Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 24 May 2019 at 01:54 Created: 


WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-05-23

Hubert J, Nesvorna M, Klimov P, et al (2019)

Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome.

RevDate: 2019-05-23

Chouin-Carneiro T, Ant TH, Herd C, et al (2019)

Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti.

Medical and veterinary entomology [Epub ahead of print].

Transinfections of the maternally transmitted endosymbiont Wolbachia pipientis can reduce RNA virus replication and prevent transmission by Aedes aegypti, and also have the capacity to invade wild-type populations, potentially reaching and maintaining high infection frequencies. Levels of virus transmission blocking are positively correlated with Wolbachia intracellular density. Despite reaching high densities in Ae. aegypti, transinfections of wAlbA, a strain native to Aedes albopictus, showed no blocking of Semliki Forest Virus in previous intrathoracic injection challenges. To further characterize wAlbA blocking in Ae. aegypti, adult females were intrathoracically challenged with Zika (ZIKV) and dengue viruses, and then fed a ZIKV-containing bloodmeal. No blocking was observed with either virus when challenged by intrathoracic injection. However, when ZIKV was delivered orally, wAlbA-infected females showed a significant reduction in viral replication and dissemination compared with uninfected controls, as well as a complete absence of virus in saliva. Although other Wolbachia strains have been shown to cause more robust viral blocking in Ae. aegypti, these findings demonstrate that, in principle, wAlbA could be used to reduce virus transmission in this species. Moreover, the results highlight the potential for underestimation of the strength of virus-blocking when based on intrathoracic injection compared with more natural oral challenges.

RevDate: 2019-05-22

Gómez-Díaz JS, Montoya-Lerma J, V Muñoz Valencia (2019)

Prevalence and Diversity of Endosymbionts in Cassava Whiteflies (Hemiptera: Aleyrodidae) From Colombia.

Journal of insect science (Online), 19(3):.

Whiteflies cause huge economic losses for cassava (Manihot esculenta Crantz) cultivation. Damage can be caused directly when the insects feed on the phloem and/or indirectly by the transmission of viruses. It has been found that whiteflies maintain a close relationship with some endosymbiotic bacteria and that this interaction produces different effects on host biology and can also facilitate viral transmission. This study aimed to characterize the diversity of secondary endosymbionts (SE) present in whiteflies associated with cassava. Whitefly adults and nymphs were collected from cassava crops at nine locations in Southwestern Colombia. Molecular identification of insects and endosymbionts was carried out using specific mtCOI, wsp, 23s rRNA, and 16s rRNA primers. Phylogenetic trees were constructed from these sequences, both for whitefly species and the endosymbionts found. In addition, morphological identification of whitefly species was made using last instar nymphs. Molecular and morphological evaluation revealed that the most abundant whitefly species was Trialeurodes variabilis (Quaintance) followed by Aleurotrachelus socialis Bondar and Bemisia tuberculata Bondar. One hundred percent of the individuals contained the primary endosymbiont Portiera. The SE Rickettsia, Hamiltonella, Wolbachia, and Fritschea were not detected in the samples tested. Prevalence of Cardinium and Arsenophonus were variable at each locality, Cardinium being most prevalent in A. socialis adults. This study is the first report on the presence of Cardinium and Arsenophonus in A. socialis and T. variabilis. It is also the first report of endosymbiotic diversity in whiteflies associated with cassava in Colombia.

RevDate: 2019-05-20

Caragata EP, Rocha MN, Pereira TN, et al (2019)

Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection.

PLoS neglected tropical diseases, 13(5):e0007443 pii:PNTD-D-18-02063 [Epub ahead of print].

BACKGROUND: Wolbachia's ability to restrict arbovirus transmission makes it a promising tool to combat mosquito-transmitted diseases. Wolbachia-infected Aedes aegypti are currently being released in locations such as Brazil, which regularly experience concurrent outbreaks of different arboviruses. A. aegypti can become co-infected with, and transmit multiple arboviruses with one bite, which can complicate patient diagnosis and treatment.

Using experimental oral infection of A. aegypti and then RT-qPCR, we examined ZIKV/DENV-1 and ZIKV/DENV-3 co-infection in Wolbachia-infected A. aegypti and observed that Wolbachia-infected mosquitoes experienced lower prevalence of infection and viral load than wildtype mosquitoes, even with an extra infecting virus. Critically, ZIKV/DENV co-infection had no significant impact on Wolbachia's ability to reduce viral transmission. Wolbachia infection also strongly altered expression levels of key immune genes Defensin C and Transferrin 1, in a virus-dependent manner.

CONCLUSIONS/SIGNIFICANCE: Our results suggest that pathogen interference in Wolbachia-infected A. aegypti is not adversely affected by ZIKV/DENV co-infection, which suggests that Wolbachia-infected A. aegypti will likely prove suitable for controlling mosquito-borne diseases in environments with complex patterns of arbovirus transmission.

RevDate: 2019-05-18

Rahayu A, Saraswati U, Supriyati E, et al (2019)

Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti.

International journal of environmental research and public health, 16(10): pii:ijerph16101742.

Indonesia is one of the countries where dengue infection is prevalent. In this study we measure the prevalence and distribution of dengue virus (DENV) DENV-infected Aedes aegypti in Yogyakarta City, Indonesia, during the wet season when high dengue transmission period occurred, as baseline data before implementation of a Wolbachia-infected Aedes aegypti trial for dengue control. We applied One-Step Multiplex Real Time PCR (RT-PCR) for the type-specific-detection of dengue viruses in field-caught adult Aedes aegypti mosquitoes. In a prospective field study conducted from December 2015 to May 2016, adult female Aedes aegypti were caught from selected areas in Yogyakarta City, and then screened by using RT-PCR. During the survey period, 36 (0.12%) mosquitoes from amongst 29,252 female mosquitoes were positive for a DENV type. In total, 22.20% of dengue-positive mosquitoes were DENV-1, 25% were DENV-2, 17% were DENV-3, but none were positive for DENV-4. This study has provided dengue virus infection prevalence in field-caught Aedes aegypti and its circulating serotype in Yogyakarta City before deployment of Wolbachia-infected Aedes aegypti.

RevDate: 2019-05-16

Hosseinzadeh S, Ramsey J, Mann M, et al (2019)

Color morphology of Diaphorina citri influences interactions with its bacterial endosymbionts and 'Candidatus Liberibacter asiaticus'.

PloS one, 14(5):e0216599 pii:PONE-D-18-30769.

Diaphorina citri is a vector of 'Candidatus Liberibacter asiaticus,' (CLas), associated with Huanglongbing, (HLB, or citrus greening) disease in citrus. D. citri exhibits three different color morph variants, blue, gray and yellow. Blue morphs have a greater capacity for long-distance flight as compared to non-blue morphs, but little else is known about how color morphology influences vector characteristics. In this study, we show that the color morphology of the insect is derived from pigmented cells of the fat body. Blue morphs acquire a lower level of CLas in their bodies from infected trees as compared to their gray and yellow conspecifics, referred to in this paper collectively as non-blue morphs. Accordingly, CLas titer in citrus leaves inoculated by non-blue insects was 6-fold higher than in leaves inoculated by blue insects. Blue color morphs harbored lower titers of Wolbachia and 'Candidatus Profftella armatura,' two of the D. citri bacterial endosymbionts. Expression of hemocyanin, a copper-binding oxygen transport protein responsible for the blue coloration of hemolymph of other arthropods and mollusks, was previously correlated with blue color morphology and is highly up-regulated in insects continuously reared on CLas infected citrus trees. Based on our results, we hypothesized that a reduction of hemocyanin expression would reduce the D. citri immune response and an increase in the titer of CLas would be observed. Surprisingly, a specific 3-fold reduction of hemocyanin-1 transcript levels using RNA silencing in blue adult D. citri morphs had an approximately 2-fold reduction on the titer of CLas. These results suggest that hemocyanin signaling from the fat body may have multiple functions in the regulation of bacterial titers in D. citri, and that hemocyanin is one of multiple psyllid genes involved in regulating CLas titer.

RevDate: 2019-05-16

Teramoto T, Huang X, Armbruster P, et al (2019)

wMelpop strain of Wolbachia infection of Aedes albopictus mosquito C6/36 cells modulates dengue virus-induced host cellular transcripts and induces critical sequence alterations in dengue viral genome.

Journal of virology pii:JVI.00581-19 [Epub ahead of print].

The dengue virus (DENV) cause frequent epidemics infecting ∼390 million people annually in over 100 countries. There are no approved vaccines or antiviral drugs for treatment of infected patients. However, there is a novel approach to control DENV transmission by the mosquito vectors, Aedes aegypti and Ae. albopictus, using the Wolbachia symbiont. The wMelPop strain of Wolbachia suppresses DENV transmission and shortens the mosquito life span. However, the underlying mechanism is poorly understood. To clarify this mechanism, either naïve Ae. albopictus (C6/36) or wMelPop-C6/36 cells were infected with DENV2. Analysis of host transcript profiles by RNAseq revealed that the presence of wMelPop dramatically altered the mosquito host cell transcription in response to DENV2 infection. The viral RNA evolved from wMelPop-C6/36 cells contained low frequency mutations (∼25%) within the coding region of transmembrane domain-1 (TMD1) of E protein. Mutations with >97 % frequencies were distributed within other regions of E, NS5 RNA-dependent RNA polymerase (NS5POL) domain, the TMDs of NS2A, NS2B, and NS4B. Moreover, while DENV2-infected naïve C6/36 cells showed syncytia formation, DENV2-infected wMelPop-C6/36 cells did not. The Wolbachia-induced mutant DENV2 can readily infect and replicate in naïve C6/36 cells; whereas, in the mutant DENV2- infected BHK-21 or Vero cells, the virus replication was delayed. In LLC-MK2 cells, the mutant failed to produce plaques. Additionally, in BHK-21 cells, many mutations in the viral genome reverted to WT and compensatory mutations in NS3 gene appeared. Our results indicate that wMelPop impacts significantly the interactions of DENV2 with mosquito and mammalian host cells.Importance:Mosquito-borne diseases are of global significance causing considerable morbidity and mortality throughout the world. The dengue virus (DENV, serotypes 1-4), a member of flavivirus genus of Flaviviridae family, causes millions of infections annually. Development of a safe vaccine is hampered due to absence of cross-protection and increased risk in secondary infections due to antibody-mediated immune enhancement. Infection of vector mosquitoes with Wolbachia bacteria offers a novel countermeasure to suppress DENV transmission, but the mechanisms are poorly understood. In this study, the host transcription profiles and viral RNA sequences were analyzed in naïve Ae. albopictus (C6/36) and wMelPop-C6/36 cells by RNAseq. Our results showed that the wMelPop symbiont caused profound changes in host transcription profiles and morphology of DENV2-infected C6/36 cells. Accumulation of several mutations throughout DENV2 RNA resulted in loss of infectivity of progeny virions. Our findings offer new insights into the mechanism of Wolbachia-mediated suppression of DENV transmission.

RevDate: 2019-05-15

Shah A, Hoffman JI, H Schielzeth (2019)

Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size.

BMC genomics, 20(1):370 pii:10.1186/s12864-019-5756-4.

BACKGROUND: The club-legged grasshopper Gomphocerus sibiricus is a Gomphocerinae grasshopper with a promising future as model species for studying the maintenance of colour-polymorphism, the genetics of sexual ornamentation and genome size evolution. However, limited molecular resources are available for this species. Here, we present a de novo transcriptome assembly as reference resource for gene expression studies. We used high-throughput Illumina sequencing to generate 5,070,036 paired-end reads after quality filtering. We then combined the best-assembled contigs from three different de novo transcriptome assemblers (Trinity, SOAPdenovo-trans and Oases/Velvet) into a single assembly.

RESULTS: This resulted in 82,251 contigs with a N50 of 1357 and a TransRate assembly score of 0.325, which compares favourably with other orthopteran transcriptome assemblies. Around 87% of the transcripts could be annotated using InterProScan 5, BLASTx and the dammit! annotation pipeline. We identified a number of genes involved in pigmentation and green pigment metabolism pathways. Furthermore, we identified 76,221 putative single nucleotide polymorphisms residing in 8400 contigs. We also assembled the mitochondrial genome and investigated levels of sequence divergence with other species from the genus Gomphocerus. Finally, we detected and assembled Wolbachia sequences, which revealed close sequence similarity to the strain pel wPip.

CONCLUSIONS: Our study has generated a significant resource for uncovering genotype-phenotype associations in a species with an extraordinarily large genome, while also providing mitochondrial and Wolbachia sequences that will be useful for comparative studies.

RevDate: 2019-05-15

Fabre B, Korona D, Lees JG, et al (2019)

Comparison of Drosophila melanogaster embryo and adult proteome by SWATH-MS reveals differential regulation of protein synthesis, degradation machinery and metabolism modules.

Journal of proteome research [Epub ahead of print].

An important area of modern biology consists in understanding the relationship between genotype and phenotype. However, to understand this relationship it is essential to investigate one of the principal links between them: the proteome. With the development of recent mass-spectrometry approaches it is now possible to quantify entire proteomes and thus relate them to different phenotypes. Here we present a comparison of the proteome of two extreme developmental states in the well-established model organism Drosophila melanogaster: adult and embryo. Protein modules such as ribosome, proteasome, tricarboxylic acid cycle, glycolysis or oxidative phosphorylation were found differentially expressed between the two developmental stages. Analysis of post-translation modifications of the proteins identified in this study indicates that they generally follow the same trend as their corresponding protein. Comparison between changes in the proteome and the transcriptome highlighted patterns of post-transcriptional regulation for the subunits of protein complexes such as the ribosome and the proteasome, whereas protein from modules such as TCA cycle, glycolysis and oxidative phosphorylation seem to be co-regulated at the transcriptional level. Finally, the impact of the endosymbiont Wolbachia pipientis on the proteome of both developmental states was also investigated.

RevDate: 2019-05-10

Xu Z, Fang SM, Bakowski MA, et al (2019)

Discovery of Kirromycins with Anti- Wolbachia Activity from Streptomyces sp. CB00686.

ACS chemical biology [Epub ahead of print].

Lymphatic filariasis and onchocerciasis diseases caused by filarial parasite infections can lead to profound disability and affect millions of people worldwide. Standard mass drug administration campaigns require repetitive delivery of anthelmintics for years to temporarily block parasite transmission but do not cure infection because long-lived adult worms survive the treatment. Depletion of the endosymbiont Wolbachia, present in most filarial nematode species, results in death of adult worms and therefore represents a promising target for the treatment of filariasis. Here, we used a high-content imaging assay to screen the pure compounds collection of the natural products library at The Scripps Research Institute for anti- Wolbachia activity, leading to the identification of kirromycin B (1) as a lead candidate. Two additional congeners, kirromycin (2) and kirromycin C (3), were isolated and characterized from the same producing strain Streptomyces sp. CB00686. All three kirromycin congeners depleted Wolbachia in LDW1 Drosophila cells in vitro with half-maximal inhibitory concentrations (IC50) in nanomolar range, while doxycycline, a registered drug with anti- Wolbachia activity, showed lower activity with an IC50 of 152 ± 55 nM. Furthermore, 1-3 eliminated the Wolbachia endosymbiont in Brugia pahangi ovaries ex vivo with higher efficiency (65%-90%) at 1 μM than that of doxycycline (50%). No cytotoxicity against HEK293T and HepG2 mammalian cells was observed with 1-3 at the highest concentration (40 μM) used in the assay. These results suggest kirromycin is an effective lead scaffold, further exploration of which could potentially lead to the development of novel treatments for filarial nematode infections.

RevDate: 2019-05-09

Bakowski MA, Shiroodi RK, Liu R, et al (2019)

Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections.

Science translational medicine, 11(491):.

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.

RevDate: 2019-05-08

Hodson CN, SJ Perlman (2019)

Population biology of a selfish sex ratio-distorting element in a booklouse (Psocodea: Liposcelis).

Journal of evolutionary biology [Epub ahead of print].

Arthropods harbour a variety of selfish genetic elements that manipulate reproduction to be preferentially transmitted to future generations. A major ongoing question is to understand how these elements persist in nature. In this study, we examine the population dynamics of an unusual selfish sex ratio distorter in a recently discovered species of booklouse, Liposcelis sp. (Psocodea: Liposcelididae) to gain a better understanding of some of the factors that may affect the persistence of this element. Females that carry the selfish genetic element only ever produce daughters, although they are obligately sexual. These females also only transmit the maternal half of their genome. We performed a replicated population cage experiment, varying the initial frequency of females that harbour the selfish element, and following female frequencies for 20 months. The selfish genetic element persisted in all cages, often reaching very high (and thus severely female-biased) frequencies. Surprisingly, we also found that females that carry the selfish genetic element had much lower fitness than their nondistorter counterparts, with lower lifetime fecundity, slower development, and a shorter egg laying period. We suggest that differential fitness plays a role in the maintenance of the selfish genetic element in this species. We believe that the genetic system in this species, paternal genome elimination, which allows maternal control of offspring sex ratio, may also be important in the persistence of the selfish genetic element, highlighting the need to consider species with diverse ecologies and genetic systems when investigating the effects of sex ratio manipulators on host populations. This article is protected by copyright. All rights reserved.

