Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Endosymbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 15 Sep 2019 at 01:43 Created: 

Endosymbiosis

A symbiotic relationship in which one of the partners lives within the other, especially if it lives within the cells of the other, is known as endosymbiosis. Mitochondria, chloroplasts, and perhaps other cellular organelles are believed to have originated from a form of endosymbiosis. The endosymbiotic origin of eukaryotes seems to have been a biological singularity — that is, it happened once, and only once, in the history of life on Earth.

Created with PubMed® Query: endosymbiont NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-09-12

Bellan A, Bucci F, Perin G, et al (2019)

Photosynthesis regulation in response to fluctuating light in the secondary endosymbiont alga Nannochloropsis gaditana.

Plant & cell physiology pii:5568101 [Epub ahead of print].

In nature, photosynthetic organisms are exposed to highly dynamic environmental conditions where the excitation energy and electron flow in the photosynthetic apparatus need to be continuously modulated. Fluctuations in incident light are particularly challenging since they drive oversaturation of photosynthesis, with consequent oxidative stress and photoinhibition. Plants and algae have evolved several mechanisms to modulate their photosynthetic machinery to cope with light dynamics, such as thermal dissipation of excited chlorophyll states (Non-Photochemical Quenching, NPQ) and regulation of electron transport. The regulatory mechanisms involved in the response to light dynamics have adapted during evolution and exploring biodiversity is a valuable strategy for expanding our understanding of their biological roles. In this work, we investigated the response to fluctuating light in Nannochloropsis gaditana, a eukaryotic microalga of the phylum Heterokonta originating from a secondary endosymbiotic event. N. gaditana is negatively affected by light fluctuations, leading to large reductions in growth and photosynthetic electron transport. Exposure to light fluctuations specifically damages photosystem I, likely because of ineffective regulation of electron transport in this species. The role of Non-Photochemical Quenching, also assessed using a mutant strain specifically depleted of this response, was instead found to be minor, especially in responding to the fastest light fluctuations.

RevDate: 2019-09-11

Smith DAS, Traut W, Martin SH, et al (2019)

Neo Sex Chromosomes, Colour Polymorphism and Male-Killing in the African Queen Butterfly, Danaus chrysippus (L.).

Insects, 10(9): pii:insects10090291.

Danaus chrysippus (L.), one of the world's commonest butterflies, has an extensive range throughout the Old-World tropics. In Africa it is divided into four geographical subspecies which overlap and hybridise freely in the East African Rift: Here alone a male-killing (MK) endosymbiont, Spiroplasma ixodetis, has invaded, causing female-biased populations to predominate. In ssp. chrysippus, inside the Rift only, an autosome carrying a colour locus has fused with the W chromosome to create a neo-W chromosome. A total of 40-100% of Rift females are neo-W and carry Spiroplasma, thus transmitting a linked, matrilineal neo-W, MK complex. As neo-W females have no sons, half the mother's genes are lost in each generation. Paradoxically, although neo-W females have no close male relatives and are thereby forced to outbreed, MK restricts gene flow between subspecies and may thus promote speciation. The neo-W chromosome originated in the Nairobi region around 2.2 k years ago and subsequently spread throughout the Rift contact zone in some 26 k generations, possibly assisted by not having any competing brothers. Our work on the neo-W chromosome, the spread of Spiroplasma and possible speciation is ongoing.

RevDate: 2019-09-10

Perlmutter JI, Bordenstein SR, Unckless RL, et al (2019)

The phage gene wmk is a candidate for male killing by a bacterial endosymbiont.

PLoS pathogens, 15(9):e1007936 pii:PPATHOGENS-D-19-01066.

Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.

RevDate: 2019-09-10

Fisher ML, Levine JF, Guy JS, et al (2019)

Lack of influence by endosymbiont Wolbachia on virus titer in the common bed bug, Cimex lectularius.

Parasites & vectors, 12(1):436 pii:10.1186/s13071-019-3694-2.

BACKGROUND: The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius.

METHODS: We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia.

RESULTS: There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups.

CONCLUSIONS: These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.

RevDate: 2019-09-09

Iwai S, Fujita K, Takanishi Y, et al (2019)

Photosynthetic Endosymbionts Benefit from Host's Phagotrophy, Including Predation on Potential Competitors.

Current biology : CB pii:S0960-9822(19)30954-6 [Epub ahead of print].

In many endosymbioses, hosts have been shown to benefit from symbiosis, but it remains unclear whether intracellular endosymbionts benefit from their association with hosts [1, 2]. This makes it difficult to determine evolutionary mechanisms underlying cooperative behaviors between hosts and intracellular endosymbionts, such as mutual exchange of vital resources. Here, we investigate the fitness effects of symbiosis on the ciliate host Paramecium bursaria and on the algal endosymbiont Chlorella [3, 4], using experimental microcosms that include the free-living alga Chlamydomonas reinhardtii to mimic ecologically realistic conditions. We demonstrate that both host ciliate and the endosymbiotic algae gain fitness benefits from the symbiosis when another alga C. reinhardtii is present in the system. Specifically, the endosymbiotic Chlorella can grow as the host ciliate feeds and grows on C. reinhardtii, whereas the growth of free-living Chlorella is reduced by its competitor, C. reinhardtii. Thus, we propose that the endosymbiotic algae benefit from the host's phagotrophy, which allows the endosymbiont to access particulate nutrient sources and to indirectly prey on the potential competitors competing with its free-living counterparts. Even though the ecological contexts in which each partner receives its benefits differ, both partners would gain net fitness benefits in an ecological timescale. Thus, the cooperative behaviors can evolve through fitness feedback (partner fidelity feedback) between the host and the endosymbiont, without need for special partner control mechanisms. The proposed ecological and evolutionary mechanisms provide a basis for understanding cooperative resource exchanges in endosymbioses, including many photosynthetic endosymbioses widespread in aquatic ecosystems.

RevDate: 2019-09-04

Jiménez-Leiva A, Cabrera JJ, Bueno E, et al (2019)

Expanding the Regulon of the Bradyrhizobium diazoefficiens NnrR Transcription Factor: New Insights Into the Denitrification Pathway.

Frontiers in microbiology, 10:1926.

Denitrification in the soybean endosymbiont Bradyrhizobium diazoefficiens is controlled by a complex regulatory network composed of two hierarchical cascades, FixLJ-FixK2-NnrR and RegSR-NifA. In the former cascade, the CRP/FNR-type transcription factors FixK2 and NnrR exert disparate control on expression of core denitrifying systems encoded by napEDABC, nirK, norCBQD, and nosRZDFYLX genes in response to microoxia and nitrogen oxides, respectively. To identify additional genes controlled by NnrR and involved in the denitrification process in B. diazoefficiens, we compared the transcriptional profile of an nnrR mutant with that of the wild type, both grown under anoxic denitrifying conditions. This approach revealed more than 170 genes were simultaneously induced in the wild type and under the positive control of NnrR. Among them, we found the cycA gene which codes for the c550 soluble cytochrome (CycA), previously identified as an intermediate electron donor between the bc1 complex and the denitrifying nitrite reductase NirK. Here, we demonstrated that CycA is also required for nitrous oxide reductase activity. However, mutation in cycA neither affected nosZ gene expression nor NosZ protein steady-state levels. Furthermore, cycA, nnrR and its proximal divergently oriented nnrS gene, are direct targets for FixK2 as determined by in vitro transcription activation assays. The dependence of cycA expression on FixK2 and NnrR in anoxic denitrifying conditions was validated at transcriptional level, determined by quantitative reverse transcription PCR, and at the level of protein by performing heme c-staining of soluble cytochromes. Thus, this study expands the regulon of NnrR and demonstrates the role of CycA in the activity of the nitrous oxide reductase, the key enzyme for nitrous oxide mitigation.

RevDate: 2019-09-04

Christensen S, Camacho M, Sharmin Z, et al (2019)

Quantitative methods for assessing local and bodywide contributions to Wolbachia titer in maternal germline cells of Drosophila.

BMC microbiology, 19(1):206 pii:10.1186/s12866-019-1579-3.

BACKGROUND: Little is known about how bacterial endosymbionts colonize host tissues. Because many insect endosymbionts are maternally transmitted, egg colonization is critical for endosymbiont success. Wolbachia bacteria, carried by approximately half of all insect species, provide an excellent model for characterizing endosymbiont infection dynamics. To date, technical limitations have precluded stepwise analysis of germline colonization by Wolbachia. It is not clear to what extent titer-altering effects are primarily mediated by growth rates of Wolbachia within cell lineages or migration of Wolbachia between cells.

RESULTS: The objective of this work is to inform mechanisms of germline colonization through use of optimized methodology. The approaches are framed in terms of nutritional impacts on Wolbachia. Yeast-rich diets in particular have been shown to suppress Wolbachia titer in the Drosophila melanogaster germline. To determine the extent of Wolbachia sensitivity to diet, we optimized 3-dimensional, multi-stage quantification of Wolbachia titer in maternal germline cells. Technical and statistical validation confirmed the identity of Wolbachia in vivo, the reproducibility of Wolbachia quantification and the statistical power to detect these effects. The data from adult feeding experiments demonstrated that germline Wolbachia titer is distinctly sensitive to yeast-rich host diets in late oogenesis. To investigate the physiological basis for these nutritional impacts, we optimized methodology for absolute Wolbachia quantification by real-time qPCR. We found that yeast-rich diets exerted no significant effect on bodywide Wolbachia titer, although ovarian titers were significantly reduced. This suggests that host diets affects Wolbachia distribution between the soma and late stage germline cells. Notably, relative qPCR methods distorted apparent wsp abundance, due to altered host DNA copy number in yeast-rich conditions. This highlights the importance of absolute quantification data for testing mechanistic hypotheses.

CONCLUSIONS: We demonstrate that absolute quantification of Wolbachia, using well-controlled cytological and qPCR-based methods, creates new opportunities to determine how bacterial abundance within the germline relates to bacterial distribution within the body. This methodology can be applied to further test germline infection dynamics in response to chemical treatments, genetic conditions, new host/endosymbiont combinations, or potentially adapted to analyze other cell and tissue types.

RevDate: 2019-08-31

Li Y, Liu X, H Guo (2019)

Population Dynamics of Wolbachia in Laodelphax striatellus (Fallén) Under Successive Stress of Antibiotics.

Current microbiology pii:10.1007/s00284-019-01762-0 [Epub ahead of print].

Wolbachia are the most common symbionts in arthropods; antibiotic treatment for eliminating the symbionts from their host is necessary to investigate the functions. Tetracycline antibiotics are widely used to remove endosymbiont Wolbachia from insect hosts. However, very little has been known on the effects of tetracycline on population size of Wolbachia in small brown planthopper (SBPH), Laodelphax striatellus (Fallén), an important insect pest of rice in Asia. Here, we investigated the dynamics of Wolbachia population density in females and males of L. striatellus by real-time fluorescent quantitative PCR method. The Wolbachia density in females and males of L. striatellus all declined sharply after treatment with 2 mg/mL tetracycline for one generation, and continued to decrease to a level which could not be detected by both qPCR and diagnostic PCR after treated for another generation, then maintained at 0 in the following three generations with continuous antibiotic treatment. Wolbachia infection did not recover in L. striatellus after stopping tetracycline treatment for ten generations. This is the first report to precisely monitor the population dynamics of Wolbachia in L. striatellus during successive tetracycline treatment and after that. The results provide a useful method for evaluating the efficiency of artificial operation of endosymbionts.

RevDate: 2019-08-31

Doellman MM, Schuler H, Jean GS, et al (2019)

Geographic and Ecological Dimensions of Host Plant-Associated Genetic Differentiation and Speciation in the Rhagoletis cingulata (Diptera: Tephritidae) Sibling Species Group.

Insects, 10(9): pii:insects10090275.

Ascertaining the causes of adaptive radiation is central to understanding how new species arise and come to vary with their resources. The ecological theory posits adaptive radiation via divergent natural selection associated with novel resource use; an alternative suggests character displacement following speciation in allopatry and then secondary contact of reproductively isolated but ecologically similar species. Discriminating between hypotheses, therefore, requires the establishment of a key role for ecological diversification in initiating speciation versus a secondary role in facilitating co-existence. Here, we characterize patterns of genetic variation and postzygotic reproductive isolation for tephritid fruit flies in the Rhagoletis cingulata sibling species group to assess the significance of ecology, geography, and non-adaptive processes for their divergence. Our results support the ecological theory: no evidence for intrinsic postzygotic reproductive isolation was found between two populations of allopatric species, while nuclear-encoded microsatellites implied strong ecologically based reproductive isolation among sympatric species infesting different host plants. Analysis of mitochondrial DNA suggested, however, that cytoplasmic-related reproductive isolation may also exist between two geographically isolated populations within R cingulata. Thus, ecology associated with sympatric host shifts and cytoplasmic effects possibly associated with an endosymbiont may be the key initial drivers of the radiation of the R. cingulata group.

RevDate: 2019-09-01

Ayala D, Akone-Ella O, Rahola N, et al (2019)

Natural Wolbachia infections are common in the major malaria vectors in Central Africa.

Evolutionary applications, 12(8):1583-1594 pii:EVA12804.

During the last decade, the endosymbiont bacterium Wolbachia has emerged as a biological tool for vector disease control. However, for long time, it was believed that Wolbachia was absent in natural populations of Anopheles. The recent discovery that species within the Anopheles gambiae complex host Wolbachia in natural conditions has opened new opportunities for malaria control research in Africa. Here, we investigated the prevalence and diversity of Wolbachia infection in 25 African Anopheles species in Gabon (Central Africa). Our results revealed the presence of Wolbachia in 16 of these species, including the major malaria vectors in this area. The infection prevalence varied greatly among species, confirming that sample size is a key factor to detect the infection. Moreover, our sequencing and phylogenetic analyses showed the important diversity of Wolbachia strains that infect Anopheles. Co-evolutionary analysis unveiled patterns of Wolbachia transmission within some Anopheles species, suggesting that past independent acquisition events were followed by co-cladogenesis. The large diversity of Wolbachia strains that infect natural populations of Anopheles offers a promising opportunity to select suitable phenotypes for suppressing Plasmodium transmission and/or manipulating Anopheles reproduction, which in turn could be used to reduce the malaria burden in Africa.

RevDate: 2019-08-30

Lim SJ, Alexander L, Engel AS, et al (2019)

Extensive Thioautotrophic Gill Endosymbiont Diversity within a Single Ctena orbiculata (Bivalvia: Lucinidae) Population and Implications for Defining Host-Symbiont Specificity and Species Recognition.

mSystems, 4(4): pii:4/4/e00280-19.

Seagrass-dwelling members of the bivalve family Lucinidae harbor environmentally acquired gill endosymbionts. According to previous studies, lucinid symbionts potentially represent multiple strains from a single thioautotrophic gammaproteobacterium species. This study utilized genomic- and transcriptomic-level data to resolve symbiont taxonomic, genetic, and functional diversity from Ctena orbiculata endosymbiont populations inhabiting carbonate-rich sediment at Sugarloaf Key, FL (USA). The sediment had mixed seagrass and calcareous green alga coverage and also was colonized by at least five other lucinid species. Four coexisting, thioautotrophic endosymbiont operational taxonomic units (OTUs), likely representing four strains from two different bacterial species, were identified from C. orbiculata Three of these OTUs also occurred at high relative abundances in the other sympatric lucinid species. Interspecies genetic differences averaged about 5% lower at both pairwise average nucleotide identity and amino acid identity than interstrain differences. Despite these genetic differences, C. orbiculata endosymbionts shared a high number of metabolic functions, including highly expressed thioautotrophy-related genes and a moderately to weakly expressed conserved one-carbon (C1) oxidation gene cluster previously undescribed in lucinid symbionts. Few symbiont- and host-related genes, including those encoding symbiotic sulfurtransferase, host respiratory functions, and host sulfide oxidation functions, were differentially expressed between seagrass- and alga-covered sediment locations. In contrast to previous studies, the identification of multiple endosymbiont taxa within and across C. orbiculata individuals, which were also shared with other sympatric lucinid species, suggests that neither host nor endosymbiont displays strict taxonomic specificity. This necessitates further investigations into the nature and extent of specificity of lucinid hosts and their symbionts.IMPORTANCE Symbiont diversity and host/symbiont functions have been comprehensively profiled for only a few lucinid species. In this work, unprecedented thioautotrophic gill endosymbiont taxonomic diversity was characterized within a Ctena orbiculata population associated with both seagrass- and alga-covered sediments. Endosymbiont metabolisms included known chemosynthetic functions and an additional conserved, previously uncharacterized C1 oxidation pathway. Lucinid-symbiont associations were not species specific because this C. orbiculata population hosted multiple endosymbiont strains and species, and other sympatric lucinid species shared overlapping symbiont 16S rRNA gene diversity profiles with C. orbiculata Our results suggest that lucinid-symbiont association patterns within some host species could be more taxonomically diverse than previously thought. As such, this study highlights the importance of holistic analyses, at the population, community, and even ecosystem levels, in understanding host-microbe association patterns.

RevDate: 2019-08-29

Yoder JA, Rodell BM, Klever LA, et al (2019)

Vertical transmission of the entomopathogenic soil fungus Scopulariopsis brevicaulis as a contaminant of eggs in the winter tick, Dermacentor albipictus, collected from calf moose (New Hampshire, USA).

Mycology, 10(3):174-181 pii:1600062.

Moose naturally acquire soil fungi on their fur that are entomopathogenic to the winter tick, Dermacentor albipictus. Presumed to provide a measure of on-host tick control, it is unknown whether these soil fungi impact subsequent off-host stages of the tick. Eggs and resultant larvae originating from engorged, adult female winter ticks collected from dead calf moose (Alces alces) were used to investigate the presence and extent of fungal infection. Approximately 40% of eggs and larvae were infected, almost exclusively by the fungus Scopulariopsis brevicaulis (teleomorph Microascus brevicaulis: Microascaceae, Ascomycota). Eggs analysed on the day of oviposition and day of hatching had high frequency (40%) of S. brevicaulis, whereas the frequency in eggs harvested in utero was minimal (7%); therefore, exposure occurs pre-oviposition in the female's genital chamber, not by transovarial transmission. At hatching, larvae emerge containing S. brevicaulis indicating transstadial transmission. Artificial infection by topical application of eggs and larvae with a large inoculum of S. brevicaulis spores caused rapid dehydration, marked mortality; pathogenicity was confirmed by Koch's postulates. The high hatching success (>90%) and multi-month survival of larvae imply that S. brevicaulis is maintained as a natural pathobiont in winter ticks.

RevDate: 2019-09-04

Genchi M, Vismarra A, Lucchetti C, et al (2019)

Efficacy of imidacloprid 10%/moxidectin 2.5% spot on (Advocate®, Advantage Multi®) and doxycycline for the treatment of natural Dirofilaria immitis infections in dogs.

Veterinary parasitology, 273:11-16 pii:S0304-4017(19)30174-8 [Epub ahead of print].

Heartworm infection (also known as dirofilariosis due to Dirofilaria immitis) in dogs causes chronic pulmonary disease that, if left untreated, can lead to right-side congestive heart failure. Currently, the only registered drug for adulticide therapy in dogs with heartworm disease (HWD) is melarsomine dihydrochloride. The recent targeting of the bacterial endosymbiont Wolbachia, through antibiotic therapy of the infected host, has offered an interesting alternative for the treatment of HWD. Recent reports of the adulticide activity of an ivermectin/doxycycline combination protocol has lead the American Heartworm Society (AHS) to include in its guidelines that, in cases where arsenical therapy is not possible or is contraindicated, a monthly heartworm preventive along with doxycycline for a 4-week period might be considered. In the present study, 20 dogs with confirmed natural D. immitis infection were included following owner consent. Fourteen dogs were treated with a topical formulation containing 10% w/v imidacloprid and 2.5% w/v moxidectin (Advocate®, Advantage Multi®, Bayer), monthly for nine months, associated to doxycycline (10 mg/kg/BID) for the first 30 days. Six dogs were treated with melarsomine (Immiticide®, Merial) (2.5 mg/kg) at enrollment, followed one month later by two injections 24 h apart. The presence of circulating antigens and the number of microfilariae (mf) were evaluated at the moment of enrollment and then at 1, 2, 3, 4, 5, 6, 7, 8, 12, 18, 24 months post enrollment. Echocardiogram and radiographs were performed at month 0, 6, 12, 18, 24. Monthly moxidectin combined with 30 days of doxycycline eliminated circulating microfilariae within one month, thus breaking the transmission cycle very quickly. Furthermore, dogs treated with the combination protocol started to become negative for circulating antigens at 4 months from the beginning of treatment and all except one were antigen negative at 9 months. All dogs treated with melarsomine were antigen negative by 5 months from the beginning of the treatment. No dogs showed worsening of pulmonary patterns or criteria indicative of pulmonary hypertension 12 to 24 months after. For the criteria mf concentration, antigen concentration, radiography and echocardiography at 12, 18 and 24 months the non-inferiority for the moxidectin group could be proven for a non-inferiority margin of 15% for the rate difference. Dogs treated with moxidectin and doxycycline became negative for microfilariae and antigens sooner when compared to melarsomine in the present study and to dogs treated with doxycycline combined with ivermectin in studies previously published.

RevDate: 2019-09-05

Hammer TJ, NA Moran (2019)

Links between metamorphosis and symbiosis in holometabolous insects.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1783):20190068.

Many animals depend on microbial symbionts to provide nutrition, defence or other services. Holometabolous insects, as well as other animals that undergo metamorphosis, face unique constraints on symbiont maintenance. Microbes present in larvae encounter a radical transformation of their habitat and may also need to withstand chemical and immunological challenges. Metamorphosis also provides an opportunity, in that symbiotic associations can be decoupled over development. For example, some holometabolous insects maintain the same symbiont as larvae and adults, but house it in different tissues; in other species, larvae and adults may harbour entirely different types or numbers of microbes, in accordance with shifts in host diet or habitat. Such flexibility may provide an advantage over hemimetabolous insects, in which selection on adult-stage microbial associations may be constrained by its negative effects on immature stages, and vice versa. Additionally, metamorphosis itself can be directly influenced by symbionts. Across disparate insect taxa, microbes protect hosts from pathogen infection, supply nutrients essential for rebuilding the adult body and provide cues regulating pupation. However, microbial associations remain completely unstudied for many families and even orders of Holometabola, and future research will undoubtedly reveal more links between metamorphosis and microbiota, two widespread features of animal life. This article is part of the theme issue 'The evolution of complete metamorphosis'.

RevDate: 2019-09-04

Mehta AP, Ko Y, Supekova L, et al (2019)

Toward a Synthetic Yeast Endosymbiont with a Minimal Genome.

Journal of the American Chemical Society, 141(35):13799-13802.

Based on the endosymbiotic theory, one of the key events that occurred during mitochondrial evolution was an extensive loss of nonessential genes from the protomitochondrial endosymbiont genome and transfer of some of the essential endosymbiont genes to the host nucleus. We have developed an approach to recapitulate various aspects of endosymbiont genome minimization using a synthetic system consisting of Escherichia coli endosymbionts within host yeast cells. As a first step, we identified a number of E. coli auxotrophs of central metabolites that can form viable endosymbionts within yeast cells. These studies provide a platform to identify nonessential biosynthetic pathways that can be deleted in the E. coli endosymbionts to investigate the evolutionary adaptations in the host and endosymbiont during the evolution of mitochondria.

RevDate: 2019-08-20

Lorenzo-Carballa MO, Torres-Cambas Y, Heaton K, et al (2019)

Widespread Wolbachia infection in an insular radiation of damselflies (Odonata, Coenagrionidae).

Scientific reports, 9(1):11933 pii:10.1038/s41598-019-47954-3.

Wolbachia is one of the most common endosymbionts found infecting arthropods. Theory predicts symbionts like Wolbachia will be more common in species radiations, as host shift events occur with greatest frequency between closely related species. Further, the presence of Wolbachia itself may engender reproductive isolation, and promote speciation of their hosts. Here we screened 178 individuals belonging to 30 species of the damselfly genera Nesobasis and Melanesobasis - species radiations endemic to the Fiji archipelago in the South Pacific - for Wolbachia, using multilocus sequence typing to characterize bacterial strains. Incidence of Wolbachia was 71% in Nesobasis and 40% in Melanesobasis, and prevalence was also high, with an average of 88% in the Nesobasis species screened. We identified a total of 25 Wolbachia strains, belonging to supergroups A, B and F, with some epidemic strains present in multiple species. The occurrence of Wolbachia in both males and females, and the similar global prevalence found in both sexes rules out any strong effect of Wolbachia on the primary sex-ratio, but are compatible with the phenotype of cytoplasmic incompatibility. Nesobasis has higher species richness than most endemic island damselfly genera, and we discuss the potential for endosymbiont-mediated speciation within this group.

RevDate: 2019-08-19

Youle RJ (2019)

Mitochondria-Striking a balance between host and endosymbiont.

Science (New York, N.Y.), 365(6454):.

Mitochondria are organelles with their own genome that arose from α-proteobacteria living within single-celled Archaea more than a billion years ago. This step of endosymbiosis offered tremendous opportunities for energy production and metabolism and allowed the evolution of fungi, plants, and animals. However, less appreciated are the downsides of this endosymbiosis. Coordinating gene expression between the mitochondrial genomes and the nuclear genome is imprecise and can lead to proteotoxic stress. The clonal reproduction of mitochondrial DNA requires workarounds to avoid mutational meltdown. In metazoans that developed innate immune pathways to thwart bacterial and viral infections, mitochondrial components can cross-react with pathogen sensors and invoke inflammation. Here, I focus on the numerous and elegant quality control processes that compensate for or mitigate these challenges of endosymbiosis.

RevDate: 2019-08-14

Zhu YX, Song ZR, Song YL, et al (2019)

The microbiota in spider mite faeces potentially reflects intestinal bacterial communities in the host.

Insect science [Epub ahead of print].

Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world, however, the composition of spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated faeces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host-species specificity. Moreover, the abundance of the bacterial community in spider mite faeces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a "core microbiome". Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and faeces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies. This article is protected by copyright. All rights reserved.

RevDate: 2019-08-20

Swe PM, Zakrzewski M, Waddell R, et al (2019)

High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp.

Scientific reports, 9(1):11744 pii:10.1038/s41598-019-47892-0.

Multiple parasitic arthropods of medical importance depend on symbiotic bacteria. While the link between scabies and secondary bacterial infections causing post infective complications of Group A streptococcal and staphylococcal pyoderma is increasingly recognized, very little is known about the microbiota of Sarcoptes scabiei. Here we analyze adult female mite and egg metagenome datasets. The majority of adult mite bacterial reads matched with Enterobacteriaceae (phylum Proteobacteria), followed by Corynebacteriaceae (phylum Actinobacteria). Klebsiella was the most dominant genus (78%) and Corynebacterium constituted 9% of the assigned sequences. Scabies mite eggs had a more diverse microbial composition with sequences from Proteobacteria being the most dominant (75%), while Actinobacteria, Bacteroidetes and Firmicutes accounted for 23% of the egg microbiome sequences. DNA sequences of a potential endosymbiont, namely Streptomyces, were identified in the metagenome sequence data of both life stages. The presence of Streptomyces was confirmed by conventional PCR. Digital droplet PCR indicated higher Streptomyces numbers in adult mites compared to eggs. Streptomyces were localized histologically in the scabies mite gut and faecal pellets by Fluorescent In Situ Hybridization (FISH). Streptomyces may have essential symbiotic roles in the scabies parasite intestinal system requiring further investigation.

RevDate: 2019-08-13

Bockoven AA, Bondy EC, Flores MJ, et al (2019)

What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its Decline a Decade Later.

Microbial ecology pii:10.1007/s00248-019-01417-4 [Epub ahead of print].

Facultative, intracellular bacterial symbionts of arthropods may dramatically affect host biology and reproduction. The length of these symbiont-host associations may be thousands to millions of years, and while symbiont loss is predicted, there have been very few observations of a decline of symbiont infection rates. In a population of the sweet potato whitefly species (Bemisia tabaci MEAM1) in Arizona, USA, we documented the frequency decline of a strain of Rickettsia in the Rickettsia bellii clade from near-fixation in 2011 to 36% of whiteflies infected in 2017. In previous studies, Rickettsia had been shown to increase from 1 to 97% from 2000 to 2006 and remained at high frequency for at least five years. At that time, Rickettsia infection was associated with both fitness benefits and female bias. In the current study, we established matrilines of whiteflies from the field (2016, Rickettsia infection frequency = 58%) and studied (a) Rickettsia vertical transmission, (b) fitness and sex ratios associated with Rickettsia infection, (c) symbiont titer, and (d) bacterial communities within whiteflies. The vertical transmission rate was high, approximately 98%. Rickettsia infection in the matrilines was not associated with fitness benefits or sex ratio bias and appeared to be slightly costly, as more Rickettsia-infected individuals produced non-hatching eggs. Overall, the titer of Rickettsia in the matrilines was lower in 2016 than in the whiteflies collected in 2011, but the titer distribution appeared bimodal, with high- and low-titer lines, and constancy of the average titer within lines over three generations. We found neither association between Rickettsia titer and fitness benefits or sex ratio bias nor evidence that Rickettsia was replaced by another secondary symbiont. The change in the interaction between symbiont and host in 2016 whiteflies may explain the drop in symbiont frequency we observed.

RevDate: 2019-08-09

Serra V, Krey V, Daschkin C, et al (2019)

Seropositivity to Midichloria mitochondrii (order Rickettsiales) as a marker to determine the exposure of humans to tick bite.

Pathogens and global health [Epub ahead of print].

Ixodes ricinus is the most common tick species parasitizing humans in Europe, and the main vector of Borrelia burgdorferi sensu lato, the causative agent of Lyme disease in the continent. This tick species also harbors the endosymbiont Midichloria mitochondrii, and there is strong evidence that this bacterium is inoculated into the vertebrate host during the blood meal. A high proportion of tick bites remains unnoticed due to rarity of immediate symptoms, implying the risk of occult tick-borne infections in turn a potential risk factor for the onset of chronic-degenerative diseases. Since suitable tools to determine the previous exposure to I. ricinus bites are needed, this work investigated whether seropositivity toward a protein of M. mitochondrii (rFliD) could represent a marker for diagnosis of I. ricinus bite. We screened 274 sera collected from patients from several European countries, at different risk of tick bite, using an ELISA protocol. Our results show a clear trend indicating that positivity to rFliD is higher where the tick bite can be regarded as certain/almost certain, and lower where there is an uncertainty on the bite, with the highest positivity in Lyme patients (47.30%) and the lowest (2.00%) in negative controls. According to the obtained results, M. mitochondrii can be regarded as a useful source of antigens, with the potential to be used to assess the exposure to ticks harboring this bacterium. In prospect, additional antigens from M. mitochondrii and tick salivary glands should be investigated and incorporated in a multi-antigen test for tick bite diagnosis.

RevDate: 2019-08-11

Liu L, Zhang KJ, Rong X, et al (2019)

Identification of Wolbachia-Responsive miRNAs in the Small Brown Planthopper, Laodelphax striatellus.

Frontiers in physiology, 10:928.

Laodelphax striatellus is naturally infected with the Wolbachia strain wStri, which induces strong cytoplasmic incompatibility of its host. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that play a critical role in the regulation of gene expression at post-transcriptional level in various biological processes. Despite various studies reporting that Wolbachia affects the miRNA expression of their hosts, the molecular mechanism underlying interactions between Wolbachia and their host miRNAs has not been well understood. In order to better understand the impact of Wolbachia infection on its host, we investigated the differentially expressed miRNAs between Wolbachia-infected and Wolbachia-uninfected strains of L. striatellus. Compared with uninfected strains, Wolbachia infection resulted in up-regulation of 18 miRNAs and down-regulation of 6 miRNAs in male, while 25 miRNAs were up-regulated and 15 miRNAs were down-regulated in female. The target genes of these differentially expressed miRNAs involved in immune response regulation, reproduction, redox homeostasis and ecdysteroidogenesis were also annotated in both sexes. We further verified the expression of several significantly differentially expressed miRNAs and their predicted target genes by qRT-PCR method. The results suggested that Wolbachia appears to reduce the expression of genes related to fertility in males and increase the expression of genes related to fecundity in females. At the same time, Wolbachia may enhance the expression of immune-related genes in both sexes. All of the results in this study may be helpful in further exploration of the molecular mechanisms by which Wolbachia affects on its hosts.

RevDate: 2019-08-12

Lanzoni O, Plotnikov A, Khlopko Y, et al (2019)

The core microbiome of sessile ciliate Stentor coeruleus is not shaped by the environment.

Scientific reports, 9(1):11356 pii:10.1038/s41598-019-47701-8.

Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont "Candidatus Megaira polyxenophila". Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.

RevDate: 2019-08-06

Nobre T (2019)

Symbiosis in Sustainable Agriculture: Can Olive Fruit Fly Bacterial Microbiome Be Useful in Pest Management?.

Microorganisms, 7(8): pii:microorganisms7080238.

The applied importance of symbiosis has been gaining recognition. The relevance of symbiosis has been increasing in agriculture, in developing sustainable practices, including pest management. Insect symbiotic microorganisms' taxonomical and functional diversity is high, and so is the potential of manipulation of these microbial partners in suppressing pest populations. These strategies, which rely on functional organisms inhabiting the insect, are intrinsically less susceptible to external environmental variations and hence likely to overcome some of the challenges posed by climate change. Rates of climate change in the Mediterranean Basin are expected to exceed global trends for most variables, and this warming will also affect olive production and impact the interactions of olives and their main pest, the obligate olive fruit fly (Bactroceraoleae). This work summarizes the current knowledge on olive fly symbiotic bacteria towards the potential development of symbiosis-based strategies for olive fruit fly control. Particular emphasis is given to Candidatus Erwinia dacicola, an obligate, vertically transmitted endosymbiont that allows the insect to cope with the olive-plant produced defensive compound oleuropein, as a most promising target for a symbiosis disruption approach.

RevDate: 2019-08-08

Yoshida K, Sanada-Morimura S, Huang SH, et al (2019)

Influences of two coexisting endosymbionts, CI-inducing Wolbachia and male-killing Spiroplasma, on the performance of their host Laodelphax striatellus (Hemiptera: Delphacidae).

Ecology and evolution, 9(14):8214-8224 pii:ECE35392.

The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female-biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male-killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male-killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single-infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double-infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double-infection state than in the single-infection state. In the double-infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma-infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.

RevDate: 2019-09-01

Schneider DI, Saarman N, Onyango MG, et al (2019)

Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda.

PLoS neglected tropical diseases, 13(8):e0007340 pii:PNTD-D-19-00416.

Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.

RevDate: 2019-07-30

Khanmohammadi M, Falak R, Meamar AR, et al (2019)

Molecular Detection and Phylogenetic Analysis of Endosymbiont Wolbachia pipientis (Rickettsiales: Anaplasmataceae) Isolated from Dirofilaria immitis in Northwest of Iran.

Journal of arthropod-borne diseases, 13(1):83-93.

Background: The purpose of this study was molecular detection and phylogenetic analysis of Wolbachia species of Dirofilaria immitis.

Methods: Adult filarial nematodes were collected from the cardiovascular and pulmonary arterial systems of naturally infected dogs, which caught in different geographical areas of Meshkin Shahr in Ardabil Province, Iran, during 2017. Dirofilaria immitis genomic DNA were extracted. Phylogenetic analysis for proofing of D. immitis was carried out using cytochrome oxidase I (COI) gene. Afterward, the purified DNA was used to determine the molecular pattern of the Wolbachia surface protein (WSP) gene sequence by PCR.

Results: Phylogeny and homology studies showed high consistency of the COI gene with the previously-registered sequences for D. immitis. Comparison of DNA sequences revealed no nucleotide variation between them. PCR showed that all of the collected parasites were infected with W. pipientis. The sequence of the WSP gene in Wolbachia species from D. immitis was significantly different from other species of Dirofilaria as well as other filarial species. The maximum homology was observed with the Wolbachia isolated from D. immitis. The greatest distance between WSP nucleotides of Wolbachia species found between D. immitis and those isolated from Onchocerca lupi.

Conclusion: PCR could be a simple but suitable method for detection of Wolbachia species. There is a pattern of host specificity between Wolbachia and Dirofilaria that can be related to ancestral evolutions. The results of this phylogenetic analysis and molecular characterization may help us for better identification of Wolbachia species and understanding of their coevolution.

RevDate: 2019-07-30

Couper LI, Kwan JY, Ma J, et al (2019)

Drivers and patterns of microbial community assembly in a Lyme disease vector.

Ecology and evolution, 9(13):7768-7779 pii:ECE35361.

Vector-borne diseases constitute a major global health burden and are increasing in geographic range and prevalence. Mounting evidence has demonstrated that the vector microbiome can impact pathogen dynamics, making the microbiome a focal point in vector-borne disease ecology. However, efforts to generalize preliminary findings across studies and systems and translate these findings into disease control strategies are hindered by a lack of fundamental understanding of the processes shaping the vector microbiome and the interactions therein. Here, we use 16S rRNA sequencing and apply a community ecology framework to analyze microbiome community assembly and interactions in Ixodes pacificus, the Lyme disease vector in the western United States. We find that vertical transmission routes drive population-level patterns in I. pacificus microbial diversity and composition, but that microbial function and overall abundance do not vary over time or between clutches. Further, we find that the I. pacificus microbiome is not strongly structured based on competition but assembles nonrandomly, potentially due to vector-specific filtering processes which largely eliminate all but the dominant endosymbiont, Rickettsia. At the scale of the individual I. pacificus, we find support for a highly limited internal microbial community, and hypothesize that the tick endosymbiont may be the most important component of the vector microbiome in influencing pathogen dynamics.

RevDate: 2019-08-02

He Z, Zheng Y, Yu WJ, et al (2019)

How do Wolbachia modify the Drosophila ovary? New evidences support the "titration-restitution" model for the mechanisms of Wolbachia-induced CI.

BMC genomics, 20(1):608 pii:10.1186/s12864-019-5977-6.

BACKGROUND: Cytoplasmic incompatibility (CI) is the most common phenotype induced by endosymbiont Wolbachia and results in embryonic lethality when Wolbachia-modified sperm fertilize eggs without Wolbachia. However, eggs carrying the same strain of Wolbachia can rescue this embryonic death, thus producing viable Wolbachia-infected offspring. Hence Wolbachia can be transmitted mainly by hosts' eggs. One of the models explaining CI is "titration-restitution", which hypothesized that Wolbachia titrated-out some factors from the sperm and the Wolbachia in the egg would restitute the factors after fertilization. However, how infected eggs rescue CI and how hosts' eggs ensure the proliferation and transmission of Wolbachia are not well understood.

RESULTS: By RNA-seq analyses, we first compared the transcription profiles of Drosophila melanogaster adult ovaries with and without the wMel Wolbachia and identified 149 differentially expressed genes (DEGs), of which 116 genes were upregulated and 33 were downregulated by Wolbachia infection. To confirm the results obtained from RNA-seq and to screen genes potentially associated with reproduction, 15 DEGs were selected for quantitative RT-PCR (qRT-PCR). Thirteen genes showed the same changing trend as RNA-seq analyses. To test whether these genes are associated with CI, we also detected their expression levels in testes. Nine of them exhibited different changing trends in testes from those in ovaries. To investigate how these DEGs were regulated, sRNA sequencing was performed and identified seven microRNAs (miRNAs) that were all upregulated in fly ovaries by Wolbachia infection. Matching of miRNA and mRNA data showed that these seven miRNAs regulated 15 DEGs. Wolbachia-responsive genes in fly ovaries were involved in biological processes including metabolism, transportation, oxidation-reduction, immunity, and development.

CONCLUSIONS: Comparisons of mRNA and miRNA data from fly ovaries revealed 149 mRNAs and seven miRNAs that exhibit significant changes in expression due to Wolbachia infection. Notably, most of the DEGs showed variation in opposite directions in ovaries versus testes in the presence of Wolbachia, which generally supports the "titration-restitution" model for CI. Furthermore, genes related to metabolism were upregulated, which may benefit maximum proliferation and transmission of Wolbachia. This provides new insights into the molecular mechanisms of Wolbachia-induced CI and Wolbachia dependence on host ovaries.

RevDate: 2019-09-04

Barkati S, Ndao M, M Libman (2019)

Cutaneous leishmaniasis in the 21st century: from the laboratory to the bedside.

Current opinion in infectious diseases, 32(5):419-425.

PURPOSE OF REVIEW: Despite modern advances in molecular diagnostic tools and a better understanding of its complex pathophysiology, cutaneous leishmaniasis, a neglected tropical disease, remains a major global health problem. Laboratory methods to inform prognosis and treatment are not widely available, the therapeutic options are limited and have significant adverse effects, and emergence of drug resistance is a further complication. New advances in the understanding of the role of Leishmania RNA virus (LRV) as a prognostic factor, speciation methods and antimicrobial resistance testing and their limitations will be discussed.

RECENT FINDINGS: LRV, an intracytoplasmic endosymbiont found mostly in Leishmania spp. associated with more severe disease, appears to play a role in modulating the host immune response and has been associated with treatment failure in some Viannia subgenus species. Proper speciation is an important guide to management. However, recent findings have demonstrated significant heterogeneity of results related to differences in genotyping methods.

SUMMARY: Recognition of the role of LRV in immune modulation and response to treatment along with more accessible tools for its detection to guide management at the bedside should allow a better individualized approach. Improving accessibility and standardization of speciation methods and antimicrobial susceptibility testing should be major goals to improve cutaneous leishmaniasis management in the 21st century.

RevDate: 2019-08-10

Chan WY, Peplow LM, Menéndez P, et al (2019)

The roles of age, parentage and environment on bacterial and algal endosymbiont communities in Acropora corals.

Molecular ecology [Epub ahead of print].

The bacterial and microalgal endosymbiont (Symbiodiniaceae spp.) communities associated with corals have important roles in their health and resilience, yet little is known about the factors driving their succession during early coral life stages. Using 16S rRNA gene and ITS2 metabarcoding, we compared these communities in four Acropora coral species and their hybrids obtained from two laboratory crosses (Acropora tenuis × Acropora loripes and Acropora sarmentosa × Acropora florida) across the parental, recruit (7 months old) and juvenile (2 years old) life stages. We tested whether microbiomes differed between (a) life stages, (b) hybrids and purebreds, and (c) treatment conditions (ambient/elevated temperature and pCO2). Microbial communities of early life stage corals were highly diverse, lacked host specificity and were primarily determined by treatment conditions. Over time, a winnowing process occurred, and distinct microbial communities developed between the two species pair crosses by 2 years of age, irrespective of hybrid or purebred status. These findings suggest that the microbial communities of corals have a period of flexibility prior to adulthood, which can be valuable to future research aimed at the manipulation of coral microbial communities.

RevDate: 2019-07-22

Muñoz-Gómez SA, Durnin K, Eme L, et al (2019)

Nephromyces represents a diverse and novel lineage of the Apicomplexa that has retained apicoplasts.

Genome biology and evolution pii:5536766 [Epub ahead of print].

A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.

RevDate: 2019-07-20

Bakowski MA, CW McNamara (2019)

Advances in Antiwolbachial Drug Discovery for Treatment of Parasitic Filarial Worm Infections.

Tropical medicine and infectious disease, 4(3): pii:tropicalmed4030108.

The intracellular bacteria now known as Wolbachia were first described in filarial worms in the 1970s, but the idea of Wolbachia being used as a macrofilaricidal target did not gain wide attention until the early 2000s, with research in filariae suggesting the requirement of worms for the endosymbiont. This new-found interest prompted the eventual organization of the Anti-Wolbachia Consortium (A-WOL) at the Liverpool School of Tropical Medicine, who, among others have been active in the field of antiwolbachial drug discovery to treat filarial infections. Clinical proof of concept studies using doxycycline demonstrated the utility of the antiwolbachial therapy, but efficacious treatments were of long duration and not safe for all infected. With the advance of robotics, automation, and high-speed computing, the search for superior antiwolbachials shifted away from smaller studies with a select number of antibiotics to high-throughput screening approaches, centered largely around cell-based phenotypic screens due to the rather limited knowledge about, and tools available to manipulate, this bacterium. A concomitant effort was put towards developing validation approaches and in vivo models supporting drug discovery efforts. In this review, we summarize the strategies behind and outcomes of recent large phenotypic screens published within the last 5 years, hit compound validation approaches and promising candidates with profiles superior to doxycycline, including ones positioned to advance into clinical trials for treatment of filarial worm infections.

RevDate: 2019-07-25

Macher JN, Speksnijder A, Choo LQ, et al (2019)

Uncovering bacterial and functional diversity in macroinvertebrate mitochondrial-metagenomic datasets by differential centrifugation.

Scientific reports, 9(1):10257 pii:10.1038/s41598-019-46717-4.

PCR-free techniques such as meta-mitogenomics (MMG) can recover taxonomic composition of macroinvertebrate communities, but suffer from low efficiency, as >90% of sequencing data is mostly uninformative due to the great abundance of nuclear DNA that cannot be identified with current reference databases. Current MMG studies do not routinely check data for information on macroinvertebrate-associated bacteria and gene functions. However, this could greatly increase the efficiency of MMG studies by revealing yet overlooked diversity within ecosystems and making currently unused data available for ecological studies. By analysing six 'mock' communities, each containing three macroinvertebrate taxa, we tested whether this additional data on bacterial taxa and functional potential of communities can be extracted from MMG datasets. Further, we tested whether differential centrifugation, which is known to greatly increase efficiency of macroinvertebrate MMG studies by enriching for mitochondria, impacts on the inferred bacterial community composition. Our results show that macroinvertebrate MMG datasets contain a high number of mostly endosymbiont bacterial taxa and associated gene functions. Centrifugation reduced both the absolute and relative abundance of highly abundant Gammaproteobacteria, thereby facilitating detection of rare taxa and functions. When analysing both taxa and gene functions, the number of features obtained from the MMG dataset increased 31-fold ('enriched') respectively 234-fold ('not enriched'). We conclude that analysing MMG datasets for bacteria and gene functions greatly increases the amount of information available and facilitates the use of shotgun metagenomic techniques for future studies on biodiversity.

RevDate: 2019-07-31

Boscaro V, Husnik F, Vannini C, et al (2019)

Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria-eukaryote endosymbioses.

Proceedings. Biological sciences, 286(1907):20190693.

Endosymbioses between bacteria and eukaryotes are enormously important in ecology and evolution, and as such are intensely studied. Despite this, the range of investigated hosts is narrow in the context of the whole eukaryotic tree of life: most of the information pertains to animal hosts, while most of the diversity is found in unicellular protists. A prominent case study is the ciliate Euplotes, which has repeatedly taken up the bacterium Polynucleobacter from the environment, triggering its transformation into obligate endosymbiont. This multiple origin makes the relationship an excellent model to understand recent symbioses, but Euplotes may host bacteria other than Polynucleobacter, and a more detailed knowledge of these additional interactions is needed in order to correctly interpret the system. Here, we present the first systematic survey of Euplotes endosymbionts, adopting a classical as well as a metagenomic approach, and review the state of knowledge. The emerging picture is indeed quite complex, with some Euplotes harbouring rich, stable prokaryotic communities not unlike those of multicellular animals. We provide insights into the distribution, evolution and diversity of these symbionts (including the establishment of six novel bacterial taxa), and outline differences and similarities with the most well-understood group of eukaryotic hosts: insects.

RevDate: 2019-07-15

Koh FX, Nurhidayah MN, Tan PE, et al (2019)

Francisella spp. detected in Dermacentor ticks in Malaysian forest reserve areas.

Veterinary parasitology, regional studies and reports, 17:100315.

Limited information is available on tropical ticks and tick-borne bacteria affecting the health of humans and animals in the Southeast Asia region. Francisella tularensis is a tick-borne bacterium which causes a potentially life-threatening disease known as tularemia. This study was conducted to determine the occurrence of Francisella spp. in questing ticks collected from Malaysian forest reserve areas. A total of 106 ticks (mainly Dermacentor and Haemaphysalis spp.) were examined for Francisella DNA using a Polymerase chain reaction (PCR) assay targeting the bacterial 16S rDNA. Francisella DNA was detected from 12 Dermacentor ticks. Sequence analysis of the amplified 16S rDNA sequences (1035 bp) show >99% identity with that of Francisella endosymbiont reported in a tick from Thailand. A dendrogram constructed based on the bacterial 16S rDNA shows that the Francisella spp. were distantly related to the pathogenic strains of F. tularensis. Three Francisella-positive ticks were identified as Dermacentor atrosignatus, based on sequence analysis of the tick mitochondrial 16S rRNA gene. Further screening of cattle and sheep ticks (Haemaphysalis bispinosa and Rhipicephalus microplus) and animal samples (cattle, sheep, and goats) did not yield any positive findings. Our findings provide the first molecular data on the occurrence of a Francisella strain with unknown pathogenicity in Dermacentor questing ticks in Malaysia.

RevDate: 2019-07-13

White JA, Styer A, Rosenwald LC, et al (2019)

Endosymbiotic Bacteria Are Prevalent and Diverse in Agricultural Spiders.

Microbial ecology pii:10.1007/s00248-019-01411-w [Epub ahead of print].

Maternally inherited bacterial endosymbionts are common in arthropods, but their distribution and prevalence are poorly characterized in many host taxa. Initial surveys have suggested that vertically transmitted symbionts may be particularly common in spiders (Araneae). Here, we used diagnostic PCR and high-throughput sequencing to evaluate symbiont infection in 267 individual spiders representing 14 species (3 families) of agricultural spiders. We found 27 operational taxonomic units (OTUs) that are likely endosymbiotic, including multiple strains of Wolbachia, Rickettsia, and Cardinium, which are all vertically transmitted and frequently associated with reproductive manipulation of arthropod hosts. Additional strains included Rickettsiella, Spiroplasma, Rhabdochlamydia, and a novel Rickettsiales, all of which could range from pathogenic to mutualistic in their effects upon their hosts. Seventy percent of spider species had individuals that tested positive for one or more endosymbiotic OTUs, and specimens frequently contained multiple symbiotic strain types. The most symbiont-rich species, Idionella rugosa, had eight endosymbiotic OTUs, with as many as five present in the same specimen. Individual specimens within infected spider species had a variety of symbiotypes, differing from one another in the presence or absence of symbiotic strains. Our sample included both starved and unstarved specimens, and dominant bacterial OTUs were consistent per host species, regardless of feeding status. We conclude that spiders contain a remarkably diverse symbiotic microbiota. Spiders would be an informative group for investigating endosymbiont population dynamics in time and space, and unstarved specimens collected for other purposes (e.g., food web studies) could be used, with caution, for such investigations.

RevDate: 2019-08-11

Oborník M (2019)

Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism.

Biomolecules, 9(7): pii:biom9070266.

Photosynthesis is a biochemical process essential for life, serving as the ultimate source of chemical energy for phototrophic and heterotrophic life forms. Since the machinery of the photosynthetic electron transport chain is quite complex and is unlikely to have evolved multiple independent times, it is believed that this machinery has been transferred to diverse eukaryotic organisms by endosymbiotic events involving a eukaryotic host and a phototrophic endosymbiont. Thus, photoautotrophy, as a benefit, is transmitted through the evolution of plastids. However, many eukaryotes became secondarily heterotrophic, reverting to hetero-osmotrophy, phagotrophy, or parasitism. Here, I briefly review the constructive evolution of plastid endosymbioses and the consequential switch to reductive evolution involving losses of photosynthesis and plastids and the evolution of parasitism from a photosynthetic ancestor.

RevDate: 2019-08-29

Harish ER, ManiChellappan , MakeshKumar T, et al (2019)

Next-generation sequencing reveals endosymbiont variability in cassava whitefly, Bemisia tabaci, across the agro-ecological zones of Kerala, India.

Genome, 62(9):571-584.

Silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most notorious invasive insect pests, infesting more than 900 species of plants and spreading more than 200 viral diseases. This polyphagous agricultural pest harbours diverse bacterial communities in its gut, which perform multiple functions in whiteflies, including nutrient provisioning, amino acid biosynthesis, and virus transmission. The present exploratory study compares the bacterial communities associated with silverleaf whitefly infesting cassava, also known as cassava whitefly, collected from two different zones (zone P: plains; zone H: high ranges), from Kerala, India, using next-generation sequencing of 16S rDNA. The data sets for these two regions consisted of 1 321 906 and 690 661 high-quality paired-end sequences with mean length of 150 bp. Highly diverse bacterial communities were present in the sample, containing approximately 3513 operational taxonomic units (OTUs). Sequence analysis showed a marked difference in the relative abundance of bacteria in the populations. A total of 16 bacterial phyla, 27 classes, 56 orders, 91 families, 236 genera, and 409 species were identified from the P population, against 16, 31, 60, 88, 225, and 355, respectively, in the H population. Arsenophonus sp. (Enterobacteriaceae), which is important for virus transmission by whiteflies, was relatively abundant in the P population, whereas in the H population Bacillus sp. was the most dominant group. The association of whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as virus transmission, host range, insecticide resistance, and speciation.

RevDate: 2019-08-16

Niehs SP, Dose B, Scherlach K, et al (2019)

Genome Mining Reveals Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal-Bacterial Symbiosis.

ACS chemical biology, 14(8):1811-1818.

The bacterial endosymbiont (Burkholderia rhizoxinica) of the rice seedling blight fungus (Rhizopus microsporus) harbors a large number of cryptic biosynthesis gene clusters. Genome mining and sequence similarity networks based on an encoded nonribosomal peptide assembly line and the associated pyrrole-forming enzymes in the symbiont indicated that the encoded metabolites are unique among a large number of tentative pyrrole natural products in diverse and unrelated bacterial phyla. By performing comparative metabolic profiling using a mutant generated with an improved pheS Burkholderia counterselection marker, we found that the symbionts' biosynthetic pathway is mainly activated under salt stress and exclusively in symbiosis with the fungal host. The cryptic metabolites were fully characterized as novel pyrrole-substituted depsipeptides (endopyrroles). A broader survey showed that endopyrrole production is a hallmark of geographically distant endofungal bacteria, which produce the peptides solely under symbiotic conditions.

RevDate: 2019-08-11

van Oers MM, J Eilenberg (2019)

Mechanisms Underlying the Transmission of Insect Pathogens.

Insects, 10(7): pii:insects10070194.

In this special issue the focus is on the factors and (molecular) mechanisms that determine the transmission efficiency of a variety of insect pathogens in a number of insect hosts. In this editorial, we summarize the main findings of the twelve papers in this special issue and conclude that much more needs to be learned for an in-depth understanding of pathogen transmission in field and cultured insect populations. Analyses of mutual interactions between pathogens or between endosymbionts and pathogens, aspects rather under-represented in the scientific literature, are described in a number of contributions to this special issue.

RevDate: 2019-09-01

Sicard M, Bonneau M, M Weill (2019)

Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes.

Current opinion in insect science, 34:12-20.

To protect humans and domestic animals from mosquito borne diseases, alternative methods to chemical insecticides have to be found. Pilot studies using the vertically transmitted bacterial endosymbiont Wolbachia were already launched in different parts of the world. Wolbachia can be used either in Incompatible Insect Technique (IIT), to decrease mosquito population, or to decrease the ability of mosquitoes to transmit pathogens. Not all mosquito species are naturally infected with Wolbachia: while in Culex pipiens and Aedes albopictus almost all individuals harbor Wolbachia, putative infections have to be further investigated in Anopheles species and in Aedes aegypti. All Wolbachia-based control methods rely on the ability of Wolbachia to induce cytoplasmic incompatibility (CI) resulting in embryonic death in incompatible crossings. Knowledge on CI diversity in mosquito is required to find the better Wolbachia-mosquito associations to optimize the success of both 'sterile insect' and 'pathogen blocking' Wolbachia-based methods.

RevDate: 2019-07-07

Mobasseri M, Hutchinson MC, Afshar FJ, et al (2019)

New evidence of nematode-endosymbiont bacteria coevolution based on one new and one known dagger nematode species of Xiphinema americanum-group (Nematoda, Longidoridae).

PloS one, 14(6):e0217506 pii:PONE-D-19-01822.

Three populations of Xiphinema primum n. sp. and two populations of X. pachtaicum were recovered from natural forests and cultural regions of northern Iran. Both species belong to the X. americanum-group and were characterized by their morphological, morphometric and molecular data. The new species, which was recovered in three locations, belongs to the X. brevicolle-complex and is characterized by 2124-2981 μm long females with a widely rounded lip region separated from the rest of the body by a depression, 103-125 μm long odontostyle, two equally developed genital branches with endosymbiont bacteria inside the ovary, which are visible under light microscope (LM), vulva located at 51.8-58.0%, the tail is 26-37 μm long with a bluntly rounded end and four juvenile developmental stages. It was morphologically compared with nine similar species viz. X. brevicolle, X. diffusum, X. incognitum, X. himalayense, X. luci, X. parabrevicolle, X. paramonovi, X. parataylori and X. taylori. The second species, X. pachtaicum, was recovered in two geographically distant points close to city of Amol. Molecular phylogenetic studies of the new species were performed using partial sequences of the D2-D3 expansion segments of the large subunit ribosomal RNA gene (LSU rDNA D2-D3), the internal-transcribed spacer rDNA (ITS = ITS1+5.8S+ITS2), and the mitochondrial cytochrome c oxidase I gene (COI mtDNA) regions. The Iranian population of X. pachtaicum was also phylogenetically studied based upon its LSU rDNA D2-D3 sequences. Both species were also inspected for their putative endosymbiont bacteria. Candidatus Xiphinematobacter sp. was detected from two examined populations of the new species, whereas the second endosymbiont bacterium, detected from three examined isolates of X. pachtaicum, was related to the plant and fungal endosymbionts of the family Burkholderiaceae. The phylogenetic analyses of the two endosymbiont bacteria were performed using partial sequences of 16S rDNA. In cophylogenetic analyses, significant levels of cophylogenetic signal were observed using both LSU rDNA D2-D3 and COI mtDNA markers of the host nematodes and 16S rDNA marker of the endosymbiont bacteria.

RevDate: 2019-07-09

Thapa S, Zhang Y, MS Allen (2019)

Bacterial microbiomes of Ixodes scapularis ticks collected from Massachusetts and Texas, USA.

BMC microbiology, 19(1):138 pii:10.1186/s12866-019-1514-7.

BACKGROUND: The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease spirochete Borrelia burgdorferi in North America. Though the tick is found across the eastern United States, Lyme disease is endemic to the northeast and upper midwest and rare or absent in the southern portion of the vector's range. In an effort to better understand the tick microbiome from diverse geographic and climatic regions, we analysed the bacterial community of 115 I. scapularis adults collected from vegetation in Texas and Massachusetts, representing extreme ends of the vector's range, by massively parallel sequencing of the 16S V4 rRNA gene. In addition, 7 female I. scapularis collected from dogs in Texas were included in the study.

RESULTS: Male I. scapularis ticks had a more diverse bacterial microbiome in comparison to the female ticks. Rickettsia spp. dominated the microbiomes of field-collected female I. scapularis from both regions, as well as half of the males from Texas. In addition, the male and female ticks captured from Massachusetts contained high proportions of the pathogens Anaplasma and Borrelia, as well as the arthropod endosymbiont Wolbachia. None of these were found in libraries generated from ticks collected in Texas. Pseudomonas, Acinetobacter and Mycobacterium were significantly differently abundant (p < 0.05) between the male ticks from Massachusetts and Texas. Anaplasma and Borrelia were found in 15 and 63% of the 62 Massachusetts ticks, respectively, with a co-infection rate of 11%. Female ticks collected from Texas dogs were particularly diverse, and contained several genera including Rickettsia, Pseudomonas, Bradyrhizobium, Sediminibacterium, and Ralstonia.

CONCLUSIONS: Our results indicate that the bacterial microbiomes of I. scapularis ticks vary by sex and geography, with significantly more diversity in male microbiomes compared to females. We found that sex plays a larger role than geography in shaping the composition/diversity of the I. scapularis microbiome, but that geography affects what additional taxa are represented (beyond Rickettsia) and whether pathogens are found. Furthermore, recent feeding may have a role in shaping the tick microbiome, as evident from a more complex bacterial community in female ticks from dogs compared to the wild-caught questing females. These findings may provide further insight into the differences in the ability of the ticks to acquire, maintain and transmit pathogens. Future studies on possible causes and consequences of these differences will shed additional light on tick microbiome biology and vector competence.

RevDate: 2019-06-24

Headley SA, Viana NE, Michelazzo MMZ, et al (2019)

Neorickettsia helminthoeca associated lymphoid, enteric, and pulmonary lesions in dogs from Southern Brazil: An immunohistochemical study.

Transboundary and emerging diseases [Epub ahead of print].

Neorickettsia helminthoeca (NH), the agent of salmon poisoning disease or canine neorickettiosis (CN), is a bacterial endosymbiont of the nematode Nanophyetus salmincola, and infections are spreading among specific fish-eating mammalians. This article describes the pathologic and immunohistochemical findings associated with spontaneous NH-induced infections in dogs from Southern Brazil. The principal pathologic findings were hypertrophy of Peyer patches and lymphadenopathy with lymphocytic proliferation, chronic interstitial pneumonia, and chronic enteritis associated with positive intralesional immunoreactivity to antigens of NH within macrophages and histiocytes. Positive immunoreactivity against canine parvovirus-2 (CPV-2) or/and canine distemper virus was not detected in the evaluated intestinal segments or in the samples from the cerebellum and lungs, respectively, from the dogs evaluated. These findings demonstrated that NH was involved in the enteric, pulmonary, and lymphoid lesions herein described, and provide additional information to confirm the occurrence of this bacterial endosymbiont within this geographical location. It is proposed that chronic pneumonia should be considered as a pathologic manifestation of NH-induced infections. Additionally, our results show that the occurrences of CN seem to be underdiagnosed in Southern Brazil due to the confusion with the incidence of CPV-2.

RevDate: 2019-07-18

Zhao DX, Zhang ZC, Niu HT, et al (2019)

Selective and stable elimination of endosymbionts from multiple-infected whitefly Bemisia tabaci by feeding on a cotton plant cultured in antibiotic solutions.

Insect science [Epub ahead of print].

The maternally heritable endosymbiont provides many ecosystem functions. Antibiotic elimination of a specific symbiont and establishment of experimental host lines lacking certain symbionts enable the roles of a given symbiont to be explored. The whitefly Bemisia tabaci (Gennadius) in China harbors obligate symbiont Portiera infecting each individual, as well as facultative symbionts, such as Hamiltonella, Rickettsia and Cardinium, with co-infections occurring relatively frequently. So far no studies have evaluated the selectivity and efficacy of a specific symbiont elimination using antibiotics in whiteflies co-infected with different symbionts. Furthermore, no success has been achieved in establishing certain symbiont-free B. tabaci lines. In this study, we treated Hamiltonella-infected B. tabaci line, Hamiltonella-Rickettsia-co-infected line and Hamiltonella-Cardinium co-infected line by feeding B. tabaci adults with cotton plants cultured in water containing rifampicin, ampicillin or a mixture of them, aiming to selectively curing symbiont infections and establishing stable symbiont-free lines. We found ampicillin selectively eliminated Cardinium without affecting Portiera, Hamiltonella and Rickettsia, although they coexisted in the same host body. Meanwhile, all of the symbionts considered in our study can be removed by rifampicin. The reduction of facultative symbionts occurred at a much quicker pace than obligate symbiont Portiera during rifampicin treatment. Also, we measured the stability of symbiont elimination in whitefly successive generations and established Rickettsia-infected and Cardinium-infected lines which are absent in natural populations. Our results provide new protocols for selective elimination of symbionts co-existing in a host and establishment of different symbiont-infected host lines.

RevDate: 2019-09-04

Day PM, Inoue K, SM Theg (2019)

Chloroplast Outer Membrane β-Barrel Proteins Use Components of the General Import Apparatus.

The Plant cell, 31(8):1845-1855.

Chloroplasts evolved from a cyanobacterial endosymbiont that resided within a eukaryotic cell. Due to their prokaryotic heritage, chloroplast outer membranes contain transmembrane β-barrel proteins. While most chloroplast proteins use N-terminal transit peptides to enter the chloroplasts through the translocons at the outer and inner chloroplast envelope membranes (TOC/TIC), only one β-barrel protein, Toc75, has been shown to use this pathway. The route other β-barrel proteins use has remained unresolved. Here we use in vitro pea (Pisum sativum) chloroplast import assays and transient expression in Nicotiana benthamiana to address this. We show that a paralog of Toc75, outer envelope protein 80 kD (OEP80), also uses a transit peptide but has a distinct envelope sorting signal. Our results additionally indicate that β-barrels that do not use transit peptides also enter the chloroplast using components of the general import pathway.

RevDate: 2019-08-13

Konecka E, Z Olszanowski (2019)

First Evidence of Intracellular Bacteria Cardinium in Thermophilic Mite Microzetorchestes emeryi (Acari: Oribatida): Molecular Screening of Bacterial Endosymbiont Species.

Current microbiology, 76(9):1038-1044.

We undertook the issue of the distribution of intracellular bacteria among Oribatida (Acari). Six genera of bacteria were detected by PCR and Sanger DNA sequencing: Wolbachia, Cardinium, Rickettsia, Spiroplasma, Arsenophonus, and Hamiltonella. Our research, for the first time, revealed the presence of Cardinium in Microzetorchestes emeryi in two subpopulations separated from each other by 300 m. The percentages of infected animals were the same in both subpopulations-ca. 20%. The identity of 16S rDNA sequences of Cardinium between these two subpopulations of M. emeryi was 97%. Phylogenetic analysis showed that the Cardinium in M. emeryi was clustered into the group A. The occurrence of M. emeryi in Poland has not been reported before and our report is the first one. Cardinium maybe help the thermophilic M. emeryi to adapt to low temperatures in the Central Europe.

RevDate: 2019-06-26

Van Leuven JT, Mao M, Xing DD, et al (2019)

Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery.

mBio, 10(3): pii:mBio.01950-18.

Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, "Candidatus Hodgkinia cicadicola" (Alphaproteobacteria) and "Ca Sulcia muelleri" (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original "Ca Hodgkinia cicadicola" genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of "Ca Sulcia muelleri" and "Ca Hodgkinia cicadicola" is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5' and 3' ends and seem to undergo nucleotide modification. Surprisingly, we found that most "Ca Hodgkinia cicadicola" and "Ca Sulcia muelleri" tRNAs exist as tRNA halves. We hypothesize that "Ca Sulcia muelleri" and "Ca Hodgkinia cicadicola" tRNAs function in bacterial translation but require host-encoded enzymes to do so.IMPORTANCE The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5' and 3' ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities.

RevDate: 2019-07-24

Schebeck M, Feldkirchner L, Stauffer C, et al (2019)

Dynamics of an Ongoing Wolbachia Spread in the European Cherry Fruit Fly, Rhagoletis cerasi (Diptera: Tephritidae).

Insects, 10(6): pii:insects10060172.

Numerous terrestrial arthropods are infected with the alphaproteobacterium Wolbachia. This endosymbiont is usually transmitted vertically from infected females to their offspring and can alter the reproduction of hosts through various manipulations, like cytoplasmic incompatibility (CI), enhancing its spread in new host populations. Studies on the spatial and temporal dynamics of Wolbachia under natural conditions are scarce. Here, we analyzed Wolbachia infection frequencies in populations of the European cherry fruit fly, Rhagoletis cerasi (L.), in central Germany-an area of an ongoing spread of the CI-inducing strain wCer2. In total, 295 individuals from 19 populations were PCR-screened for the presence of wCer2 and their mitochondrial haplotype. Results were compared with historic data to understand the infection dynamics of the ongoing wCer2 invasion. An overall wCer2 infection frequency of about 30% was found, ranging from 0% to 100% per population. In contrast to an expected smooth transition from wCer2-infected to completely wCer2-uninfected populations, a relatively scattered infection pattern across geography was observed. Moreover, a strong Wolbachia-haplotype association was detected, with only a few rare misassociations. Our results show a complex dynamic of an ongoing Wolbachia spread in natural field populations of R. cerasi.

RevDate: 2019-07-03

Ant TH, Herd C, Louis F, et al (2019)

Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility.

Insect molecular biology [Epub ahead of print].

Culex quinquefasciatus is an important mosquito vector of a number of viral and protozoan pathogens of humans and animals, and naturally carries the endosymbiont Wolbachia pipientis, strain wPip. Wolbachia are used in two distinct vector control strategies: firstly, population suppression caused by mating incompatibilities between mass-released transinfected males and wild females; and secondly, the spread of pathogen transmission-blocking strains through populations. Using embryonic microinjection, two novel Wolbachia transinfections were generated in C. quinquefasciatus using strains native to the mosquito Aedes albopictus: a wAlbB single infection, and a wPip plus wAlbA superinfection. The wAlbB infection showed full bidirectional cytoplasmic incompatibility (CI) with wild-type C. quinquefasciatus in reciprocal crosses. The wPipwAlbA superinfection showed complete unidirectional CI, and therefore population invasion potential. Whereas the wAlbB strain showed comparatively low overall densities, similar to the native wPip, the wPipwAlbA superinfection reached over 400-fold higher densities in the salivary glands compared to the native wPip, suggesting it may be a candidate for pathogen transmission blocking.

RevDate: 2019-06-16

Koh C, Audsley MD, Di Giallonardo F, et al (2019)

Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture.

Virus evolution, 5(1):vez012 pii:vez012.

Wolbachia is an intracellular endosymbiont of insects that inhibits the replication of a range of pathogens in its arthropod hosts. The release of Wolbachia into wild populations of mosquitoes is an innovative biocontrol effort to suppress the transmission of arthropod-borne viruses (arboviruses) to humans, most notably dengue virus. The success of the Wolbachia-based approach hinges upon the stable persistence of the 'pathogen blocking' effect, whose mechanistic basis is poorly understood. Evidence suggests that Wolbachia may affect viral replication via a combination of competition for host resources and activation of host immunity. The evolution of resistance against Wolbachia and pathogen blocking in the mosquito or the virus could reduce the public health impact of the symbiont releases. Here, we investigate if dengue 3 virus (DENV-3) is capable of accumulating adaptive mutations that improve its replicative capacity during serial passage in Wolbachia wMel-infected cells. During the passaging regime, viral isolates in Wolbachia-infected cells exhibited greater variation in viral loads compared to controls. The viral loads of these isolates declined rapidly during passaging due to the blocking effects of Wolbachia carriage, with several being lost all together and the remainder recovering to low but stable levels. We attempted to sequence the genomes of the surviving passaged isolates but, given their low abundance, were unable to obtain sufficient depth of coverage for evolutionary analysis. In contrast, viral loads in Wolbachia-free control cells were consistently high during passaging. The surviving isolates passaged in the presence of Wolbachia exhibited a reduced ability to replicate even in Wolbachia-free cells. These experiments demonstrate the challenge for dengue in evolving resistance to Wolbachia-mediated blocking.

RevDate: 2019-06-12

Gabay Y, Parkinson JE, Wilkinson SP, et al (2019)

Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis.

The ISME journal pii:10.1038/s41396-019-0429-5 [Epub ahead of print].

The ability of corals and other cnidarians to survive climate change depends partly on the composition of their endosymbiont communities. The dinoflagellate family Symbiodiniaceae is genetically and physiologically diverse, and one proposed mechanism for cnidarians to acclimate to rising temperatures is to acquire more thermally tolerant symbionts. However, cnidarian-dinoflagellate associations vary in their degree of specificity, which may limit their capacity to alter symbiont communities. Here, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida (commonly referred to as 'Aiptasia'), a model system for the cnidarian-dinoflagellate symbiosis, with simultaneous or sequential mixtures of thermally tolerant and thermally sensitive species of Symbiodiniaceae. We then monitored symbiont success (relative proportional abundance) at normal and elevated temperatures across two to four weeks. All anemones showed signs of bleaching at high temperature. During simultaneous inoculations, the native, thermally sensitive Breviolum minutum colonized polyps most successfully regardless of temperature when paired against the non-native but more thermally tolerant Symbiodinium microadriaticum or Durusdinium trenchii. Furthermore, anemones initially colonized with B. minutum and subsequently exposed to S. microadriaticum failed to acquire the new symbiont. These results highlight how partner specificity may place strong limitations on the ability of certain cnidarians to acquire more thermally tolerant symbionts, and hence their adaptive potential under climate change.

RevDate: 2019-08-02

Olivieri E, Epis S, Castelli M, et al (2019)

Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus.

Ticks and tick-borne diseases, 10(5):1070-1077.

A wide range of arthropod species harbour bacterial endosymbionts in various tissues, many of them playing important roles in the fitness and biology of their hosts. In several cases, many different symbionts have been reported to coexist simultaneously within the same host and synergistic or antagonistic interactions can occur between them. While the associations with endosymbiotic bacteria have been widely studied in many insect species, in ticks such interactions are less investigated. The females and immatures of Ixodes ricinus (Ixodidae), the most common hard tick in Europe, harbour the intracellular endosymbiont "Candidatus Midichloria mitochondrii" with a prevalence up to 100%, suggesting a mutualistic relationship. Considering that the tissue distribution of a symbiont might be indicative of its functional role in the physiology of the host, we investigated M. mitochondrii specific localization pattern and the corresponding abundance in selected organs of I. ricinus females. We paired these experiments with in silico analysis of the metabolic pathways of M. mitochondrii, inferred from the available genome sequence, and additionally compared the presence of these pathways in seven other symbionts commonly harboured by ticks to try to obtain a comparative understanding of their biological effects on the tick hosts. M. mitochondrii was found to be abundant in ovaries and tracheae of unfed I. ricinus, and in ovaries, Malpighian tubules and salivary glands of semi-engorged females. These results, together with the in silico metabolic reconstruction allow to hypothesize that the bacterium could play multiple tissue-specific roles in the host, both enhancing the host fitness (supplying essential nutrients, enhancing the reproductive fitness, helping in the anti-oxidative defence, in the energy production and in the maintenance of homeostasis and water balance) and/or for ensuring its presence in the host population (nutrients acquisition, vertical and horizontal transmission). The ability of M. mitochondrii to colonize different tissues allows to speculate that distinctive sub-populations may display different specializations in accordance with tissue tropism. Our hypotheses should be corroborated with future nutritional and physiological experiments for a better understanding of the mechanisms underlying this symbiotic interaction.

RevDate: 2019-06-04

McCutcheon JP, Boyd BM, C Dale (2019)

The Life of an Insect Endosymbiont from the Cradle to the Grave.

Current biology : CB, 29(11):R485-R495.

Host-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time. But recent evidence suggests that this stable state is often born from turbulent and conflicting origins, and that the apparent stability of many beneficial endosymbiotic relationships - although certainly real in many cases - is not an inevitable outcome of these associations. Here we review how stable endosymbioses form, how they are maintained, and how they sometimes break down and are reborn. We focus on relationships formed by insects and their resident microorganisms because these symbioses have been the focus of significant empirical work over the last two decades. We review these relationships over five life stages: origin, birth, middle age, old age, and death.

RevDate: 2019-07-24

Gichuhi J, Khamis FM, Van den Berg J, et al (2019)

Unexpected Diversity of Wolbachia Associated with Bactrocera dorsalis (Diptera: Tephritidae) in Africa.

Insects, 10(6): pii:insects10060155.

Bactrocera dorsalis (Hendel) is an important pest of fruit-bearing plants in many countries worldwide. In Africa, this pest has spread rapidly and has become widely established since the first invasion report in 2003. Wolbachia is a vertically transmitted endosymbiont that can significantly influence aspects of the biology and, in particular, the reproduction of its host. In this study, we screened B. dorsalis specimens collected from several locations in Africa between 2005 and 2017 for Wolbachia using a PCR-based assay to target the Wolbachia surface protein wsp. Of the 357 individuals tested, 10 were positive for Wolbachia using the wsp assay. We identified four strains of Wolbachia infecting two B. dorsalis mitochondrial haplotypes. We found no strict association between the infecting strain and host haplotype, with one strain being present in two different host haplotypes. All the detected strains belonged to Super Group B Wolbachia and did not match any strains reported previously in B. dorsalis in Asia. These findings indicate that diverse Wolbachia infections are present in invasive populations of B. dorsalis.

RevDate: 2019-08-02

Petersen A, Rosenstierne MW, Rasmussen M, et al (2019)

Field samplings of Ixodes ricinus ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark.

Ticks and tick-borne diseases, 10(5):1028-1032.

In 2008-2009 a tick-borne encephalitis virus (TBEV) micro-focus was detected in Northern Zealand, Denmark. No new cases of TBE with an epidemiological link to Northern Zealand has been reported since. Here we undertook to investigate Ixodes ricinus ticks from this endemic micro-focus in 2016 and 2017. In addition to TBEV, I. ricinus ticks may host other pathogens that include Borrelia spp., Babesia spp., Rickettsia spp. and Neoehrlichia mikurensis, together with various endosymbiont microorganisms. To detect multiple organisms we used a metagenomics PanVirus microarray and next-generation sequencing to examine the persistence and evolution of other emerging viruses, bacteria and parasites. Here we report the rise and fall of the Danish TBEV micro-focus in Northern Zealand. However, we identify for the first time in Danish I. ricinus ticks the presence of Uukuniemi virus in addition to a tick-borne phlebovirus and a range of bacteria.

RevDate: 2019-09-03

Lynn-Bell NL, Strand MR, KM Oliver (2019)

Bacteriophage acquisition restores protective mutualism.

Microbiology (Reading, England), 165(9):985-989.

Insects are frequently infected with inherited facultative symbionts known to provide a range of conditionally beneficial services, including host protection. Pea aphids (Acyrthosiphon pisum) often harbour the bacterium Hamiltonella defensa, which together with its associated bacteriophage A. pisum secondary endosymbiont (APSE) confer protection against an important natural enemy, the parasitic wasp Aphidius ervi. Previous studies showed that spontaneous loss of phage APSE resulted in the complete loss of the protective phenotype. Here, we demonstrate that APSEs can be experimentally transferred into phage-free (i.e. non-protecting) Hamiltonella strains. Unexpectedly, trials using injections of phage particles alone failed, with successful transfer occurring only when APSE and Hamiltonella were simultaneously injected. After transfer, stable establishment of APSE fully restored anti-parasitoid defenses. Thus, phages associated with heritable bacterial symbionts can move horizontally among symbiont strains facilitating the rapid transfer of ecologically important traits although natural barriers may preclude regular exchange.

RevDate: 2019-06-10

Wasala SK, Brown AMV, Kang J, et al (2019)

Variable Abundance and Distribution of Wolbachia and Cardinium Endosymbionts in Plant-Parasitic Nematode Field Populations.

Frontiers in microbiology, 10:964.

The bacterial endosymbiont Wolbachia interacts with different invertebrate hosts, engaging in diverse symbiotic relationships. Wolbachia is often a reproductive parasite in arthropods, but an obligate mutualist in filarial nematodes. Wolbachia was recently discovered in plant-parasitic nematodes, and, is thus far known in just two genera Pratylenchus and Radopholus, yet the symbiont's function remains unknown. The occurrence of Wolbachia in these economically important plant pests offers an unexplored biocontrol strategy. However, development of Wolbachia-based biocontrol requires an improved understanding of symbiont-host functional interactions and the symbiont's prevalence among nematode field populations. This study used a molecular-genetic approach to assess the prevalence of a Wolbachia lineage (wPpe) in 32 field populations of Pratylenchus penetrans. Populations were examined from eight different plant species in Washington, Oregon, and California. Nematodes were also screened for the endosymbiotic bacterium Cardinium (cPpe) that was recently shown to co-infect P. penetrans. Results identified wPpe in 9/32 and cPpe in 1/32 of P. penetrans field populations analyzed. No co-infection was observed in field populations. Wolbachia was detected in nematodes from 4/8 plant-hosts examined (raspberry, strawberry, clover, and lily), and in all three states surveyed. Cardinium was detected in nematodes from mint in Washington. In the wPpe-infected P. penetrans populations collected from raspberry, the prevalence of wPpe infection ranged from 11 to 58%. This pattern is unlike that in filarial nematodes where Wolbachia is an obligate mutualist and occurs in 100% of the host. Further analysis of wPpe-infected populations revealed female-skewed sex ratios (up to 96%), with the degree of skew positively correlating with wPpe prevalence. Uninfected nematode populations had approximately equal numbers of males and females. Comparisons of 54 wPpe 16S ribosomal RNA sequences revealed high similarity across the geographic isolates, with 45 of 54 isolates being identical at this locus. The complete absence of wPpe among some populations and low prevalence in others suggest that this endosymbiont is not an obligate mutualist of P. penetrans. The observed sex ratio bias in wPpe-infected nematode populations is similar to that observed in arthropods where Wolbachia acts as a reproductive manipulator, raising the question of a similar role in plant-parasitic nematodes.

RevDate: 2019-06-10

Fernández N, Cabrera JJ, Varadarajan AR, et al (2019)

An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens.

Frontiers in microbiology, 10:924.

The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis.

RevDate: 2019-06-16

Hammer TJ, Sanders JG, N Fierer (2019)

Not all animals need a microbiome.

FEMS microbiology letters, 366(10):.

It is often taken for granted that all animals host and depend upon a microbiome, yet this has only been shown for a small proportion of species. We propose that animals span a continuum of reliance on microbial symbionts. At one end are the famously symbiont-dependent species such as aphids, humans, corals and cows, in which microbes are abundant and important to host fitness. In the middle are species that may tolerate some microbial colonization but are only minimally or facultatively dependent. At the other end are species that lack beneficial symbionts altogether. While their existence may seem improbable, animals are capable of limiting microbial growth in and on their bodies, and a microbially independent lifestyle may be favored by selection under some circumstances. There is already evidence for several 'microbiome-free' lineages that represent distantly related branches in the animal phylogeny. We discuss why these animals have received such little attention, highlighting the potential for contaminants, transients, and parasites to masquerade as beneficial symbionts. We also suggest ways to explore microbiomes that address the limitations of DNA sequencing. We call for further research on microbiome-free taxa to provide a more complete understanding of the ecology and evolution of macrobe-microbe interactions.

RevDate: 2019-07-09

El-Deeb O (2019)

Digest: Fitness costs of Spiroplasma infection in pea aphids.

Evolution; international journal of organic evolution, 73(7):1490-1491.

Endosymbionts sometimes help their hosts resist parasites, but does infection of pea aphids (Acyrthosiphon pisum) with different strains of the endosymbiont Spiroplasma confer fitness benefits that offset the costs? Mathé-Hubert et al. found that across four life-history traits, Spiroplasma infection induced negative effects on host fitness when compared to controls. Only two of 12 strains of Spiroplasma showed a marginal protective effect against host parasitism by Aphidius ervi, implying Spiroplasma infection is almost entirely detrimental to pea aphid host fitness.

RevDate: 2019-05-23

Chouin-Carneiro T, Ant TH, Herd C, et al (2019)

Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti.

Medical and veterinary entomology [Epub ahead of print].

Transinfections of the maternally transmitted endosymbiont Wolbachia pipientis can reduce RNA virus replication and prevent transmission by Aedes aegypti, and also have the capacity to invade wild-type populations, potentially reaching and maintaining high infection frequencies. Levels of virus transmission blocking are positively correlated with Wolbachia intracellular density. Despite reaching high densities in Ae. aegypti, transinfections of wAlbA, a strain native to Aedes albopictus, showed no blocking of Semliki Forest Virus in previous intrathoracic injection challenges. To further characterize wAlbA blocking in Ae. aegypti, adult females were intrathoracically challenged with Zika (ZIKV) and dengue viruses, and then fed a ZIKV-containing bloodmeal. No blocking was observed with either virus when challenged by intrathoracic injection. However, when ZIKV was delivered orally, wAlbA-infected females showed a significant reduction in viral replication and dissemination compared with uninfected controls, as well as a complete absence of virus in saliva. Although other Wolbachia strains have been shown to cause more robust viral blocking in Ae. aegypti, these findings demonstrate that, in principle, wAlbA could be used to reduce virus transmission in this species. Moreover, the results highlight the potential for underestimation of the strength of virus-blocking when based on intrathoracic injection compared with more natural oral challenges.

RevDate: 2019-06-10
CmpDate: 2019-05-31

Gómez-Díaz JS, Montoya-Lerma J, V Muñoz Valencia (2019)

Prevalence and Diversity of Endosymbionts in Cassava Whiteflies (Hemiptera: Aleyrodidae) From Colombia.

Journal of insect science (Online), 19(3):.

Whiteflies cause huge economic losses for cassava (Manihot esculenta Crantz) cultivation. Damage can be caused directly when the insects feed on the phloem and/or indirectly by the transmission of viruses. It has been found that whiteflies maintain a close relationship with some endosymbiotic bacteria and that this interaction produces different effects on host biology and can also facilitate viral transmission. This study aimed to characterize the diversity of secondary endosymbionts (SE) present in whiteflies associated with cassava. Whitefly adults and nymphs were collected from cassava crops at nine locations in Southwestern Colombia. Molecular identification of insects and endosymbionts was carried out using specific mtCOI, wsp, 23s rRNA, and 16s rRNA primers. Phylogenetic trees were constructed from these sequences, both for whitefly species and the endosymbionts found. In addition, morphological identification of whitefly species was made using last instar nymphs. Molecular and morphological evaluation revealed that the most abundant whitefly species was Trialeurodes variabilis (Quaintance) followed by Aleurotrachelus socialis Bondar and Bemisia tuberculata Bondar. One hundred percent of the individuals contained the primary endosymbiont Portiera. The SE Rickettsia, Hamiltonella, Wolbachia, and Fritschea were not detected in the samples tested. Prevalence of Cardinium and Arsenophonus were variable at each locality, Cardinium being most prevalent in A. socialis adults. This study is the first report on the presence of Cardinium and Arsenophonus in A. socialis and T. variabilis. It is also the first report of endosymbiotic diversity in whiteflies associated with cassava in Colombia.

RevDate: 2019-05-21

Tvedte ES, Logsdon JM, AA Forbes (2019)

Sex loss in insects: causes of asexuality and consequences for genomes.

Current opinion in insect science, 31:77-83.

Boasting a staggering diversity of reproductive strategies, insects provide attractive models for the comparative study of the causes and consequences of transitions to asexuality. We provide an overview of some contemporary studies of reproductive systems in insects and compile an initial database of asexual insect genome resources. Insect systems have already yielded some important insights into various mechanisms by which sex is lost, including genetic, endosymbiont-mediated, and hybridization. Studies of mutation and substitution after loss of sex provide the strongest empirical support for hypothesized effects of asexuality, whereas there is mixed evidence for ecological hypotheses such as increased parasite load and altered niche breadth in asexuals. Most hypotheses have been explored in a select few taxa (e.g. stick insects, aphids), such that much of the great taxonomic breadth of insects remain understudied. Given the variation in the proximate causes of asexuality in insects, we argue for expanding the taxonomic breadth of study systems. Despite some challenges for investigating sex in insects, the increasing cost-effectiveness of genomic sequencing makes data generation for closely-related asexual and sexual lineages increasingly feasible.

RevDate: 2019-08-14

Forester NT, Lane GA, McKenzie CM, et al (2019)

The Role of SreA-Mediated Iron Regulation in Maintaining Epichloë festucae-Lolium perenne Symbioses.

Molecular plant-microbe interactions : MPMI [Epub ahead of print].

In ascomycetes and basidiomycetes, iron-responsive GATA-type transcriptional repressors are involved in regulating iron homeostasis, notably to prevent iron toxicity through control of iron uptake. To date, it has been unknown whether this iron regulator contributes toward mutualistic endosymbiosis of microbes with plants, a system where the endophyte must function within the constraints of an in-host existence, including a dependency on the host for nutrient acquisition. Functional characterization of one such protein, SreA from Epichloë festucae, a fungal endosymbiont of cool-season grasses, indicates that regulation of iron homeostasis processes is important for symbiotic maintenance. The deletion of the sreA gene (ΔsreA) led to iron-dependent aberrant hyphal growth and the gradual loss of endophyte hyphae from perennial ryegrass. SreA negatively regulates the siderophore biosynthesis and high-affinity iron uptake systems of E. festucae, similar to other fungi, resulting in iron accumulation in mutants. Our evidence suggests that SreA is involved in the processes that moderate Epichloë iron acquisition from the plant apoplast, because overharvesting of iron in ΔsreA mutants was detected as premature chlorosis of the host using a hydroponic plant growth assay. E. festucae appears to have a tightly regulated iron management system, involving SreA that balances endophyte growth with its survival and prevents overcompetition with the host for iron in the intercellular niche, thus promoting mutualistic associations. Mutations that interfere with Epichloë iron management negatively affect iron-dependent fungal growth and destabilize mutualistic Epichloë -ryegrass associations.

RevDate: 2019-06-07

Karimi S, Askari Seyahooei M, Izadi H, et al (2019)

Effect of Arsenophonus Endosymbiont Elimination on Fitness of the Date Palm Hopper, Ommatissus lybicus (Hemiptera: Tropiduchidae).

Environmental entomology, 48(3):614-622.

The date palm hopper, Ommatissus lybicus de Bergevin, is one of the most important pests of the date palm in the Middle East and North Africa. This insect uses its needle-like sucking mouthparts to feed on phloem, which is devoid of most essential amino acids and many vitamins. The absence of essential nutrient in its diet is suggested to be ameliorated by endosymbionts in O. lybicus. Arsenophonus is one of the main bacterial endosymbionts widely prevalent in O. lybicus. In this study, we used antibiotics to eliminate Arsenophonus from O. lybicus originating from three populations (Fin, Qale'e Qazi, and Roodan) and studied the effects on the fitness of the pest. Our results revealed that the removal of Arsenophonus increased the developmental time of the immature stages and reduced the values of different life-history parameters including nymphal survival rate and adult longevity in the host. Furthermore, elimination of Arsenophonus completely obliterated offspring production in all O. lybicus populations investigated. These results confirm the dependency of O. lybicus on Arsenophonus for fitness and give a new insight regarding the possibility of symbiotic control of O. lybicus.

RevDate: 2019-07-05
CmpDate: 2019-07-05

König L, Wentrup C, Schulz F, et al (2019)

Symbiont-Mediated Defense against Legionella pneumophila in Amoebae.

mBio, 10(3): pii:mBio.00333-19.

Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.

RevDate: 2019-08-26

Hofstatter PG, DJG Lahr (2019)

All Eukaryotes Are Sexual, unless Proven Otherwise: Many So-Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex.

BioEssays : news and reviews in molecular, cellular and developmental biology, 41(6):e1800246.

Here a wide distribution of meiotic machinery is shown, indicating the occurrence of sexual processes in all major eukaryotic groups, without exceptions, including the putative "asexuals." Meiotic machinery has evolved from archaeal DNA repair machinery by means of ancestral gene duplications. Sex is very conserved and widespread in eukaryotes, even though its evolutionary importance is still a matter of debate. The main processes in sex are plasmogamy, followed by karyogamy and meiosis. Meiosis is fundamentally a chromosomal process, which implies recombination and ploidy reduction. Several eukaryotic lineages are proposed to be asexual because their sexual processes are never observed, but presumed asexuality correlates with lack of study. The authors stress the complete lack of meiotic proteins in nucleomorphs and their almost complete loss in the fungus Malassezia. Inversely, complete sets of meiotic proteins are present in fungal groups Glomeromycotina, Trichophyton, and Cryptococcus. Endosymbiont Perkinsela and endoparasitic Microsporidia also present meiotic proteins.

RevDate: 2019-06-10

Fabre B, Korona D, Lees JG, et al (2019)

Comparison of Drosophila melanogaster Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules.

Journal of proteome research, 18(6):2525-2534.

An important area of modern biology consists of understanding the relationship between genotype and phenotype. However, to understand this relationship it is essential to investigate one of the principal links between them: the proteome. With the development of recent mass-spectrometry approaches, it is now possible to quantify entire proteomes and thus relate them to different phenotypes. Here, we present a comparison of the proteome of two extreme developmental states in the well-established model organism Drosophila melanogaster: adult and embryo. Protein modules such as ribosome, proteasome, tricarboxylic acid cycle, glycolysis, or oxidative phosphorylation were found differentially expressed between the two developmental stages. Analysis of post-translation modifications of the proteins identified in this study indicates that they generally follow the same trend as their corresponding protein. Comparison between changes in the proteome and the transcriptome highlighted patterns of post-transcriptional regulation for the subunits of protein complexes such as the ribosome and the proteasome, whereas protein from modules such as TCA cycle, glycolysis, and oxidative phosphorylation seem to be coregulated at the transcriptional level. Finally, the impact of the endosymbiont Wolbachia pipientis on the proteome of both developmental states was also investigated.

RevDate: 2019-06-27

Xu Z, Fang SM, Bakowski MA, et al (2019)

Discovery of Kirromycins with Anti- Wolbachia Activity from Streptomyces sp. CB00686.

ACS chemical biology, 14(6):1174-1182.

Lymphatic filariasis and onchocerciasis diseases caused by filarial parasite infections can lead to profound disability and affect millions of people worldwide. Standard mass drug administration campaigns require repetitive delivery of anthelmintics for years to temporarily block parasite transmission but do not cure infection because long-lived adult worms survive the treatment. Depletion of the endosymbiont Wolbachia, present in most filarial nematode species, results in death of adult worms and therefore represents a promising target for the treatment of filariasis. Here, we used a high-content imaging assay to screen the pure compounds collection of the natural products library at The Scripps Research Institute for anti- Wolbachia activity, leading to the identification of kirromycin B (1) as a lead candidate. Two additional congeners, kirromycin (2) and kirromycin C (3), were isolated and characterized from the same producing strain Streptomyces sp. CB00686. All three kirromycin congeners depleted Wolbachia in LDW1 Drosophila cells in vitro with half-maximal inhibitory concentrations (IC50) in nanomolar range, while doxycycline, a registered drug with anti- Wolbachia activity, showed lower activity with an IC50 of 152 ± 55 nM. Furthermore, 1-3 eliminated the Wolbachia endosymbiont in Brugia pahangi ovaries ex vivo with higher efficiency (65%-90%) at 1 μM than that of doxycycline (50%). No cytotoxicity against HEK293T and HepG2 mammalian cells was observed with 1-3 at the highest concentration (40 μM) used in the assay. These results suggest kirromycin is an effective lead scaffold, further exploration of which could potentially lead to the development of novel treatments for filarial nematode infections.

RevDate: 2019-05-14

Chamberlain NB, Mehari YT, Hayes BJ, et al (2019)

Infection and nuclear interaction in mammalian cells by 'Candidatus Berkiella cookevillensis', a novel bacterium isolated from amoebae.

BMC microbiology, 19(1):91 pii:10.1186/s12866-019-1457-z.

BACKGROUND: 'Candidatus Berkiella cookevillensis' and 'Ca. Berkiella aquae' have previously been described as intranuclear bacteria of amoebae. Both bacteria were isolated from amoebae and were described as appearing within the nuclei of Acanthamoeba polyphaga and ultimately lysing their host cells within 4 days. Both bacteria are Gammaproteobacteria in the order Legionellales with the greatest similarity to Coxiella burnetii. Neither bacterium grows axenically in artificial culture media. In this study, we further characterized 'Ca. B. cookevillensis' by demonstrating association with nuclei of human phagocytic and nonphagocytic cell lines.

RESULTS: Transmission electron microscopy (TEM) and confocal microscopy were used to confirm nuclear co-localization of 'Ca. B. cookevillensis' in the amoeba host A. polyphaga with 100% of cells having bacteria co-localized with host nuclei by 48 h. TEM and confocal microscopy demonstrated that the bacterium was also observed to be closely associated with nuclei of human U937 and THP-1 differentiated macrophage cell lines and nonphagocytic HeLa human epithelial-like cells. Immunofluorescent staining revealed that the bacteria-containing vacuole invaginates the nuclear membranes and appears to cross from the cytoplasm into the nucleus as an intact vacuole.

CONCLUSION: Results of this study indicate that a novel coccoid bacterium isolated from amoebae can infect human cell lines by associating with the host cell nuclei, either by crossing the nuclear membranes or by deeply invaginating the nuclear membranes. When associated with the nuclei, the bacteria appear to be bound within a vacuole and replicate to high numbers by 48 h. We believe this is the first report of such a process involving bacteria and human cell lines.

RevDate: 2019-05-09

Bakowski MA, Shiroodi RK, Liu R, et al (2019)

Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections.

Science translational medicine, 11(491):.

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.

RevDate: 2019-08-15
CmpDate: 2019-08-15

Alowaysi M, Chen J, Stark S, et al (2019)

Isolation and characterization of a Rickettsia from the ovary of a Western black-legged tick, Ixodes pacificus.

Ticks and tick-borne diseases, 10(4):918-923.

A rickettsial isolate was obtained from a partially engorged Ixodes pacificus female, which was collected from Humboldt County, California. The isolate was provisionally named Rickettsia endosymbiont Ixodes pacificus (REIP). The REIP isolate displayed the highest nucleotide sequence identity to Rickettsia species phylotype G021 in I. pacificus (99%, 99%, and 100% for ompA, 16S rRNA, and gltA, respectively), a bacterium that was previously identified in I. pacifiucs by PCR. Analysis of sequences from complete opening frames of five genes, 16S rRNA, gltA, ompA, ompB, and sca4, provided inference to the bacteria's classification among other Rickettsia species. The REIP isolate displayed 99.8%, 99.4%, 99.2%, 99.5%, and 99.6% nucleotide sequence identity for 16S rRNA, gltA, ompA, ompB, and sca4 gene, respectively, with genes of 'R. monacensis' str. IrR/Munich, indicating the REIP isolate is closely related to 'R. monacensis'. Our suggestion was further supported by phylogenetic analysis using concatenated sequences of 16S rRNA, gltA, ompA, ompB, and sca4 genes, concatenated sequences of dksA-xerC, mppA-purC, and rpmE-tRNAfMet intergenic spacer regions. Both phylogenetic trees implied that the REIP isolate is most closely related to 'R. monacensis' str. IrR/Munich. We propose the bacterium be considered as 'Rickettsia monacensis' str. Humboldt for its closest phylogenetic relative (=DSM 103975 T = ATCC TSD-94 T).

RevDate: 2019-06-30

Cao LJ, Jiang W, AA Hoffmann (2019)

Life History Effects Linked to an Advantage for wAu Wolbachia in Drosophila.

Insects, 10(5): pii:insects10050126.

Wolbachia endosymbiont infections can persist and spread in insect populations without causing apparent effects on reproduction of their insect hosts, but the mechanisms involved are largely unknown. Here, we test for fitness effects of the wAu infection of Drosophila simulans by comparing multiple infected and uninfected polymorphic isofemale lines derived from nature. We show a fitness advantage (higher offspring number) for lines with the wAu Wolbachia infection when breeding on grapes, but only where there was Talaromyces and Penicillium fungal mycelial growth. When breeding on laboratory medium, the wAu infection extended the development time and resulted in larger females with higher fecundity, life history traits, which may increase fitness. A chemical associated with the fungi (ochratoxin A) did not specifically alter the fitness of wAu-infected larvae, which developed slower and emerged with a greater weight regardless of toxin levels. These findings suggest that the fitness benefits of Wolbachia in natural populations may reflect life history changes that are advantageous under particular circumstances, such as when breeding occurs in rotting fruit covered by abundant mycelial growth.

RevDate: 2019-05-01

Kaushik S, Sharma KK, Ramani R, et al (2019)

Detection of Wolbachia Phage (WO) in Indian Lac Insect [Kerria lacca (Kerr.)] and Its Implications.

Indian journal of microbiology, 59(2):237-240.

Wolbachia, a maternally inherited bacterium induces reproductive alterations in its hosts such as feminization of males, male killing and parthenogenesis. It is the most diverse endosymbiont infecting more than 70% of the insects ranging from pests to pollinators. Kerria lacca-a hemipteran is a sedentary, oriental insect known to produce lac-the only resin of animal origin. The present study was conducted to screen the presence of Wolbachia and its associated phages in the two infrasubspecific forms (four insect lines) of K. lacca viz. kusmi and rengeeni differing from each other on the basis of host preference. Wolbachia and its associated phage were found to be prevalent in all the insect lines analyzed. We, hereby, report the presence of WO-phage (Wolbachia phage) for the first time in K. lacca. Further, phylogenetic data differentiated the kusmi and rengeeni infrasubspecific forms into two different groups on the basis of WO-phage sequences.

RevDate: 2019-08-23

Wang HL, Lei T, Xia WQ, et al (2019)

Insight into the microbial world of Bemisia tabaci cryptic species complex and its relationships with its host.

Scientific reports, 9(1):6568 pii:10.1038/s41598-019-42793-8.

The 37 currently recognized Bemisia tabaci cryptic species are economically important species and contain both primary and secondary endosymbionts, but their diversity has never been mapped systematically across the group. To achieve this, PacBio sequencing of full-length bacterial 16S rRNA gene amplicons was carried out on 21 globally collected species in the B. tabaci complex, and two samples from B. afer were used here as outgroups. The microbial diversity was first explored across the major lineages of the whole group and 15 new putative bacterial sequences were observed. Extensive comparison of our results with previous endosymbiont diversity surveys which used PCR or multiplex 454 pyrosequencing platforms showed that the bacterial diversity was underestimated. To validate these new putative bacteria, one of them (Halomonas) was first confirmed to be present in MED B. tabaci using Hiseq2500 and FISH technologies. These results confirmed PacBio is a reliable and informative venue to reveal the bacterial diversity of insects. In addition, many new secondary endosymbiotic strains of Rickettsia and Arsenophonus were found, increasing the known diversity in these groups. For the previously described primary endosymbionts, one Portiera Operational Taxonomic Units (OTU) was shared by all B. tabaci species. The congruence of the B. tabaci-host and Portiera phylogenetic trees provides strong support for the hypothesis that primary endosymbionts co-speciated with their hosts. Likewise, a comparison of bacterial alpha diversities, Principal Coordinate Analysis, indistinct endosymbiotic communities harbored by different species and the co-divergence analyses suggest a lack of association between overall microbial diversity with cryptic species, further indicate that the secondary endosymbiont-mediated speciation is unlikely to have occurred in the B. tabaci species group.

RevDate: 2019-08-15
CmpDate: 2019-08-15

Tokarz R, Tagliafierro T, Sameroff S, et al (2019)

Microbiome analysis of Ixodes scapularis ticks from New York and Connecticut.

Ticks and tick-borne diseases, 10(4):894-900.

We employed high throughput sequencing to survey the microbiomes of Ixodes scapularis collected in New York and Connecticut. We examined 197 individual I. scapularis adults and pools from 132 adults and 197 nymphs. We detected Borrelia burgdorferi sensu stricto in 56.3% of individual ticks, Anaplasma phagocytophilum in 10.6%, Borrelia miyamotoi in 5%, Babesia microti in 7.6%, and Powassan virus in 3.6%. We did not detect Borrelia mayonii, Ehrlichia muris eauclairensis, Bartonella spp. or pathogenic Babesia species other than B. microti. The most abundant bacterium (65%), and only rickettsial species identified, was the endosymbiont Rickettsia buchneri. A filarial nematode was found in 13.7% of adult ticks. Fourteen viruses were detected including South Bay virus (22%) and blacklegged tick phlebovirus 1 and 2 (73%). This study provides insight into the microbial diversity of I. scapularis in New York State and Connecticut.

RevDate: 2019-08-01
CmpDate: 2019-08-01

Phoosangwalthong P, Hii SF, Kamyingkird K, et al (2018)

Cats as potential mammalian reservoirs for Rickettsia sp. genotype RF2125 in Bangkok, Thailand.

Veterinary parasitology, regional studies and reports, 13:188-192.

Rickettsia felis is an obligate intracellular alpha-proteobacteria and the cause of flea-borne spotted fever (FBSF), an emerging zoonosis of global public health importance, for which dogs and cats have been implicated as potential mammalian reservoirs hosts. The purpose of this study was to determine the prevalence and associated risk factors for R. felis-like species in semi-domesticated cats and their fleas in aim of understanding public health risks posed by cats and their fleas in Bangkok, Thailand. Single whole blood samples (n = 432) and where observed, fleas (n = 234), were collected from cats from 53 temple communities in Bangkok. Fleas were morphologically and genetically identified to a species level. Cat blood and fleas were subjected to a spotted fever group (SFG)-specific PCR targeting the partial outer membrane protein B (ompB). Those that were positive, were further characterised using an R. felis-specific nested PCR targeting the partial citrate synthase A (gltA) gene. All fleas were identified as Ctenocephalides felis felis. In total SFG Rickettsiae were detected in the blood of 82/482 (17.01%) cats and 3/234 fleas (1.28%). DNA sequencing of the partial ompB characterised all positive amplicons from cat blood and their fleas as 100% identical to Rickettsia endosymbiont of Ctenocephalides felis orientis isolate (Rickettsia sp. genotype RF2125) and Rickettsia asemboensis (GenBank accession no. KP256362 and KY650699, respectively). The gltA gene targeting R. felis was successfully amplified from 12/82 PCR-positive cat blood samples and these clustered with 99% bootstrap support with isolates within the Rickettsia sp. genotype RF2125 clade. Cats that were permitted to roam freely inside monasteries were more likely to be infected with R. felis compared with cats confined indoors. The results suggest that cats in Thailand are potential mammalian reservoir hosts for Rickettsia sp. genotype RF2125.

RevDate: 2019-08-15
CmpDate: 2019-08-15

Vila A, Estrada-Peña A, Altet L, et al (2019)

Endosymbionts carried by ticks feeding on dogs in Spain.

Ticks and tick-borne diseases, 10(4):848-852.

Studies on tick microbial communities historically focused on tick-borne pathogens. However, there is an increasing interest in capturing relationships among non-pathogenic endosymbionts and exploring their relevance for tick biology. The present study included a total of 1600 adult ticks collected from domestic dogs in 4 different biogeographical regions of Spain. Each pool formed by 1 to 10 halves of individuals representing one specific ticks species was examined by PCR for the presence of Coxiellaceae, Rickettsia spp., Rickettsiales, Wolbachia spp., and other bacterial DNA. Of the pools analyzed, 92% tested positive for endosymbiont-derived DNA. Coxiella spp. endosymbionts were the most prevalent microorganisms, being always present in Rhipicephalus sanguineus sensu lato (s.l.) pools. Rickettsia spp. DNA was detected in 60% of Dermacentor reticulatus pools and 40% of R. sanguineus s.l. pools, with a higher diversity of Rickettsia species in R. sanguineus s.l. pools. Our study reveals a negative relationship of Rickettsia massiliae with the presence of tick-borne pathogens in the same pool of ticks. An additional endosymbiont, 'Candidatus Rickettsiella isopodorum', was only detected in D. reticulatus pools. Data from this study indicate that dogs in Spain are exposed to several endosymbionts. Due to the importance of tick-borne pathogens, characterizing the role of endosymbionts for tick physiology and prevalence, may lead to novel control strategies.

RevDate: 2019-04-21

Chiellini C, Pasqualetti C, Lanzoni O, et al (2019)

Harmful Effect of Rheinheimera sp. EpRS3 (Gammaproteobacteria) Against the Protist Euplotes aediculatus (Ciliophora, Spirotrichea): Insights Into the Ecological Role of Antimicrobial Compounds From Environmental Bacterial Strains.

Frontiers in microbiology, 10:510.

Rheinheimera sp. strain EpRS3, isolated from the rhizosphere of Echinacea purpurea, is already known for its ability to produce antibacterial compounds. By use of culture experiments, we verified and demonstrated its harmful effect against the ciliated protist Euplotes aediculatus (strain EASCc1), which by FISH experiments resulted to harbor in its cytoplasm the obligate bacterial endosymbiont Polynucleobacter necessarius (Betaproteobacteria) and the secondary endosymbiont "Candidatus Nebulobacter yamunensis" (Gammaproteobacteria). In culture experiments, the number of ciliates treated both with liquid broth bacteria-free (Supernatant treatment) and bacteria plus medium (Tq treatment), decreases with respect to control cells, with complete disappearance of ciliates within 6 h after Tq treatment. Results suggest that Rheinheimera sp. EpRS3 produces and releases in liquid culture one or more bioactive molecules affecting E. aediculatus survival. TEM analysis of control (not treated) ciliates allowed to morphologically characterize both kind of E. aediculatus endosymbionts. In treated ciliates, collected soon after the arising of cell suffering leading to death, TEM observations revealed some ultrastructural damages, indicating that P. necessarius endosymbionts went into degradation and vacuolization after both Supernatant and Tq treatments. Additionally, TEM investigation showed that when the ciliate culture was inoculated with Tq treatment, both a notable decrease of P. necessarius number and an increase of damaged and degraded mitochondria occur. FISH experiments performed on treated ciliates confirmed TEM results and, by means of the specific probe herein designed, disclosed the presence of Rheinheimera sp. EpRS3 both inside phagosomes and free in cytoplasm in ciliates after Tq treatment. This finding suggests a putative ability of Rheinheimera sp. EpRS3 to reintroduce itself in the environment avoiding ciliate digestion.

RevDate: 2019-06-13
CmpDate: 2019-06-10

Sabūnas V, Radzijevskaja J, Sakalauskas P, et al (2019)

Dirofilaria repens in dogs and humans in Lithuania.

Parasites & vectors, 12(1):177 pii:10.1186/s13071-019-3406-y.

BACKGROUND: In Lithuania, the first case of canine subcutaneous dirofilariosis was recorded in 2010. Since then, an increasing number of cases of canine dirofilariosis have been documented in different veterinary clinics throughout the country. Human dirofilariosis was diagnosed in Lithuania for the first time in September 2011. However, to the authors' knowledge, there are no published data on the presence and prevalence of autochthonous dirofilariosis in dogs and humans in the country. The present study provides information about the predominant species and prevalence of Dirofilaria in dogs and describes the cases of human dirofilariosis in Lithuania. It also outlines PCR detection of the bacterial endosymbiont Wolbachia that contributes to the inflammatory features of filarioid infection.

RESULTS: A total of 2280 blood samples and six adult worms from pet and shelter dogs were collected in the central and eastern regions of Lithuania in 2013-2015. Based on their morphological appearance, morphometric measurements and molecular analysis, all the adult nematodes were identified as Dirofilaria repens. The diagnosis of microfilariae in blood samples was based on blood smear analysis and Knott's test. The PCR and sequence analysis of the ribosomal DNA ITS2 region and cox1 gene confirmed the presence of D. repens. Overall, 61 (2.7%) of the 2280 blood samples were found to be positive for the presence of D. repens. The infection rate of D. repens was significantly higher in shelter dogs (19.0%; 19/100) than in pet dogs (1.9%; 42/2180) (χ2 = 100.039, df = 1, P < 0.0001). Forty-nine DNA samples of D. repens-infected dogs were tested for the presence of the bacterial endosymbiont Wolbachia and, of these, 40 samples (81.6%) were found to be positive. Three ocular and six subcutaneous cases of human dirofilariosis were diagnosed in Lithuania in the period 2011-2018.

CONCLUSIONS: To the authors' knowledge, this is the first report of autochthonous D. repens infection in dogs and humans in Lithuania. The present data demonstrate that D. repens is the main etiological agent of dirofilariosis in Lithuania. The DNA of the filarioid endosymbiotic bacterium Wolbachia was detected in the vast majority of dogs infected with D. repens.

RevDate: 2019-08-15
CmpDate: 2019-08-15

Muñoz-Leal S, Macedo C, Gonçalves TC, et al (2019)

Detected microorganisms and new geographic records of Ornithodoros rietcorreai (Acari: Argasidae) from northern Brazil.

Ticks and tick-borne diseases, 10(4):853-861.

Reliable data on distributional ranges of soft ticks (Argasidae) and assessments of putative tick-borne agents enhance the understanding on tick-associated microorganisms. A total of 96 ticks morphologicaly and molecularly identified as Ornithodoros rietcorreai were collected in Tocantins State, Brazil, using Noireau traps with living bait as CO2 source. Ninety-six ticks (54 nymphs, 32 males, 10 females) with different engorgement degrees were collected. Fourty-seven (48.9%) of them were individually screened by PCR for detecting bacteria of Anaplasmataceae family and genera Rickettsia, and Borrelia. The presence of protozoans of the genus Babesia was assessed as well. Fourty seven ticks were submitted to analysis. Nine ticks (19.1%) yielded sequences for gltA and htrA genes most identical with a series of endosymbiont rickettsiae and Rickettsia bellii, respectively. Upon two ticks (4.2%) we retrieved DNA of a potential new Wolbachia sp., and DNA of a putative novel Hepatozoon was characterized from three (6.4%) specimens. No DNA of Babesia or Borrelia was detected. Remarkably, amplicons of unidentified eukaryotic organisms, most closely related with apicomplexans but also with dinoflagellates (91% of identity after BLAST analyses), were recovered from two ticks (4.2%) using primers designed for Babesia 18S rRNA gene. Our records expand the distribution of O. rietcorreai into Brazilian Cerrado biome and introduce the occurrence of microorganisms in this tick species.

RevDate: 2019-08-02
CmpDate: 2019-08-02

Dhaygude K, Nair A, Johansson H, et al (2019)

The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host.

BMC genomics, 20(1):301 pii:10.1186/s12864-019-5665-6.

BACKGROUND: Adapting to changes in the environment is the foundation of species survival, and is usually thought to be a gradual process. However, transposable elements (TEs), epigenetic modifications, and/or genetic material acquired from other organisms by means of horizontal gene transfer (HGTs), can also lead to novel adaptive traits. Social insects form dense societies, which attract and maintain extra- and intracellular accessory inhabitants, which may facilitate gene transfer between species. The wood ant Formica exsecta (Formicidae; Hymenoptera), is a common ant species throughout the Palearctic region. The species is a well-established model for studies of ecological characteristics and evolutionary conflict.

RESULTS: In this study, we sequenced and assembled draft genomes for F. exsecta and its endosymbiont Wolbachia. The F. exsecta draft genome is 277.7 Mb long; we identify 13,767 protein coding genes, for which we provide gene ontology and protein domain annotations. This is also the first report of a Wolbachia genome from ants, and provides insights into the phylogenetic position of this endosymbiont. We also identified multiple horizontal gene transfer events (HGTs) from Wolbachia to F. exsecta. Some of these HGTs have also occurred in parallel in multiple other insect genomes, highlighting the extent of HGTs in eukaryotes.

CONCLUSION: We present the first draft genome of ant F. exsecta, and its endosymbiont Wolbachia (wFex), and show considerable rates of gene transfer from the symbiont to the host. We expect that especially the F. exsecta genome will be valuable resource in further exploration of the molecular basis of the evolution of social organization.

RevDate: 2019-07-09

Mathé-Hubert H, Kaech H, Ganesanandamoorthy P, et al (2019)

Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids.

Evolution; international journal of organic evolution, 73(7):1466-1481.

The heritable endosymbiont Spiroplasma infects many insects and has repeatedly evolved the ability to protect its hosts against different parasites. Defenses do not come for free to the host, and theory predicts that more costly symbionts need to provide stronger benefits to persist in host populations. We investigated the costs and benefits of Spiroplasma infections in pea aphids (Acyrthosiphon pisum), testing 12 bacterial strains from three different clades. Virtually all strains decreased aphid lifespan and reproduction, but only two had a (weak) protective effect against the parasitoid Aphidius ervi, an important natural enemy of pea aphids. Spiroplasma-induced fitness costs were variable, with strains from the most slowly evolving clade reaching higher titers and curtailing aphid lifespan more strongly than other strains. Some Spiroplasma strains shared their host with a second endosymbiont, Regiella insecticola. Although the result of an unfortunate handling error, these co-infections proved instructive, because they showed that the cost of infection with Spiroplasma may be attenuated in the presence of Regiella. These results suggest that mechanisms other than protection against A. ervi maintain pea aphid infections with diverse strains of Spiroplasma, and that studying them in isolation will not provide a complete picture of their effects on host fitness.

RevDate: 2019-06-17

Chong RA, Park H, NA Moran (2019)

Genome Evolution of the Obligate Endosymbiont Buchnera aphidicola.

Molecular biology and evolution, 36(7):1481-1489.

An evolutionary consequence of uniparentally transmitted symbiosis is degradation of symbiont genomes. We use the system of aphids and their maternally inherited obligate endosymbiont, Buchnera aphidicola, to explore the evolutionary process of genome degradation. We compared complete genome sequences for 39 Buchnera strains, including 23 newly sequenced symbiont genomes from diverse aphid hosts. We reconstructed the genome of the most recent shared Buchnera ancestor, which contained 616 protein-coding genes, and 39 RNA genes. The extent of subsequent gene loss varied across lineages, resulting in modern genomes ranging from 412 to 646 kb and containing 354-587 protein-coding genes. Loss events were highly nonrandom across loci. Genes involved in replication, transcription, translation, and amino acid biosynthesis are largely retained, whereas genes underlying ornithine biosynthesis, stress responses, and transcriptional regulation were lost repeatedly. Aside from losses, gene order is almost completely stable. The main exceptions involve movement between plasmid and chromosome locations of genes underlying tryptophan and leucine biosynthesis and supporting nutrition of aphid hosts. This set of complete genomes enabled tests for signatures of positive diversifying selection. Of 371 Buchnera genes tested, 29 genes show strong support for ongoing positive selection. These include genes encoding outer membrane porins that are expected to be involved in direct interactions with hosts. Collectively, these results indicate that extensive genome reduction occurred in the ancestral Buchnera prior to aphid diversification and that reduction has continued since, with losses greater in some lineages and for some loci.

RevDate: 2019-07-04
CmpDate: 2019-05-23

Boevé JL, R Rozenberg (2019)

Berberis sawfly contains toxic peptides not only at larval stage.

Die Naturwissenschaften, 106(5-6):14 pii:10.1007/s00114-019-1613-1.

Livestock can die from grazing in areas where larvae of certain Argidae or Pergidae species containing toxic peptides occur in mass. However, it remains unknown whether other stages also contain these compounds. Here, single specimens of larvae, prepupae, and adults of Arge berberidis, plus samples of its cocoons and larval feces, were analyzed by liquid chromatography-tandem mass spectrometry. The four peptides, pergidin (Perg), 4-valinepergidin (VPerg), dephosphorylated pergidin (dpPerg), and lophyrotomin (LGln), were detected in each of the three stages. Peptide concentrations, in percentage fresh weight, increased from larval up to adult stages, with mean values from 0.044 to 0.125% for Perg, 0.008 to 0.023% for VPerg, and 0.064 to 0.116% for LGln, whereas dpPerg never exceeded 0.001%. The concentrations of this latter peptide averaged 0.002% in the cocoon built by the prepupa, and nearly no peptides were detected in larval feces. Moreover, the concentrations of the three main peptides (Perg, LGln, and VPerg) tended to be correlated with each other in larvae and especially in adults. It is likely that peptide production, purportedly by an endosymbiont, stops at prepupal stage and that concentration of the peptides increases from prepupa to adult due to a decrease of body weight.

RevDate: 2019-04-14

Gallo-Franco JJ, Duque-Gamboa DN, N Toro-Perea (2019)

Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.).

Scientific reports, 9(1):5766 pii:10.1038/s41598-019-42232-8.

Insects harbor a wide variety of microorganisms that form complex and changing communities and play an important role in the biology and evolution of their hosts. Aphids have been used as model organisms to study microorganism-insect interactions. Almost all aphids are infected with the obligate endosymbiont Buchnera aphidicola and can host different bacteria that allow them to acquire traits of agronomic importance, such as resistance to high temperatures and/or defense against natural enemies. However, the bacterial communities of most aphid species remain poorly characterized. In this study, we used high-throughput DNA sequencing to characterize the bacterial communities of Aphis gossypii and Myzus persicae from two cultivable pepper species, Capsicum frutescens (Tabasco variety) and C. annuum (Cayenne variety), in four localities of southwestern Colombia. In addition, we evaluated the dynamics of A. gossypii-associated microorganisms on a seasonal basis. Our results show that the bacterial communities of A. gossypii and M. persicae are dominated by the primary endosymbiont B. aphidicola, while the presence of the facultative symbiont Arsenophonus sp. was only detected in one A. gossypii population from cayenne pepper. In addition to these two known symbionts, eight bacterial OTUs were identified that presented a frequency of 1% or more in at least one of the analyzed populations. The results show that the bacterial communities of aphids associated with pepper crops appears to be structured according to the host aphid species and the geographical location, while no differences were observed in the diversity of bacteria between host plants. Finally, the diversity and abundance of the A. gossypii bacterial community was variable among the four sampling points evaluated over the year and showed a relation with the aphid's population dynamics. This study represents the first approach to the knowledge of the bacterial community present in chili pepper aphids from Colombia. Nevertheless, more in-depth studies, including replicates, are required to confirm the patterns observed in the microbial communities of aphids from pepper crops.

RevDate: 2019-05-08

Jäckle O, Seah BKB, Tietjen M, et al (2019)

Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula.

Proceedings of the National Academy of Sciences of the United States of America, 116(17):8505-8514.

Hosts of chemoautotrophic bacteria typically have much higher biomass than their symbionts and consume symbiont cells for nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria symbionts in mouthless Paracatenula flatworms comprise up to half of the biomass of the consortium. Each species of Paracatenula harbors a specific Ca Riegeria, and the endosymbionts have been vertically transmitted for at least 500 million years. Such prolonged strict vertical transmission leads to streamlining of symbiont genomes, and the retained physiological capacities reveal the functions the symbionts provide to their hosts. Here, we studied a species of Paracatenula from Sant'Andrea, Elba, Italy, using genomics, gene expression, imaging analyses, as well as targeted and untargeted MS. We show that its symbiont, Ca R. santandreae has a drastically smaller genome (1.34 Mb) than the symbiont´s free-living relatives (4.29-4.97 Mb) but retains a versatile and energy-efficient metabolism. It encodes and expresses a complete intermediary carbon metabolism and enhanced carbon fixation through anaplerosis and accumulates massive intracellular inclusions such as sulfur, polyhydroxyalkanoates, and carbohydrates. Compared with symbiotic and free-living chemoautotrophs, Ca R. santandreae's versatility in energy storage is unparalleled in chemoautotrophs with such compact genomes. Transmission EM as well as host and symbiont expression data suggest that Ca R. santandreae largely provisions its host via outer-membrane vesicle secretion. With its high share of biomass in the symbiosis and large standing stocks of carbon and energy reserves, it has a unique role for bacterial symbionts-serving as the primary energy storage for its animal host.

RevDate: 2019-06-26

Chen W, Shakir S, Bigham M, et al (2019)

Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch).

GigaScience, 8(4):.

BACKGROUND: The corn leaf aphid (Rhopalosiphum maidis Fitch) is the most economically damaging aphid pest on maize (Zea mays), one of the world's most important grain crops. In addition to causing direct damage by removing photoassimilates, R. maidis transmits several destructive maize viruses, including maize yellow dwarf virus, barley yellow dwarf virus, sugarcane mosaic virus, and cucumber mosaic virus.

FINDINGS: The genome of a parthenogenetically reproducing R. maidis clone was assembled with a combination of Pacific Biosciences (207-fold coverage) and Illumina (83-fold coverage) sequencing. The 689 assembled contigs, which have an N50 size of 9.0 megabases (Mb) and a low level of heterozygosity, were clustered using Phase Genomics Hi-C interaction maps. Consistent with the commonly observed 2n = 8 karyotype of R. maidis, most of the contigs (473 spanning 321 Mb) were successfully oriented into 4 scaffolds. The genome assembly captured the full length of 95.8% of the core eukaryotic genes, indicating that it is highly complete. Repetitive sequences accounted for 21.2% of the assembly, and a total of 17,629 protein-coding genes were predicted with integrated evidence from ab initio and homology-based gene predictions and transcriptome sequences generated with both Pacific Biosciences and Illumina. An analysis of likely horizontally transferred genes identified 2 from bacteria, 7 from fungi, 2 from protozoa, and 9 from algae. Repeat elements, transposons, and genes encoding likely detoxification enzymes (cytochrome P450s, glutathione S-transferases, carboxylesterases, uridine diphosphate-glucosyltransferases, and ABC transporters) were identified in the genome sequence. Other than Buchnera aphidicola (642,929 base pairs, 602 genes), no endosymbiont bacteria were found in R. maidis.

CONCLUSIONS: A high-quality R. maidis genome was assembled at the chromosome level. This genome sequence will enable further research related to ecological interactions, virus transmission, pesticide resistance, and other aspects of R. maidis biology. It also serves as a valuable resource for comparative investigation of other aphid species.

RevDate: 2019-04-12
CmpDate: 2019-04-11

Tsagmo Ngoune JM, Reveillaud J, Sempere G, et al (2019)

The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon.

Parasites & vectors, 12(1):151 pii:10.1186/s13071-019-3402-2.

BACKGROUND: A number of reports have demonstrated the role of insect bacterial flora on their host's physiology and metabolism. The tsetse host and vector of trypanosomes responsible for human sleeping sickness (human African trypanosomiasis, HAT) and nagana in animals (African animal trypanosomiasis, AAT) carry bacteria that influence its diet and immune processes. However, the mechanisms involved in these processes remain poorly documented. This underscores the need for increased research into the bacterial flora composition and structure of tsetse flies. The aim of this study was to identify the diversity and relative abundance of bacterial genera in Glossina palpalis palpalis flies collected in two trypanosomiasis foci in Cameroon.

METHODS: Samples of G. p. palpalis which were either negative or naturally trypanosome-positive were collected in two foci located in southern Cameroon (Campo and Bipindi). Using the V3V4 and V4 variable regions of the small subunit of the 16S ribosomal RNA gene, we analyzed the respective bacteriome of the flies' midguts.

RESULTS: We identified ten bacterial genera. In addition, we observed that the relative abundance of the obligate endosymbiont Wigglesworthia was highly prominent (around 99%), regardless of the analyzed region. The remaining genera represented approximately 1% of the bacterial flora, and were composed of Salmonella, Spiroplasma, Sphingomonas, Methylobacterium, Acidibacter, Tsukamurella, Serratia, Kluyvera and an unidentified bacterium. The genus Sodalis was present but with a very low abundance. Globally, no statistically significant difference was found between the bacterial compositions of flies from the two foci, and between positive and trypanosome-negative flies. However, Salmonella and Serratia were only described in trypanosome-negative flies, suggesting a potential role for these two bacteria in fly refractoriness to trypanosome infection. In addition, our study showed the V4 region of the small subunit of the 16S ribosomal RNA gene was more efficient than the V3V4 region at describing the totality of the bacterial diversity.

CONCLUSIONS: A very large diversity of bacteria was identified with the discovering of species reported to secrete anti-parasitic compounds or to modulate vector competence in other insects. For future studies, the analyses should be enlarged with larger sampling including foci from several countries.

RevDate: 2019-06-29

Spang A, Stairs CW, Dombrowski N, et al (2019)

Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism.

Nature microbiology, 4(7):1138-1148.

The origin of eukaryotes represents an unresolved puzzle in evolutionary biology. Current research suggests that eukaryotes evolved from a merger between a host of archaeal descent and an alphaproteobacterial endosymbiont. The discovery of the Asgard archaea, a proposed archaeal superphylum that includes Lokiarchaeota, Thorarchaeota, Odinarchaeota and Heimdallarchaeota suggested to comprise the closest archaeal relatives of eukaryotes, has helped to elucidate the identity of the putative archaeal host. Whereas Lokiarchaeota are assumed to employ a hydrogen-dependent metabolism, little is known about the metabolic potential of other members of the Asgard superphylum. We infer the central metabolic pathways of Asgard archaea using comparative genomics and phylogenetics to be able to refine current models for the origin of eukaryotes. Our analyses indicate that Thorarchaeota and Lokiarchaeota encode proteins necessary for carbon fixation via the Wood-Ljungdahl pathway and for obtaining reducing equivalents from organic substrates. By contrast, Heimdallarchaeum LC2 and LC3 genomes encode enzymes potentially enabling the oxidation of organic substrates using nitrate or oxygen as electron acceptors. The gene repertoire of Heimdallarchaeum AB125 and Odinarchaeum indicates that these organisms can ferment organic substrates and conserve energy by coupling ferredoxin reoxidation to respiratory proton reduction. Altogether, our genome analyses suggest that Asgard representatives are primarily organoheterotrophs with variable capacity for hydrogen consumption and production. On this basis, we propose the 'reverse flow model', an updated symbiogenetic model for the origin of eukaryotes that involves electron or hydrogen flow from an organoheterotrophic archaeal host to a bacterial symbiont.

RevDate: 2019-04-03

Ali H, Muhammad A, Sanda NB, et al (2019)

Pyrosequencing Uncovers a Shift in Bacterial Communities Across Life Stages of Octodonta nipae (Coleoptera: Chrysomelidae).

Frontiers in microbiology, 10:466.

Bacterial symbionts of insects affect a wide array of host traits including fitness and immunity. Octodonta nipae (Maulik), commonly known as hispid leaf beetle is a destructive palm pest around the world. Understanding the dynamics of microbiota is essential to unravel the complex interplay between O. nipae and its bacterial symbionts. In this study, bacterial 16S rRNA V3-V4 region was targeted to decipher the diversity and dynamics of bacterial symbionts across different life stages [eggs, larvae, pupae, and adult (male and female)] and reproductive organs (ovaries and testis) of O. nipae. Clustering analysis at ≥97% similarity threshold produced 3,959 operational taxonomic units (OTUs) that belonged to nine different phyla. Proteobacteria, Actinobacteria, and Firmicutes represented the bulk of taxa that underwent notable changes during metamorphosis. Enterobacteriaceae and Dermabacteraceae were the most abundant families in immature stages (eggs, larvae, and pupae), while Anaplasmataceae family was dominated in adults (male and female) and reproductive organs (ovaries and testis). The genus Serratia and Lactococcus were most abundant in eggs, whereas Pantoea and Brachybacterium represented the bulk of larvae and pupae microbiota. Interestingly the genus Wolbachia found positive to all tested samples and was recorded extremely high (>64%) in the adults and reproductive organs. The bacteria varied across the developmental stages and responsible for various metabolic activities. Selection choice exerted by the insect host as a result of its age or developmental stage could be the main reason to ascertain the shift in the bacteria populations. Maternally inherited Wolbachia was found to be an obligate endosymbiont infecting all tested life stages, body parts, and tissues. These outcomes foster our understanding of the intricate associations between bacteria and O. nipae and will incorporate in devising novel pest control strategies against this palm pest.

RevDate: 2019-05-14
CmpDate: 2019-05-14

Hajialilo E, Rezaeian M, Niyyati M, et al (2019)

Molecular characterization of bacterial, viral and fungal endosymbionts of Acanthamoeba isolates in keratitis patients of Iran.

Experimental parasitology, 200:48-54.

Free-living amoebae belong to the genus Acanthamoeba; can feed on microbial population by phagocytosis, and with the capability to act as a reservoir and a vehicle of microorganisms to susceptible host. Therefore, the role of endosymbiosis in the pathogenesis of Acanthamoeba is complex and not fully understood. The aim of the present study was to identify bacterial, fungal, and human adenovirus (HADV) endosymbionts as well as evaluating the endosymbionts role of such organisms in the pathogenesis of Acanthamoeba in keratitis patients living in Iran. Fifteen Acanthamoeba (T4 genotype) isolates were recovered from corneal scrapes and contact lenses of patients with keratitis. Cloning and purification was performed for all isolate. Gram staining was performed to identify bacterial endosymbionts. DNA extraction, PCR, and nested PCR was set up to identify endosymbiont of amoeba. Evaluation of pathogenicity was conducted by osmo-tolerance and thermo-tolerance assays and cell culture, and then CPE (cytopathic effect) was survey. Statistical analysis was used between Acanthamoeba associated endosymbionts and Acanthamoeba without endosymbiont at 24, 48, 72, and 96 h. A p value < 0.05 was considered as significant, statistically. A total of 9 (60%) Acanthamoeba (T4 genotypes) isolates were successfully cloned for detecting microorganism endosymbionts. The only isolate negative for the presence of endosymbiont was ICS9. ICS7 (Pseudomonas aeruginosa, Aspergillus sp., and human adenovirus endosymbionts) and ICS2 (Escherichia coli endosymbiont) isolates were considered as Acanthamoeba associated endosymbionts. ICS7 and ICS2 isolates were highly pathogen whereas ICS9 isolate showed low pathogenicity in pathogenicity evaluated. Positive CPE for ICS7 and ICS2 isolates and negative CPE for ICS9 isolate were observed in cell culture. The average number of cells, trophozoites, and cysts among ICS7, ICS2, and ICS9 isolates at 24, 48, 72, and 96 h was significant. This is the first survey on microbial endosymbionts of Acanthamoeba in keratitis patients of Iran, and also the first report of Aspergillus sp, Achromobacter sp., Microbacterium sp., Brevibacillus sp, Brevundimonas sp and Mastadenovirus sp in Acanthamoeba as endosymbionts. Our study demonstrated that microbial endosymbionts can affect the pathogenicity of Acanthamoeba; however, further research is required to clarify the exact pattern of symbiosis, in order to modify treatment protocol.

RevDate: 2019-04-04

Naranjo E, Merfa MV, Ferreira V, et al (2019)

Liberibacter crescens biofilm formation in vitro: establishment of a model system for pathogenic 'Candidatus Liberibacter spp.'.

Scientific reports, 9(1):5150 pii:10.1038/s41598-019-41495-5.

The Liberibacter genus comprises insect endosymbiont bacterial species that cause destructive plant diseases, including Huanglongbing in citrus and zebra chip in potato. To date, pathogenic 'Candidatus Liberibacter spp.' (CLs) remain uncultured, therefore the plant-associated Liberibacter crescens (Lcr), only cultured species of the genus, has been used as a biological model for in vitro studies. Biofilm formation by CLs has been observed on the outer midgut surface of insect vectors, but not in planta. However, the role of biofilm formation in the life cycle of these pathogens remains unclear. Here, a model system for studying CLs biofilms was developed using Lcr. By culture media modifications, bovine serum albumin (BSA) was identified as blocking initial cell-surface adhesion. Removal of BSA allowed for the first time observation of Lcr biofilms. After media optimization for biofilm formation, we demonstrated that Lcr attaches to surfaces, and form cell aggregates embedded in a polysaccharide matrix both in batch cultures and under flow conditions in microfluidic chambers. Biofilm structures may represent excellent adaptive advantages for CLs during insect vector colonization helping with host retention, immune system evasion, and transmission. Future studies using the Lcr model established here will help in the understanding of the biology of CLs.

RevDate: 2019-06-28
CmpDate: 2019-06-28

Konecka E, Olszanowski Z, R Koczura (2019)

Wolbachia of phylogenetic supergroup E identified in oribatid mite Gustavia microcephala (Acari: Oribatida).

Molecular phylogenetics and evolution, 135:230-235.

Heritable endosymbionts have been observed in arthropod and nematode hosts. The most-known among them is Wolbachia. Although the bacterium was previously identified in oribatid mites (Acari: Oribatida), it was not assigned to any phylogenetic group. Endosymbionts have a profound influence on their hosts, playing various functions that affect invertebrate's biology such as changing the way of reproduction. Oribatida provide the very unique examples of groups in which even whole families appear to be thelytokous, so we considered that it is worth to investigate the occurrence of endosymbiotic microorganisms in oribatid mites, especially that the knowledge on the symbionts occurrence in this invertebrate group is negligible. We report for the first time Wolbachia in oribatid mite Gustavia microcephala. The sequences of 16S rDNA, gltA, and ftsZ genes of the endosymbiont from the mite showed the highest similarity to Wolbachia found in Collembola. Phylogenetic analysis based on single gene and concatenated alignments of three genes revealed that the bacteria from G. microcephala and Collembola were related and clustered together with supergroup E. Relatively close relationship of Wolbachia from oribatid and collembolan hosts might mean at the evolutionary scale that horizontal transfer of bacteria between these two groups of invertebrates may take place.

RevDate: 2019-08-18

Guo J, Liu X, Poncelet N, et al (2019)

Detection and geographic distribution of seven facultative endosymbionts in two Rhopalosiphum aphid species.

MicrobiologyOpen, 8(8):e00817.

Study of the mutualistic associations between facultative symbionts and aphids are developed only in a few models. That survey on the situation and distribution of the symbionts in a certain area is helpful to obtain clues for the acquisition and spread of them as well as their roles played in host evolution. To understand the infection patterns of seven facultative symbionts (Serratia symbiotica, Hamiltonella defensa, Regiella insecticola, Rickettsia, Spiroplasma, Wolbachia, and Arsenophonus) in Rhopalosiphum padi (Linnaeus) and Rhopalosiphum maidis (Fitch), we collected 882 R. maidis samples (37 geographical populations) from China and 585 R. padi samples (32 geographical populations) from China and Europe. Results showed that both species were widely infected with various symbionts and totally 50.8% of R. maidis and 50.1% of R. padi were multi-infected with targeted symbionts. However, very few Rhopalosiphum aphids were infected with S. symbiotica. The infection frequencies of some symbionts were related to the latitude of collecting sites, suggesting the importance of environmental factors in shaping the geographic distribution of facultative symbionts. Also, R. maidis and R. padi were infected with different H. defensa strains based on phylogenetic analysis which may be determined by host ×symbiont genotype interactions. According to our results, the ubiquitous symbionts may play important roles in the evolution of their host aphid and their impacts on adaptation of R. padi and R. maidis were discussed as well.

RevDate: 2019-07-09
CmpDate: 2019-07-09

Uchi N, Fukudome M, Nozaki N, et al (2019)

Antimicrobial Activities of Cysteine-rich Peptides Specific to Bacteriocytes of the Pea Aphid Acyrthosiphon pisum.

Microbes and environments, 34(2):155-160.

Aphids have a mutualistic relationship with the bacterial endosymbiont Buchnera aphidicola. We previously reported seven cysteine-rich peptides in the pea aphid Acyrthosiphon pisum and named them Bacteriocyte-specific Cysteine-Rich (BCR) peptides; these peptides are exclusively expressed in bacteriocytes, special aphid cells that harbor symbionts. Similar symbiotic organ-specific cysteine-rich peptides identified in the root nodules of leguminous plants are named Nodule-specific Cysteine-Rich (NCR) peptides. NCR peptides target rhizobia in the nodules and are essential for symbiotic nitrogen fixation. A BacA (membrane protein) mutant of Sinorhizobium is sensitive to NCR peptides and is unable to establish symbiosis. Based on the structural and expressional similarities between BCR peptides and NCR peptides, we hypothesized that aphid BCR peptides exhibit antimicrobial activity, similar to some NCR peptides. We herein synthesized BCR peptides and investigated their antimicrobial activities and effects on the bacterial membrane of Escherichia coli. The peptides BCR1, BCR3, BCR5, and BCR8 exhibited antimicrobial activities with increased membrane permeability. An sbmA mutant of E. coli, a homolog of bacA of S. meliloti, was more sensitive to BCR peptides than the wild type. Our results suggest that BCR peptides have properties that may be required to control the endosymbiont, similar to NCR peptides in legumes.

RevDate: 2019-04-02

Kanakala S, M Ghanim (2019)

Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts.

PloS one, 14(3):e0213946 pii:PONE-D-18-36930.

Bemisia tabaci is one of the most threatening pests in agriculture, causing significant losses to many important crops on a global scale. The dramatic increase and availability of sequence data for B. tabaci species complex and its bacterial endosymbionts is critical for developing emerging sustainable pest management strategies which are based on pinpointing the global diversity of this important pest and its bacterial endosymbionts. To unravel the global genetic diversity of B. tabaci species complex focusing on its associated endosymbionts, along with Israeli whitefly populations collected in this study, we combined available sequences in databases, resulting in a total of 4,253 mitochondrial cytochrome oxidase I (mtCOI) sequences from 82 countries and 1,226 16S/23S rRNA endosymbiont sequences from 32 countries that were analyzed. Using Bayesian phylogenetic analysis, we identified two new B. tabaci groups within the species complex and described the global distribution of endosymbionts within this complex. Our analyses revealed complex divergence of the different endosymbiont sequences within the species complex, with overall one Hamiltonella, two Porteria (P1 and P2), two Arsenophonus (A1 and A2), two Wolbachia (super-groups O and B), four Cardinium (C1-C4) and three Rickettsia (R1-R3) groups were identified. Our comprehensive analysis provides an updated important resource for this globally important pest and its secondary symbionts, which have been a major subject for research in last three decades.

RevDate: 2019-06-10
CmpDate: 2019-06-03

Kohlmeier MG, White CE, Fowler JE, et al (2019)

Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism.

Molecular genetics and genomics : MGG, 294(3):739-755.

The legume endosymbiont Sinorhizobium meliloti can utilize a broad range of carbon compounds to support its growth. The linear, six-carbon polyol galactitol is abundant in vascular plants and is metabolized in S. meliloti by the contribution of two loci SMb21372-SMb21377 and SMc01495-SMc01503 which are found on pSymB and the chromosome, respectively. The data suggest that several transport systems, including the chromosomal ATP-binding cassette (ABC) transporter smoEFGK, contribute to the uptake of galactitol, while the adjacent gene smoS encodes a protein for oxidation of galactitol into tagatose. Subsequently, genes SMb21374 and SMb21373, encode proteins that phosphorylate and epimerize tagatose into fructose-6-phosphate, which is further metabolized by the enzymes of the Entner-Doudoroff pathway. Of note, it was found that SMb21373, which was annotated as a 1,6-bis-phospho-aldolase, is homologous to the E. coli gene gatZ, which is annotated as encoding the non-catalytic subunit of a tagatose-1,6-bisphosphate aldolase heterodimer. When either of these genes was introduced into an Agrobacterium tumefaciens strain that carries a tagatose-6-phosphate epimerase mutation, they are capable of complementing the galactitol growth deficiency associated with this mutation, strongly suggesting that these genes are both epimerases. Phylogenetic analysis of the protein family (IPR012062) to which these enzymes belong, suggests that this misannotation is systemic throughout the family. S. meliloti galactitol catabolic mutants do not exhibit symbiotic deficiencies or the inability to compete for nodule occupancy.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )