Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Endosymbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 23 Oct 2024 at 01:58 Created: 

Endosymbiosis

A symbiotic relationship in which one of the partners lives within the other, especially if it lives within the cells of the other, is known as endosymbiosis. Mitochondria, chloroplasts, and perhaps other cellular organelles are believed to have originated from a form of endosymbiosis. The endosymbiotic origin of eukaryotes seems to have been a biological singularity — that is, it happened once, and only once, in the history of life on Earth.

Created with PubMed® Query: endosymbiont NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-10-21
CmpDate: 2024-10-21

Marasco R, Michoud G, Seferji KA, et al (2024)

Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus (Hemiptera: Cicadellidae).

International journal of systematic and evolutionary microbiology, 74(10):.

Acetic acid bacteria - belonging to the Acetobacteraceae family - are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper Euscelidius variegatus. While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the Acetobacteraceae family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16P[T] strain was used as a representative of this group of isolates. The genome sequence of EV16P[T] is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16P[T] forms a monophyletic clade with the uncultivated endosymbiont of Diaphorina citri, the Candidatus Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of Asaia-Swaminathania and Kozakia. The genomic distance metrics based on gene and protein sequences support the proposal that EV16P[T] is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6-7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C18:l ω7c, C19 : 0 cyclo ω6c, C16 : 0 and C19 : 1 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16P[T] (= KCTC 8296[T], = DSM 117028[T]) is proposed as a representative of a novel species in a novel genus with the proposed name Sorlinia euscelidii gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.

RevDate: 2024-10-21

Mirabedini Z, Niyyati M, Mohammad Rahimi H, et al (2024)

The presence of yeasts and bacteria in free-living amoebae isolated from COVID-19 patients: concern for secondary infections.

International journal of environmental health research [Epub ahead of print].

This study aimed to investigate the presence of SARS-CoV-2, yeasts, and bacteria in isolated free-living amoeba (FLA) from COVID-19 patients. Nasopharyngeal swabs (n = 60) were obtained from COVID-19 patients. After cultivation, morphological characterization, and RNA/DNA extraction, the presence of selected microorganisms was investigated. From 60 COVID-19 samples, 18 (30%) were positive for FLA. Acanthamoeba sp. Naegleria australiensis, Tetramitus sp. and Vermamoeba vermiformis were characterized in 12 (80%), 1 (6.66%), 2 (13.33%), and 7 (38.88%) of samples, respectively. SARS-CoV-2 RNA was not detected in FLA. Candida albicans, C. tropicalis, and C. parapsilosis were detected in (11/18; 61.11%), (3/18; 16.67%), and (3/18; 16.67%) of samples, respectively. Geotrichum candidum was detected in 10/18 (55.55%) of samples. Streptococcus spp. and Staphylococcus spp. were identified in 16/18 (88.88%) and 3/18 (16.67%), respectively. The presence of yeasts and bacteria signifies the possible role of FLA in distribution of secondary infections in susceptible patients.

RevDate: 2024-10-19

Lahrach Z, Legeay J, Ahmed B, et al (2024)

The composition of the arbuscular mycorrhizal fungal bacteriome is species dependent.

Environmental microbiome, 19(1):77.

BACKGROUND: In addition to their role as endosymbionts for plant roots, arbuscular mycorrhizal fungi (AMF) engage in complex interactions with various soil microorganisms, the rhizosphere, and the root endosphere of host plants. They also host diverse prokaryotic groups within their mycelia, contributing to what is termed multipartite symbiosis. In this study, we examined the impact of three AMF species-Rhizophagus irregularis, R. clarus, and R. cerebriforme-combined with microbial bioaugmentation on the diversity and composition of bacterial communities in the mycelia and hyphosphere. Using a microcosm design to separate the influence of host plant roots from AMF mycelia and Illumina MiSeq amplicon sequencing to analyze the bacterial communities.

RESULTS: Our results revealed that, while AMF identity and microbial bioaugmentation did not affect the structure of bacterial communities in the hyphosphere soil, they significantly altered the communities associated with their mycelia. Although all three AMF species belong to the same genus, with R. irregularis and R. clarus being closely related compared to R. cerebriforme, we observed variations in the bacterial communities associated with their mycelia. Interestingly, the mycelial bacterial community of R. cerebriforme contained 60 bacteriome core taxa exclusive to it, while R. clarus and R. irregularis had 25 and 9 exclusive taxa, respectively.

CONCLUSION: This study suggests that organismal phylogeny influences the bacterial communities associated with AMF mycelia. These findings provide new insights into AMF and bacterial interactions, which are crucial for the successful deployment of AMF inoculants. The taxonomic diversity of AMF inoculants is important for engineering the plant microbiome and enhancing ecosystem services.

RevDate: 2024-10-16
CmpDate: 2024-10-16

Hisayama N, Takeuchi Y, H Furuya (2024)

TAXES OF DICYEMIDS (PHYLUM DICYEMIDA).

The Journal of parasitology, 110(5):506-515.

Dicyemids (Phylum Dicyemida) are endosymbionts present in the kidneys of benthic cephalopods. They usually consist of 10 to 40 cells and are characterized by 2 distinct body types: vermiform individuals and infusoriform larvae. Vermiform individuals remain attached to the internal surface of the host's renal appendages, while infusoriform larvae leave the renal sac to search for a new host. To investigate how dicyemids respond to various host and environmental cues, we evaluated phototaxis, chemotaxis, thigmotaxis, and rheotaxis responses of vermiform individuals and infusoriform larvae of 2 dicyemid species in a laboratory setting. Vermiform individuals did not exhibit phototaxis and chemotaxis to the major components of the host: urine, tissue fluids, or extracts of the host gills. However, they showed positive thigmotaxis and positive rheotaxis to slow water flow, probably contributing to enabling attachment to the renal appendages and remaining in the renal sac, respectively. The infusoriform larvae exhibited negative chemotaxis to host blood and negative thigmotaxis, but there was no evidence of phototaxis and rheotaxis. Negative thigmotaxis may facilitate the release of infusoriform embryos from the renal appendages. Negative chemotaxis to the host blood suggests that the infusoriform larvae do not enter through the vascular system to gain access to the renal sac, so the process by which infusoriform larvae enter the cephalopod host is yet to be determined.

RevDate: 2024-10-16
CmpDate: 2024-10-14

Kaczmarczyk-Ziemba A, Wagner GK, Staniec B, et al (2024)

Intraspecific diversity of Myrmecophilus acervorum (Orthoptera: Myrmecophilidae) indicating an ongoing cryptic speciation.

Scientific reports, 14(1):23984.

Myrmecophilus acervorum, previously considered a parthenogenetic species widely-distributed in Europe, has been observed to have both sexes in populations inhabiting the central part of the distribution range. Specimens from those heterosexual populations have been found being infected with Wolbachia. New mitochondrial data (COI and 16S markers) revealed the well-supported differentiation of M. acervorum populations inhabiting western Polesie (Poland) and southern Europe. In turn, analyses of EF1α marker support the hypothesis on the unfinished lineage sorting at the nuclear DNA level. Interestingly, we found that parthenogenetic populations inhabiting western Polesie are infected with Wolbachia belonging to supergroup A, while endosymbionts occurring in sexual populations of M. acervorum observed in Romania belong to supergroup B. Furthermore, new and potentially diagnostic characteristics in the external structures of the eyes of M. acervorum were identified. The surface of ommatidia in specimens occurring in southern Europe was smooth. In contrast, the ommatidia surface of individuals collected in Poland was visibly sculptured. To sum up, the significant genetic variability found in the present case, and the differentiating morphological character, are almost certainly effects of cryptic species being present within M. acervorum. This is indicative of ongoing speciation within the populations of this insect, and of simultaneous unfinished lineage sorting at the nuclear DNA level.

RevDate: 2024-10-14
CmpDate: 2024-10-14

Mahieu L, González-González A, Rubio-Meléndez ME, et al (2024)

An Aphid Pest Superclone Benefits From a Facultative Bacterial Endosymbiont in a Host-Dependent Manner, Leading to Reproductive and Proteomic Changes.

Archives of insect biochemistry and physiology, 117(2):e22154.

The English grain aphid, Sitobion avenae, is a significant agricultural pest affecting wheat, barley, and oats. In Chile, the most prevalent and persistent clone (superclone) of S. avenae harbors the facultative endosymbiont bacterium Regiella insecticola. To determine the role of this bacterium in the reproductive success of this superclone, the presence of R. insecticola was manipulated to assess its impact on (1) the reproductive performance of this clone on two host plant species (wheat and barley), (2) the production of winged morphs, (3) changes in the insects' proteomic profiles, and (4) the root/shoot ratio of plant. It was found that the reproductive performance of this S. avenae superclone varied across host plants, depending on the presence of the facultative bacterial endosymbiont. Aphids infected with R. insecticola showed higher reproductive success on wheat, while the opposite effect was observed on barley. Aphid biomass was greater when infected with R. insecticola, particularly on barley. Additionally, aphids harboring R. insecticola exhibited a higher proportion of winged individuals on both host plants. Protein regulation in aphids on wheat was lower compared to those on barley. A higher root/shoot biomass ratio was observed in wheat plants compared to barley when infested by R. insecticola-infected aphid. Thus, R. insecticola significantly influences the reproductive performance and proteomic profile of a S. avenae superclone, with these effects shaped by the host plant. This suggests that the interaction between the host plant and the facultative endosymbiont contributes to the ecological success of this superclone.

RevDate: 2024-10-11

Kumazawa M, K Ifuku (2024)

Unraveling the evolutionary trajectory of LHCI in red-lineage algae: Conservation, diversification, and neolocalization.

iScience, 27(10):110897.

Red algae and the secondary symbiotic algae that engulfed a red alga as an endosymbiont are called red-lineage algae. Several photosystem (PS) I-light-harvesting complex I (LHCI) structures have been reported from red-lineage algae-two red algae Cyanidioschyzon merolae (Cyanidiophyceae) and Porphyridium purpureum (Rhodophytina), a diatom, and a Cryptophyte. Here, we clarified the orthologous relation of LHCIs by combining a detailed phylogenetic analysis and the structural information of PSI-LHCI. We found that the seven Lhcr groups in LHCI are conserved in Rhodophytina; furthermore, during both genome reduction in Cyanidioschyzonales and endosymbiosis leading to Cryptophyta, some LHCIs were lost and replaced by existing or differentiated LHCIs. We denominate "neolocalization" to these examples of flexible reorganization of LHCIs. This study provides insights into the evolutionary process of LHCIs in red-lineage algae and clarifies the need for both molecular phylogeny and structural information to elucidate the plausible evolutionary history of LHCI.

RevDate: 2024-10-10

Kaur T, AMV Brown (2024)

Discovery of a novel Wolbachia in Heterodera expands nematode host distribution.

Frontiers in microbiology, 15:1446506.

Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia, a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia's role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia. No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia-like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted wHet). Phylogenomic tree construction with PhyloBayes showed wHet was most closely related to another PPN Wolbachia, wTex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in wHet suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts.

RevDate: 2024-10-09

Iwai S (2024)

A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks.

Theoretical population biology pii:S0040-5809(24)00092-3 [Epub ahead of print].

The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.

RevDate: 2024-10-04

Leclerc L, Mattick J, Burns BP, et al (2024)

Metatranscriptomics provide insights into the role of the symbiont midichloria mitochondrii in Ixodes ticks.

FEMS microbiology ecology pii:7811338 [Epub ahead of print].

Ticks are important vectors of bacterial, viral and protozoan pathogens of humans and animals worldwide. Candidatus Midichloria mitochondrii (hereafter M. mitochondrii) is a highly abundant bacterial endosymbiont found in many tick species, including two medically important ticks respectively found in Europe and Australia, Ixodes ricinus and Ixodes holocyclus. The present study aimed to determine the symbiont's biological role by identifying lateral gene transfer (LGT) events, characterising the transcriptome, and performing differential expression analyses. Metatranscriptomic data revealed that M. mitochondrii species in I. ricinus and I. holocyclus were equipped with the metabolic potential and were actively transcribing the genes for several important roles including heme, biotin and folate synthesis, oxidative stress response, osmotic regulation, and ATP production in microaerobic conditions. Differential expression analyses additionally showed an upregulation in stringent response and DNA repair genes in M. mitochondrii of I. holocyclus nymphs compared to adults. Low rates of differential expression suggest the symbiont may lack global gene regulation, as observed in other endosymbionts. Moreover, the identification of an LGT event and the proposed specialisation of the M. mitochondrii strains, mIxholo1 and mIxholo2, for different I. holocyclus life stages highlight the complex interactions between M. mitochondrii and their tick hosts.

RevDate: 2024-10-03
CmpDate: 2024-10-03

Gu X, Ross PA, Yang Q, et al (2024)

Influence of genetic and environmental factors on the success of endosymbiont transfers in pest aphids.

Environmental microbiology, 26(10):e16704.

There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.

RevDate: 2024-10-01

Wang GH, Hoffmann A, J Champer (2024)

Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases.

Annual review of entomology [Epub ahead of print].

Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.

RevDate: 2024-10-01

Ling X, Gu X, Shen Y, et al (2024)

Comparative genomic analysis of Acanthamoeba from different sources and horizontal transfer events of antimicrobial resistance genes.

mSphere [Epub ahead of print].

UNLABELLED: Acanthamoeba species are among the most common free-living amoeba and ubiquitous protozoa, mainly distributed in water and soil, and cause Acanthamoeba keratitis (AK) and severe visual impairment in patients. Although several studies have reported genomic characteristics of Acanthamoeba, limited sample sizes and sources have resulted in an incomplete understanding of the genetic diversity of Acanthamoeba from different sources. While endosymbionts exert a significant influence on the phenotypes of Acanthamoeba, including pathogenicity, virulence, and drug resistance, the species diversity and functional characterization remain largely unexplored. Herein, our study sequenced and analyzed the whole genomes of 19 Acanthamoeba pathogenic strains that cause AK, and by integrating publicly available genomes, we sampled 29 Acanthamoeba strains from ocular, environmental, and other sources. Combined pan-genomic and comparative functional analyses revealed genetic differences and evolutionary relationships among the different sources of Acanthamoeba, as well as classification into multiple functional groups, with ocular isolates in particular showing significant differences that may account for differences in pathogenicity. Phylogenetic and rhizome gene mosaic analyses of ocular Acanthamoeba strains suggested that genomic exchanges between Acanthamoeba and endosymbionts, particularly potential antimicrobial resistance genes trafficking including the adeF, amrA, and amrB genes exchange events, potentially contribute to Acanthamoeba drug resistance. In conclusion, this study elucidated the adaptation of Acanthamoeba to different ecological niches and the influence of gene exchange on the evolution of ocular Acanthamoeba genome, guiding the clinical diagnosis and treatment of AK and laying a theoretical groundwork for developing novel therapeutic approaches.

IMPORTANCE: Acanthamoeba causes a serious blinding keratopathy, Acanthamoeba keratitis, which is currently under-recognized by clinicians. In this study, we analyzed 48 strains of Acanthamoeba using a whole-genome approach, revealing differences in pathogenicity and function between strains of different origins. Horizontal transfer events of antimicrobial resistance genes can help provide guidance as potential biomarkers for the treatment of specific Acanthamoeba keratitis cases.

RevDate: 2024-10-01

Díaz-Hernández AM, Sepúlveda DA, González-González A, et al (2024)

Water deficit and aphid resilience on wheat: examining Sitobion avenae F. and their bacterial symbionts interplay under controlled laboratory conditions.

Pest management science [Epub ahead of print].

BACKGROUND: Climate change has far-reaching effects on food security and agriculture, affecting crop yields and food distribution. Agriculture relies heavily on water for irrigation and production, making it vulnerable to water scarcity. Additionally, climate change can affect crop pest insects, leading to increased global crop losses, particularly in cereals, an important component of the human diet. Aphids are major crop pests and have a symbiotic relationship with bacterial endosymbionts that can contribute to their success as pests under a climate change scenario. To test the effect of drought on aphids, we examined varying levels of water deficit and endosymbiont composition on the grain aphid (Sitobion avenae) performance on wheat under controlled laboratory conditions. We measured the intrinsic rate of population increase (rm), the body weight of adult aphids, and the pre-reproductive period for different genotypes of the grain aphid (including Chilean superclones) under different irrigation regimes. We also analyzed the relative abundance of their endosymbionts under the different water treatments.

RESULTS: Our findings revealed that water deficit affects each aphid genotype differently, impacting various traits. For instance, the body weight of adult aphids was notably affected by different water treatments, with aphids grown under intermediate water deficit (IW) being significantly bigger. The relative abundance of endosymbionts also varied among genotypes and water treatments-specifically Regiella insecticola had a noticeably higher abundance under IW (P < 0.05).

CONCLUSION: This study provides valuable insights into the impact of water deficit on aphid performance and the role of endosymbionts in mitigating the effects of water deficit. © 2024 Society of Chemical Industry.

RevDate: 2024-10-01
CmpDate: 2024-09-29

Mfopit YM, Bilgo E, Boma S, et al (2024)

Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso.

BMC microbiology, 24(1):373.

BACKGROUND: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso.

RESULTS: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present.

CONCLUSION: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.

RevDate: 2024-09-28

Alvarez DL, Hayashida R, Cavallaro MC, et al (2024)

Susceptibility of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Mediterranean Populations Found in São Paulo, Brazil to 11 Insecticides and Characterization of Their Endosymbionts.

Insects, 15(9): pii:insects15090670.

The silverleaf whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is a significant agricultural pest worldwide, impacting a variety of crop yields. Since the introduction of B. tabaci Mediterranean (MED) species in Brazil, limited research has measured the relative efficacy of the primary insecticides used in whitefly management. This study evaluated the susceptibility of three distinct B. tabaci MED populations to 11 insecticide active ingredients and characterized the bacterial endosymbionts within each population. The insecticides tested were acetamiprid, bifenthrin, cyantraniliprole, diafenthiuron, spiromesifen, imidacloprid, pymetrozine, pyriproxyfen, sulfoxaflor, and thiamethoxam. Results showed varying LC50 and LC90 values among tested insecticides and populations. Notably, populations varied in response to imidacloprid and thiamethoxam with some populations having a 6× higher tolerance. Sequencing data of endosymbionts revealed that individuals from the most susceptible B. tabaci population harbored Rickettsia and Arsenophonus, whereas these bacteria were not detected in the resistant populations. These findings highlight the need for frequent insecticide toxicity bioassays of distinct B. tabaci populations and the adoption of integrated pest management strategies to preserve the efficacy of insecticides for B. tabaci control. Additionally, the role of infection by endosymbionts to alter susceptibility should be further explored.

RevDate: 2024-09-28

Kepngop LRK, Wosula EN, Amour M, et al (2024)

Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon.

Insects, 15(9): pii:insects15090657.

Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.

RevDate: 2024-09-28

Horgan FG (2024)

Virulence Adaptation by Rice Planthoppers and Leafhoppers to Resistance Genes and Loci: A Review.

Insects, 15(9): pii:insects15090652.

In recent decades, research on developing and deploying resistant rice has accelerated due to the availability of modern molecular tools and, in particular, advances in marker-assisted selection. However, progress in understanding virulence adaptation has been relatively slow. This review tracks patterns in virulence adaptation to resistance genes (particularly Bph1, bph2, Bph3, and bph4) and examines the nature of virulence based on selection experiments, responses by virulent populations to differential rice varieties (i.e., varieties with different resistance genes), and breeding experiments that interpret the genetic mechanisms underlying adaptation. The review proposes that varietal resistance is best regarded as a combination of minor and major resistance traits against which planthoppers develop partial or complete virulence through heritable improvements that are reversable or through evolutionary adaptation, respectively. Agronomic practices, deployment patterns, and herbivore population pressures determine the rates of adaptation, and there is growing evidence that pesticide detoxification mechanisms can accelerate virulence adaptation. Research to delay adaptation has mainly focused on gene pyramiding (i.e., including ≥ two major genes in a variety) and multilines (i.e., including ≥ two resistant varieties in a field or landscape); however, these strategies have not been adequately tested and, if not managed properly, could inadvertently accelerate adaptation compared to sequential deployment. Several research gaps remain and considerable improvements in research methods are required to better understand and manage virulence adaptation.

RevDate: 2024-09-28

Lilja T, Lindström A, Hernández-Triana LM, et al (2024)

European Culex pipiens Populations Carry Different Strains of Wolbachia pipientis.

Insects, 15(9): pii:insects15090639.

The mosquito Culex pipiens occurs in two ecotypes differing in their mating and overwintering behavior: pipiens mate in open environments and diapause, and molestus also mate in small spaces and is active throughout the year. Cx. pipiens carry Wolbachia endosymbionts of the wPip strain, but the frequency of infection differs between studied populations. Wolbachia infection affects the host reproductive success through cytoplasmic incompatibility. wPip Wolbachia is divided into five types, wPip I-V. The type of wPip carried varies among Cx. pipiens populations. In northern European locations different wPip types are found in the two ecotypes, whereas in southern locations, they often carry the same type, indicating differences in hybridization between ecotypes. In this study, Cx. pipiens specimens of both ecotypes were collected from Sweden and compared to specimens from Norway, England, Italy, and the Netherlands, as well as Cx. quinquefasciatus from Mali and Thailand. The abundance varied, but all specimens were infected by Wolbachia, while the tested specimens of other mosquito species were often uninfected. The wPip strains were determined through the sequence analysis of Wolbachia genes ank2 and pk1, showing that Cx. pipiens ecotypes in Scandinavia carry different wPip strains. The observed differences in wPip strains indicate that hybridization is not frequent and may contribute to barriers against hybridization of the ecotypes in Sweden and Norway.

RevDate: 2024-09-27

González CR, Reyes C, Castillo A, et al (2024)

Molecular evidence of pathogens and endosymbionts in the black horse fly Osca lata (Diptera: Tabanidae) in Southern Chile.

PLoS neglected tropical diseases, 18(9):e0012525 pii:PNTD-D-24-00263 [Epub ahead of print].

Little is known about the role of horse flies in potential pathogen transmission in Chile. This study provides evidence of the molecular detection of microorganisms in southern Chile. In the present study, adult Osca lata horse flies were trapped from Punucapa (39°45'06"S/73°16'08"W, Región de Los Ríos) and Puyehue (40°39'10"S/72°10'57"W, Región de Los Lagos), Chile. Among the 95 samples analyzed by PCR using specific primers, microorganisms were detected in 23.2% (n = 22) of the samples. Rickettsia spp. DNA was detected in 15.8% (n = 15) of the samples, Trypanosomatidae DNA in 5.3% (n = 5) of the samples, and filarial DNA in 2.1% (n = 2) of the samples. This study found that horse flies in the region are capable of carrying a variety of both parasites and endosymbionts. Further research is needed to understand the specific impact of horse flies as mechanical or biological vectors and develop effective control measures to prevent the spread of any microorganisms associated with disease.

RevDate: 2024-09-27

Duque-Granda D, Vivero-Gómez RJ, Junca H, et al (2024)

Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae).

Biotechnology reports (Amsterdam, Netherlands), 44:e00857.

Characterization of the temperature effects on the abundance and richness of the microbiota of Lutzomyia longipalpis, insect vector of Leishmania infantum in America, is an aspect of pivotal importance to understand the interactions between temperature, bacteria, and Leishmania infection. We developed and used a customized device with a temperature gradient (21-34 °C) to assess the temperature preferences of wild females of Lu. longipalpis collected in a rural area (Ricaurte, Cundinamarca, Colombia). Each replicate consisted of 50 females exposed to the gradient for an hour. At the end of the exposure time, insects were collected and separated by the temperature ranges selected varying from 21 °C to 34 °C. They were organized in 17 pools from which total DNA extracts were obtained, and samples were subjected to 16S rRNA amplicon sequencing analyzes. The most abundant phyla across the different temperature ranges were Proteobacteria (17.22-90.73 %), Firmicutes (5.99-77.21 %) and Actinobacteria (1.56-59.85 %). Results also showed an abundance (30 % to 57.36 %) of Pseudomonas (mainly at temperatures of 21-29 °C and 34 °C) that decreased to 6.55 %-13.20 % at temperatures of 31-33 °C, while Bacillus increase its abundance to 67.24 % at 29-33 °C. Serratia also had a greater representation (49.79 %), specifically in sand flies recovered at 25-27 °C. No significant differences were found at α-diversity level when comparing richness using the Shannon-Wiener, Simpson, and Chao1 indices, while β-diversity differences were found using the Bray-Curtis index (F-value of 3.5073, p-value < 0.013, R-squared of 0,4889), especially in the groups of Lu. longipalpis associated at higher temperatures (29-33 °C). It was also possible to detect the presence of endosymbionts such as Spiroplasma and Arsenophonus in the range of 29-33 °C. Rickettsia was only detected in Lu. longipalpis sand flies recovered between 25-27 °C. It was possible to characterize Lu. longipalpis microbiota in response to intraspecific temperature preferences and observe changes in bacterial communities and endosymbionts at different ranges of said environmental variable, which may be important in its vector competence and environmental plasticity to adapt to new climate change scenarios.

RevDate: 2024-09-26
CmpDate: 2024-09-24

Zhu YX, Zhang YY, Wang XY, et al (2024)

Wolbachia modify host cell metabolite profiles in response to short-term temperature stress.

Environmental microbiology reports, 16(5):e70013.

Wolbachia are common heritable endosymbionts that influence many aspects of ecology and evolution in various insects, yet Wolbachia-mediated intracellular metabolic responses to temperature stress have been largely overlooked. Here, we introduced the Wolbachia strain wLhui from the invasive Liriomyza huidobrensis (Blanchard) into a Drosophila Schneider 2 cell line (S2) and investigated the metabolite profile of wLhui-infected (S2_wLhui) and uninfected cell lines (S2_wu) under short-term exposure to either high (37°C), moderate (27°C), or low (7 and 17°C) temperatures. We find that Wolbachia infection, temperature stress, and their interactions significantly affect cellular metabolic profiles. Most significantly, when comparing the changes in metabolites between S2_wLhui and S2_wu, glycerophospholipids, amino acids, and fatty acids associated with metabolic pathways, microbial metabolism in diverse environments, and other pathways were significantly accumulated at either low or high temperatures. Our findings suggest Wolbachia-induced cellular physiological responses to short-term temperature stress, which may in turn affect the fitness and adaptive ability of its host as an invasive species.

RevDate: 2024-09-24

Lečić S, Wolfe TM, Ghosh A, et al (2024)

Spatially Varying Wolbachia Frequencies Reveal the Invasion Origin of an Agricultural Pest Recently Introduced From Europe to North America.

Evolutionary applications, 17(9):e70016.

The introduction of non-native species across the world represents a major global challenge. Retracing invasion origin is an important first step in understanding the invasion process, often requiring detailed sampling within the native range. Insect species frequently host Wolbachia, a widespread endosymbiotic bacterium that manipulates host reproduction to increase infected female fitness. Here, we draw on the spatial variation in infection frequencies of an actively spreading Wolbachia strain wCer2 to investigate the invasion origin of the European cherry fruit fly, Rhagoletis cerasi. This pest of cherries was introduced from Europe to North America within the last decade. First, we screen the introduced fly population for the presence of Wolbachia. The introduced populations lack the wCer2 strain and the strongly associated mitochondrial haplotype, suggesting strain absence due to founder effects with invading individuals originating from wCer2-uninfected native population(s). To narrow down geographic regions of invasion origin, we perform spatial interpolation of the wCer2 infection frequency across the native range and predict the infection frequency in unsampled regions. For this, we use an extensive dataset of R. cerasi infection covering 238 populations across Europe over 25 years, complemented with 14 additional populations analyzed for this study. We find that R. cerasi was unlikely introduced from wCer2-infected populations in Central and Western Europe. We propose wCer2-uninfected populations from Eastern Europe and the Mediterranean region as the most likely candidates for the invasion origin. This work utilizes Wolbachia as an indirect instrument to provide insights into the invasion source of R. cerasi in North America, revealing yet another application for this multifaceted heritable endosymbiont. Given the prevalence of biological invasions, rapidly uncovering invasion origins gives fundamental insights into how invasive species adapt to new environments.

RevDate: 2024-09-18

Noda T, Mizutani M, Harumoto T, et al (2024)

Frequent and asymmetric cell division in endosymbiotic bacteria of cockroaches.

Applied and environmental microbiology [Epub ahead of print].

Many insects are obligatorily associated with and dependent on specific microbial species as essential mutualistic partners. In the host insects, such microbial mutualists are usually maintained in specialized cells or organs, called bacteriocytes or symbiotic organs. Hence, potentially exponential microbial growth cannot be realized but must be strongly constrained by spatial and resource limitations within the host cells or tissues. How such endosymbiotic bacteria grow, divide, and proliferate is important for understanding the interactions and dynamics underpinning intimate host-microbe symbiotic associations. Here we report that Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits unexpectedly high rates of cell division (20%-58%) and, in addition, the cell division is asymmetric (average asymmetry index >1.5) when isolated from the German cockroach Blattella germanica. The asymmetric division of endosymbiont cells at high frequencies was observed irrespective of host tissues (fat bodies vs ovaries) or developmental stages (adults vs nymphs vs embryos) of B. germanica, and also observed in several different cockroach species. By contrast, such asymmetric and frequent cell division was observed neither in Buchnera, the obligatory bacterial endosymbiont of aphids, nor in Pantoea, the obligatory bacterial gut symbiont of stinkbugs. Comparative genomics of cell division-related genes uncovered that the Blattabacterium genome lacks the Min system genes that determine the cell division plane, which may be relevant to asymmetric cell division. These observations combined with comparative symbiont genomics provide insight into what processes and regulations may underpin the growth, division, and proliferation of such bacterial mutualists continuously constrained under within-host conditions.IMPORTANCEDiverse insects are dependent on specific bacterial mutualists for their survival and reproduction. Due to the long-lasting coevolutionary history, such symbiotic bacteria tend to exhibit degenerative genomes and suffer uncultivability. Because of their microbiological fastidiousness, the cell division patterns of such uncultivable symbiotic bacteria have been poorly described. Here, using fine microscopic and quantitative morphometric approaches, we report that, although bacterial cell division usually proceeds through symmetric binary fission, Blattabacterium, the ancient and essential endosymbiont of cockroaches, exhibits frequent and asymmetric cell division. Such peculiar cell division patterns were not observed with other uncultivable essential symbiotic bacteria of aphids and stinkbugs. Gene repertoire analysis revealed that the molecular machinery for regulating the bacterial cell division plane are lost in the Blattabacterium genome, suggesting the possibility that the general trend toward the reductive genome evolution of symbiotic bacteria may underpin their bizarre cytological/morphological traits.

RevDate: 2024-09-16

Gifford I, Suárez GA, JE Barrick (2024)

Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators.

PLoS genetics, 20(9):e1011306 pii:PGENETICS-D-24-00557 [Epub ahead of print].

Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-free Acinetobacter baylyi strain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulators rnd (ribonuclease D), csrA (RNA-binding carbon storage regulator), and hfq (RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restored csrA function. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.

RevDate: 2024-09-14

MacDonald ZG, Schoville S, Escalona M, et al (2024)

A genome assembly for the Chryxus Arctic (Oeneis chryxus), the highest butterfly in North America.

The Journal of heredity pii:7756931 [Epub ahead of print].

We describe a highly contiguous and complete diploid genome assembly for the Chryxus Arctic, Oeneis chryxus (E. Doubleday, [1849]), a butterfly species complex spanning much of northern and western North America. One subspecies, the Ivallda Arctic (O. c. ivallda), is endemic to California's Sierra Nevada and of particular biogeographic interest and conservation concern. Extreme alpine habitats occupied by this subspecies include the summit of Mt. Whitney, California, representing the highest elevation butterfly population in North America. The assembly presented here consists of two haplotypes, 738.92 and 770.85 Mb in length, with contig N50 values of 10.49 and 10.13 Mb, scaffold N50 values of 25.35 and 25.69 Mb, scaffold L50 values of 13 and 14, and BUSCO completeness scores of 96.5 and 98.3%, respectively. More than 97% of the assembly is organized into 29 scaffolds, which likely represent whole chromosomes. This assembly is the first major genomic resource for Oeneis, providing a foundational reference for future genomic studies on the taxonomy, evolutionary history, and conservation of the genus. As part of the California Conservation Genomics Project, we will use this assembly in conjunction with short-read resequencing to resolve patterns of evolutionary differentiation, adaptive genomic variation, and gene flow among remaining O. c. ivallda populations. These data can and will be used to inform the subspecies' conservation as warming climatic conditions continue to lead to the loss and fragmentation of alpine habitats. We also provide genome assemblies for the O. chryxus mitochondrion and a Wolbachia endosymbiont.

RevDate: 2024-09-13

Giannotta MM, Smith I, Michie M, et al (2024)

Molecular characterisation of Australasian Ixodiphagus (Hymenoptera; Encyrtidae; Encyrtinae) reveals unexpected diversity and a potential novel host switch.

International journal for parasitology pii:S0020-7519(24)00165-6 [Epub ahead of print].

Ticks are important medical and veterinary parasites that represent a substantial health threat to humans, companion animals, and livestock. Ixodiphagus wasps (Hymenoptera; Encyrtidae) are known endoparasitoids of ixodid (hard) and argasid (soft) ticks, with potential utility as natural biocontrol agents. Two species, Ixodiphagus brunneus and Ixodiphagus mysorensis, are previously recorded from Australia, however, the genus lacks formal revisionary work in Australia, and the validity and host ranges of these species remain uncertain. This work aimed to investigate the diversity of Ixodiphagus in Australasia and provide a molecular data resource for future work on these understudied endoparasitoids. We extracted DNA from archival Ixodiphagus specimens from Australian and New Zealand insect collections and performed high-throughput sequencing which resulted in complete or mostly complete mitochondrial genome sequences from 11 specimens, including I. brunneus, Ixodiphagus taiaroaensis, and a novel Ixodiphagus sp. reared from Rhipicephalus linnaei from Townsville, Australia. In addition, approximately 70% of the genome of the Wolbachia endosymbiont of I. brunneus was recovered. Finally, we screened 178 recently collected pooled tick samples from southern New South Wales, Australia, for Ixodiphagus spp. using 28S rRNA and cytochrome c oxidase subunit 1(COI) gene PCR, and recovered 14 positive samples. Phylogenetic analysis of Australasian Ixodiphagus spp. based on 28S rRNA and complete mitochondrial genome sequences determined that members of the Australasian fauna are distinct from Ixodiphagus hookeri (the only other Ixodiphagus species for which genetic data exists), and that at least two distinct species are present in Australia; I. brunneus identified from Ixodes holocyclus and Haemaphysalis bancrofti ticks, and an uncharacterised Ixodiphagus sp. found in Rhipicephalus linnaei ticks from northern Queensland. Furthermore, there was substantial genetic diversity at the 28S rRNA loci among I. brunneus samples, which may represent normal genetic variability or a secondary cryptic species. The molecular data generated here represents the first known for the genus Ixodiphagus in Australasia, doubling that of the world fauna, and provides the first known complete mitochondrial genomes for these important tick parasitoids.

RevDate: 2024-09-13

González MA, Ruiz-Arrondo I, Magallanes S, et al (2024)

Molecular and morphological analysis revealed a new Lipoptena species (Diptera: Hippoboscidae) in southern Spain harbouring Coxiella burnetii and bacterial endosymbionts.

Veterinary parasitology, 332:110300 pii:S0304-4017(24)00189-4 [Epub ahead of print].

Hippoboscid flies (Diptera: Hippoboscidae) are obligate bloodsucking ectoparasites of animals. In Europe, limited research has been conducted on this family until the recent introduction of the deer ked Lipoptena fortisetosa Maa, 1965. A new species of the genus Lipoptena, Lipoptena andaluciensis sp. nov., was found in southern Spain after extensive sampling with carbon-dioxide baited suction traps. A total of 52 females and 32 males were collected at 29 out of 476 sites examined over eight months in 2023. Lipoptena andaluciensis sp. nov. was characterized morphologically and molecularly. The new Lipoptena species can be differentiated from the closely related L. fortisetosa by size, chaetotaxy of the dorsal and ventral thorax, abdominal plates, and genitalia. Based on DNA-barcoding, our specimens showed the highest similarity with Melophagus ovinus (Linnaeus, 1758) (88.4 %) and with L. fortisetosa (86-88 %). Individual screening of Lipoptena specimens (n = 76) for seven important zoonotic pathogens such as bacteria (Anaplasmataceae family: Bartonella spp., Borrelia spp., Coxiella burnetii and Rickettsia spp.) and protozoans (Babesia spp. and Theileria spp.) by conventional PCR and RT-PCR was performed. DNA of C. burnetii was detected in one specimen, while two other specimens harboured Anaplasmataceae (Wolbachia spp., 100 % homology and another endosymbiont probably related to Arsenophonus sp., 95.3 % homology, respectively), all representing the first records of these bacteria in the Lipoptena spp. from Europe. Carbon dioxide traps probed its effectiveness as a reliable passive method for keds surveillance. Our study highlights the existence of a new Lipoptena species, presumably widely distributed in southern Spain. The role of this species in the transmission cycle of pathogens of medical-veterinary relevance needs to be considered in the area.

RevDate: 2024-09-12

Kang SF, Chen Y, J Chen (2024)

Wolbachia of phylogenetic supergroup K identified in oribatid mite Nothrus anauniensis (Acari: Oribatida: Nothridae).

Experimental & applied acarology [Epub ahead of print].

Heritable endosymbionts widely occur in arthropod and nematode hosts. Among these endosymbionts, Wolbachia has been extensively detected in many arthropods, such as insects and crustaceans. Maternal inheritance is the most basic and dominant mode of transmission of Wolbachia, and it might regulate the reproductive system of the host in four ways: feminization, parthenogenesis, male killing, and cytoplasmic incompatibility. There is a relatively high percentage (10%) of thelytokous species in Oribatida, a suborder under the subclass Acari of arthropods, but the study of the endosymbionts in oribatid mites is almost negligible. In this paper, we detected endosymbiotic bacteria in two parthenogenetic oribatid species, Nothrus anauniensis Canestrini and Fanzago, 1877, which has never been tested for endosymbionts, and Oppiella nova, in which Wolbachia and Cardinium have been reported before. The results showed that Wolbachia was first found in N. anauniensis with an infection rate of 100% across three populations. Phylogenetic analysis showed that Wolbachia in N. anauniensis belonged to the supergroup K, marking the second supergroup of Wolbachia found in oribatid mites. Unlike previous studies, our study did not detect Wolbachia in O. nova, leading to the exclusion of Wolbachia's role in mediating thelytoky in this species.

RevDate: 2024-09-12

Zang C, Wang X, Liu Y, et al (2024)

Wolbachia and mosquitoes: Exploring transmission modes and coevolutionary dynamics in Shandong Province, China.

PLoS neglected tropical diseases, 18(9):e0011944 pii:PNTD-D-24-00115 [Epub ahead of print].

Vector-borne diseases leave a large footprint on global health. Notable culprits include West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Japanese encephalitis virus (JEV), all transmitted by Culex mosquitoes. Chemical insecticides have been widely used to reduce the spread of mosquito-borne diseases. Still, mosquitoes are becoming more and more resistant to most chemical insecticides which cause particular harm to the ecology. Wolbachia belongs to the family Ehrlichiaceae in the order Rickettsiales and is a matrilineally inherited endosymbiont present in 60% of insects in nature. Wolbachia is capable of inducing a wide range of reproductive abnormalities in its hosts, such as cytoplasmic incompatibility, and can alter mosquito resistance to pathogen infection. Wolbachia has been proposed as a biological alternative to chemical vector control, and specific research progress and effectiveness have been achieved. Despite the importance of Wolbachia, this strategy has not been tested in Culex pipiens pallens, the most prevalent mosquito species in Shandong Province, China. Little is known about how the mass release of Wolbachia-infected mosquitoes may impact the genetic structure of Culex pipiens pallens, and how the symbiotic bacterium Wolbachia interacts with mitochondria during host mosquito transmission. Based on the population genetic structure of Culex pipiens pallens in Shandong Province, this study investigated the infection rate and infection type of Wolbachia in Shandong Province and jointly analysed the evolutionary relationship between the host mosquito and the symbiotic bacterium Wolbachia. Our study showed that Wolbachia naturally infected by Culex pipiens pallens in Shandong Province was less homologous to Wolbachia infected by Aedes albopictus released from mosquito factory in Guangzhou. Our results also show that Culex pipiens pallens is undergoing demographic expansion in Shandong Province. The overall Wolbachia infection rate of Culex pipiens pallens was 92.8%, and a total of 15 WSP haplotypes were detected. We found that the genetic diversity of Wolbachia was low in Culex pipiens pallens from Shandong Province, and the mosquitoes were infected only with type B Wolbachia. Visualizing the relationship between Culex pipiens pallens and Wolbachia using a tanglegram revealed patterns of widespread associations. A specific coevolutionary relationship exists between the host mosquito and Wolbachia. Knowledge of this mosquito-Wolbachia relationship will provide essential scientific information required for Wolbachia-based vector control approaches in Shandong Province and will lead to a better understanding of the diversity and evolution of Wolbachia for its utility as a biocontrol agent.

RevDate: 2024-09-12

Wannassi T, Sayadi A, Abbes K, et al (2024)

Prevalence of Wolbachia infection in field natural population of the apricot seed wasp Eurytoma samsonowi (Hymenoptera: Eurytomidae).

International microbiology : the official journal of the Spanish Society for Microbiology [Epub ahead of print].

Obligate endosymbiont bacteria associated with insects are naturally providing their hosts with essential nutrients such as vitamins and amino acids and biological services including protection from pathogens. In this study, we aimed to investigate the presence of Wolbachia infection among males and females of the parasitic apricot seed wasp (ASW) Eurytoma samsonowi Vassiliev (Vassiliev Petrograd 11: 1-15, 1915) (Hymenoptera: Eurytomidae), a very harmful pest of apricot (Prunus armeniaca), in the oasis of Gafsa, Southern-West of Tunisia. The detection of Wolbachia infection was assessed based on the amplification of the Wolbachia surface protein (wsp) gene and a multilocus sequence typing (MLST) as a universal genotyping tool for Wolbachia involving the analyses of genes gatB, coxA, hcpA, fbpA, and ftsz. Confirming the screening results, Wolbachia was detected in the natural apricot wasp for the first time, with a significant difference between males (5%) and females (59%) based on wsp gene. All Wolbachia strains identified in E. samsonowi were clustered among supergroups B of Wolbachia.

RevDate: 2024-09-12

Nag M, Pallavi J, Chakraborty S, et al (2024)

Bacterial endosymbionts of a nitrogen-fixing yeast Rhodotorula mucilaginosa JGTA-S1 - insights into a yet unknown micro-ecosystem.

Molecular omics [Epub ahead of print].

Rhodotorula mucilaginosa JGTA-S1 is a yeast strain capable of fixing nitrogen and improving nitrogen nutrition in rice plants because of its nitrogen-fixing endobacteria, namely Stutzerimonas (Pseudomonas) stutzeri and Bradyrhizobium sp. To gain a deeper understanding of yeast endosymbionts, we conducted a whole-genome shotgun metagenomic analysis of JGTA-S1 cells grown under conditions of nitrogen sufficiency and deficiency. Our results showed that the endosymbiont population varied depending on the nitrogen regime. Upon mechanical disruption of yeast cells, we obtained endosymbionts in culturable form viz. Bacillus velezensis and Staphylococcus sp. under nitrogen-replete conditions and Lysinibacillus telephonicus., Brevibacillus sp., and Niallia circulans under nitrogen-depleted conditions. S. stutzeri and Bradyrhizobium sp. the previously reported endosymbionts remained unculturable. The culturable endosymbionts Staphylococcus sp. and Bacillus velezensis appear to possess genes for dissimilatory nitrate reduction (DNRA), an alternative pathway for ammonia synthesis. However, our findings suggest that these endosymbionts are facultative as they survive outside the host. The fitness of the yeast was not affected by curing of these microbes. Curing the yeast diazotrophic endosymbionts took a toll on its fitness. Our results also showed that the populations of S. stutzeri and B. velezensis increased significantly under nitrogen-depleted conditions compared to nitrogen-sufficient conditions. The importance of DNRA and nitrogen fixation is also reflected in the metagenomic reads of JGTA-S1.

RevDate: 2024-09-12
CmpDate: 2024-09-11

Vosseberg J, van Hooff JJE, Köstlbacher S, et al (2024)

The emerging view on the origin and early evolution of eukaryotic cells.

Nature, 633(8029):295-305.

The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.

RevDate: 2024-09-12

McKee CD, Peel AJ, Hayman DTS, et al (2024)

Ectoparasite and bacterial population genetics and community structure indicate extent of bat movement across an island chain.

Parasitology pii:S0031182024000660 [Epub ahead of print].

Few studies have examined the genetic population structure of vector-borne microparasites in wildlife, making it unclear how much these systems can reveal about the movement of their associated hosts. This study examined the complex host–vector–microbe interactions in a system of bats, wingless ectoparasitic bat flies (Nycteribiidae), vector-borne microparasitic bacteria (Bartonella) and bacterial endosymbionts of flies (Enterobacterales) across an island chain in the Gulf of Guinea, West Africa. Limited population structure was found in bat flies and Enterobacterales symbionts compared to that of their hosts. Significant isolation by distance was observed in the dissimilarity of Bartonella communities detected in flies from sampled populations of Eidolon helvum bats. These patterns indicate that, while genetic dispersal of bats between islands is limited, some non-reproductive movements may lead to the dispersal of ectoparasites and associated microbes. This study deepens our knowledge of the phylogeography of African fruit bats, their ectoparasites and associated bacteria. The results presented could inform models of pathogen transmission in these bat populations and increase our theoretical understanding of community ecology in host–microbe systems.

RevDate: 2024-09-11

Silva NNP, Carvalho VR, Silva CB, et al (2024)

First report of the association between Wolbachia and Cotesia flavipes (Hymenoptera: Braconidae): effect on life history parameters of the parasitoid.

Bulletin of entomological research pii:S0007485324000361 [Epub ahead of print].

The symbiosis between microorganisms and host arthropods can cause biological, physiological, and reproductive changes in the host population. The present study aimed to survey facultative symbionts of the genera Wolbachia, Arsenophonus, Cardinium, Rickettsia, and Nosema in Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) and Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) in the laboratory and evaluate the influence of infection on the fitness of these hosts. For this purpose, 16S rDNA primers were used to detect these facultative symbionts in the host species, and the hosts' biological and morphological features were evaluated for changes resulting from the infection caused by these microorganisms. The bacterial symbionts studied herein were not detected in the D. saccharalis samples analysed, but the endosymbiont Wolbachia was detected in C. flavipes and altered the biological and morphological aspects of this parasitoid insect. The results of this study may help to elucidate the role of Wolbachia in maintaining the quality of populations/lineages of C. flavipes.

RevDate: 2024-09-11

Mfopit YM, Bilgo E, Boma S, et al (2024)

Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso.

Research square pii:rs.3.rs-4756528.

Background. Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. Results. A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened byPCR for the presence of Sodalis glossinidius , Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiense and 4 (2.0%) Glossina tachinoides . The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius , Spiroplasma and Wolbachia . Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%),respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachhnoides was infected by S. glossinidius and Wolbachia , but they were all infected by Spiroplasma sp . A total of 196 (98.0 %) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G.p. gambiense , but not G. tachinoides . Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius , Spiroplasma sp and Wolbachia , respectively. There was no association between Sodalis , Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported1.9 times likelihood of trypanosome absence when Wolbachia was present. Conclusion : This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp . Modifications of symbiotic interactions may pave way for disease control.

RevDate: 2024-09-10
CmpDate: 2024-09-10

Proctor JD, Mackevicius-Dubickaja V, Gottlieb Y, et al (2024)

Warm temperature inhibits cytoplasmic incompatibility induced by endosymbiotic Rickettsiella in spider hosts.

Environmental microbiology, 26(9):e16697.

Bacterial endosymbionts manipulate reproduction in arthropods to increase their prevalence in the host population. One such manipulation is cytoplasmic incompatibility (CI), wherein the bacteria sabotage sperm in infected males to reduce the hatch rate when mated with uninfected females, but zygotes are 'rescued' when that male mates with an infected female. In the spider Mermessus fradeorum (Linyphiidae), Rickettsiella symbionts cause variable levels of CI. We hypothesised that temperature affects the strength of CI and its rescue in M. fradeorum, potentially mediated by bacterial titre. We reared Rickettsiella-infected spiders in two temperature conditions (26°C vs. 20°C) and tested CI induction in males and rescue in females. In incompatible crosses between infected males and uninfected females, the hatch rate from warm males was doubled (mean ± standard error = 0.687 ± 0.052) relative to cool males (0.348 ± 0.046), indicating that CI induction is weaker in warm males. In rescue crosses between infected females and infected males, female rearing temperature had a marginal effect on CI rescue, but the hatch rate remained high for both warm (0.960 ± 0.023) and cool females (0.994 ± 0.004). Bacterial titre, as measured by quantitative polymerase chain reaction, was lower in warm than cool spiders, particularly in females, suggesting that bacterial titre may play a role in causing the temperature-mediated changes in CI.

RevDate: 2024-09-10

Frail S, Steele-Ogus M, Doenier J, et al (2024)

Genomes of nitrogen-fixing eukaryotes reveal a non-canonical model of organellogenesis.

bioRxiv : the preprint server for biology pii:2024.08.27.609708.

Endosymbiont gene transfer and import of host-encoded proteins are considered hallmarks of organelles necessary for stable integration of two cells. However, newer endosymbiotic models have challenged the origin and timing of such genetic integration during organellogenesis. Epithemia diatoms contain diazoplasts, closely related to recently-described nitrogen-fixing organelles, that are also stably integrated and co-speciating with their host algae. We report genomic analyses of two species, freshwater E.clementina and marine E.pelagica , which are highly divergent but share a common endosymbiotic origin. We found minimal evidence of genetic integration: nonfunctional diazoplast-to-nuclear DNA transfers in the E.clementina genome and 6 host-encoded proteins of unknown function in the E.clementina diazoplast proteome, far fewer than in other recently-acquired organelles. Epithemia diazoplasts are a valuable counterpoint to existing organellogenesis models, demonstrating that endosymbionts can be stably integrated and inherited absent significant genetic integration. The minimal genetic integration makes diazoplasts valuable blueprints for bioengineering endosymbiotic compartments de novo .

RevDate: 2024-09-10

Siehl R, Vyhnal K, SK Goffredi (2024)

Friendly fungi: Tropical insect families form partnerships with intracellular fungi related to pathogens.

iScience, 27(9):110674 pii:S2589-0042(24)01899-6.

Sap-sucking insects fail to obtain vitamins, amino acids, and sterols from their plant diet. To compensate, obligate intracellular bacterial symbionts (usually Sulcia and Vidania) provide these missing nutrients. Notably, some planthoppers within the Fulgoromorpha (suborder Auchenorrhyncha) associate with intracellular fungi, which either accompany or replace the anciently associated bacterial partners. Planthopper-symbiont surveys, however, have only been conducted in limited temperate regions, thus necessitating examination of these relationships in the tropics, where insect and fungal diversity is high. Here, five tropical planthopper families host yeast-like endosymbionts related to the parasitic genus Ophiocordyceps. Fungal endosymbiont identity generally corresponded to host family, suggesting possible coevolution. Vertical transmission to offspring was supported by the occurrence of fungal cells in developing eggs. This serves as the most comprehensive tropical planthopper-symbiont survey to date, doubling the roster of known Fulgoromorpha species that host intracellular fungi and further elucidating the remarkable success of this diverse insect group.

RevDate: 2024-09-09

Cash EI, Escalona M, Ward PS, et al (2024)

"The Reference Genome Of The Kidnapper Ant, Polyergus Mexicanus".

The Journal of heredity pii:7753503 [Epub ahead of print].

Polyergus kidnapper ants are widely distributed, but relatively uncommon, throughout the Holarctic, spanning an elevational range from sea level to over 3000 m. These species are well known for their obligate social parasitism with various Formica ant species, which they kidnap in dramatic, highly coordinated raids. Kidnapped Formica larvae and pupae become integrated into the Polyergus colony where they develop into adults and perform nearly all of the necessary colony tasks for the benefit of their captors. In California, Polyergus mexicanus is the most widely distributed Polyergus, but recent evidence has identified substantial genetic polymorphism within this species, including genetically divergent lineages associated with the use of different Formica host species. Given its unique behavior and genetic diversity, Polyergus mexicanus plays a critical role in maintaining ecosystem balance by influencing the population dynamics and genetic diversity of its host ant species, Formica, highlighting its conservation value and importance in the context of biodiversity preservation. Here, we present a high-quality genome assembly of P. mexicanus from a sample collected in Plumas County, CA, USA, in the foothills of the central Sierra Nevada. This genome assembly consists of 364 scaffolds spanning 252.31 Mb, with contig N50 of 481,250 kb, scaffold N50 of 10.36 Mb, and BUSCO completeness of 95.4%. We also assembled the genome of the Wolbachia endosymbiont of P. mexicanus - a single, circular contig spanning 1.23 Mb. These genome sequences provide essential resources for future studies of conservation genetics, population genetics, speciation, and behavioral ecology in this charismatic social insect.

RevDate: 2024-09-07

Depeux C, Branger A, Paulhac H, et al (2024)

Deleterious effects of Wolbachia on life history and physiological traits of common pill woodlice.

Journal of invertebrate pathology pii:S0022-2011(24)00130-7 [Epub ahead of print].

Most of eukaryotic organisms live in close interaction with micro-organisms called symbionts. Symbiotic interactions underpin the evolution of biological complexity, the health of organisms and, ultimately, the proper functioning of ecosystems. While some symbionts confer adaptive benefits on their host (mutualistic symbionts) and others clearly induce costs (parasitic symbionts), a number of micro-organisms are difficult to classify because they have been described as conferring both benefits and costs on their host. This is particularly true of the most widespread animal endosymbiont, Wolbachia pipientis. In this study, we investigated the influence of Wolbachia infection on a broad spectrum of ecological and physiological parameters of one of its native hosts, Armadillidium vulgare. The aim was to gain as complete a picture as possible of the influence of this endosymbiont on its host. Our results showed that the presence of Wolbachia resulted in a decrease in individual reproductive success and survival. Host immune cells density decreased and β-galactosidase activity (ageing biomarker) increased with the presence of Wolbachia, suggesting a negative impact of this endosymbiont on woodlice health. While previous studies have shown that Wolbachia can have a positive impact on the immunocompetence of A. vulgare, here we shed more light on the costs of infection. Our results illustrate the complex dynamics that exist between Wolbachia and its arthropod host and therefore offer valuable insights into the intricate interplay of symbiotic relationships in ecological systems.

RevDate: 2024-09-06

Arai H, Herran B, Sugimoto TN, et al (2024)

Cell-based assays and comparative genomics revealed the conserved and hidden effects of Wolbachia on insect sex determination.

PNAS nexus, 3(9):pgae348.

It is advantageous for maternally transmitted endosymbionts to skew the sex ratio of their hosts toward females. Some endosymbiotic bacteria, such as Wolbachia, cause their insect hosts to exclusively produce female offspring through male killing (MK) or feminization. In some lepidopteran insects, MK is achieved by affecting the sex-determining process in males, and a unique mechanism of MK and its functional link with feminization have been implicated. However, comparative analysis of these phenotypes is often difficult because they have been analyzed in different host-symbiont systems, and transinfection of Wolbachia across different hosts is often challenging. In this study, we demonstrated the effects of nine Wolbachia strains on the splicing of sex-determining genes in Lepidoptera by fixing the host genetic background using a cell culture system. Cell transinfection assays confirmed that three MK-inducing Wolbachia strains and one feminization-inducing Wolbachia strain increased the female-type splicing products of the core sex-determining genes doublesex, masculinizer, and zinc finger protein 2. Regarding Wolbachia strains that do not induce MK/feminization, three had no effect on these sex-determining genes, whereas two strains induced female-type splicing of masculinizer and doublesex but not zinc finger protein 2. Comparative genomics confirmed that homologs of oscar, the Wolbachia gene responsible for MK in Ostrinia, were encoded by four MK/feminizing Wolbachia strains, but not by five non-MK/nonfeminizing strains. These results support the conserved effects underlying MK and feminization induced by oscar-bearing Wolbachia and suggested other potential mechanisms that Wolbachia might employ to manipulate host sex.

RevDate: 2024-08-29

A Ghomi F, Jung JJ, Langridge GC, et al (2024)

High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality.

mBio [Epub ahead of print].

The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.

RevDate: 2024-08-28
CmpDate: 2024-08-28

Shang F, Ding BY, Niu J, et al (2024)

microRNA maintains nutrient homeostasis in the symbiont-host interaction.

Proceedings of the National Academy of Sciences of the United States of America, 121(36):e2406925121.

Endosymbionts provide essential nutrients for hosts, promoting growth, development, and reproduction. However, the molecular regulation of nutrient transport from endosymbiont to host is not well understood. Here, we used bioinformatic analysis, RNA-Sequencing, luciferase assays, RNA immunoprecipitation, and in situ hybridization to show that a bacteriocyte-distributed MRP4 gene (multidrug resistance-associated protein 4) is negatively regulated by a host (aphid)-specific microRNA (miR-3024). Targeted metabolomics, microbiome analysis, vitamin B6 (VB6) supplements, 3D modeling/molecular docking, in vitro binding assays (voltage clamp recording and microscale thermophoresis), and functional complementation of Escherichia coli were jointly used to show that the miR-3024/MRP4 axis controls endosymbiont (Serratia)-produced VB6 transport to the host. The supplementation of miR-3024 increased the mortality of aphids, but partial rescue was achieved by providing an external source of VB6. The use of miR-3024 as part of a sustainable aphid pest-control strategy was evaluated by safety assessments in nontarget organisms (pollinators, predators, and entomopathogenic fungi) using virus-induced gene silencing assays and the expression of miR-3024 in transgenic tobacco. The supplementation of miR-3024 suppresses MRP4 expression, restricting the number of membrane channels, inhibiting VB6 transport, and ultimately killing the host. Under aphids facing stress conditions, the endosymbiont titer is decreased, and the VB6 production is also down-regulated, while the aphid's autonomous inhibition of miR-3024 enhances the expression of MRP4 and then increases the VB6 transport which finally ensures the VB6 homeostasis. The results confirm that miR-3024 regulates nutrient transport in the endosymbiont-host system and is a suitable target for sustainable pest control.

RevDate: 2024-08-28

Miao Y-h, Dou W-h, Liu J, et al (2024)

Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission.

mBio [Epub ahead of print].

Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.

RevDate: 2024-08-27

Longley R, Robinson AJ, Asher OA, et al (2024)

Signatures of Mollicutes-related endobacteria in publicly available Mucoromycota genomes.

mSphere [Epub ahead of print].

Mucoromycota fungi and their Mollicutes-related endobacteria (MRE) are an ideal system for studying bacterial-fungal interactions and evolution due to the long-term and intimate nature of their interactions. However, methods for detecting MRE face specific challenges due to the poor representation of MRE in sequencing databases coupled with the high sequence divergence of their genomes, making traditional similarity searches unreliable. This has precluded estimations on the diversity of MRE associated with Mucoromycota. To determine the prevalence of previously undetected MRE in fungal genome sequences, we scanned 389 Mucoromycota genome assemblies available from the National Center for Biotechnology Information for the presence of MRE sequences using publicly available tools to map contigs from fungal assemblies to publicly available MRE genomes. We demonstrate a higher diversity of MRE genomes than previously described in Mucoromycota and a lack of cophylogeny between MRE and the majority of their fungal hosts. This supports the late invasion hypothesis regarding MRE acquisition across most of the examined fungal families. In contrast with other Mucoromycota lineages, MRE from the Gigasporaceae displayed some degree of cophylogeny with their hosts, which may indicate that horizontal transmission is restricted between members of this family or that transmission is strictly vertical. These results underscore the need for a refined process to capture sequencing data from potential fungal endosymbionts to discern their evolution and transmission. Screens of fungal genomes for MRE can help improve the quality of fungal genome assemblies while identifying new MRE lineages to further test hypotheses on their origin and evolution.IMPORTANCEMollicutes-related endobacteria (MRE) are obligate intracellular bacteria found within Mucoromycota fungi. Despite their frequent detection, MRE roles in host functioning are still unknown. Comparative genomic investigations can improve our understanding of the impact of MRE on their fungal hosts by identifying similarities and differences in MRE genome evolution. However, MRE genomes have only been assembled from a small fraction of Mucoromycota hosts. Here, we demonstrate that MRE can be present yet undetected in publicly available Mucoromycota genome assemblies. We use these newfound sequences to assess the broader diversity of MRE and their phylogenetic relationships with respect to their hosts. We demonstrate that publicly available tools can be used to extract novel MRE sequences from assembled fungal genomes leading to insights on MRE evolution. This work contributes to a greater understanding of the fungal microbiome, which is crucial to improving knowledge on the dynamics and impacts of fungi in microbial ecosystems.

RevDate: 2024-08-26

Gasser MT, Flatau R, Altamia M, et al (2024)

Complete genome sequences of two new strains of the shipworm endosymbiont, Teredinibacter turnerae.

bioRxiv : the preprint server for biology pii:2024.08.13.607755.

We present the complete genome sequences of two strains of Teredinibacter turnerae , SR01903 and SR02026, shipworm endosymbionts isolated from the gills of Lyrodus pedicellatus and Teredo bartschi , respectively, and derived from Oxford Nanopore sequencing. These sequences will aid in the comparative genomics of shipworm endosymbionts and understanding of host-symbiont selection.

RevDate: 2024-08-26
CmpDate: 2024-08-24

Alkathiri B, Lee S, Ahn K, et al (2024)

16S rRNA metabarcoding for the identification of tick-borne bacteria in ticks in the Republic of Korea.

Scientific reports, 14(1):19708.

Ticks are blood-sucking ectoparasites that act as vectors for transmission of various pathogens. The purpose of this study was to assess tick-borne bacteria, whether pathogenic or not, in ticks distributed in Korea using 16S rRNA metabarcoding and to confirm the results by PCR. Questing ticks were collected from four provinces in Korea in 2021 using the flagging method. After pooling the DNAs from the 61 tick pools (including 372 ticks), the bacterial 16S rRNA V3-V4 hypervariable region was amplified and sequenced using the MiSeq platform. Rickettsia, Ehrlichia, and the endosymbiont Wolbachia were confirmed by conventional PCR and molecular analysis. In total, 6907 ticks (534 pools) were collected and identified as belonging to five species (Haemaphysalis spp., H. longicornis, H. flava, I. nipponensis, and A. testudinarium). Through 16S rRNA metabarcoding, 240 amplicon sequence variants were identified. The dominant taxa were Rickettsiella and Coxiella. Additionally, pathogenic bacteria such as Rickettsia and Ehrlichia, endosymbiotic bacteria such as Wolbachia and Spiroplasma were identified. Polymerase chain reaction (PCR) was performed to confirm the presence of Rickettsia, Ehrlichia, Bartonella, and Wolbachia in individual ticks. Overall, 352 (65.92%) of 534 pools tested positive for at least one of the screened tick-borne bacteria. Rickettsia was the most prevalent (61.42%), followed by Wolbachia (5.05%). Ehrlichia was detected in 4.86% of tested samples, whereas Bartonella was not detected. In this study, 16S rRNA metabarcoding revealed the presence of Rickettsia, Wolbachia, and Ehrlichia, in that order of abundance, while showing absence of Bartonella. These results were confirmed to exhibit the same trend as that of the conventional PCR. Therefore, large-scale screening studies based on pooling, as applied in this study, will be useful for examining novel or rare pathogens present in various hosts and vectors.

RevDate: 2024-08-20

Méndez-Sánchez D, Schrecengost A, Rotterová J, et al (2024)

Methanogenic symbionts of anaerobic ciliates are host- and habitat-specific.

The ISME journal pii:7737421 [Epub ahead of print].

The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e., endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, though, our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.

RevDate: 2024-08-19

Luo T, Hu E, Gan L, et al (2024)

Candidatus Midichloria mitochondrii can be vertically transmitted in Hyalomma anatolicum.

Experimental parasitology pii:S0014-4894(24)00131-0 [Epub ahead of print].

In this study, a tick intracellular symbiont, Candidatus Midichloria mitochondrii, was detected in Hyalomma anatolicum from Xinjiang, China. Morphological identification and cytochrome oxidase subunit I sequence alignment were used for molecular identification of the tick species. PCR detection further revealed the presence of endosymbiont C. M. mitochondrii in the tick. Specific primers were designed for Groel and 16S rRNA genes of C. M. mitochondrii for PCR amplification and phylogenetic analysis. To further investigate the vertical transmission characteristics of C. M. mitochondrii, specific primers were designed based on the FabⅠ gene fragment to detect C. M. mitochondrii in different developmental stages and organs of the tick using qPCR. Of the 336 tick specimens collected from the field, 266 samples were identified as H. anatolicum on the basis of morphological characteristics. The gene fragment alignment results of COI confirmed that these ticks were H. anatolicum. The phylogenetic analysis showed that Groel gene of C. M. mitochondrii clustered with Midichloria strains detected in Ixodes ricinus ticks from Italy and Ixodes holocyclus ticks from Australia, with 100% sequence similarity. Furthermore, the 16S rRNA gene of C. M. mitochondrii clusters with the strains isolated from Hyalomma rufipes ticks in Italy, exhibiting the highest degree of homology. qPCR results showed that C. M. mitochondrii was present at all developmental stages of H. anatolicum, with the highest relative abundance in eggs, and lower relative abundance in nymphs and unfed males. With female tick blood feeding, the relative abundance of C. M. mitochondrii increased, and a particularly high relative abundance was detected in the ovaries of engorged female ticks. This study provides information for studying the survival adaptability of H. anatolicum, and provides data for further investigation of the mechanisms regulating tick endosymbionts in ticks, enriching the reference materials for comprehensive prevention and control of tick-borne diseases.

RevDate: 2024-08-14

Rohlfing K, Grewoldt M, Cordellier M, et al (2024)

Evidence for feminized genetic males in a flea beetle using newly identified X-linked markers.

Ecology and evolution, 14(8):e70123.

The equilibrium of sex ratios in sexually reproducing species is often disrupted by various environmental and genetic factors, including endosymbionts like Wolbachia. In this study, we explore the highly female-biased sex ratio observed in the flea beetle, Altica lythri, and its underlying mechanisms. Ancient hybridization events between Altica species have led to mitochondrial DNA introgression, resulting in distinct mitochondrial haplotypes that go along with different Wolbachia infections (HT1-wLytA1, HT1*- uninfected, HT2-wLytA2, and HT3-wLytB). Notably, beetles with some haplotypes exclusively produce female offspring, suggesting potential Wolbachia-induced phenomena such as feminization of genetic males. However, the observed female bias could also be a consequence of the ancient hybridization resulting in nuclear-cytoplasmic conflicts between introgressed mtDNA and nuclear genes. Through transcriptomic analysis and the program SEX-DETector, we established markers for genotypic sex differentiation for A. lythri, enabling genetic sexing via qPCR. Our findings suggest that feminization of genetic males is contributing to the skewed sex ratios, highlighting the intricate dynamics of sex determination and reproductive strategies in this flea beetle. This study provides valuable insights into the dynamics of genetic conflicts, endosymbionts, and sex ratios, revealing the novel phenomenon of genetic male feminization in the flea beetle A. lythri.

RevDate: 2024-08-12

Gasser MT, Liu A, Flatau R, et al (2024)

Closing the genome of Teredinibacter turnerae T7902 by long-read nanopore sequencing.

bioRxiv : the preprint server for biology pii:2024.07.30.605897.

We present the complete closed circular genome sequence derived from Oxford Nanopore sequencing of the shipworm endosymbiont Teredinibacter turnerae T7902 (DSM 15152, ATCC 39867), originally isolated from the shipworm Lyrodus pedicellatus (1). This sequence will aid in the comparative genomics of shipworm endosymbionts and the understanding of host-symbiont evolution.

RevDate: 2024-08-09

Augustijnen H, K Lucek (2024)

Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species.

Molecular ecology [Epub ahead of print].

Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.

RevDate: 2024-08-08

Park E, BS Leander (2024)

Molecular phylogeny of the Lecudinoidea (Apicomplexa): A major group of marine gregarines with diverse shapes, movements and hosts.

The Journal of eukaryotic microbiology [Epub ahead of print].

Gregarine apicomplexans are ubiquitous endosymbionts of invertebrate hosts. Despite their ecological and evolutionary importance, inferences about the phylogenetic relationships of major gregarine groups, such as the Lecudinidae and Urosporidae, have been hindered by vague taxonomic definitions and limited molecular and morphological data. In this study, we investigated five gregarine species collected from four families of polychaete hosts (Nereididae, Oenonidae, Hesionidae, and Phyllodocidae) using light microscopy (LM) and scanning electron microscopy (SEM). We also generated small subunit ribosomal DNA sequences from these species and conducted molecular phylogenetic analyses to elucidate the evolutionary relationships within the Lecudinoidea. Our results include new molecular and morphological data for two previously described species (Lecudina cf. platynereidis and Lecudina cf. arabellae), the discovery of a new species of Lecudina (L. oxydromus n. sp.), and the discovery of two novel species, namely Amplectina cordis n. gen. et. n. sp. and Sphinctocystis inclina n. sp. These two species exhibited unique shapes and movements, resembling those of urosporids but with a phylogenetic affinity to lecudinids, blurring the border between lecudinids and urosporids. Our study emphasizes the need for further investigations into this highly diverse group, which has achieved great success across multiple animal phyla with diverse shapes and movements.

RevDate: 2024-08-08

Khademi P, Tukmechi A, Sgroi G, et al (2024)

Molecular and genotyping techniques in diagnosis of Coxiella burnetii: An overview.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases pii:S1567-1348(24)00106-0 [Epub ahead of print].

Although we live in the genomic era, the accessibility of the complete genome sequence of Coxiella burnetii, the etiological agent of Q fever, has increased knowledge in the field of genomic diversity of this agent However, it is still somewhat of a "question" microorganism. The epidemiology of Q fever is intricate due to its global distribution, repository and vector variety, as well as absence of surveys defining the dynamic interaction among these factors. Moreover, C. burnetii is a microbial agent that can be utilized as a bioterror weapon. Therefore, typing techniques used to recognize the strains can also be used to trace infections back to their source which is of great significance. In this paper, the latest and current typing techniques of C. burnetii spp. are reviewed illustrating their advantages and constraints. Recently developed multi locus VNTR analysis (MLVA) and single-nucleotide polymorphism (SNP) typing methods are promising in improving diagnostic capacity and enhancing the application of genotyping techniques for molecular epidemiologic surveys of the challenging pathogen. However, most of these studies did not differentiate between C. burnetii and Coxiella-like endosymbionts making it difficult to estimate the potential role that ticks play in the epidemiology of Q fever. Therefore, it is necessary to analyze the vector competence of different tick species to transmit C. burnetii. Knowledge of the vector and reservoir competence of ticks is important for taking adequate preventive measures to limit infection risks. The significant prevalence observed for the IS1111 gene underscores its substantial presence, while other genes display comparatively lower prevalence rates. Methodological variations, particularly between commercial and non-commercial kit-based methods, result in different prevalence outcomes. Variations in sample processing procedures also lead to significant differences in prevalence rates between mechanical and non-mechanical techniques.

RevDate: 2024-08-08

Liu S, Liu XB, Zhang TT, et al (2024)

Effects of host plants on aphid feeding behavior, fitness, and Buchnera aphidicola titer.

Insect science [Epub ahead of print].

Aphids are sap-feeding plant pests that depend on their symbiotic relationships with the primary endosymbiont Buchnera aphidicola to adapt to impoverished diets. However, how the host plant affects the aphid primary symbiont and aphid adaptation to host plant transfer are poorly known. In this study, aphid symbiont screening and genotype identification were used to establish 2 aphid strains (Rhopalosiphum maidis [Rm] and Rhopalosiphum padi [Rp] strains) containing only Buchnera without any secondary symbionts for both wheat aphid species (R. maidis and R. padi). Aphid fitness and Buchnera titers were unstable on some of these host plants after transferring to novel host plants (G1-G5), which were influenced by host plant species and generations; however, they stabilized after prolonged feeding on the same plants for 10 generations. The electropenetrography (EPG) records showed that the allocation of aphid feeding time was significantly distinct in the 6 host plants; aphids had more intracellular punctures and spent more nonprobing time on green bristlegrass which was not conducive to its growth compared with other plants. The content of soluble sugar, soluble protein, and amino acid in the leaves of the 6 host plants were also clearly separated. The correlation coefficient analysis showed that the nutrient contents of host plants had significant correlations with aphid feeding behaviors, fitness, and Buchnera titers. In the meantime, aphid fitness, and Buchnera titers were also affected by aphid feeding behaviors. Also, Buchnera titers of aphid natural populations on 6 host plants showed a visible difference. Our study deepened our understanding of the interaction among aphids, endosymbionts, and host plants, indicating that the host plant nutrient content is a predominant factor affecting aphid adaptation to their diet, initially affecting aphid feeding behaviors, and further affecting aphid fitness and Buchnera titers, which would further contribute to exploiting new available strategies for aphid control.

RevDate: 2024-08-06

Durand S, Pigeault R, Giraud I, et al (2024)

Temporal stability of sex ratio distorter prevalence in natural populations of the isopod Armadillidium vulgare.

Heredity [Epub ahead of print].

In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points. SRD distribution was heterogeneous among populations despite their close geographic locations, so that when one SRD was frequent in a population, the other SRD was rare. In contrast with spatial heterogeneity, our results overall did not reveal substantial temporal variability in SRD prevalence within populations, suggesting equilibria in SRD evolutionary dynamics may have been reached or nearly so. Temporal stability was also generally reflected in mitochondrial and nuclear variation. Nevertheless, in a population, a Wolbachia strain replacement coincided with changes in mitochondrial composition but no change in nuclear composition, thus constituting a typical example of mitochondrial sweep caused by endosymbiont rise in frequency. Rare incongruence between Wolbachia strains and mitochondrial haplotypes suggested the occurrence of intraspecific horizontal transmission, making it a biologically relevant parameter for Wolbachia evolutionary dynamics in A. vulgare. Overall, our results provide an empirical basis for future studies on SRD evolutionary dynamics in the context of multiple sex determination factors co-existing within a single species, to ultimately evaluate the impact of SRD on the evolution of host sex determination mechanisms and sex chromosomes.

RevDate: 2024-08-06

Sarasombath PT, Sitthinamsuwan P, Wijit S, et al (2024)

Integrated Histological and Molecular Analysis of Filarial Species and Associated Wolbachia Endosymbionts in Human Filariasis Cases Presenting Atypically in Thailand.

The American journal of tropical medicine and hygiene pii:tpmd240147 [Epub ahead of print].

Atypical presentations of filariasis have posed diagnostic challenges due to the complexity of identifying the causative species and the difficulties in both diagnosis and treatment. In this study, we present the integrative histological and molecular analysis of seven atypical filariasis cases observed in regions of nonendemicity of Thailand. All filariasis cases were initially diagnosed based on histological findings. To confirm the causative species, molecular characterization based on both filarial mitochondrial (mt 12S rRNA and COI genes) and nuclear ITS1 markers was performed, together with the identification of associated Wolbachia bacterial endosymbionts. Among the cases studied, Brugia pahangi (N = 3), Brugia malayi (N = 1), Dirofilaria sp. "hongkongensis" (N = 2), and a suspected novel filarial species genetically related to Pelecitus copsychi (N = 1) were identified. By targeting the 16S rRNA gene, Wolbachia was also molecularly amplified in two cases of infection with Dirofilaria sp. "hongkongensis." Phylogenetic analysis further revealed that the detected Wolbachia could be classified into supergroups C and F, indicating the high genetic diversity of this endosymbiont in Dirofilaria sp. "hongkongensis." Furthermore, this study demonstrates the consistency between histological findings and species identification based on mitochondrial loci rather than on the nuclear ITS1. This suggests the utility of mitochondrial markers, particularly COI, as a highly sensitive and reliable diagnostic tool for the detection and differentiation of filarial species in clinical specimens. Precise identification of the causative species will facilitate accurate diagnosis and treatment and is also essential for the development of epidemiological and preventive strategies for filariasis.

RevDate: 2024-08-06

Faulstich NG, Deloach AR, Ksor YB, et al (2024)

Evidence for phosphate-dependent control of symbiont cell division in the model anemone Exaiptasia diaphana.

mBio [Epub ahead of print].

UNLABELLED: Reef-building corals depend on symbiosis with photosynthetic algae that reside within their cells. As important as this relationship is for maintaining healthy reefs, it is strikingly delicate. When ocean temperatures briefly exceed the average summer maximum, corals can bleach, losing their endosymbionts. Although the mechanisms governing bleaching are unknown, studies implicate uncoupling of coral and algal cell divisions at high temperatures. Still, little is known regarding the coordination of host and algal cell divisions. Control of nutrient exchange is one likely mechanism. Both nitrogen and phosphate are necessary for dividing cells, and although nitrogen enrichment is known to increase symbiont density in the host, the consequences of phosphate enrichment are poorly understood. Here, we examined the effects of phosphate depletion on symbiont growth in culture and compared the physiology of phosphate-starved symbionts in culture to symbionts that were freshly isolated from a host. We found that available phosphate is as low in freshly isolated symbionts as it is in phosphate-starved cultures. Furthermore, RNAseq revealed that phosphate-limited and freshly isolated symbionts have similar patterns of gene expression for phosphate-dependent genes, most notably upregulation of phosphatases, which is consistent with phosphate recycling. Similarly, lipid profiling revealed a substantial decrease in phospholipid abundance in both phosphate-starved cultures and freshly isolated symbionts. These findings are important because they suggest that limited access to phosphate controls algal cell divisions within a host.

IMPORTANCE: The corals responsible for building tropical reefs are disappearing at an alarming rate as elevated sea temperatures cause them to bleach and lose the algal symbionts they rely on. Without these symbionts, corals are unable to harvest energy from sunlight and, therefore, struggle to thrive or even survive in the nutrient-poor waters of the tropics. To devise solutions to address the threat to coral reefs, it is necessary to understand the cellular events underpinning the bleaching process. One model for bleaching proposes that heat stress impairs algal photosynthesis and transfer of sugar to the host. Consequently, the host's demands for nitrogen decrease, increasing nitrogen availability to the symbionts, which leads to an increase in algal proliferation that overwhelms the host. Our work suggests that phosphate may play a similar role to nitrogen in this feedback loop.

RevDate: 2024-08-05

Wang X, DK Mathias (2024)

Surveillance of ticks (Acari: Ixodidae) and tick-borne pathogens in Eastern Central Alabama.

Journal of medical entomology pii:7727740 [Epub ahead of print].

Similar to other states in the southeastern United States, human cases of tick-borne diseases in Alabama have risen steadily over the last 2 decades. Nevertheless, limited data have been published on ticks or tick-borne pathogen (TBP) distributions since the 1990s. To better understand the risk of tick and TBP exposure in eastern central Alabama, ticks were sampled repeatedly across 8 sites associated with recreational use during May and June of 2015 to characterize tick density and diversity. Although habitats were similar across sites, tick density varied among locations. Seven species were collected, but 97.7% of 1,310 samples were the lone star tick, Amblyomma americanum (L.), the primary vector of ehrlichial agents and the tick species most commonly linked to alpha-gal syndrome and southern tick-associated rash illness. To investigate pathogen prevalence among sites, we tested A. americanum by a multiplex qPCR assay for 5 bacterial species, including 3 Ehrlichia spp. and 2 Rickettsia spp. None of the specimens tested positive for Panola Mountain Ehrlichia or Rickettsia parkeri. However, causative agents of human ehrlichiosis, Ehrlichia chaffeensis and Ehrlichia ewingii, occurred at half of the locations with, respectively, 0.27% and 0.45% of A. americanum infected on average. In contrast, Rickettsia amblyommatis, a tick endosymbiont suspected to be nonpathogenic, was found in 54.5% of the 1119 A. americanum tested. Despite low infection rates of Ehrlichia spp. in A. americanum, high encounter rates with this species in recreational deciduous woodlands suggest a moderate risk of tick bite and a low-to-moderate risk of TBP exposure in late spring.

RevDate: 2024-08-04
CmpDate: 2024-08-04

Bilgo E, Mancini MV, Gnambani JE, et al (2024)

Wolbachia confers protection against the entomopathogenic fungus Metarhizium pingshaense in African Aedes aegypti.

Environmental microbiology reports, 16(4):e13316.

Symbiotic and pathogenic microorganisms such as bacteria and fungi represent promising alternatives to chemical insecticides to respond to the rapid increase of insecticide resistance and vector-borne disease outbreaks. This study investigated the interaction of two strains of Wolbachia, wAlbB and wAu, with the natural entomopathogenic fungi from Burkina Faso Metarhizium pingshaense, known to be lethal against Anopheles mosquitoes. In addition to showing the potential of Metarhizium against African Aedes aegypti wild-type populations, our study shows that the wAlbB and wAu provide a protective advantage against entomopathogenic fungal infections. Compared to controls, fungal-infected wAu and wAlbB-carrying mosquitoes showed higher longevity, without any significant impact on fecundity and fertility phenotypes. This study provides new insights into the complex multipartite interaction among the mosquito host, the Wolbachia endosymbiont and the entomopathogenic fungus that might be employed to control mosquito populations. Future research should investigate the fitness costs of Wolbachia, as well as its spread and prevalence within mosquito populations. Additionally, evaluating the impact of Wolbachia on interventions involving Metarhizium pingshaense through laboratory and semi-field population studies will provide valuable insights into the effectiveness of this combined approach.

RevDate: 2024-08-03

Sadaula GP, Manandhar P, Shrestha BK, et al (2024)

Detection and characterization of vector-borne parasites and Wolbachia endosymbionts in greater one-horned rhinoceros (Rhinoceros unicornis) in Nepal.

Acta tropica pii:S0001-706X(24)00226-2 [Epub ahead of print].

Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.

RevDate: 2024-08-03

Behrmann LV, Meier K, Vollmer J, et al (2024)

In vitro extracellular replication of Wolbachia endobacteria.

Frontiers in microbiology, 15:1405287.

Obligate intracellular endobacteria of the genus Wolbachia are widespread in arthropods and several filarial nematodes. Control programs for vector-borne diseases (dengue, Zika, malaria) and anti-filarial therapy with antibiotics are based on this important endosymbiont. Investigating Wolbachia, however, is impeded by the need for host cells. In this study, the requirements for Wolbachia wAlbB growth in a host cell-free in vitro culture system were characterized via qPCRs. A cell lysate fraction from Aedes albopictus C6/36 insect cells containing cell membranes and medium with fetal bovine serum were identified as requisite for cell-free replication of Wolbachia. Supplementation with the membrane fraction of insect cell lysate increased extracellular Wolbachia replication by 4.2-fold. Replication rates in the insect cell-free culture were lower compared to Wolbachia grown inside insect cells. However, the endobacteria were able to replicate for up to 12 days and to infect uninfected C6/36 cells. Cell-free Wolbachia treated with the lipid II biosynthesis inhibitor fosfomycin had an enlarged phenotype, seen previously for intracellular Wolbachia in C6/36 cells, indicating that the bacteria were unable to divide. In conclusion, we have developed a cell-free culture system in which Wolbachia replicate for up to 12 days, providing an in vitro tool to elucidate the biology of these endobacteria, e.g., cell division by using compounds that may not enter the C6/36 cells. A better understanding of Wolbachia biology, and in particular host-symbiont interactions, is key to the use of Wolbachia in vector control programs and to future drug development against filarial diseases.

RevDate: 2024-08-01
CmpDate: 2024-08-01

Jacobs J, Nakamoto A, Mastoras M, et al (2024)

Complete de novo assembly of Wolbachia endosymbiont of Drosophila willistoni using long-read genome sequencing.

Scientific reports, 14(1):17770.

Wolbachia is an obligate intracellular α-proteobacterium, which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in their diverse hosts, including the modulation of host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The wWil strain from the neotropical fruit fly, Drosophila willistoni, exhibits a remarkably high affinity for host germline-derived cells relative to the somatic cells. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the wWil strain isolated from host cell culture cells. Here, we present the first high quality Nanopore assembly of wWil, the Wolbachia endosymbiont of D. willistoni. Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel and wAu strains from Drosophila melanogaster and Drosophila simulans, respectively.

RevDate: 2024-07-31

Moreira D, Blaz J, Kim E, et al (2024)

A gene-rich mitochondrion with a unique ancestral protein transport system.

Current biology : CB pii:S0960-9822(24)00920-5 [Epub ahead of print].

Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.[1][,][2][,][3] Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).[4] This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.[5][,][6][,][7][,][8][,][9][,][10][,][11][,][12][,][13][,][14] At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.[8] Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.[15][,][16] Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.

RevDate: 2024-07-31

Kaneko M, Omori T, Igai K, et al (2024)

Facultative endosymbiosis between cellulolytic protists and methanogenic archaea in the gut of the Formosan termite Coptotermes formosanus.

ISME communications, 4(1):ycae097.

Anaerobic protists frequently harbour methanogenic archaea, which apparently contribute to the hosts' fermentative metabolism by consuming excess H2. However, the ecological properties of endosymbiotic methanogens remain elusive in many cases. Here we investigated the ecology and genome of the endosymbiotic methanogen of the Cononympha protists in the hindgut of the termite Coptotermes formosanus. Microscopic and 16S rRNA amplicon sequencing analyses revealed that a single species, designated here "Candidatus Methanobrevibacter cononymphae", is associated with both Cononympha leidyi and Cononympha koidzumii and that its infection rate in Cononympha cells varied from 0.0% to 99.8% among termite colonies. Fine-scale network analysis indicated that multiple 16S rRNA sequence variants coexisted within a single host cell and that identical variants were present in both Cononympha species and also on the gut wall. Thus, "Ca. Methanobrevibacter cononymphae" is a facultative endosymbiont, transmitted vertically with frequent exchanges with the gut environment. Indeed, transmission electron microscopy showed escape or uptake of methanogens from/by a Cononympha cell. The genome of "Ca. Methanobrevibacter cononymphae" showed features consistent with its facultative lifestyle: i.e., the genome size (2.7 Mbp) comparable to those of free-living relatives; the pseudogenization of the formate dehydrogenase gene fdhA, unnecessary within the non-formate-producing host cell; the dependence on abundant acetate in the host cell as an essential carbon source; and the presence of a catalase gene, required for colonization on the microoxic gut wall. Our study revealed a versatile endosymbiosis between the methanogen and protists, which may be a strategy responding to changing conditions in the termite gut.

RevDate: 2024-07-31

Bontemps Z, Paranjape K, L Guy (2024)

Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts.

FEMS microbiology reviews pii:7724391 [Epub ahead of print].

Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by - among others - Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally very lowly abundant, and are mainly identified in aquatic biomes. Most DIGs harbor a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIG as a group from an ecological, molecular and evolutionary perspective.

RevDate: 2024-07-30
CmpDate: 2024-07-30

Owashi Y, Arai H, Adachi-Hagimori T, et al (2024)

Rickettsia induces strong cytoplasmic incompatibility in a predatory insect.

Proceedings. Biological sciences, 291(2027):20240680.

Rickettsia, a group of intracellular bacteria found in eukaryotes, exhibits diverse lifestyles, with some acting as vertebrate pathogens transmitted by arthropod vectors and others serving as maternally transmitted arthropod endosymbionts, some of which manipulate host reproduction for their own benefit. Two phenotypes, namely male-killing and parthenogenesis induction are known as Rickettsia-induced host reproductive manipulations, but it remains unknown whether Rickettsia can induce other types of host manipulation. In this study, we discovered that Rickettsia induced strong cytoplasmic incompatibility (CI), in which uninfected females produce no offspring when mated with infected males, in the predatory insect Nesidiocoris tenuis (Hemiptera: Miridae). Molecular phylogenetic analysis revealed that the Rickettsia strain was related to Rickettsia bellii, a common insect endosymbiont. Notably, this strain carried plasmid-encoded homologues of the CI-inducing factors (namely cifA-like and cifB-like genes), typically found in Wolbachia, which are well-known CI-inducing endosymbionts. Protein domain prediction revealed that the cifB-like gene encodes PD-(D/E)XK nuclease and deubiquitinase domains, which are responsible for Wolbachia-induced CI, as well as ovarian tumour-like (OTU-like) cysteine protease and ankyrin repeat domains. These findings suggest that Rickettsia and Wolbachia endosymbionts share underlying mechanisms of CI and that CI-inducing ability was acquired by microbes through horizontal plasmid transfer.

RevDate: 2024-07-30

Blasco-Lavilla N, López-López A, De la Rúa P, et al (2024)

Infection by Crithidia bombi increases relative abundance of Lactobacillus spp. in the gut of Bombus terrestris.

Molecular ecology [Epub ahead of print].

Gut microbial communities confer protection against natural pathogens in important pollinators from the genera Bombus and Apis. In commercial species B. terrestris and B. impatiens, the microbiota increases their resistance to the common and virulent trypanosomatid parasite Crithidia bombi. However, the mechanisms by which gut microorganisms protect the host are still unknown. Here, we test two hypotheses: microbiota protect the host (1) through stimulation of its immune response or protection of the gut epithelium and (2) by competing for resources with the parasite inside the gut. To test them, we reduced the microbiota of workers and then rescued the microbial community by feeding them with microbiota supplements. We then exposed them to an infectious dose of C. bombi and characterised gene expression and gut microbiota composition. We examined the expression of three antimicrobial peptide genes and Mucin-5AC, a gene with a putative role in gut epithelium protection, using qPCR. Although a protective effect against C. bombi was observed in bumblebees with supplemented microbiota, we did not observe an effect of the microbiota on gene expression that could explain alone the protective effect observed. On the other hand, we found an increased relative abundance of Lactobacillus bacteria within the gut of infected workers and a negative correlation of this genus with Gilliamella and Snodgrassella genera. Therefore, our results point to a displacement of bumblebee endosymbionts by C. bombi that might be caused by competition for space and nutrients between the parasite and the microbiota within the gut.

RevDate: 2024-07-29

Start CC, Anderson CMH, M R Gatehouse A, et al (2024)

Dynamic response of essential amino acid biosynthesis in Buchnera aphidicola to supplement sub-optimal host nutrition.

Journal of insect physiology pii:S0022-1910(24)00071-4 [Epub ahead of print].

The endosymbiotic bacterium Buchnera aphidicola allows its host Acyrthosiphon pisum to utilise a nutritionally limited phloem sap diet without significant mortality by providing essential amino acids (EAAs), which it biosynthesises de novo via complex pathways consisting of multiple enzymes. Previous studies have reported how non-essential amino acids (NEAAs) provided by the host are utilised by B. aphidicola, along with how genes within the biosynthetic pathways respond to amino acid deficiency. Although the effect on B. aphidicola gene expression upon the removal of a single EAA and multiple NEAAs from the A. pisum diet has been reported, little is known about the effects of the complete simultaneous removal of multiple EAAs, especially branched-chain amino acids (BCAAs). To investigate this, A. pisum was provided with amino acid deficient diets ilv- (lacking isoleucine, leucine, valine) or thra- (lacking threonine, methionine, lysine). Due to their involvement in the production of several amino acids, the expression of genes ilvC, ilvD (both involved in isoleucine, leucine and valine biosynthesis) and thrA (involved in threonine, methionine and lysine biosynthesis) was analysed and the expression of trpC (involved in tryptophan biosynthesis) was used as a control. Survival was reduced significantly when A. pisum was reared on ilv- or thra- (P < 0.001 and P = 0.000 respectively) compared to optimal artificial diet and was significantly lower on ilv- (P< 0.001) than thra-. This is likely attributed to the EAAs absent from ilv- being required at higher concentrations for aphid growth, than those EAAs absent from thra-. Expression of ilvC and ilvD were upregulated 2.49- and 2.08-fold (respectively) and thrA expression increased 2.35- and 2.12-fold when A. pisum was reared on ilv- and thra- (respectively). The surprisingly large upregulation of thrA when reared on ilv- is likely due to threonine being an intermediate in isoleucine biosynthesis. Expression of trpC was not affected by rearing on either of the two amino acid deficient diets. To our knowledge this study has shown, for the first time, how genes within the biosynthetic pathways of an endosymbiont respond to the simultaneous complete omission of multiple EAAs as well as all three BCAAs (leucine, isoleucine, valine), from the host diet.

RevDate: 2024-07-29

Yan G, Wei T, Lan Y, et al (2024)

Different parts of the mussel Gigantidas haimaensis holobiont responded differently to deep-sea sampling stress.

Integrative zoology [Epub ahead of print].

Acute environmental changes cause stress during conventional deep-sea biological sampling without in situ fixation and affect gene expressions of samples collected. However, the degree of influence and underlying mechanisms are hardly investigated. Here, we conducted comparative transcriptomic analyses between in situ and onboard fixed gills and between in situ and onboard fixed mantles of deep-sea mussel Gigantidas haimaensis to assess the effects of incidental sampling stress. Results showed that transcription, translation, and energy metabolism were upregulated in onboard fixed gills and mantles, thereby mobilizing rapid gene expression to tackle the stress. Autophagy and phagocytosis that related to symbiotic interactions between the host and endosymbiont were downregulated in the onboard fixed gills. These findings demonstrated that symbiotic gill and nonsymbiotic mantle responded differently to sampling stress, and symbiosis in the gill was perturbed. Further comparative metatranscriptomic analysis between in situ and onboard fixed gills revealed that stress response genes, peptidoglycan biosynthesis, and methane fixation were upregulated in the onboard fixed endosymbiotic Gammaproteobacteria inside the gills, implying that energy metabolism of the endosymbiont was increased to cope with sampling stress. Furthermore, comparative analysis between the mussel G. haimaensis and the limpet Bathyacmaea lactea transcriptomes resultedidentified six transcription factor orthologs upregulated in both onboard fixed mussel mantles and limpets, including sharply increased early growth response protein 1 and Kruppel-like factor 5. They potentially play key roles in initiating the response of sampled deep-sea macrobenthos to sampling stress. Our results clearly show that in situ fixed biological samples are vital for studying deep-sea environmental adaptation.

RevDate: 2024-07-29
CmpDate: 2024-07-27

Santana-Filho AP, Pereira AJ, Laibida LA, et al (2024)

Lipidomic Analysis Reveals Branched-Chain and Cyclic Fatty Acids from Angomonas deanei Grown under Different Nutritional and Physiological Conditions.

Molecules (Basel, Switzerland), 29(14):.

Angomonas deanei belongs to Trypanosomatidae family, a family of parasites that only infect insects. It hosts a bacterial endosymbiont in a mutualistic relationship, constituting an excellent model for studying organelle origin and cellular evolution. A lipidomic approach, which allows for a comprehensive analysis of all lipids in a biological system (lipidome), is a useful tool for identifying and measuring different expression patterns of lipid classes. The present study applied GC-MS and NMR techniques, coupled with principal component analysis (PCA), in order to perform a comparative lipidomic study of wild and aposymbiotic A. deanei grown in the presence or absence of FBS. Unusual contents of branched-chain iso C17:0 and C19:0-cis-9,10 and-11,12 fatty acids were identified in A. deanei cultures, and it was interesting to note that their content slightly decreased at the log phase culture, indicating that in the latter growth stages the cell must promote the remodeling of lipid synthesis in order to maintain the fluidity of the membrane. The combination of analytical techniques used in this work allowed for the detection and characterization of lipids and relevant contributors in a variety of A. deanei growth conditions.

RevDate: 2024-07-26

Ibañez-Escribano A, Gomez-Muñoz MT, Mateo M, et al (2024)

Microbial Matryoshka: Addressing the Relationship between Pathogenic Flagellated Protozoans and Their RNA Viral Endosymbionts (Family Totiviridae).

Veterinary sciences, 11(7):.

Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.

RevDate: 2024-07-26

Collado-Cuadrado M, Alarcón-Torrecillas C, Rodríguez-Escolar I, et al (2024)

Wolbachia Promotes an Anti-Angiogenic Response Using an In Vitro Model of Vascular Endothelial Cells in Relation to Heartworm Disease.

Pathogens (Basel, Switzerland), 13(7): pii:pathogens13070603.

Heartworm disease caused by Dirofilaria immitis is a vector-borne zoonotic disease responsible for the infection of mainly domestic dogs and cats, or these are those for which the most data are known. Humans are an accidental host where a benign, asymptomatic pulmonary nodule may originate. Dirofilaria immitis also harbours the endosymbiont bacteria of the genus Wolbachia, which play a role in moulting, embryogenesis, inflammatory pathology, and immune response. When Wolbachia sp. is released into the bloodstream, endothelial and pulmonary damage is exacerbated, further encouraging thrombus formation and pulmonary hypertension, facilitating congestive heart failure and death of the animal. Previous studies have shown that parasite excretory/secretory products are able to activate the pro-angiogenic pathway (formation of new vessels) to facilitate parasite survival. The aim of this study was to analyse the role of Wolbachia sp. and its relationship with the cellular processes and the angiogenic pathway in a model of human endothelial cells in vitro. The use of recombinant Wolbachia Surface Protein (rWSP) showed that its stimulation exerted an anti-angiogenic effect by detecting an increase in the production of VEGFR-1/sFlt1 and sEndoglin and did not affect the production of VEGFR-2 and mEndoglin (pro-angiogenic molecules). Furthermore, it did not stimulate cell proliferation or migration, although it did negatively stimulate the formation of pseudocapillaries, slowing down this process. These cellular processes are directly related to the angiogenic pathway so, with these results, we can conclude that Wolbachia sp. is related to the stimulation of the anti-angiogenic pathway, not facilitating the survival of D. immitis in vascular endothelium.

RevDate: 2024-07-26

Singh R, Suresh S, Fewell JH, et al (2024)

Wolbachia-infected pharaoh ant colonies have higher egg production, metabolic rate, and worker survival.

The Journal of experimental biology pii:361277 [Epub ahead of print].

Wolbachia is a widespread maternally-transmitted endosymbiotic bacteria with diverse phenotypic effects on its insect hosts, ranging from parasitic to mutualistic. Wolbachia commonly infects social insects, where it faces unique challenges associated with its hosts' caste-based reproductive division of labor and colony living. Here we dissect the benefits and costs of Wolbachia infection on life-history traits of the invasive pharaoh ant, Monomorium pharaonis, which are relatively short-lived and show natural variation in Wolbachia infection status between colonies. We quantified effects of Wolbachia infection on the lifespan of queen and worker castes, the egg-laying rate of queens across queen lifespan, and the metabolic rates of whole colonies and colony members. Infected queens laid more eggs than uninfected queens but had similar metabolic rates and lifespans. Interestingly, infected workers outlived uninfected workers. At the colony level, infected colonies were more productive due to increased queen egg-laying rates and worker longevity, and infected colonies had higher metabolic rates during peak colony productivity. While some effects of infection, such as elevated colony-level metabolic rates may be detrimental in more stressful natural conditions, we did not find any costs of infection under relatively benign laboratory conditions. Overall, our study emphasizes that Wolbachia infection can have beneficial effects on ant colony growth and worker survival in at least some environments.

RevDate: 2024-07-26
CmpDate: 2024-07-26

Sorwar E, Oliveira JIN, Malar C M, et al (2024)

Assembly and comparative analyses of the Geosiphon pyriformis metagenome.

Environmental microbiology, 26(7):e16681.

Geosiphon pyriformis, a representative of the fungal sub-phylum Glomeromycotina, is unique in its endosymbiosis with cyanobacteria within a fungal cell. This symbiotic relationship occurs in bladders containing nuclei of G. pyriformis, Mollicutes-like bacterial endosymbionts (MRE), and photosynthetically active and dividing cells of Nostoc punctiforme. Recent genome analyses have shed light on the biology of G. pyriformis, but the genome content and biology of its endosymbionts remain unexplored. To fill this gap, we gathered and examined metagenomic data from the bladders of G. pyriformis, where N. punctiforme and MRE are located. This ensures that our analyses are focused on the organs directly involved in the symbiosis. By comparing this data with the genetic information of related cyanobacteria and MREs from other species of Arbuscular Mycorrhizal Fungi, we aimed to reveal the genetic content of these organisms and understand how they interact at a genetic level to establish a symbiotic relationship. Our analyses uncovered significant gene expansions in the Nostoc endosymbiont, particularly in mobile elements and genes potentially involved in xenobiotic degradation. We also confirmed that the MRE of Glomeromycotina are monophyletic and possess a highly streamlined genome. These genomes show dramatic differences in both structure and content, including the presence of enzymes involved in environmental sensing and stress response.

RevDate: 2024-07-25

Mirchandani C, Wang P, Jacobs J, et al (2024)

Mixed Wolbachia infections resolve rapidly during in vitro evolution.

PLoS pathogens, 20(7):e1012149 pii:PPATHOGENS-D-24-00626 [Epub ahead of print].

The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful wMel strain from Drosophila melanogaster and the promiscuous wRi strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with wMel and wRi revealed that wMel outcompetes wRi quickly and reproducibly. Furthermore, wMel was able to competitively exclude wRi even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wMel's native D. melanogaster cell background, as wMel also outgrew wRi in D. simulans cells. Overall, wRi is less adept at in vitro growth and survival than wMel and its in vivo state, revealing differences between the two strains in cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species, and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.

RevDate: 2024-07-24
CmpDate: 2024-07-25

Wang H, Xiao H, Feng B, et al (2024)

Single-cell RNA-seq reveals distinct metabolic "microniches" and close host-symbiont interactions in deep-sea chemosynthetic tubeworm.

Science advances, 10(30):eadn3053.

Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, Paraescarpia echinospica. Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.

RevDate: 2024-07-23

Favoreto AL, Domingues MM, de Carvalho VR, et al (2024)

Detection of Arsenophonus in Glycaspis brimblecombei (Hemiptera: Aphalaridae) populations in Brazil.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Epub ahead of print].

Eucalyptus is the most intensively managed tree genus in the world. Different factors, including damage by insect pests, affect its growth and productivity. Among these pests is Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), an exotic insect of Australian origin. The evolutionary success of this insect depends on symbiotic associations with microorganisms. The influence of these microorganisms on insect pests and their natural enemies is important for integrated management tactics. Within this context, this work aimed to detect Arsenophonus in populations of G. brimblecombei in Brazil. Eucalyptus branches infested with G. brimblecombei nymphs were collected in commercial eucalyptus plantations in six Brazilian states. Specimens of this pest were sampled soon after emergence and frozen for molecular analysis. The genomic DNA of G. brimblecombei adults from each population was extracted and used to detect the endosymbiont Arsenophonus by polymerase chain reaction (PCR) employing specific primers that target its 23 S rRNA gene. This endosymbiont was identified in all of the studied G. brimblecombei populations. This is the first report on the association between Arsenophonus and G. brimblecombei in Brazil.

RevDate: 2024-07-20

Thia JA, Zhan D, Robinson K, et al (2024)

'Drifting' Buchnera genomes track the microevolutionary trajectories of their aphid hosts.

Insect molecular biology [Epub ahead of print].

Evolution of Buchnera-aphid host symbioses is often studied among species at macroevolutionary scales. Investigations within species offer a different perspective about how eco-evolutionary processes shape patterns of genetic variation at microevolutionary scales. Our study leverages new and publicly available whole-genome sequencing data to study Buchnera-aphid host evolution in Myzus persicae, the peach potato aphid, a globally invasive and polyphagous pest. Across 43 different asexual, clonally reproducing isofemale strains, we examined patterns of genomic covariation between Buchnera and their aphid host and considered the distribution of mutations in protein-coding regions of the Buchnera genome. We found Buchnera polymorphisms within aphid strains, suggesting the presence of genetically different Buchnera strains within the same clonal lineage. Genetic distance between pairs of Buchnera samples was positively correlated to genetic distance between their aphid hosts, indicating shared evolutionary histories. However, there was no segregation of genetic variation for both M. persicae and Buchnera with plant host (Brassicaceae and non-tobacco Solanaceae) and no associations between genetic and geographic distance at global or regional spatial scales. Abundance patterns of non-synonymous mutations were similar to synonymous mutations in the Buchnera genome, and both mutation classes had similar site frequency spectra. We hypothesize that a predominance of neutral processes results in the Buchnera of M. persicae to simply 'drift' with the evolutionary trajectory of their aphid hosts. Our study presents a unique microevolutionary characterization of Buchnera-aphid host genomic covariation across multiple aphid clones. This provides a new perspective on the eco-evolutionary processes generating and maintaining polymorphisms in a major pest aphid species and its obligate primary endosymbiont.

RevDate: 2024-07-19

Mathimaran A, Nagarajan H, Mathimaran A, et al (2024)

Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches.

International journal of biological macromolecules pii:S0141-8130(24)04782-2 [Epub ahead of print].

The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP[+] induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP[+] does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.

RevDate: 2024-07-19
CmpDate: 2024-07-19

Dougan KE, Bellantuono AJ, Kahlke T, et al (2024)

Whole-genome duplication in an algal symbiont bolsters coral heat tolerance.

Science advances, 10(29):eadn2218.

The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.

RevDate: 2024-07-19

Feng H, ACC Wilson (2024)

Experimental uncoupling of hosts and endosymbionts.

mBio [Epub ahead of print].

Many organisms harbor heritable bacterial symbionts that offer context-specific benefits to their hosts. In some of these symbioses, symbionts live inside host cells as endosymbionts. Studying the biology of endosymbiosis is challenging because it is hard to independently cultivate hosts and endosymbionts. A recent study, using a simple defined growth medium at ambient temperature, established an axenic culture of the pea aphid's heritable bacterial endosymbiont, Candidatus Fukatsuia symbiotica (G. P. Maeda, M. K. Kelly, A. Sundar, and N. A. Moran, mBio 15:e03253-23, 2024, https://doi.org/10.1128/mbio.03253-23). Notably, the monoculture was capable of host recolonization, was stably transmitted, and returned similar host phenotypes to those observed in native infections. This advance in uncoupling the cultivation of an endosymbiont and its host opens avenues for genetic manipulation of the endosymbiont that will facilitate hypothesis-driven work to explore the mechanisms of host-endosymbiont biology and potentially facilitate the development of symbiont-mediated practical-application biotechnologies.

RevDate: 2024-07-18
CmpDate: 2024-07-18

Sikorskaya TV, Ermolenko EV, Ginanova TT, et al (2024)

Membrane vectorial lipidomic features of coral host cells' plasma membrane and lipid profiles of their endosymbionts Cladocopium.

Communications biology, 7(1):878.

The symbiotic relationships between coral animal host and autotrophic dinoflagellates are based on the mutual exchange and tight control of nutritional inputs supporting successful growth. The corals Sinularia heterospiculata and Acropora aspera were cultivated using a flow-through circulation system supplying seawater during cold and warm seasons of the year, then sorted into host cells and symbionts and subjected to phylogenetic, morphological, and advanced lipid analyses. Here we show, that the lipidomes of the dinoflagellates Cladocopium C1/C3 and acroporide-specific Cladocopium hosted by the corals, are determined by lipidomic features of different thermosensitivity and unique betaine- and phospholipid molecular species. Phosphatidylserines and ceramiaminoethylphosphonates are not detected in the symbionts and predominantly localized on the inner leaflet of the S. heterospiculata host plasma membrane. The transmembrane distribution of phosphatidylethanolamines of S. heterospiculata host changes during different seasons of the year, possibly contributing to mutualistic nutritional exchange across this membrane complex to provide the host with a secure adaptive mechanism and ecological benefits.

RevDate: 2024-07-16
CmpDate: 2024-07-17

Harmsen N, Vesga P, Glauser G, et al (2024)

Natural plant disease suppressiveness in soils extends to insect pest control.

Microbiome, 12(1):127.

BACKGROUND: Since the 1980s, soils in a 22-km[2] area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied.

RESULTS: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus. Plants grown in the most suppressive soil have a reduced stress response to Oulema feeding, reflected by dampened levels of herbivore defense-related phytohormones and benzoxazinoids. Enhanced salicylate levels in insect-free plants indicate defense-priming operating in this soil. The rhizosphere microbiome of suppressive soils contained a higher proportion of plant-beneficial bacteria, coinciding with their microbiome networks being highly tolerant to the destabilizing impact of insect exposure observed in the rhizosphere of plants grown in the conducive soils. We suggest that presence of plant-beneficial bacteria in the suppressive soils along with priming, conferred plant resistance to the insect pest, manifesting also in the onset of insect microbiome dysbiosis by the displacement of the insect endosymbionts.

CONCLUSIONS: Our results show that an intricate soil-plant-insect feedback, relying on a stress tolerant microbiome network with the presence of plant-beneficial bacteria and plant priming, extends natural soil suppressiveness from soilborne diseases to insect pests. Video Abstract.

RevDate: 2024-07-16
CmpDate: 2024-07-16

Gao YL, Cournoyer JE, De BC, et al (2024)

Introducing carbon assimilation in yeasts using photosynthetic directed endosymbiosis.

Nature communications, 15(1):5947.

Conversion of heterotrophic organisms into partially or completely autotrophic organisms is primarily accomplished by extensive metabolic engineering and laboratory evolution efforts that channel CO2 into central carbon metabolism. Here, we develop a directed endosymbiosis approach to introduce carbon assimilation in budding yeasts. Particularly, we engineer carbon assimilating and sugar-secreting photosynthetic cyanobacterial endosymbionts within the yeast cells, which results in the generation of yeast/cyanobacteria chimeras that propagate under photosynthetic conditions in the presence of CO2 and in the absence of feedstock carbon sources like glucose or glycerol. We demonstrate that the yeast/cyanobacteria chimera can be engineered to biosynthesize natural products under the photosynthetic conditions. Additionally, we expand our directed endosymbiosis approach to standard laboratory strains of yeasts, which transforms them into photosynthetic yeast/cyanobacteria chimeras. We anticipate that our studies will have significant implications for sustainable biotechnology, synthetic biology, and experimentally studying the evolutionary adaptation of an additional organelle in yeast.

RevDate: 2024-07-16

Dagar J, Maurya S, Antil S, et al (2024)

Symbionts of Ciliates and Ciliates as Symbionts.

Indian journal of microbiology, 64(2):304-317.

Endosymbiotic relationships between ciliates and others are critical for their ecological roles, physiological adaptations, and evolutionary implications. These can be obligate and facultative. Symbionts often provide essential nutrients, contribute to the ciliate's metabolism, aid in digestion, and offer protection against predators or environmental stressors. In turn, ciliates provide a protected environment and resources for their symbionts, facilitating their survival and proliferation. Ultrastructural and full-cycle rRNA approaches are utilized to identify these endosymbionts. Fluorescence in situ hybridization using "species- and group-specific probes" which are complementary to the genetic material (DNA or RNA) of a particular species or group of interest represent convenient tools for their detection directly in the environment. A systematic survey of these endosymbionts has been conducted using both traditional and metagenomic approaches. Ciliophora and other protists have a wide range of prokaryotic symbionts, which may contain potentially pathogenic bacteria. Ciliates can establish symbiotic relationships with a variety of hosts also, ranging from protists to metazoans. Understanding ciliate symbiosis can provide useful insights into the complex relationships that drive microbial communities and ecosystems in general.

RevDate: 2024-07-15

Power RI, Doyle SR, J Šlapeta (2024)

Whole genome amplification and sequencing of individual Dirofilaria immitis microfilariae.

Experimental parasitology pii:S0014-4894(24)00109-7 [Epub ahead of print].

Dirofilaria immitis is a filarial parasitic nematode of veterinary significance. With the emergence of drug-resistant isolates in the USA, it is imperative to determine the likelihood of resistance occurring in other regions of the world. One approach is to conduct population genetic studies across an extensive geographical range, and to sequence the genomes of individual worms to understand genome-wide genetic variation associated with resistance. The immature life stages of D. immitis found in the host blood are more accessible and less invasive to sample compared to extracting adult stages from the host heart. To assess the use of immature life stages for population genetic analyses, we have performed whole genome amplification and whole-genome sequencing on nine (n = 9) individual D. immitis microfilaria samples isolated from dog blood. On average, less than 1% of mapped reads aligned to each D. immitis genome (nuclear, mitochondrial, and Wolbachia endosymbiont). For the dog genome, an average of over 99% of mapped reads aligned to the nuclear genome and less than 1% aligned to the mitochondrial genome. The average coverage for all D. immitis genomes and the dog nuclear genome was less than 1, while the dog mitochondrial genome had an average coverage of 2.87. The overwhelming proportion of sequencing reads mapping to the dog host genome can be attributed to residual dog blood cells in the microfilariae samples. These results demonstrate the challenges of conducting genome-wide studies on individual immature parasite life stages, particularly in the presence of extraneous host DNA.

RevDate: 2024-07-15
CmpDate: 2024-07-15

Pereira IS, da Cunha M, Leal IP, et al (2024)

Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells.

Medical microbiology and immunology, 213(1):15.

Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.

RevDate: 2024-07-14

Obanda V, Akinyi M, King'ori E, et al (2024)

Epidemiology and Ecology of the Sylvatic Cycle of African Swine Fever Virus in Kenya.

Virus research pii:S0168-1702(24)00127-8 [Epub ahead of print].

African Swine Fever (ASF) is caused by a DNA virus (AFSV) maintained and transmitted by the Argasid ticks. The re-emergence of the disease in Africa coupled with its rapid spread globally is a threat to the pig industry, food security and livelihoods. The ecology and epidemiology of the ASFV sylvatic cycle, especially in the face of changing land use and land cover, further compounds the menace and impacts of this disease in Kenya. The study aimed to determine the occurrence and distribution of ASFV seroprevalence in warthog populations, the tick vectors and extent of tick infestation of warthog burrows, and the genotypes of ASFV in soft ticks in Kenya. Warthogs from different parts of Kenya were captured and venous blood was centrifuged to harvest sera. Warthog burrows were examined for their conditions and to extract ticks. Sera were analyzed for antibodies against ASFV using a commercial ELISA kit coated with p32 ASFV recombinant protein. Ticks were pooled, DNA extracted and the p72 gene of the ASFV was amplified by qPCR and conventional PCR. The overall seroprevalence of ASFV in warthogs was 87.5%. A total of 228 warthog burrows were examined and 2154 argasid ticks were extracted from the burrows. Tick pools from Kigio Farm and Lewa Wildlife Conservancies were ASFV-positive by qPCR and conventional PCR. ASFV was further confirmed by the Twist Comprehensive Viral Research Panel (TCVRP), which also identified the argasid ticks as Ornithodoros porcinus. The ticks were infected with virus genotype IX, and their occurrence overlaps with regions of previous ASF outbreaks in domestic pigs. Further, Viruses that could be tick endosymbionts/commensals or due to bloodmeal were detected in ticks by TCVRP; Porcine type-C oncovirus; Pandoravirus neocaledonia; Choristoneura fumiferana granulovirus; Enterobacteria phage p7; Leporid herpesvirus 4 isolate; 5; Human Lymphotropic virus; Human herpesvirus 5. In conclusion, our results suggest that infected Ornithodoros spp. seems to have a rich virome, which has not been explored but could be exploited to inform ASF control in Kenya. Further, the ecology of Ornithodoros spp. and burrow-use dynamics are complex and more studies are needed to understand these dynamics, specifically in the spread of ASFV at the interface of wild and domestic pigs. Further, our results provide evidence of genotype IX ASFV sylvatic cycle which through O. porcinus tick transmission has resulted in high exposure of adult common warthogs. Finally, the co-circulation of ASFV genotype IX in the same location with past ASF outbreaks in domestic pigs and presently in ticks brings to focus the role of the interface and ticks on virus transmission to pigs and warthogs.

RevDate: 2024-07-12

Samaddar S, Rolandelli A, O'Neal AJ, et al (2024)

Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection.

Nature microbiology [Epub ahead of print].

Arthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown. Here we investigated metabolic reprogramming in the tick ectoparasite I. scapularis and determined that the rickettsial bacterium A. phagocytophilum and the spirochete B. burgdorferi induced glycolysis in tick cells. Surprisingly, the endosymbiont Rickettsia buchneri had a minimal effect on bioenergetics. An unbiased metabolomics approach following A. phagocytophilum infection of tick cells showed alterations in carbohydrate, lipid, nucleotide and protein metabolism, including elevated levels of the pleiotropic metabolite β-aminoisobutyric acid. We manipulated the expression of genes associated with β-aminoisobutyric acid metabolism in I. scapularis, resulting in feeding impairment, diminished survival and reduced bacterial acquisition post haematophagy. Collectively, we discovered that metabolic reprogramming affects interspecies relationships and fitness in the clinically relevant tick I. scapularis.

RevDate: 2024-07-12
CmpDate: 2024-07-10

Ng MS, Soon N, Afiq-Rosli L, et al (2024)

Highly Diverse Symbiodiniaceae Types Hosted by Corals in a Global Hotspot of Marine Biodiversity.

Microbial ecology, 87(1):92.

Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.

RevDate: 2024-07-10

Schrecengost A, Rotterová J, Poláková K, et al (2024)

Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts.

The ISME journal pii:7710178 [Epub ahead of print].

Ciliates are a diverse group of protists known for their ability to establish various partnerships and thrive in a wide variety of oxygen-depleted environments. Most anaerobic ciliates harbor methanogens, one of the few known archaea living intracellularly. These methanogens increase the metabolic efficiency of host fermentation via syntrophic use of host end-product in methanogenesis. Despite the ubiquity of these symbioses in anoxic habitats, patterns of symbiont specificity and fidelity are not well known. We surveyed two unrelated, commonly found groups of anaerobic ciliates, the Plagiopylea and Metopida, isolated from anoxic marine sediments. We sequenced host 18S rRNA and symbiont 16S rRNA marker genes as well as the symbiont ITS region from our cultured ciliates to identify hosts and their associated methanogenic symbionts. We found that marine ciliates from both of these co-occurring, divergent groups harbor closely related yet distinct intracellular archaea within the Methanocorpusculum genus. The symbionts appear to be stable at the host species level, but at higher taxonomic levels, there is evidence that symbiont replacements have occurred. Gaining insight into this unique association will deepen our understanding of the complex transmission modes of marine microbial symbionts, and the mutualistic microbial interactions occurring across domains of life.

RevDate: 2024-07-09

Howe CJ, AC Barbrook (2024)

Dinoflagellate chloroplasts as a model for extreme genome reduction and fragmentation in organelles - The COCOA principle for gene retention.

Protist, 175(4):126048 pii:S1434-4610(24)00040-3 [Epub ahead of print].

The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).

RevDate: 2024-07-08

Price CTD, Hanford HE, Al-Quadan T, et al (2024)

Amoebae as training grounds for microbial pathogens.

mBio [Epub ahead of print].

Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.

RevDate: 2024-07-08

Hoffmann AA, BS Cooper (2024)

Describing endosymbiont-host interactions within the parasitism-mutualism continuum.

Ecology and evolution, 14(7):e11705.

Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.

RevDate: 2024-07-08

Cham AK, Adams AK, Wadl PA, et al (2024)

Metagenome-enabled models improve genomic predictive ability and identification of herbivory-limiting genes in sweetpotato.

Horticulture research, 11(7):uhae135.

Plant-insect interactions are often influenced by host- or insect-associated metagenomic community members. The relative abundance of insects and the microbes that modulate their interactions were obtained from sweetpotato (Ipomoea batatas) leaf-associated metagenomes using quantitative reduced representation sequencing and strain/species-level profiling with the Qmatey software. Positive correlations were found between whitefly (Bemisia tabaci) and its endosymbionts (Candidatus Hamiltonella defensa, Candidatus Portiera aleyrodidarum, and Rickettsia spp.) and negative correlations with nitrogen-fixing bacteria that implicate nitric oxide in sweetpotato-whitefly interaction. Genome-wide associations using 252 975 dosage-based markers, and metagenomes as a covariate to reduce false positive rates, implicated ethylene and cell wall modification in sweetpotato-whitefly interaction. The predictive abilities (PA) for whitefly and Ocypus olens abundance were high in both populations (68%-69% and 33.3%-35.8%, respectively) and 69.9% for Frankliniella occidentalis. The metagBLUP (gBLUP) prediction model, which fits the background metagenome-based Cao dissimilarity matrix instead of the marker-based relationship matrix (G-matrix), revealed moderate PA (35.3%-49.1%) except for O. olens (3%-10.1%). A significant gain in PA after modeling the metagenome as a covariate (gGBLUP, ≤11%) confirms quantification accuracy and that the metagenome modulates phenotypic expression and might account for the missing heritability problem. Significant gains in PA were also revealed after fitting allele dosage (≤17.4%) and dominance effects (≤4.6%). Pseudo-diploidized genotype data underperformed for dominance models. Including segregation-distorted loci (SDL) increased PA by 6%-17.1%, suggesting that traits associated with fitness cost might benefit from the inclusion of SDL. Our findings confirm the holobiont theory of host-metagenome co-evolution and underscore its potential for breeding within the context of G × G × E interactions.

RevDate: 2024-07-07

Therhaag E, Ulrich R, Gross J, et al (2024)

Onion (Allium cepa L.) as a new host for 'Candidatus Arsenophonus phytopathogenicus' in Germany.

Plant disease [Epub ahead of print].

Onion (Allium cepa L.) is the most produced vegetable after tomato worldwide and is grown on about 15,000 ha in Germany. In Lampertheim, Hesse in southwest Germany (49°40'02.3"N, 8°26'00.0"E) bulbs of the cultivar 'Red Baron F1' were harvested in September 2023 in an apparently healthy state. Four months later some of the onions showed rotting symptoms, which could not be assigned to a known storage disease. At first, the bulbs became glassy, later they showed soft rot. They originated from a field located in a growing region severely affected by "Syndrome Basses Richesses" (SBR). 'Candidatus Arsenophonus phytopathogenicus' as well as 'Candidatus Phytoplasma solani' are associated with this disease in sugar beet (Gatineau et al. 2002). Moreover, 'Ca. A. phytopathogenicus' was recently reported in association of bacterial wilt and yellowing in potato (Behrmann et al. 2023). Both phloem-restricted bacteria are vectored by the polyphagous planthopper Pentastiridius leporinus (Therhaag et al. 2024), which is highly abundant in this region. To examine, if the unknown symptoms in onion might be related to the presence of these pathogens, DNA of 69 bulbs showing a different degree of softening were analyzed. The samples were tested for the presence of 'Ca. Phytoplasma solani' in a TaqMan assay (Behrmann et al. 2022). All showed negative results. To demonstrate the presence of 'Ca. A. phytopathogenicus', universal and genus-specific primers for the amplification of 16S rDNA and a real-time qPCR assay amplifying an hsp20 fragment were employed (Christensen et al. 2004, Zübert and Kube 2021). Two bulbs of the five positive samples were in an apparently healthy state, the other three showed light to moderate softening symptoms. The 16S rDNA fragments from two samples were sequenced on both strands and aligned. Both fragments were homologous. One fragment of 1474 bp fragment showing 100% homology to the 16S rDNA from SBR (accession no. AY057392) was submitted to GenBank (accession no. PP400342). Other taxa of 'Ca. Arsenophonus' showed 16S rDNA homologies of less than 99.3 %. To corroborate the finding onion samples were subjected to PCR reactions employing genus-specific primers for the conserved tufB, secY and manA gene, which had been derived from multiple alignments of 'Ca. A. spp' sequence submissions (Sela et al. 1989, Lee et al. 2010). The tufB, secY and manA primers amplified fragments of about 980 bp, 640 bp and 930 bp, respectively, from all previously positive samples. Samples which had been tested negative for 'Ca. P. phytopathogenicus' remained negative. Fragments from two accessions were sequenced and the sequences from both isolates were 100 % identical. A BLAST search of the partial tufB gene (acc. no. PP950434) showed 98.57 % sequence identity to a yet unnamed Arsenophonus endosymbiont (acc. no. OZ026540) and 91.85 to 91.83 % to 'Ca. A. nasoniae' and 'Ca. A. apicola', respectively. A similar result was obtained for the partial secY sequence (acc. no. PP950433). The manA sequence (acc. no. PP942231) was identical to a partial sequence of 'Ca. A. phytopathogenicus' strain HN (acc. no. OK335757) and 97.42 % to 'Ca. A. nasoniae and about 87 % to related Arsenophonus species. The finding of 'Ca. A. phytopathogenicus' in onion is novel and might indicate an expanding host range of vector and pathogen in the regional crop rotation. As a correlation between the pathogen and the soft rot symptom is unclear at present, further investigations are needed.

RevDate: 2024-07-03
CmpDate: 2024-07-03

Doğan S, Farzali S, Karimova B, et al (2024)

Evaluation of Methylene Blue as An Effective Antiseptic for Medicinal Leeches (Hirudo verbana).

Turkiye parazitolojii dergisi, 48(2):96-104.

OBJECTIVE: Medicinal leeches (Hirudo spp.) have been used for therapeutic purposes in humans since ancient times. Because of their growth conditions, leeches carry certain bacteria and endosymbionts (e.g., Aeromonas spp). In both leech farms and hirudotherapy clinics, there are no reliable antiseptics that can be used with leeches. This study aimed to determine whether methylene blue (MB) is a safe antiseptic for medicinal leeches and assess its safe usage.

METHODS: This study evaluated the efficacy of MB by determining lethal concentrations (LC), effective concentrations (EC), and lethal times (LT) for the medicinal leech Hirudo verbena Carena, 1820. A total of 570 H. verbana specimens obtained from a local farm were used in this study. Eighteen different concentrations of MB (between 1 ppm and 512 ppm) were tested.

RESULTS: The LC50 and EC50 values for H. verbana were determined to be 60.381 (53.674-66.636) ppm and 2.013 (1.789-2.221) ppm, respectively. The LT50 durations for MB concentrations of 32 and 512 ppm were calculated as 212.92 h (138.43 h-1485.78 h) and 17.82 h (8.08 h-23.90 h), respectively.

CONCLUSION: The results show that MB concentrations between 2 and 19 ppm can be safely used as antiseptics in hirudotherapy clinics and leech farms to address bacterial concerns caused by medicinal leeches.

RevDate: 2024-07-03

Ross PA, AA Hoffmann (2024)

Revisiting Wolbachia detections: Old and new issues in Aedes aegypti mosquitoes and other insects.

Ecology and evolution, 14(7):e11670.

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )