. Stenhausia mytilovum elicited an infiltrative (24.8%) or a strong capsular inflammatory response (43.4%) at gonadal follicles and surrounding vesicular connective tissue, in some cases accompanied by gonadal atresia (24.8%), leading to loss of gonadal architecture. In 7% of cases no reaction was observed. Ultrastructural observations revealed a mitochondrial re-organization to interact with all the phases of parasite development; the mitochondria were arranged outside the parasitophorous vesicle (PV) or directly interacting with the spore inside vesicle. There are five taxonomic clades of microsporidians as identified by SSU ribosomal gene sequence data. Maximum likelihood analysis assigned S. mytilovum within the Clade IV, defined as the Class Terresporidia, with closest genetic relationship (83.6% identity) to an undetermined invertebrate ovarian microsporidian. The constant presence, prevalence, and severity of S. mytilovum in coastline populations of M. galloprovincialis populations in southern Italy may indirectly reflect immunocompetence at both individual and population levels.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Female
Animals
*Mytilus/microbiology
*Microsporidia/genetics
Phylogeny
Italy
Seafood
RevDate: 2023-05-29
CmpDate: 2023-05-29
A tale of two paths: The evolution of mitochondrial recombination in bivalves with doubly uniparental inheritance.
The Journal of heredity, 114(3):199-206.
In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.
Additional Links: PMID-36897956
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36897956,
year = {2023},
author = {Smith, CH and Pinto, BJ and Kirkpatrick, M and Hillis, DM and Pfeiffer, JM and Havird, JC},
title = {A tale of two paths: The evolution of mitochondrial recombination in bivalves with doubly uniparental inheritance.},
journal = {The Journal of heredity},
volume = {114},
number = {3},
pages = {199-206},
pmid = {36897956},
issn = {1465-7333},
support = {R35-GM142836/GF/NIH HHS/United States ; },
mesh = {Animals ; Female ; Male ; Phylogeny ; Mitochondria/genetics ; *Bivalvia/genetics ; DNA, Mitochondrial/genetics ; Inheritance Patterns ; *Genome, Mitochondrial ; Recombination, Genetic ; },
abstract = {In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Female
Male
Phylogeny
Mitochondria/genetics
*Bivalvia/genetics
DNA, Mitochondrial/genetics
Inheritance Patterns
*Genome, Mitochondrial
Recombination, Genetic
RevDate: 2023-05-27
Complete Mitogenome and Phylogenetic Analysis of the Carthamus tinctorius L.
Genes, 14(5): pii:genes14050979.
Carthamus tinctorius L. 1753 (Asteraceae), also called safflower, is a cash crop with both edible and medical properties. We analyzed and reported the safflower mitogenome based on combined short and long reads obtained from Illumina and Pacbio platforms, respectively. This safflower mitogenome mainly contained two circular chromosomes, with a total length of 321,872 bp, and encoded 55 unique genes, including 34 protein-coding genes (PCGs), 3 rRNA genes, and 18 tRNA genes. The total length of repeat sequences greater than 30 bp was 24,953 bp, accounting for 7.75% of the whole mitogenome. Furthermore, we characterized the RNA editing sites of protein-coding genes located in the safflower mitogenome, and the total number of RNA editing sites was 504. Then, we revealed partial sequence transfer events between plastid and mitochondria, in which one plastid-derived gene (psaB) remained intact in the mitogenome. Despite extensive arrangement events among the three mitogenomes of C. tinctorius, Arctium lappa, and Saussurea costus, the constructed phylogenetic tree based on mitogenome PCGs showed that C. tinctorius has a closer relationship with three Cardueae species, A. lappa, A. tomentosum, and S. costus, which is similar to the phylogeny constructed from the PCGs of plastid genomes. This mitogenome not only enriches the genetic information of safflower but also will be useful in the phylogeny and evolution study of the Asteraceae.
Additional Links: PMID-37239339
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37239339,
year = {2023},
author = {Wu, Z and Yang, T and Qin, R and Liu, H},
title = {Complete Mitogenome and Phylogenetic Analysis of the Carthamus tinctorius L.},
journal = {Genes},
volume = {14},
number = {5},
pages = {},
doi = {10.3390/genes14050979},
pmid = {37239339},
issn = {2073-4425},
abstract = {Carthamus tinctorius L. 1753 (Asteraceae), also called safflower, is a cash crop with both edible and medical properties. We analyzed and reported the safflower mitogenome based on combined short and long reads obtained from Illumina and Pacbio platforms, respectively. This safflower mitogenome mainly contained two circular chromosomes, with a total length of 321,872 bp, and encoded 55 unique genes, including 34 protein-coding genes (PCGs), 3 rRNA genes, and 18 tRNA genes. The total length of repeat sequences greater than 30 bp was 24,953 bp, accounting for 7.75% of the whole mitogenome. Furthermore, we characterized the RNA editing sites of protein-coding genes located in the safflower mitogenome, and the total number of RNA editing sites was 504. Then, we revealed partial sequence transfer events between plastid and mitochondria, in which one plastid-derived gene (psaB) remained intact in the mitogenome. Despite extensive arrangement events among the three mitogenomes of C. tinctorius, Arctium lappa, and Saussurea costus, the constructed phylogenetic tree based on mitogenome PCGs showed that C. tinctorius has a closer relationship with three Cardueae species, A. lappa, A. tomentosum, and S. costus, which is similar to the phylogeny constructed from the PCGs of plastid genomes. This mitogenome not only enriches the genetic information of safflower but also will be useful in the phylogeny and evolution study of the Asteraceae.},
}
RevDate: 2023-05-26
PacBio full-length transcriptome analysis provides new insights into transcription of chloroplast genomes.
RNA biology, 20(1):248-256.
Chloroplast and mitochondrial DNA (cpDNA and mtDNA) are apart from nuclear DNA (nuDNA) in a eukaryotic cell. The transcription system of chloroplasts differs from those of mitochondria and eukaryotes. In contrast to nuDNA and animal mtDNA, the transcription of cpDNA is still not well understood, primarily due to the unresolved identification of transcription initiation sites (TISs) and transcription termination sites (TTSs) on the genome scale. In the present study, we characterized the transcription of chloroplast (cp) genes with greater accuracy and comprehensive information using PacBio full-length transcriptome data from Arabidopsis thaliana. The major findings included the discovery of four types of artifacts, the validation and correction of cp gene annotations, the exact identification of TISs that start with G, and the discovery of polyA-like sites as TTSs. Notably, we proposed a new model to explain cp transcription initiation and termination at the whole-genome level. Four types of artifacts, degraded RNAs and splicing intermediates deserve the attention from researchers working with PacBio full-length transcriptome data, as these contaminant sequences can lead to incorrect downstream analysis. Cp transcription initiates at multiple promoters and terminates at polyA-like sites. Our study provides new insights into cp transcription and new clues to study the evolution of promoters, TISs, TTSs and polyA tails of eukaryotic genes.
Additional Links: PMID-37231782
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37231782,
year = {2023},
author = {Shi, J and Yan, S and Li, W and Yang, X and Cui, Z and Li, J and Li, G and Li, Y and Hu, Y and Gao, S},
title = {PacBio full-length transcriptome analysis provides new insights into transcription of chloroplast genomes.},
journal = {RNA biology},
volume = {20},
number = {1},
pages = {248-256},
doi = {10.1080/15476286.2023.2214435},
pmid = {37231782},
issn = {1555-8584},
abstract = {Chloroplast and mitochondrial DNA (cpDNA and mtDNA) are apart from nuclear DNA (nuDNA) in a eukaryotic cell. The transcription system of chloroplasts differs from those of mitochondria and eukaryotes. In contrast to nuDNA and animal mtDNA, the transcription of cpDNA is still not well understood, primarily due to the unresolved identification of transcription initiation sites (TISs) and transcription termination sites (TTSs) on the genome scale. In the present study, we characterized the transcription of chloroplast (cp) genes with greater accuracy and comprehensive information using PacBio full-length transcriptome data from Arabidopsis thaliana. The major findings included the discovery of four types of artifacts, the validation and correction of cp gene annotations, the exact identification of TISs that start with G, and the discovery of polyA-like sites as TTSs. Notably, we proposed a new model to explain cp transcription initiation and termination at the whole-genome level. Four types of artifacts, degraded RNAs and splicing intermediates deserve the attention from researchers working with PacBio full-length transcriptome data, as these contaminant sequences can lead to incorrect downstream analysis. Cp transcription initiates at multiple promoters and terminates at polyA-like sites. Our study provides new insights into cp transcription and new clues to study the evolution of promoters, TISs, TTSs and polyA tails of eukaryotic genes.},
}
RevDate: 2023-05-25
CmpDate: 2023-05-25
Mitochondrial introgression and mito-nuclear discordance obscured the closely related species boundaries in Cletus Stål from China (Heteroptera: Coreidae).
Molecular phylogenetics and evolution, 184:107802.
Accurate taxonomy and delimitation are of great importance for pest control strategies and management programs. Here, we focus on Cletus (Insecta: Hemiptera: Coreidae), which includes many crop pests. The species boundaries still conflict and only cytochrome c oxidase subunit I (COI) barcoding has been previously used for molecular studies. We generated new mitochondrial genome and nuclear genome-wide SNPs to explore the species boundaries of 46 Cletus samples from China using multiple species delimitation approaches. All results recovered a monophyly with high support, except for two closely related species in clade I - C. punctiger and C. graminis. Mitochondrial data demonstrated admixture in clade I, while genome-wide SNPs unambiguously identified two separate species, which were confirmed by morphological classification. Inconsistent nuclear and mitochondrial data indicated mito-nuclear discordance. Mitochondrial introgression is the most likely explanation, and more extensive sampling and more comprehensive data are needed to ascertain a pattern. Accurate species delimitation will shed light on species status; thus, an accurate taxonomy is of particular concern, as there is a pressing need to implement precise control of agricultural pests and to perform further research on diversification.
Additional Links: PMID-37221926
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37221926,
year = {2023},
author = {Dong, X and Zhang, H and Zhu, X and Wang, K and Xue, H and Ye, Z and Zheng, C and Bu, W},
title = {Mitochondrial introgression and mito-nuclear discordance obscured the closely related species boundaries in Cletus Stål from China (Heteroptera: Coreidae).},
journal = {Molecular phylogenetics and evolution},
volume = {184},
number = {},
pages = {107802},
doi = {10.1016/j.ympev.2023.107802},
pmid = {37221926},
issn = {1095-9513},
mesh = {Animals ; *Heteroptera ; Phylogeny ; China ; *Genome, Mitochondrial ; Mitochondria ; Mitomycin ; },
abstract = {Accurate taxonomy and delimitation are of great importance for pest control strategies and management programs. Here, we focus on Cletus (Insecta: Hemiptera: Coreidae), which includes many crop pests. The species boundaries still conflict and only cytochrome c oxidase subunit I (COI) barcoding has been previously used for molecular studies. We generated new mitochondrial genome and nuclear genome-wide SNPs to explore the species boundaries of 46 Cletus samples from China using multiple species delimitation approaches. All results recovered a monophyly with high support, except for two closely related species in clade I - C. punctiger and C. graminis. Mitochondrial data demonstrated admixture in clade I, while genome-wide SNPs unambiguously identified two separate species, which were confirmed by morphological classification. Inconsistent nuclear and mitochondrial data indicated mito-nuclear discordance. Mitochondrial introgression is the most likely explanation, and more extensive sampling and more comprehensive data are needed to ascertain a pattern. Accurate species delimitation will shed light on species status; thus, an accurate taxonomy is of particular concern, as there is a pressing need to implement precise control of agricultural pests and to perform further research on diversification.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Heteroptera
Phylogeny
China
*Genome, Mitochondrial
Mitochondria
Mitomycin
RevDate: 2023-05-26
CmpDate: 2023-05-26
Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance.
Biochimie, 208:180-185.
After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.
Additional Links: PMID-36638953
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36638953,
year = {2023},
author = {Gnocchi, D and Sabbà, C and Mazzocca, A},
title = {Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance.},
journal = {Biochimie},
volume = {208},
number = {},
pages = {180-185},
doi = {10.1016/j.biochi.2023.01.005},
pmid = {36638953},
issn = {1638-6183},
mesh = {Humans ; *Lactic Acid/metabolism ; Fermentation ; Glycolysis ; Mitochondria/metabolism ; *Neoplasms/drug therapy/genetics/metabolism ; Drug Resistance, Neoplasm/genetics ; },
abstract = {After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Lactic Acid/metabolism
Fermentation
Glycolysis
Mitochondria/metabolism
*Neoplasms/drug therapy/genetics/metabolism
Drug Resistance, Neoplasm/genetics
RevDate: 2023-05-25
CmpDate: 2023-05-25
The organellar genomes of Pellidae (Marchantiophyta): the evidence of cryptic speciation, conflicting phylogenies and extraordinary reduction of mitogenomes in simple thalloid liverwort lineage.
Scientific reports, 13(1):8303.
Organellar genomes of liverworts are considered as one of the most stable among plants, with rare events of gene loss and structural rearrangements. However, not all lineages of liverworts are equally explored in the field of organellar genomics, and subclass Pellidae is one of the less known. Hybrid assembly, using both short- and long-read technologies enabled the assembly of repeat-rich mitogenomes of Pellia and Apopellia revealing extraordinary reduction of length in the latter which impacts only intergenic spacers. The mitogenomes of Apopellia were revealed to be the smallest among all known liverworts-109 k bp, despite retaining all introns. The study also showed the loss of one tRNA gene in Apopellia mitogenome, although it had no impact on the codon usage pattern of mitochondrial protein coding genes. Moreover, it was revealed that Apopellia and Pellia differ in codon usage by plastome CDSs, despite identical tRNA gene content. Molecular identification of species is especially important where traditional taxonomic methods fail, especially within Pellidae where cryptic speciation is well recognized. The simple morphology of these species and a tendency towards environmental plasticity make them complicated in identification. Application of super-barcodes, based on complete mitochondrial or plastid genomes sequences enable identification of all cryptic lineages within Apopellia and Pellia genera, however in some particular cases, mitogenomes were more efficient in species delimitation than plastomes.
Additional Links: PMID-37221210
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37221210,
year = {2023},
author = {Paukszto, Ł and Górski, P and Krawczyk, K and Maździarz, M and Szczecińska, M and Ślipiko, M and Sawicki, J},
title = {The organellar genomes of Pellidae (Marchantiophyta): the evidence of cryptic speciation, conflicting phylogenies and extraordinary reduction of mitogenomes in simple thalloid liverwort lineage.},
journal = {Scientific reports},
volume = {13},
number = {1},
pages = {8303},
pmid = {37221210},
issn = {2045-2322},
mesh = {*Hepatophyta ; *Genome, Mitochondrial ; Phylogeny ; Mitochondria ; *Genome, Plastid ; *Anemone ; },
abstract = {Organellar genomes of liverworts are considered as one of the most stable among plants, with rare events of gene loss and structural rearrangements. However, not all lineages of liverworts are equally explored in the field of organellar genomics, and subclass Pellidae is one of the less known. Hybrid assembly, using both short- and long-read technologies enabled the assembly of repeat-rich mitogenomes of Pellia and Apopellia revealing extraordinary reduction of length in the latter which impacts only intergenic spacers. The mitogenomes of Apopellia were revealed to be the smallest among all known liverworts-109 k bp, despite retaining all introns. The study also showed the loss of one tRNA gene in Apopellia mitogenome, although it had no impact on the codon usage pattern of mitochondrial protein coding genes. Moreover, it was revealed that Apopellia and Pellia differ in codon usage by plastome CDSs, despite identical tRNA gene content. Molecular identification of species is especially important where traditional taxonomic methods fail, especially within Pellidae where cryptic speciation is well recognized. The simple morphology of these species and a tendency towards environmental plasticity make them complicated in identification. Application of super-barcodes, based on complete mitochondrial or plastid genomes sequences enable identification of all cryptic lineages within Apopellia and Pellia genera, however in some particular cases, mitogenomes were more efficient in species delimitation than plastomes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Hepatophyta
*Genome, Mitochondrial
Phylogeny
Mitochondria
*Genome, Plastid
*Anemone
RevDate: 2023-05-18
Metatranscriptomic analysis uncovers prevalent viral ORFs compatible with mitochondrial translation.
mSystems [Epub ahead of print].
RNA viruses are ubiquitous components of the global virosphere, yet relatively little is known about their genetic diversity or the cellular mechanisms by which they exploit the biology of their diverse eukaryotic hosts. A hallmark of (+)ssRNA viruses is the ability to remodel host endomembranes for their own replication. However, the subcellular interplay between RNA viruses and host organelles that harbor gene expression systems, such as mitochondria, is complex and poorly understood. Here we report the discovery of 763 new virus sequences belonging to the family Mitoviridae by metatranscriptomic analysis, the identification of previously uncharacterized mitovirus clades, and a putative new viral class. With this expanded understanding of the diversity of mitovirus and encoded RNA-dependent RNA polymerases, we annotate mitovirus-specific protein motifs and identify hallmarks of mitochondrial translation, including mitochondrion-specific codons. This study expands the known diversity of mitochondrial viruses, and provides additional evidence that they co-opt mitochondrial biology for their survival.IMPORTANCEMetatranscriptomic studies have rapidly expanded the cadre of known RNA viruses, yet our understanding of how these viruses navigate the cytoplasmic milieu of their hosts to survive remains poorly characterized. In this study, we identify and assemble 763 new viral sequences belonging to the Mitoviridae, a family of (+)ssRNA viruses thought to interact with and remodel host host mitochondria. We exploit this genetic diversity to identify new clades of Mitoviridae, annotate clade-specific sequence motifs that distinguish the mitoviral RNA-dependent RNA polymerase, and reveal patterns of RdRp codon usage consistent with translation on host cell mitoribosomes. These results serve as a foundation for understanding how mitoviruses co-opt mitochondrial biology for their proliferation.
Additional Links: PMID-37199915
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37199915,
year = {2023},
author = {Begeman, A and Babaian, A and Lewis, SC},
title = {Metatranscriptomic analysis uncovers prevalent viral ORFs compatible with mitochondrial translation.},
journal = {mSystems},
volume = {},
number = {},
pages = {e0100222},
doi = {10.1128/msystems.01002-22},
pmid = {37199915},
issn = {2379-5077},
abstract = {RNA viruses are ubiquitous components of the global virosphere, yet relatively little is known about their genetic diversity or the cellular mechanisms by which they exploit the biology of their diverse eukaryotic hosts. A hallmark of (+)ssRNA viruses is the ability to remodel host endomembranes for their own replication. However, the subcellular interplay between RNA viruses and host organelles that harbor gene expression systems, such as mitochondria, is complex and poorly understood. Here we report the discovery of 763 new virus sequences belonging to the family Mitoviridae by metatranscriptomic analysis, the identification of previously uncharacterized mitovirus clades, and a putative new viral class. With this expanded understanding of the diversity of mitovirus and encoded RNA-dependent RNA polymerases, we annotate mitovirus-specific protein motifs and identify hallmarks of mitochondrial translation, including mitochondrion-specific codons. This study expands the known diversity of mitochondrial viruses, and provides additional evidence that they co-opt mitochondrial biology for their survival.IMPORTANCEMetatranscriptomic studies have rapidly expanded the cadre of known RNA viruses, yet our understanding of how these viruses navigate the cytoplasmic milieu of their hosts to survive remains poorly characterized. In this study, we identify and assemble 763 new viral sequences belonging to the Mitoviridae, a family of (+)ssRNA viruses thought to interact with and remodel host host mitochondria. We exploit this genetic diversity to identify new clades of Mitoviridae, annotate clade-specific sequence motifs that distinguish the mitoviral RNA-dependent RNA polymerase, and reveal patterns of RdRp codon usage consistent with translation on host cell mitoribosomes. These results serve as a foundation for understanding how mitoviruses co-opt mitochondrial biology for their proliferation.},
}
RevDate: 2023-05-25
CmpDate: 2023-05-25
Speciation of rock-dwelling snail species: Disjunct ranges and mosaic patterns reveal the importance of long-distance dispersal in Chilostoma (Cingulifera) in the European Southern Alps.
Molecular phylogenetics and evolution, 184:107788.
To better understand the origin of the high diversity and endemism in the Southern Alps of Europe, we investigated the phylogeny and population structure of the rock-dwelling snail group Chilostoma (Cingulifera) in the Southern Alps. We generated genomic ddRAD data and mitochondrial sequences of 104 Cingulifera specimens from 28 populations and 14 other Ariantinae. Until recently, about 30 Cingulifera taxa were classified as subspecies of a single polytypic species. The phylogenetic and population genetic analyses of the ddRAD data and mitochondrial sequences revealed that Cingulifera in the Southern Alps is differentiated into three species. Each of the three Chilostoma (Cingulifera) species occupies disjunct sub-areas, which are separated by areas occupied by other Chilostoma taxa. Neighbouring populations of different species show little or no admixture. Tests indicating that the genetic differentiation of the three Cingulifera taxa cannot be explained by isolation by distance confirmed their species status. The disjunct range patterns demonstrate the importance of stochastic events such as passive long-distance dispersal for the evolution of population structure and speciation in these snails, and of priority effects and ecological competition as important factors influencing species distributions.
Additional Links: PMID-37127113
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37127113,
year = {2023},
author = {Hausdorf, B and Xu, J},
title = {Speciation of rock-dwelling snail species: Disjunct ranges and mosaic patterns reveal the importance of long-distance dispersal in Chilostoma (Cingulifera) in the European Southern Alps.},
journal = {Molecular phylogenetics and evolution},
volume = {184},
number = {},
pages = {107788},
doi = {10.1016/j.ympev.2023.107788},
pmid = {37127113},
issn = {1095-9513},
mesh = {Animals ; Phylogeny ; *Snails/genetics ; Europe ; *Mitochondria ; Genetic Variation ; },
abstract = {To better understand the origin of the high diversity and endemism in the Southern Alps of Europe, we investigated the phylogeny and population structure of the rock-dwelling snail group Chilostoma (Cingulifera) in the Southern Alps. We generated genomic ddRAD data and mitochondrial sequences of 104 Cingulifera specimens from 28 populations and 14 other Ariantinae. Until recently, about 30 Cingulifera taxa were classified as subspecies of a single polytypic species. The phylogenetic and population genetic analyses of the ddRAD data and mitochondrial sequences revealed that Cingulifera in the Southern Alps is differentiated into three species. Each of the three Chilostoma (Cingulifera) species occupies disjunct sub-areas, which are separated by areas occupied by other Chilostoma taxa. Neighbouring populations of different species show little or no admixture. Tests indicating that the genetic differentiation of the three Cingulifera taxa cannot be explained by isolation by distance confirmed their species status. The disjunct range patterns demonstrate the importance of stochastic events such as passive long-distance dispersal for the evolution of population structure and speciation in these snails, and of priority effects and ecological competition as important factors influencing species distributions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Snails/genetics
Europe
*Mitochondria
Genetic Variation
RevDate: 2023-05-22
CmpDate: 2023-05-22
Mitochondrial genome of Artemisia argyi L. suggested conserved mitochondrial protein-coding genes among genera Artemisia, Tanacetum and Chrysanthemum.
Gene, 871:147427.
BACKGROUND: Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as a source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time.
RESULTS: The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 other Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total of 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values ≤ 0.05) in three tissues (root, leaf and stem).
CONCLUSIONS: In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.
Additional Links: PMID-37044183
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37044183,
year = {2023},
author = {Chen, H and Huang, L and Yu, J and Miao, Y and Liu, C},
title = {Mitochondrial genome of Artemisia argyi L. suggested conserved mitochondrial protein-coding genes among genera Artemisia, Tanacetum and Chrysanthemum.},
journal = {Gene},
volume = {871},
number = {},
pages = {147427},
doi = {10.1016/j.gene.2023.147427},
pmid = {37044183},
issn = {1879-0038},
mesh = {Humans ; *Genome, Mitochondrial ; *Artemisia/genetics ; *Tanacetum/genetics ; *Chrysanthemum/genetics ; Phylogeny ; Mitochondria/genetics ; Mitochondrial Proteins/genetics ; },
abstract = {BACKGROUND: Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as a source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time.
RESULTS: The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 other Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total of 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values ≤ 0.05) in three tissues (root, leaf and stem).
CONCLUSIONS: In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Genome, Mitochondrial
*Artemisia/genetics
*Tanacetum/genetics
*Chrysanthemum/genetics
Phylogeny
Mitochondria/genetics
Mitochondrial Proteins/genetics
RevDate: 2023-05-22
CmpDate: 2023-05-22
Development of a sensitive double TaqMan Probe-based qPCR Angle-Degree method to detect mutation frequencies.
Mitochondrion, 70:1-7.
We designed a method to examine the mutation frequencies of the A3243G mutation of mitochondrial DNA (mtDNA) in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. We performed a qPCR assay using the FAM and VIC TaqMan probes, which detect the 3243G (mutated) and 3243A (wild-type) sequences of mtDNA, respectively. The results obtained by "degree" in a series of differential mutation frequencies were used to plot a standard curve of the mutation frequency. The standard curve was then applied for qPCR assays of the desired samples. The standard deviation (%) of the samples calculated using the standard curve for the TaqMan probe was 2.4 ± 1.5%. This method could be used to examine mutation frequencies in the context of diabetes, aging, cancer, and neurodegenerative diseases.
Additional Links: PMID-36841519
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36841519,
year = {2023},
author = {Tomita, K and Indo, HP and Sato, T and Tangpong, J and Majima, HJ},
title = {Development of a sensitive double TaqMan Probe-based qPCR Angle-Degree method to detect mutation frequencies.},
journal = {Mitochondrion},
volume = {70},
number = {},
pages = {1-7},
doi = {10.1016/j.mito.2023.02.010},
pmid = {36841519},
issn = {1872-8278},
mesh = {Humans ; Mutation Rate ; *MELAS Syndrome/genetics ; Mutation ; DNA, Mitochondrial/genetics ; *Stroke ; },
abstract = {We designed a method to examine the mutation frequencies of the A3243G mutation of mitochondrial DNA (mtDNA) in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. We performed a qPCR assay using the FAM and VIC TaqMan probes, which detect the 3243G (mutated) and 3243A (wild-type) sequences of mtDNA, respectively. The results obtained by "degree" in a series of differential mutation frequencies were used to plot a standard curve of the mutation frequency. The standard curve was then applied for qPCR assays of the desired samples. The standard deviation (%) of the samples calculated using the standard curve for the TaqMan probe was 2.4 ± 1.5%. This method could be used to examine mutation frequencies in the context of diabetes, aging, cancer, and neurodegenerative diseases.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Mutation Rate
*MELAS Syndrome/genetics
Mutation
DNA, Mitochondrial/genetics
*Stroke
RevDate: 2023-05-17
A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics.
BMC biology, 21(1):111.
BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed.
RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology.
CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Additional Links: PMID-37198654
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37198654,
year = {2023},
author = {Kienzle, L and Bettinazzi, S and Choquette, T and Brunet, M and Khorami, HH and Jacques, JF and Moreau, M and Roucou, X and Landry, CR and Angers, A and Breton, S},
title = {A small protein coded within the mitochondrial canonical gene nd4 regulates mitochondrial bioenergetics.},
journal = {BMC biology},
volume = {21},
number = {1},
pages = {111},
pmid = {37198654},
issn = {1741-7007},
abstract = {BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed.
RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology.
CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.},
}
RevDate: 2023-05-16
Mitochondria: It is all about energy.
Frontiers in physiology, 14:1114231.
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Additional Links: PMID-37179826
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37179826,
year = {2023},
author = {Casanova, A and Wevers, A and Navarro-Ledesma, S and Pruimboom, L},
title = {Mitochondria: It is all about energy.},
journal = {Frontiers in physiology},
volume = {14},
number = {},
pages = {1114231},
pmid = {37179826},
issn = {1664-042X},
abstract = {Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.},
}
RevDate: 2023-05-14
Apostasia Mitochondrial Genome Analysis and Monocot Mitochondria Phylogenomics.
International journal of molecular sciences, 24(9):.
Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots.
Additional Links: PMID-37175542
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37175542,
year = {2023},
author = {Ke, SJ and Liu, DK and Tu, XD and He, X and Zhang, MM and Zhu, MJ and Zhang, DY and Zhang, CL and Lan, SR and Liu, ZJ},
title = {Apostasia Mitochondrial Genome Analysis and Monocot Mitochondria Phylogenomics.},
journal = {International journal of molecular sciences},
volume = {24},
number = {9},
pages = {},
pmid = {37175542},
issn = {1422-0067},
abstract = {Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots.},
}
RevDate: 2023-05-12
Evolutionary genetics of the mitochondrial genome: insights from Drosophila.
Genetics pii:7160843 [Epub ahead of print].
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Additional Links: PMID-37171259
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37171259,
year = {2023},
author = {Dowling, DK and Wolff, JN},
title = {Evolutionary genetics of the mitochondrial genome: insights from Drosophila.},
journal = {Genetics},
volume = {},
number = {},
pages = {},
doi = {10.1093/genetics/iyad036},
pmid = {37171259},
issn = {1943-2631},
abstract = {Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.},
}
RevDate: 2023-05-11
Metabolic Labeling of Mitochondrial Translation Products in Whole Cells and Isolated Organelles.
Methods in molecular biology (Clifton, N.J.), 2661:193-215.
Mitochondria retain their own genome and translational apparatus that is highly specialized in the synthesis of a handful of proteins, essential components of the oxidative phosphorylation system. During evolution, the players and mechanisms involved in mitochondrial translation have acquired some unique features, which we have only partially disclosed. The study of the mitochondrial translation process has been historically hampered by the lack of an in vitro translational system and has largely relied on the analysis of the incorporation rate of radiolabeled amino acids into mitochondrial proteins in cellulo or in organello. In this chapter, we describe methods to monitor mitochondrial translation by labeling newly synthesized mitochondrial polypeptides with [S[35]]-methionine in either yeast or mammalian whole cells or isolated mitochondria.
Additional Links: PMID-37166639
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37166639,
year = {2023},
author = {Maiti, P and Fontanesi, F},
title = {Metabolic Labeling of Mitochondrial Translation Products in Whole Cells and Isolated Organelles.},
journal = {Methods in molecular biology (Clifton, N.J.)},
volume = {2661},
number = {},
pages = {193-215},
pmid = {37166639},
issn = {1940-6029},
abstract = {Mitochondria retain their own genome and translational apparatus that is highly specialized in the synthesis of a handful of proteins, essential components of the oxidative phosphorylation system. During evolution, the players and mechanisms involved in mitochondrial translation have acquired some unique features, which we have only partially disclosed. The study of the mitochondrial translation process has been historically hampered by the lack of an in vitro translational system and has largely relied on the analysis of the incorporation rate of radiolabeled amino acids into mitochondrial proteins in cellulo or in organello. In this chapter, we describe methods to monitor mitochondrial translation by labeling newly synthesized mitochondrial polypeptides with [S[35]]-methionine in either yeast or mammalian whole cells or isolated mitochondria.},
}
RevDate: 2023-05-11
Translation in Mitochondrial Ribosomes.
Methods in molecular biology (Clifton, N.J.), 2661:53-72.
Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.
Additional Links: PMID-37166631
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37166631,
year = {2023},
author = {Chrzanowska-Lightowlers, ZM and Lightowlers, RN},
title = {Translation in Mitochondrial Ribosomes.},
journal = {Methods in molecular biology (Clifton, N.J.)},
volume = {2661},
number = {},
pages = {53-72},
pmid = {37166631},
issn = {1940-6029},
abstract = {Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.},
}
RevDate: 2023-05-11
Evolution: Mitochondrial Ribosomes Across Species.
Methods in molecular biology (Clifton, N.J.), 2661:7-21.
The ribosome is among the most complex and ancient cellular macromolecular assemblies that plays a central role in protein biosynthesis in all living cells. Its function of translation of genetic information encoded in messenger RNA into protein molecules also extends to subcellular compartments in eukaryotic cells such as apicoplasts, chloroplasts, and mitochondria. The origin of mitochondria is primarily attributed to an early endosymbiotic event between an alpha-proteobacterium and a primitive (archaeal) eukaryotic cell. The timeline of mitochondrial acquisition, the nature of the host, and their diversification have been studied in great detail and are continually being revised as more genomic and structural data emerge. Recent advancements in high-resolution cryo-EM structure determination have provided architectural details of mitochondrial ribosomes (mitoribosomes) from various species, revealing unprecedented diversifications among them. These structures provide novel insights into the evolution of mitoribosomal structure and function. Here, we present a brief overview of the existing mitoribosomal structures in the context of the eukaryotic evolution tree showing their diversification from their last common ancestor.
Additional Links: PMID-37166629
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37166629,
year = {2023},
author = {Agrawal, RK and Majumdar, S},
title = {Evolution: Mitochondrial Ribosomes Across Species.},
journal = {Methods in molecular biology (Clifton, N.J.)},
volume = {2661},
number = {},
pages = {7-21},
pmid = {37166629},
issn = {1940-6029},
abstract = {The ribosome is among the most complex and ancient cellular macromolecular assemblies that plays a central role in protein biosynthesis in all living cells. Its function of translation of genetic information encoded in messenger RNA into protein molecules also extends to subcellular compartments in eukaryotic cells such as apicoplasts, chloroplasts, and mitochondria. The origin of mitochondria is primarily attributed to an early endosymbiotic event between an alpha-proteobacterium and a primitive (archaeal) eukaryotic cell. The timeline of mitochondrial acquisition, the nature of the host, and their diversification have been studied in great detail and are continually being revised as more genomic and structural data emerge. Recent advancements in high-resolution cryo-EM structure determination have provided architectural details of mitochondrial ribosomes (mitoribosomes) from various species, revealing unprecedented diversifications among them. These structures provide novel insights into the evolution of mitoribosomal structure and function. Here, we present a brief overview of the existing mitoribosomal structures in the context of the eukaryotic evolution tree showing their diversification from their last common ancestor.},
}
RevDate: 2023-05-10
Structurally distinct mitoviruses: are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)?.
mBio [Epub ahead of print].
Mitoviruses in the family Mitoviridae are the mitochondria-replicating "naked RNA viruses" with genomes encoding only the replicase RNA-dependent RNA polymerase (RdRp) and prevalent across fungi, plants, and invertebrates. Arbuscular mycorrhizal fungi in the subphylum Glomeromycotina are obligate plant symbionts that deliver water and nutrients to the host. We discovered distinct mitoviruses in glomeromycotinian fungi, namely "large duamitovirus," encoding unusually large RdRp with a unique N-terminal motif that is endogenized in some host genomes. More than 400 viral sequences similar to the large duamitoviruses are present in metatranscriptome databases. They are globally distributed in soil ecosystems, consistent with the cosmopolitan distribution of glomeromycotinian fungi, and formed the most basal clade of the Mitoviridae in phylogenetic analysis. Given that glomeromycotinian fungi are the only confirmed hosts of these viruses, we propose the hypothesis that large duamitoviruses are the most ancestral lineage of the Mitoviridae that have been maintained exclusively in glomeromycotinian fungi.
Additional Links: PMID-37162347
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37162347,
year = {2023},
author = {Ezawa, T and Silvestri, A and Maruyama, H and Tawaraya, K and Suzuki, M and Duan, Y and Turina, M and Lanfranco, L},
title = {Structurally distinct mitoviruses: are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)?.},
journal = {mBio},
volume = {},
number = {},
pages = {e0024023},
doi = {10.1128/mbio.00240-23},
pmid = {37162347},
issn = {2150-7511},
abstract = {Mitoviruses in the family Mitoviridae are the mitochondria-replicating "naked RNA viruses" with genomes encoding only the replicase RNA-dependent RNA polymerase (RdRp) and prevalent across fungi, plants, and invertebrates. Arbuscular mycorrhizal fungi in the subphylum Glomeromycotina are obligate plant symbionts that deliver water and nutrients to the host. We discovered distinct mitoviruses in glomeromycotinian fungi, namely "large duamitovirus," encoding unusually large RdRp with a unique N-terminal motif that is endogenized in some host genomes. More than 400 viral sequences similar to the large duamitoviruses are present in metatranscriptome databases. They are globally distributed in soil ecosystems, consistent with the cosmopolitan distribution of glomeromycotinian fungi, and formed the most basal clade of the Mitoviridae in phylogenetic analysis. Given that glomeromycotinian fungi are the only confirmed hosts of these viruses, we propose the hypothesis that large duamitoviruses are the most ancestral lineage of the Mitoviridae that have been maintained exclusively in glomeromycotinian fungi.},
}
RevDate: 2023-05-11
CmpDate: 2023-05-11
Secondary structure of the human mitochondrial genome affects formation of deletions.
BMC biology, 21(1):103.
BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions.
RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging.
CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.
Additional Links: PMID-37158879
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37158879,
year = {2023},
author = {Shamanskiy, V and Mikhailova, AA and Tretiakov, EO and Ushakova, K and Mikhailova, AG and Oreshkov, S and Knorre, DA and Ree, N and Overdevest, JB and Lukowski, SW and Gostimskaya, I and Yurov, V and Liou, CW and Lin, TK and Kunz, WS and Reymond, A and Mazunin, I and Bazykin, GA and Fellay, J and Tanaka, M and Khrapko, K and Gunbin, K and Popadin, K},
title = {Secondary structure of the human mitochondrial genome affects formation of deletions.},
journal = {BMC biology},
volume = {21},
number = {1},
pages = {103},
pmid = {37158879},
issn = {1741-7007},
mesh = {Animals ; Humans ; *Genome, Mitochondrial ; Mitochondria ; DNA, Mitochondrial/genetics ; Genome, Human ; Protein Structure, Secondary ; DNA, Single-Stranded ; Mammals ; },
abstract = {BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions.
RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging.
CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Humans
*Genome, Mitochondrial
Mitochondria
DNA, Mitochondrial/genetics
Genome, Human
Protein Structure, Secondary
DNA, Single-Stranded
Mammals
RevDate: 2023-05-09
Genomic analyses provide insights into the genome evolution and environmental adaptation of the tobacco moth Ephestia elutella.
Frontiers in physiology, 14:1187522.
Ephestia elutella is a major pest responsible for significant damage to stored tobacco over many years. Here, we conduct a comparative genomic analysis on this pest, aiming to explore the genetic bases of environmental adaptation of this species. We find gene families associated with nutrient metabolism, detoxification, antioxidant defense and gustatory receptors are expanded in the E. elutella genome. Detailed phylogenetic analysis of P450 genes further reveals obvious duplications in the CYP3 clan in E. elutella compared to the closely related species, the Indianmeal moth Plodia interpunctella. We also identify 229 rapidly evolving genes and 207 positively selected genes in E. elutella, respectively, and highlight two positively selected heat shock protein 40 (Hsp40) genes. In addition, we find a number of species-specific genes related to diverse biological processes, such as mitochondria biology and development. These findings advance our understanding of the mechanisms underlying processes of environmental adaptation on E. elutella and will enable the development of novel pest management strategies.
Additional Links: PMID-37153218
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37153218,
year = {2023},
author = {Xu, J and Li, B and Jiang, Z and Wang, W and Yang, Y and Yang, M and Ye, X},
title = {Genomic analyses provide insights into the genome evolution and environmental adaptation of the tobacco moth Ephestia elutella.},
journal = {Frontiers in physiology},
volume = {14},
number = {},
pages = {1187522},
pmid = {37153218},
issn = {1664-042X},
abstract = {Ephestia elutella is a major pest responsible for significant damage to stored tobacco over many years. Here, we conduct a comparative genomic analysis on this pest, aiming to explore the genetic bases of environmental adaptation of this species. We find gene families associated with nutrient metabolism, detoxification, antioxidant defense and gustatory receptors are expanded in the E. elutella genome. Detailed phylogenetic analysis of P450 genes further reveals obvious duplications in the CYP3 clan in E. elutella compared to the closely related species, the Indianmeal moth Plodia interpunctella. We also identify 229 rapidly evolving genes and 207 positively selected genes in E. elutella, respectively, and highlight two positively selected heat shock protein 40 (Hsp40) genes. In addition, we find a number of species-specific genes related to diverse biological processes, such as mitochondria biology and development. These findings advance our understanding of the mechanisms underlying processes of environmental adaptation on E. elutella and will enable the development of novel pest management strategies.},
}
RevDate: 2023-05-08
The implication of mitochondrial DNA mutation and dysfunction in periodontal diseases.
Journal of Indian Society of Periodontology, 27(2):126-130.
Periodontitis is a chronic oral inflammatory disease that is caused by dental plaque pathogens. Periodontal disease development and evolution are based on the host immune system, humoral and cellular immunity, the integrity of the tissues, and certain endocrine and nutritional factors. Mitochondria are significantly involved in periodontal infections and inflammation, which play a role in the inflammatory response in a variety of ways. In general, oxidative stress causes a stressful environment that subsequently leads to tissue damage and chronic inflammation. Several mutations and alterations in mitochondrial DNA lead the disease to an aggressive condition, by causing dysregulated mitochondrial function. Such mutations are significantly associated with various diseases. Numerous studies indicate chronic periodontitis patients have a decreased level of mitochondrial membrane potential, as well as adenosine triphosphate, and an increased level of reactive oxygen species production, which causes cell death in the periodontium and affects tissue growth. Further studies into the association between mitochondria and periodontitis might be helpful for the treatment and prevention of the diseases.
Additional Links: PMID-37152468
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37152468,
year = {2023},
author = {Kannan, B and Arumugam, P},
title = {The implication of mitochondrial DNA mutation and dysfunction in periodontal diseases.},
journal = {Journal of Indian Society of Periodontology},
volume = {27},
number = {2},
pages = {126-130},
pmid = {37152468},
issn = {0972-124X},
abstract = {Periodontitis is a chronic oral inflammatory disease that is caused by dental plaque pathogens. Periodontal disease development and evolution are based on the host immune system, humoral and cellular immunity, the integrity of the tissues, and certain endocrine and nutritional factors. Mitochondria are significantly involved in periodontal infections and inflammation, which play a role in the inflammatory response in a variety of ways. In general, oxidative stress causes a stressful environment that subsequently leads to tissue damage and chronic inflammation. Several mutations and alterations in mitochondrial DNA lead the disease to an aggressive condition, by causing dysregulated mitochondrial function. Such mutations are significantly associated with various diseases. Numerous studies indicate chronic periodontitis patients have a decreased level of mitochondrial membrane potential, as well as adenosine triphosphate, and an increased level of reactive oxygen species production, which causes cell death in the periodontium and affects tissue growth. Further studies into the association between mitochondria and periodontitis might be helpful for the treatment and prevention of the diseases.},
}
RevDate: 2023-05-04
A Chromosome-Level Genome Assembly for the Rock Ptarmigan (Lagopus muta).
G3 (Bethesda, Md.) pii:7152384 [Epub ahead of print].
The Rock Ptarmigan (Lagopus muta) is a cold-adapted, largely sedentary, game bird with a Holarctic distribution. The species represents an important example of an organism likely to be affected by ongoing climatic shifts across a disparate range. We provide here a high-quality reference genome and mitogenome for the Rock Ptarmigan assembled from PacBio HiFi and Hi-C sequencing of a female bird from Iceland. The total size of the genome is 1.03 Gb with a scaffold N50 of 71.23 Mb and a contig N50 of 17.91 Mb. The final scaffolds represent all 40 predicted chromosomes, and the mitochondria with a BUSCO score of 98.6%. Gene annotation resulted in 16,078 protein-coding genes out of a total 19,831 predicted (81.08% excluding pseudogenes). The genome included 21.07% repeat sequences, and the average length of genes, exons, and introns were, 33605, 394, and 4265 bp respectively. The availability of a new reference-quality genome will contribute to understanding the Rock Ptarmigan's unique evolutionary history, vulnerability to climate change, and demographic trajectories around the globe while serving as a benchmark for species in the family Phasianidae (order Galliformes).
Additional Links: PMID-37141262
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37141262,
year = {2023},
author = {Squires, TE and Rödin-Mörch, P and Formenti, G and Tracey, A and Abueg, L and Brajuka, N and Jarvis, E and Halapi, EC and Melsted, P and Höglund, J and Magnússon, KP},
title = {A Chromosome-Level Genome Assembly for the Rock Ptarmigan (Lagopus muta).},
journal = {G3 (Bethesda, Md.)},
volume = {},
number = {},
pages = {},
doi = {10.1093/g3journal/jkad099},
pmid = {37141262},
issn = {2160-1836},
abstract = {The Rock Ptarmigan (Lagopus muta) is a cold-adapted, largely sedentary, game bird with a Holarctic distribution. The species represents an important example of an organism likely to be affected by ongoing climatic shifts across a disparate range. We provide here a high-quality reference genome and mitogenome for the Rock Ptarmigan assembled from PacBio HiFi and Hi-C sequencing of a female bird from Iceland. The total size of the genome is 1.03 Gb with a scaffold N50 of 71.23 Mb and a contig N50 of 17.91 Mb. The final scaffolds represent all 40 predicted chromosomes, and the mitochondria with a BUSCO score of 98.6%. Gene annotation resulted in 16,078 protein-coding genes out of a total 19,831 predicted (81.08% excluding pseudogenes). The genome included 21.07% repeat sequences, and the average length of genes, exons, and introns were, 33605, 394, and 4265 bp respectively. The availability of a new reference-quality genome will contribute to understanding the Rock Ptarmigan's unique evolutionary history, vulnerability to climate change, and demographic trajectories around the globe while serving as a benchmark for species in the family Phasianidae (order Galliformes).},
}
RevDate: 2023-05-08
CmpDate: 2023-05-08
Different waves of postglacial recolonisation and genomic structure of bank vole populations in NE Poland.
Heredity, 130(5):269-277.
Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.
Additional Links: PMID-36944856
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36944856,
year = {2023},
author = {Niedziałkowska, M and Tarnowska, E and Babik, W and Konczal, M and Gharbi, K and Cezard, T and Jędrzejewska, B},
title = {Different waves of postglacial recolonisation and genomic structure of bank vole populations in NE Poland.},
journal = {Heredity},
volume = {130},
number = {5},
pages = {269-277},
pmid = {36944856},
issn = {1365-2540},
mesh = {Humans ; Animals ; Poland ; Phylogeny ; *DNA, Mitochondrial/genetics ; *Genomics ; Arvicolinae/genetics ; Genetic Variation ; },
abstract = {Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Animals
Poland
Phylogeny
*DNA, Mitochondrial/genetics
*Genomics
Arvicolinae/genetics
Genetic Variation
RevDate: 2023-05-03
CmpDate: 2023-05-03
Direct tests of cytochrome c and c1 functions in the electron transport chain of malaria parasites.
Proceedings of the National Academy of Sciences of the United States of America, 120(19):e2301047120.
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.
Additional Links: PMID-37126705
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37126705,
year = {2023},
author = {Espino-Sanchez, TJ and Wienkers, H and Marvin, RG and Nalder, SA and García-Guerrero, AE and VanNatta, PE and Jami-Alahmadi, Y and Mixon Blackwell, A and Whitby, FG and Wohlschlegel, JA and Kieber-Emmons, MT and Hill, CP and Sigala, PA},
title = {Direct tests of cytochrome c and c1 functions in the electron transport chain of malaria parasites.},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {120},
number = {19},
pages = {e2301047120},
doi = {10.1073/pnas.2301047120},
pmid = {37126705},
issn = {1091-6490},
support = {T32 DK007115/DK/NIDDK NIH HHS/United States ; R25 HL108828/HL/NHLBI NIH HHS/United States ; U54 DK110858/DK/NIDDK NIH HHS/United States ; R35 GM133764/GM/NIGMS NIH HHS/United States ; },
mesh = {Animals ; Cytochromes c ; Electron Transport ; *Parasites ; *Antimalarials ; *Malaria, Falciparum ; Eukaryota ; Cytochromes c1 ; },
abstract = {The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cytochromes c
Electron Transport
*Parasites
*Antimalarials
*Malaria, Falciparum
Eukaryota
Cytochromes c1
RevDate: 2023-04-28
A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements.
Current biology : CB pii:S0960-9822(23)00458-X [Epub ahead of print].
Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.
Additional Links: PMID-37116483
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37116483,
year = {2023},
author = {George, EE and Barcytė, D and Lax, G and Livingston, S and Tashyreva, D and Husnik, F and Lukeš, J and Eliáš, M and Keeling, PJ},
title = {A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements.},
journal = {Current biology : CB},
volume = {},
number = {},
pages = {},
doi = {10.1016/j.cub.2023.04.010},
pmid = {37116483},
issn = {1879-0445},
abstract = {Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.},
}
RevDate: 2023-05-01
CmpDate: 2023-05-01
An excavate root for the eukaryote tree of life.
Science advances, 9(17):eade4973.
Much of the higher-order phylogeny of eukaryotes is well resolved, but the root remains elusive. We assembled a dataset of 183 eukaryotic proteins of archaeal ancestry to test this root. The resulting phylogeny identifies four lineages of eukaryotes currently classified as "Excavata" branching separately at the base of the tree. Thus, Parabasalia appear as the first major branch of eukaryotes followed sequentially by Fornicata, Preaxostyla, and Discoba. All four excavate branch points receive full statistical support from analyses with commonly used evolutionary models, a protein structure partition model that we introduce here, and various controls for deep phylogeny artifacts. The absence of aerobic mitochondria in Parabasalia, Fornicata, and Preaxostyla suggests that modern eukaryotes arose under anoxic conditions, probably much earlier than expected, and without the benefit of mitochondrial respiration.
Additional Links: PMID-37115919
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37115919,
year = {2023},
author = {Al Jewari, C and Baldauf, SL},
title = {An excavate root for the eukaryote tree of life.},
journal = {Science advances},
volume = {9},
number = {17},
pages = {eade4973},
pmid = {37115919},
issn = {2375-2548},
mesh = {*Eukaryota/genetics ; *Eukaryotic Cells ; Biological Evolution ; Phylogeny ; Evolution, Molecular ; },
abstract = {Much of the higher-order phylogeny of eukaryotes is well resolved, but the root remains elusive. We assembled a dataset of 183 eukaryotic proteins of archaeal ancestry to test this root. The resulting phylogeny identifies four lineages of eukaryotes currently classified as "Excavata" branching separately at the base of the tree. Thus, Parabasalia appear as the first major branch of eukaryotes followed sequentially by Fornicata, Preaxostyla, and Discoba. All four excavate branch points receive full statistical support from analyses with commonly used evolutionary models, a protein structure partition model that we introduce here, and various controls for deep phylogeny artifacts. The absence of aerobic mitochondria in Parabasalia, Fornicata, and Preaxostyla suggests that modern eukaryotes arose under anoxic conditions, probably much earlier than expected, and without the benefit of mitochondrial respiration.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Eukaryota/genetics
*Eukaryotic Cells
Biological Evolution
Phylogeny
Evolution, Molecular
RevDate: 2023-05-01
CmpDate: 2023-05-01
Peeping into Mitochondrial Diversity of Andaman Goats: Unveils Possibility of Maritime Transport with Diversified Geographic Signaling.
Genes, 14(4):.
Andaman and Nicobar Islands, a part of South-East Asia, is enriched with the presence of native breeds of livestock (cattle, pig, goat) and poultry. There are two native goat breeds, viz., Andaman local goat and Teressa goat in Andaman and Nicobar Islands. However, to date, the origin and genetic makeup of these two breeds have not been detailed. Therefore, the present study describes the genetic makeup of Andaman goats through analysis of mitochondrial D-loop sequence for sequence polymorphism, phylogeographical signaling and population expansion events. The genetic diversity of the Teressa goat was less compared to the Andaman local goat due to its sole presence on Teressa Island. Out of 38 well-defined haplotypes of Andaman goats, the majority of haplotypes belonged to haplogroup A followed by haplogroup B and haplogroup D. The result of mismatch distribution and neutrality tests indicated no population expansion event of haplogroup A and B. Finally, based on poor geographical signaling, we hypothesize that Andaman goats have been imported to these Islands either through multidirectional diffusion or unidirectional diffusion. We justify our hypothesis of multidirectional diffusion on the basis of observation of the haplotype and nucleotide diversity of Andaman goats. Simultaneously, the probability of unidirectional diffusion of goats in these islands from the Indian subcontinent in different spells of domestication events through maritime routes cannot be ignored.
Additional Links: PMID-37107542
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37107542,
year = {2023},
author = {De, AK and Sawhney, S and Sunder, J and Muthiyan, R and Ponraj, P and Sujatha, T and Malakar, D and Mondal, S and Bera, AK and Kumar, A and Chakurkar, EB and Bhattacharya, D},
title = {Peeping into Mitochondrial Diversity of Andaman Goats: Unveils Possibility of Maritime Transport with Diversified Geographic Signaling.},
journal = {Genes},
volume = {14},
number = {4},
pages = {},
pmid = {37107542},
issn = {2073-4425},
mesh = {Animals ; Cattle ; Swine ; *Goats/genetics ; Phylogeny ; *DNA, Mitochondrial/genetics ; Sequence Analysis, DNA ; Mitochondria/genetics ; },
abstract = {Andaman and Nicobar Islands, a part of South-East Asia, is enriched with the presence of native breeds of livestock (cattle, pig, goat) and poultry. There are two native goat breeds, viz., Andaman local goat and Teressa goat in Andaman and Nicobar Islands. However, to date, the origin and genetic makeup of these two breeds have not been detailed. Therefore, the present study describes the genetic makeup of Andaman goats through analysis of mitochondrial D-loop sequence for sequence polymorphism, phylogeographical signaling and population expansion events. The genetic diversity of the Teressa goat was less compared to the Andaman local goat due to its sole presence on Teressa Island. Out of 38 well-defined haplotypes of Andaman goats, the majority of haplotypes belonged to haplogroup A followed by haplogroup B and haplogroup D. The result of mismatch distribution and neutrality tests indicated no population expansion event of haplogroup A and B. Finally, based on poor geographical signaling, we hypothesize that Andaman goats have been imported to these Islands either through multidirectional diffusion or unidirectional diffusion. We justify our hypothesis of multidirectional diffusion on the basis of observation of the haplotype and nucleotide diversity of Andaman goats. Simultaneously, the probability of unidirectional diffusion of goats in these islands from the Indian subcontinent in different spells of domestication events through maritime routes cannot be ignored.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
Swine
*Goats/genetics
Phylogeny
*DNA, Mitochondrial/genetics
Sequence Analysis, DNA
Mitochondria/genetics
RevDate: 2023-05-01
CmpDate: 2023-05-01
Characterization of the complete mitochondrial genome of the brazilian cownose ray Rhinoptera brasiliensis (Myliobatiformes, Rhinopteridae) in the western Atlantic and its phylogenetic implications.
Molecular biology reports, 50(5):4083-4095.
BACKGROUND: The Brazilian cownose ray, Rhinoptera brasiliensis has undergone a global population reduction and is currently classified by IUCN as Vulnerable. This species is sometimes confused with Rhinoptera bonasus, the only external diagnostic characteristic to distinguish between both species is the number of rows of tooth plates. Both cownose rays overlap geographically from Rio de Janeiro to the western North Atlantic. This calls for a more comprehensive phylogenetic assessment using mitochondria DNA genomes to better understand the relationships and delimitation of these two species.
METHODS AND RESULTS: The mitochondrial genome sequences of R. brasiliensis was obtained by next-generation sequencing. The length of the mitochondrial genome was 17,759 bp containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a non-coding control region (D-loop). Each PCG was initiated by an authoritative ATG codon, except for COX1 initiated by a GTG codon. Most of the PCGs were terminated by a complete codon (TAA/TAG), while an incomplete termination codon (TA/T) was found in five out of the 13 PCGs. The phylogenetic analysis showed that R. brasiliensis was closely related to R. steindachneri whereas the reported mitogenome as R. steindachneri (GenBank accession number KM364982), differs from multiple mitocondrial DNA sequences of R. steindachneri and is nearly identical to that of R. javanica.
CONCLUSION: The new mitogenome determined in this study provides new insight into the phylogenetic relationships in Rhinoptera, while providing new molecular data that can be applied to population genetic studies.
Additional Links: PMID-36877343
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36877343,
year = {2023},
author = {Palacios-Barreto, P and Mar-Silva, AF and Bayona-Vasquez, NJ and Adams, DH and Díaz-Jaimes, P},
title = {Characterization of the complete mitochondrial genome of the brazilian cownose ray Rhinoptera brasiliensis (Myliobatiformes, Rhinopteridae) in the western Atlantic and its phylogenetic implications.},
journal = {Molecular biology reports},
volume = {50},
number = {5},
pages = {4083-4095},
pmid = {36877343},
issn = {1573-4978},
mesh = {Animals ; Phylogeny ; *Genome, Mitochondrial/genetics ; Brazil ; DNA, Mitochondrial/genetics ; *Skates, Fish/genetics ; Codon, Terminator ; RNA, Transfer/genetics ; },
abstract = {BACKGROUND: The Brazilian cownose ray, Rhinoptera brasiliensis has undergone a global population reduction and is currently classified by IUCN as Vulnerable. This species is sometimes confused with Rhinoptera bonasus, the only external diagnostic characteristic to distinguish between both species is the number of rows of tooth plates. Both cownose rays overlap geographically from Rio de Janeiro to the western North Atlantic. This calls for a more comprehensive phylogenetic assessment using mitochondria DNA genomes to better understand the relationships and delimitation of these two species.
METHODS AND RESULTS: The mitochondrial genome sequences of R. brasiliensis was obtained by next-generation sequencing. The length of the mitochondrial genome was 17,759 bp containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a non-coding control region (D-loop). Each PCG was initiated by an authoritative ATG codon, except for COX1 initiated by a GTG codon. Most of the PCGs were terminated by a complete codon (TAA/TAG), while an incomplete termination codon (TA/T) was found in five out of the 13 PCGs. The phylogenetic analysis showed that R. brasiliensis was closely related to R. steindachneri whereas the reported mitogenome as R. steindachneri (GenBank accession number KM364982), differs from multiple mitocondrial DNA sequences of R. steindachneri and is nearly identical to that of R. javanica.
CONCLUSION: The new mitogenome determined in this study provides new insight into the phylogenetic relationships in Rhinoptera, while providing new molecular data that can be applied to population genetic studies.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Genome, Mitochondrial/genetics
Brazil
DNA, Mitochondrial/genetics
*Skates, Fish/genetics
Codon, Terminator
RNA, Transfer/genetics
RevDate: 2023-04-29
Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana.
Frontiers in plant science, 14:1099474.
The current experimental data unveils the role of brassinolide (BL), a phytohormone of class brassinosteroids (BRs), in augmenting the cross-talk between the mitochondrial electron transport chain (mETC) and chloroplasts to strengthen the efficiency of the Calvin-Benson cycle (CBC) for higher assimilation of carbon dioxide in the mesophyll cell protoplasts (MCP) of Arabidopsis thaliana. The outcome of total respiration (TR) and photosynthetic carbon assimilation (PCA) was monitored as O2 uptake under dark and NaHCO3-dependent O2 evolution under light, respectively, after pre-incubation of MCP at a broad spectrum of BL concentration from 0.05 pM to 5 pM at 25 °C and optimum light intensity of 1000 μmol m[-2] s[-1]. The addition of optimal concentration (0.5 pM) of BL to MCP stimulated the (i) TR, (ii) PCA, and (iii) para-benzoquinone-dependent O2 evolution (PSII activity). Further, in response to BL, the enzyme activity or transcript levels of redox-regulated CBC enzymes and glucose-6-phosphate raised considerably. Also, the addition of BL to MCP remarkably accelerated the capacity of the cytochrome oxidase (COX) and alternative oxidase (AOX) pathways concurrently with an increase in total cellular pyruvate and reactive oxygen species (ROS) levels. Besides, malate valve components (Malate, Chl-MDH, M-MDH) increased in response to BL. At the same time, the cellular redox ratios of pyridine nucleotides (NADPH and NADH) were kept low in the presence of BL. However, BL could not keep up the CBC activity of photosynthesis along with its associated light-activated enzymes/transcripts when mETC through COX or AOX pathway is restricted by antimycin A (AA) or salicylhydroxamic acid (SHAM), respectively. In contrast, adding BL to MCP under restricted mETC showed aggravation in total cellular ROS, pyruvate, malate, and redox ratio of pyridine nucleotides with a concomitant increase in transcripts associated with malate valve and antioxidant systems. These results suggest that BL enhances the PCA by coordinating in cross-talk of chloroplasts and mitochondria to regulate the cellular redox ratio or ROS through the involvement of COX and AOX pathways along with the malate valve and antioxidant systems.
Additional Links: PMID-37113597
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37113597,
year = {2023},
author = {Mahati, K and Padmasree, K},
title = {Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana.},
journal = {Frontiers in plant science},
volume = {14},
number = {},
pages = {1099474},
pmid = {37113597},
issn = {1664-462X},
abstract = {The current experimental data unveils the role of brassinolide (BL), a phytohormone of class brassinosteroids (BRs), in augmenting the cross-talk between the mitochondrial electron transport chain (mETC) and chloroplasts to strengthen the efficiency of the Calvin-Benson cycle (CBC) for higher assimilation of carbon dioxide in the mesophyll cell protoplasts (MCP) of Arabidopsis thaliana. The outcome of total respiration (TR) and photosynthetic carbon assimilation (PCA) was monitored as O2 uptake under dark and NaHCO3-dependent O2 evolution under light, respectively, after pre-incubation of MCP at a broad spectrum of BL concentration from 0.05 pM to 5 pM at 25 °C and optimum light intensity of 1000 μmol m[-2] s[-1]. The addition of optimal concentration (0.5 pM) of BL to MCP stimulated the (i) TR, (ii) PCA, and (iii) para-benzoquinone-dependent O2 evolution (PSII activity). Further, in response to BL, the enzyme activity or transcript levels of redox-regulated CBC enzymes and glucose-6-phosphate raised considerably. Also, the addition of BL to MCP remarkably accelerated the capacity of the cytochrome oxidase (COX) and alternative oxidase (AOX) pathways concurrently with an increase in total cellular pyruvate and reactive oxygen species (ROS) levels. Besides, malate valve components (Malate, Chl-MDH, M-MDH) increased in response to BL. At the same time, the cellular redox ratios of pyridine nucleotides (NADPH and NADH) were kept low in the presence of BL. However, BL could not keep up the CBC activity of photosynthesis along with its associated light-activated enzymes/transcripts when mETC through COX or AOX pathway is restricted by antimycin A (AA) or salicylhydroxamic acid (SHAM), respectively. In contrast, adding BL to MCP under restricted mETC showed aggravation in total cellular ROS, pyruvate, malate, and redox ratio of pyridine nucleotides with a concomitant increase in transcripts associated with malate valve and antioxidant systems. These results suggest that BL enhances the PCA by coordinating in cross-talk of chloroplasts and mitochondria to regulate the cellular redox ratio or ROS through the involvement of COX and AOX pathways along with the malate valve and antioxidant systems.},
}
RevDate: 2023-04-28
The Evolution of Mitochondrial Genomes between Two Cymbidium Sister Species: Dozens of Circular Chromosomes and the Maintenance and Deterioration of Genome Synteny.
Genes, 14(4): pii:genes14040864.
Plant mitochondrial genomes (mitogenomes) exhibit fluid genome architectures, which could lead to the rapid erosion of genome synteny over a short evolutionary time scale. Among the species-rich orchid family, the leafy Cymbidium lancifolium and leafless Cymbidium macrorhizon are sister species with remarkable differences in morphology and nutritional physiology. Although our understanding of the evolution of mitochondria is incomplete, these sister taxa are ideal for examining this subject. In this study, the complete mitogenomes of C. lancifolium and C. macrorhizon, totaling 704,244 bp and 650,751 bp, respectively, were assembled. In the 2 mitogenomes, 38 protein-coding genes, 18 cis- and 6 trans-spliced introns, and approximately 611 Kb of homologous sequences are identical; overall, they have 99.4% genome-wide similarity. Slight variations in the mitogenomes of C. lancifolium and C. macrorhizon in repeat content (21.0 Kb and 21.6 Kb, respectively) and mitochondrial DNA of plastid origin (MIPT; 38.2 Kb and 37.5 Kb, respectively) were observed. The mitogenome architectures of C. lancifolium and C. macrorhizon are complex and comprise 23 and 22 mini-circular chromosomes, respectively. Pairwise comparisons indicate that the two mitogenomes are largely syntenic, and the disparity in chromosome numbers is likely due to repeat-mediated rearrangements among different chromosomes. Notably, approximately 93.2 Kb C. lancifolium mitochondrial sequences lack any homology in the C. macrorhizon mitogenome, indicating frequent DNA gains and losses, which accounts mainly for the size variation. Our findings provide unique insights into mitogenome evolution in leafy and leafless plants of sister species and shed light on mitogenome dynamics during the transition from mixotrophy to mycoheterotrophy.
Additional Links: PMID-37107622
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37107622,
year = {2023},
author = {Li, X and Zhe, M and Huang, Y and Fan, W and Yang, J and Zhu, A},
title = {The Evolution of Mitochondrial Genomes between Two Cymbidium Sister Species: Dozens of Circular Chromosomes and the Maintenance and Deterioration of Genome Synteny.},
journal = {Genes},
volume = {14},
number = {4},
pages = {},
doi = {10.3390/genes14040864},
pmid = {37107622},
issn = {2073-4425},
abstract = {Plant mitochondrial genomes (mitogenomes) exhibit fluid genome architectures, which could lead to the rapid erosion of genome synteny over a short evolutionary time scale. Among the species-rich orchid family, the leafy Cymbidium lancifolium and leafless Cymbidium macrorhizon are sister species with remarkable differences in morphology and nutritional physiology. Although our understanding of the evolution of mitochondria is incomplete, these sister taxa are ideal for examining this subject. In this study, the complete mitogenomes of C. lancifolium and C. macrorhizon, totaling 704,244 bp and 650,751 bp, respectively, were assembled. In the 2 mitogenomes, 38 protein-coding genes, 18 cis- and 6 trans-spliced introns, and approximately 611 Kb of homologous sequences are identical; overall, they have 99.4% genome-wide similarity. Slight variations in the mitogenomes of C. lancifolium and C. macrorhizon in repeat content (21.0 Kb and 21.6 Kb, respectively) and mitochondrial DNA of plastid origin (MIPT; 38.2 Kb and 37.5 Kb, respectively) were observed. The mitogenome architectures of C. lancifolium and C. macrorhizon are complex and comprise 23 and 22 mini-circular chromosomes, respectively. Pairwise comparisons indicate that the two mitogenomes are largely syntenic, and the disparity in chromosome numbers is likely due to repeat-mediated rearrangements among different chromosomes. Notably, approximately 93.2 Kb C. lancifolium mitochondrial sequences lack any homology in the C. macrorhizon mitogenome, indicating frequent DNA gains and losses, which accounts mainly for the size variation. Our findings provide unique insights into mitogenome evolution in leafy and leafless plants of sister species and shed light on mitogenome dynamics during the transition from mixotrophy to mycoheterotrophy.},
}
RevDate: 2023-04-22
A snapshot of lung cancer: where are we now?-a narrative review.
Annals of translational medicine, 11(6):261.
BACKGROUND AND OBJECTIVE: The global impact of cancer and cancer-related deaths has been a huge challenge and continues to be a setback in the health sector and beyond even in recent times. Cancer is the second leading cause of death globally with lung cancer (LC) being the second most prevalent malignancy and the leading cause of mortality amongst cancers in men and women worldwide. LC still constitutes a major burden despite recent advances in diagnostic and treatment tools. In this article, we review the trends in LC with an emphasis on non-small cell LC. We aimed to identify nuclear and mitochondrial genetic alterations, microbiome dysbiosis, and their significance in non-small cell LC tumorigenesis as well as its relevance in the future management of LCs.
METHODS: We identified studies for this review by searching the PubMed, Cochrane, Education Resources Information Center (ERIC), and Surveillance, Epidemiology, and End Results (SEER) databases for English-Language articles published from January 1, 2000 through to July 30, 2022, using keywords: lung cancer, non-small cell lung cancer, early detection, treatment, mitochondria, microbiome and epigenetics.
KEY CONTENT AND FINDINGS: This review will highlight the genomic environment, mitochondrial and nuclear alterations that play a role in the etiopathogenesis of LC and its application in the progression as well as management of the disease. We also elaborate on current molecular tumor biomarkers and their therapeutic targets.
CONCLUSIONS: LC remains the leading cause of cancer-related deaths globally with poor prognosis despite available treatment options and even recent advances in both diagnostic tools and management guidelines. Human nuclear and mitochondrial alterations clearly play a role in tumorigenesis and progressive genomic evolution is crucial in the early carcinogenesis of LC which is strongly influenced by host immune surveillance. It is imperative that more research and clinical trials be undertaken to appreciate an in-depth understanding of LC from the molecular level to facilitate the discovery of more targeted therapy and overall better management of LC.
Additional Links: PMID-37082671
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37082671,
year = {2023},
author = {Ibodeng, GO and Uche, IN and Mokua, R and Galo, M and Odigwe, B and Galeas, JN and Dasgupta, S},
title = {A snapshot of lung cancer: where are we now?-a narrative review.},
journal = {Annals of translational medicine},
volume = {11},
number = {6},
pages = {261},
pmid = {37082671},
issn = {2305-5839},
abstract = {BACKGROUND AND OBJECTIVE: The global impact of cancer and cancer-related deaths has been a huge challenge and continues to be a setback in the health sector and beyond even in recent times. Cancer is the second leading cause of death globally with lung cancer (LC) being the second most prevalent malignancy and the leading cause of mortality amongst cancers in men and women worldwide. LC still constitutes a major burden despite recent advances in diagnostic and treatment tools. In this article, we review the trends in LC with an emphasis on non-small cell LC. We aimed to identify nuclear and mitochondrial genetic alterations, microbiome dysbiosis, and their significance in non-small cell LC tumorigenesis as well as its relevance in the future management of LCs.
METHODS: We identified studies for this review by searching the PubMed, Cochrane, Education Resources Information Center (ERIC), and Surveillance, Epidemiology, and End Results (SEER) databases for English-Language articles published from January 1, 2000 through to July 30, 2022, using keywords: lung cancer, non-small cell lung cancer, early detection, treatment, mitochondria, microbiome and epigenetics.
KEY CONTENT AND FINDINGS: This review will highlight the genomic environment, mitochondrial and nuclear alterations that play a role in the etiopathogenesis of LC and its application in the progression as well as management of the disease. We also elaborate on current molecular tumor biomarkers and their therapeutic targets.
CONCLUSIONS: LC remains the leading cause of cancer-related deaths globally with poor prognosis despite available treatment options and even recent advances in both diagnostic tools and management guidelines. Human nuclear and mitochondrial alterations clearly play a role in tumorigenesis and progressive genomic evolution is crucial in the early carcinogenesis of LC which is strongly influenced by host immune surveillance. It is imperative that more research and clinical trials be undertaken to appreciate an in-depth understanding of LC from the molecular level to facilitate the discovery of more targeted therapy and overall better management of LC.},
}
RevDate: 2023-04-25
CmpDate: 2023-04-25
Multiple introgression events during the diversification history of the edible Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).
Molecular phylogenetics and evolution, 183:107774.
Speciation with gene flow often leads to ambiguous phylogenetic reconstructions, reticulate patterns of relatedness and conflicting nuclear versus mitochondrial (mt) lineages. Here we employed a fragment of the COI mtDNA gene and nuclear genome-wide data (3RAD) to assess the diversification history of Sphenarium, an orthopteran genus of great economic importance in Mexico that is presumed to have experienced hybridisation events in some of its species. We carried out separate phylogenetic analyses to evaluate the existence of mito-nuclear discordance in the species relationships, and also assessed the genomic diversity and population genomic structure and investigated the existence of interspecific introgression and species limits of the taxa involved based on the nuclear dataset. The species delineation analyses discriminated all the currently recognised species, but also supported the existence of four undescribed species. The mt and nuclear topologies had four discordant species relationships that can be explained by mt introgression, where the mt haplotypes of S. purpurascens appear to have replaced those of S. purpurascens A and B, S. variabile and S. zapotecum. Moreover, our analyses supported the existence of nuclear introgression events between four species pairs that are distributed in the Sierra Madre del Sur province in southeast Mexico, with three of them occurring in the Tehuantepec Isthmus region. Our study highlights the relevance of genomic data to address the relative importance of allopatric isolation versus gene flow in speciation.
Additional Links: PMID-36972795
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36972795,
year = {2023},
author = {Benites, P and Zaldívar-Riverón, A and Meza-Lázaro, RN and Samacá-Sáenz, E and Gutiérrez-Rodríguez, J and Hernández-López, A},
title = {Multiple introgression events during the diversification history of the edible Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).},
journal = {Molecular phylogenetics and evolution},
volume = {183},
number = {},
pages = {107774},
doi = {10.1016/j.ympev.2023.107774},
pmid = {36972795},
issn = {1095-9513},
mesh = {Animals ; Phylogeny ; *Grasshoppers/genetics ; Mexico ; DNA, Mitochondrial/genetics/chemistry ; Mitochondria/genetics ; },
abstract = {Speciation with gene flow often leads to ambiguous phylogenetic reconstructions, reticulate patterns of relatedness and conflicting nuclear versus mitochondrial (mt) lineages. Here we employed a fragment of the COI mtDNA gene and nuclear genome-wide data (3RAD) to assess the diversification history of Sphenarium, an orthopteran genus of great economic importance in Mexico that is presumed to have experienced hybridisation events in some of its species. We carried out separate phylogenetic analyses to evaluate the existence of mito-nuclear discordance in the species relationships, and also assessed the genomic diversity and population genomic structure and investigated the existence of interspecific introgression and species limits of the taxa involved based on the nuclear dataset. The species delineation analyses discriminated all the currently recognised species, but also supported the existence of four undescribed species. The mt and nuclear topologies had four discordant species relationships that can be explained by mt introgression, where the mt haplotypes of S. purpurascens appear to have replaced those of S. purpurascens A and B, S. variabile and S. zapotecum. Moreover, our analyses supported the existence of nuclear introgression events between four species pairs that are distributed in the Sierra Madre del Sur province in southeast Mexico, with three of them occurring in the Tehuantepec Isthmus region. Our study highlights the relevance of genomic data to address the relative importance of allopatric isolation versus gene flow in speciation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Grasshoppers/genetics
Mexico
DNA, Mitochondrial/genetics/chemistry
Mitochondria/genetics
RevDate: 2023-04-25
CmpDate: 2023-04-25
Phylogenomics and taxon-rich phylogenies of new and historical specimens shed light on the systematics of Hypnea (Cystocloniaceae, Rhodophyta).
Molecular phylogenetics and evolution, 183:107752.
Cystocloniacae is a highly diverse family of Rhodophyta, including species of ecological and economic importance, whose phylogeny remains largely unresolved. Species delimitation is unclear, particularly in the most speciose genus, Hypnea, and cryptic diversity has been revealed by recent molecular assessments, especially in the tropics. Here, we carried out the first phylogenomic investigation of Cystocloniaceae, focused on the genus Hypnea, inferred from chloroplast and mitochondrial genomes including taxa sampled from new and historical collections. In this work, molecular synapomorphies (gene losses, InDels and gene inversions) were identified to better characterize clades in our congruent organellar phylogenies. We also present taxon-rich phylogenies based on plastid and mitochondrial markers. Molecular and morphological comparisons of historic collections with contemporary specimens revealed the need for taxonomic updates in Hypnea, the synonymization of H. marchantiae to a later heterotypic synonym of H. cervicornis and the description of three new species: H. davisiana sp. nov., H. djamilae sp. nov. and H. evaristoae sp. nov.
Additional Links: PMID-36893930
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36893930,
year = {2023},
author = {Jesus, PB and Lyra, GM and Zhang, H and Fujii, MT and Nauer, F and Nunes, JMC and Davis, CC and Oliveira, MC},
title = {Phylogenomics and taxon-rich phylogenies of new and historical specimens shed light on the systematics of Hypnea (Cystocloniaceae, Rhodophyta).},
journal = {Molecular phylogenetics and evolution},
volume = {183},
number = {},
pages = {107752},
doi = {10.1016/j.ympev.2023.107752},
pmid = {36893930},
issn = {1095-9513},
mesh = {Phylogeny ; *Rhodophyta/genetics ; Organelles ; Mitochondria ; Chloroplasts ; },
abstract = {Cystocloniacae is a highly diverse family of Rhodophyta, including species of ecological and economic importance, whose phylogeny remains largely unresolved. Species delimitation is unclear, particularly in the most speciose genus, Hypnea, and cryptic diversity has been revealed by recent molecular assessments, especially in the tropics. Here, we carried out the first phylogenomic investigation of Cystocloniaceae, focused on the genus Hypnea, inferred from chloroplast and mitochondrial genomes including taxa sampled from new and historical collections. In this work, molecular synapomorphies (gene losses, InDels and gene inversions) were identified to better characterize clades in our congruent organellar phylogenies. We also present taxon-rich phylogenies based on plastid and mitochondrial markers. Molecular and morphological comparisons of historic collections with contemporary specimens revealed the need for taxonomic updates in Hypnea, the synonymization of H. marchantiae to a later heterotypic synonym of H. cervicornis and the description of three new species: H. davisiana sp. nov., H. djamilae sp. nov. and H. evaristoae sp. nov.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Phylogeny
*Rhodophyta/genetics
Organelles
Mitochondria
Chloroplasts
RevDate: 2023-04-25
CmpDate: 2023-04-25
Organellar DNA continues to provide a rich source of information in the genomics era.
Molecular ecology, 32(9):2144-2150.
The genomics revolution continues to change how ecologists and evolutionary biologists study the evolution and maintenance of biodiversity. It is now easier than ever to generate large molecular data sets consisting of hundreds to thousands of independently evolving nuclear loci to estimate a suite of evolutionary and demographic parameters. However, any inferences will be incomplete or inaccurate if incorrect taxonomic identities and perpetuated throughout the analytical pipeline. Due to decades of research and comprehensive online databases, sequencing and analysis of mitochondrial DNA (mtDNA), chloroplast DNA (cpDNA) and select nuclear genes can provide researchers with a cost effective and simple means to verify the species identity of samples prior to subsequent phylogeographic and population genomic analysis. The addition of these sequences to genomic studies can also shed light on other important evolutionary questions such as explanations for gene tree-species tree discordance, species limits, sex-biased dispersal patterns, adaptation, and mtDNA introgression. Although the mtDNA and cpDNA genomes often should not be used exclusively to make historical inferences given their well-known limitations, the addition of these data to modern genomic studies adds little cost and effort while simultaneously providing a wealth of useful data that can have significant implications for both basic and applied research.
Additional Links: PMID-36727263
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36727263,
year = {2023},
author = {Blair, C},
title = {Organellar DNA continues to provide a rich source of information in the genomics era.},
journal = {Molecular ecology},
volume = {32},
number = {9},
pages = {2144-2150},
doi = {10.1111/mec.16872},
pmid = {36727263},
issn = {1365-294X},
mesh = {Phylogeny ; *Information Sources ; *DNA, Mitochondrial/genetics ; Genomics ; Mitochondria/genetics ; DNA, Chloroplast/genetics ; Sequence Analysis, DNA ; },
abstract = {The genomics revolution continues to change how ecologists and evolutionary biologists study the evolution and maintenance of biodiversity. It is now easier than ever to generate large molecular data sets consisting of hundreds to thousands of independently evolving nuclear loci to estimate a suite of evolutionary and demographic parameters. However, any inferences will be incomplete or inaccurate if incorrect taxonomic identities and perpetuated throughout the analytical pipeline. Due to decades of research and comprehensive online databases, sequencing and analysis of mitochondrial DNA (mtDNA), chloroplast DNA (cpDNA) and select nuclear genes can provide researchers with a cost effective and simple means to verify the species identity of samples prior to subsequent phylogeographic and population genomic analysis. The addition of these sequences to genomic studies can also shed light on other important evolutionary questions such as explanations for gene tree-species tree discordance, species limits, sex-biased dispersal patterns, adaptation, and mtDNA introgression. Although the mtDNA and cpDNA genomes often should not be used exclusively to make historical inferences given their well-known limitations, the addition of these data to modern genomic studies adds little cost and effort while simultaneously providing a wealth of useful data that can have significant implications for both basic and applied research.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Phylogeny
*Information Sources
*DNA, Mitochondrial/genetics
Genomics
Mitochondria/genetics
DNA, Chloroplast/genetics
Sequence Analysis, DNA
RevDate: 2023-04-20
Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability.
Molecules and cells pii:molcells.2023.2181 [Epub ahead of print].
Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.
Additional Links: PMID-37077029
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37077029,
year = {2023},
author = {Park, D and Yu, Y and Kim, JH and Lee, J and Park, J and Hong, K and Seo, JK and Lim, C and Min, KT},
title = {Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability.},
journal = {Molecules and cells},
volume = {},
number = {},
pages = {},
doi = {10.14348/molcells.2023.2181},
pmid = {37077029},
issn = {0219-1032},
abstract = {Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.},
}
RevDate: 2023-04-19
Species Delimitation, Phylogenomics, and Biogeography of Sulawesi Flying Lizards: A Diversification History Complicated by Ancient Hybridization, Cryptic Species, and Arrested Speciation.
Systematic biology pii:7130943 [Epub ahead of print].
The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island's long period of isolation and dynamic tectonic history have been implicated as drivers of regional diversification, this has rarely been tested in the context of an explicit geological framework. Here we provide a tectonically-informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciation have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species - nine on Sulawesi proper and six on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present.
Additional Links: PMID-37074804
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37074804,
year = {2023},
author = {McGuire, JA and Huang, X and Reilly, SB and Iskandar, DT and Wang-Claypool, C and Werning, S and Chong, RA and Lawalata, SZS and Stubbs, AL and Frederick, JH and Brown, RM and Evans, BJ and Arifin, U and Riyanto, A and Hamidy, A and Arida, E and Koo, MS and Supriatna, J and Andayani, N and Hall, R},
title = {Species Delimitation, Phylogenomics, and Biogeography of Sulawesi Flying Lizards: A Diversification History Complicated by Ancient Hybridization, Cryptic Species, and Arrested Speciation.},
journal = {Systematic biology},
volume = {},
number = {},
pages = {},
doi = {10.1093/sysbio/syad020},
pmid = {37074804},
issn = {1076-836X},
abstract = {The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island's long period of isolation and dynamic tectonic history have been implicated as drivers of regional diversification, this has rarely been tested in the context of an explicit geological framework. Here we provide a tectonically-informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciation have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species - nine on Sulawesi proper and six on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present.},
}
RevDate: 2023-04-18
Co-evolution of large inverted repeats and G-quadruplex DNA in fungal mitochondria may facilitate mitogenome stability: the case of Malassezia.
Scientific reports, 13(1):6308.
Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.
Additional Links: PMID-37072481
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37072481,
year = {2023},
author = {Christinaki, AC and Theelen, B and Zania, A and Coutinho, SDA and Cabañes, JF and Boekhout, T and Kouvelis, VN},
title = {Co-evolution of large inverted repeats and G-quadruplex DNA in fungal mitochondria may facilitate mitogenome stability: the case of Malassezia.},
journal = {Scientific reports},
volume = {13},
number = {1},
pages = {6308},
pmid = {37072481},
issn = {2045-2322},
abstract = {Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.},
}
RevDate: 2023-04-18
Metabolic compatibility and the rarity of prokaryote endosymbioses.
Proceedings of the National Academy of Sciences of the United States of America, 120(17):e2206527120.
The evolution of the mitochondria was a significant event that gave rise to the eukaryotic lineage and most large complex life. Central to the origins of the mitochondria was an endosymbiosis between prokaryotes. Yet, despite the potential benefits that can stem from a prokaryotic endosymbiosis, their modern occurrence is exceptionally rare. While many factors may contribute to their rarity, we lack methods for estimating the extent to which they constrain the appearance of a prokaryotic endosymbiosis. Here, we address this knowledge gap by examining the role of metabolic compatibility between a prokaryotic host and endosymbiont. We use genome-scale metabolic flux models from three different collections (AGORA, KBase, and CarveMe) to assess the viability, fitness, and evolvability of potential prokaryotic endosymbioses. We find that while more than half of host-endosymbiont pairings are metabolically viable, the resulting endosymbioses have reduced growth rates compared to their ancestral metabolisms and are unlikely to gain mutations to overcome these fitness differences. In spite of these challenges, we do find that they may be more robust in the face of environmental perturbations at least in comparison with the ancestral host metabolism lineages. Our results provide a critical set of null models and expectations for understanding the forces that shape the structure of prokaryotic life.
Additional Links: PMID-37071674
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37071674,
year = {2023},
author = {Libby, E and Kempes, CP and Okie, JG},
title = {Metabolic compatibility and the rarity of prokaryote endosymbioses.},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {120},
number = {17},
pages = {e2206527120},
doi = {10.1073/pnas.2206527120},
pmid = {37071674},
issn = {1091-6490},
abstract = {The evolution of the mitochondria was a significant event that gave rise to the eukaryotic lineage and most large complex life. Central to the origins of the mitochondria was an endosymbiosis between prokaryotes. Yet, despite the potential benefits that can stem from a prokaryotic endosymbiosis, their modern occurrence is exceptionally rare. While many factors may contribute to their rarity, we lack methods for estimating the extent to which they constrain the appearance of a prokaryotic endosymbiosis. Here, we address this knowledge gap by examining the role of metabolic compatibility between a prokaryotic host and endosymbiont. We use genome-scale metabolic flux models from three different collections (AGORA, KBase, and CarveMe) to assess the viability, fitness, and evolvability of potential prokaryotic endosymbioses. We find that while more than half of host-endosymbiont pairings are metabolically viable, the resulting endosymbioses have reduced growth rates compared to their ancestral metabolisms and are unlikely to gain mutations to overcome these fitness differences. In spite of these challenges, we do find that they may be more robust in the face of environmental perturbations at least in comparison with the ancestral host metabolism lineages. Our results provide a critical set of null models and expectations for understanding the forces that shape the structure of prokaryotic life.},
}
RevDate: 2023-04-18
Characterizing conflict and congruence of molecular evolution across organellar genome sequences for phylogenetics in land plants.
Frontiers in plant science, 14:1125107.
Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.
Additional Links: PMID-37063179
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37063179,
year = {2023},
author = {Tyszka, AS and Bretz, EC and Robertson, HM and Woodcock-Girard, MD and Ramanauskas, K and Larson, DA and Stull, GW and Walker, JF},
title = {Characterizing conflict and congruence of molecular evolution across organellar genome sequences for phylogenetics in land plants.},
journal = {Frontiers in plant science},
volume = {14},
number = {},
pages = {1125107},
pmid = {37063179},
issn = {1664-462X},
abstract = {Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.},
}
RevDate: 2023-04-14
CmpDate: 2023-04-14
Planiliza lauvergnii (Eydoux & Souleyet, 1850), a senior synonym of Planiliza affinis (Günther, 1861) with a re-evaluation of keeled back mullets (Mugiliformes: Mugilidae).
Zootaxa, 5194(4):497-518.
The taxonomic status of the keeled back mullets (Teleostei: Mugilidae) has been reinvestigated. Two nominal mugilid species having keeled backs from East Asia: Mugil lauvergnii Eydoux & Souleyet, 1850 and Mugil affinis Günther, 1861 have been re-evaluated through examination of the holotypes and fresh specimens. Comparison of morpho-meristic characters of the holotypes shows that both species are identical. Phylogenetic analysis based on mitochondrial cytochrome c oxidase 1 (CO1) confirmed morphological data by highlighting presence of a single clade from East Asia. Mugil lauvergnii (=Planiliza lauvergnii) is thus the sole keeled back mullet from East Asia and a senior synonym of Mugil affinis (=Planiliza affinis). The taxonomic status of two other keeled back mullets, Planiliza carinata and P. klunzingeri, is also contentious due to their similar morphology. Meristic and morphometric variation as well as sequence divergence between the two species are limited but phylogenetic analyses delineate well-supported clades consistent with biogeography and currently accepted taxonomy. Planiliza carinata and P. klunzingeri share a recent common ancestor in a Maximum Likelihood tree, with separate distribution ranges while P. lauvergnii formed a paraphyletic lineage. Based on present findings, we suggest maintenance of the taxonomic distinction of P. klunzingeri and P. carinata and discuss its evolutionary significance.
Additional Links: PMID-37045318
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37045318,
year = {2022},
author = {Hasan, ME and Hasan, A and Béarez, P and Shen, KN and Chang, CW and Tran, TTV and Golani, D and Al-Saboonchi, A and Siddiqui, PJA and Durand, JD},
title = {Planiliza lauvergnii (Eydoux & Souleyet, 1850), a senior synonym of Planiliza affinis (Günther, 1861) with a re-evaluation of keeled back mullets (Mugiliformes: Mugilidae).},
journal = {Zootaxa},
volume = {5194},
number = {4},
pages = {497-518},
doi = {10.11646/zootaxa.5194.4.2},
pmid = {37045318},
issn = {1175-5334},
mesh = {Animals ; *Smegmamorpha ; Phylogeny ; Fishes/genetics ; Biological Evolution ; Mitochondria ; },
abstract = {The taxonomic status of the keeled back mullets (Teleostei: Mugilidae) has been reinvestigated. Two nominal mugilid species having keeled backs from East Asia: Mugil lauvergnii Eydoux & Souleyet, 1850 and Mugil affinis Günther, 1861 have been re-evaluated through examination of the holotypes and fresh specimens. Comparison of morpho-meristic characters of the holotypes shows that both species are identical. Phylogenetic analysis based on mitochondrial cytochrome c oxidase 1 (CO1) confirmed morphological data by highlighting presence of a single clade from East Asia. Mugil lauvergnii (=Planiliza lauvergnii) is thus the sole keeled back mullet from East Asia and a senior synonym of Mugil affinis (=Planiliza affinis). The taxonomic status of two other keeled back mullets, Planiliza carinata and P. klunzingeri, is also contentious due to their similar morphology. Meristic and morphometric variation as well as sequence divergence between the two species are limited but phylogenetic analyses delineate well-supported clades consistent with biogeography and currently accepted taxonomy. Planiliza carinata and P. klunzingeri share a recent common ancestor in a Maximum Likelihood tree, with separate distribution ranges while P. lauvergnii formed a paraphyletic lineage. Based on present findings, we suggest maintenance of the taxonomic distinction of P. klunzingeri and P. carinata and discuss its evolutionary significance.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Smegmamorpha
Phylogeny
Fishes/genetics
Biological Evolution
Mitochondria
RevDate: 2023-04-14
CmpDate: 2023-04-14
DNA barcodes reveal different speciation scenarios in the four North American Anthocharis Boisduval, Rambur, [Duménil] & Graslin, [1833] (Lepidoptera: Pieridae: Pierinae: Anthocharidini) species groups.
Zootaxa, 5194(4):519-539.
The mitochondrial DNA COI barcode segment sequenced from American Anthocharis specimens across their distribution ranges partitions them into four well-separated species groups and reveals different levels of differentiation within these groups. The lanceolata group experienced the deepest divergence. About 2.7% barcode difference separates the two species: A. lanceolata Lucas, 1852 including A. lanceolata australis (F. Grinnell, 1908), from A. desertolimbus J. Emmel, T. Emmel & Mattoon, 1998. The sara group consists of three species distinctly defined by more than 2% sequence divergence: A. sara Lucas, 1852, A. julia W. H. Edwards, 1872, and A. thoosa (Scudder, 1878). Our treatment is fully consistent with morphological evidence largely based on the characters of fifth instar larvae and pupal cone curvature (Stout, 2005, 2018). In barcodes, it is not possible to see evidence of introgression or hybridization between the three species, and identification by morphology of immature stages always agrees with DNA barcode identification. Interestingly, A. thoosa exhibited the largest intraspecific divergence in DNA barcodes, and several of its metapopulations are identifiable by haplotypes. The cethura group is characterized by the smallest divergence and is best considered as a single species variable in expression of yellow coloration: A cethura C. Felder & R. Felder, 1865. Notably, the most sexually dimorphic subspecies A. cethura morrisoni W. H. Edwards, 1881 is the most distinct by the barcodes. Finally, the midea group barcodes do not always separate A. midea (Hübner, [1809]) and A. limonea (A. Butler, 1871) and we observe gradual accumulation of differences from north (northeastern USA) to south (Hidalgo, Mexico). This barcode gradient suggests a recent origin of the two midea group species and provides another example of vicariant sister species well defined by morphology, ecology and geography, but not necessarily by DNA barcodes.
Additional Links: PMID-37045317
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37045317,
year = {2022},
author = {Opler, PA and Stout, TL and Back, W and Zhang, J and Cong, Q and Shen, J and Grishin, NV},
title = {DNA barcodes reveal different speciation scenarios in the four North American Anthocharis Boisduval, Rambur, [Duménil] & Graslin, [1833] (Lepidoptera: Pieridae: Pierinae: Anthocharidini) species groups.},
journal = {Zootaxa},
volume = {5194},
number = {4},
pages = {519-539},
doi = {10.11646/zootaxa.5194.4.3},
pmid = {37045317},
issn = {1175-5334},
mesh = {Animals ; *DNA Barcoding, Taxonomic ; *Butterflies/genetics ; DNA, Mitochondrial/genetics ; Mitochondria ; Phylogeny ; },
abstract = {The mitochondrial DNA COI barcode segment sequenced from American Anthocharis specimens across their distribution ranges partitions them into four well-separated species groups and reveals different levels of differentiation within these groups. The lanceolata group experienced the deepest divergence. About 2.7% barcode difference separates the two species: A. lanceolata Lucas, 1852 including A. lanceolata australis (F. Grinnell, 1908), from A. desertolimbus J. Emmel, T. Emmel & Mattoon, 1998. The sara group consists of three species distinctly defined by more than 2% sequence divergence: A. sara Lucas, 1852, A. julia W. H. Edwards, 1872, and A. thoosa (Scudder, 1878). Our treatment is fully consistent with morphological evidence largely based on the characters of fifth instar larvae and pupal cone curvature (Stout, 2005, 2018). In barcodes, it is not possible to see evidence of introgression or hybridization between the three species, and identification by morphology of immature stages always agrees with DNA barcode identification. Interestingly, A. thoosa exhibited the largest intraspecific divergence in DNA barcodes, and several of its metapopulations are identifiable by haplotypes. The cethura group is characterized by the smallest divergence and is best considered as a single species variable in expression of yellow coloration: A cethura C. Felder & R. Felder, 1865. Notably, the most sexually dimorphic subspecies A. cethura morrisoni W. H. Edwards, 1881 is the most distinct by the barcodes. Finally, the midea group barcodes do not always separate A. midea (Hübner, [1809]) and A. limonea (A. Butler, 1871) and we observe gradual accumulation of differences from north (northeastern USA) to south (Hidalgo, Mexico). This barcode gradient suggests a recent origin of the two midea group species and provides another example of vicariant sister species well defined by morphology, ecology and geography, but not necessarily by DNA barcodes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*DNA Barcoding, Taxonomic
*Butterflies/genetics
DNA, Mitochondrial/genetics
Mitochondria
Phylogeny
RevDate: 2023-04-12
Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species.
BioEssays : news and reviews in molecular, cellular and developmental biology [Epub ahead of print].
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Additional Links: PMID-37042115
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37042115,
year = {2023},
author = {Metcalfe, NB and Bellman, J and Bize, P and Blier, PU and Crespel, A and Dawson, NJ and Dunn, RE and Halsey, LG and Hood, WR and Hopkins, M and Killen, SS and McLennan, D and Nadler, LE and Nati, JJH and Noakes, MJ and Norin, T and Ozanne, SE and Peaker, M and Pettersen, AK and Przybylska-Piech, A and Rathery, A and Récapet, C and Rodríguez, E and Salin, K and Stier, A and Thoral, E and Westerterp, KR and Westerterp-Plantenga, MS and Wojciechowski, MS and Monaghan, P},
title = {Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species.},
journal = {BioEssays : news and reviews in molecular, cellular and developmental biology},
volume = {},
number = {},
pages = {e2300026},
doi = {10.1002/bies.202300026},
pmid = {37042115},
issn = {1521-1878},
abstract = {Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.},
}
RevDate: 2023-04-08
Maturases and Group II Introns in the Mitochondrial Genomes of the Deepest Jakobid Branch.
Genome biology and evolution pii:7111303 [Epub ahead of print].
Ophirinina is a recently described suborder of jakobid protists (Excavata) with only one described species to date, Ophirina amphinema. Despite the acquisition and analysis of massive transcriptomic and mitogenomic sequence data from O. amphinema, its phylogenetic position among excavates remained inconclusive, branching either as sister group to all Jakobida or to all Discoba. From a morphological perspective, it has several typical jakobid features but also unusual traits for this group, including the morphology of mitochondrial cristae (sac-shaped to flattened-curved cristae) and the presence of two flagellar vanes. In this study, we have isolated, morphologically characterized, and sequenced genome and transcriptome data of two new Ophirinina species: Ophirina chinija sp. nov. and Agogonia voluta gen. et sp. nov. Ophirina chinija differs from O. amphinema in having rounded cell ends, subapically emerging flagella and a posterior cell protrusion. The much more distantly related A. voluta has several unique ultrastructural characteristics, including sac-shaped mitochondrial cristae and a complex 'B' fibre. Phylogenomic analyses with a large conserved-marker dataset supported the monophyly of Ophirina and Agogonia within the Ophirinina and, more importantly, resolved the conflicting position of ophirinids as the sister clade to all other jakobids. The characterization of the mitochondrial genomes showed that Agogonia differs from all known gene-rich jakobid mitogenomes by the presence of two group II introns and their corresponding maturase protein genes. A phylogenetic analysis of the diversity of known maturases confirmed that the Agogonia proteins are highly divergent from each other and define distant families among the prokaryotic and eukaryotic maturases. This opens the intriguing possibility that, compared to other jakobids, Ophirinina may have retained additional mitochondrial elements that may help to understand the early diversification of eukaryotes and the evolution of mitochondria.
Additional Links: PMID-37029959
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37029959,
year = {2023},
author = {Galindo, LJ and Prokina, K and Torruella, G and Moreira, D and López-García, P},
title = {Maturases and Group II Introns in the Mitochondrial Genomes of the Deepest Jakobid Branch.},
journal = {Genome biology and evolution},
volume = {},
number = {},
pages = {},
doi = {10.1093/gbe/evad058},
pmid = {37029959},
issn = {1759-6653},
abstract = {Ophirinina is a recently described suborder of jakobid protists (Excavata) with only one described species to date, Ophirina amphinema. Despite the acquisition and analysis of massive transcriptomic and mitogenomic sequence data from O. amphinema, its phylogenetic position among excavates remained inconclusive, branching either as sister group to all Jakobida or to all Discoba. From a morphological perspective, it has several typical jakobid features but also unusual traits for this group, including the morphology of mitochondrial cristae (sac-shaped to flattened-curved cristae) and the presence of two flagellar vanes. In this study, we have isolated, morphologically characterized, and sequenced genome and transcriptome data of two new Ophirinina species: Ophirina chinija sp. nov. and Agogonia voluta gen. et sp. nov. Ophirina chinija differs from O. amphinema in having rounded cell ends, subapically emerging flagella and a posterior cell protrusion. The much more distantly related A. voluta has several unique ultrastructural characteristics, including sac-shaped mitochondrial cristae and a complex 'B' fibre. Phylogenomic analyses with a large conserved-marker dataset supported the monophyly of Ophirina and Agogonia within the Ophirinina and, more importantly, resolved the conflicting position of ophirinids as the sister clade to all other jakobids. The characterization of the mitochondrial genomes showed that Agogonia differs from all known gene-rich jakobid mitogenomes by the presence of two group II introns and their corresponding maturase protein genes. A phylogenetic analysis of the diversity of known maturases confirmed that the Agogonia proteins are highly divergent from each other and define distant families among the prokaryotic and eukaryotic maturases. This opens the intriguing possibility that, compared to other jakobids, Ophirinina may have retained additional mitochondrial elements that may help to understand the early diversification of eukaryotes and the evolution of mitochondria.},
}
RevDate: 2023-04-10
CmpDate: 2023-04-10
Genomic analyses of gray fox lineages suggest ancient divergence and secondary contact in the southern Great Plains.
The Journal of heredity, 114(2):110-119.
The gray fox (Urocyon cinereoargenteus) lineage diverged from all other extant canids at their most basal node and is restricted to the Americas. Previous mitochondrial analysis from coastal populations identified deeply divergent (up to 1 Mya) eastern and western lineages that predate most intraspecific splits in carnivores. We conducted genotyping by sequencing and mitochondrial analysis on gray foxes sampled across North America to determine geographic concordance between nuclear and mitochondrial contact zones and divergence times. We also estimated the admixture within the contact zone between eastern and western gray foxes based on nuclear DNA. Both datasets confirmed that eastern and western lineages met in the southern Great Plains (i.e. Texas and Oklahoma), where they maintained high differentiation. Admixture was generally low, with the majority of admixed individuals carrying <10% ancestry from the other lineage. Divergence times confirmed a mid-Pleistocene split, similar to the mitochondrial estimates. Taken together, findings suggest gray fox lineages represent an ancient divergence event, far older than most intraspecific divergences in North American carnivores. Low admixture may reflect a relatively recent time since secondary contact (e.g. post-Pleistocene) or, alternatively, ecological or reproductive barriers between lineages. Though further research is needed to disentangle these factors, our genomic investigation suggests species-level divergence exists between eastern and western gray fox lineages.
Additional Links: PMID-36326769
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36326769,
year = {2023},
author = {Kierepka, EM and Preckler-Quisquater, S and Reding, DM and Piaggio, AJ and Riley, SPD and Sacks, BN},
title = {Genomic analyses of gray fox lineages suggest ancient divergence and secondary contact in the southern Great Plains.},
journal = {The Journal of heredity},
volume = {114},
number = {2},
pages = {110-119},
doi = {10.1093/jhered/esac060},
pmid = {36326769},
issn = {1465-7333},
mesh = {Humans ; Animals ; *Foxes/genetics ; Phylogeny ; *DNA, Mitochondrial/genetics ; Mitochondria/genetics ; Genomics ; },
abstract = {The gray fox (Urocyon cinereoargenteus) lineage diverged from all other extant canids at their most basal node and is restricted to the Americas. Previous mitochondrial analysis from coastal populations identified deeply divergent (up to 1 Mya) eastern and western lineages that predate most intraspecific splits in carnivores. We conducted genotyping by sequencing and mitochondrial analysis on gray foxes sampled across North America to determine geographic concordance between nuclear and mitochondrial contact zones and divergence times. We also estimated the admixture within the contact zone between eastern and western gray foxes based on nuclear DNA. Both datasets confirmed that eastern and western lineages met in the southern Great Plains (i.e. Texas and Oklahoma), where they maintained high differentiation. Admixture was generally low, with the majority of admixed individuals carrying <10% ancestry from the other lineage. Divergence times confirmed a mid-Pleistocene split, similar to the mitochondrial estimates. Taken together, findings suggest gray fox lineages represent an ancient divergence event, far older than most intraspecific divergences in North American carnivores. Low admixture may reflect a relatively recent time since secondary contact (e.g. post-Pleistocene) or, alternatively, ecological or reproductive barriers between lineages. Though further research is needed to disentangle these factors, our genomic investigation suggests species-level divergence exists between eastern and western gray fox lineages.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Animals
*Foxes/genetics
Phylogeny
*DNA, Mitochondrial/genetics
Mitochondria/genetics
Genomics
RevDate: 2023-04-06
Real-Time Growth Kinetics Analysis of Macromolecular Assemblies in Cells with Single Molecule Resolution.
The journal of physical chemistry. A [Epub ahead of print].
Single molecule fluorescence microscopy has the unique advantage to provide real-time information on the spatiotemporal assembly of individual protein complexes in cellular membranes. This includes the assembly of proteins into oligomer species of numerous copy numbers. However, there is a need for improved tracing analysis of the real-time growth kinetics of these assemblies in cells with single molecule resolution. Here, we present an automated analysis software to accurately measure the real-time kinetics of assembly of individual high-order oligomer complexes. Our software comes with a simple Graphical User Interface (GUI), is available as a source code and an executable, and can analyze a full data set of several hundred to thousand molecules in less than 2 minutes. Importantly, this software is suitable for the analysis of intracellular protein oligomers, whose stoichiometry is usually more difficult to quantify due to variability in signal detection in the different areas of the cell. We validated our method with simulated ground-truth data and time-lapse images of diffraction-limited oligomeric assemblies of BAX and BAK proteins on mitochondria of cells undergoing apoptosis. Our approach provides the broad community of biologists with a fast, user-friendly tool to trace the compositional evolution of macromolecular assemblies, and potentially model their growth for a deeper understanding of the structural and biophysical mechanisms underlying their functions.
Additional Links: PMID-37023388
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37023388,
year = {2023},
author = {Danial, JSH and Jenner, A and Garcia-Saez, AJ and Cosentino, K},
title = {Real-Time Growth Kinetics Analysis of Macromolecular Assemblies in Cells with Single Molecule Resolution.},
journal = {The journal of physical chemistry. A},
volume = {},
number = {},
pages = {},
doi = {10.1021/acs.jpca.3c00368},
pmid = {37023388},
issn = {1520-5215},
abstract = {Single molecule fluorescence microscopy has the unique advantage to provide real-time information on the spatiotemporal assembly of individual protein complexes in cellular membranes. This includes the assembly of proteins into oligomer species of numerous copy numbers. However, there is a need for improved tracing analysis of the real-time growth kinetics of these assemblies in cells with single molecule resolution. Here, we present an automated analysis software to accurately measure the real-time kinetics of assembly of individual high-order oligomer complexes. Our software comes with a simple Graphical User Interface (GUI), is available as a source code and an executable, and can analyze a full data set of several hundred to thousand molecules in less than 2 minutes. Importantly, this software is suitable for the analysis of intracellular protein oligomers, whose stoichiometry is usually more difficult to quantify due to variability in signal detection in the different areas of the cell. We validated our method with simulated ground-truth data and time-lapse images of diffraction-limited oligomeric assemblies of BAX and BAK proteins on mitochondria of cells undergoing apoptosis. Our approach provides the broad community of biologists with a fast, user-friendly tool to trace the compositional evolution of macromolecular assemblies, and potentially model their growth for a deeper understanding of the structural and biophysical mechanisms underlying their functions.},
}
RevDate: 2023-04-06
Plant mitochondrial introns as genetic markers - conservation and variation.
Frontiers in plant science, 14:1116851.
Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.
Additional Links: PMID-37021319
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37021319,
year = {2023},
author = {Grosser, MR and Sites, SK and Murata, MM and Lopez, Y and Chamusco, KC and Love Harriage, K and Grosser, JW and Graham, JH and Gmitter, FG and Chase, CD},
title = {Plant mitochondrial introns as genetic markers - conservation and variation.},
journal = {Frontiers in plant science},
volume = {14},
number = {},
pages = {1116851},
pmid = {37021319},
issn = {1664-462X},
abstract = {Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.},
}
RevDate: 2023-04-06
CmpDate: 2023-04-06
Mitochondrial markers differentiate two distinct phylogenetic groups in indigenous rice landraces of northeast India: an evolutionary insight.
Journal of genetics, 102:.
The inheritance of the mitochondria genome and its diversity is unique for genetic and evolutionary studies relative to nuclear genomes. Northeast India and Himalayan regions are considered as one of the centres of indica rice origin. Also, rice diversity in northeast India is very distinct and highly suited for evolutionary studies. Although reports are available on the genetic diversity of indigenous northeast rice landraces, its relationship with the wild relatives is not yet properly explored and understood. In an attempt, mitochondrial markers were used to study the evolutionary relationship between the 68 landraces of northeast India and wild relatives (O. rufipogon and O. nivara) along with IR64 (indica) and Nipponbare (japonica) were taken as reference cultivars. Phylogenetically, the findings include two distinct clusters in the indigenous northeast India landraces representing indica and japonica groups. Further, the wild relatives and ~60% of northeast India landraces were identified to be closely related to the Nipponbare cluster. Besides, landraces of northeast India grouping with the indica group (IR64) are characterized by the absence of wild relatives. This indicates that there are two distinct evolutionary paths in the origin of northeast Indian rice landraces based on mitochondrial markers diversity and it is proposed that the inheritance of mitochondria, mitonuclear genome interactions, and bottleneck events could have genetically separated these two phylogenetically unique groups of northeast rice landraces.
Additional Links: PMID-37017198
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid37017198,
year = {2023},
author = {Parida, M and Gouda, G and Chidambaranathan, P and Umakanta, N and Katara, JL and Sai, CB and Samantaray, S and Patra, BC and Mohapatra, T},
title = {Mitochondrial markers differentiate two distinct phylogenetic groups in indigenous rice landraces of northeast India: an evolutionary insight.},
journal = {Journal of genetics},
volume = {102},
number = {},
pages = {},
pmid = {37017198},
issn = {0973-7731},
mesh = {Phylogeny ; *Oryza/genetics ; India ; },
abstract = {The inheritance of the mitochondria genome and its diversity is unique for genetic and evolutionary studies relative to nuclear genomes. Northeast India and Himalayan regions are considered as one of the centres of indica rice origin. Also, rice diversity in northeast India is very distinct and highly suited for evolutionary studies. Although reports are available on the genetic diversity of indigenous northeast rice landraces, its relationship with the wild relatives is not yet properly explored and understood. In an attempt, mitochondrial markers were used to study the evolutionary relationship between the 68 landraces of northeast India and wild relatives (O. rufipogon and O. nivara) along with IR64 (indica) and Nipponbare (japonica) were taken as reference cultivars. Phylogenetically, the findings include two distinct clusters in the indigenous northeast India landraces representing indica and japonica groups. Further, the wild relatives and ~60% of northeast India landraces were identified to be closely related to the Nipponbare cluster. Besides, landraces of northeast India grouping with the indica group (IR64) are characterized by the absence of wild relatives. This indicates that there are two distinct evolutionary paths in the origin of northeast Indian rice landraces based on mitochondrial markers diversity and it is proposed that the inheritance of mitochondria, mitonuclear genome interactions, and bottleneck events could have genetically separated these two phylogenetically unique groups of northeast rice landraces.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Phylogeny
*Oryza/genetics
India
RevDate: 2023-03-31
CmpDate: 2023-03-31
Defining honeybee subspecies in an evolutionary context warrants strategized conservation.
Zoological research, 44(3):483-493.
Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.
Additional Links: PMID-36994538
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36994538,
year = {2023},
author = {Qiu, L and Dong, J and Li, X and Parey, SH and Tan, K and Orr, M and Majeed, A and Zhang, X and Luo, S and Zhou, X and Zhu, C and Ji, T and Niu, Q and Liu, S and Zhou, X},
title = {Defining honeybee subspecies in an evolutionary context warrants strategized conservation.},
journal = {Zoological research},
volume = {44},
number = {3},
pages = {483-493},
doi = {10.24272/j.issn.2095-8137.2022.414},
pmid = {36994538},
issn = {2095-8137},
mesh = {Bees/genetics ; Animals ; Phylogeny ; Phenotype ; *Mitochondria ; },
abstract = {Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Bees/genetics
Animals
Phylogeny
Phenotype
*Mitochondria
RevDate: 2023-04-05
CmpDate: 2023-04-05
Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis.
Plant physiology, 191(4):2170-2184.
In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.
Additional Links: PMID-36695030
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36695030,
year = {2023},
author = {Röhricht, H and Przybyla-Toscano, J and Forner, J and Boussardon, C and Keech, O and Rouhier, N and Meyer, EH},
title = {Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis.},
journal = {Plant physiology},
volume = {191},
number = {4},
pages = {2170-2184},
pmid = {36695030},
issn = {1532-2548},
mesh = {*Ferredoxins/genetics/metabolism ; *Arabidopsis/genetics/metabolism ; Phylogeny ; Electron Transport Complex I/genetics/metabolism ; Mitochondria/metabolism ; },
abstract = {In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Ferredoxins/genetics/metabolism
*Arabidopsis/genetics/metabolism
Phylogeny
Electron Transport Complex I/genetics/metabolism
Mitochondria/metabolism
RevDate: 2023-04-03
CmpDate: 2023-04-03
Mitochondrial function and E2 synthesis are impaired following alteration of CLOCK gene expression in porcine ovarian granulosa cells.
Theriogenology, 202:51-60.
Circadian locomotor output cycles kaput (CLOCK) is a critical component of the mammalian circadian clock system and regulates ovarian physiology. However, the functions and mechanisms of CLOCK in porcine granulosa cells (GCs) are poorly understood. The present study focused on CLOCK's effects on estradiol synthesis. Similarity analysis showed that CLOCK is highly conserved between pigs and other species. The phylogenetic tree analysis indicated that porcine CLOCK was most closely related to that in Arabian camels. CLOCK significantly reduced E2 synthesis in GCs. CLOCK reduced the expression of steroidogenesis-related genes at the mRNA and protein levels, including CYP19A1, CYP11A1, and StAR. CYP17A1 levels were significantly downregulated. We demonstrated that CLOCK dramatically decreased ATP content, mitochondrial copy number, and mitochondrial membrane potential (MMP) and increased reactive oxygen species levels in GCs. We observed that mitochondria were severely damaged with fuzzy and fractured cristae and swollen matrix. These findings suggest that mitochondrial function and E2 synthesis are impaired following the alteration of CLOCK gene expression in porcine ovarian GCs.
Additional Links: PMID-36921565
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36921565,
year = {2023},
author = {Huang, L and Zhang, L and Shi, S and Zhou, X and Yuan, H and Song, X and Hu, Y and Pang, W and Yang, G and Gao, L and Chu, G},
title = {Mitochondrial function and E2 synthesis are impaired following alteration of CLOCK gene expression in porcine ovarian granulosa cells.},
journal = {Theriogenology},
volume = {202},
number = {},
pages = {51-60},
doi = {10.1016/j.theriogenology.2023.03.004},
pmid = {36921565},
issn = {1879-3231},
mesh = {Female ; Swine ; Animals ; *Gene Expression Regulation ; Phylogeny ; *Granulosa Cells/physiology ; Estradiol/metabolism ; Mitochondria/metabolism ; Gene Expression ; Mammals ; },
abstract = {Circadian locomotor output cycles kaput (CLOCK) is a critical component of the mammalian circadian clock system and regulates ovarian physiology. However, the functions and mechanisms of CLOCK in porcine granulosa cells (GCs) are poorly understood. The present study focused on CLOCK's effects on estradiol synthesis. Similarity analysis showed that CLOCK is highly conserved between pigs and other species. The phylogenetic tree analysis indicated that porcine CLOCK was most closely related to that in Arabian camels. CLOCK significantly reduced E2 synthesis in GCs. CLOCK reduced the expression of steroidogenesis-related genes at the mRNA and protein levels, including CYP19A1, CYP11A1, and StAR. CYP17A1 levels were significantly downregulated. We demonstrated that CLOCK dramatically decreased ATP content, mitochondrial copy number, and mitochondrial membrane potential (MMP) and increased reactive oxygen species levels in GCs. We observed that mitochondria were severely damaged with fuzzy and fractured cristae and swollen matrix. These findings suggest that mitochondrial function and E2 synthesis are impaired following the alteration of CLOCK gene expression in porcine ovarian GCs.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Female
Swine
Animals
*Gene Expression Regulation
Phylogeny
*Granulosa Cells/physiology
Estradiol/metabolism
Mitochondria/metabolism
Gene Expression
Mammals
RevDate: 2023-03-31
Plant responses to limited aeration: Advances and future challenges.
Plant direct, 7(3):e488.
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Additional Links: PMID-36993903
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36993903,
year = {2023},
author = {Dalle Carbonare, L and Jiménez, JC and Lichtenauer, S and van Veen, H},
title = {Plant responses to limited aeration: Advances and future challenges.},
journal = {Plant direct},
volume = {7},
number = {3},
pages = {e488},
pmid = {36993903},
issn = {2475-4455},
abstract = {Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.},
}
RevDate: 2023-03-31
CmpDate: 2023-03-31
Structural basis of mitochondrial membrane bending by the I-II-III2-IV2 supercomplex.
Nature, 615(7954):934-938.
Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane[1]. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.
Additional Links: PMID-36949187
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36949187,
year = {2023},
author = {Mühleip, A and Flygaard, RK and Baradaran, R and Haapanen, O and Gruhl, T and Tobiasson, V and Maréchal, A and Sharma, V and Amunts, A},
title = {Structural basis of mitochondrial membrane bending by the I-II-III2-IV2 supercomplex.},
journal = {Nature},
volume = {615},
number = {7954},
pages = {934-938},
pmid = {36949187},
issn = {1476-4687},
mesh = {*Mitochondrial Membranes/metabolism ; Cryoelectron Microscopy/methods ; *Mitochondria/metabolism ; Electron Transport ; Electron Transport Complex IV/chemistry/metabolism ; Electron Transport Complex III/metabolism ; },
abstract = {Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane[1]. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Mitochondrial Membranes/metabolism
Cryoelectron Microscopy/methods
*Mitochondria/metabolism
Electron Transport
Electron Transport Complex IV/chemistry/metabolism
Electron Transport Complex III/metabolism
RevDate: 2023-03-30
CmpDate: 2023-03-30
Genetic Characterization and Insular Habitat Enveloping of Endangered Leaf-Nosed Bat, Hipposideros nicobarulae (Mammalia: Chiroptera) in India: Phylogenetic Inference and Conservation Implication.
Genes, 14(3):.
The Nicobar leaf-nosed Bat (Hipposideros nicobarulae) was described in the early 20th century; however, its systematic classification has been debated for over 100 years. This endangered and endemic species has achieved species status through morphological data in the last 10 years. However, the genetic information and phylogenetic relationships of H. nicobarulae remain neglected. The generated mitochondrial cytochrome b gene (mtCytb) sequences (438 bp) of H. nicobarulae contains 53.42-53.65% AT composition and 1.82% variable sites. The studied species, H. nicobarulae maintains an 8.1% to 22.6% genetic distance from other Hipposideros species. The genetic divergence estimated in this study is congruent with the concept of gene speciation in bats. The Bayesian and Maximum-Likelihood phylogenies clearly discriminated all Hipposideros species and showed a sister relationship between H. nicobarulae and H. cf. antricola. Current mtCytb-based investigations of H. nicobarulae have confirmed the species status at the molecular level. Further, the MaxEnt-based species distribution modelling illustrates the most suitable habitat of H. nicobarulae (294 km[2]), of which the majority (171 km[2]) is located on Great Nicobar Island. The present study suggests rigorous sampling across the range, taxonomic coverage, the generation of multiple molecular markers (mitochondrial and nuclear), as well as more ecological information, which will help in understanding population genetic structure, habitat suitability, and the implementation of appropriate conservation action plans for H. nicobarulae and other Hipposideros species.
Additional Links: PMID-36981035
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36981035,
year = {2023},
author = {Kundu, S and Kamalakannan, M and Mukherjee, T and Banerjee, D and Kim, HW},
title = {Genetic Characterization and Insular Habitat Enveloping of Endangered Leaf-Nosed Bat, Hipposideros nicobarulae (Mammalia: Chiroptera) in India: Phylogenetic Inference and Conservation Implication.},
journal = {Genes},
volume = {14},
number = {3},
pages = {},
pmid = {36981035},
issn = {2073-4425},
mesh = {Animals ; *Chiroptera/genetics ; Phylogeny ; Bayes Theorem ; Mammals ; Mitochondria ; },
abstract = {The Nicobar leaf-nosed Bat (Hipposideros nicobarulae) was described in the early 20th century; however, its systematic classification has been debated for over 100 years. This endangered and endemic species has achieved species status through morphological data in the last 10 years. However, the genetic information and phylogenetic relationships of H. nicobarulae remain neglected. The generated mitochondrial cytochrome b gene (mtCytb) sequences (438 bp) of H. nicobarulae contains 53.42-53.65% AT composition and 1.82% variable sites. The studied species, H. nicobarulae maintains an 8.1% to 22.6% genetic distance from other Hipposideros species. The genetic divergence estimated in this study is congruent with the concept of gene speciation in bats. The Bayesian and Maximum-Likelihood phylogenies clearly discriminated all Hipposideros species and showed a sister relationship between H. nicobarulae and H. cf. antricola. Current mtCytb-based investigations of H. nicobarulae have confirmed the species status at the molecular level. Further, the MaxEnt-based species distribution modelling illustrates the most suitable habitat of H. nicobarulae (294 km[2]), of which the majority (171 km[2]) is located on Great Nicobar Island. The present study suggests rigorous sampling across the range, taxonomic coverage, the generation of multiple molecular markers (mitochondrial and nuclear), as well as more ecological information, which will help in understanding population genetic structure, habitat suitability, and the implementation of appropriate conservation action plans for H. nicobarulae and other Hipposideros species.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Chiroptera/genetics
Phylogeny
Bayes Theorem
Mammals
Mitochondria
RevDate: 2023-03-30
CmpDate: 2023-03-30
Genetic Diversity in the mtDNA of Physarum polycephalum.
Genes, 14(3):.
The mtDNA of the myxomycete Physarum polycephalum can contain as many as 81 genes. These genes can be grouped in three different categories. The first category includes 46 genes that are classically found on the mtDNA of many organisms. However, 43 of these genes are cryptogenes that require a unique type of RNA editing (MICOTREM). A second category of gene is putative protein-coding genes represented by 26 significant open reading frames. However, these genes do not appear to be transcribed during the growth of the plasmodium and are currently unassigned since they do not have any apparent similarity to other classical mitochondrial protein-coding genes. The third category of gene is found in the mtDNA of some strains of P. polycephalum. These genes derive from a linear mitochondrial plasmid with nine significant, but unassigned, open reading frames which can integrate into the mitochondrial DNA by recombination. Here, we review the mechanism and evolution of the RNA editing necessary for cryptogene expression, discuss possible origins for the 26 unassigned open reading frames based on tentative identification of their protein product, and discuss the implications to mtDNA structure and replication of the integration of the linear mitochondrial plasmid.
Additional Links: PMID-36980901
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36980901,
year = {2023},
author = {Hammar, F and Miller, DL},
title = {Genetic Diversity in the mtDNA of Physarum polycephalum.},
journal = {Genes},
volume = {14},
number = {3},
pages = {},
pmid = {36980901},
issn = {2073-4425},
mesh = {*Physarum polycephalum/genetics ; DNA, Mitochondrial/genetics ; Base Sequence ; Mitochondria/genetics ; Genetic Variation/genetics ; },
abstract = {The mtDNA of the myxomycete Physarum polycephalum can contain as many as 81 genes. These genes can be grouped in three different categories. The first category includes 46 genes that are classically found on the mtDNA of many organisms. However, 43 of these genes are cryptogenes that require a unique type of RNA editing (MICOTREM). A second category of gene is putative protein-coding genes represented by 26 significant open reading frames. However, these genes do not appear to be transcribed during the growth of the plasmodium and are currently unassigned since they do not have any apparent similarity to other classical mitochondrial protein-coding genes. The third category of gene is found in the mtDNA of some strains of P. polycephalum. These genes derive from a linear mitochondrial plasmid with nine significant, but unassigned, open reading frames which can integrate into the mitochondrial DNA by recombination. Here, we review the mechanism and evolution of the RNA editing necessary for cryptogene expression, discuss possible origins for the 26 unassigned open reading frames based on tentative identification of their protein product, and discuss the implications to mtDNA structure and replication of the integration of the linear mitochondrial plasmid.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Physarum polycephalum/genetics
DNA, Mitochondrial/genetics
Base Sequence
Mitochondria/genetics
Genetic Variation/genetics
RevDate: 2023-03-30
CmpDate: 2023-03-30
Evolution: 'Millefoglie' origin of mitochondrial cristae.
Current biology : CB, 33(6):R219-R221.
Striated intracytoplasmic membranes in alphaproteobacteria are often reminiscent of millefoglie pastries. A new study reveals a protein complex homologous to that responsible for mitochondrial cristae formation drives intracytoplasmic membrane formation, thereby establishing bacterial ancestry for the biogenesis of mitochondrial cristae.
Additional Links: PMID-36977381
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36977381,
year = {2023},
author = {Michels, PAM and Ginger, ML},
title = {Evolution: 'Millefoglie' origin of mitochondrial cristae.},
journal = {Current biology : CB},
volume = {33},
number = {6},
pages = {R219-R221},
doi = {10.1016/j.cub.2023.02.037},
pmid = {36977381},
issn = {1879-0445},
mesh = {*Mitochondria/genetics/metabolism ; *Mitochondrial Proteins/genetics/metabolism ; Mitochondrial Membranes/metabolism ; },
abstract = {Striated intracytoplasmic membranes in alphaproteobacteria are often reminiscent of millefoglie pastries. A new study reveals a protein complex homologous to that responsible for mitochondrial cristae formation drives intracytoplasmic membrane formation, thereby establishing bacterial ancestry for the biogenesis of mitochondrial cristae.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Mitochondria/genetics/metabolism
*Mitochondrial Proteins/genetics/metabolism
Mitochondrial Membranes/metabolism
RevDate: 2023-03-27
Bacterial Type II Secretion System and Its Mitochondrial Counterpart.
mBio [Epub ahead of print].
Over the billions of years that bacteria have been around, they have evolved several sophisticated protein secretion nanomachines to deliver toxins, hydrolytic enzymes, and effector proteins into their environments. Of these, the type II secretion system (T2SS) is used by Gram-negative bacteria to export a wide range of folded proteins from the periplasm across the outer membrane. Recent findings have demonstrated that components of the T2SS are localized in mitochondria of some eukaryotic lineages, and their behavior is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). This review focuses on recent advances in the field and discusses open questions concerning the function and evolution of miT2SSs.
Additional Links: PMID-36971557
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36971557,
year = {2023},
author = {Shaliutina-Loginova, A and Francetic, O and Doležal, P},
title = {Bacterial Type II Secretion System and Its Mitochondrial Counterpart.},
journal = {mBio},
volume = {},
number = {},
pages = {e0314522},
doi = {10.1128/mbio.03145-22},
pmid = {36971557},
issn = {2150-7511},
abstract = {Over the billions of years that bacteria have been around, they have evolved several sophisticated protein secretion nanomachines to deliver toxins, hydrolytic enzymes, and effector proteins into their environments. Of these, the type II secretion system (T2SS) is used by Gram-negative bacteria to export a wide range of folded proteins from the periplasm across the outer membrane. Recent findings have demonstrated that components of the T2SS are localized in mitochondria of some eukaryotic lineages, and their behavior is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). This review focuses on recent advances in the field and discusses open questions concerning the function and evolution of miT2SSs.},
}
RevDate: 2023-03-30
CmpDate: 2023-03-30
Intracytoplasmic-membrane development in alphaproteobacteria involves the homolog of the mitochondrial crista-developing protein Mic60.
Current biology : CB, 33(6):1099-1111.e6.
Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.
Additional Links: PMID-36921606
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36921606,
year = {2023},
author = {Muñoz-Gómez, SA and Cadena, LR and Gardiner, AT and Leger, MM and Sheikh, S and Connell, LB and Bilý, T and Kopejtka, K and Beatty, JT and Koblížek, M and Roger, AJ and Slamovits, CH and Lukeš, J and Hashimi, H},
title = {Intracytoplasmic-membrane development in alphaproteobacteria involves the homolog of the mitochondrial crista-developing protein Mic60.},
journal = {Current biology : CB},
volume = {33},
number = {6},
pages = {1099-1111.e6},
doi = {10.1016/j.cub.2023.02.059},
pmid = {36921606},
issn = {1879-0445},
mesh = {*Mitochondrial Proteins/metabolism ; *Alphaproteobacteria/genetics/metabolism ; Mitochondrial Membranes/metabolism ; Mitochondria/metabolism ; Biological Evolution ; },
abstract = {Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Mitochondrial Proteins/metabolism
*Alphaproteobacteria/genetics/metabolism
Mitochondrial Membranes/metabolism
Mitochondria/metabolism
Biological Evolution
RevDate: 2023-03-28
CmpDate: 2023-03-28
A new, rare, small-ranged, and endangered mountain snake of the genus Elaphe from the Southern Levant.
Scientific reports, 13(1):4839.
The genus Elaphe Fitzinger, 1833 includes 17 species of charismatic, large-sized, non-venomous, Eurasian snakes. In the Western Palearctic, the genus is represented by three species from the Elaphe quatuorlineata group ranging from the Apennine peninsula to Central Asia. The southernmost population of this group is distributed in the mountains of the Southern Levant, with more than 400 km gap to other Elaphe populations. This population has been known to science for only 50 years and is virtually unstudied due to its extreme rarity. We studied these snakes' morphological and genetic variation from the three countries where they are known to occur, i.e., Israel (Hermon, the Israeli-controlled Golan Heights), Lebanon, and Syria. We used nine mitochondrial and nuclear genes, complete mitogenome sequences, and a comprehensive morphological examination including published data, our own field observations, and museum specimens, to study its relationship to other species in the group. The three currently recognized species of the group (E. quatuorlineata, E. sauromates, E. urartica), and the Levant population, form four deeply divergent, strongly supported clades. Three of these clades correspond to the abovementioned species while the Southern Levant clade, which is genetically and morphologically distinct from all named congeners, is described here as a new species, Elaphe druzei sp. nov. The basal divergence of this group is estimated to be the Late Miocene with subsequent radiation from 5.1 to 3.9 Mya. The revealed biogeography of the E. quatuorlineata group supports the importance of the Levant as a major center of endemism and diversity of biota in Eurasia. The new species is large-sized and is one of the rarest snakes in the Western Palearctic. Because of its small mountain distribution range, in an area affected by land use and climate change, the new Elaphe urgently needs strict protection. Despite political issues, we hope this will be based on the cooperation of all countries where the new species occurs.
Additional Links: PMID-36964263
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36964263,
year = {2023},
author = {Jablonski, D and Ribeiro-Júnior, MA and Simonov, E and Šoltys, K and Meiri, S},
title = {A new, rare, small-ranged, and endangered mountain snake of the genus Elaphe from the Southern Levant.},
journal = {Scientific reports},
volume = {13},
number = {1},
pages = {4839},
pmid = {36964263},
issn = {2045-2322},
mesh = {Animals ; Phylogeny ; *Colubridae ; Mitochondria/genetics ; Lebanon ; Syria ; DNA, Mitochondrial/genetics ; },
abstract = {The genus Elaphe Fitzinger, 1833 includes 17 species of charismatic, large-sized, non-venomous, Eurasian snakes. In the Western Palearctic, the genus is represented by three species from the Elaphe quatuorlineata group ranging from the Apennine peninsula to Central Asia. The southernmost population of this group is distributed in the mountains of the Southern Levant, with more than 400 km gap to other Elaphe populations. This population has been known to science for only 50 years and is virtually unstudied due to its extreme rarity. We studied these snakes' morphological and genetic variation from the three countries where they are known to occur, i.e., Israel (Hermon, the Israeli-controlled Golan Heights), Lebanon, and Syria. We used nine mitochondrial and nuclear genes, complete mitogenome sequences, and a comprehensive morphological examination including published data, our own field observations, and museum specimens, to study its relationship to other species in the group. The three currently recognized species of the group (E. quatuorlineata, E. sauromates, E. urartica), and the Levant population, form four deeply divergent, strongly supported clades. Three of these clades correspond to the abovementioned species while the Southern Levant clade, which is genetically and morphologically distinct from all named congeners, is described here as a new species, Elaphe druzei sp. nov. The basal divergence of this group is estimated to be the Late Miocene with subsequent radiation from 5.1 to 3.9 Mya. The revealed biogeography of the E. quatuorlineata group supports the importance of the Levant as a major center of endemism and diversity of biota in Eurasia. The new species is large-sized and is one of the rarest snakes in the Western Palearctic. Because of its small mountain distribution range, in an area affected by land use and climate change, the new Elaphe urgently needs strict protection. Despite political issues, we hope this will be based on the cooperation of all countries where the new species occurs.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Colubridae
Mitochondria/genetics
Lebanon
Syria
DNA, Mitochondrial/genetics
RevDate: 2023-03-28
CmpDate: 2023-03-28
Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella.
Molecular phylogenetics and evolution, 182:107751.
Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.
Additional Links: PMID-36889655
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36889655,
year = {2023},
author = {Zhu, X and Liu, T and He, A and Zhang, L and Li, J and Li, T and Miao, X and You, M and You, S},
title = {Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella.},
journal = {Molecular phylogenetics and evolution},
volume = {182},
number = {},
pages = {107751},
doi = {10.1016/j.ympev.2023.107751},
pmid = {36889655},
issn = {1095-9513},
mesh = {Animals ; *Moths/genetics ; *Wolbachia/genetics ; Phylogeny ; DNA, Mitochondrial/genetics ; Mitochondria/genetics ; },
abstract = {Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Moths/genetics
*Wolbachia/genetics
Phylogeny
DNA, Mitochondrial/genetics
Mitochondria/genetics
RevDate: 2023-03-28
CmpDate: 2023-03-28
Genome skimming elucidates the evolutionary history of Octopoda.
Molecular phylogenetics and evolution, 182:107729.
Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the 'typical' genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be key.
Additional Links: PMID-36773750
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36773750,
year = {2023},
author = {Taite, M and Fernández-Álvarez, FÁ and Braid, HE and Bush, SL and Bolstad, K and Drewery, J and Mills, S and Strugnell, JM and Vecchione, M and Villanueva, R and Voight, JR and Allcock, AL},
title = {Genome skimming elucidates the evolutionary history of Octopoda.},
journal = {Molecular phylogenetics and evolution},
volume = {182},
number = {},
pages = {107729},
doi = {10.1016/j.ympev.2023.107729},
pmid = {36773750},
issn = {1095-9513},
mesh = {Animals ; *Octopodiformes/genetics ; Phylogeny ; Bayes Theorem ; Mitochondria/genetics ; *Genome, Mitochondrial ; RNA, Transfer ; },
abstract = {Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the 'typical' genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be key.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Octopodiformes/genetics
Phylogeny
Bayes Theorem
Mitochondria/genetics
*Genome, Mitochondrial
RNA, Transfer
RevDate: 2023-03-26
Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron.
Gene pii:S0378-1119(23)00234-2 [Epub ahead of print].
In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of its introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, presumably in domain IV of the intron. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.
Additional Links: PMID-36966978
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36966978,
year = {2023},
author = {Edera, AA and Howell, KA and Nevill, PG and Small, I and Virginia Sanchez-Puerta, M},
title = {Evolution of cox2 introns in angiosperm mitochondria and efficient splicing of an elongated cox2i691 intron.},
journal = {Gene},
volume = {},
number = {},
pages = {147393},
doi = {10.1016/j.gene.2023.147393},
pmid = {36966978},
issn = {1879-0038},
abstract = {In angiosperms, the mitochondrial cox2 gene harbors up to two introns, commonly referred to as cox2i373 and cox2i691. We studied the cox2 from 222 fully-sequenced mitogenomes from 30 angiosperm orders and analyzed the evolution of its introns. Unlike cox2i373, cox2i691 shows a distribution among plants that is shaped by frequent intron loss events driven by localized retroprocessing. In addition, cox2i691 exhibits sporadic elongations, presumably in domain IV of the intron. Such elongations are poorly related to repeat content and two of them showed the presence of LINE transposons, suggesting that increasing intron size is very likely due to nuclear intracelular DNA transfer followed by incorporation into the mitochondrial DNA. Surprisingly, we found that cox2i691 is erroneously annotated as absent in 30 mitogenomes deposited in public databases. Although each of the cox2 introns is ∼1.5 kb in length, a cox2i691 of 4.2 kb has been reported in Acacia ligulata (Fabaceae). It is still unclear whether its unusual length is due to a trans-splicing arrangement or the loss of functionality of the interrupted cox2. Through analyzing short-read RNA sequencing of Acacia with a multi-step computational strategy, we found that the Acacia cox2 is functional and its long intron is spliced in cis in a very efficient manner despite its length.},
}
RevDate: 2023-03-25
How mitochondria showcase evolutionary mechanisms and the importance of oxygen.
BioEssays : news and reviews in molecular, cellular and developmental biology [Epub ahead of print].
Darwinian evolution can be simply stated: natural selection of inherited variations increasing differential reproduction. However, formulated thus, links with biochemistry, cell biology, ecology, and population dynamics remain unclear. To understand interactive contributions of chance and selection, higher levels of biological organization (e.g., endosymbiosis), complexities of competing selection forces, and emerging biological novelties (such as eukaryotes or meiotic sex), we must analyze actual examples. Focusing on mitochondria, I will illuminate how biology makes sense of life's evolution, and the concepts involved. First, looking at the bacterium - mitochondrion transition: merging with an archaeon, it lost its independence, but played a decisive role in eukaryogenesis, as an extremely efficient aerobic ATP generator and internal ROS source. Second, surveying later mitochondrion adaptations and diversifications illustrates concepts such as constructive neutral evolution, dynamic interactions between endosymbionts and hosts, the contingency of life histories, and metabolic reprogramming. Without oxygen, mitochondria disappear; with (intermittent) oxygen diversification occurs in highly complex ways, especially upon (temporary) phototrophic substrate supply. These expositions show the Darwinian model to be a highly fruitful paradigm.
Additional Links: PMID-36965057
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36965057,
year = {2023},
author = {Speijer, D},
title = {How mitochondria showcase evolutionary mechanisms and the importance of oxygen.},
journal = {BioEssays : news and reviews in molecular, cellular and developmental biology},
volume = {},
number = {},
pages = {e2300013},
doi = {10.1002/bies.202300013},
pmid = {36965057},
issn = {1521-1878},
abstract = {Darwinian evolution can be simply stated: natural selection of inherited variations increasing differential reproduction. However, formulated thus, links with biochemistry, cell biology, ecology, and population dynamics remain unclear. To understand interactive contributions of chance and selection, higher levels of biological organization (e.g., endosymbiosis), complexities of competing selection forces, and emerging biological novelties (such as eukaryotes or meiotic sex), we must analyze actual examples. Focusing on mitochondria, I will illuminate how biology makes sense of life's evolution, and the concepts involved. First, looking at the bacterium - mitochondrion transition: merging with an archaeon, it lost its independence, but played a decisive role in eukaryogenesis, as an extremely efficient aerobic ATP generator and internal ROS source. Second, surveying later mitochondrion adaptations and diversifications illustrates concepts such as constructive neutral evolution, dynamic interactions between endosymbionts and hosts, the contingency of life histories, and metabolic reprogramming. Without oxygen, mitochondria disappear; with (intermittent) oxygen diversification occurs in highly complex ways, especially upon (temporary) phototrophic substrate supply. These expositions show the Darwinian model to be a highly fruitful paradigm.},
}
RevDate: 2023-03-23
Aminoacyl-tRNA synthetase evolution within the dynamic tripartite translation system of plant cells.
Genome biology and evolution pii:7084591 [Epub ahead of print].
Eukaryotes maintain separate protein translation systems for nuclear and organellar genes, including distinct sets of tRNAs and aminoacyl-tRNA synthetases (aaRSs). In animals, mitochondrial-targeted aaRSs are expressed at lower levels and are less conserved in sequence than cytosolic aaRSs involved in translation of nuclear mRNAs, likely reflecting lower translational demands in mitochondria. In plants, translation is further complicated by the presence of plastids, which share most aaRSs with mitochondria. In addition, plant mitochondrial tRNA pools have a dynamic history of gene loss and functional replacement by tRNAs from other compartments. To investigate the consequences of these distinctive features of translation in plants, we analyzed sequence evolution in angiosperm aaRSs. In contrast to previously studied eukaryotic systems, we found that plant organellar and cytosolic aaRSs exhibit only a small difference in expression levels, and organellar aaRSs are slightly more conserved than cytosolic aaRSs. We hypothesize that these patterns result from high translational demands associated with photosynthesis in mature chloroplasts. We also investigated aaRS evolution in Sileneae, an angiosperm lineage with extensive mitochondrial tRNA replacement and aaRS retargeting. We predicted positive selection for changes in aaRS sequence resulting from these recent changes in subcellular localization and tRNA substrates but found little evidence for accelerated sequence divergence. Overall, the complex tripartite translation system in plant cells appears to have imposed more constraints on the long-term evolutionary rates of organellar aaRSs compared to other eukaryotic lineages, and plant aaRS protein sequences appear largely robust to more recent perturbations in subcellular localization and tRNA interactions.
Additional Links: PMID-36951086
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36951086,
year = {2023},
author = {Sloan, DB and DeTar, RA and Warren, JM},
title = {Aminoacyl-tRNA synthetase evolution within the dynamic tripartite translation system of plant cells.},
journal = {Genome biology and evolution},
volume = {},
number = {},
pages = {},
doi = {10.1093/gbe/evad050},
pmid = {36951086},
issn = {1759-6653},
abstract = {Eukaryotes maintain separate protein translation systems for nuclear and organellar genes, including distinct sets of tRNAs and aminoacyl-tRNA synthetases (aaRSs). In animals, mitochondrial-targeted aaRSs are expressed at lower levels and are less conserved in sequence than cytosolic aaRSs involved in translation of nuclear mRNAs, likely reflecting lower translational demands in mitochondria. In plants, translation is further complicated by the presence of plastids, which share most aaRSs with mitochondria. In addition, plant mitochondrial tRNA pools have a dynamic history of gene loss and functional replacement by tRNAs from other compartments. To investigate the consequences of these distinctive features of translation in plants, we analyzed sequence evolution in angiosperm aaRSs. In contrast to previously studied eukaryotic systems, we found that plant organellar and cytosolic aaRSs exhibit only a small difference in expression levels, and organellar aaRSs are slightly more conserved than cytosolic aaRSs. We hypothesize that these patterns result from high translational demands associated with photosynthesis in mature chloroplasts. We also investigated aaRS evolution in Sileneae, an angiosperm lineage with extensive mitochondrial tRNA replacement and aaRS retargeting. We predicted positive selection for changes in aaRS sequence resulting from these recent changes in subcellular localization and tRNA substrates but found little evidence for accelerated sequence divergence. Overall, the complex tripartite translation system in plant cells appears to have imposed more constraints on the long-term evolutionary rates of organellar aaRSs compared to other eukaryotic lineages, and plant aaRS protein sequences appear largely robust to more recent perturbations in subcellular localization and tRNA interactions.},
}
RevDate: 2023-03-22
Sex differences in adult lifespan and aging rate across mammals: a test of the 'Mother Curse hypothesis'.
Mechanisms of ageing and development pii:S0047-6374(23)00025-8 [Epub ahead of print].
In many animal species, including humans, males have shorter lifespan and show faster survival aging than females. This differential increase in mortality between sexes could result from the accumulation of deleterious mutations in the mitochondrial genome of males due to the maternal mode of mtDNA inheritance. To date, empirical evidence supporting the existence of this mechanism - called the Mother Curse hypothesis - remains largely limited to a few study cases in humans and Drosophila. In this study, we tested whether the Mother Curse hypothesis accounts for sex differences in lifespan and aging rate across 128 populations of mammals (60 and 68 populations studied in wild and captive conditions, respectively) encompassing 104 species. We found that adult lifespan decreases with increasing mtDNA neutral substitution rate in both sexes in a similar way in the wild - but not in captivity. Moreover, the aging rate marginally increased with neutral substitution rate in males and females in the wild. Overall, these results indicate that the Mother Curse hypothesis is not supported across mammals. We further discuss the implication of these findings for our understanding of the evolution of sex differences in mortality and aging.
Additional Links: PMID-36948470
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36948470,
year = {2023},
author = {Cayuela, H and Gaillard, JM and Vieira, C and Ronget, V and Gippet, JMW and Garcia, TC and Marais, GAB and Lemaître, JF},
title = {Sex differences in adult lifespan and aging rate across mammals: a test of the 'Mother Curse hypothesis'.},
journal = {Mechanisms of ageing and development},
volume = {},
number = {},
pages = {111799},
doi = {10.1016/j.mad.2023.111799},
pmid = {36948470},
issn = {1872-6216},
abstract = {In many animal species, including humans, males have shorter lifespan and show faster survival aging than females. This differential increase in mortality between sexes could result from the accumulation of deleterious mutations in the mitochondrial genome of males due to the maternal mode of mtDNA inheritance. To date, empirical evidence supporting the existence of this mechanism - called the Mother Curse hypothesis - remains largely limited to a few study cases in humans and Drosophila. In this study, we tested whether the Mother Curse hypothesis accounts for sex differences in lifespan and aging rate across 128 populations of mammals (60 and 68 populations studied in wild and captive conditions, respectively) encompassing 104 species. We found that adult lifespan decreases with increasing mtDNA neutral substitution rate in both sexes in a similar way in the wild - but not in captivity. Moreover, the aging rate marginally increased with neutral substitution rate in males and females in the wild. Overall, these results indicate that the Mother Curse hypothesis is not supported across mammals. We further discuss the implication of these findings for our understanding of the evolution of sex differences in mortality and aging.},
}
RevDate: 2023-03-22
Mitochondrial transplantation: Effects on chemotherapy in prostate and ovarian cancer cells in vitro and in vivo.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 161:114524 pii:S0753-3322(23)00312-8 [Epub ahead of print].
Prostate and ovarian cancers affect the male and female reproductive organs and are among the most common cancers in developing countries. Previous studies have demonstrated that cancer cells have a high rate of aerobic glycolysis that is present in nearly all invasive human cancers and persists even under normoxic conditions. Aerobic glycolysis has been correlated with chemotherapeutic resistance and tumor aggressiveness. These data suggest that mitochondrial dysfunction may confer a significant proliferative advantage during the somatic evolution of cancer. In this study we investigated the effect of direct mitochondria transplantation on cancer cell proliferation and chemotherapeutic sensitivity in prostate and ovarian cancer models, both in vitro and in vivo. Our results show that the transplantation of viable, respiration competent mitochondria has no effect on cancer cell proliferation but significantly decreases migration and alters cell cycle checkpoints. Our results further demonstrate that mitochondrial transplantation significantly increases chemotherapeutic sensitivity, providing similar apoptotic levels with low-dose chemotherapy as that achieved with high-dose chemotherapy. These results suggest that mitochondria transplantation provides a novel approach for early prostate and ovarian cancer therapy, significantly increasing chemotherapeutic sensitivity in in vitro and in vivo murine models.
Additional Links: PMID-36948134
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36948134,
year = {2023},
author = {Celik, A and Orfany, A and Dearling, J and Del Nido, PJ and McCully, JD and Bakar-Ates, F},
title = {Mitochondrial transplantation: Effects on chemotherapy in prostate and ovarian cancer cells in vitro and in vivo.},
journal = {Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie},
volume = {161},
number = {},
pages = {114524},
doi = {10.1016/j.biopha.2023.114524},
pmid = {36948134},
issn = {1950-6007},
abstract = {Prostate and ovarian cancers affect the male and female reproductive organs and are among the most common cancers in developing countries. Previous studies have demonstrated that cancer cells have a high rate of aerobic glycolysis that is present in nearly all invasive human cancers and persists even under normoxic conditions. Aerobic glycolysis has been correlated with chemotherapeutic resistance and tumor aggressiveness. These data suggest that mitochondrial dysfunction may confer a significant proliferative advantage during the somatic evolution of cancer. In this study we investigated the effect of direct mitochondria transplantation on cancer cell proliferation and chemotherapeutic sensitivity in prostate and ovarian cancer models, both in vitro and in vivo. Our results show that the transplantation of viable, respiration competent mitochondria has no effect on cancer cell proliferation but significantly decreases migration and alters cell cycle checkpoints. Our results further demonstrate that mitochondrial transplantation significantly increases chemotherapeutic sensitivity, providing similar apoptotic levels with low-dose chemotherapy as that achieved with high-dose chemotherapy. These results suggest that mitochondria transplantation provides a novel approach for early prostate and ovarian cancer therapy, significantly increasing chemotherapeutic sensitivity in in vitro and in vivo murine models.},
}
RevDate: 2023-03-22
Comparative analysis of the organelle genomes of three Rhodiola species provide insights into their structural dynamics and sequence divergences.
BMC plant biology, 23(1):156.
BACKGROUND: Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates.
RESULTS: The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP.
CONCLUSION: The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.
Additional Links: PMID-36944988
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36944988,
year = {2023},
author = {Yu, X and Wei, P and Chen, Z and Li, X and Zhang, W and Yang, Y and Liu, C and Zhao, S and Li, X and Liu, X},
title = {Comparative analysis of the organelle genomes of three Rhodiola species provide insights into their structural dynamics and sequence divergences.},
journal = {BMC plant biology},
volume = {23},
number = {1},
pages = {156},
pmid = {36944988},
issn = {1471-2229},
abstract = {BACKGROUND: Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates.
RESULTS: The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP.
CONCLUSION: The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.},
}
RevDate: 2023-03-20
Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria).
mBio [Epub ahead of print].
Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.
Additional Links: PMID-36939357
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36939357,
year = {2023},
author = {Macher, JN and Coots, NL and Poh, YP and Girard, EB and Langerak, A and Muñoz-Gómez, SA and Sinha, SD and Jirsová, D and Vos, R and Wissels, R and Gile, GH and Renema, W and Wideman, JG},
title = {Single-Cell Genomics Reveals the Divergent Mitochondrial Genomes of Retaria (Foraminifera and Radiolaria).},
journal = {mBio},
volume = {},
number = {},
pages = {e0030223},
doi = {10.1128/mbio.00302-23},
pmid = {36939357},
issn = {2150-7511},
abstract = {Mitochondria originated from an ancient bacterial endosymbiont that underwent reductive evolution by gene loss and endosymbiont gene transfer to the nuclear genome. The diversity of mitochondrial genomes published to date has revealed that gene loss and transfer processes are ongoing in many lineages. Most well-studied eukaryotic lineages are represented in mitochondrial genome databases, except for the superphylum Retaria-the lineage comprising Foraminifera and Radiolaria. Using single-cell approaches, we determined two complete mitochondrial genomes of Foraminifera and two nearly complete mitochondrial genomes of radiolarians. We report the complete coding content of an additional 14 foram species. We show that foraminiferan and radiolarian mitochondrial genomes contain a nearly fully overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. In contrast to animals and fungi, many protists encode a diverse set of proteins on their mitochondrial genomes, including several ribosomal genes; however, some aerobic eukaryotic lineages (euglenids, myzozoans, and chlamydomonas-like algae) have reduced mitochondrial gene content and lack all ribosomal genes. Similar to these reduced outliers, we show that retarian mitochondrial genomes lack ribosomal protein and tRNA genes, contain truncated and divergent small and large rRNA genes, and contain only 14 or 15 protein-coding genes, including nad1, -3, -4, -4L, -5, and -7, cob, cox1, -2, and -3, and atp1, -6, and -9, with forams and radiolarians additionally carrying nad2 and nad6, respectively. In radiolarian mitogenomes, a noncanonical genetic code was identified in which all three stop codons encode amino acids. Collectively, these results add to our understanding of mitochondrial genome evolution and fill in one of the last major gaps in mitochondrial sequence databases. IMPORTANCE We present the reduced mitochondrial genomes of Retaria, the rhizarian lineage comprising the phyla Foraminifera and Radiolaria. By applying single-cell genomic approaches, we found that foraminiferan and radiolarian mitochondrial genomes contain an overlapping but reduced mitochondrial gene complement compared to other sequenced rhizarians. An alternative genetic code was identified in radiolarian mitogenomes in which all three stop codons encode amino acids. Collectively, these results shed light on the divergent nature of the mitochondrial genomes from an ecologically important group, warranting further questions into the biological underpinnings of gene content variability and genetic code variation between mitochondrial genomes.},
}
RevDate: 2023-03-22
CmpDate: 2023-03-22
New Insights into the Evolution and Gene Structure of the Mitochondrial Carrier Family Unveiled by Analyzing the Frequent and Conserved Intron Positions.
Molecular biology and evolution, 40(3):.
Mitochondrial carriers (MCs) belong to a eukaryotic protein family of transporters that in higher organisms is called the solute carrier family 25 (SLC25). All MCs have characteristic triplicated sequence repeats forming a 3-fold symmetrical structure of a six-transmembrane α-helix bundle with a centrally located substrate-binding site. Biochemical characterization has shown that MCs altogether transport a wide variety of substrates but can be divided into subfamilies, each transporting a few specific substrates. We have investigated the intron positions in the human MC genes and their orthologs of highly diversified organisms. The results demonstrate that several intron positions are present in numerous MC sequences at the same specific points, of which some are 3-fold symmetry related. Many of these frequent intron positions are also conserved in subfamilies or in groups of subfamilies transporting similar substrates. The analyses of the frequent and conserved intron positions in MCs suggest phylogenetic relationships not only between close but also distant homologs as well as a possible involvement of the intron positions in the evolution of the substrate specificity diversification of the MC family members.
Additional Links: PMID-36916992
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36916992,
year = {2023},
author = {Monné, M and Cianciulli, A and Panaro, MA and Calvello, R and De Grassi, A and Palmieri, L and Mitolo, V and Palmieri, F},
title = {New Insights into the Evolution and Gene Structure of the Mitochondrial Carrier Family Unveiled by Analyzing the Frequent and Conserved Intron Positions.},
journal = {Molecular biology and evolution},
volume = {40},
number = {3},
pages = {},
pmid = {36916992},
issn = {1537-1719},
mesh = {Humans ; Introns ; Phylogeny ; *Mitochondria/genetics/metabolism ; *Membrane Transport Proteins/genetics ; Eukaryota/genetics ; Evolution, Molecular ; Conserved Sequence ; },
abstract = {Mitochondrial carriers (MCs) belong to a eukaryotic protein family of transporters that in higher organisms is called the solute carrier family 25 (SLC25). All MCs have characteristic triplicated sequence repeats forming a 3-fold symmetrical structure of a six-transmembrane α-helix bundle with a centrally located substrate-binding site. Biochemical characterization has shown that MCs altogether transport a wide variety of substrates but can be divided into subfamilies, each transporting a few specific substrates. We have investigated the intron positions in the human MC genes and their orthologs of highly diversified organisms. The results demonstrate that several intron positions are present in numerous MC sequences at the same specific points, of which some are 3-fold symmetry related. Many of these frequent intron positions are also conserved in subfamilies or in groups of subfamilies transporting similar substrates. The analyses of the frequent and conserved intron positions in MCs suggest phylogenetic relationships not only between close but also distant homologs as well as a possible involvement of the intron positions in the evolution of the substrate specificity diversification of the MC family members.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Introns
Phylogeny
*Mitochondria/genetics/metabolism
*Membrane Transport Proteins/genetics
Eukaryota/genetics
Evolution, Molecular
Conserved Sequence
RevDate: 2023-03-21
CmpDate: 2023-03-21
Museomics reveals the phylogenetic position of the extinct Moroccan trout Salmo pallaryi.
Journal of fish biology, 102(3):619-627.
The authors used museomics to reconstruct the mitochondrial genome from two individuals of the Moroccan, endemic and extinct trout, Salmo pallaryi. They further obtained partial data from 21 nuclear genes previously used for trout phylogenetic analyses. Phylogenetic analyses, including publicly available data from the mitochondrial control region and the cytochrome b gene, and the 21 nuclear genes, place S. pallaryi among other North African trouts. mtDNA places S. pallaryi close to Salmo macrostigma within a single North African clade. Although the nuclear coverage of the genome was low, both specimens were independently positioned as sisters to one of two distantly related North African clades, viz. the Atlas clade with the Dades trout, Salmo multipunctatus. Phylogenetic discordance between mtDNA and nuclear DNA phylogenies is briefly discussed. As several specimens that were extracted failed to produce DNA of sufficient quality, the authors discuss potential reasons for the failure. They suggest that museum specimens in poor physical condition may be better for DNA extraction compared to better-preserved ones, possibly related to the innovation of formalin as a fixative before ethanol storage in the early 20th century.
Additional Links: PMID-36602189
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36602189,
year = {2023},
author = {Delling, B and Thörn, F and Norén, M and Irestedt, M},
title = {Museomics reveals the phylogenetic position of the extinct Moroccan trout Salmo pallaryi.},
journal = {Journal of fish biology},
volume = {102},
number = {3},
pages = {619-627},
doi = {10.1111/jfb.15299},
pmid = {36602189},
issn = {1095-8649},
mesh = {Animals ; Phylogeny ; *Trout/genetics ; *DNA, Mitochondrial/genetics ; Mitochondria/genetics ; Sequence Analysis, DNA ; },
abstract = {The authors used museomics to reconstruct the mitochondrial genome from two individuals of the Moroccan, endemic and extinct trout, Salmo pallaryi. They further obtained partial data from 21 nuclear genes previously used for trout phylogenetic analyses. Phylogenetic analyses, including publicly available data from the mitochondrial control region and the cytochrome b gene, and the 21 nuclear genes, place S. pallaryi among other North African trouts. mtDNA places S. pallaryi close to Salmo macrostigma within a single North African clade. Although the nuclear coverage of the genome was low, both specimens were independently positioned as sisters to one of two distantly related North African clades, viz. the Atlas clade with the Dades trout, Salmo multipunctatus. Phylogenetic discordance between mtDNA and nuclear DNA phylogenies is briefly discussed. As several specimens that were extracted failed to produce DNA of sufficient quality, the authors discuss potential reasons for the failure. They suggest that museum specimens in poor physical condition may be better for DNA extraction compared to better-preserved ones, possibly related to the innovation of formalin as a fixative before ethanol storage in the early 20th century.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Trout/genetics
*DNA, Mitochondrial/genetics
Mitochondria/genetics
Sequence Analysis, DNA
RevDate: 2023-03-21
CmpDate: 2023-03-21
mtDNA heteroplasmy gives rise to a new maternal lineage in North Pacific humpback whales (Megaptera novaeangliae).
The Journal of heredity, 114(1):14-21.
Heteroplasmy in the mitochondrial genome offers a rare opportunity to track the evolution of a newly arising maternal lineage in populations of non-model species. Here, we identified a previously unreported mitochondrial DNA haplotype while assembling an integrated database of DNA profiles and photo-identification records from humpback whales in southeastern Alaska (SEAK). The haplotype, referred to as A8, was shared by only 2 individuals, a mature female with her female calf, and differed by only a single base pair from a common haplotype in the North Pacific, referred to as A-. To investigate the origins of the A8 haplotype, we reviewed n = 1,089 electropherograms (including replicate samples) of n = 710 individuals with A- haplotypes from an existing collection. From this review, we found 20 individuals with clear evidence of heteroplasmy for A-/A8 (parental/derived) haplotypes. Of these, 15 were encountered in SEAK, 4 were encountered on the Hawaiian breeding ground (the primary migratory destination for whales in SEAK), and 1 was encountered in the northern Gulf of Alaska. We used genotype exclusion and likelihood to identify one of the heteroplasmic females as the likely mother of the A8 cow and grandmother of the A8 calf, establishing the inheritance and germ-line fixation of the new haplotype from the parental heteroplasmy. The mutation leading to this heteroplasmy and the fixation of the A8 haplotype provide an opportunity to document the population dynamics and regional fidelity of a newly arising maternal lineage in a population recovering from exploitation.
Additional Links: PMID-36146890
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36146890,
year = {2023},
author = {Pierszalowski, SP and Steel, DJ and Gabriele, CM and Neilson, JL and Vanselow, PBS and Cedarleaf, JA and Straley, JM and Baker, CS},
title = {mtDNA heteroplasmy gives rise to a new maternal lineage in North Pacific humpback whales (Megaptera novaeangliae).},
journal = {The Journal of heredity},
volume = {114},
number = {1},
pages = {14-21},
pmid = {36146890},
issn = {1465-7333},
mesh = {Animals ; Female ; Cattle ; *Humpback Whale/genetics ; DNA, Mitochondrial/genetics ; Heteroplasmy ; Mitochondria/genetics ; Cetacea/genetics ; },
abstract = {Heteroplasmy in the mitochondrial genome offers a rare opportunity to track the evolution of a newly arising maternal lineage in populations of non-model species. Here, we identified a previously unreported mitochondrial DNA haplotype while assembling an integrated database of DNA profiles and photo-identification records from humpback whales in southeastern Alaska (SEAK). The haplotype, referred to as A8, was shared by only 2 individuals, a mature female with her female calf, and differed by only a single base pair from a common haplotype in the North Pacific, referred to as A-. To investigate the origins of the A8 haplotype, we reviewed n = 1,089 electropherograms (including replicate samples) of n = 710 individuals with A- haplotypes from an existing collection. From this review, we found 20 individuals with clear evidence of heteroplasmy for A-/A8 (parental/derived) haplotypes. Of these, 15 were encountered in SEAK, 4 were encountered on the Hawaiian breeding ground (the primary migratory destination for whales in SEAK), and 1 was encountered in the northern Gulf of Alaska. We used genotype exclusion and likelihood to identify one of the heteroplasmic females as the likely mother of the A8 cow and grandmother of the A8 calf, establishing the inheritance and germ-line fixation of the new haplotype from the parental heteroplasmy. The mutation leading to this heteroplasmy and the fixation of the A8 haplotype provide an opportunity to document the population dynamics and regional fidelity of a newly arising maternal lineage in a population recovering from exploitation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Female
Cattle
*Humpback Whale/genetics
DNA, Mitochondrial/genetics
Heteroplasmy
Mitochondria/genetics
Cetacea/genetics
RevDate: 2023-03-20
Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen.
Small (Weinheim an der Bergstrasse, Germany) [Epub ahead of print].
Replacing electrocatalytic oxygen evolution reaction (OER) with amine oxidation reaction is adopted to boost clean and environment-friendly energy source hydrogen (H2) in water. However, the electrocatalytic reaction is severely restricted by the strong adsorption of product on the catalyst surface. Inspired by the cooperation of flavin adenine dinucleotide and mitochondria membrane in biological system, the catalysis-separation complex electrodes are introduced to promote the desorption of product and hinder its readsorption by applying polytetrafluoroethylene (PTFE)-separation membrane on the one side of electrode, which is benefit for the cleanness of active sites on the catalyst surface for the continuous production and timely separation of nitrile and hydrogen. With the intermolecular force between PTFE and nitrile, the nitrile droplets can be quickly desorbed and separated from catalyst surface of anode, and the size of nitrile droplets on the catalyst surface is only 0.23% to that without PTFE. As a result, the current at 1.49 VRHE from the catalyst with PTFE membrane is about 33 times to that of catalyst without PTFE after long-term operation. Moreover, the cathode with PTFE membrane also achieves the rapid desorption of H2 bubbles and stable cathodic current because of the strong absorption of PTFE to H2 .
Additional Links: PMID-36938916
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36938916,
year = {2023},
author = {Jiao, J and Wang, X and Wei, C and Zhao, Y},
title = {Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen.},
journal = {Small (Weinheim an der Bergstrasse, Germany)},
volume = {},
number = {},
pages = {e2208044},
doi = {10.1002/smll.202208044},
pmid = {36938916},
issn = {1613-6829},
abstract = {Replacing electrocatalytic oxygen evolution reaction (OER) with amine oxidation reaction is adopted to boost clean and environment-friendly energy source hydrogen (H2) in water. However, the electrocatalytic reaction is severely restricted by the strong adsorption of product on the catalyst surface. Inspired by the cooperation of flavin adenine dinucleotide and mitochondria membrane in biological system, the catalysis-separation complex electrodes are introduced to promote the desorption of product and hinder its readsorption by applying polytetrafluoroethylene (PTFE)-separation membrane on the one side of electrode, which is benefit for the cleanness of active sites on the catalyst surface for the continuous production and timely separation of nitrile and hydrogen. With the intermolecular force between PTFE and nitrile, the nitrile droplets can be quickly desorbed and separated from catalyst surface of anode, and the size of nitrile droplets on the catalyst surface is only 0.23% to that without PTFE. As a result, the current at 1.49 VRHE from the catalyst with PTFE membrane is about 33 times to that of catalyst without PTFE after long-term operation. Moreover, the cathode with PTFE membrane also achieves the rapid desorption of H2 bubbles and stable cathodic current because of the strong absorption of PTFE to H2 .},
}
RevDate: 2023-03-17
Evolutionary trajectories are contingent on mitonuclear interactions.
Molecular biology and evolution pii:7079771 [Epub ahead of print].
Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in mtDNA, current models predict that maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genome evolving with different mitochondrial haplotypes would follow distinct molecular paths towards higher fitness. To test this prediction, we submitted 1344 populations derived from seven mitonuclear genotypes of Saccharomyces cerevisiae to more than 300 generations of experimental evolution in conditions that either select for a mitochondrial function, or that do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.
Additional Links: PMID-36929911
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36929911,
year = {2023},
author = {Biot-Pelletier, D and Bettinazzi, S and Gagnon-Arsenault, I and Dubé, AK and Bédard, C and Nguyen, THM and Fiumera, HL and Breton, S and Landry, CR},
title = {Evolutionary trajectories are contingent on mitonuclear interactions.},
journal = {Molecular biology and evolution},
volume = {},
number = {},
pages = {},
doi = {10.1093/molbev/msad061},
pmid = {36929911},
issn = {1537-1719},
abstract = {Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in mtDNA, current models predict that maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genome evolving with different mitochondrial haplotypes would follow distinct molecular paths towards higher fitness. To test this prediction, we submitted 1344 populations derived from seven mitonuclear genotypes of Saccharomyces cerevisiae to more than 300 generations of experimental evolution in conditions that either select for a mitochondrial function, or that do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.},
}
RevDate: 2023-03-15
Rate accelerations in plastid and mitochondrial genomes of Cyperaceae occur in the same clades.
Molecular phylogenetics and evolution pii:S1055-7903(23)00060-X [Epub ahead of print].
Cyperaceae, the second largest family in the monocot order Poales, comprises more than 5,500 species and includes the genus Eleocharis with ∼ 250 species. A previous study of complete plastomes of two Eleocharis species documented extensive structural heteroplasmy, gene order changes, high frequency of dispersed repeats along with gene losses and duplications. To better understand the phylogenetic distribution of gene and intron content as well as rates and patterns of sequence evolution within and between mitochondrial and plastid genomes of Eleocharis and Cyperaceae, an additional 29 Eleocharis organelle genomes were sequenced and analyzed. Eleocharis experienced extensive gene loss in both genomes while loss of introns was mitochondria-specific. Eleocharis has higher rates of synonymous (dS) and nonsynonymous (dN) substitutions in the plastid and mitochondrion than most sampled angiosperms, and the pattern was distinct from other eudicot lineages with accelerated rates. Several clades showed higher dS and dN in mitochondrial genes than in plastid genes. Furthermore, nucleotide substitution rates of mitochondrial genes were significantly accelerated on the branch leading to Cyperaceae compared to most angiosperms. Mitochondrial genes of Cyperaceae exhibited dramatic loss of RNA editing sites and a negative correlation between RNA editing and dS values was detected among angiosperms. Mutagenic retroprocessing and dysfunction of DNA replication, repair and recombination genes are the most likely cause of striking rate accelerations and loss of edit sites and introns in Eleocharis and Cyperaceae organelle genomes.
Additional Links: PMID-36921696
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36921696,
year = {2023},
author = {Lee, C and Ruhlman, TA and Jansen, RK},
title = {Rate accelerations in plastid and mitochondrial genomes of Cyperaceae occur in the same clades.},
journal = {Molecular phylogenetics and evolution},
volume = {},
number = {},
pages = {107760},
doi = {10.1016/j.ympev.2023.107760},
pmid = {36921696},
issn = {1095-9513},
abstract = {Cyperaceae, the second largest family in the monocot order Poales, comprises more than 5,500 species and includes the genus Eleocharis with ∼ 250 species. A previous study of complete plastomes of two Eleocharis species documented extensive structural heteroplasmy, gene order changes, high frequency of dispersed repeats along with gene losses and duplications. To better understand the phylogenetic distribution of gene and intron content as well as rates and patterns of sequence evolution within and between mitochondrial and plastid genomes of Eleocharis and Cyperaceae, an additional 29 Eleocharis organelle genomes were sequenced and analyzed. Eleocharis experienced extensive gene loss in both genomes while loss of introns was mitochondria-specific. Eleocharis has higher rates of synonymous (dS) and nonsynonymous (dN) substitutions in the plastid and mitochondrion than most sampled angiosperms, and the pattern was distinct from other eudicot lineages with accelerated rates. Several clades showed higher dS and dN in mitochondrial genes than in plastid genes. Furthermore, nucleotide substitution rates of mitochondrial genes were significantly accelerated on the branch leading to Cyperaceae compared to most angiosperms. Mitochondrial genes of Cyperaceae exhibited dramatic loss of RNA editing sites and a negative correlation between RNA editing and dS values was detected among angiosperms. Mutagenic retroprocessing and dysfunction of DNA replication, repair and recombination genes are the most likely cause of striking rate accelerations and loss of edit sites and introns in Eleocharis and Cyperaceae organelle genomes.},
}
RevDate: 2023-03-15
CmpDate: 2023-03-15
Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases.
BMC ecology and evolution, 23(1):5.
Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.
Additional Links: PMID-36915058
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36915058,
year = {2023},
author = {Zumkeller, S and Knoop, V},
title = {Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases.},
journal = {BMC ecology and evolution},
volume = {23},
number = {1},
pages = {5},
pmid = {36915058},
issn = {2730-7182},
mesh = {Introns/genetics ; *Evolution, Molecular ; *Mitochondria/genetics ; Plants/genetics ; Cell Nucleus ; },
abstract = {Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Introns/genetics
*Evolution, Molecular
*Mitochondria/genetics
Plants/genetics
Cell Nucleus
RevDate: 2023-03-15
CmpDate: 2023-03-15
Cryo-EM structure of the four-subunit Rhodobacter sphaeroides cytochrome bc1 complex in styrene maleic acid nanodiscs.
Proceedings of the National Academy of Sciences of the United States of America, 120(12):e2217922120.
Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.
Additional Links: PMID-36913593
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36913593,
year = {2023},
author = {Swainsbury, DJK and Hawkings, FR and Martin, EC and Musiał, S and Salisbury, JH and Jackson, PJ and Farmer, DA and Johnson, MP and Siebert, CA and Hitchcock, A and Hunter, CN},
title = {Cryo-EM structure of the four-subunit Rhodobacter sphaeroides cytochrome bc1 complex in styrene maleic acid nanodiscs.},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
volume = {120},
number = {12},
pages = {e2217922120},
doi = {10.1073/pnas.2217922120},
pmid = {36913593},
issn = {1091-6490},
mesh = {*Rhodobacter sphaeroides/chemistry ; Cytochromes c ; Cytochromes b ; Styrene ; Cryoelectron Microscopy ; Quinones ; Lipids ; Electron Transport Complex III ; Oxidation-Reduction ; },
abstract = {Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Rhodobacter sphaeroides/chemistry
Cytochromes c
Cytochromes b
Styrene
Cryoelectron Microscopy
Quinones
Lipids
Electron Transport Complex III
Oxidation-Reduction
RevDate: 2023-03-10
CmpDate: 2023-03-09
Cellular and environmental dynamics influence species-specific extents of organelle gene retention.
Proceedings. Biological sciences, 290(1994):20222140.
Mitochondria and plastids rely on many nuclear-encoded genes, but retain small subsets of the genes they need to function in their own organelle DNA (oDNA). Different species retain different numbers of oDNA genes, and the reasons for these differences are not completely understood. Here, we use a mathematical model to explore the hypothesis that the energetic demands imposed by an organism's changing environment influence how many oDNA genes it retains. The model couples the physical biology of cell processes of gene expression and transport to a supply-and-demand model for the environmental dynamics to which an organism is exposed. The trade-off between fulfilling metabolic and bioenergetic environmental demands, and retaining genetic integrity, is quantified for a generic gene encoded either in oDNA or in nuclear DNA. Species in environments with high-amplitude, intermediate-frequency oscillations are predicted to retain the most organelle genes, whereas those in less dynamic or noisy environments the fewest. We discuss support for, and insight from, these predictions with oDNA data across eukaryotic taxa, including high oDNA gene counts in sessile organisms exposed to day-night and intertidal oscillations (including plants and algae) and low counts in parasites and fungi.
Additional Links: PMID-36883279
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36883279,
year = {2023},
author = {García Pascual, B and Nordbotten, JM and Johnston, IG},
title = {Cellular and environmental dynamics influence species-specific extents of organelle gene retention.},
journal = {Proceedings. Biological sciences},
volume = {290},
number = {1994},
pages = {20222140},
pmid = {36883279},
issn = {1471-2954},
mesh = {Species Specificity ; *Mitochondria ; *Eukaryotic Cells ; Eukaryota ; },
abstract = {Mitochondria and plastids rely on many nuclear-encoded genes, but retain small subsets of the genes they need to function in their own organelle DNA (oDNA). Different species retain different numbers of oDNA genes, and the reasons for these differences are not completely understood. Here, we use a mathematical model to explore the hypothesis that the energetic demands imposed by an organism's changing environment influence how many oDNA genes it retains. The model couples the physical biology of cell processes of gene expression and transport to a supply-and-demand model for the environmental dynamics to which an organism is exposed. The trade-off between fulfilling metabolic and bioenergetic environmental demands, and retaining genetic integrity, is quantified for a generic gene encoded either in oDNA or in nuclear DNA. Species in environments with high-amplitude, intermediate-frequency oscillations are predicted to retain the most organelle genes, whereas those in less dynamic or noisy environments the fewest. We discuss support for, and insight from, these predictions with oDNA data across eukaryotic taxa, including high oDNA gene counts in sessile organisms exposed to day-night and intertidal oscillations (including plants and algae) and low counts in parasites and fungi.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Species Specificity
*Mitochondria
*Eukaryotic Cells
Eukaryota
RevDate: 2023-03-09
CmpDate: 2023-03-09
Mitochondrial metabolism of the facultative parasite Chilodonella uncinata (Alveolata, Ciliophora).
Parasites & vectors, 16(1):92.
BACKGROUND: Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria.
METHODS: Fluorescence staining and transmission electron microscopy (TEM) were used to observe the morphology of mitochondria. Single-cell transcriptome data of C. uncinata were annotated by the Clusters of Orthologous Genes (COG) database. Meanwhile, the metabolic pathways were constructed based on the transcriptomes. The phylogenetic analysis was also made based on the sequenced cytochrome c oxidase subunit 1 (COX1) gene.
RESULTS: Mitochondria were stained red using Mito-tracker Red staining and were stained slightly blue by DAPI dye. The cristae and double membrane structures of the mitochondria were observed by TEM. Besides, many lipid droplets were evenly distributed around the macronucleus. A total of 2594 unigenes were assigned to 23 functional classifications of COG. Mitochondrial metabolic pathways were depicted. The mitochondria contained enzymes for the complete tricarboxylic acid (TCA) cycle, fatty acid metabolism, amino acid metabolism, and cytochrome-based electron transport chain (ETC), but only partial enzymes involved in the iron-sulfur clusters (ISCs).
CONCLUSIONS: Our results showed that C. uncinata possess typical mitochondria. Stored lipid droplets inside mitochondria may be the energy storage of C. uncinata that helps its transmission from a free-living to a parasitic lifestyle. These findings also have improved our knowledge of the mitochondrial metabolism of C. uncinata and increased the volume of molecular data for future studies of this facultative parasite.
Additional Links: PMID-36882771
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36882771,
year = {2023},
author = {Bu, XL and Zhao, WS and Li, WX and Zou, H and Wu, SG and Li, M and Wang, GT},
title = {Mitochondrial metabolism of the facultative parasite Chilodonella uncinata (Alveolata, Ciliophora).},
journal = {Parasites & vectors},
volume = {16},
number = {1},
pages = {92},
pmid = {36882771},
issn = {1756-3305},
mesh = {Animals ; *Alveolata ; *Parasites ; Phylogeny ; *Ciliophora/genetics ; Mitochondria ; },
abstract = {BACKGROUND: Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria.
METHODS: Fluorescence staining and transmission electron microscopy (TEM) were used to observe the morphology of mitochondria. Single-cell transcriptome data of C. uncinata were annotated by the Clusters of Orthologous Genes (COG) database. Meanwhile, the metabolic pathways were constructed based on the transcriptomes. The phylogenetic analysis was also made based on the sequenced cytochrome c oxidase subunit 1 (COX1) gene.
RESULTS: Mitochondria were stained red using Mito-tracker Red staining and were stained slightly blue by DAPI dye. The cristae and double membrane structures of the mitochondria were observed by TEM. Besides, many lipid droplets were evenly distributed around the macronucleus. A total of 2594 unigenes were assigned to 23 functional classifications of COG. Mitochondrial metabolic pathways were depicted. The mitochondria contained enzymes for the complete tricarboxylic acid (TCA) cycle, fatty acid metabolism, amino acid metabolism, and cytochrome-based electron transport chain (ETC), but only partial enzymes involved in the iron-sulfur clusters (ISCs).
CONCLUSIONS: Our results showed that C. uncinata possess typical mitochondria. Stored lipid droplets inside mitochondria may be the energy storage of C. uncinata that helps its transmission from a free-living to a parasitic lifestyle. These findings also have improved our knowledge of the mitochondrial metabolism of C. uncinata and increased the volume of molecular data for future studies of this facultative parasite.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Alveolata
*Parasites
Phylogeny
*Ciliophora/genetics
Mitochondria
RevDate: 2023-03-08
CmpDate: 2023-03-03
Mitochondrial DNA Mutations as Natural Barcodes for Lineage Tracing of Murine Tumor Models.
Cancer research, 83(5):667-672.
UNLABELLED: Murine models are indispensable tools for functional genomic studies and preclinical testing of novel therapeutic approaches. Mitochondrial single-cell assay for transposase-accessible chromatin using sequencing (mtscATAC-seq) enables the dissection of cellular heterogeneity and clonal dynamics by capturing chromatin accessibility, copy-number variations (CNV), and mitochondrial DNA (mtDNA) mutations, yet its applicability to murine studies remains unexplored. By leveraging mtscATAC-seq in novel chronic lymphocytic leukemia and Richter syndrome mouse models, we report the detection of mtDNA mutations, particularly in highly proliferative murine cells, alongside CNV and chromatin state changes indicative of clonal evolution upon secondary transplant. This study thus demonstrates the feasibility and utility of multi-modal single-cell and natural barcoding approaches to characterize murine cancer models.
SIGNIFICANCE: mtDNA mutations can serve as natural barcodes to enable lineage tracing in murine cancer models, which can be used to provide new insights into disease biology and to identify therapeutic vulnerabilities.
Additional Links: PMID-36469010
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36469010,
year = {2023},
author = {Penter, L and Ten Hacken, E and Southard, J and Lareau, CA and Ludwig, LS and Li, S and Neuberg, DS and Livak, KJ and Wu, CJ},
title = {Mitochondrial DNA Mutations as Natural Barcodes for Lineage Tracing of Murine Tumor Models.},
journal = {Cancer research},
volume = {83},
number = {5},
pages = {667-672},
pmid = {36469010},
issn = {1538-7445},
support = {R01 CA216273/CA/NCI NIH HHS/United States ; P01 CA206978/CA/NCI NIH HHS/United States ; R01 CA155010/CA/NCI NIH HHS/United States ; R50 CA251956/CA/NCI NIH HHS/United States ; R21 CA267527/CA/NCI NIH HHS/United States ; },
mesh = {Animals ; Mice ; *DNA, Mitochondrial/genetics ; Mitochondria/genetics ; Chromatin ; Mutation ; *Neoplasms/genetics ; },
abstract = {UNLABELLED: Murine models are indispensable tools for functional genomic studies and preclinical testing of novel therapeutic approaches. Mitochondrial single-cell assay for transposase-accessible chromatin using sequencing (mtscATAC-seq) enables the dissection of cellular heterogeneity and clonal dynamics by capturing chromatin accessibility, copy-number variations (CNV), and mitochondrial DNA (mtDNA) mutations, yet its applicability to murine studies remains unexplored. By leveraging mtscATAC-seq in novel chronic lymphocytic leukemia and Richter syndrome mouse models, we report the detection of mtDNA mutations, particularly in highly proliferative murine cells, alongside CNV and chromatin state changes indicative of clonal evolution upon secondary transplant. This study thus demonstrates the feasibility and utility of multi-modal single-cell and natural barcoding approaches to characterize murine cancer models.
SIGNIFICANCE: mtDNA mutations can serve as natural barcodes to enable lineage tracing in murine cancer models, which can be used to provide new insights into disease biology and to identify therapeutic vulnerabilities.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Mice
*DNA, Mitochondrial/genetics
Mitochondria/genetics
Chromatin
Mutation
*Neoplasms/genetics
RevDate: 2023-03-02
Unravelling inclusion body myositis using a patient-derived fibroblast model.
Journal of cachexia, sarcopenia and muscle [Epub ahead of print].
BACKGROUND: Inclusion body myositis (IBM) is an inflammatory myopathy clinically characterized by proximal and distal muscle weakness, with inflammatory infiltrates, rimmed vacuoles and mitochondrial changes in muscle histopathology. There is scarce knowledge on IBM aetiology, and non-established biomarkers or effective treatments are available, partly due to the lack of validated disease models.
METHODS: We have performed transcriptomics and functional validation of IBM muscle pathological hallmarks in fibroblasts from IBM patients (n = 14) and healthy controls (n = 12), paired by age and sex. The results comprise an mRNA-seq, together with functional inflammatory, autophagy, mitochondrial and metabolic changes between patients and controls.
RESULTS: Gene expression profile of IBM vs control fibroblasts revealed 778 differentially expressed genes (P-value adj < 0.05) related to inflammation, mitochondria, cell cycle regulation and metabolism. Functionally, an increased inflammatory profile was observed in IBM fibroblasts with higher supernatant cytokine secretion (three-fold increase). Autophagy was reduced considering basal protein mediators (18.4% reduced), time-course autophagosome formation (LC3BII 39% reduced, P-value < 0.05), and autophagosome microscopic evaluation. Mitochondria displayed reduced genetic content (by 33.9%, P-value < 0.05) and function (30.2%-decrease in respiration, 45.6%-decline in enzymatic activity (P-value < 0.001), 14.3%-higher oxidative stress, 135.2%-increased antioxidant defence (P-value < 0.05), 11.6%-reduced mitochondrial membrane potential (P-value < 0.05) and 42.8%-reduced mitochondrial elongation (P-value < 0.05)). In accordance, at the metabolite level, organic acid showed a 1.8-fold change increase, with conserved amino acid profile. Correlating to disease evolution, oxidative stress and inflammation emerge as potential markers of prognosis.
CONCLUSIONS: These findings confirm the presence of molecular disturbances in peripheral tissues from IBM patients and prompt patients' derived fibroblasts as a promising disease model, which may eventually be exported to other neuromuscular disorders. We additionally identify new molecular players in IBM associated with disease progression, setting the path to deepen in disease aetiology, in the identification of novel biomarkers or in the standardization of biomimetic platforms to assay new therapeutic strategies for preclinical studies.
Additional Links: PMID-36860172
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36860172,
year = {2023},
author = {Cantó-Santos, J and Valls-Roca, L and Tobías, E and García-García, FJ and Guitart-Mampel, M and Esteve-Codina, A and Martín-Mur, B and Casado, M and Artuch, R and Solsona-Vilarrasa, E and Fernandez-Checa, JC and García-Ruiz, C and Rentero, C and Enrich, C and Moreno-Lozano, PJ and Milisenda, JC and Cardellach, F and Grau-Junyent, JM and Garrabou, G},
title = {Unravelling inclusion body myositis using a patient-derived fibroblast model.},
journal = {Journal of cachexia, sarcopenia and muscle},
volume = {},
number = {},
pages = {},
doi = {10.1002/jcsm.13178},
pmid = {36860172},
issn = {2190-6009},
abstract = {BACKGROUND: Inclusion body myositis (IBM) is an inflammatory myopathy clinically characterized by proximal and distal muscle weakness, with inflammatory infiltrates, rimmed vacuoles and mitochondrial changes in muscle histopathology. There is scarce knowledge on IBM aetiology, and non-established biomarkers or effective treatments are available, partly due to the lack of validated disease models.
METHODS: We have performed transcriptomics and functional validation of IBM muscle pathological hallmarks in fibroblasts from IBM patients (n = 14) and healthy controls (n = 12), paired by age and sex. The results comprise an mRNA-seq, together with functional inflammatory, autophagy, mitochondrial and metabolic changes between patients and controls.
RESULTS: Gene expression profile of IBM vs control fibroblasts revealed 778 differentially expressed genes (P-value adj < 0.05) related to inflammation, mitochondria, cell cycle regulation and metabolism. Functionally, an increased inflammatory profile was observed in IBM fibroblasts with higher supernatant cytokine secretion (three-fold increase). Autophagy was reduced considering basal protein mediators (18.4% reduced), time-course autophagosome formation (LC3BII 39% reduced, P-value < 0.05), and autophagosome microscopic evaluation. Mitochondria displayed reduced genetic content (by 33.9%, P-value < 0.05) and function (30.2%-decrease in respiration, 45.6%-decline in enzymatic activity (P-value < 0.001), 14.3%-higher oxidative stress, 135.2%-increased antioxidant defence (P-value < 0.05), 11.6%-reduced mitochondrial membrane potential (P-value < 0.05) and 42.8%-reduced mitochondrial elongation (P-value < 0.05)). In accordance, at the metabolite level, organic acid showed a 1.8-fold change increase, with conserved amino acid profile. Correlating to disease evolution, oxidative stress and inflammation emerge as potential markers of prognosis.
CONCLUSIONS: These findings confirm the presence of molecular disturbances in peripheral tissues from IBM patients and prompt patients' derived fibroblasts as a promising disease model, which may eventually be exported to other neuromuscular disorders. We additionally identify new molecular players in IBM associated with disease progression, setting the path to deepen in disease aetiology, in the identification of novel biomarkers or in the standardization of biomimetic platforms to assay new therapeutic strategies for preclinical studies.},
}
RevDate: 2023-03-01
The interplay between selective types of (macro)autophagy: Mitophagy and xenophagy.
International review of cell and molecular biology, 374:129-157.
Autophagy is a physiological response, activated by a myriad of endogenous and exogenous cues, including DNA damage, perturbation of proteostasis, depletion of nutrients or oxygen and pathogen infection. Upon sensing those stimuli, cells employ multiple non-selective and selective autophagy pathways to promote fitness and survival. Importantly, there are a variety of selective types of autophagy. In this review we will focus on autophagy of bacteria (xenophagy) and autophagy of mitochondria (mitophagy). We provide a brief introduction to bulk autophagy, as well as xenophagy and mitophagy, highlighting their common molecular factors. We also describe the role of xenophagy and mitophagy in the detection and elimination of pathogens by the immune system and the adaptive mechanisms that some pathogens have developed through evolution to escape the host autophagic response. Finally, we summarize the recent articles (from the last five years) linking bulk autophagy with xenophagy and/or mitophagy in the context on developmental biology, cancer and metabolism.
Additional Links: PMID-36858654
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36858654,
year = {2023},
author = {Rubio-Tomás, T and Sotiriou, A and Tavernarakis, N},
title = {The interplay between selective types of (macro)autophagy: Mitophagy and xenophagy.},
journal = {International review of cell and molecular biology},
volume = {374},
number = {},
pages = {129-157},
doi = {10.1016/bs.ircmb.2022.10.003},
pmid = {36858654},
issn = {1937-6448},
abstract = {Autophagy is a physiological response, activated by a myriad of endogenous and exogenous cues, including DNA damage, perturbation of proteostasis, depletion of nutrients or oxygen and pathogen infection. Upon sensing those stimuli, cells employ multiple non-selective and selective autophagy pathways to promote fitness and survival. Importantly, there are a variety of selective types of autophagy. In this review we will focus on autophagy of bacteria (xenophagy) and autophagy of mitochondria (mitophagy). We provide a brief introduction to bulk autophagy, as well as xenophagy and mitophagy, highlighting their common molecular factors. We also describe the role of xenophagy and mitophagy in the detection and elimination of pathogens by the immune system and the adaptive mechanisms that some pathogens have developed through evolution to escape the host autophagic response. Finally, we summarize the recent articles (from the last five years) linking bulk autophagy with xenophagy and/or mitophagy in the context on developmental biology, cancer and metabolism.},
}
RevDate: 2023-03-01
The bacterial origin of mitochondria: Incorrect phylogenies and the importance of metabolic traits.
International review of cell and molecular biology, 374:1-35.
This article provides an updated review on the evolution of mitochondria from bacteria, which were likely related to extant alphaproteobacteria. Particular attention is given to the timeline of oxygen history on Earth and the entwined phases of eukaryotic evolution that produced the animals that still populate our planet. Mitochondria of early-branching unicellular eukaryotes and plants appear to retain partial or vestigial traits that were directly inherited from the alphaproteobacterial ancestors of the organelles. Most of such traits define the current aerobic physiology of mitochondria. Conversely, the anaerobic traits that would be essential in the syntrophic associations postulated for the evolution of eukaryotic cells are scantly present in extant alphaproteobacteria, and therefore cannot help defining from which bacterial lineage the ancestors of mitochondria originated. This question has recently been addressed quantitatively, reaching the novel conclusion that marine bacteria related to Iodidimonas may be the living relatives of protomitochondria. Additional evidence is presented that either support or does not contrast this novel view of the bacterial origin of mitochondria.
Additional Links: PMID-36858653
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36858653,
year = {2023},
author = {Degli Esposti, M},
title = {The bacterial origin of mitochondria: Incorrect phylogenies and the importance of metabolic traits.},
journal = {International review of cell and molecular biology},
volume = {374},
number = {},
pages = {1-35},
doi = {10.1016/bs.ircmb.2022.11.001},
pmid = {36858653},
issn = {1937-6448},
abstract = {This article provides an updated review on the evolution of mitochondria from bacteria, which were likely related to extant alphaproteobacteria. Particular attention is given to the timeline of oxygen history on Earth and the entwined phases of eukaryotic evolution that produced the animals that still populate our planet. Mitochondria of early-branching unicellular eukaryotes and plants appear to retain partial or vestigial traits that were directly inherited from the alphaproteobacterial ancestors of the organelles. Most of such traits define the current aerobic physiology of mitochondria. Conversely, the anaerobic traits that would be essential in the syntrophic associations postulated for the evolution of eukaryotic cells are scantly present in extant alphaproteobacteria, and therefore cannot help defining from which bacterial lineage the ancestors of mitochondria originated. This question has recently been addressed quantitatively, reaching the novel conclusion that marine bacteria related to Iodidimonas may be the living relatives of protomitochondria. Additional evidence is presented that either support or does not contrast this novel view of the bacterial origin of mitochondria.},
}
RevDate: 2023-02-28
CmpDate: 2023-02-28
Multichromosomal Mitochondrial Genome of Paphiopedilum micranthum: Compact and Fragmented Genome, and Rampant Intracellular Gene Transfer.
International journal of molecular sciences, 24(4):.
Orchidaceae is one of the largest families of angiosperms. Considering the large number of species in this family and its symbiotic relationship with fungi, Orchidaceae provide an ideal model to study the evolution of plant mitogenomes. However, to date, there is only one draft mitochondrial genome of this family available. Here, we present a fully assembled and annotated sequence of the mitochondrial genome (mitogenome) of Paphiopedilum micranthum, a species with high economic and ornamental value. The mitogenome of P. micranthum was 447,368 bp in length and comprised 26 circular subgenomes ranging in size from 5973 bp to 32,281 bp. The genome encoded for 39 mitochondrial-origin, protein-coding genes; 16 tRNAs (three of plastome origin); three rRNAs; and 16 ORFs, while rpl10 and sdh3 were lost from the mitogenome. Moreover, interorganellar DNA transfer was identified in 14 of the 26 chromosomes. These plastid-derived DNA fragments represented 28.32% (46,273 bp) of the P. micranthum plastome, including 12 intact plastome origin genes. Remarkably, the mitogenome of P. micranthum and Gastrodia elata shared 18% (about 81 kb) of their mitochondrial DNA sequences. Additionally, we found a positive correlation between repeat length and recombination frequency. The mitogenome of P. micranthum had more compact and fragmented chromosomes compared to other species with multichromosomal structures. We suggest that repeat-mediated homologous recombination enables the dynamic structure of mitochondrial genomes in Orchidaceae.
Additional Links: PMID-36835385
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36835385,
year = {2023},
author = {Yang, JX and Dierckxsens, N and Bai, MZ and Guo, YY},
title = {Multichromosomal Mitochondrial Genome of Paphiopedilum micranthum: Compact and Fragmented Genome, and Rampant Intracellular Gene Transfer.},
journal = {International journal of molecular sciences},
volume = {24},
number = {4},
pages = {},
pmid = {36835385},
issn = {1422-0067},
mesh = {*Genome, Mitochondrial ; DNA, Mitochondrial ; Mitochondria/genetics ; *Magnoliopsida/genetics ; *Orchidaceae/genetics ; Phylogeny ; },
abstract = {Orchidaceae is one of the largest families of angiosperms. Considering the large number of species in this family and its symbiotic relationship with fungi, Orchidaceae provide an ideal model to study the evolution of plant mitogenomes. However, to date, there is only one draft mitochondrial genome of this family available. Here, we present a fully assembled and annotated sequence of the mitochondrial genome (mitogenome) of Paphiopedilum micranthum, a species with high economic and ornamental value. The mitogenome of P. micranthum was 447,368 bp in length and comprised 26 circular subgenomes ranging in size from 5973 bp to 32,281 bp. The genome encoded for 39 mitochondrial-origin, protein-coding genes; 16 tRNAs (three of plastome origin); three rRNAs; and 16 ORFs, while rpl10 and sdh3 were lost from the mitogenome. Moreover, interorganellar DNA transfer was identified in 14 of the 26 chromosomes. These plastid-derived DNA fragments represented 28.32% (46,273 bp) of the P. micranthum plastome, including 12 intact plastome origin genes. Remarkably, the mitogenome of P. micranthum and Gastrodia elata shared 18% (about 81 kb) of their mitochondrial DNA sequences. Additionally, we found a positive correlation between repeat length and recombination frequency. The mitogenome of P. micranthum had more compact and fragmented chromosomes compared to other species with multichromosomal structures. We suggest that repeat-mediated homologous recombination enables the dynamic structure of mitochondrial genomes in Orchidaceae.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Genome, Mitochondrial
DNA, Mitochondrial
Mitochondria/genetics
*Magnoliopsida/genetics
*Orchidaceae/genetics
Phylogeny
RevDate: 2023-02-28
CmpDate: 2023-02-28
Bringing to light nuclear-mitochondrial insertions in the genomes of nocturnal predatory birds.
Molecular phylogenetics and evolution, 181:107722.
Mito-nuclear insertions, or NUMTs, relate to genetic material of mitochondrial origin that have been transferred to the nuclear DNA molecule. The increasing amounts of genomic data currently being produced presents an opportunity to investigate this type of patterns in genome evolution of non-model organisms. Identifying NUMTs across a range of closely related taxa allows one to generalize patterns of insertion and maintenance in autosomes, which is ultimately relevant to the understanding of genome biology and evolution. Here we collected existing pairwise genome-mitogenome data of the order Strigiformes, a group that includes all the nocturnal bird predators. We identified NUMTs by applying percent similarity thresholds after blasting mitochondrial genomes against nuclear genome assemblies. We identified NUMTsin all genomes with numbers ranging from 4 in Bubo bubo to 24 in Ciccaba nigrolineata. Statistical analyses revealed NUMT size to negatively correlate with NUMT's sequence similarity to with original mtDNA region. Lastly, characterizing these nuclear insertions of mitochondrial origin in a comparative genomics framework produced variable phylogenetic patterns, suggesting in some cases that insertions might pre-date speciation events within Strigiformes.
Additional Links: PMID-36720422
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36720422,
year = {2023},
author = {Baltazar-Soares, M and Karell, P and Wright, D and Nilsson, JÅ and Brommer, JE},
title = {Bringing to light nuclear-mitochondrial insertions in the genomes of nocturnal predatory birds.},
journal = {Molecular phylogenetics and evolution},
volume = {181},
number = {},
pages = {107722},
doi = {10.1016/j.ympev.2023.107722},
pmid = {36720422},
issn = {1095-9513},
mesh = {Animals ; Phylogeny ; *Mitochondria/genetics ; DNA, Mitochondrial/genetics ; *Genome, Mitochondrial ; Birds/genetics ; Sequence Analysis, DNA ; Cell Nucleus/genetics ; },
abstract = {Mito-nuclear insertions, or NUMTs, relate to genetic material of mitochondrial origin that have been transferred to the nuclear DNA molecule. The increasing amounts of genomic data currently being produced presents an opportunity to investigate this type of patterns in genome evolution of non-model organisms. Identifying NUMTs across a range of closely related taxa allows one to generalize patterns of insertion and maintenance in autosomes, which is ultimately relevant to the understanding of genome biology and evolution. Here we collected existing pairwise genome-mitogenome data of the order Strigiformes, a group that includes all the nocturnal bird predators. We identified NUMTs by applying percent similarity thresholds after blasting mitochondrial genomes against nuclear genome assemblies. We identified NUMTsin all genomes with numbers ranging from 4 in Bubo bubo to 24 in Ciccaba nigrolineata. Statistical analyses revealed NUMT size to negatively correlate with NUMT's sequence similarity to with original mtDNA region. Lastly, characterizing these nuclear insertions of mitochondrial origin in a comparative genomics framework produced variable phylogenetic patterns, suggesting in some cases that insertions might pre-date speciation events within Strigiformes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Mitochondria/genetics
DNA, Mitochondrial/genetics
*Genome, Mitochondrial
Birds/genetics
Sequence Analysis, DNA
Cell Nucleus/genetics
RevDate: 2023-02-25
The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections.
Microorganisms, 11(2): pii:microorganisms11020295.
Acanthamoeba is among the most ubiquitous protistan groups in nature. Knowledge of the biological diversity of Acanthamoeba comes in part from the use of strains maintained by the major microbial culture collections, ATCC and CCAP. Standard strains are vital to ensure the comparability of research. The diversity of standard strains of Acanthamoeba in the culture collections is reviewed, emphasizing the extent of genotypic studies based on DNA sequencing of the small subunit ribosomal RNA from the nucleus (18S rRNA gene; Rns) or the mitochondria (16S-like rRNA gene; rns). Over 170 different strains have been maintained at some time by culture centers. DNA sequence information is available for more than 70% of these strains. Determination of the genotypic classification of standard strains within the genus indicates that frequencies of types within culture collections only roughly mirror that from clinical or environmental studies, with significant differences in the frequency of some genotypes. Culture collections include the type of isolate from almost all named species of Acanthamoeba, allowing an evaluation of the validity of species designations. Multiple species are found to share the same Sequence Type, while multiple Sequence Types have been identified for different strains that share the same species name. Issues of sequence reliability and the possibility that a small number of standard strains have been mislabeled when studied are also examined, leading to potential problems for comparative analyses. It is important that all species have reliable genotype designations. The culture collections should be encouraged to assist in completing the molecular inventory of standard strains, while workers in the Acanthamoeba research community should endeavor to ensure that strains representative of genotypes that are missing from the culture collection are provided to the culture centers for preservation.
Additional Links: PMID-36838260
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36838260,
year = {2023},
author = {Fuerst, PA},
title = {The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections.},
journal = {Microorganisms},
volume = {11},
number = {2},
pages = {},
doi = {10.3390/microorganisms11020295},
pmid = {36838260},
issn = {2076-2607},
abstract = {Acanthamoeba is among the most ubiquitous protistan groups in nature. Knowledge of the biological diversity of Acanthamoeba comes in part from the use of strains maintained by the major microbial culture collections, ATCC and CCAP. Standard strains are vital to ensure the comparability of research. The diversity of standard strains of Acanthamoeba in the culture collections is reviewed, emphasizing the extent of genotypic studies based on DNA sequencing of the small subunit ribosomal RNA from the nucleus (18S rRNA gene; Rns) or the mitochondria (16S-like rRNA gene; rns). Over 170 different strains have been maintained at some time by culture centers. DNA sequence information is available for more than 70% of these strains. Determination of the genotypic classification of standard strains within the genus indicates that frequencies of types within culture collections only roughly mirror that from clinical or environmental studies, with significant differences in the frequency of some genotypes. Culture collections include the type of isolate from almost all named species of Acanthamoeba, allowing an evaluation of the validity of species designations. Multiple species are found to share the same Sequence Type, while multiple Sequence Types have been identified for different strains that share the same species name. Issues of sequence reliability and the possibility that a small number of standard strains have been mislabeled when studied are also examined, leading to potential problems for comparative analyses. It is important that all species have reliable genotype designations. The culture collections should be encouraged to assist in completing the molecular inventory of standard strains, while workers in the Acanthamoeba research community should endeavor to ensure that strains representative of genotypes that are missing from the culture collection are provided to the culture centers for preservation.},
}
RevDate: 2023-02-25
RpS3 Is Required for Spermatogenesis of Drosophila melanogaster.
Cells, 12(4): pii:cells12040573.
Ribosomal proteins (RPs) constitute the ribosome, thus participating in the protein biosynthesis process. Emerging studies have suggested that many RPs exhibit different expression levels across various tissues and function in a context-dependent manner for animal development. Drosophila melanogaster RpS3 encodes the ribosomal protein S3, one component of the 40S subunit of ribosomes. We found that RpS3 is highly expressed in the reproductive organs of adult flies and its depletion in male germline cells led to severe defects in sperm production and male fertility. Immunofluorescence staining showed that RpS3 knockdown had little effect on early germ cell differentiation, but strongly disrupted the spermatid elongation and individualization processes. Furthermore, we observed abnormal morphology and activity of mitochondrial derivatives in the elongating spermatids of RpS3-knockdown testes, which could cause the failure of axoneme elongation. We also found that RpS3 RNAi inhibited the formation of the individualization complex that takes charge of disassociating the spermatid bundle. In addition, excessive apoptotic cells were detected in the RpS3-knockdown testes, possibly to clean the defective spermatids. Together, our data demonstrated that RpS3 plays an important role in regulating spermatid elongation and individualization processes and, therefore, is required for normal Drosophila spermatogenesis.
Additional Links: PMID-36831240
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36831240,
year = {2023},
author = {Fang, Y and Zhang, F and Zhan, Y and Lu, M and Xu, D and Wang, J and Li, Q and Zhao, L and Su, Y},
title = {RpS3 Is Required for Spermatogenesis of Drosophila melanogaster.},
journal = {Cells},
volume = {12},
number = {4},
pages = {},
doi = {10.3390/cells12040573},
pmid = {36831240},
issn = {2073-4409},
abstract = {Ribosomal proteins (RPs) constitute the ribosome, thus participating in the protein biosynthesis process. Emerging studies have suggested that many RPs exhibit different expression levels across various tissues and function in a context-dependent manner for animal development. Drosophila melanogaster RpS3 encodes the ribosomal protein S3, one component of the 40S subunit of ribosomes. We found that RpS3 is highly expressed in the reproductive organs of adult flies and its depletion in male germline cells led to severe defects in sperm production and male fertility. Immunofluorescence staining showed that RpS3 knockdown had little effect on early germ cell differentiation, but strongly disrupted the spermatid elongation and individualization processes. Furthermore, we observed abnormal morphology and activity of mitochondrial derivatives in the elongating spermatids of RpS3-knockdown testes, which could cause the failure of axoneme elongation. We also found that RpS3 RNAi inhibited the formation of the individualization complex that takes charge of disassociating the spermatid bundle. In addition, excessive apoptotic cells were detected in the RpS3-knockdown testes, possibly to clean the defective spermatids. Together, our data demonstrated that RpS3 plays an important role in regulating spermatid elongation and individualization processes and, therefore, is required for normal Drosophila spermatogenesis.},
}
RevDate: 2023-02-23
Pterosin sesquiterpenoids from Pteris laeta Wall. ex Ettingsh. Protect cells from glutamate excitotoxicity by modulating mitochondrial signals.
Journal of ethnopharmacology pii:S0378-8741(23)00176-9 [Epub ahead of print].
The genus Pteris (Pteridaceae) has been used as a traditional herb for a long time. In particular, Pteris laeta Wall. ex Ettingsh. has been widely used in traditional Chinese medicine to treat nervous system diseases and some pterosin sesquiterpenes from Pteris show neuroprotective bioactivity, but their underlying molecular mechanisms remain elusive. Therefore, to investigate the neuroprotective activity and working mechanism of pterosin sesquiterpenes from P. laeta Wall. ex Ettingsh. will provide a better understanding and guidance in using P. laeta Wall. ex Ettingsh. as a traditional Chinese medicine.
AIM OF THE STUDY: We aim to develop effective treatments for neurodegenerative diseases from pterosin sesquiterpenes by evaluating their neuroprotective activity and investigating their working mechanisms.
MATERIALS AND METHODS: Primary screening on the glutamate-induced excitotoxicity cell model was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Fluorescent-activated cell sorting (FACS) was used to analyze the activation level of glutamate receptors and mitochondria membrane potential after treatment. Transcriptomics and proteomics analysis was performed to identify possible targets of pterosin B. The key pathways were enriched by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis through the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The core targets were visualized by a protein-protein interaction network using STRING. The mRNA and protein expressions were evaluated using real-time quantitative polymerase chain reaction (Q-PCR) and western blot, respectively. Immunocytochemistry was performed to monitor mitochondrial and apoptotic proteins. Cellular reactive oxygen species (ROS) were measured by ROS assay, and Ca[2+] was stained with Fluo-4 AM to quantify intracellular Ca[2+] levels.
RESULTS: We found pterosin B from Pteris laeta Wall. ex Ettingsh. showed significant neuroprotective activity against glutamate excitotoxicity, enhancing cell viability from 43.8% to 105% (p-value: <0.0001). We demonstrated that pterosin B worked on the downstream signaling pathways of glutamate excitotoxicity rather than directly blocking the activation of glutamate receptors. Pterosin B restored mitochondria membrane potentials, alleviated intracellular calcium overload from 107.4% to 95.47% (p-value: 0.0006), eliminated cellular ROS by 36.55% (p-value: 0.0143), and partially secured cells from LPS-induced inflammation by increasing cell survival from 46.75% to 58.5% (p-value: 0.0114). Notably, pterosin B enhanced the expression of nuclear factor-erythroid factor 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) by 2.86-fold (p-value: 0.0006) and 4.24-fold (p-value: 0.0012), and down-regulated Kelch-like ECH-associated protein 1 (KEAP1) expression by 2.5-fold (p-value: 0.0107), indicating that it possibly promotes mitochondrial biogenesis and mitophagy to maintain mitochondria quality control and homeostasis, and ultimately inhibits apoptotic cell death.
CONCLUSIONS: Our work revealed that pterosin B protected cells from glutamate excitotoxicity by targeting the downstream mitochondrial signals, making it a valuable candidate for developing potential therapeutic agents in treating neurodegenerative diseases.
Additional Links: PMID-36822346
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36822346,
year = {2023},
author = {Cheng, A and Zhang, Y and Sun, J and Huang, D and Sulaiman, JE and Huang, X and Wu, L and Ye, W and Wu, C and Lam, HN and Shi, Y and Qian, PY},
title = {Pterosin sesquiterpenoids from Pteris laeta Wall. ex Ettingsh. Protect cells from glutamate excitotoxicity by modulating mitochondrial signals.},
journal = {Journal of ethnopharmacology},
volume = {},
number = {},
pages = {116308},
doi = {10.1016/j.jep.2023.116308},
pmid = {36822346},
issn = {1872-7573},
abstract = {The genus Pteris (Pteridaceae) has been used as a traditional herb for a long time. In particular, Pteris laeta Wall. ex Ettingsh. has been widely used in traditional Chinese medicine to treat nervous system diseases and some pterosin sesquiterpenes from Pteris show neuroprotective bioactivity, but their underlying molecular mechanisms remain elusive. Therefore, to investigate the neuroprotective activity and working mechanism of pterosin sesquiterpenes from P. laeta Wall. ex Ettingsh. will provide a better understanding and guidance in using P. laeta Wall. ex Ettingsh. as a traditional Chinese medicine.
AIM OF THE STUDY: We aim to develop effective treatments for neurodegenerative diseases from pterosin sesquiterpenes by evaluating their neuroprotective activity and investigating their working mechanisms.
MATERIALS AND METHODS: Primary screening on the glutamate-induced excitotoxicity cell model was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Fluorescent-activated cell sorting (FACS) was used to analyze the activation level of glutamate receptors and mitochondria membrane potential after treatment. Transcriptomics and proteomics analysis was performed to identify possible targets of pterosin B. The key pathways were enriched by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis through the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The core targets were visualized by a protein-protein interaction network using STRING. The mRNA and protein expressions were evaluated using real-time quantitative polymerase chain reaction (Q-PCR) and western blot, respectively. Immunocytochemistry was performed to monitor mitochondrial and apoptotic proteins. Cellular reactive oxygen species (ROS) were measured by ROS assay, and Ca[2+] was stained with Fluo-4 AM to quantify intracellular Ca[2+] levels.
RESULTS: We found pterosin B from Pteris laeta Wall. ex Ettingsh. showed significant neuroprotective activity against glutamate excitotoxicity, enhancing cell viability from 43.8% to 105% (p-value: <0.0001). We demonstrated that pterosin B worked on the downstream signaling pathways of glutamate excitotoxicity rather than directly blocking the activation of glutamate receptors. Pterosin B restored mitochondria membrane potentials, alleviated intracellular calcium overload from 107.4% to 95.47% (p-value: 0.0006), eliminated cellular ROS by 36.55% (p-value: 0.0143), and partially secured cells from LPS-induced inflammation by increasing cell survival from 46.75% to 58.5% (p-value: 0.0114). Notably, pterosin B enhanced the expression of nuclear factor-erythroid factor 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) by 2.86-fold (p-value: 0.0006) and 4.24-fold (p-value: 0.0012), and down-regulated Kelch-like ECH-associated protein 1 (KEAP1) expression by 2.5-fold (p-value: 0.0107), indicating that it possibly promotes mitochondrial biogenesis and mitophagy to maintain mitochondria quality control and homeostasis, and ultimately inhibits apoptotic cell death.
CONCLUSIONS: Our work revealed that pterosin B protected cells from glutamate excitotoxicity by targeting the downstream mitochondrial signals, making it a valuable candidate for developing potential therapeutic agents in treating neurodegenerative diseases.},
}
RevDate: 2023-02-22
Triphenylamine-equipped 1,8-naphthaolactam: a versatile scaffold for the custom design of efficient subcellular imaging agents.
Journal of materials chemistry. B [Epub ahead of print].
Fluorescence imaging has enabled much progress in biological fields, while the evolution of commercially available dyes has lagged behind their advanced applications. Herein, we launch triphenylamine-equipped 1,8-naphthaolactam (NP-TPA) as a versatile scaffold for the custom design of an efficient subcellular imaging agent (NP-TPA-Tar), given its bright and constant emissions in various states, significant Stokes shifts, and facile modifiability. The resultant four NP-TPA-Tars maintain excellent emission behavior with targeted modifications and can map the spatial distribution of lysosomes, mitochondria, endoplasmic reticulum, and plasma membrane in Hep G2 cells. Compared to its commercial counterpart, NP-TPA-Tar has a 2.8-25.2 fold increase in Stokes shift, a 1.2-1.9 fold increase in photostability, enhanced targeting capability, and comparable imaging efficiency even at low concentrations of 50 nM. This work will help to accelerate the update of current imaging agents and super-resolution and real-time imaging in biological applications.
Additional Links: PMID-36810648
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36810648,
year = {2023},
author = {Li, Y and Chen, L and Si, L and Yang, Y and Zhou, C and Yu, F and Xia, G and Wang, H},
title = {Triphenylamine-equipped 1,8-naphthaolactam: a versatile scaffold for the custom design of efficient subcellular imaging agents.},
journal = {Journal of materials chemistry. B},
volume = {},
number = {},
pages = {},
doi = {10.1039/d2tb02528k},
pmid = {36810648},
issn = {2050-7518},
abstract = {Fluorescence imaging has enabled much progress in biological fields, while the evolution of commercially available dyes has lagged behind their advanced applications. Herein, we launch triphenylamine-equipped 1,8-naphthaolactam (NP-TPA) as a versatile scaffold for the custom design of an efficient subcellular imaging agent (NP-TPA-Tar), given its bright and constant emissions in various states, significant Stokes shifts, and facile modifiability. The resultant four NP-TPA-Tars maintain excellent emission behavior with targeted modifications and can map the spatial distribution of lysosomes, mitochondria, endoplasmic reticulum, and plasma membrane in Hep G2 cells. Compared to its commercial counterpart, NP-TPA-Tar has a 2.8-25.2 fold increase in Stokes shift, a 1.2-1.9 fold increase in photostability, enhanced targeting capability, and comparable imaging efficiency even at low concentrations of 50 nM. This work will help to accelerate the update of current imaging agents and super-resolution and real-time imaging in biological applications.},
}
RevDate: 2023-02-22
Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish.
Molecular biology and evolution pii:7035026 [Epub ahead of print].
White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group.
Additional Links: PMID-36806940
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36806940,
year = {2023},
author = {Rivera-Colón, AG and Rayamajhi, N and Fazal Minhas, B and Madrigal, G and Bilyk, KT and Yoon, V and Hüne, M and Gregory, S and Cheng, CC and Catchen, JM},
title = {Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish.},
journal = {Molecular biology and evolution},
volume = {},
number = {},
pages = {},
doi = {10.1093/molbev/msad029},
pmid = {36806940},
issn = {1537-1719},
abstract = {White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group.},
}
RevDate: 2023-02-22
CmpDate: 2023-02-22
Mitochondria on the move: Horizontal mitochondrial transfer in disease and health.
The Journal of cell biology, 222(3):.
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Additional Links: PMID-36795453
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36795453,
year = {2023},
author = {Dong, LF and Rohlena, J and Zobalova, R and Nahacka, Z and Rodriguez, AM and Berridge, MV and Neuzil, J},
title = {Mitochondria on the move: Horizontal mitochondrial transfer in disease and health.},
journal = {The Journal of cell biology},
volume = {222},
number = {3},
pages = {},
doi = {10.1083/jcb.202211044},
pmid = {36795453},
issn = {1540-8140},
mesh = {Animals ; Phylogeny ; *Mitochondria/metabolism ; *Neoplasms/genetics/metabolism ; Energy Metabolism ; Mammals ; },
abstract = {Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Phylogeny
*Mitochondria/metabolism
*Neoplasms/genetics/metabolism
Energy Metabolism
Mammals
RevDate: 2023-02-17
CmpDate: 2023-02-17
Fine structure of the posterior midgut in the mite Anystis baccarum (L.).
Arthropod structure & development, 72:101218.
Homology of the posterior midgut regions (PMG) in different phylogenetic lineages of acariform mites (superorder Acariformes) remains unresolved. In the order Trombidiformes, the ultrastructure of the PMG is known primarily in derived groups; thus this study focuses on species belonging to a relatively basal trombidiform family. PMG of Anystis baccarum consists of the colon and postcolon separated by a small intercolon. The fine structure of the colon and postcolon is close to that of the corresponding organs of sarcoptiform mites with the epithelium showing absorptive and endocytotic activity. The epithelial cells produce a variety of excretory vacuoles and a peritrophic matrix around the feces. Morover, the epithelium of the postcolon is characterized by the highest apical brush border and especially numerous mitochondria suggesting involvement in water and ion absorption. The intercolon functions as a sphincter lined with an epithelium capable of producing excretory granules. A pair of short blind extensions arises assimmetrically from the intercolon into the body cavity. Ultrastructurally, these extensions are similar to the arachnid Malpighian tubules and may be their reduced version. Rare endocrine-like cells have been observed in the colon and postcolon.
Additional Links: PMID-36327950
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36327950,
year = {2023},
author = {Filimonova, S},
title = {Fine structure of the posterior midgut in the mite Anystis baccarum (L.).},
journal = {Arthropod structure & development},
volume = {72},
number = {},
pages = {101218},
doi = {10.1016/j.asd.2022.101218},
pmid = {36327950},
issn = {1873-5495},
mesh = {Animals ; *Mites/ultrastructure ; Phylogeny ; Digestive System/ultrastructure ; *Arachnida ; Epithelial Cells ; },
abstract = {Homology of the posterior midgut regions (PMG) in different phylogenetic lineages of acariform mites (superorder Acariformes) remains unresolved. In the order Trombidiformes, the ultrastructure of the PMG is known primarily in derived groups; thus this study focuses on species belonging to a relatively basal trombidiform family. PMG of Anystis baccarum consists of the colon and postcolon separated by a small intercolon. The fine structure of the colon and postcolon is close to that of the corresponding organs of sarcoptiform mites with the epithelium showing absorptive and endocytotic activity. The epithelial cells produce a variety of excretory vacuoles and a peritrophic matrix around the feces. Morover, the epithelium of the postcolon is characterized by the highest apical brush border and especially numerous mitochondria suggesting involvement in water and ion absorption. The intercolon functions as a sphincter lined with an epithelium capable of producing excretory granules. A pair of short blind extensions arises assimmetrically from the intercolon into the body cavity. Ultrastructurally, these extensions are similar to the arachnid Malpighian tubules and may be their reduced version. Rare endocrine-like cells have been observed in the colon and postcolon.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Mites/ultrastructure
Phylogeny
Digestive System/ultrastructure
*Arachnida
Epithelial Cells
RevDate: 2023-02-16
Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria.
Cell death discovery, 9(1):66.
Approximately 20 TP53 retrogenes exist in the African and Asian elephant genomes (Loxodonta Africana, Elephas Maximus) in addition to a conserved TP53 gene that encodes a full-length protein. Elephant TP53-RETROGENE 9 (TP53-R9) encodes a p53 protein (p53-R9) that is truncated in the middle of the canonical DNA binding domain. This C-terminally truncated p53 retrogene protein lacks the nuclear localization signals and oligomerization domain of its full-length counterpart. When expressed in human osteosarcoma cells (U2OS), p53-R9 binds to Tid1, the chaperone protein responsible for mitochondrial translocation of human p53 in response to cellular stress. Tid1 expression is required for p53-R9-induced apoptosis. At the mitochondria, p53-R9 binds to the pro-apoptotic BCL-2 family member Bax, which leads to caspase activation, cytochrome c release, and cell death. Our data show, for the first time, that expression of this truncated elephant p53 retrogene protein induces apoptosis in human cancer cells. Understanding the molecular mechanism by which the additional elephant TP53 retrogenes function may provide evolutionary insight that can be utilized for the development of therapeutics to treat human cancers.
Additional Links: PMID-36797268
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36797268,
year = {2023},
author = {Preston, AJ and Rogers, A and Sharp, M and Mitchell, G and Toruno, C and Barney, BB and Donovan, LN and Bly, J and Kennington, R and Payne, E and Iovino, A and Furukawa, G and Robinson, R and Shamloo, B and Buccilli, M and Anders, R and Eckstein, S and Fedak, EA and Wright, T and Maley, CC and Kiso, WK and Schmitt, D and Malkin, D and Schiffman, JD and Abegglen, LM},
title = {Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria.},
journal = {Cell death discovery},
volume = {9},
number = {1},
pages = {66},
pmid = {36797268},
issn = {2058-7716},
abstract = {Approximately 20 TP53 retrogenes exist in the African and Asian elephant genomes (Loxodonta Africana, Elephas Maximus) in addition to a conserved TP53 gene that encodes a full-length protein. Elephant TP53-RETROGENE 9 (TP53-R9) encodes a p53 protein (p53-R9) that is truncated in the middle of the canonical DNA binding domain. This C-terminally truncated p53 retrogene protein lacks the nuclear localization signals and oligomerization domain of its full-length counterpart. When expressed in human osteosarcoma cells (U2OS), p53-R9 binds to Tid1, the chaperone protein responsible for mitochondrial translocation of human p53 in response to cellular stress. Tid1 expression is required for p53-R9-induced apoptosis. At the mitochondria, p53-R9 binds to the pro-apoptotic BCL-2 family member Bax, which leads to caspase activation, cytochrome c release, and cell death. Our data show, for the first time, that expression of this truncated elephant p53 retrogene protein induces apoptosis in human cancer cells. Understanding the molecular mechanism by which the additional elephant TP53 retrogenes function may provide evolutionary insight that can be utilized for the development of therapeutics to treat human cancers.},
}
RevDate: 2023-02-16
CmpDate: 2023-02-16
G × G × E effect on phenotype expression in a non-conventional model organism, the unicellular slime mould Physarum polycephalum.
Biology letters, 19(2):20220494.
In metazoans, the expression of key phenotypic traits is sensitive to two- and three-way interactions between variation in mitochondrial DNA, nuclear DNA and the external environment. Whether gene-by-environment interactions affect phenotypes in single-celled eukaryotes is poorly studied, except in a few species of yeast and fungi. We developed a genetic panel of the unicellular slime mould, Physarum polycephalum containing strains differing in mitochondrial and nuclear DNA haplotypes. The panel also included two strains harbouring a selfishly replicating mitochondrial-fusion (mF) plasmid that could affect phenotype expression. We assayed movement and growth rate differences among the strains across two temperature regimes: 24° and 28°C. We found that the slime mould's growth rate, but not movement, is affected by G × G × E interactions. Predictably, mtDNA × nDNA interactions significantly affected both traits. The inter-trait correlation across the strains in each temperature regime was positive. Surprisingly, the mF plasmid had no negative effects on our chosen traits. Our study is the first to demonstrate genetic regulation of phenotype expression in a unicellular slime mould. The genetic effect on phenotypes manifests via epistatic interactions with the thermal environment, thus shedding new light on the role of G × G × E interactions in trait evolution in protists.
Additional Links: PMID-36789533
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36789533,
year = {2023},
author = {Nagarajan-Radha, V and Beekman, M},
title = {G × G × E effect on phenotype expression in a non-conventional model organism, the unicellular slime mould Physarum polycephalum.},
journal = {Biology letters},
volume = {19},
number = {2},
pages = {20220494},
doi = {10.1098/rsbl.2022.0494},
pmid = {36789533},
issn = {1744-957X},
mesh = {*Physarum polycephalum/genetics ; DNA, Mitochondrial/genetics ; Mitochondria/genetics ; Plasmids ; Phenotype ; },
abstract = {In metazoans, the expression of key phenotypic traits is sensitive to two- and three-way interactions between variation in mitochondrial DNA, nuclear DNA and the external environment. Whether gene-by-environment interactions affect phenotypes in single-celled eukaryotes is poorly studied, except in a few species of yeast and fungi. We developed a genetic panel of the unicellular slime mould, Physarum polycephalum containing strains differing in mitochondrial and nuclear DNA haplotypes. The panel also included two strains harbouring a selfishly replicating mitochondrial-fusion (mF) plasmid that could affect phenotype expression. We assayed movement and growth rate differences among the strains across two temperature regimes: 24° and 28°C. We found that the slime mould's growth rate, but not movement, is affected by G × G × E interactions. Predictably, mtDNA × nDNA interactions significantly affected both traits. The inter-trait correlation across the strains in each temperature regime was positive. Surprisingly, the mF plasmid had no negative effects on our chosen traits. Our study is the first to demonstrate genetic regulation of phenotype expression in a unicellular slime mould. The genetic effect on phenotypes manifests via epistatic interactions with the thermal environment, thus shedding new light on the role of G × G × E interactions in trait evolution in protists.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Physarum polycephalum/genetics
DNA, Mitochondrial/genetics
Mitochondria/genetics
Plasmids
Phenotype
RevDate: 2023-02-16
CmpDate: 2023-02-16
Simulated patterns of mitochondrial diversity are consistent with partial population turnover in Bronze Age Central Europe.
American journal of biological anthropology, 177(1):134-146.
OBJECTIVES: The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach.
MATERIALS AND METHODS: We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers.
RESULTS: Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity.
DISCUSSION: Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.
Additional Links: PMID-36787792
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36787792,
year = {2022},
author = {Broccard, N and Silva, NM and Currat, M},
title = {Simulated patterns of mitochondrial diversity are consistent with partial population turnover in Bronze Age Central Europe.},
journal = {American journal of biological anthropology},
volume = {177},
number = {1},
pages = {134-146},
pmid = {36787792},
issn = {2692-7691},
support = {31003A_182577/SNSF_/Swiss National Science Foundation/Switzerland ; 31003A_156853/SNSF_/Swiss National Science Foundation/Switzerland ; },
mesh = {*Mitochondria/genetics ; Europe ; *DNA, Mitochondrial/genetics ; Emigration and Immigration ; Biological Evolution ; DNA, Ancient ; },
abstract = {OBJECTIVES: The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach.
MATERIALS AND METHODS: We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers.
RESULTS: Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity.
DISCUSSION: Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Mitochondria/genetics
Europe
*DNA, Mitochondrial/genetics
Emigration and Immigration
Biological Evolution
DNA, Ancient
RevDate: 2023-02-15
Ectotherm mitochondrial economy and responses to global warming.
Acta physiologica (Oxford, England) [Epub ahead of print].
Temperature is a key abiotic factor affecting ecology, biogeography and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism plays a key role in bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Due to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of reactive oxygen species (ROS) and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Additional Links: PMID-36790303
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36790303,
year = {2023},
author = {Sokolova, IM},
title = {Ectotherm mitochondrial economy and responses to global warming.},
journal = {Acta physiologica (Oxford, England)},
volume = {},
number = {},
pages = {e13950},
doi = {10.1111/apha.13950},
pmid = {36790303},
issn = {1748-1716},
abstract = {Temperature is a key abiotic factor affecting ecology, biogeography and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism plays a key role in bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Due to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of reactive oxygen species (ROS) and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.},
}
RevDate: 2023-02-15
A mitosome with distinct metabolism in the uncultured protist parasite Paramikrocytos canceri (Rhizaria, Ascetosporea).
Genome biology and evolution pii:7039708 [Epub ahead of print].
Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron-sulfur cluster (ISC) pathway-mediated Fe-S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.
Additional Links: PMID-36790104
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36790104,
year = {2023},
author = {Onuț-Brännström, I and Stairs, CW and Campos, KIA and Hiltunen Thorén, M and Ettema, TJG and Keeling, PJ and Bass, D and Burki, F},
title = {A mitosome with distinct metabolism in the uncultured protist parasite Paramikrocytos canceri (Rhizaria, Ascetosporea).},
journal = {Genome biology and evolution},
volume = {},
number = {},
pages = {},
doi = {10.1093/gbe/evad022},
pmid = {36790104},
issn = {1759-6653},
abstract = {Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron-sulfur cluster (ISC) pathway-mediated Fe-S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.},
}
RevDate: 2023-02-14
Subtle Structural Translation Magically Modulates the Super-Resolution Imaging of Self-Blinking Rhodamines.
Analytical chemistry [Epub ahead of print].
The evolution of super-resolution imaging techniques is benefited from the ongoing competition for optimal rhodamine fluorophores. Yet, it seems blind to construct the desired rhodamine molecule matching the imaging need without the knowledge on imaging impact of even the minimum structural translation. Herein, we have designed a pair of self-blinking sulforhodamines (STMR and SRhB) with the bare distinction of methyl or ethyl substituents and engineered them with Halo protein ligands. Although the two possess similar spectral properties (λab, λfl, ϕ, etc.), they demonstrated unique single-molecule characteristics preferring to individual imaging applications. Experimentally, STMR with high emissive rates was qualified for imaging structures with rapid dynamics (endoplasmic reticulum, and mitochondria), and SRhB with prolonged on-times and photostability was suited for relatively "static" nuclei and microtubules. Using this new knowledge, the mitochondrial morphology during apoptosis and ferroptosis was first super-resolved by STMR. Our study highlights the significance of even the smallest structural modification to the modulation of super-resolution imaging performance and would provide insights for future fluorophore design.
Additional Links: PMID-36787420
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid36787420,
year = {2023},
author = {Zheng, Y and Ye, Z and Xiao, Y},
title = {Subtle Structural Translation Magically Modulates the Super-Resolution Imaging of Self-Blinking Rhodamines.},
journal = {Analytical chemistry},
volume = {},
number = {},
pages = {},
doi = {10.1021/acs.analchem.2c05298},
pmid = {36787420},
issn = {1520-6882},
abstract = {The evolution of super-resolution imaging techniques is benefited from the ongoing competition for optimal rhodamine fluorophores. Yet, it seems blind to construct the desired rhodamine molecule matching the imaging need without the knowledge on imaging impact of even the minimum structural translation. Herein, we have designed a pair of self-blinking sulforhodamines (STMR and SRhB) with the bare distinction of methyl or ethyl substituents and engineered them with Halo protein ligands. Although the two possess similar spectral properties (λab, λfl, ϕ, etc.), they demonstrated unique single-molecule characteristics preferring to individual imaging applications. Experimentally, STMR with high emissive rates was qualified for imaging structures with rapid dynamics (endoplasmic reticulum, and mitochondria), and SRhB with prolonged on-times and photostability was suited for relatively "static" nuclei and microtubules. Using this new knowledge, the mitochondrial morphology during apoptosis and ferroptosis was first super-resolved by STMR. Our study highlights the significance of even the smallest structural modification to the modulation of super-resolution imaging performance and would provide insights for future fluorophore design.},
}
▼ ▼ LOAD NEXT 100 CITATIONS
ESP Quick Facts
ESP Origins
In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.
ESP Support
In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.
ESP Rationale
Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.
ESP Goal
In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.
ESP Usage
Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.
ESP Content
When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.
ESP Help
Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.
ESP Plans
With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.
ESP Picks from Around the Web (updated 07 JUL 2018 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Paleontology
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.
Big Data & Informatics
Big Data: Buzzword or Big Deal?
Hacking the genome: Identifying anonymized human subjects using publicly available data.