RevDate: 2019-05-07

Farnesi LC, Belinato TA, Gesto JSM, et al (2019)

Embryonic development and egg viability of wMel-infected Aedes aegypti.

Parasites & vectors, 12(1):211 pii:10.1186/s13071-019-3474-z.

BACKGROUND: Aedes aegypti is a major disease vector in urban habitats, involved in the transmission of dengue, chikungunya and Zika. Despite innumerous attempts to contain disease outbreaks, there are neither efficient vaccines nor definite vector control methods nowadays. In recent years, an innovative strategy to control arboviruses, which exploits the endosymbiotic bacterium Wolbachia pipientis, emerged with great expectations. The success of the method depends on many aspects, including Wolbachia's cytoplasmic incompatibility and pathogen interference phenotypes, as well as its effect on host fitness. In this work, we investigated the influence the Wolbachia strain wMel exerts on embryo development and egg viability and speculate on its field release use.

METHODS: Wild-type (Br or Rockefeller) and Wolbachia-harboring specimens (wMelBr) were blood-fed and submitted to synchronous egg laying for embryo development assays. Samples were analyzed for morphological markers, developmental endpoint and egg resistance to desiccation (ERD). Quiescent egg viability over time was also assessed.

RESULTS: wMelBr samples completed embryogenesis 2-3 hours later than wild-type. This delay was also observed through the onset of both morphological and physiological markers, respectively by the moments of germband extension and ERD acquisition. Following the end of embryonic development, wMelBr eggs were slightly less resistant to desiccation and showed reduced viability levels, which rapidly decayed after 40 days into quiescence, from approximately 75% to virtually 0% in less than a month.

CONCLUSIONS: Our data revealed that the wMel strain of Wolbachia slightly delays embryogenesis and also affects egg quality, both through reduced viability and desiccation resistance. These findings suggest that, although embryonic fitness is somehow compromised by wMel infection, an efficient host reproductive manipulation through cytoplasmic incompatibility seems sufficient to overcome these effects in nature and promote bacterial invasion, as shown by successful ongoing field implementation.

RevDate: 2019-05-04

Cao LJ, Jiang W, AA Hoffmann (2019)

Life History Effects Linked to an Advantage for wAu Wolbachia in Drosophila.

Insects, 10(5): pii:insects10050126.

Wolbachia endosymbiont infections can persist and spread in insect populations without causing apparent effects on reproduction of their insect hosts, but the mechanisms involved are largely unknown. Here, we test for fitness effects of the wAu infection of Drosophila simulans by comparing multiple infected and uninfected polymorphic isofemale lines derived from nature. We show a fitness advantage (higher offspring number) for lines with the wAu Wolbachia infection when breeding on grapes, but only where there was Talaromyces and Penicillium fungal mycelial growth. When breeding on laboratory medium, the wAu infection extended the development time and resulted in larger females with higher fecundity, life history traits, which may increase fitness. A chemical associated with the fungi (ochratoxin A) did not specifically alter the fitness of wAu-infected larvae, which developed slower and emerged with a greater weight regardless of toxin levels. These findings suggest that the fitness benefits of Wolbachia in natural populations may reflect life history changes that are advantageous under particular circumstances, such as when breeding occurs in rotting fruit covered by abundant mycelial growth.

RevDate: 2019-05-03

Crunkhorn S (2019)

Inhibiting Wolbachia to treat parasitic diseases.

RevDate: 2019-04-29

Kaushik S, Sharma KK, Ramani R, et al (2019)

Detection of Wolbachia Phage (WO) in Indian Lac Insect [Kerria lacca (Kerr.)] and Its Implications.

Indian journal of microbiology, 59(2):237-240.

Wolbachia, a maternally inherited bacterium induces reproductive alterations in its hosts such as feminization of males, male killing and parthenogenesis. It is the most diverse endosymbiont infecting more than 70% of the insects ranging from pests to pollinators. Kerria lacca-a hemipteran is a sedentary, oriental insect known to produce lac-the only resin of animal origin. The present study was conducted to screen the presence of Wolbachia and its associated phages in the two infrasubspecific forms (four insect lines) of K. lacca viz. kusmi and rengeeni differing from each other on the basis of host preference. Wolbachia and its associated phage were found to be prevalent in all the insect lines analyzed. We, hereby, report the presence of WO-phage (Wolbachia phage) for the first time in K. lacca. Further, phylogenetic data differentiated the kusmi and rengeeni infrasubspecific forms into two different groups on the basis of WO-phage sequences.

RevDate: 2019-04-27

Anonymous (2019)

Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia.

Genome biology and evolution, 11(4):1320.

RevDate: 2019-04-26

Monteiro VVS, Navegantes-Lima KC, de Lemos AB, et al (2019)

Aedes-Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection.

Frontiers in microbiology, 10:492.

Aedes mosquitoes are important vectors for emerging diseases caused by arboviruses, such as chikungunya (CHIKV). These viruses' main transmitting species are Aedes aegypti and Ae. albopictus, which are present in tropical and temperate climatic areas all over the globe. Knowledge of vector characteristics is fundamentally important to the understanding of virus transmission. Only female mosquitoes are able to transmit CHIKV to the vertebrate host since they are hematophagous. In addition, mosquito microbiota is fundamentally important to virus infection in the mosquito. Microorganisms are able to modulate viral transmission in the mosquito, such as bacteria of the Wolbachia genus, which are capable of preventing viral infection, or protozoans of the Ascogregarina species, which are capable of facilitating virus transmission between mosquitoes and larvae. The competence of the mosquito is also important in the transmission of the virus to the vertebrate host, since their saliva has several substances with biological effects, such as immunomodulators and anticoagulants, which are able to modulate the host's response to the virus, interfering in its pathogenicity and virulence. Understanding the Aedes vector-chikungunya interaction is fundamentally important since it can enable the search for new methods of combating the virus' transmission.

RevDate: 2019-04-24

González-Álvarez VH, Fernández de Mera IG, Cabezas-Cruz A, et al (2017)

Molecular survey of Rickettsial organisms in ectoparasites from a dog shelter in Northern Mexico.

Veterinary parasitology, regional studies and reports, 10:143-148.

The objective of this study was to screen and identify rickettsial organisms in ectoparasites collected from dogs in a shelter in Gomez Palacio, Durango, Mexico. One hundred dogs were inspected for ectoparasites. All the dogs were parasitized with Rhipicephalus sanguineus ticks, three with Heterodoxus spiniger lice and one with Ctenocephalides felis fleas. DNA was extracted from the ectoparasites found on each dog, and PCR with the primers for the Anaplasmataceae 16S rRNA and citrate synthase gltA genes were performed. Eight DNA samples obtained from ticks, three from lice and one from fleas were positive to 16S rRNA. Only one sample from C. felis and one from H. spiniger were positive to gltA. Sequence analysis of amplified products from C. felis showed identity to Rickettsia felis, Wolbachia pipientis, and Wolbachia spp., while a sequence from H. spiniger showed identity to Wolbachia spp. Herein we report the molecular detection of R. felis, W. pipientis, and Wolbachia spp. in C. felis and H. spiniger in northern Mexico. These results contribute to the knowledge of the microorganisms present in ectoparasites from dogs in Mexico.

RevDate: 2019-04-22

Mains JW, Kelly PH, Dobson KL, et al (2019)

Localized Control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via Inundative Releases of Wolbachia-Infected Male Mosquitoes.

Journal of medical entomology pii:5475244 [Epub ahead of print].

As part of the response to autochthonous Zika transmission in the United States, the City of South Miami implemented a 6-mo period in which Wolbachia-infected WB1 Aedes aegypti (L.) males were released into an ~170-acre area. Intracellular Wolbachia bacteria infections in Ae. aegypti cause early embryonic arrest (known as cytoplasmic incompatibility [CI]) and egg hatch failure, and inundative introductions have been suggested as a potential control tool. Throughout the release period, the Ae. aegypti population was monitored within both the release area and an equivalent area that did not receive WB1 male releases. The results show a significant reduction in egg hatch at the area receiving WB1 males, which is consistent with expectations for CI. Similarly, the number of Ae. aegypti was significantly reduced at the area receiving WB1 males, relative to the untreated area. The observed population reduction and results encourage additional work and replication of the Wolbachia biopesticide approach against Ae. aegypti, as an additional tool to be integrated with existing control tools for the control of this medically important vector and nuisance pest.

RevDate: 2019-04-22

Vila A, Estrada-Peña A, Altet L, et al (2019)

Endosymbionts carried by ticks feeding on dogs in Spain.

Ticks and tick-borne diseases pii:S1877-959X(18)30400-X [Epub ahead of print].

Studies on tick microbial communities historically focused on tick-borne pathogens. However, there is an increasing interest in capturing relationships among non-pathogenic endosymbionts and exploring their relevance for tick biology. The present study included a total of 1600 adult ticks collected from domestic dogs in 4 different biogeographical regions of Spain. Each pool formed by 1 to 10 halves of individuals representing one specific ticks species was examined by PCR for the presence of Coxiellaceae, Rickettsia spp., Rickettsiales, Wolbachia spp., and other bacterial DNA. Of the pools analyzed, 92% tested positive for endosymbiont-derived DNA. Coxiella spp. endosymbionts were the most prevalent microorganisms, being always present in Rhipicephalus sanguineus sensu lato (s.l.) pools. Rickettsia spp. DNA was detected in 60% of Dermacentor reticulatus pools and 40% of R. sanguineus s.l. pools, with a higher diversity of Rickettsia species in R. sanguineus s.l. pools. Our study reveals a negative relationship of Rickettsia massiliae with the presence of tick-borne pathogens in the same pool of ticks. An additional endosymbiont, 'Candidatus Rickettsiella isopodorum', was only detected in D. reticulatus pools. Data from this study indicate that dogs in Spain are exposed to several endosymbionts. Due to the importance of tick-borne pathogens, characterizing the role of endosymbionts for tick physiology and prevalence, may lead to novel control strategies.

RevDate: 2019-04-20

Shropshire JD, Leigh B, Bordenstein SR, et al (2019)

Models and Nomenclature for Cytoplasmic Incompatibility: Caution over Premature Conclusions - A Response to Beckmann et al.

RevDate: 2019-04-19

Ross PA, Ritchie SA, Axford JK, et al (2019)

Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions.

PLoS neglected tropical diseases, 13(4):e0007357 pii:PNTD-D-18-01933 [Epub ahead of print].

Wolbachia bacteria are now being introduced into Aedes aegypti mosquito populations for dengue control. When Wolbachia infections are at a high frequency, they influence the local transmission of dengue by direct virus blocking as well as deleterious effects on vector mosquito populations. However, the effectiveness of this strategy could be influenced by environmental temperatures that decrease Wolbachia density, thereby reducing the ability of Wolbachia to invade and persist in the population and block viruses. We reared wMel-infected Ae. aegypti larvae in the field during the wet season in Cairns, North Queensland. Containers placed in the shade produced mosquitoes with a high Wolbachia density and little impact on cytoplasmic incompatibility. However, in 50% shade where temperatures reached 39°C during the day, wMel-infected males partially lost their ability to induce cytoplasmic incompatibility and females had greatly reduced egg hatch when crossed to infected males. In a second experiment under somewhat hotter conditions (>40°C in 50% shade), field-reared wMel-infected females had their egg hatch reduced to 25% when crossed to field-reared wMel-infected males. Wolbachia density was reduced in 50% shade for both sexes in both experiments, with some mosquitoes cleared of their Wolbachia infections entirely. To investigate the critical temperature range for the loss of Wolbachia infections, we held Ae. aegypti eggs in thermocyclers for one week at a range of cyclical temperatures. Adult wMel density declined when eggs were held at 26-36°C or above with complete loss at 30-40°C, while the density of wAlbB remained high until temperatures were lethal. These findings suggest that high temperature effects on Wolbachia are potentially substantial when breeding containers are exposed to partial sunlight but not shade. Heat stress could reduce the ability of Wolbachia infections to invade mosquito populations in some locations and may compromise the ability of Wolbachia to block virus transmission in the field. Temperature effects may also have an ecological impact on mosquito populations given that a proportion of the population becomes self-incompatible.

RevDate: 2019-04-19

Meany MK, Conner WR, Richter SV, et al (2019)

Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in Drosophila mauritiana.

Evolution; international journal of organic evolution [Epub ahead of print].

Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI), reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency-dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non-CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI-causing wNo from D. simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI-associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near-perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group-B Wolbachia, including wMau and wPip, diverged from group-A Wolbachia, such as wMel and wRi, 6-46 million years ago, more recently than previously estimated. This article is protected by copyright. All rights reserved.

RevDate: 2019-04-19

Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, et al (2019)

Bacterial associates of Orthezia urticae, Matsucoccus pini, and Steingelia gorodetskia - scale insects of archaeoccoid families Ortheziidae, Matsucoccidae, and Steingeliidae (Hemiptera, Coccomorpha).

Protoplasma pii:10.1007/s00709-019-01377-z [Epub ahead of print].

The biological nature, ultrastructure, distribution, and mode of transmission between generations of the microorganisms associated with three species (Orthezia urticae, Matsucoccus pini, Steingelia gorodetskia) of primitive families (archaeococcoids = Orthezioidea) of scale insects were investigated by means of microscopic and molecular methods. In all the specimens of Orthezia urticae and Matsucoccus pini examined, bacteria Wolbachia were identified. In some examined specimens of O. urticae, apart from Wolbachia, bacteria Sodalis were detected. In Steingelia gorodetskia, the bacteria of the genus Sphingomonas were found. In contrast to most plant sap-sucking hemipterans, the bacterial associates of O. urticae, M. pini, and S. gorodetskia are not harbored in specialized bacteriocytes, but are dispersed in the cells of different organs. Ultrastructural observations have shown that bacteria Wolbachia in O. urticae and M. pini, Sodalis in O. urticae, and Sphingomonas in S. gorodetskia are transovarially transmitted from mother to progeny.

RevDate: 2019-04-19

Sabūnas V, Radzijevskaja J, Sakalauskas P, et al (2019)

Dirofilaria repens in dogs and humans in Lithuania.

Parasites & vectors, 12(1):177 pii:10.1186/s13071-019-3406-y.

BACKGROUND: In Lithuania, the first case of canine subcutaneous dirofilariosis was recorded in 2010. Since then, an increasing number of cases of canine dirofilariosis have been documented in different veterinary clinics throughout the country. Human dirofilariosis was diagnosed in Lithuania for the first time in September 2011. However, to the authors' knowledge, there are no published data on the presence and prevalence of autochthonous dirofilariosis in dogs and humans in the country. The present study provides information about the predominant species and prevalence of Dirofilaria in dogs and describes the cases of human dirofilariosis in Lithuania. It also outlines PCR detection of the bacterial endosymbiont Wolbachia that contributes to the inflammatory features of filarioid infection.

RESULTS: A total of 2280 blood samples and six adult worms from pet and shelter dogs were collected in the central and eastern regions of Lithuania in 2013-2015. Based on their morphological appearance, morphometric measurements and molecular analysis, all the adult nematodes were identified as Dirofilaria repens. The diagnosis of microfilariae in blood samples was based on blood smear analysis and Knott's test. The PCR and sequence analysis of the ribosomal DNA ITS2 region and cox1 gene confirmed the presence of D. repens. Overall, 61 (2.7%) of the 2280 blood samples were found to be positive for the presence of D. repens. The infection rate of D. repens was significantly higher in shelter dogs (19.0%; 19/100) than in pet dogs (1.9%; 42/2180) (χ2 = 100.039, df = 1, P < 0.0001). Forty-nine DNA samples of D. repens-infected dogs were tested for the presence of the bacterial endosymbiont Wolbachia and, of these, 40 samples (81.6%) were found to be positive. Three ocular and six subcutaneous cases of human dirofilariosis were diagnosed in Lithuania in the period 2011-2018.

CONCLUSIONS: To the authors' knowledge, this is the first report of autochthonous D. repens infection in dogs and humans in Lithuania. The present data demonstrate that D. repens is the main etiological agent of dirofilariosis in Lithuania. The DNA of the filarioid endosymbiotic bacterium Wolbachia was detected in the vast majority of dogs infected with D. repens.

RevDate: 2019-04-18

Carvajal TM, Capistrano JDR, Hashimoto K, et al (2018)

Detection and distribution of Wolbachia endobacteria in Culex quinquefasciatus populations (Diptera : Culicidae) from Metropolitan Manila, Philippines.

Journal of vector borne diseases, 55(4):265-270.

Background & objectives: Culex quinquefasciatus is a peridomestic mosquito known for its ability to transmit pathogenic diseases such as filariasis and Japanese encephalitis. The development and use of novel and innovative vector control measures such as the utilization of Wolbachia, along with the existing ones, are necessary to prevent the transmission of these diseases. Studies exploring the diversity of Wolbachia, particularly in Cx. quinquefasciatus are very limited in the Philippines. Thus, the aim of the study was to detect the presence, distribution, and phylogenetic relationship of Wolbachia infections in Cx. quinquefasciatus in Metropolitan Manila, Philippines.

Methods: Adult Cx. quinquefasciatus mosquitoes were collected using a commercially available light-trap from May 2014-January 2015. Based on their sampling grids (n = 51), the adult mosquito abdomens were pooled and subjected to Wolbachia surface protein (wsp) gene amplification assay. Five selected wsp-positive samples were then sequenced and further analyzed to infer their phylogenetic relationship with known Wolbachia strains.

Results: A total of 1090 adult Cx. quinquefasciatus mosquitoes were collected. Pooled abdomens (n = 53) were then sorted based on their sampling grids for subsequent screening of wsp gene. Wolbachia infection rate was 59% (31/53). These infections were located at 29 (57%) sampling grids, and were observed to be widely distributed in the study area. Phylogenetic analysis indicated that the sample sequences were Wolbachia pipientis isolated from known hosts, Cx. pipiens and Cx. quinquefasciatus belonging to supergroup B clade.

The study was able to demonstrate the prevalence and distribution of Wolbachia in Cx. quinquefasciatus in Metropolitan Manila, Philippines. The findings of this study are geared towards proposing a vector control program that utilizes the potential of Wolbachia as a biological control agent in preventing the transmission of Culex-borne diseases.

RevDate: 2019-04-17

Muñoz-Leal S, Macedo C, Gonçalves TC, et al (2019)

Detected microorganisms and new geographic records of Ornithodoros rietcorreai (Acari: Argasidae) from northern Brazil.

Ticks and tick-borne diseases pii:S1877-959X(18)30422-9 [Epub ahead of print].

Reliable data on distributional ranges of soft ticks (Argasidae) and assessments of putative tick-borne agents enhance the understanding on tick-associated microorganisms. A total of 96 ticks morphologicaly and molecularly identified as Ornithodoros rietcorreai were collected in Tocantins State, Brazil, using Noireau traps with living bait as CO2 source. Ninety-six ticks (54 nymphs, 32 males, 10 females) with different engorgement degrees were collected. Fourty-seven (48.9%) of them were individually screened by PCR for detecting bacteria of Anaplasmataceae family and genera Rickettsia, and Borrelia. The presence of protozoans of the genus Babesia was assessed as well. Fourty seven ticks were submitted to analysis. Nine ticks (19.1%) yielded sequences for gltA and htrA genes most identical with a series of endosymbiont rickettsiae and Rickettsia bellii, respectively. Upon two ticks (4.2%) we retrieved DNA of a potential new Wolbachia sp., and DNA of a putative novel Hepatozoon was characterized from three (6.4%) specimens. No DNA of Babesia or Borrelia was detected. Remarkably, amplicons of unidentified eukaryotic organisms, most closely related with apicomplexans but also with dinoflagellates (91% of identity after BLAST analyses), were recovered from two ticks (4.2%) using primers designed for Babesia 18S rRNA gene. Our records expand the distribution of O. rietcorreai into Brazilian Cerrado biome and introduce the occurrence of microorganisms in this tick species.

RevDate: 2019-04-17

Dhaygude K, Nair A, Johansson H, et al (2019)

The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host.

BMC genomics, 20(1):301 pii:10.1186/s12864-019-5665-6.

BACKGROUND: Adapting to changes in the environment is the foundation of species survival, and is usually thought to be a gradual process. However, transposable elements (TEs), epigenetic modifications, and/or genetic material acquired from other organisms by means of horizontal gene transfer (HGTs), can also lead to novel adaptive traits. Social insects form dense societies, which attract and maintain extra- and intracellular accessory inhabitants, which may facilitate gene transfer between species. The wood ant Formica exsecta (Formicidae; Hymenoptera), is a common ant species throughout the Palearctic region. The species is a well-established model for studies of ecological characteristics and evolutionary conflict.

RESULTS: In this study, we sequenced and assembled draft genomes for F. exsecta and its endosymbiont Wolbachia. The F. exsecta draft genome is 277.7 Mb long; we identify 13,767 protein coding genes, for which we provide gene ontology and protein domain annotations. This is also the first report of a Wolbachia genome from ants, and provides insights into the phylogenetic position of this endosymbiont. We also identified multiple horizontal gene transfer events (HGTs) from Wolbachia to F. exsecta. Some of these HGTs have also occurred in parallel in multiple other insect genomes, highlighting the extent of HGTs in eukaryotes.

CONCLUSION: We present the first draft genome of ant F. exsecta, and its endosymbiont Wolbachia (wFex), and show considerable rates of gene transfer from the symbiont to the host. We expect that especially the F. exsecta genome will be valuable resource in further exploration of the molecular basis of the evolution of social organization.

RevDate: 2019-04-16

Zheng B, Liu X, Tang M, et al (2019)

Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control.

Journal of theoretical biology pii:S0022-5193(19)30151-1 [Epub ahead of print].

Due to the lack of vaccines and effective clinical cures, current methods to control mosquito-borne viral diseases such as dengue and Zika are primarily targeting to eradicate the major mosquito vectors. However, traditional means, including larval source reduction and applications of insecticides etc, are not sufficient to keep vector population density below the epidemic risk threshold. An innovative and operational strategy is to release Wolbachia-infected male mosquitoes into wild areas to sterilize wild female mosquitoes by cytoplasmic incompatibility. To help design optimal release strategies before large scale and expensive operations, we started with an age-stage discrete model to track daily abundances of wild female mosquitoes, which fitted the field data collected by Guangzhou Center for Disease Control and Prevention from 2015 to 2017 with an average Pearson correlation coefficient 0.7283. Then, we modeled the Wolbachia interference by introducing the proportional releases of Wolbachia-infected males, and eight optimal release policies which guarantee more than 95% suppression efficiency were sought. Finally, we assessed the robustness of the optimality of the eight release policies by allowing the migration of females or the contamination of Wolbachia-infected females by two further extended mathematical models.

RevDate: 2019-04-12

Lefoulon E, Vaisman N, Frydman HM, et al (2019)

Large Enriched Fragment Targeted Sequencing (LEFT-SEQ) Applied to Capture of Wolbachia Genomes.

Scientific reports, 9(1):5939 pii:10.1038/s41598-019-42454-w.

Symbiosis is a major force of evolutionary change, influencing virtually all aspects of biology, from population ecology and evolution to genomics and molecular/biochemical mechanisms of development and reproduction. A remarkable example is Wolbachia endobacteria, present in some parasitic nematodes and many arthropod species. Acquisition of genomic data from diverse Wolbachia clades will aid in the elucidation of the different symbiotic mechanisms(s). However, challenges of de novo assembly of Wolbachia genomes include the presence in the sample of host DNA: nematode/vertebrate or insect. We designed biotinylated probes to capture large fragments of Wolbachia DNA for sequencing using PacBio technology (LEFT-SEQ: Large Enriched Fragment Targeted Sequencing). LEFT-SEQ was used to capture and sequence four Wolbachia genomes: the filarial nematode Brugia malayi, wBm, (21-fold enrichment), Drosophila mauritiana flies (2 isolates), wMau (11-fold enrichment), and Aedes albopictus mosquitoes, wAlbB (200-fold enrichment). LEFT-SEQ resulted in complete genomes for wBm and for wMau. For wBm, 18 single-nucleotide polymorphisms (SNPs), relative to the wBm reference, were identified and confirmed by PCR. A limit of LEFT-SEQ is illustrated by the wAlbB genome, characterized by a very high level of insertion sequences elements (ISs) and DNA repeats, for which only a 20-contig draft assembly was achieved.

RevDate: 2019-04-12

Lee WS, Webster JA, Madzokere ET, et al (2019)

Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection.

Parasites & vectors, 12(1):165 pii:10.1186/s13071-019-3433-8.

Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito's ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.

RevDate: 2019-04-16

Sigle LT, EA McGraw (2019)

Expanding the canon: Non-classical mosquito genes at the interface of arboviral infection.

Insect biochemistry and molecular biology, 109:72-80 pii:S0965-1748(18)30453-3 [Epub ahead of print].

Mosquito transmitted viruses cause significant morbidity and mortality in human populations. Despite the use of insecticides and other measures of vector control, arboviral diseases are on the rise. One potential solution for limiting disease transmission to humans is to render mosquitoes refractory to viral infection through genetic modification. Substantial research effort in Drosophila, Aedes and Anopheles has helped to define the major innate immune pathways, including Toll, IMD, Jak/Stat and RNAi, however we still have an incomplete picture of the mosquito antiviral response. Transcriptional profiles of virus-infected insects reveal a much wider range of pathways activated by the process of infection. Within these lists of genes are unexplored mosquito candidates of viral defense. Wolbachia species are endosymbiotic bacteria that naturally limit arboviral infection in mosquitoes. Our understanding of the Wolbachia-mediated viral blocking mechanism is poor, but it does not appear to operate via the classical immune pathways. Herein, we reviewed the transcriptomic response of mosquitoes to multiple viral species and put forth consensus gene types/families outside the immune canon whose expression responds to infection, including cytoskeleton and cellular trafficking, the heat shock response, cytochromes P450, cell proliferation, chitin and small RNAs. We then examine emerging evidence for their functional role in viral resistance in diverse insect and mammalian hosts and their potential role in Wolbachia-mediated viral blocking. These candidate gene families offer novel avenues for research into the nature of insect viral defense.

RevDate: 2019-04-08

Clare RH, Clark R, Bardelle C, et al (2019)

Development of a High-Throughput Cytometric Screen to Identify Anti- Wolbachia Compounds: The Power of Public-Private Partnership.

SLAS discovery : advancing life sciences R & D [Epub ahead of print].

The Anti- Wolbachia (A·WOL) consortium at the Liverpool School of Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening (HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected tropical diseases (NTDs). The A·WOL consortium aims to identify novel macrofilaricidal drugs targeting the essential bacterial symbiont (Wolbachia) of the filarial nematodes causing onchocerciasis and lymphatic filariasis. Working in collaboration, we have validated a robust high-throughput assay capable of identifying compounds that selectively kill Wolbachia over the host insect cell. We describe the development and validation process of this complex, phenotypic high-throughput assay and provide an overview of the primary outputs from screening the AstraZeneca library of 1.3 million compounds.

RevDate: 2019-04-15

Landmann F (2019)

The Wolbachia Endosymbionts.

Microbiology spectrum, 7(2):.

The Wolbachia endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to Anaplasma, Ehrlichia, and Rickettsia. This genus of Gram-negative members of the Alphaproteobacteria does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The Wolbachia profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made Wolbachia a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the Wolbachia are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the Wolbachia resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the "-omics" revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by Wolbachia, and the identification of Wolbachia effectors is ongoing.

RevDate: 2019-04-05

Walden PM, Whitten AE, Premkumar L, et al (2019)

The atypical thiol-disulfide exchange protein α-DsbA2 from Wolbachia pipientis is a homotrimeric disulfide isomerase.

Acta crystallographica. Section D, Structural biology, 75(Pt 3):283-295.

Disulfide-bond-forming (DSB) oxidative folding enzymes are master regulators of virulence that are localized to the periplasm of many Gram-negative bacteria. The archetypal DSB machinery from Escherichia coli K-12 consists of a dithiol-oxidizing redox-relay pair (DsbA/B), a disulfide-isomerizing redox-relay pair (DsbC/D) and the specialist reducing enzymes DsbE and DsbG that also interact with DsbD. By contrast, the Gram-negative bacterium Wolbachia pipientis encodes just three DSB enzymes. Two of these, α-DsbA1 and α-DsbB, form a redox-relay pair analogous to DsbA/B from E. coli. The third enzyme, α-DsbA2, incorporates a DsbA-like sequence but does not interact with α-DsbB. In comparison to other DsbA enzymes, α-DsbA2 has ∼50 extra N-terminal residues (excluding the signal peptide). The crystal structure of α-DsbA2ΔN, an N-terminally truncated form in which these ∼50 residues are removed, confirms the DsbA-like nature of this domain. However, α-DsbA2 does not have DsbA-like activity: it is structurally and functionally different as a consequence of its N-terminal residues. Firstly, α-DsbA2 is a powerful disulfide isomerase and a poor dithiol oxidase: i.e. its role is to shuffle rather than to introduce disulfide bonds. Moreover, small-angle X-ray scattering (SAXS) of α-DsbA2 reveals a homotrimeric arrangement that differs from those of the other characterized bacterial disulfide isomerases DsbC from Escherichia coli (homodimeric) and ScsC from Proteus mirabilis (PmScsC; homotrimeric with a shape-shifter peptide). α-DsbA2 lacks the shape-shifter motif and SAXS data suggest that it is less flexible than PmScsC. These results allow conclusions to be drawn about the factors that are required for functionally equivalent disulfide isomerase enzymatic activity across structurally diverse protein architectures.

RevDate: 2019-04-05

Pillonel T, Bertelli C, Aeby S, et al (2019)

Sequencing the obligate intracellular Rhabdochlamydia helvetica within its tick host Ixodes ricinus to investigate their symbiotic relationship.

Genome biology and evolution pii:5428150 [Epub ahead of print].

The Rhabdochlamydiaceae family is one of the most widely distributed within the phylum Chlamydiae, but most of its members remain uncultivable. Rhabdochlamydia 16S rRNA was recently reported in more than 2% of 8534 pools of ticks from Switzerland. Shotgun metagenomics was performed on a pool of 5 female Ixodes ricinus ticks presenting a high concentration of chlamydial DNA, allowing the assembly of a high-quality draft genome. About 60% of sequence reads originated from a single bacterial population that was named 'Candidatus Rhabdochlamydia helvetica' whereas only few thousand reads mapped to the genome of 'Candidatus Midichloria mitochondrii', a symbiont normally observed in all I. ricinus females. The 1.8 Mbp genome of R. helvetica is smaller than other Chlamydia-related bacteria. Comparative analyses with other chlamydial genomes identified transposases of the PD-(D/E)XK nuclease family that are unique to this new genome. These transposases show evidence of inter-phylum horizontal gene transfers between multiple arthropod endosymbionts, including Cardinium spp. (Bacteroidetes) and diverse proteobacteria such as Wolbachia, Rickettsia spp. (Rickettsiales) and Caedimonas varicaedens (Holosporales). Bacterial symbionts were previously suggested to provide B-vitamins to hematophagous hosts. However, incomplete metabolic capacities including for B-vitamin biosynthesis, high bacterial density and limited prevalence suggest that R. helvetica is parasitic rather than symbiotic to its host. The identification of novel Rhabdochlamydia strains in different hosts and their sequencing will help understanding if members of this genus have become highly specialized parasites with reduced genomes, like the Chlamydiaceae, or if they could be pathogenic to humans using ticks as a transmission vector.

RevDate: 2019-04-03

Barradas I, V Vázquez (2019)

Backward Bifurcation as a Desirable Phenomenon: Increased Fecundity Through Infection.

Bulletin of mathematical biology pii:10.1007/s11538-019-00604-1 [Epub ahead of print].

Backward or subcritical bifurcation is usually considered an undesirable phenomenon in epidemiology since control measures require a reduction in R0 not below one but below a much smaller value. However, there are contexts for which a backward or subcritical bifurcation is not a bad thing; it can even be desirable. Such is the case for any characteristic that can be passed to the next generation (genetically fixed or not) and that increases the effective reproductive rate of the host or the total number of individuals. In the present work, we study an epidemiological model consisting of two classes, susceptible and "infected" individuals; the model considers a characteristic that is passed from "infected" to "susceptible" by direct "contact," for instance increased fecundity. We analyze conditions for the appearance of a backward or subcritical bifurcation. We discuss the advantage for the population under infection, since the total number of individuals increases at equilibrium. If one takes that as a proxy for increased fitness, it would increase the species' ecological success. One key element in the model is the fact that "susceptible" individuals have "susceptible" descendants, but "infected" individuals can have "infected" descendants as well as "susceptible" ones. A somehow rare addition for epidemiological models, the fact that "infected" individuals reproduce more rapidly than the susceptible ones, leads to unexpected consequences. Facilitating the "inoculation" increases the total population size, i.e., the backward or subcritical bifurcation appears, with desirable consequences for the population. We show that an increase in the number of susceptible newborns is the main reason for the appearance of a backward or subcritical bifurcation, which induces a bigger population size. We analyze the effect of different combinations of susceptible/infected birth rates. This kind of phenomenon has been observed for bacterial infections in several insects-bacteria and nematodes-bacteria interactions; in particular, it has been intensely studied in interactions of wasps and flies with the genus Wolbachia. It has also been shown in amphibians.

RevDate: 2019-04-03

Ali H, Muhammad A, Sanda NB, et al (2019)

Pyrosequencing Uncovers a Shift in Bacterial Communities Across Life Stages of Octodonta nipae (Coleoptera: Chrysomelidae).

Frontiers in microbiology, 10:466.

Bacterial symbionts of insects affect a wide array of host traits including fitness and immunity. Octodonta nipae (Maulik), commonly known as hispid leaf beetle is a destructive palm pest around the world. Understanding the dynamics of microbiota is essential to unravel the complex interplay between O. nipae and its bacterial symbionts. In this study, bacterial 16S rRNA V3-V4 region was targeted to decipher the diversity and dynamics of bacterial symbionts across different life stages [eggs, larvae, pupae, and adult (male and female)] and reproductive organs (ovaries and testis) of O. nipae. Clustering analysis at ≥97% similarity threshold produced 3,959 operational taxonomic units (OTUs) that belonged to nine different phyla. Proteobacteria, Actinobacteria, and Firmicutes represented the bulk of taxa that underwent notable changes during metamorphosis. Enterobacteriaceae and Dermabacteraceae were the most abundant families in immature stages (eggs, larvae, and pupae), while Anaplasmataceae family was dominated in adults (male and female) and reproductive organs (ovaries and testis). The genus Serratia and Lactococcus were most abundant in eggs, whereas Pantoea and Brachybacterium represented the bulk of larvae and pupae microbiota. Interestingly the genus Wolbachia found positive to all tested samples and was recorded extremely high (>64%) in the adults and reproductive organs. The bacteria varied across the developmental stages and responsible for various metabolic activities. Selection choice exerted by the insect host as a result of its age or developmental stage could be the main reason to ascertain the shift in the bacteria populations. Maternally inherited Wolbachia was found to be an obligate endosymbiont infecting all tested life stages, body parts, and tissues. These outcomes foster our understanding of the intricate associations between bacteria and O. nipae and will incorporate in devising novel pest control strategies against this palm pest.

RevDate: 2019-03-29

Zhang X, Li TP, Zhou CY, et al (2019)

Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus.

Insect science [Epub ahead of print].

Bacteria symbionts in herbivores play an important role in host biology and ecology, and are affected by environmental factors such as temperature, diet, habitat, antibiotics etc. However, the effects of antibiotics on the microbiome of small brown planthopper Laodelphax striatellus (SBPH) remain unclear. Here, we studied the effects of tetracycline on the diversity and composition of bacterial colonies in different tissues of SBPH using high throughput sequencing of 16S rRNA amplicons. Our results show that Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria were most abundant in SBPH, and the genera Asaia and Wolbachia were most abundant in all body parts of SBPH. Antibiotic treatment had persistent effects on the composition of the SBPH microbiome. Tetracycline depleted the population of Firmicutes, Bacteroidetes, Tenericutes and Fusobacteria, and nearly 100% eliminated Wolbachia, Bacteroides and Abiotrophia in SBPH. Together, these results suggest that antibiotic exposure affects the bacteria symbionts of different body parts in SBPH and will facilitate future studies of the bacterial symbionts of arthropod hosts. This article is protected by copyright. All rights reserved.

RevDate: 2019-03-27

Kolasa M, Ścibior R, Mazur MA, et al (2019)

How Hosts Taxonomy, Trophy, and Endosymbionts Shape Microbiome Diversity in Beetles.

Microbial ecology pii:10.1007/s00248-019-01358-y [Epub ahead of print].

Bacterial communities play a crucial role in the biology, ecology, and evolution of multicellular organisms. In this research, the microbiome of 24 selected beetle species representing five families (Carabidae, Staphylinidae, Curculionidae, Chrysomelidae, Scarabaeidae) and three trophic guilds (carnivorous, herbivorous, detrivorous) was examined using 16S rDNA sequencing on the Illumina platform. The aim of the study was to compare diversity within and among species on various levels of organization, including evaluation of the impact of endosymbiotic bacteria. Collected data showed that beetles possess various bacterial communities and that microbiota of individuals of particular species hosts are intermixed. The most diverse microbiota were found in Carabidae and Scarabaeidae; the least diverse, in Staphylinidae. On higher organization levels, the diversity of bacteria was more dissimilar between families, while the most distinct with respect to their microbiomes were trophic guilds. Moreover, eight taxa of endosymbiotic bacteria were detected including common genera such as Wolbachia, Rickettsia, and Spiroplasma, as well as the rarely detected Cardinium, Arsenophonus, Buchnera, Sulcia, Regiella, and Serratia. There were no correlations among the abundance of the most common Wolbachia and Rickettsia; a finding that does not support the hypothesis that these bacteria occur interchangeably. The abundance of endosymbionts only weakly and negatively correlates with diversity of the whole microbiome in beetles. Overall, microbiome diversity was found to be more dependent on host phylogeny than on the abundance of endosymbionts. This is the first study in which bacteria diversity is compared between numerous species of beetles in a standardized manner.

RevDate: 2019-04-06

Konecka E, Olszanowski Z, R Koczura (2019)

Wolbachia of phylogenetic supergroup E identified in oribatid mite Gustavia microcephala (Acari: Oribatida).

Molecular phylogenetics and evolution, 135:230-235 pii:S1055-7903(18)30535-9 [Epub ahead of print].

Heritable endosymbionts have been observed in arthropod and nematode hosts. The most-known among them is Wolbachia. Although the bacterium was previously identified in oribatid mites (Acari: Oribatida), it was not assigned to any phylogenetic group. Endosymbionts have a profound influence on their hosts, playing various functions that affect invertebrate's biology such as changing the way of reproduction. Oribatida provide the very unique examples of groups in which even whole families appear to be thelytokous, so we considered that it is worth to investigate the occurrence of endosymbiotic microorganisms in oribatid mites, especially that the knowledge on the symbionts occurrence in this invertebrate group is negligible. We report for the first time Wolbachia in oribatid mite Gustavia microcephala. The sequences of 16S rDNA, gltA, and ftsZ genes of the endosymbiont from the mite showed the highest similarity to Wolbachia found in Collembola. Phylogenetic analysis based on single gene and concatenated alignments of three genes revealed that the bacteria from G. microcephala and Collembola were related and clustered together with supergroup E. Relatively close relationship of Wolbachia from oribatid and collembolan hosts might mean at the evolutionary scale that horizontal transfer of bacteria between these two groups of invertebrates may take place.

RevDate: 2019-03-26

Guo J, Liu X, Poncelet N, et al (2019)

Detection and geographic distribution of seven facultative endosymbionts in two Rhopalosiphum aphid species.

MicrobiologyOpen [Epub ahead of print].

Study of the mutualistic associations between facultative symbionts and aphids are developed only in a few models. That survey on the situation and distribution of the symbionts in a certain area is helpful to obtain clues for the acquisition and spread of them as well as their roles played in host evolution. To understand the infection patterns of seven facultative symbionts (Serratia symbiotica, Hamiltonella defensa, Regiella insecticola, Rickettsia, Spiroplasma, Wolbachia, and Arsenophonus) in Rhopalosiphum padi (Linnaeus) and Rhopalosiphum maidis (Fitch), we collected 882 R. maidis samples (37 geographical populations) from China and 585 R. padi samples (32 geographical populations) from China and Europe. Results showed that both species were widely infected with various symbionts and totally 50.8% of R. maidis and 50.1% of R. padi were multi-infected with targeted symbionts. However, very few Rhopalosiphum aphids were infected with S. symbiotica. The infection frequencies of some symbionts were related to the latitude of collecting sites, suggesting the importance of environmental factors in shaping the geographic distribution of facultative symbionts. Also, R. maidis and R. padi were infected with different H. defensa strains based on phylogenetic analysis which may be determined by host ×symbiont genotype interactions. According to our results, the ubiquitous symbionts may play important roles in the evolution of their host aphid and their impacts on adaptation of R. padi and R. maidis were discussed as well.

RevDate: 2019-03-26

Bing XL, Zhao DS, XY Hong (2019)

Bacterial reproductive manipulators in rice planthoppers.

Archives of insect biochemistry and physiology [Epub ahead of print].

Rice planthoppers (Hemiptera: Delphacidae) are notorious pests for rice (Oryza sativa) in Asia, posing a serious threat to rice production and grain security. Rice planthoppers harbor diverse bacterial symbionts, including Wolbachia, Cardinium, Spiroplasma, and Arsenophonus, which are known to manipulate reproduction in arthropod hosts. This microreview is to introduce current knowledge of bacterial reproductive manipulators in rice planthoppers, including their diversity, population dynamics, localization, transmission, and biological functions.

RevDate: 2019-03-29

Tolley SJA, Nonacs P, P Sapountzis (2019)

Wolbachia Horizontal Transmission Events in Ants: What Do We Know and What Can We Learn?.

Frontiers in microbiology, 10:296.

While strict vertical transmission insures the durability of intracellular symbioses, phylogenetic incongruences between hosts and endosymbionts suggest horizontal transmission must also occur. These horizontal acquisitions can have important implications for the biology of the host. Wolbachia is one of the most ecologically successful prokaryotes in arthropods, infecting an estimated 50-70% of all insect species. Much of this success is likely due to the fact that, in arthropods, Wolbachia is notorious for manipulating host reproduction to favor transmission through the female germline. However, its natural potential for horizontal transmission remains poorly understood. Here we evaluate the fundamental prerequisites for successful horizontal transfer, including necessary environmental conditions, genetic potential of bacterial strains, and means of mediating transfers. Furthermore, we revisit the relatedness of Wolbachia strains infecting the Panamanian leaf-cutting ant, Acromyrmex echinatior, and its inquiline social parasite, Acromyrmex insinuator, and compare our results to a study published more than 15 years ago by Van Borm et al. (2003). The results of this pilot study prompt us to reevaluate previous notions that obligate social parasitism reliably facilitates horizontal transfer and suggest that not all Wolbachia strains associated with ants have the same genetic potential for horizontal transmission.

RevDate: 2019-04-02

Fattouh N, Cazevieille C, F Landmann (2019)

Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress.

PLoS neglected tropical diseases, 13(3):e0007218 pii:PNTD-D-18-01659.

The reproductive parasites Wolbachia are the most common endosymbionts on earth, present in a plethora of arthropod species. They have been introduced into mosquitos to successfully prevent the spread of vector-borne diseases, yet the strategies of host cell subversion underlying their obligate intracellular lifestyle remain to be explored in depth in order to gain insights into the mechanisms of pathogen-blocking. Like some other intracellular bacteria, Wolbachia reside in a host-derived vacuole in order to replicate and escape the immune surveillance. Using here the pathogen-blocking Wolbachia strain from Drosophila melanogaster, introduced into two different Drosophila cell lines, we show that Wolbachia subvert the endoplasmic reticulum to acquire their vacuolar membrane and colonize the host cell at high density. Wolbachia redistribute the endoplasmic reticulum, and time lapse experiments reveal tight coupled dynamics suggesting important signalling events or nutrient uptake. Wolbachia infection however does not affect the tubular or cisternal morphologies. A fraction of endoplasmic reticulum becomes clustered, allowing the endosymbionts to reside in between the endoplasmic reticulum and the Golgi apparatus, possibly modulating the traffic between these two organelles. Gene expression analyses and immunostaining studies suggest that Wolbachia achieve persistent infections at very high titers without triggering endoplasmic reticulum stress or enhanced ERAD-driven proteolysis, suggesting that amino acid salvage is achieved through modulation of other signalling pathways.

RevDate: 2019-03-19

Endersby-Harshman NM, Axford JK, AA Hoffmann (2019)

Environmental Concentrations of Antibiotics May Diminish Wolbachia infections in Aedes aegypti (Diptera: Culicidae).

Journal of medical entomology pii:5393597 [Epub ahead of print].

Wolbachia-infected Aedes aegypti (L.) mosquitoes for control of dengue transmission are being released experimentally in tropical regions of Australia, south-east Asia, and South America. To become established, the Wolbachia Hertig (Rickettsiales: Rickettsiaceae) strains used must induce expression of cytoplasmic incompatibility (CI) in matings between infected males and uninfected females so that infected females have a reproductive advantage, which will drive the infection through field populations. Wolbachia is a Rickettsia-like alphaproteobacterium which can be affected by tetracycline antibiotics. We investigated whether exposure of Wolbachia-infected mosquitoes to chlortetracycline at environmentally relevant levels during their aquatic development resulted in loss or reduction of infection in three strains, wAlbB, wMel, and wMelPop. Wolbachia density was reduced for all three strains at the tested chlortetracycline concentrations of 5 and 50 µg/liter. Two of the strains, wMel and wMelPop, showed a breakdown in CI. The wAlbB strain maintained CI and may be useful at breeding sites where tetracycline contamination has occurred. This may include drier regions where Ae. aegypti can utilize subterranean water sources and septic tanks as breeding sites.

RevDate: 2019-04-02

Portillo A, Palomar AM, de Toro M, et al (2019)

Exploring the bacteriome in anthropophilic ticks: To investigate the vectors for diagnosis.

PloS one, 14(3):e0213384 pii:PONE-D-18-28858.

OBJECTIVE: The aim of this study was to characterize the bacterial microbiome of hard ticks with affinity to bite humans in La Rioja (North of Spain).

METHODS: A total of 88 adult ticks (22 Rhipicephalus sanguineus sensu lato, 27 Haemaphysalis punctata, 30 Dermacentor marginatus and 9 Ixodes ricinus) and 120 I. ricinus nymphs (CRETAV collection, La Rioja, Spain), representing the main anthropophilic species in our environment, were subjected to a metagenomic analysis of the V3-V4 region of the 16S rRNA gene using an Illumina MiSeq platform. Data obtained with Greengenes database were refined with BLAST. Four groups of samples were defined, according to the four tick species.

RESULTS: Proteobacteria was the predominant phylum observed in all groups. Gammaproteobacteria was the most abundant class, followed by Alphaproteobacteria for R. sanguineus, H. punctata and D. marginatus but the relative abundance of reads for these classes was reversed for I. ricinus. This tick species showed more than 46% reads corresponding to 'not assigned' OTUs (Greengenes), and >97% of them corresponded to 'Candidatus Midichloriaceae' using BLAST. Within Rickettsiales, 'Candidatus Midichloria', Rickettsia, Ehrlichia, 'Candidatus Neoehrlichia' and Wolbachia were detected. I. ricinus was the most alpha-diverse species. Regarding beta-diversity, I. ricinus and H. punctata samples grouped according to their tick species but microbial communities of some R. sanguineus and D. marginatus specimens clustered together.

CONCLUSIONS: The metagenomics approach seems useful to discover the spectrum of tick-related bacteria. More studies are needed to identify and differentiate bacterial species, and to improve the knowledge of tick-borne diseases in Spain.

RevDate: 2019-04-02

Kanakala S, M Ghanim (2019)

Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts.

PloS one, 14(3):e0213946 pii:PONE-D-18-36930.

Bemisia tabaci is one of the most threatening pests in agriculture, causing significant losses to many important crops on a global scale. The dramatic increase and availability of sequence data for B. tabaci species complex and its bacterial endosymbionts is critical for developing emerging sustainable pest management strategies which are based on pinpointing the global diversity of this important pest and its bacterial endosymbionts. To unravel the global genetic diversity of B. tabaci species complex focusing on its associated endosymbionts, along with Israeli whitefly populations collected in this study, we combined available sequences in databases, resulting in a total of 4,253 mitochondrial cytochrome oxidase I (mtCOI) sequences from 82 countries and 1,226 16S/23S rRNA endosymbiont sequences from 32 countries that were analyzed. Using Bayesian phylogenetic analysis, we identified two new B. tabaci groups within the species complex and described the global distribution of endosymbionts within this complex. Our analyses revealed complex divergence of the different endosymbiont sequences within the species complex, with overall one Hamiltonella, two Porteria (P1 and P2), two Arsenophonus (A1 and A2), two Wolbachia (super-groups O and B), four Cardinium (C1-C4) and three Rickettsia (R1-R3) groups were identified. Our comprehensive analysis provides an updated important resource for this globally important pest and its secondary symbionts, which have been a major subject for research in last three decades.

RevDate: 2019-03-14

Balaji S, Jayachandran S, SR Prabagaran (2019)

Evidence for the natural occurrence of Wolbachia in Aedes aegypti mosquitoes.

FEMS microbiology letters pii:5380775 [Epub ahead of print].

Wolbachia, a gram-ve bacterium, is widely known to be present in arthropods and nematodes. Of late, great impetus is given to employ this intracellular bacterium, as an alternative to conventional biocontrol agents for the control of mosquitoes because of its inherent ability to induce sperm-egg incompatibility, feminization etc. By employing molecular tools, we have shown the presence of Wolbachia from Aedes aegypti mosquito population collected from Coimbatore, India by PCR amplifying the Ae. aegypti mosquito genome with Wolbachia specific 16S rRNA, wsp and ftsZ gene primers. The phylogenetic analysis of these gene sequences incorporating MLST and GenBank reference sequences has confirmed the occurrence of Wolbachia supergroup B in Ae. aegypti. In addition, qRT-PCR results have shown the dynamics of Wolbachia across the developmental stages of mosquito. The absence of Wolbachia in tetracycline treated Ae. aegypti mosquitoes evidenced by transmission electron microscopy reinforced our finding conclusively. After confirming their persistence through generations, we have designated Wolbachia from Ae. aegypti as wAegB. In our considered view, wAegB could play a dynamic role in impeding mosquito multiplication and consequently impinging transmission of the dreadful dengue.

RevDate: 2019-03-14

Taylor MJ, von Geldern TW, Ford L, et al (2019)

Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and onchocerciasis.

Science translational medicine, 11(483):.

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.

RevDate: 2019-03-12

Wang J, Zhu X, Ying Z, et al (2019)

Prevalence of Dirofilaria immitis Infections In Dogs and Cats In Hainan Island/Province and Three Other Coastal Cities of China Based On Antigen Testing and PCR.

The Journal of parasitology, 105(2):199-202.

Canine and feline heartworm disease caused by Dirofilaria immitis is a serious and sometimes fatal infection transmitted by mosquitos. Little is known about the prevalence or distribution of D. immitis infection in dogs and cats on the island of Hainan island/province or coastal cities of China. The present study examined the occurrence of D. immitis infections in dogs (n = 869) and cats (n = 51) in Hainan island/province and prevalence in dogs from 3 coastal cities (Shenzhen [n = 55], Shanghai [n = 69], and Hangzhou [n = 45]) in southern and eastern China. A commercial antigen detection (AD) test and 2 PCR methods (16S ribosomal RNA and Wolbachia surface protein [ WSP] genes) were used to determine the prevalence of D. immitis from animals >6 mo old with no previous history of D. immitis preventive treatment or heartworm infection. Gene sequencing was used to confirm positive PCR samples. The AD test was not used on cat samples. Using the AD test, the prevalence in dogs was 0.5% (4/869) in Hainan island/province, 0% (0/55) in Shenzhen, 1.5% (1/69) in Shanghai, and 0% (0/45) in Hangzhou. Prevalence by 16S rRNA gene PCR was 7.4% (64/869) of dogs from Hainan island/province, 0% (0/55) in dogs from Shenzhen, 1.5% (1/69) in dogs from Shanghai, and 0% (0/45) in dogs from Hangzhou. Prevalence by WSP gene PCR in dogs was 5.3% (46/869) in Hainan island/province, 0% (0/55) in Shenzhen, 1.5% (1/69) in Shanghai, and 0% (0/45) in Hangzhou. Prevalence in the 51 cats from Hainan island/province was 9.8% and 5.9% by 16S rRNA and WSP gene PCR, respectively. The present study demonstrates that canine heartworm exposure occurs in dogs and cats in Hainan island/province and that PCR methods detected a higher prevalence than did the AD method. The 16S rRNA gene PCR detected more positive samples than did the WSP gene PCR in both dogs and cats. The 3 coastal cities had very few dogs that had evidence of D. immitis exposure.

RevDate: 2019-03-12

Brinker P, Fontaine MC, Beukeboom LW, et al (2019)

Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction.

Trends in microbiology pii:S0966-842X(19)30040-X [Epub ahead of print].

Symbiosis between microbial associates and a host is a ubiquitous feature of life on earth, modulating host phenotypes. In addition to endosymbionts, organisms harbour a collection of host-associated microbes, the microbiome that can impact important host traits. In this opinion article we argue that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied. Focusing on the endosymbiont Wolbachia, we present growing evidence indicating that host phenotypic effects are exerted in interaction with the remainder microbiome and the host. We thus advocate that only through an integrated approach that considers multiple interacting partners and environmental influences will we be able to gain a better understanding of host-microbe associations.

RevDate: 2019-03-08

Davydov II, Salamin N, M Robinson-Rechavi (2019)

Large-Scale Comparative Analysis of Codon Models Accounting for Protein and Nucleotide Selection.

Molecular biology and evolution pii:5371074 [Epub ahead of print].

There are numerous sources of variation in the rate of synonymous substitutions inside genes, such as direct selection on the nucleotide sequence, or mutation rate variation. Yet scans for positive selection rely on codon models which incorporate an assumption of effectively neutral synonymous substitution rate, constant between sites of each gene. Here we perform a large-scale comparison of approaches which incorporate codon substitution rate variation and propose our own simple yet effective modification of existing models. We find strong effects of substitution rate variation on positive selection inference. More than 70% of the genes detected by the classical branch-site model are presumably false positives caused by the incorrect assumption of uniform synonymous substitution rate. We propose a new model which is strongly favored by the data while remaining computationally tractable. With the new model we can capture signatures of nucleotide level selection acting on translation initiation and on splicing sites within the coding region. Finally, we show that rate variation is highest in the highly recombining regions, and we propose that recombination and mutation rate variation, such as high CpG mutation rate, are the two main sources of nucleotide rate variation. While we detect fewer genes under positive selection in Drosophila than without rate variation, the genes which we detect contain a stronger signal of adaptation of dynein, which could be associated with Wolbachia infection. We provide software to perform positive selection analysis using the new model.

RevDate: 2019-04-15
CmpDate: 2019-04-15

Idro R, Anguzu R, Ogwang R, et al (2019)

Doxycycline for the treatment of nodding syndrome (DONS); the study protocol of a phase II randomised controlled trial.

BMC neurology, 19(1):35 pii:10.1186/s12883-019-1256-z.

BACKGROUND: Nodding syndrome is a poorly understood neurological disorder of unknown aetiology, affecting several thousand children in Africa. There has been a consistent epidemiological association with infection by the filarial parasite, Onchocerca volvulus and antibodies to leiomodin and DJ-1, cross-reacting with O.volvulus proteins, have been reported. We hypothesized that nodding syndrome is a neuro-inflammatory disorder, induced by antibodies to O.volvulus or its symbiont, Wolbachia, cross-reacting with human neuron proteins and that doxycycline, which kills Onchocerca through effects on Wolbachia, may be used as treatment.

METHODS: This will be a two-arm, double-blind, placebo-controlled, randomised phase II trial of doxycycline 100 mg daily for six weeks in 230 participants. Participants will be patients' ages≥8 years with nodding syndrome. They will receive standard of care supportive treatment. All will be hospitalised for 1-2 weeks during which time baseline measurements including clinical assessments, EEG, cognitive and laboratory testing will be performed and antiepileptic drug doses rationalised. Participants will then be randomised to either oral doxycycline (Azudox®, Kampala Pharmaceutical Industries) 100 mg daily or placebo. Treatment will be initiated in hospital and continued at home. Participants will be visited at home at 2, 4 and 6 weeks for adherence monitoring. Study outcomes will be assessed at 6, 12, 18 and 24-month visits. Analysis will be by intention to treat. The primary efficacy outcome measure will be the proportion of patients testing positive and the levels or titires of antibodies to host neuron proteins (HNPs) and/or leiomodin at 24 months. Secondary outcome measures will include effect of the intervention on seizure control, inflammatory markers, cognitive function, disease severity and quality of life.

DISCUSSION: This trial postulates that targeting O.volvulus through drugs which kill Wolbachia can modify the pathogenic processes in nodding syndrome and improve outcomes. Findings from this study are expected to substantially improve the understanding and treatment of nodding syndrome.

TRIAL REGISTRATION: Registered with ID: NCT02850913 on 1st August, 2016.

RevDate: 2019-03-07

Kwon M, Seo SS, Kim MK, et al (2019)

Compositional and Functional Differences between Microbiota and Cervical Carcinogenesis as Identified by Shotgun Metagenomic Sequencing.

Cancers, 11(3): pii:cancers11030309.

Recent studies have reported the potential role of microbiomes in cervical disease. However, little is known about the microbiome composition and function in cervical carcinogenesis. We aimed to identify the compositional and functional alterations of cervical microbiomes in cases of cervical carcinogenesis of Korean women using shotgun metagenomic sequencing. In this study, using shotgun sequencing, we sequenced the cervical metagenomes of cervical intraneoplasia 2/3 (n = 17), cervical cancer (n = 12), and normal controls (n = 18) to identify the microbial abundances and enriched metabolic functions in cervical metagenomes. At the genus level, the microbiota of cervical cancer were differentially enriched with genera Alkaliphilus, Pseudothermotoga, and Wolbachia. Cervical intraepithelial neoplasia (CIN) 2/3 were enriched with Lactobacillus, Staphylococcus, and Candidatus Endolissoclinum. The normal group was enriched with Pseudoalteromonas and Psychrobacter. Further characterization of the functionalities of the metagenomes may suggest that six Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) that are involved in 10 pathways are associated with an increased risk of CIN2/3 and cervical cancer. Specifically, cervical metagenomes were enriched in the course of peptidoglycan synthesis and depleted by dioxin degradation and 4-oxalocrotonate tautomerase. The Cluster of Orthologous Groups (COG) category 'Defense mechanisms' was depleted in cervical cancer patients. Our findings based on shotgun metagenomic sequencing suggest that cervical microbiome community compositions and their metagenomics profiles differed between cervical lesions and normal subjects. Future studies should have larger sample sizes and/or aggregate their results to have sufficient power to detect reproducible and significant associations.

RevDate: 2019-04-05
CmpDate: 2019-04-05

Reveillaud J, Bordenstein SR, Cruaud C, et al (2019)

The Wolbachia mobilome in Culex pipiens includes a putative plasmid.

Nature communications, 10(1):1051 pii:10.1038/s41467-019-08973-w.

Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia.

RevDate: 2019-03-07

Pagel L, Bultman T, Górzyńska K, et al (2019)

Botanophila flies, vectors of Epichloë fungal spores, are infected by Wolbachia.

Mycology, 10(1):1-5 pii:1515119.

Epichloë fungi are endophytes within grasses that can form stromata on culms of their hosts. Botanophila flies visit the stromata for egg laying and in the process can vector spermatial spores, thereby cross fertilising the fungus. Following egg hatch, larval flies consume fungal tissue and spores. Thus, Epichloë individuals with traits that limit larval consumption could be at a selective advantage. We assessed Botanophila fly larvae from sites within the United States and Europe for infection by the bacterial sexual parasite Wolbachia through amplification of the Wolbachia surface protein gene (wsp). Nearly 70% of fly larvae in our samples were infected by Wolbachia. This is the first record of infection by Wolbachia within Botanophila and could have far reaching effects on not only the fly host, but also the Epichloë fungi upon which Botanophila feeds as well as the grass host within which the fungi live. For example, infection by Wolbachia could limit consumption of Epichloë spores by Botanophila larvae if the bacteria promoted premature larval death.

RevDate: 2019-03-01

Onder Z, Ciloglu A, Duzlu O, et al (2019)

Molecular detection and identification of Wolbachia endosymbiont in fleas (Insecta: Siphonaptera).

Folia microbiologica pii:10.1007/s12223-019-00692-5 [Epub ahead of print].

The aim of this study was to determine the presence and prevalence of Wolbachia bacteria in natural population of fleas (Insecta: Siphonaptera) in Turkey, and to exhibit the molecular characterization and the phylogenetic reconstruction at the positive isolates with other species in GenBank, based on 16S rDNA sequences. One hundred twenty-four flea samples belonging to the species Ctenocephalides canis, C. felis, and Pulex irritans were collected from animal shelters in Kayseri between January and August 2017. All flea species were individually screened for the presence of Wolbachia spp. by polymerase chain reaction (PCR) targeting the 16S ribosomal RNA gene. According to PCR analyses, Wolbachia spp. were found prevalent in C. canis and P. irritans fleas, while it was not detected in the C. felis species. Totally, 20 isolates were purified from agarose gel and sequenced with the same primers for molecular characterization and phylogenetic analyses. The sequence analyses revealed 17 polymorphic sites and 2 genetically different Wolbachia isolates, representing two different haplotypes in two flea species. The distribution patterns, molecular characterization, and phylogenetic status of Wolbachia spp. of fleas in Turkey are presented for the first time with this study. Understanding of the role of Wolbachia in vector biology may provide information for developing Wolbachia-based biological control tools.

RevDate: 2019-03-12

Fortin M, Meunier J, Laverré T, et al (2019)

Joint effects of group sex-ratio and Wolbachia infection on female reproductive success in the terrestrial isopod Armadillidium vulgare.

BMC evolutionary biology, 19(1):65 pii:10.1186/s12862-019-1391-6.

BACKGROUND: In species that reproduce with sexual reproduction, males and females often have opposite strategies to maximize their own fitness. For instance, males are typically expected to maximize their number of mating events, whereas an excessive number of mating events can be costly for females. Although the risk of sexual harassment by males and resulting costs for females are expected to increase with the proportion of males, it remains unknown whether and how parasitic distorters of a host population's sex-ratio can shape this effect on the fitness of females. Here, we addressed this question using Armadillidium vulgare and its parasite Wolbachia that alters the sex-ratio of a population. We set up Wolbachia-free and Wolbachia-infected females in experimental groups exhibiting 100, 80, 50% or 20% females for 1 year, during which we measured changes in survival, fertility and fecundity.

RESULTS: Wolbachia infection shaped the effects of both population sex-ratio and reproductive season on female fecundity. Compared to Wolbachia-free females, Wolbachia-infected females were less likely to be gravid in populations exhibiting an excess of females and did not exhibit the otherwise negative effect of seasons on this likelihood. Group sex-ratio and Wolbachia infection have independent effects on other measured traits. Male-biased populations had females both exhibiting the lowest survival rate after 6 months and producing the smallest number of offspring, independent of Wolbachia infection. Conversely, Wolbachia-infected females had the lowest likelihood of producing at least one offspring, independent of group sex-ratio. Wolbachia infection had no effect on female survival rate.

CONCLUSIONS: We demonstrated that male-biased sex-ratio and the presence of Wolbachia are costly for females due to sexual harassment by males and bacterial infection, respectively. Interestingly, Wolbachia infection triggers another negative effect. This effect does not come from an excess of males and its associated sexual harassment of females but instead from a lack of males and the associated risk for females of remaining unmated. Overall, these findings highlight the importance of social pressures and infection on female fitness and provide insights into our general understanding of the joint and opposite effects of these two parameters in the evolution of reproductive strategies.

RevDate: 2019-04-02
CmpDate: 2019-03-29

von Geldern TW, Morton HE, Clark RF, et al (2019)

Discovery of ABBV-4083, a novel analog of Tylosin A that has potent anti-Wolbachia and anti-filarial activity.

PLoS neglected tropical diseases, 13(2):e0007159 pii:PNTD-D-18-01874.

There is a significant need for improved treatments for onchocerciasis and lymphatic filariasis, diseases caused by filarial worm infection. In particular, an agent able to selectively kill adult worms (macrofilaricide) would be expected to substantially augment the benefits of mass drug administration (MDA) with current microfilaricides, and to provide a solution to treatment of onchocerciasis / loiasis co-infection, where MDA is restricted. We have identified a novel macrofilaricidal agent, Tylosin A (TylA), which acts by targeting the worm-symbiont Wolbachia bacterium. Chemical modification of TylA leads to improvements in anti-Wolbachia activity and oral pharmacokinetic properties; an optimized analog (ABBV-4083) has been selected for clinical evaluation.

RevDate: 2019-02-28

Staunton KM, Yeeles P, Townsend M, et al (2019)

Trap Location and Premises Condition Influences on Aedes aegypti (Diptera: Culicidae) Catches Using Biogents Sentinel Traps During a 'Rear and Release' Program: Implications for Designing Surveillance Programs.

Journal of medical entomology pii:5366979 [Epub ahead of print].

As the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy. The Biogents Sentinel (BGS) trap is the gold standard for surveilling adult Aedes mosquitoes and is commonly deployed worldwide, including during modern 'rear and release' programs. Despite its extensive use, few studies have directly assessed environmental characteristics that affect BGS trap catches, let alone how these influences change during 'rear and release' programs. We assessed male and female Ae. aegypti spatial stability, as well as premises condition and trap location influences on BGS trap catches, as part of Debug Innisfail 'rear and release' program in northern Australia. We found similar trends in spatial stability of male and female mosquitoes at both weekly and monthly resolutions. From surveillance in locations where no males were released, reduced catches were found at premises that contained somewhat damaged houses and unscreened properties. In addition, when traps were located in areas that were unsheltered, more than 10 m from commonly used sitting areas or more visually complex catches were also negatively affected. In locations where males were released, we found that traps in treatment sites, relative to control sites, displayed increased catches in heavily shaded premises and were inconsistently influenced by differences in house sets and building materials. Such findings have valuable implications for a range of Ae. aegypti surveillance programs.

RevDate: 2019-03-29

Bykov RА, Yudina MA, Gruntenko NE, et al (2019)

Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster.

BMC evolutionary biology, 19(Suppl 1):48 pii:10.1186/s12862-019-1372-9.

BACKGROUND: Maternally inherited Wolbachia symbionts infect D. melanogaster populations worldwide. Infection rates vary greatly. Genetic diversity of Wolbachia in D. melanogaster can be subdivided into several closely related genotypes coinherited with certain mtDNA lineages. mtDNA haplotypes have the following global distribution pattern: mtDNA clade I is mostly found in North America, II and IV in Africa, III in Europe and Africa, V in Eurasia, VI is global but very rare, and VIII is found in Asia. The wMel Wolbachia genotype is predominant in D. melanogaster populations. However, according to the hypothesis of global Wolbachia replacement, the wMelCS genotype was predominant before the XX century when it was replaced by the wMel genotype. Here we analyse over 1500 fly isolates from the Palearctic region to evaluate the prevalence, genetic diversity and distribution pattrern of the Wolbachia symbiont, occurrence of mtDNA variants, and finally to discuss the Wolbachia genotype global replacement hypothesis.

RESULTS: All studied Palearctic populations of D. melanogaster were infected with Wolbachia at a rate of 33-100%. We did not observe any significant correlation between infection rate and longitude or latitude. Five previously reported Wolbachia genotypes were found in Palearctic populations with a predominance of the wMel variant. The mtDNA haplotypes of the I_II_III clade and V clade were prevalent in Palearctic populations. To test the recent Wolbachia genotype replacement hypothesis, we examined three genomic regions of CS-like genotypes. Low genetic diversity was observed, only two haplotypes of the CS genotypes with a 'CCG' variant predominance were found.

CONCLUSION: The results of our survey of Wolbachia infection prevalence and genotype diversity in Palearctic D. melanogaster populations confirm previous studies. Wolbachia is ubiquitous in the Palearctic region. The wMel genotype is dominant with local occurrence of rare genotypes. Together with variants of the V mtDNA clade, the variants of the 'III+' clade are dominant in both infected and uninfected flies of Palearctic populations. Based on our data on Wolbachia and mtDNA in different years in some Palearctic localities, we can conclude that flies that survive the winter make the predominant symbiont contribution to the subsequent generation. A comprehensive overview of mtDNA and Wolbachia infection of D. melanogaster populations worldwide does not support the recent global Wolbachia genotype replacement hypothesis. However, we cannot exclude wMelCS genotype rate fluctuations in the past.

RevDate: 2019-03-13
CmpDate: 2019-03-13

Cândido EL, Silva UMD, LPG Cavalcanti (2019)

New record and extended geographical distribution of Aedes fluviatilis (Lutz, 1904) in Ceará, northeastern Brazil.

Revista da Sociedade Brasileira de Medicina Tropical, 52:e20180286 pii:S0037-86822019000100616.

INTRODUCTION: Aedes fluviatilis(Lutz, 1904) is considered a potential vector of yellow fever and dengue viruses and is naturally infected by Wolbachia.

METHODS: In March 2018, during a field activity in the municipality of Saboeiro, 163 mosquito larvae were collected in a dammed area of the Jaguaribe River.

RESULTS: Of the larvae collected, 143 (87.7%) were identified asAe. fluviatilis.

CONCLUSIONS: We report the first documentation of Ae. fluviatilis in the municipality of Saboeiro, northeastern Brazil. It is important to conduct additional entomological surveys to characterize the local Culicidae fauna. Ignoring the presence and dispersion of this vector could be a public health risk.

RevDate: 2019-04-14

Bagheri Z, Talebi AA, Asgari S, et al (2019)

Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation.

Journal of invertebrate pathology, 163:1-7.

Wolbachia are common intracellular bacteria that are generally found in arthropods, including a high proportion of insects and also some nematodes. This intracellular symbiont can affect sex ratio with a variety of reproductive anomalies in the host, including cytoplasmic incompatibility (CI) in haplodiploids. In this study, we questioned if the parasitoid wasp, Habrobracon hebetor (Hym.: Braconidae), an important biological control agent of many lepidopteran larvae, is infected with Wolbachia. To test this, DNA was extracted from adult insects and subjected to PCR using specific primers to Wolbachia target genes. The results showed a high rate of Wolbachia infection in this parasitoid wasp. To determine the biological function of Wolbachia in H. hebetor, we removed this bacterium from the wasps using antibiotic treatment (cured wasps). Results of crossing experiments revealed that Wolbachia induced CI in H. hebetor in which cured females crossed with infected males produced only males, while both male and female progeny were observed for other crosses. Also, we showed that the presence of Wolbachia in females increased fecundity and female offspring of this parasitoid wasp. The presence of Wolbachia in the males had no significant effect on fecundity and female production, but might have incurred costs. We also investigated the effect of Wolbachia on mate choice and found that Wolbachia affects mating behavior of H. hebetor. Together, we showed that Wolbachia induces CI in H. hebetor and affects host mating behavior in favor of its transmission. Wolbachia utilize these strategies to increase the frequency of infected females in the host population.

RevDate: 2019-02-24

Singhal K, S Mohanty (2019)

Genome organisation and comparative genomics of four novel Wolbachia genome assemblies from Indian Drosophila host.

Functional & integrative genomics pii:10.1007/s10142-019-00664-5 [Epub ahead of print].

Wolbachia has long been known to share an endosymbiotic relationship with its host as an obligate intracellular organism. Wolbachia diversity as different supergroups is found to be host-specific in most cases except a few, where the host species is seen to accommodate multiple strains. Besides, the Wolbachia genome must have undergone several changes in response to the evolving host genome in order to adapt and establish a strong association with its host, thus making a distinctive Wolbachia-host alliance. The present study focusses on four novel genome assembly and genome-wide sequence variations of Indian Wolbachia strains, i.e. wMel and wRi isolated from two different Drosophila hosts. The genome assembly has an average size of ~ 1.1 Mb and contains ~ 1100 genes, which is comparable with the previously sequenced Wolbachia genomes. The comparative genomics analysis of these genomes and sequence-wide comparison of some functionally significant genes, i.e. ankyrin repeats, Wsp and T4SS, highlight their sequence similarities and dissimilarities, further supporting the strain-specific association of Wolbachia to its host. Interestingly, some of the sequence variations are also found to be restricted to only Indian Wolbachia strains. Further analysis of prophage and their flanking regions in the Wolbachia genome reveals the presence of several functional genes which may assist the phage to reside inside the bacterial host, thus providing a trade-off for the endosymbiont-host association. Understanding this endosymbiont genome in different eco-geographical conditions has become imperative for the recent use of Wolbachia in medical entomology as a vector-control agent.

RevDate: 2019-02-23

Newton ILG, BE Slatko (2019)

Symbiosis Comes of age at the 10th Biennial Meeting of Wolbachia Researchers.

Applied and environmental microbiology pii:AEM.03071-18 [Epub ahead of print].

Wolbachia pipientis is an alpha-proteobacterial, obligate intracellular microbe and arguably the most successful infection on our planet, colonizing 40-60% of insect species. Wolbachia are also present in most, but not all, filarial nematodes where they are obligate mutualists and are the targets for anti-filarial drug discovery. Although Wolbachia are related to important human pathogens they do not infect mammals, but instead are well known for their reproductive manipulations of insect populations, inducing the following phenotypes: male-killing, feminization, parthenogenesis induction, or cytoplasmic incompatibility (CI). The most common of these, CI, results in a sperm-egg incompatibility and increases the relative fecundity of infected females in a population. In the last decade, Wolbachia have also been shown to provide a benefit to insects, where the infection can inhibit RNA virus replication within the host. Wolbachia cannot be cultivated outside of host cells and no genetic tools are available in the symbiont, limiting approaches available to its study. This means that many questions fundamental to our understanding of Wolbachia basic biology remained unknown for decades. The tenth biennial international Wolbachia conference, "Wolbachia Evolution, Ecology, Genomics and Cell Biology: A Chronicle of the Most Ubiquitous Symbiont", was held on June 17-22, 2018, Salem, MA USA. In the review below we highlight the new science presented at the meeting, link it to prior efforts to answer these questions across the Wolbachia genus, and the importance to the field of symbiosis. The topics covered in this review are based on the presentations at the conference.

RevDate: 2019-02-14

Martínez-Rodríguez P, Rolán-Alvarez E, Del Mar Pérez-Ruiz M, et al (2019)

Geographic and Temporal Variation of Distinct Intracellular Endosymbiont Strains of Wolbachia sp. in the Grasshopper Chorthippus parallelus: a Frequency-Dependent Mechanism?.

Microbial ecology pii:10.1007/s00248-019-01338-2 [Epub ahead of print].

Wolbachia is an intracellular endosymbiont that can produce a range of effects on host fitness, but the temporal dynamics of Wolbachia strains have rarely been experimentally evaluated. We compare interannual strain frequencies along a geographical region for understanding the forces that shape Wolbachia strain frequency in natural populations of its host, Chorthippus parallelus (Orthoptera, Acrididae). General linear models show that strain frequency changes significantly across geographical and temporal scales. Computer simulation allows to reject the compatibility of the observed patterns with either genetic drift or sampling errors. We use consecutive years to estimate total Wolbachia strain fitness. Our estimation of Wolbachia fitness is significant in most cases, within locality and between consecutive years, following a negatively frequency-dependent trend. Wolbachia spp. B and F strains show a temporal pattern of variation that is compatible with a negative frequency-dependent natural selection mechanism. Our results suggest that such a mechanism should be at least considered in future experimental and theoretical research strategies that attempt to understand Wolbachia biodiversity.

RevDate: 2019-02-14

Showler AJ, Kubofcik J, Ricciardi A, et al (2019)

Differences in the Clinical and Laboratory Features of Imported Onchocerciasis in Endemic Individuals and Temporary Residents.

The American journal of tropical medicine and hygiene [Epub ahead of print].

Many parasitic infections have different presenting features in endemic individuals (ENDs) and immunologically naive temporary residents (TRs). Temporary residents with loiasis often display acute symptoms and hypereosinophilia, in contrast to a parasite-induced subclinical state in chronically infected ENDs. Few studies have examined differences in ENDs and TRs infected with the related filarial parasite Onchocerca volvulus. We identified 40 TRs and 36 ENDs with imported onchocerciasis at the National Institutes of Health between 1976 and 2016. All study subjects received an extensive pretreatment history review, physical examination, and laboratory investigations. We performed additional parasite-specific serologic testing on stored patient sera. Asymptomatic infection occurred in 12.5% of TRs and no ENDs (P = 0.06). Papular dermatitis was more common in TRs (47.5% versus 2.7%, P < 0.001), whereas more pigmentation changes occurred in ENDs (41.7% versus 15%, P = 0.01). Only endemic patients reported visual disturbance (13% versus 0%, P = 0.03). One TR (3.3%) had onchocercal eye disease, compared with 22.6% of ENDs (P = 0.053). Absolute eosinophil counts (AECs) were similar in ENDs and TRs (P = 0.5), and one-third of subjects had a normal AEC. Endemic individuals had higher filarial-specific IgG4 and were more likely to be positive for IgG4 antibodies to Ov-16. Temporary residents and ENDs with imported O. volvulus infection presented with different dermatologic manifestations; ocular involvement occurred almost exclusively in ENDs. Unlike Loa loa, clinical differences appear not to be eosinophil mediated and may reflect chronicity, intensity of infection, or the presence of Wolbachia in O. volvulus.

RevDate: 2019-02-12

Chegeni TN, M Fakhar (2019)

Promising role of Wolbachia as anti-parasitic drug target and eco-friendly biocontrol agent.

Recent patents on anti-infective drug discovery pii:PRI-EPUB-96563 [Epub ahead of print].

BACKGROUND: Wolbachia is the most common endosymbiotic bacteria in insect-borne parasites and it is the most common reproductive parasite in the world. Wolbachia has been found worldwide in numerous arthropod and parasite species, including: insects, terrestrial isopods, spiders, mites and filarial nematodes. There is a complicated relationship between Wolbachia and its hosts and in some cases, they create a mutual relationship instead of a parasitic relationship. Some species are not able to reproduce in the absence of infection with Wolbachia. Thus, use of existing strains of Wolbachia bacteria offers a potential strategy for control the population of mosquitoes and other pests and diseases.

METHODS: We searched ten databases and reviewed published papers regarding the role of Wolbachia as promising drug target and emerging biological control agent of parasitic diseases between 1996 and 2017 (22 years) were considered eligible. Also, in the current study several patents (WO008652), (US7723062), (US 0345249 A1) were reviewed.

RESULTS: Endosymbiotic Wolbachia bacteria, which is inherited from mothers, is transmitted to mosquitoes and interfere with pathogen transmission. They can change the reproduction of their host. Wolbachia is transmitted through the cytoplasm of eggs and have evolved different mechanisms for manipulating reproduction of its hosts, including induction of reproductive incompatibility, parthenogenesis, and feminization. Wolbachia extensive effects on reproduction and host fitness have made Wolbachia the issue of growing attention as a potential biocontrol agent.

CONCLUSION: Wolbachia has opened a new window to design costly, potent and eco-friendly for effective treatment and elimination of vector-borne parasitic diseases.

RevDate: 2019-02-12

Augustinos AA, Moraiti CA, Drosopoulou E, et al (2019)

Old residents and new arrivals of Rhagoletis species in Europe.

Bulletin of entomological research pii:S0007485319000063 [Epub ahead of print].

The genus Rhagoletis (Diptera: Tephritidae) comprises more than 65 species distributed throughout Europe, Asia and America, including many species of high economic importance. Currently, there are three Rhagoletis species that infest fruits and nuts in Europe. The European cherry fruit fly, Rhagoletis cerasi (may have invaded Europe a long time ago from the Caucasian area of West Asia), and two invasive species (recently introduced from North America): the eastern American cherry fruit fly, R. cingulata, and the walnut husk fly, R. completa. The presence of different Rhagoletis species may enhance population dynamics and establish an unpredictable economic risk for several fruit and nut crops in Europe. Despite their excessive economic importance, little is known on population dynamics, genetics and symbiotic associations for making sound pest control decisions in terms of species-specific, environmental friendly pest control methods. To this end, the current paper (a) summarizes recently accumulated genetic and population data for the European Rhagoletis species and their association with the endosymbiont Wolbachia pipientis, and (b) explores the possibility of using the current knowledge for implementing the innovative biological control methods of sterile insect technique and incompatible insect technique.

RevDate: 2019-04-03
CmpDate: 2019-04-03

Ju H, Zhu D, M Qiao (2019)

Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida.

Environmental pollution (Barking, Essex : 1987), 247:890-897.

Microplastics (MPs) are an emerging contaminant and are confirmed to be ubiquitous in the environment. Adverse effects of MPs on aquatic organisms have been widely studied, whereas little research has focused on soil invertebrates. We exposed the soil springtail Folsomia candida to artificial soils contaminated with polyethylene MPs (<500 μm) for 28 d to explore the effects of MPs on avoidance, reproduction, and gut microbiota. Springtails exhibited avoidance behaviors at 0.5% and 1% MPs (w/w in dry soil), and the avoidance rate was 59% and 69%, respectively. Reproduction was inhibited when the concentration of MPs reached 0.1% and was reduced by 70.2% at the highest concentration of 1% MPs compared to control. The half-maximal effective concentration (EC50) value based on reproduction for F. candida was 0.29% MPs. At concentrations of 0.5% dry weight in the soil, MPs significantly altered the microbial community and decreased bacterial diversity in the springtail gut. Specifically, the relative abundance of Wolbachia significantly decreased while the relative abundance of Bradyrhizobiaceae, Ensifer and Stenotrophomonas significantly increased. Our results demonstrated that MPs exerted a significant toxic effect on springtails and can change their gut microbial community. This can provide useful information for risk assessment of MPs in terrestrial ecosystems.

RevDate: 2019-03-29

Jacobs RT, Lunde CS, Freund YR, et al (2019)

Boron-Pleuromutilins as Anti- Wolbachia Agents with Potential for Treatment of Onchocerciasis and Lymphatic Filariasis.

Journal of medicinal chemistry, 62(5):2521-2540.

A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.

RevDate: 2019-02-27
CmpDate: 2019-02-18

Simo G, Kanté ST, Madinga J, et al (2019)

Molecular identification of Wolbachia and Sodalis glossinidius in the midgut of Glossina fuscipes quanzensis from the Democratic Republic of Congo.

Parasite (Paris, France), 26:5.

During the last 30 years, investigations on the microbiome of different tsetse species have generated substantial data on the bacterial flora of these cyclical vectors of African trypanosomes, with the overarching goal of improving the control of trypanosomiases. It is in this context that the presence of Wolbachia and Sodalis glossinidius was studied in wild populations of Glossina fuscipes quanzensis from the Democratic Republic of Congo. Tsetse flies were captured with pyramidal traps. Of the 700 Glossina f. quanzensis captured, 360 were dissected and their midguts collected and analyzed. Sodalis glossinidius and Wolbachia were identified by PCR. The Wolbachia-positive samples were genetically characterized with five molecular markers. PCR revealed 84.78% and 15.55% midguts infected by Wolbachia and S. glossinidius, respectively. The infection rates varied according to capture sites. Of the five molecular markers used to characterize Wolbachia, only the fructose bis-phosphate aldolase gene was amplified for about 60% of midguts previously found with Wolbachia infections. The sequencing results confirmed the presence of Wolbachia and revealed the presence of S. glossinidius in the midgut of Glossina f. quanzensis. A low level of midguts were naturally co-infected by both bacteria. The data generated in this study open a framework for investigations aimed at understanding the contribution of these symbiotic microorganisms to the vectorial competence of Glossina fuscipes quanzensis.

RevDate: 2019-03-22
CmpDate: 2019-03-22

Horváth G, Garamszegi LZ, Bereczki J, et al (2019)

Roll with the fear: environment and state dependence of pill bug (Armadillidium vulgare) personalities.

Die Naturwissenschaften, 106(3-4):7 pii:10.1007/s00114-019-1602-4.

Most studies on animal personality evaluate individual mean behaviour to describe individual behavioural strategy, while often neglecting behavioural variability on the within-individual level. However, within-individual behavioural plasticity (variation induced by environment) and within-individual residual variation (regulatory behavioural precision) are recognized as biologically valid components of individual behaviour, but the evolutionary ecology of these components is still less understood. Here, we tested whether behaviour of common pill bugs (Armadillidium vulgare) differs on the among- and within-individual level and whether it is affected by various individual specific state-related traits (sex, size and Wolbachia infection). To this aim, we assayed risk-taking in familiar vs. unfamiliar environments 30 times along 38 days and applied double modelling statistical technique to handle the complex hierarchical structure for both individual-specific trait means and variances. We found that there are significant among-individual differences not only in mean risk-taking behaviour but also in environment- and time-induced behavioural plasticity and residual variation. Wolbachia-infected individuals took less risk than healthy conspecifics; in addition, individuals became more risk-averse with time. Residual variation decreased with time, and individuals expressed higher residual variation in the unfamiliar environment. Further, sensitization was stronger in females and in larger individuals in general. Our results suggest that among-individual variation, behavioural plasticity and residual variation are all (i) biologically relevant components of an individual's behavioural strategy and (ii) responsive to changes in environment or labile state variables. We propose pill bugs as promising models for personality research due to the relative ease of getting repeated behavioural measurements.

RevDate: 2019-02-19

Kampfraath AA, Klasson L, Anvar SY, et al (2019)

Genome expansion of an obligate parthenogenesis-associated Wolbachia poses an exception to the symbiont reduction model.

BMC genomics, 20(1):106 pii:10.1186/s12864-019-5492-9.

BACKGROUND: Theory predicts that dependency within host-endosymbiont interactions results in endosymbiont genome size reduction. Unexpectedly, the largest Wolbachia genome was found in the obligate, parthenogenesis-associated wFol. In this study, we investigate possible processes underlying this genome expansion by comparing a re-annotated wFol genome to other Wolbachia genomes. In addition, we also search for candidate genes related to parthenogenesis induction (PI).

RESULTS: Within wFol, we found five phage WO regions representing 25.4% of the complete genome, few pseudogenized genes, and an expansion of DNA-repair genes in comparison to other Wolbachia. These signs of genome conservation were mirrored in the wFol host, the springtail F. candida, which also had an expanded DNA-repair gene family and many horizontally transferred genes. Across all Wolbachia genomes, there was a strong correlation between gene numbers of Wolbachia strains and their hosts. In order to identify genes with a potential link to PI, we assembled the genome of an additional PI strain, wLcla. Comparisons between four PI Wolbachia, including wFol and wLcla, and fourteen non-PI Wolbachia yielded a small set of potential candidate genes for further investigation.

CONCLUSIONS: The strong similarities in genome content of wFol and its host, as well as the correlation between host and Wolbachia gene numbers suggest that there may be some form of convergent evolution between endosymbiont and host genomes. If such convergent evolution would be strong enough to overcome the evolutionary forces causing genome reduction, it would enable expanded genomes within long-term obligate endosymbionts.

RevDate: 2019-04-11

Buchman A, Gamez S, Li M, et al (2019)

Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs.

Proceedings of the National Academy of Sciences of the United States of America, 116(9):3656-3661.

Recent Zika virus (ZIKV) outbreaks have highlighted the necessity for development of novel vector control strategies to combat arboviral transmission, including genetic versions of the sterile insect technique, artificial infection with Wolbachia to reduce population size and/or vectoring competency, and gene drive-based methods. Here, we describe the development of mosquitoes synthetically engineered to impede vector competence to ZIKV. We demonstrate that a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is expressed and fully processed in Aedes aegypti, ensuring the formation of mature synthetic small RNAs in the midgut where ZIKV resides in the early stages of infection. Critically, we demonstrate that engineered Ae. aegypti mosquitoes harboring the anti-ZIKV transgene have significantly reduced viral infection, dissemination, and transmission rates of ZIKV. Taken together, these compelling results provide a promising path forward for development of effective genetic-based ZIKV control strategies, which could potentially be extended to curtail other arboviruses.

RevDate: 2019-04-05

Odeniran PO, Macleod ET, Ademola IO, et al (2019)

Endosymbionts interaction with trypanosomes in Palpalis group of Glossina captured in southwest Nigeria.

Parasitology international, 70:64-69.

Glossina species epidemiological studies were conducted in "fly-belt" endemic zone of southwest Nigeria. Two major study areas were identified and four Nzi traps were set in each site for tsetse collection. This study was conducted to determine the prevalence of endosymbionts (Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia) in natural field-trapped populations of G. p. palpalis and G. tachinoides and investigate the corresponding interactions with African trypanosomes. A total of 64 tsetse flies were collected, these included G. p. palpalis (n = 28) and G. tachinoides (n = 36). Trypanosome infection and endosymbionts of these flies were determined using polymerase chain reaction (PCR) amplification. The infection rates of W. glossinidia was 100.0% in both species, no flies were positive for Wolbachia. Sodalis glossinidius prevalence was similar between the two-tsetse species, with G. p. palpalis and G. tachinoides showing prevalence of 35.7% (95%CI: 20.7-54.2) and 27.8% (95%CI: 15.9-44.0) respectively. No relationship was found between the endosymbionts and trypanosomes in trapped tsetse flies. More studies are needed to enhance the potential control interventions mediated by endosymbionts to reduce parasitic infections.

RevDate: 2019-04-11

Sinha A, Li Z, Sun L, et al (2019)

Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus.

Genome biology and evolution, 11(3):706-720.

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA, and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome comprised insertion sequence elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are found in five prophage regions/WO-like islands or scattered around the genome. Orthology analysis identified a core proteome of 535 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the Type IV secretion system. KEGG analysis revealed the absence of five genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular, and genetic analyses on this strain and related Wolbachia.

RevDate: 2019-04-13

Fromont C, Adair KL, AE Douglas (2019)

Correlation and causation between the microbiome, Wolbachia and host functional traits in natural populations of drosophilid flies.

Molecular ecology [Epub ahead of print].

Resident microorganisms are known to influence the fitness and traits of animals under controlled laboratory conditions, but the relevance of these findings to wild animals is uncertain. This study investigated the host functional correlates of microbiota composition in a wild community of three sympatric species of mycophagous drosophilid flies, Drosophila falleni, Drosophila neotestacea and Drosophila putrida. Specifically, we quantified bacterial communities and host transcriptomes by parallel 16S rRNA gene amplicon sequencing and RNA-Seq of individual flies. Among-fly variation in microbiota composition did not partition strongly by sex or species, and included multiple modules, that is, sets of bacterial taxa whose abundance varied in concert across different flies. The abundance of bacteria in several modules varied significantly with multiple host transcripts, especially in females, but the identity of the correlated host transcriptional functions differed with host species, including epithelial barrier function in D. falleni, muscle function in D. putrida, and insect growth and development in D. neotestacea. In D. neotestacea, which harbours the endosymbionts Wolbachia and Spiroplasma, Wolbachia promotes the abundance of Spiroplasma, and is positively correlated with abundance of Lactobacillales and Bacteroidales. Furthermore, most correlations between host gene expression and relative abundance of bacterial modules were co-correlated with abundance of Wolbachia (but not Spiroplasma), indicative of an interdependence between host functional traits, microbiota composition and Wolbachia abundance in this species. These data suggest that, in these natural populations of drosophilid flies, different host species interact with microbial communities in functionally different ways that can vary with the abundance of endosymbionts.

RevDate: 2019-03-11

Shaikevich E, Bogacheva A, Rakova V, et al (2019)

Wolbachia symbionts in mosquitoes: Intra- and intersupergroup recombinations, horizontal transmission and evolution.

Molecular phylogenetics and evolution, 134:24-34.

Many mosquitoes harbour Wolbachia symbionts that could affect the biology of their host in different ways. Evolutionary relationships of mosquitoes' Wolbachia infection, geographical distribution and symbiont prevalence in many mosquito species are not yet clear. Here, we present the results of Wolbachia screening of 17 mosquito species of four genera-Aedes, Anopheles, Coquillettidia and Culex collected from five regions of Eastern Europe and the Caucasus in 2012-2016. Based on multilocus sequence typing (MLST) data previously published and generated in this study, we try to reveal genetic links between mosquitoes' and other hosts' Wolbachia. The Wolbachia symbionts are found in Culex pipiens, Aedes albopictus and Coquillettidia richiardii and for the first time in Aedes cinereus and Aedes cantans, which are important vectors of human pathogens. Phylogenetic analysis demonstrated multiple origins of infection in mosquitoes although the one-allele-criterion approach revealed links among B-supergroup mosquito Wolbachia with allele content of lepidopteran hosts. The MLST gene content of strain wAlbA from the A-supergroup is linked with different ant species. Several cases of intersupergroup recombinations were found. One of them occurred in the wAlbaB strain of Aedes albopictus, which contains the coxA allele of the A-supergroup, whereas other loci, including wsp, belong to supergroup B. Other cases are revealed for non-mosquito symbionts and they exemplified genetic exchanges of A, B and F supergroups. We conclude that modern Wolbachia diversity in mosquitoes and in many other insect taxa is a recent product of strain recombination and symbiont transfers.

RevDate: 2019-03-30

Konecka E, Z Olszanowski (2019)

Phylogenetic analysis based on the 16S rDNA, gltA, gatB, and hcpA gene sequences of Wolbachia from the novel host Ceratozetes thienemanni (Acari: Oribatida).

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 70:175-181.

We determined the occurrence of intracellular endosymbionts (Wolbachia, Cardinium, Arsenophonus, Rickettsia, Spiroplasma, Hamiltonella, flavobacteria, and microsporidia) in oribatid mites (Acari: Oribatida) with the use of PCR technique. For the first time we looked for and detected Wolbachia in parthenogenetic oribatid mite Ceratozetes thienemanni Willmann, 1943. The 16S rDNA, gatB, hcpA, and gltA sequences of Wolbachia in C. thienemanni showed the highest similarity (≥ 90%) to the genes of Wolbachia from springtails (Collembola) and oribatid mite Gustavia microcephala. We found the unique sequence 5'-GGGGTAATGGCC-3' in 16S rDNA of Wolbachia from C. thienemanni and collembolan representing group E. The phylogeny of Wolbachia based on the analysis of single genes as well as concatenated alignments of four bacterial loci showed that the bacteria from C. thienemanni belonged to Wolbachia group E, like the endosymbionts from springtail hosts and G. microcephala. Considering coexisting of representatives of Oribatida and Collembola in the same soil habitat and similar food, it is possible that the source of Wolbachia infection was the same. Residues of dead invertebrates could be in organic matter of their soil food, so the scenario of infection transferred by eating of remains of soil cohabitates is also possible. It could explain the similarity and relationship of the Wolbachia in these two arthropod groups. Oribatid mite C. thienemanni is a parthenogenetic mite which is a unique feature in the genus Ceratozetes. Moreover, this species, within the entire genus Ceratozetes, is characterized by the most northerly distribution. It is difficult to determine either it is parthenogenesis or the presence of endosymbionts that are in some way responsible for this kind of evolutionary success. Maybe we are dealing here with a kind of synergy of both factors?

RevDate: 2019-01-31

Fukui Y, H Inokuma (2019)

Subclinical infections of Anaplasma phagocytophilum and Anaplasma bovis in dogs in Ibaraki, Japan.

Japanese journal of infectious diseases [Epub ahead of print].

The prevalence of Anaplasma infection in 332 dogs from Ibaraki, Japan, was evaluated by serological and molecular surveys. Immunofluorescence antibody assay (IFA) against Anaplasma phagocytophilum indicated that 7 (2.1%) of 328 dogs were positive for A. phagocytophilum. Screening PCR demonstrated that 8 (2.4%) of 331 dogs were positive for Anaplasmataceae. Phylogenetic analysis of the partial 16S rRNA sequence of PCR amplicons revealed that 6 sequences were most similar to the 16S rRNA sequence of Wolbachia sp. and the remaining 2 to Anaplasma bovis. Further analysis by A. phagocytophilum-specific nested PCR demonstrated that 1 dog infected with A. bovis was also positive for A. phagocytophilum. This is the first study to report the dual infection of a dog in Japan with A. bovis and A. phagocytophilum.

RevDate: 2019-02-22

Russell SL, Lemseffer N, WT Sullivan (2019)

Correction: Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.

PLoS pathogens, 15(1):e1007557 pii:PPATHOGENS-D-19-00024.

[This corrects the article DOI: 10.1371/journal.ppat.1007216.].

RevDate: 2019-02-01

Kajtoch Ł, Kolasa M, Kubisz D, et al (2019)

Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles.

Scientific reports, 9(1):847 pii:10.1038/s41598-018-38155-5.

Knowledge of Wolbachia prevalence with respect to its hosts is restricted mainly to taxonomic/phylogenetic context. In contrast, relations between infection and most host's ecological and biological traits are poorly understood. This study aimed to elaborate on relations between bacteria and its beetle hosts in taxonomic and the ecological contexts. In particular, the goal is to verify which ecological and biological traits of beetles could cause them to be prone to be infected. Verification of Wolbachia infection status across 297 beetle taxa showed that approximately 27% of taxa are infected by supergroups A and B. Only minor support for coevolution between bacteria and its beetle hosts was observed in some genera of beetles, but in general coevolution between beetles and Wolbachia was rejected. Some traits of beetles were found to be unrelated to Wolbachia prevalence (type of range and thermal preferences); some traits were related with ambiguous effects (habitats, distribution, mobility and body size); some were substantially related (reproduction mode and trophy). The aforementioned summary does not show obvious patterns of Wolbachia prevalence and diversity in relation to host taxonomy, biology, and ecology. As both Wolbachia and Coleoptera are diverse groups, this lack of clear patterns is probably a reflection of nature, which is characterised by highly diversified and probably unstable relations.

RevDate: 2019-04-14

Beckmann JF, Bonneau M, Chen H, et al (2019)

The Toxin-Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications.

Trends in genetics : TIG, 35(3):175-185.

Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.

RevDate: 2019-01-29

Duffy E, Archer CR, Sharma MD, et al (2019)

Wolbachia infection can bias estimates of intralocus sexual conflict.

Ecology and evolution, 9(1):328-338 pii:ECE34744.

Males and females share most of their genome and develop many of the same traits. However, each sex frequently has different optimal values for these shared traits, creating intralocus sexual conflict. This conflict has been observed in wild and laboratory populations of insects and affects important evolutionary processes such as sexual selection, the maintenance of genetic variation, and possibly even speciation. Given the broad impacts of intralocus conflict, accurately detecting and measuring it is important. A common way to detect intralocus sexual conflict is to calculate the intersexual genetic correlation for fitness, with negative values suggesting conflict. Here, we highlight a potential confounder of this measure-cytoplasmic incompatibility caused by the intracellular parasite Wolbachia. Infection with Wolbachia can generate negative intersexual genetic correlations for fitness in insects, suggestive of intralocus sexual conflict. This is because cytoplasmic incompatibility reduces the fitness of uninfected females mated to infected males, while uninfected males will not suffer reductions in fitness if they mate with infected females and may even be fitter than infected males. This can lead to strong negative intersexual genetic correlations for fitness, mimicking intralocus conflict. We illustrate this issue using simulations and then present Drosophila simulans data that show how reproductive incompatibilities caused by Wolbachia infection can generate signals of intralocus sexual conflict. Given that Wolbachia infection in insect populations is pervasive, but populations usually contain both infected and uninfected individuals providing scope for cytoplasmic incompatibility, this is an important consideration for sexual conflict research but one which, to date, has been largely underappreciated.

RevDate: 2019-02-23

Gruntenko NE, Karpova EK, Adonyeva NV, et al (2019)

Drosophila female fertility and juvenile hormone metabolism depends on the type of Wolbachia infection.

The Journal of experimental biology, 222(Pt 4): pii:jeb.195347.

Maternally inherited intracellular bacteria Wolbachia cause both parasitic and mutualistic effects on their numerous insect hosts, including manipulating the host reproductive system in order to increase the bacteria spreading in a host population, and increasing the host fitness. Here, we demonstrate that the type of Wolbachia infection determines the effect on Drosophila melanogaster egg production as a proxy for fecundity, and metabolism of juvenile hormone (JH), which acts as gonadotropin in adult insects. For this study, we used six D. melanogaster lineages carrying the nuclear background of interbred Bi90 lineage and cytoplasmic backgrounds with or without Wolbachia of different genotype variants. The wMelCS genotype of Wolbachia decreases egg production in infected D. melanogaster females in the beginning of oviposition and increases it later (from the sixth day after eclosion), whereas the wMelPop Wolbachia strain causes the opposite effect, and the wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on these traits compared with uninfected Bi90 D. melanogaster females. The intensity of JH catabolism negatively correlates with the fecundity level in the flies carrying both wMelCS and wMelPop Wolbachia The JH catabolism in females infected with genotypes of the wMel group does not differ from that in uninfected females. The effects of wMelCS and wMelPop infection on egg production can be levelled by the modulation of JH titre (via precocene/JH treatment of the flies). Thus, at least one of the mechanisms promoting the effect of Wolbachia on D. melanogaster female fecundity is mediated by JH.

RevDate: 2019-02-16

Fallon AM (2019)

Conditions facilitating infection of mosquito cell lines with Wolbachia, an obligate intracellular bacterium.

In vitro cellular & developmental biology. Animal, 55(2):120-129.

Factors that influence establishment of Wolbachia, an obligate intracellular bacterium, in novel insect hosts or uninfected insect cell lines are poorly understood. Infectivity of Wolbachia strain wStr was correlated with flow cytometric profiles to define optimal conditions for harvesting an infectious inoculum. Wolbachia recovered from the cell culture supernatant after gentle pipetting of infected cells represented about 1% of the total bacterial population and were more infectious than Wolbachia that remained associated with intact cells and/or membranes after low-speed centrifugation. Optimal establishment of a robust infection in naïve cells required 6 d, at a ratio of 80 to 160 bacteria per cell. Among Aedes albopictus mosquito cell lines, an aneuploid line with a 4n + 1 karyotype was more susceptible to infection than diploid lines. These findings contribute to the in vitro manipulation of Wolbachia, illustrate some of the many factors that influence infectivity, and identify areas for future investigation.

RevDate: 2019-04-02

Chebbi MA, Becking T, Moumen B, et al (2019)

The Genome of Armadillidium vulgare (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination.

Molecular biology and evolution, 36(4):727-741.

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that recombination suppression has not spread very far from the sex-determining locus, if at all. This is consistent with A. vulgare possessing evolutionarily young sex chromosomes. We characterized multiple Wolbachia nuclear inserts in the A. vulgare genome, none of which is associated with the W-specific region. We also identified several candidate genes that may be involved in the sex determination or sexual differentiation pathways. The A. vulgare genome serves as a resource for studying the biology and evolution of crustaceans, one of the most speciose and emblematic metazoan groups.

RevDate: 2019-04-10

Moreira M, Aguiar AMF, Bourtzis K, et al (2019)

Wolbachia (Alphaproteobacteria: Rickettsiales) Infections in Isolated Aphid Populations from Oceanic Islands of the Azores Archipelago: Revisiting the Supergroups M and N.

Environmental entomology, 48(2):326-334.

Aphids (Hemiptera: Aphididae) have provided a suitable model to study endosymbionts, their community, and dynamics since the discovery of the obligate endosymbiont Buchnera aphidicola in these organisms. In previous studies, Wolbachia was found in some aphid species. In the present study, we report the prevalence of Wolbachia in aphids sampled from a geographically isolated region (Azores Islands), aiming at a better understanding and characterization of the two newly reported supergroups, M and N. The description of the supergroup M was based on 16S rRNA as well as some protein-coding genes. However, the assignment of the supergroup N was according to 16S rRNA gene sequences of a very few samples. We collected aphid samples and performed phylogenetic analysis of 16S rRNA gene as well as four protein-coding genes (gatB, ftsZ, coxA, and hcpA). The results demonstrate that the 16S rRNA gene data can unambiguously assign the strain supergroup and that the two supergroups, N and M, are equally prevalent in Azorean aphids. The available sequence data for the protein-coding markers can identify supergroup M but the status of supergroup N is inconclusive, requiring further studies. The data suggest that horizontal transmission of Wolbachia (Hertig and Wolbach) between two phylogenetically distant aphid species cohabiting the same plant host.

RevDate: 2019-01-16

Haqshenas G, Terradas G, Paradkar PN, et al (2019)

A Role for the Insulin Receptor in the Suppression of Dengue Virus and Zika Virus in Wolbachia-Infected Mosquito Cells.

Cell reports, 26(3):529-535.e3.

Wolbachia-infected mosquitoes are refractory to super-infection with arthropod-borne pathogens, but the role of host cell signaling proteins in pathogen-blocking mechanisms remains to be elucidated. Here, we use an antibody microarray approach to provide a comprehensive picture of the signaling response of Aedes aegypti-derived cells to Wolbachia. This approach identifies the host cell insulin receptor as being downregulated by the bacterium. Furthermore, siRNA-mediated knockdown and treatment with a small-molecule inhibitor of the insulin receptor kinase concur to assign a crucial role for this enzyme in the replication of dengue and Zika viruses in cultured mosquito cells. Finally, we show that the production of Zika virus in Wolbachia-free live mosquitoes is impaired by treatment with the selective inhibitor mimicking Wolbachia infection. This study identifies Wolbachia-mediated downregulation of insulin receptor kinase activity as a mechanism contributing to the blocking of super-infection by arboviruses.

RevDate: 2019-01-21
CmpDate: 2019-01-21

da Silva Gonçalves D, Iturbe-Ormaetxe I, Martins-da-Silva A, et al (2019)

Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum.

Parasites & vectors, 12(1):33 pii:10.1186/s13071-018-3227-4.

BACKGROUND: The leishmaniases are important neglected diseases caused by Leishmania spp. which are transmitted by sand flies, Lutzomyia longipalpis being the main vector of visceral leishmaniasis in the Americas. The methodologies for leishmaniasis control are not efficient, causing 1.5 million reported cases annually worldwide, therefore showing the need for development of novel strategies and interventions to control transmission of the disease. The bacterium Wolbachia pipientis is being used to control viruses transmitted by mosquitoes, such as dengue and Zika, and its introduction in disease vectors has been effective against parasites such as Plasmodium. Here we show the first successful establishment of Wolbachia into two different embryonic cell lines from L. longipalpis, LL-5 and Lulo, and analysed its effects on the sand fly innate immune system, followed by in vitro Leishmania infantum interaction.

RESULTS: Our results show that LL-5 cells respond to wMel and wMelPop-CLA strains within the first 72 h post-infection, through the expression of antimicrobial peptides and inducible nitric oxide synthase resulting in a decrease of Wolbachia detection in the early stages of infection. In subsequent passages, the wMel strain was not able to infect any of the sand fly cell lines while the wMelPop-CLA strain was able to stably infect Lulo cells and LL-5 at lower levels. In Wolbachia stably infected cells, the expression of immune-related genes involved with downregulation of the IMD, Toll and Jak-Stat innate immune pathways was significantly decreased, in comparison with the uninfected control, suggesting immune activation upon Wolbachia transinfection. Furthermore, Wolbachia transinfection did not promote a negative effect on parasite load in those cells.

CONCLUSIONS: Initial strong immune responses of LL5 cells might explain the inefficiency of stable infections in these cells while we found that Lulo cells are more permissive to infection with Wolbachia causing an effect on the cell immune system, but not against in vitro L. infantum interaction. This establishes Lulo cells as a good system for the adaptation of Wolbachia in L. longipalpis.

RevDate: 2019-02-07
CmpDate: 2019-01-28

Shaikevich E, Bogacheva A, L Ganushkina (2019)

Dirofilaria and Wolbachia in mosquitoes (Diptera: Culicidae) in central European Russia and on the Black Sea coast.

Parasite (Paris, France), 26:2.

Dirofilariasis is endemic in Russia, as well as in many other European countries. The aim of this study was to assess the ability of mosquitoes to transfer Dirofilaria immitis and Dirofilaria repens in regions with temperate and subtropical climates. The possible impact of the symbiotic bacterium Wolbachia on Dirofilaria transmission was also investigated. 5333 female mosquitoes were collected at 11 points in central European Russia and on the Black Sea coast during the period 2013-2017. Out of 20 mosquito species examined, 14 were infected with D. repens and 13 with D. immitis. Both species of Dirofilaria were found in different climatic regions. The total Dirofilaria spp. estimated infection rate (EIR) in the central part of Russia varied from 3.1% to 3.7% and, in the southern region, from 1.1% to 3.0%. The highest estimated infection rate was found in Anopheles messeae, the lowest in Culex pipiens. The greatest epidemiological danger was represented by Aedes aegypti, Ae. geniculatus, An. messeae and Ae. communis. Six out of 20 mosquito species were infected with Wolbachia. Pools of Aedes albopictus, Cx. pipiens and Coquillettidia richiardii were simultaneously infected with Dirofilaria and Wolbachia. After checking mosquitoes individually, it was found that there was no development of Dirofilaria to the infective larval stage in specimens infected with Wolbachia. Twenty-two Dirofilaria-infective pools were Wolbachia-free and only two mosquito pools were Wolbachia-infected. The potential for transmission of Dirofilaria in mosquito species naturally uninfected with the symbiotic bacterium Wolbachia is higher than in species infected with the bacterium.

RevDate: 2019-01-15

Foo IJ, Hoffmann AA, PA Ross (2019)

Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes.

Tropical medicine and infectious disease, 4(1): pii:tropicalmed4010013.

Aedes aegypti mosquitoes infected with Wolbachia symbionts are now being released into the field to control the spread of pathogenic human arboviruses. Wolbachia can spread throughout vector populations by inducing cytoplasmic incompatibility and can reduce disease transmission by interfering with virus replication. The success of this strategy depends on the effects of Wolbachia on mosquito fitness and the stability of Wolbachia infections across generations. Wolbachia infections are vulnerable to heat stress, and sustained periods of hot weather in the field may influence their utility as disease control agents, particularly if temperature effects persist across generations. To investigate the cross-generational effects of heat stress on Wolbachia density and mosquito fitness, we subjected Ae. aegypti with two different Wolbachia infection types (wMel, wAlbB) and uninfected controls to cyclical heat stress during larval development over two generations. We then tested adult starvation tolerance and wing length as measures of fitness and measured the density of wMel in adults. Both heat stress and Wolbachia infection reduced adult starvation tolerance. wMel Wolbachia density in female offspring was lower when mothers experienced heat stress, but male Wolbachia density did not depend on the rearing temperature of the previous generation. We also found cross-generational effects of heat stress on female starvation tolerance, but there was no cross-generational effect on wing length. Fitness costs of Wolbachia infections and cross-generational effects of heat stress on Wolbachia density may reduce the ability of Wolbachia to invade populations and control arbovirus transmission under specific environmental conditions.

RevDate: 2019-04-11

Öhlund P, Lundén H, AL Blomström (2019)

Insect-specific virus evolution and potential effects on vector competence.

Virus genes, 55(2):127-137.

The advancement in high-throughput sequencing technology and bioinformatics tools has spurred a new age of viral discovery. Arthropods is the largest group of animals and has shown to be a major reservoir of different viruses, including a group known as insect-specific viruses (ISVs). The majority of known ISVs have been isolated from mosquitoes and shown to belong to viral families associated with animal arbovirus pathogens, such as Flaviviridae, Togaviridae and Phenuiviridae. These insect-specific viruses have a strict tropism and are unable to replicate in vertebrate cells, these properties are interesting for many reasons. One is that these viruses could potentially be utilised as biocontrol agents using a similar strategy as for Wolbachia. Mosquitoes infected with the viral agent could have inferior vectorial capacity of arboviruses resulting in a decrease of circulating arboviruses of public health importance. Moreover, insect-specific viruses are thought to be ancestral to arboviruses and could be used to study the evolution of the switch from single-host to dual-host. In this review, we discuss new discoveries and hypothesis in the field of arboviruses and insect-specific viruses.

RevDate: 2019-02-28
CmpDate: 2019-02-28

Sazama EJ, Ouellette SP, JS Wesner (2019)

Bacterial Endosymbionts Are Common Among, but not Necessarily Within, Insect Species.

Environmental entomology, 48(1):127-133.

Bacterial endosymbionts, particularly Wolbachia (Rickettsiales: Rickettsiaceae), Rickettsia (Rickettsiales: Rickettsiaceae), and Cardinium (Bacteroidales: Bacteroidaceae), are commonly found in several arthropod groups, including insects. Most estimates of the global infection rate of Wolbachia (52% [95% credible intervals: 44-60]) show that these bacteria infect more than half of all insect species. Other endosymbionts, such as Rickettsia (24% [confidence intervals [CIs] 20-42]) and Cardinium (13% [CIs 13-55]), infect a smaller but still substantial proportion of insect species. In spite of these observations, it is unclear what proportion of individuals within those species are infected. Here, we used published databases to estimate the proportion of individuals that are infected with either Wolbachia, Rickettsia, or Cardinium. We found that the majority (69%) of Wolbachia-infected species have less than half of their individuals infected with Wolbachia, indicating that although the bacterium may be common among species, it is not common within species. The same was true for Rickettsia (81%) and Cardinium (87%). This discrepancy was consistent across orders, in which less than 10% of individuals were typically infected, even though more than 50% of species within orders were infected. For example, according to our model, nearly 50% of beetle (Coleoptera) species are infected with Wolbachia (i.e., contain at least one individual that has tested positive for Wolbachia), but less than 5% of all individuals are infected. These results add to the growing knowledge base about endosymbionts in insects and should guide future sampling efforts and investigations on the role that these bacteria play in populations.

RevDate: 2019-04-16

Dossi FCA, da Silva EP, FL Cônsoli (2018)

Shifting the Balance: Heat Stress Challenges the Symbiotic Interactions of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera, Liviidae).

The Biological bulletin, 235(3):195-203.

Global warming may impact biodiversity by disrupting biological interactions, including long-term insect-microbe mutualistic associations. Symbiont-mediated insect tolerance to high temperatures is an ecologically important trait that significantly influences an insect's life history. Disruption of microbial symbionts that are required by insects would substantially impact their pest status. Diaphorina citri, a worldwide citrus pest, is associated with the mutualistic symbionts Candidatus Carsonella ruddii and Candidatus Profftella armatura. Wolbachia is also associated with D. citri, but its contribution to the host is unknown. Symbiont density is dependent on a range of factors, including the thermosensitivity of the host and/or symbiont to heat stress. Here, we predicted that short-term heat stress of D. citri would disrupt the host-symbiont phenological synchrony and differentially affect the growth and density of symbionts. We investigated the effects of exposing D. citri eggs to different temperatures for different periods of time on the growth dynamics of symbionts during the nymphal development of D. citri (first instar to fifth instar) by real-time polymerase chain reaction. Symbiont densities were assessed as the number of gene copies, using specific molecular markers: 16S rRNA for Carsonella and Profftella and ftsZ for Wolbachia. Statistical modeling of the copy numbers of symbionts revealed differences in their growth patterns, particularly in the early instars of heat-shocked insects. Wolbachia was the only symbiont to benefit from heat-shock treatment. Although the symbionts responded differently to heat stress, the lack of differences in symbiont densities between treated and control late nymphs suggests the existence of an adaptive genetic process to restore phenological synchrony during the development of immatures in preparation for adult life. Our findings contribute to the understanding of the potential deleterious effects of high temperatures on host-symbiont interactions. Our data also suggest that the effects of host exposure to high temperatures in symbiont growth are highly variable and dependent on the interactions among members of the community of symbionts harbored by a host. Such dependence points to unpredictable consequences for agroecosystems worldwide due to climate change-related effects on the ecological traits of symbiont-dependent insect pests.

RevDate: 2019-04-02

Millán J, Travaini A, Cevidanes A, et al (2019)

Assessing the natural circulation of canine vector-borne pathogens in foxes, ticks and fleas in protected areas of Argentine Patagonia with negligible dog participation.

International journal for parasitology. Parasites and wildlife, 8:63-70 pii:S2213-2244(18)30151-2.

We collected blood and/or ectoparasites from 49 South American grey foxes (Lycalopex griseus) and two Andean foxes (L. culpaeus) caught in two National Parks of southern Argentine Patagonia (Bosques Petrificados, BPNP; and Monte León, MLNP) where dogs are nearly absent (density < 0.01 dog/km2). Common ectoparasites were the flea Pulex irritans (88% prevalence) and the tick Amblyomma tigrinum (29%). Conventional PCR and sequencing of 49 blood samples, 299 fleas analysed in 78 pools, and 21 ticks revealed the presence of DNA of the following canine vector-borne pathogens: in grey foxes, Rickettsia sp. (3%), hemoplasmas (8%), including Mycoplasma haemocanis, and Hepatozoon sp. (50%); in P. irritans, Bartonella spp. (72% of flea pools from 76% of foxes), mostly B. vinsonii subsp. berkhoffii but also B. rochalimae, Anaplasmataceae (Wolbachia sp.; 60% and 54%), and M. haemocanis/haemofelis (29% and 18%); and in A. tigrinum, Hepatozoon sp. (33% of ticks in 4 of 7 foxes). No piroplasmid DNA was detected in any sample. Andean foxes were negative for all tested pathogens. Two different Hepatozoon haplotypes were detected: the most prevalent was phylogenetically associated with H. felis, and the other with H. americanum and related sequences. Amblyomma tigrinum and Hepatozoon sp. were more abundant and/or prevalent in BPNP than in colder MLNP, 300 km southwards, perhaps located close to the limit for tick suitability. Bartonella v. berkhoffii was also significantly more prevalent in fleas of foxes in BPNP than in MLNP. This study provides novel information about natural host-pathogen associations in wildlife, markedly extends the distribution area in South America of arthropods and vector-borne pathogens of veterinary and public health interest, and contributes preliminary evidence about the potential role of A. tigrinum and P. irritans as vectors, respectively, for potentially new species of Hepatozoon from Lycalopex spp. and for M. haemocanis that should be further investigated.

RevDate: 2019-02-02

Kirichenko N, Triberti P, Kobayashi S, et al (2018)

Systematics of Phyllocnistis leaf-mining moths (Lepidoptera, Gracillariidae) feeding on dogwood (Cornus spp.) in Northeast Asia, with the description of three new species.


During an ongoing DNA-barcoding campaign of the leaf-mining moths that feed on woody plants in Northeast Asia, four lineages of the genus Phyllocnistis (Gracillariidae, Phyllocnistinae) were discovered on dogwood (Cornus spp): P. cornella Ermolaev, 1987 on C. controversa Hemsl. (Japan: Hokkaido) and three new species - one feeding on C. controversa, C. florida L. and C. macrophylla Wall. in Japan (Honshu, Shikoku, Kyushu), a second species on C. macrophylla in China (Yunnan) and a third on Siberian dogwood Cornus alba L. in Russia (Siberia). All these species showed differences in morphology, in the barcode region of the cytochrome c oxidase I gene and in two nuclear genes (histone H3 and 28S ribosomal RNA). No correlation was found between the deep mitochondrial splits observed and the Wolbachia infection pattern. Based on both morphological and molecular evidence, the three recently discovered lineages are described here as new species: P. indistincta Kobayashi & Triberti, sp. n. (Japan), P. saepta Kirichenko, Ohshima & Huang, sp. n. (China) and P. verae Kirichenko, Triberti & Lopez-Vaamonde, sp. n. (Russia). In addition, the authors re-describe the adult morphology of P. cornella, provide the first record of this species from Japan and highlight the diagnostic characters that allow these Cornus-feeding Phyllocnistis species to be distinguished.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )