Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 25 Oct 2021 at 01:56 Created: 


WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-10-22

Perlmutter JI, Meyers JE, SR Bordenstein (2021)

A single synonymous nucleotide change impacts the male-killing phenotype of prophage WO gene wmk.

eLife, 10: pii:67686 [Epub ahead of print].

Wolbachia are the most widespread bacterial endosymbionts in animals. Within arthropods, these maternally-transmitted bacteria can selfishly hijack host reproductive processes to increase the relative fitness of their transmitting females. One such form of reproductive parasitism called male killing, or the selective killing of infected males, is recapitulated to degrees by transgenic expression of the WO-mediated killing (wmk) gene. Here, we characterize the genotype-phenotype landscape of wmk-induced male killing in D. melanogaster using transgenic expression. While phylogenetically distant wmk homologs induce no sex-ratio bias, closely-related homologs exhibit complex phenotypes spanning no death, male death, or death of all hosts. We demonstrate that alternative start codons, synonymous codons, and notably a single synonymous nucleotide in wmk can ablate killing. These findings reveal previously unrecognized features of transgenic wmk-induced killing and establish new hypotheses for the impacts of post-transcriptional processes in male killing variation. We conclude that synonymous sequence changes are not necessarily silent in nested endosymbiotic interactions with life-or-death consequences.

RevDate: 2021-10-23

Bell-Sakyi L, Beliavskaia A, Hartley CS, et al (2021)

Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi.

Insects, 12(10): pii:insects12100871.

Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host-endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.

RevDate: 2021-10-23

Shapoval NA, Nokkala S, Nokkala C, et al (2021)

The Incidence of Wolbachia Bacterial Endosymbiont in Bisexual and Parthenogenetic Populations of the Psyllid Genus Cacopsylla (Hemiptera, Psylloidea).

Insects, 12(10): pii:insects12100853.

Wolbachia is one of the most common intracellular bacteria; it infects a wide variety of insects, other arthropods, and some nematodes. Wolbachia is ordinarily transmitted vertically from mother to offspring and can manipulate physiology and reproduction of their hosts in different ways, e.g., induce feminization, male killing, and parthenogenesis. Despite the great interest in Wolbachia, many aspects of its biology remain unclear and its incidence across many insect orders, including Hemiptera, is still poorly understood. In this report, we present data on Wolbachia infection in five jumping plant-lice species (Hemiptera, Psylloidea) of the genus Cacopsylla Ossiannilsson, 1970 with different reproductive strategies and test the hypothesis that Wolbachia mediates parthenogenetic and bisexual patterns observed in some Cacopsylla species. We show that the five species studied are infected with a single Wolbachia strain, belonging to the supergroup B. This strain has also been found in different insect orders (Lepidoptera, Hemiptera, Plecoptera, Orthoptera, Hymenoptera, Diptera) and even in acariform mites (Trombidiformes), suggesting extensive horizontal transmission of Wolbachia between representatives of these taxa. Our survey did not reveal significant differences in infection frequency between parthenogenetic and bisexual populations or between males and females within bisexual populations. However, infection rate varied notably in different Cacopsylla species or within distinct populations of the same species. Overall, we demonstrate that Wolbachia infects a high proportion of Cacopsylla individuals and populations, suggesting the essential role of this bacterium in their biology.

RevDate: 2021-10-19

Poopandi S, Sundaraj R, Rajmichael R, et al (2021)

Computational screening of potential inhibitors targeting MurF of Brugia malayi Wolbachia through multi-scale molecular docking, molecular dynamics and MM-GBSA analysis.

Molecular and biochemical parasitology pii:S0166-6851(21)00074-8 [Epub ahead of print].

Lymphatic filariasis is a parasitic disease caused by the worms Wuchereria bancrofti, Brugia malayi and Brugia timori. Three anti-filarial drugs namely Diethylcarbamazine, Ivermectin and Albendazole and their combinations are used as the control strategies for filariasis. The disease has received much attention in drug discovery due to the unavailability of vaccines and the toxic pharmaceutical properties of the existing drugs. In Wolbachia endosymbiont Brugia malayi, the UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF) plays a key role in peptidoglycan biosynthesis pathway and therefore can be considered as effective drug target against filariasis disease. Therefore, in the present study, MurF was selected as the therapeutic target to identify specific inhibitors against filariasis. Homology modeling was performed to predict the three-dimensional structure of MurF due to the absence of the experimental structure. Further molecular dynamics simulation and structure-based high throughput virtual screening with three different chemical databases (Zinc, Maybridge and Specs) were carried out to identify potent inhibitors and also to check their conformations inside the binding site of MurF, respectively. Top three compounds with high docking score and high relative binding affinity against MurF were selected. Further, validation studies, including predicted ADME (Absorption, Distribution, Metabolism, Excretion) assessment, binding free energy using MM-GBSA (Molecular Mechanics Generalized Born Surface Area) and DFT (Density Functional Theory) calculations were performed for the top three compounds. From the results, it was observed that all the three compounds were predicted to show high reactivity, acceptable range of pharmacokinetic properties and high binding affinity with the drug target MurF. Overall, the results could provide more understanding on the inhibition of MurF enzyme and the screened compounds could lead to the development of new specific anti-filarial drugs.

RevDate: 2021-10-18

Hill T, Unckless RL, JI Perlmutter (2021)

Positive selection and horizontal gene transfer in the genome of a male-killing Wolbachia.

Molecular biology and evolution pii:6400257 [Epub ahead of print].

Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome to other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.

RevDate: 2021-10-18

Gloder G, Bourne ME, Verreth C, et al (2021)

Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars.

Animal microbiome, 3(1):73.

BACKGROUND: The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture.

RESULTS: Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids.

CONCLUSION: We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.

RevDate: 2021-10-15

Wielkopolan B, Krawczyk K, Szabelska-Beręsewicz A, et al (2021)

The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect's developmental stage, host plant, and origin.

Scientific reports, 11(1):20496.

Cereal leaf beetle (CLB, Oulema melanopus, Coleoptera, Chrysomelidae) is a serious agricultural pest that causes considerable damages to agricultural production. The aim of this study was to characterize the bacterial communities associated with larvae and imagoes of CLB collected from various cereal host species and locations. The bacterial profile was characterized by 16S rRNA gene sequencing at the V3-V4 hypervariable region. Using taxonomy-based analysis, the bacterial community of CLB containing 16 phyla, 26 classes, 49 orders, 78 families, 94 genera, and 63 species of bacteria was identified. The abundance of Wolbachia, Rickettsia, and Lactococcus genus was significantly higher in CLB imagoes than in larvae. Statistical analysis confirmed that the bacterial community of the larvae is more diverse in comparison to imagoes and that insects collected from spring barley and wheat are characterized by a much higher biodiversity level of bacterial genera and species than insects collected from other cereals. Obtained results indicated that the developmental stage, the host plant, and the insect's sampling location affected the CLB's microbiome. Additionally, the CLB core microbiome was determined. It consists of 2 genera (Wolbachia and Rickettsia) shared by at least 90% tested CLB insects, regardless of the variables analysed.

RevDate: 2021-10-13

Lefoulon E, Truchon A, Clark T, et al (2021)

Greenhead (Tabanus nigrovittatus) Wolbachia and Its Microbiome: A Preliminary Study.

Microbiology spectrum [Epub ahead of print].

Endosymbiotic Wolbachia bacteria are known to influence the host physiology, microbiota composition, and dissemination of pathogens. We surveyed a population of Tabanus nigrovittatus, commonly referred to as "greenheads," from Crane Beach (Ipswich, MA, USA) for the presence of the alphaproteobacterial symbiont Wolbachia. We studied the COI (mitochondrial cytochrome oxidase) marker gene to evaluate the phylogenetic diversity of the studied specimens. The DNA sequences show strong similarity (between 99.9 and 98%) among the collected specimens but lower similarity to closely related entries in the NCBI database (only between 96.3 and 94.7%), suggesting a more distant relatedness. Low levels of Wolbachia presence necessitated a nested PCR approach, and using 5 markers (ftsZ, fbpA, dnaA, coxA, and gatB), we determined that two recognized "supergroups" of Wolbachia species were represented in the studied specimens, members of clades A and B. Using next-generation sequencing, we also surveyed the insect gut microbiomes of a subset of flies, using Illumina and PacBio 16S rRNA gene sequencing with barcoded primers. The composition of Proteobacteria also varied from fly to fly, with components belonging to Gammaproteobacteria making up the largest percentage of organisms (30 to 70%) among the microbiome samples. Most of the samples showed the presence of Spiroplasma, a member of the phylum Mollicutes, although the frequency of its presence was variable, ranging from 2 to 57%. Another noteworthy bacterial phylum consistently identified was Firmicutes, though the read abundances were typically below 10%. Of interest is an association between Wolbachia presence and higher Alphaproteobacteria representation in the microbiomes, suggesting that the presence of Wolbachia affects the host microbiome. IMPORTANCE Tabanus nigrovittatus greenhead populations contain two supergroups of Wolbachia endosymbionts, members of supergroups A and B. Analysis of the greenhead microbiome using next-generation sequencing revealed that the majority of bacterial species detected belonged to Gammaproteobacteria, with most of the samples also showing the presence of Spiroplasma, a member of the Mollicutes phylum also known to infect insects. An association between Wolbachia presence and higher Alphaproteobacteria representation in the microbiomes suggests that Wolbachia presence affects the host microbiome composition.

RevDate: 2021-10-13

Ngwewondo A, Scandale I, S Specht (2021)

Onchocerciasis drug development: from preclinical models to humans.

Parasitology research [Epub ahead of print].

Twenty diseases are recognized as neglected tropical diseases (NTDs) by World Health Assembly resolutions, including human filarial diseases. The end of NTDs is embedded within the Sustainable Development Goals for 2030, under target 3.3. Onchocerciasis afflicts approximately 20.9 million people worldwide with > 90% of those infected residing in Africa. Control programs have made tremendous efforts in the management of onchocerciasis by mass drug administration and aerial larviciding; however, disease elimination is not yet achieved. In the new WHO roadmap, it is recognized that new drugs or drug regimens that kill or permanently sterilize adult filarial worms would significantly improve elimination timelines and accelerate the achievement of the program goal of disease elimination. Drug development is, however, handicapped by high attrition rates, and many promising molecules fail in preclinical development or in subsequent toxicological, safety and efficacy testing; thus, research and development (R&D) costs are, in aggregate, very high. Drug discovery and development for NTDs is largely driven by unmet medical needs put forward by the global health community; the area is underfunded and since no high return on investment is possible, there is no dedicated drug development pipeline for human filariasis. Repurposing existing drugs is one approach to filling the drug development pipeline for human filariasis. The high cost and slow pace of discovery and development of new drugs has led to the repurposing of "old" drugs, as this is more cost-effective and allows development timelines to be shortened. However, even if a drug is marketed for a human or veterinary indication, the safety margin and dosing regimen will need to be re-evaluated to determine the risk in humans. Drug repurposing is a promising approach to enlarging the pool of active molecules in the drug development pipeline. Another consideration when providing new treatment options is the use of combinations, which is not addressed in this review. We here summarize recent advances in the late preclinical or early clinical stage in the search for a potent macrofilaricide, including drugs against the nematode and against its endosymbiont, Wolbachia pipientis.

RevDate: 2021-10-12

Jiménez NE, Gerdtzen ZP, Olivera-Nappa Á, et al (2021)

Novel Symbiotic Genome-Scale Model Reveals Wolbachia's Arboviral Pathogen Blocking Mechanism in Aedes aegypti.

mBio [Epub ahead of print].

Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria. IMPORTANCE Arboviral diseases such as Zika and Dengue have been on the rise mainly due to climate change, and the development of new treatments and strategies to limit their spreading is needed. The use of Wolbachia as an approach for disease control has motivated new research related to the characterization of the mechanisms that underlie its pathogen-blocking properties. In this work, we propose a new approach for studying the metabolic interactions between Aedes aegypti and Wolbachia using genome-scale models, finding that pathogen blocking is mainly influenced by competition for the resources required for Wolbachia and viral replication.

RevDate: 2021-10-08

Xiao Y, Chen H, Wang H, et al (2021)

Structural and mechanistic insights into the complexes formed by Wolbachia cytoplasmic incompatibility factors.

Proceedings of the National Academy of Sciences of the United States of America, 118(41):.

Wolbachia bacteria, inherited through the female germ line, infect a large fraction of arthropod species. Many Wolbachia strains manipulate host reproduction, most commonly through cytoplasmic incompatibility (CI). CI, a conditional male sterility, results when Wolbachia-infected male insects mate with uninfected females; viability is restored if the female is similarly infected (called "rescue"). CI is used to help control mosquito-borne viruses such as dengue and Zika, but its mechanisms remain unknown. The coexpressed CI factors CifA and CifB form stable complexes in vitro, but the timing and function of this interaction in the insect are unresolved. CifA expression in the female germ line is sufficient for rescue. We report high-resolution structures of a CI-factor complex, CinA-CinB, which utilizes a unique binding mode between the CinA rescue factor and the CinB nuclease; the structures were validated by biochemical and yeast growth analyses. Importantly, transgenic expression in Drosophila of a nonbinding CinA mutant, designed based on the CinA-CinB structure, suggests CinA expressed in females must bind CinB imported by sperm in order to rescue embryonic viability. Binding between cognate factors is conserved in an enzymatically distinct CI system, CidA-CidB, suggesting universal features in Wolbachia CI induction and rescue.

RevDate: 2021-10-07

Xiao Z, Tao X, Xu X, et al (2021)

A Comparative Study on the Biological Characteristics of Parthenogenetic and Bisexual Restored Trichogramma pretiosum Lines.

Journal of economic entomology pii:6382549 [Epub ahead of print].

In order to investigate the effect of Wolbachia on fitness of their hosts, the biological characteristics of a primarily parthenogenetic line and a bisexual restored line (obtained by antibiotic treatment) of Trichogramma pretiosum were compared in the laboratory. Results indicated that both the mean longevity and fecundity of parthenogenetic line (14.2 d and 165 eggs/female) were significantly higher than those in bisexual restored line (8.4 d and 124.2 eggs/female). Both lines of T. pretiosum had the highest daily fecundity (23.3 eggs/female for parthenogenetic line and 19.8 eggs/female for bisexual restored line) on the first day during their reproduction period, and their survival rate and daily fecundity decreased gradually with age; however, the survival rate and daily fecundity of the parthenogenetic line were always higher than those of bisexual restored line, during the entire experimental period. There was no significant difference in emergence rate and deformity rate between the two T. pretiosum lines. The life-table parameter results indicated that net reproduction rate (R0) and mean generation time (T) in parthenogenetic line (133 and 16.8) were significantly higher than those in bisexual restored line (61.7 and 15.5); intrinsic rate of natural increase (rm) and finite rate of increase (λ) in parthenogenetic line (0.29 and 1.34) were higher than those in bisexual restored line (0.26 and 1.3). Based on these results, it can be confirmed that the removal of Wolbachia in the parthenogenetic line had an adverse effect on fitness of T. pretiosum.

RevDate: 2021-10-07

Bech N, Beltran-Bech S, Chupeau C, et al (2021)

Experimental evidence of Wolbachia introgressive acquisition between terrestrial isopod subspecies.

Current zoology, 67(4):455-464 pii:zoaa078.

Wolbachia are the most widespread endosymbiotic bacteria in animals. In many arthropod host species, they manipulate reproduction via several mechanisms that favor their maternal transmission to offspring. Among them, cytoplasmic incompatibility (CI) promotes the spread of the symbiont by specifically decreasing the fertility of crosses involving infected males and uninfected females, via embryo mortality. These differences in reproductive efficiency may select for the avoidance of incompatible mating, a process called reinforcement, and thus contribute to population divergence. In the terrestrial isopod Porcellio dilatatus, the Wolbachia wPet strain infecting the subspecies P. d. petiti induces unidirectional CI with uninfected individuals of the subspecies P. d. dilatatus. To study the consequences of CI on P. d. dilatatus and P. d. petiti hybridization, mitochondrial haplotypes and Wolbachia infection dynamics, we used population cages seeded with different proportions of the 2 subspecies in which we monitored these genetic parameters 5 and 7 years after the initial setup. Analysis of microsatellite markers allowed evaluating the degree of hybridization between individuals of the 2 subspecies. These markers revealed an increase in P. d. dilatatus nuclear genetic signature in all mixed cages, reflecting an asymmetry in hybridization. Hybridization led to the introgressive acquisition of Wolbachia and mitochondrial haplotype from P. d. petiti into nuclear genomes dominated by alleles of P. d. dilatatus. We discuss these results with regards to Wolbachia effects on their host (CI and putative fitness cost), and to a possible reinforcement that may have led to assortative mating, as possible factors contributing to the observed results.

RevDate: 2021-10-05

Beebe NW, Pagendam D, Trewin BJ, et al (2021)

Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia.

Proceedings of the National Academy of Sciences of the United States of America, 118(41):.

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.

RevDate: 2021-09-30

Tyagi K, Tyagi I, V Kumar (2021)

Insights into the gut bacterial communities of spider from wild with no evidence of phylosymbiosis.

Saudi journal of biological sciences, 28(10):5913-5924.

In the present study, an effort has been made to elucidate the gut bacterial diversity of twelve species of the family Araneidae under three subfamilies collected from 5 states of India along with their predicted metabolic role in functional metabolism. Further, we also compared the host species phylogeny based on partial cytochrome c oxidase subunit I (COI) sequences with the gut bacteria composition dendrogram to decipher the phylosymbiotic relationships. Analysis revealed the presence of 22 bacterial phyla, 145 families, and 364 genera in the gut, with Proteobacteria, Firmicutes, Actinobacteria, and Deinococcus-Thermus as the highest abundant phyla. Moreover, phylum Bacteriodetes was dominated only in Cyclosa mulmeinensis and Chlamydiae in Neoscona bengalensis. At the genus level, Bacillus, Acinetobacter, Cutibacterium, Pseudomonas, and Staphylococcus were the most dominant genera. Furthermore, the genus Prevotella was observed only in Cyclosa mulmeinensis, and endosymbiont Wolbachia only in Eriovixia laglaizei. The differential abundance analysis (DeSeq2) revealed the 19 significant ASVs represented by the genera like Acinetobacter, Vagoccoccus, Prevotella, Staphylococcus, Curvibacter, Corynebacterium, Paracoccus, Streptococcus, Microbacterium, and Pseudocitrobacter. The inter- and intra-subfamilies comparison based on diversity indices (alpha and beta diversity) revealed that the subfamily Araneinae have high richness and diversity than Argiopinae and Gasteracanthinae. The phylosymbiotic analysis revealed that there is no congruence between the gut bacteria composition dendrogram with their host phylogeny.

RevDate: 2021-09-29

Conceição CC, da Silva JN, Arcanjo A, et al (2021)

Aedes fluviatilis cell lines as new tools to study metabolic and immune interactions in mosquito-Wolbachia symbiosis.

Scientific reports, 11(1):19202.

In the present work, we established two novel embryonic cell lines from the mosquito Aedes fluviatilis containing or not the naturally occurring symbiont bacteria Wolbachia, which were called wAflu1 and Aflu2, respectively. We also obtained wAflu1 without Wolbachia after tetracycline treatment, named wAflu1.tet. Morphofunctional characterization was performed to help elucidate the symbiont-host interaction in the context of energy metabolism regulation and molecular mechanisms of the immune responses involved. The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells. Additionally, innate immunity mechanisms were activated, showing that the wAflu1 and wAflu1.tet cells are responsive after the stimulus using Gram negative bacteria. Therefore, this work confirms the natural, mutually co-regulating symbiotic relationship between W. pipientis and A. fluviatilis, modulating the host metabolism and immune pathway activation. The results presented here add important resources to the current knowledge of Wolbachia-arthropod interactions.

RevDate: 2021-09-28

Bubnell JE, Fernandez-Begne P, Ulbing CKS, et al (2021)

Diverse wMel variants of Wolbachia pipientis differentially rescue fertility and cytological defects of the bag of marbles partial loss of function mutation in Drosophila melanogaster.

G3 (Bethesda, Md.) pii:6365939 [Epub ahead of print].

In Drosophila melanogaster, the maternally inherited endosymbiont Wolbachia pipientis interacts with germline stem cell genes during oogenesis. One such gene, bag of marbles (bam) is the key switch for differentiation and also shows signals of adaptive evolution for protein diversification. These observations have led us to hypothesize that W. pipientis could be driving the adaptive evolution of bam for control of oogenesis. To test this hypothesis, we must understand the specificity of the genetic interaction between bam and W. pipientis. Previously, we documented that the W. pipientis variant, wMel, rescued the fertility of the bamBW hypomorphic mutant as a transheterozygote over a bam null. However, bamBW was generated more than 20 years ago in an uncontrolled genetic background and maintained over a balancer chromosome. Consequently, the chromosome carrying bamBW accumulated mutations that have prevented controlled experiments to further assess the interaction. Here, we used CRISPR/Cas9 to engineer the same single amino acid bam hypomorphic mutation (bamL255F) and a new bam null disruption mutation into the w1118 isogenic background. We assess the fertility of wildtype bam, bamL255F/bamnull hypomorphic, and bamL255F/bamL255F mutant females, each infected individually with 10 W. pipientis wMel variants representing three phylogenetic clades. Overall, we find that all of the W. pipientis variants tested here rescue bam hypomorphic fertility defects with wMelCS-like variants exhibiting the strongest rescue effects. In addition, these variants did not increase wildtype bam female fertility. Therefore, both bam and W. pipientis interact in genotype-specific ways to modulate female fertility, a critical fitness phenotype.

RevDate: 2021-09-28

Lee H, Seo MG, Lee SH, et al (2021)

Relationship among bats, parasitic bat flies, and associated pathogens in Korea.

Parasites & vectors, 14(1):503.

BACKGROUND: Bats are hosts for many ectoparasites and act as reservoirs for several infectious agents, some of which exhibit zoonotic potential. Here, species of bats and bat flies were identified and screened for microorganisms that could be mediated by bat flies.

METHODS: Bat species were identified on the basis of their morphological characteristics. Bat flies associated with bat species were initially morphologically identified and further identified at the genus level by analyzing the cytochrome c oxidase subunit I gene. Different vector-borne pathogens and endosymbionts were screened using PCR to assess all possible relationships among bats, parasitic bat flies, and their associated organisms.

RESULTS: Seventy-four bat flies were collected from 198 bats; 66 of these belonged to Nycteribiidae and eight to Streblidae families. All Streblidae bat flies were hosted by Rhinolophus ferrumequinum, known as the most common Korean bat. Among the 74 tested bat flies, PCR and nucleotide sequencing data showed that 35 (47.3%) and 20 (27.0%) carried Wolbachia and Bartonella bacteria, respectively, whereas tests for Anaplasma, Borrelia, Hepatozoon, Babesia, Theileria, and Coxiella were negative. Phylogenetic analysis revealed that Wolbachia endosymbionts belonged to two different supergroups, A and F. One sequence of Bartonella was identical to that of Bartonella isolated from Taiwanese bats.

CONCLUSIONS: The vectorial role of bat flies should be checked by testing the same pathogen and bacterial organisms by collecting blood from host bats. This study is of great interest in the fields of disease ecology and public health owing to the bats' potential to transmit pathogens to humans and/or livestock.

RevDate: 2021-09-28

Hoffmann A, Müller T, Fingerle V, et al (2021)

Presence of Human Pathogens of the Borrelia burgdorferi sensu lato Complex Shifts the Sequence Read Abundances of Tick Microbiomes in Two German Locations.

Microorganisms, 9(9): pii:microorganisms9091814.

The distribution of human Lyme borreliosis (LB) is assumed random in Germany, indicating that the human pathogenic species of the Borrelia burgdorferi sensu lato complex (Bb) are similarly distributed as part of the tick microbiome. The aim of this study was to differentiate if the presence of Bb occurs with a defined tick microbiome composition. Furthermore, the effect of location on tick microbiome composition was addressed for two German locations. Therefore, nucleic acid extracts from 82 Borrelia-positive and 118 Borrelia-negative Ixodes ricinus ticks sampled from human hosts in both districts were selected. Nucleic acid extracts were used for human pathogenic Bb species diagnostics based on qPCR and multilocus sequence typing (MLST) and bacterial 16S rRNA gene amplicon sequencing followed by network analyses. As a result, the presence of Bb shifted the sequence read abundances of Candidatus Midichloria, Rickettsia, Pseudomonas, Staphylococcus, and Candidatus Neoehrlichia and their topological roles in the tick microbiome. Moreover, the location was less important in the tick microbiome composition but shifted significantly sequence read abundances of Pseudomonas and Wolbachia as well as the topological role of microbial members. Since the presence of human pathogenic Bb species with other tick-associated pathogens varies regionally, we suggest that a bacterial 16S rRNA gene-based microbiome survey should be implemented in the routine diagnostics for both tick and host if human pathogenic species of Bb were detected. This diagnostic extension will help to optimize therapeutic approaches against Bb infection and co-occurring pathogens.

RevDate: 2021-09-27

Ettinger CL, Byrne FJ, Collin MA, et al (2021)

Improved draft reference genome for the Glassy-winged Sharpshooter (Homalodisca vitripennis), a vector for Pierce's disease.

G3 (Bethesda, Md.), 11(10):.

Homalodisca vitripennis (Hemiptera: Cicadellidae), known as the glassy-winged sharpshooter, is a xylem feeding leafhopper and an important agricultural pest as a vector of Xylella fastidiosa, which causes Pierce's disease in grapes and a variety of other scorch diseases. The current H. vitripennis reference genome from the Baylor College of Medicine's i5k pilot project is a 1.4-Gb assembly with 110,000 scaffolds, which still has significant gaps making identification of genes difficult. To improve on this effort, we used a combination of Oxford Nanopore long-read sequencing technology combined with Illumina sequencing reads to generate a better assembly and first-pass annotation of the whole genome sequence of a wild-caught Californian (Tulare County) individual of H. vitripennis. The improved reference genome assembly for H. vitripennis is 1.93-Gb in length (21,254 scaffolds, N50 = 650 Mb, BUSCO completeness = 94.3%), with 33.06% of the genome masked as repetitive. In total, 108,762 gene models were predicted including 98,296 protein-coding genes and 10,466 tRNA genes. As an additional community resource, we identified 27 orthologous candidate genes of interest for future experimental work including phenotypic marker genes like white. Furthermore, as part of the assembly process, we generated four endosymbiont metagenome-assembled genomes, including a high-quality near complete 1.7-Mb Wolbachia sp. genome (1 scaffold, CheckM completeness = 99.4%). The improved genome assembly and annotation for H. vitripennis, curated set of candidate genes, and endosymbiont MAGs will be invaluable resources for future research of H. vitripennis.

RevDate: 2021-09-27

Cao R, Ren Q, Luo J, et al (2021)

Analysis of Microorganism Diversity in Haemaphysalis longicornis From Shaanxi, China, Based on Metagenomic Sequencing.

Frontiers in genetics, 12:723773.

Ticks are dangerous ectoparasites of humans and animals, as they are important disease vectors and serve as hosts for various microorganisms (including a variety of pathogenic microorganisms). Diverse microbial populations coexist within the tick body. Metagenomic next-generation sequencing (mNGS) has been suggested to be useful for rapidly and accurately obtaining microorganism abundance and diversity data. In this study, we performed mNGS to analyze the microbial diversity of Haemaphysalis longicornis from Baoji, Shaanxi, China, with the Illumina HiSeq platform. We identified 189 microbial genera (and 284 species) from ticks in the region; the identified taxa included Anaplasma spp., Rickettsia spp., Ehrlichia spp., and other important tick-borne pathogens at the genus level as well as symbiotic microorganisms such as Wolbachia spp., and Candidatus Entotheonella. The results of this study provide insights into possible tick-borne diseases and reveal new tick-borne pathogens in this region. Additionally, valuable information for the biological control of ticks is provided. In conclusion, this study provides reference data for guiding the development of prevention and control strategies targeting ticks and tick-borne diseases in the region, which can improve the effectiveness of tick and tick-borne disease control.

RevDate: 2021-09-27

Calle-Tobón A, Holguin-Rocha AF, Moore C, et al (2021)

Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus.

Frontiers in microbiology, 12:724345.

The Asian "tiger mosquito" Aedes albopictus is currently the most widely distributed disease-transmitting mosquito in the world. Its geographical expansion has also allowed the expansion of multiple arboviruses like dengue, Zika, and chikungunya, to higher latitudes. Due to the enormous risk to global public health caused by mosquitoes species vectors of human disease, and the challenges in slowing their expansion, it is necessary to develop new and environmentally friendly vector control strategies. Among these, host-associated microbiome-based strategies have emerged as promising options. In this study, we performed an RNA-seq analysis on dissected abdomens of Ae. albopictus females from Manhattan, KS, United States fed with sugar and human blood containing either normal or heat-inactivated serum, to evaluate the effect of heat inactivation on gene expression, the bacteriome transcripts and the RNA virome of this mosquito species. Our results showed at least 600 genes with modified expression profile when mosquitoes were fed with normal vs. heat-inactivated-containing blood. These genes were mainly involved in immunity, oxidative stress, lipid metabolism, and oogenesis. Also, we observed bacteriome changes with an increase in transcripts of Actinobacteria, Rhodospirillaceae, and Anaplasmataceae at 6 h post-feeding. We also found that feeding with normal blood seems to particularly influence Wolbachia metabolism, demonstrated by a significant increase in transcripts of this bacteria in mosquitoes fed with blood containing normal serum. However, no differences were observed in the virome core of this mosquito population. These results suggest that heat and further inactivation of complement proteins in human serum may have profound effect on mosquito and microbiome metabolism, which could influence interpretation of the pathogen-host interaction findings when using this type of reagents specially when measuring the effect of Wolbachia in vector competence.

RevDate: 2021-09-26

Carpenter M, Peng L, Smith AH, et al (2021)

Frequent Drivers, Occasional Passengers: Signals of Symbiont-Driven Seasonal Adaptation and Hitchhiking in the Pea Aphid, Acyrthosiphon pisum.

Insects, 12(9): pii:insects12090805.

Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects' adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont-Hamiltonella defensa-studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such "hitchhiking" effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont-Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases-including the one described above for Hamiltonella-our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for "passenger" symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.

RevDate: 2021-09-26

Xu X, Ridland PM, Umina PA, et al (2021)

High Incidence of Related Wolbachia across Unrelated Leaf-Mining Diptera.

Insects, 12(9): pii:insects12090788.

The maternally inherited endosymbiont, Wolbachia pipientis, plays an important role in the ecology and evolution of many of its hosts by affecting host reproduction and fitness. Here, we investigated 13 dipteran leaf-mining species to characterize Wolbachia infections and the potential for this endosymbiont in biocontrol. Wolbachia infections were present in 12 species, including 10 species where the Wolbachia infection was at or near fixation. A comparison of Wolbachia relatedness based on the wsp/MLST gene set showed that unrelated leaf-mining species often shared similar Wolbachia, suggesting common horizontal transfer. We established a colony of Liriomyza brassicae and found adult Wolbachia density was stable; although Wolbachia density differed between the sexes, with females having a 20-fold higher density than males. Wolbachia density increased during L. brassicae development, with higher densities in pupae than larvae. We removed Wolbachia using tetracycline and performed reciprocal crosses between Wolbachia-infected and uninfected individuals. Cured females crossed with infected males failed to produce offspring, indicating that Wolbachia induced complete cytoplasmic incompatibility in L. brassicae. The results highlight the potential of Wolbachia to suppress Liriomyza pests based on approaches such as the incompatible insect technique, where infected males are released into populations lacking Wolbachia or with a different incompatible infection.

RevDate: 2021-09-26

Deng J, Assandri G, Chauhan P, et al (2021)

Wolbachia-driven selective sweep in a range expanding insect species.

BMC ecology and evolution, 21(1):181.

BACKGROUND: Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range.

METHOD: The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958).

RESULTS: Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years.

CONCLUSIONS: Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.

RevDate: 2021-09-26

Lau MJ, Hoffmann AA, NM Endersby-Harshman (2021)

A diagnostic primer pair to distinguish between wMel and wAlbB Wolbachia infections.

PloS one, 16(9):e0257781.

Detection of the Wolbachia endosymbiont in Aedes aegypti mosquitoes through real-time polymerase chain reaction assays is widely used during and after Wolbachia releases in dengue reduction trials involving the wMel and wAlbB strains. Although several different primer pairs have been applied in current successful Wolbachia releases, they cannot be used in a single assay to distinguish between these strains. Here, we developed a new diagnostic primer pair, wMwA, which can detect the wMel or wAlbB infection in the same assay. We also tested current Wolbachia primers and show that there is variation in their performance when they are used to assess the relative density of Wolbachia. The new wMwA primers provide an accurate and efficient estimate of the presence and density of both Wolbachia infections, with practical implications for Wolbachia estimates in field collected Ae. aegypti where Wolbachia releases have taken place.

RevDate: 2021-09-24

Beckmann JF, Van Vaerenberghe K, Akwa DE, et al (2021)

A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency.

Proceedings of the National Academy of Sciences of the United States of America, 118(39):.

Animals interact with microbes that affect their performance and fitness, including endosymbionts that reside inside their cells. Maternally transmitted Wolbachia bacteria are the most common known endosymbionts, in large part because of their manipulation of host reproduction. For example, many Wolbachia cause cytoplasmic incompatibility (CI) that reduces host embryonic viability when Wolbachia-modified sperm fertilize uninfected eggs. Operons termed cifs control CI, and a single factor (cifA) rescues it, providing Wolbachia-infected females a fitness advantage. Despite CI's prevalence in nature, theory indicates that natural selection does not act to maintain CI, which varies widely in strength. Here, we investigate the genetic and functional basis of CI-strength variation observed among sister Wolbachia that infect Drosophila melanogaster subgroup hosts. We cloned, Sanger sequenced, and expressed cif repertoires from weak CI-causing wYak in Drosophila yakuba, revealing mutations suspected to weaken CI relative to model wMel in D. melanogaster A single valine-to-leucine mutation within the deubiquitylating (DUB) domain of the wYak cifB homolog (cidB) ablates a CI-like phenotype in yeast. The same mutation reduces both DUB efficiency in vitro and transgenic CI strength in the fly, each by about twofold. Our results map hypomorphic transgenic CI to reduced DUB activity and indicate that deubiquitylation is central to CI induction in cid systems. We also characterize effects of other genetic variation distinguishing wMel-like cifs Importantly, CI strength determines Wolbachia prevalence in natural systems and directly influences the efficacy of Wolbachia biocontrol strategies in transinfected mosquito systems. These approaches rely on strong CI to reduce human disease.

RevDate: 2021-09-20

Zhao Z, Zhu J, Hoffmann AA, et al (2021)

Horizontal transmission and recombination of Wolbachia in the butterfly tribe Aeromachini Tutt, 1906 (Lepidoptera: Hesperiidae).

G3 (Bethesda, Md.), 11(9):.

Wolbachia is arguably one of the most ubiquitous heritable symbionts among insects and understanding its transmission dynamics is crucial for understanding why it is so common. While previous research has studied the transmission pathways of Wolbachia in several insect lineages including Lepidoptera, this study takes advantage of data collected from the lepidopteran tribe Aeromachini in an effort to assess patterns of transmission. Twenty-one of the 46 species of Aeromachini species were infected with Wolbachia. Overall, 25% (31/125) of Aeromachini specimens tested were Wolbachia positive. All Wolbachia strains were species-specific except for the wJho strain which appeared to be shared by three host species with a sympatric distribution based on a cophylogenetic comparison between Wolbachia and the Aeromachini species. Two tests of phylogenetic congruence did not find any evidence for cospeciation between Wolbachia strains and their butterfly hosts. The cophylogenetic comparison, divergence time estimation, and Wolbachia recombination analysis revealed that Wolbachia acquisition in Aeromachini appears to have mainly occurred mainly through horizontal transmission rather than codivergence.

RevDate: 2021-09-17

Shi Y, B Zheng (2021)

Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios.

Journal of biological dynamics [Epub ahead of print].

We develop two discrete models to study how supplemental releases affect the Wolbachia spreading dynamics in cage mosquito populations. The first model focuses on the case when only infected males are released at each generation. This release strategy has been proved to be capable of speeding up the Wolbachia persistence by suppressing the compatible matings between uninfected individuals. The second model targets the case when only infected females are released at each generation. For both models, detailed model formulation, enumeration of the positive equilibria and their stability analysis are provided. Theoretical results show that the two models can generate bistable dynamics when there are three positive equilibrium points, semi-stable dynamics for the case of two positive equilibrium points. And when the positive equilibrium point is unique, it is globally asymptotically stable. Some numerical simulations are offered to get helpful implications on the design of the release strategy.

RevDate: 2021-09-17

Bagheri Z, Talebi AA, Asgari S, et al (2021)

Wolbachia promote successful sex with siblings in the parasitoid Habrobracon hebetor.

Pest management science [Epub ahead of print].

BACKGROUND: Wolbachia are intracellular α-proteobacteria that have a wide distribution among various arthropods and nematodes. They affect the host reproduction favoring their maternal transmission, which sets up a potential conflict in inbreeding situations when the host avoids sexual reproduction preventing inbreeding depression, while Wolbachia pushes it. We used the wasp Habrobracon hebetor to test the hypothesis that Wolbachia modulate inbreeding avoidance behaviour and promote sib mating.

RESULTS: Our results showed no obvious pre-copulatory inbreeding avoidance in this wasp. However, H. hebetor showed a strong post-copulatory inbreeding avoidance behaviour that resulted in a low fertilization rate of uninfected siblings and therefore high rate of production of male progeny was obtained. We observed higher rates of fertilization success in the Wolbachia-infected lines that resulted in significantly higher female progeny production compared to the uninfected sib mates. Since diploid females are the result of successful fertilization due to haplodiploidy sex determination system in this insect, our results indicate that Wolbachia promoted fertile sib mating in H. hebetor. Interestingly, the rate of adult emergence in the progeny of Wolbachia-infected sib mates were almost similar to the non-sib mate crosses and significantly more than those observed in the uninfected sib mate crosses.

CONCLUSION: We support the idea that Wolbachia modulate inbreeding avoidance and promote sib mating and also mitigate inbreeding depression. By promoting successful sex with siblings and increasing the probability of female progeny, Wolbachia enhance their transmission to the next generation. This is an undescribed effect of Wolbachia on the host reproduction. This article is protected by copyright. All rights reserved.

RevDate: 2021-09-17

Altinli M, Schnettler E, M Sicard (2021)

Symbiotic Interactions Between Mosquitoes and Mosquito Viruses.

Frontiers in cellular and infection microbiology, 11:694020.

Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.

RevDate: 2021-09-17

McGillan P, Berry NG, Nixon GL, et al (2021)

Development of Pyrazolopyrimidine Anti-Wolbachia Agents for the Treatment of Filariasis.

ACS medicinal chemistry letters, 12(9):1421-1426.

Anti-Wolbachia therapy has been identified as a viable treatment for combating filarial diseases. Phenotypic screening revealed a series of pyrazolopyrimidine hits with potent anti-Wolbachia activity. This paper focuses on the exploration of the SAR for this chemotype, with improvement of metabolic stability and solubility profiles using medicinal chemistry approaches. Organic synthesis has enabled functionalization of the pyrazolopyrimidine core at multiple positions, generating a library of compounds of which many analogues possess nanomolar activity against Wolbachia in vitro with improved DMPK parameters. A lead compound, 15f, was selected for in vivo pharmacokinetics (PK) profiling in mice. The combination of potent anti-Wolbachia activity in two in vitro assessments plus the exceptional oral PK profiles in mice puts this lead compound in a strong position for in vivo proof-of-concept pharmacodynamics studies and demonstrates the strong potential for further optimization and development of this series for treatment of filariasis in the future.

RevDate: 2021-09-15

Chen F, Schenkel M, Geuverink E, et al (2021)

Absence of complementary sex determination in two Leptopilina species (Figitidae, Hymenoptera) and a reconsideration of its incompatibility with endosymbiont-induced thelytoky.

Insect science [Epub ahead of print].

Complementary sex determination (CSD) is a widespread sex determination mechanism in haplodiploid Hymenoptera. Under CSD, sex is determined by the allelic state of one or multiple complementary sex determination loci. Heterozygosity at one or more loci leads to female development, whereas hemizygosity of haploid eggs and homozygosity of diploid eggs results in male development. Sexual (arrhenotokous) reproduction normally yields haploid male and diploid female offspring. Under asexual reproduction (thelytoky), diploidized unfertilized eggs develop into females. Thelytoky is often induced by bacterial endosymbionts that achieve egg diploidization by gamete duplication. As gamete duplication leads to complete homozygosity, endosymbiont-induced thelytokous reproduction is presumed to be incompatible with CSD, which relies on heterozygosity for female development. Previously, we excluded CSD in four Asobara (Braconidae) species and proposed a two-step mechanism for Wolbachia-induced thelytoky in Asobara japonica. Here, we conclusively reject CSD in two cynipid wasp species, Leptopilina heterotoma and L. clavipes. We further show that thelytoky in L. clavipes depends on Wolbachia titer but that diploidization and feminization steps cannot be separated, unlike in A. japonica. We discuss what these results reveal about the sex determination mechanism of L. clavipes and the presumed incompatibility between CSD and endosymbiont-induced thelytoky in the Hymenoptera. arrhenotoky, haplodiploidy, inbreeding, sex determination, thelytoky, Wolbachia bacteria This article is protected by copyright. All rights reserved.

RevDate: 2021-09-10

Xu S, Chen J, Qin M, et al (2021)

Geography-dependent symbiont communities in two oligophagous aphid species.

FEMS microbiology ecology pii:6368335 [Epub ahead of print].

Aphids and their diverse symbionts have become a good model to study bacteria-arthropod symbiosis. The feeding habits of aphids are usually influenced by a variety of symbionts. Most studies on symbiont diversity have focused on polyphagous aphids, while symbiont community patterns for oligophagous aphids remain unclear. Here, we surveyed the bacterial communities in natural populations of two oligophagous aphids, Melanaphis sacchari and Neophyllaphis podocarpi, in natural populations. Seven common symbionts were detected, among which Buchnera aphidicola and Wolbachia were the most prevalent. In addition, an uncommon Sodalis-like symbiont was also detected in these two aphids, and Gilliamella was found in some samples of M. sacchari. We further assessed the significant variation in symbiont communities within the two aphid species, geographical regions and host specialization using statistical and ordination analyses. Geography was an important factor in shaping the symbiont community structure in these oligophagous aphids. Furthermore, the strong geographical influence may be related to specific environmental factors, especially temperature, among different regions. These findings extend our knowledge of the significance of geography and its associated environmental conditions in the symbiont community structure associated with oligophagous aphids.

RevDate: 2021-09-08

Li TP, Zha SS, Zhou CY, et al (2021)

Two newly introduced Wolbachia endosymbionts induce cell host differences in competitiveness and metabolic responses.

Applied and environmental microbiology [Epub ahead of print].

Wolbachia endosymbionts can induce multiple reproductive manipulations in their hosts, with cytoplasmic incompatibility (CI) being one of the most common manipulations. The important agricultural pests, white-backed planthopper (Sogatella furcifera) and brown planthopper (Nilaparvata lugens), are usually infected with CI-inducing Wolbachia wFur and non-CI-inducing Wolbachia wLug, respectively. The biological effects of these infections when present in a host cell are unknown. Here, we introduced the two Wolbachia strains into an Aedes albopictus cell line to stably establish a wFur-infected cell line (WFI) and a wLug-infected cell line (WLI). In a mixed culture, WFI cells were completely replaced by WLI cells, pointing to a stronger competitiveness of the WLI cell line. We found that infection by both Wolbachia strains reduced cell growth rates, but WLI had a faster cell growth rate than WFI, and this difference in cell growth rate combined with possible Wolbachia differences in diffusivity may have affected cell competitiveness. By examining gene expression and metabolites in the two lines, we found that some genes and key metabolites responded to differences in cell competitiveness. These results point to potential mechanisms that could contribute to the relative performance of hosts infected by these strains and also highlight the substantial impact of a non-CI Wolbachia on metabolism, which may in turn influence fitness of its native host. IMPORTANCE Wolbachia transinfection in insects can be used to suppress pests and block virus transmission. We stably introduced two Wolbachia strains from rice planthoppers into cell lines of an important arbovirus mosquito vector, Aedes albopictus. The competitiveness of host cells from the lines infected by the two Wolbachia strains was different, as were metabolic responses of the cell lines. These results suggest potential metabolic effects of Wolbachia on native hosts which could be exploited when they are transinfected into novel hosts for pest control.

RevDate: 2021-09-08

Jing YP, Wen X, Li L, et al (2021)

The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone.

Proceedings of the National Academy of Sciences of the United States of America, 118(37):.

Vitellogenin receptor (VgR) plays a pivotal role in ovarian vitellogenin (Vg) uptake and vertical transmission of pathogenic microbes and Wolbachia symbionts. However, the regulatory mechanisms of VgR action as an endocytic receptor and translocation from oocyte cytoplasm to the membrane remain poorly understood. Here, by using the migratory locust Locusta migratoria as a model system, we report that juvenile hormone (JH) promotes VgR phosphorylation at Ser1361 in the second EGF-precursor homology domain. A signaling cascade including GPCR, PLC, extracellular calcium, and PKC-ι is involved in JH-stimulated VgR phosphorylation. This posttranslational regulation is a prerequisite for VgR binding to Vg on the external surface of the oocyte membrane and subsequent VgR/Vg endocytosis. Acidification, a condition in endosomes, induces VgR dephosphorylation along with the dissociation of Vg from VgR. Phosphorylation modification is also required for VgR recycling from oocyte cytoplasm to the membrane. Additionally, VgR phosphorylation and its requirement for Vg uptake and VgR recycling are evolutionarily conserved in other representative insects including the cockroach Periplaneta americana and the cotton bollworm Helicoverpa armigera This study fills an important knowledge gap of low-density lipoprotein receptors in posttranslational regulation, endocytosis, and intracellular recycling.

RevDate: 2021-09-17

Parry R, de Malmanche H, S Asgari (2021)

Persistent Spodoptera frugiperda rhabdovirus infection in Sf9 cells is not restricted by Wolbachia wMelPop-CLA and wAlbB strains and is targeted by the RNAi machinery.

Virology, 563:82-87 pii:S0042-6822(21)00183-5 [Epub ahead of print].

The endosymbiotic bacterium Wolbachia pipientis confers RNA virus refractoriness in Drosophila and Aedes mosquitoes. Questions remain about the Wolbachia-virus restriction phenotype and how extensive this phenomenon may be within other arthropods. Here, we generated two Spodoptera frugiperda cell lines stably transinfected with two strains of Wolbachia, wAlbB and wMelPop-CLA. Despite the high density of Wolbachia in stably infected Sf9 cells, RT-PCR indicated the presence of the negative-sense RNA virus Spodoptera frugiperda rhabdovirus (SfRV) in Wolbachia-infected and uninfected cell lines. No differences in the replication of SfRV between Sf9 and Wolbachia-infected cells was found. RNA-Seq analysis of the parental Sf9 cells supported SfRV's presence in these cells with abundant 20 nt virus-derived small RNAs indicating active replication of SfRV in these cells. Overall, this study supports a growing body of evidence that Wolbachia does not restrict negative-sense RNA viruses and generates an in vitro model to examine Lepidoptera-Wolbachia virus interactions.

RevDate: 2021-09-21

Pocquet N, O'Connor O, Flores HA, et al (2021)

Assessment of fitness and vector competence of a New Caledonia wMel Aedes aegypti strain before field-release.

PLoS neglected tropical diseases, 15(9):e0009752.

BACKGROUND: Biological control programs involving Wolbachia-infected Aedes aegypti are currently deployed in different epidemiological settings. New Caledonia (NC) is an ideal location for the implementation and evaluation of such a strategy as the only proven vector for dengue virus (DENV) is Ae. aegypti and dengue outbreaks frequency and severity are increasing. We report the generation of a NC Wolbachia-infected Ae. aegypti strain and the results of experiments to assess the vector competence and fitness of this strain for future implementation as a disease control strategy in Noumea, NC.

METHODS/PRINCIPAL FINDINGS: The NC Wolbachia strain (NC-wMel) was obtained by backcrossing Australian AUS-wMel females with New Caledonian Wild-Type (NC-WT) males. Blocking of DENV, chikungunya (CHIKV), and Zika (ZIKV) viruses were evaluated via mosquito oral feeding experiments and intrathoracic DENV challenge. Significant reduction in infection rates were observed for NC-wMel Ae. aegypti compared to WT Ae. aegypti. No transmission was observed for NC-wMel Ae. aegypti. Maternal transmission, cytoplasmic incompatibility, fertility, fecundity, wing length, and insecticide resistance were also assessed in laboratory experiments. Ae. aegypti NC-wMel showed complete cytoplasmic incompatibility and a strong maternal transmission. Ae. aegypti NC-wMel fitness seemed to be reduced compared to NC-WT Ae. aegypti and AUS-wMel Ae. aegypti regarding fertility and fecundity. However further experiments are required to assess it accurately.

CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that the NC-wMel Ae. aegypti strain is a strong inhibitor of DENV, CHIKV, and ZIKV infection and prevents transmission of infectious viral particles in mosquito saliva. Furthermore, our NC-wMel Ae. aegypti strain induces reproductive cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, supporting field-releases in Noumea, NC.

RevDate: 2021-09-07

Chrostek E, Martins N, Marialva MS, et al (2021)

Wolbachia-Conferred Antiviral Protection Is Determined by Developmental Temperature.

mBio [Epub ahead of print].

Wolbachia is a maternally transmitted bacterium that is widespread in arthropods and filarial nematodes and confers strong antiviral protection in Drosophila melanogaster and other arthropods. Wolbachia-transinfected Aedes aegypti mosquitoes are currently being deployed to fight transmission of dengue and Zika viruses. However, the mechanism of antiviral protection and the factors influencing are still not fully understood. Here, we show that temperature modulates Wolbachia-conferred protection in Drosophila melanogaster. Temperature after infection directly impacts Drosophila C virus (DCV) replication and modulates Wolbachia protection. At higher temperatures, viruses proliferate more and are more lethal, while Wolbachia confers lower protection. Strikingly, host developmental temperature is a determinant of Wolbachia-conferred antiviral protection. While there is strong protection when flies develop from egg to adult at 25°C, the protection is highly reduced or abolished when flies develop at 18°C. However, Wolbachia-induced changes during development are not sufficient to limit virus-induced mortality, as Wolbachia is still required to be present in adults at the time of infection. This developmental effect is general, since it was present in different host genotypes, Wolbachia variants, and upon infection with different viruses. Overall, we show that Wolbachia-conferred antiviral protection is temperature dependent, being present or absent depending on the environmental conditions. This interaction likely impacts Wolbachia-host interactions in nature and, as a result, frequencies of host and symbionts in different climates. Dependence of Wolbachia-mediated pathogen blocking on developmental temperature could be used to dissect the mechanistic bases of protection and influence the deployment of Wolbachia to prevent transmission of arboviruses. IMPORTANCE Insects are often infected with beneficial intracellular bacteria. The bacterium Wolbachia is extremely common in insects and can protect them from pathogenic viruses. This effect is being used to prevent transmission of dengue and Zika viruses by Wolbachia-infected mosquitoes. To understand the biology of insects in the wild, we need to discover which factors affect Wolbachia-conferred antiviral protection. Here, we show that the temperature at which insects develop from eggs to adults can determine the presence or absence of antiviral protection. The environment, therefore, strongly influences this insect-bacterium interaction. Our work may help to provide insights into the mechanism of viral blocking by Wolbachia, deepen our understanding of the geographical distribution of host and symbiont, and incentivize further research on the temperature dependence of Wolbachia-conferred protection for control of mosquito-borne disease.

RevDate: 2021-09-04

Alipour H, Izadpanah L, Azizi K, et al (2021)

Potential co-infection of Wolbachia with Leishmania among sand fly vectors caught from endemic leishmaniasis foci in Fars province, southern Iran.

Journal of parasitic diseases : official organ of the Indian Society for Parasitology, 45(3):817-822.

Leishmaniasis is one of the Neglected Tropical Diseases in the tropical region of many countries in the world. The etiological agents (Leishmania parasites) of the disease are transmitted to human and other vertebrate hosts by infectious bites of female phlebotomine sand flies. On the other hand, some symbiotic microorganisms such as Wolbachia (Rickettsiales: Anaplasmataceae) may be transmitted vertically in many arthropods and may cause synergistic or antagonistic effects on epidemiology of the vector-borne diseases. Hence, in the present study, potential coinfection of Wolbachia with Leishmania in the sand fly vectors will be examined by PCR technique in the important leishmaniasis foci of Fars province in southern Iran, as a new feature for the disease long-term control. Sand flies were collected by sticky traps from indoor and outdoor locations of 5 different areas of Fars province during 2018 and 2019. DNAs of sand flies were extracted and PCR method was performed based on primers which were designed from surface proteins (WSP) genome region for Wolbachia and minicircle kDNA gene for Leishmania detections. At last, PCR products were sequenced and recorded in the GenBank. Out of 1002 sand flies caught from 5 different foci of Fars province, 909 male and female and 386 female sand flies' DNAs were extracted for detection of Wolbachia and Leishmania by PCR, respectively. Accordingly, out of the total 44 pools prepared from sand flies, 6 out of 28 pools form P. papatasi female were positive for Wolbachia in Shiraz, Marvdasht and Kharameh. However, none of female sand flies were positive for Leishmania. The study also focused on monitoring of sand flies co-infection of Wolbachia with Leishmania, which was not found in any of the studied samples. The negative results may be due to control strategies implemented which were done against Leishmaniasis in the studied areas during last years.

RevDate: 2021-09-02

Sasaki T, Moi ML, Saito K, et al (2021)

Aedes albopictus Strain and Dengue Virus Serotype in the Dengue Fever Outbreaks in Japan: Implications of Wolbachia Infection.

Japanese journal of infectious diseases [Epub ahead of print].

From August 27 to October 15, 2014, a dengue fever outbreak with 158 autochthonous cases occurred after nearly 70 years of no reports of autochthonous cases in Japan. The most competent mosquito vector for dengue virus (DENV) transmission in Japan is Aedes albopictus. Since A. albopictus is widely distributed throughout Japan, we examined the susceptibility of this species to infection by DENV and the relationship of the endosymbiont Wolbachia (wAlbA and wAlbB) with susceptibility to DENV. The A. albopictus YYG strain, collected from Yoyogi Park in 2014, the epicenter of the dengue fever outbreak, was found to have lower susceptibility to DENV 1 and 3 than that of indigenous Japanese strains A. albopictus EBN 201808 (F1 from the field) and A. albopictus ISG 201603. Further, the A. albopictus EBN 201808 strain showed a same susceptibility to DENV3 as A. albopictus ISG 201603tet strain (Wolbachia-free). Susceptibility to DENV3 was not related to Wolbachia strains wAlbA or wAlbB in the A. albopictus ISG 201603 strain.

RevDate: 2021-09-02

Dainty KR, Hawkey J, Judd LM, et al (2021)

wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations.

Microbial genomics, 7(9):.

Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1-7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.

RevDate: 2021-09-03

Pupić-Bakrač A, Pupić-Bakrač J, Beck A, et al (2021)

Dirofilaria repens microfilaremia in humans: Case description and literature review.

One health (Amsterdam, Netherlands), 13:100306.

Introduction: Dirofilaria repens is a vector-borne filaroid helminth of carnivorous animals, primarily domesticated dogs. Humans are considered to be accidental hosts in which D. repens rarely reach sexual maturity but induce local inflammation, mainly in subcutaneous and ocular tissues.

Methods: In the current study, we present the detection of multiple adults of D. repens, endosymbiont Wolbachia sp. and microfilariae by molecular analysis in peripheral tissues and bloodstream of a human host. A subsequent meta-analysis of published literature identified 21 cases of human infection with adult D. repens producing microfilariae.

Results: Within the study population, there were 13 (59.09%) males, eight (36.36%) females and, in one (4.55%) case, sex was not reported. A total of 11 (50.00%) cases had subcutaneous dirofilariasis, six (27.27%) had ocular dirofiliariasis, with single cases (4.55% each) of genital, mammary, lymphatic and a combination of subcutaneous and pulmonary dirofilariasis described. In one (4.55%) case, the primary anatomical site of adult D. repens could not be found. D. repens microfilariae were detected in the local tissue (local microfilariasis) in 11 (50.00%) cases and the peripheral blood (microfilaremia) in 11 (50.50%) cases. Final identification of D. repens microfilariae was based on morphological detection in 14 (63.64%) cases, and molecular detection in eight (36.36%) cases.

Conclusion: The results of this study suggest that humans may act as a final host for D. repens, however its role as a source of D. repens infection is less clear.

RevDate: 2021-09-16

Bruzzese DJ, Schuler H, Wolfe TM, et al (2021)

Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host-related reproductive isolation.

Molecular ecology [Epub ahead of print].

Endosymbiont-induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host-related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre- and postmating RI exist among allopatric populations of two interbreeding cherry-infesting tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, wCin3, only co-infects flies from the southwest USA and Mexico. Strain wCin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated with wCin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic-nuclear coupling may impede the transfer of wCin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stable Wolbachia hybrid zones and whether the spread of Wolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.

RevDate: 2021-08-31

Bhattacharya T, Rice DW, Crawford JM, et al (2021)

Evidence of Adaptive Evolution in Wolbachia-Regulated Gene DNMT2 and Its Role in the Dipteran Immune Response and Pathogen Blocking.

Viruses, 13(8):.

Eukaryotic nucleic acid methyltransferase (MTase) proteins are essential mediators of epigenetic and epitranscriptomic regulation. DNMT2 belongs to a large, conserved family of DNA MTases found in many organisms, including holometabolous insects such as fruit flies and mosquitoes, where it is the lone MTase. Interestingly, despite its nomenclature, DNMT2 is not a DNA MTase, but instead targets and methylates RNA species. A growing body of literature suggests that DNMT2 mediates the host immune response against a wide range of pathogens, including RNA viruses. Curiously, although DNMT2 is antiviral in Drosophila, its expression promotes virus replication in mosquito species. We, therefore, sought to understand the divergent regulation, function, and evolution of these orthologs. We describe the role of the Drosophila-specific host protein IPOD in regulating the expression and function of fruit fly DNMT2. Heterologous expression of these orthologs suggests that DNMT2's role as an antiviral is host-dependent, indicating a requirement for additional host-specific factors. Finally, we identify and describe potential evidence of positive selection at different times throughout DNMT2 evolution within dipteran insects. We identify specific codons within each ortholog that are under positive selection and find that they are restricted to four distinct protein domains, which likely influence substrate binding, target recognition, and adaptation of unique intermolecular interactions. Collectively, our findings highlight the evolution of DNMT2 in Dipteran insects and point to structural, regulatory, and functional differences between mosquito and fruit fly homologs.

RevDate: 2021-09-17

Hubert J, Nesvorna M, Pekar S, et al (2021)

Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness.

FEMS microbiology ecology, 97(10):.

Interactions among endosymbiotic bacteria inside their eukaryotic hosts are poorly understood, particularly in mites. The mite Tyrophagus putrescentiae is a common, medically important generalist species that has many intracellular and gut bacterial symbionts. In the experiments, we examined bacterial abundances and composition in mite populations obtained by controlled mixing of stock mite populations that differed in the presence/absence of the major intracellular bacteria Wolbachia and Cardinium. Changes in microbial communities were characterized using 16S ribosomal RNA high-throughput sequencing (pooled mite individuals) and quantitative PCR for key microbial taxa (individual mites). Mite fitness was estimated as a parameter of population growth. We detected that in mixed mite populations, Cardinium and Wolbachia can co-occur in the same mite individual. The presence of Cardinium was negatively correlated with the presence of Wolbachia and Bartonella, while the Bartonella and Wolbachia were positively correlated in individual level samples. Since mixed populations had lower abundances of Wolbachia, while the abundance of Cardinium did not change, we suggest that the presence of Cardinium inhibits the growth of Wolbachia. The mixed mite populations had lower population growth than parental populations. The possible effect of symbionts on the fitness of mixed population is discussed.

RevDate: 2021-08-27

Cruz LNPD, Carvalho-Costa LF, JMM Rebêlo (2021)

Molecular Evidence Suggests That Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is Widely Associated With South American Sand Flies (Diptera: Psychodidae).

Journal of medical entomology pii:6358339 [Epub ahead of print].

Wolbachia pipientis (Hertig) is an endosymbiotic microorganism widespread among arthropods and other invertebrate hosts, and employed in strategies to reduce the incidence of arthropod-borne diseases. Here, we used a PCR-based approach for 16S RNA and wsp genes to investigate the prevalence, geographical distribution, and strains of Wolbachia in sand flies (Diptera: Psychodidae: Phlebotominae), the main vectors of the causative agents of leishmaniasis, from three biomes in Brazil: Amazon, Cerrado, and Caatinga. We found that: 1) Wolbachia DNA is present in most (66.7%) of the sampled sand fly species, including vectors of Leishmania spp. (Ross, Trypanosomatida: Trypanosomatidae), 2) the prevalence of Wolbachia DNA varies among species and populations, 3) some strains of Wolbachia may have wider geographical and host range in South America, and 4) two phylogenetic distinct wsp sequences might represent two novel strains for Wolbachia in South America sand flies. Those findings increase the basic knowledge about Wolbachia in South American sand flies and might foster further researches on its use to reduce the transmission of sand fly-borne parasites.

RevDate: 2021-08-30

Bergman A, JC Hesson (2021)

Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden.

Parasites & vectors, 14(1):428.

BACKGROUND: Wolbachia pipientis are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species Culex pipiens and Culex torrentium, with the latter established as the main vector. In this study we investigated the Wolbachia prevalence in these two vector species in a region highly endemic for SINV.

METHODS: Culex mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologically, while a molecular method was used for reliable species determination. The presence of Wolbachia was determined through PCR using general primers targeting the wsp gene and sequencing of selected samples.

RESULTS: In total, 676 Cx. pipiens and 293 Cx. torrentium were tested for Wolbachia. The prevalence of Wolbachia in Cx. pipiens was 97% (95% CI 94.8-97.6%), while only 0.7% (95% CI 0.19-2.45%) in Cx. torrentium. The two Cx. torrentium mosquitoes that were infected with Wolbachia carried different types of the bacteria.

CONCLUSIONS: The main vector of SINV in the investigated endemic region, Cx. torrentium, was seldom infected with Wolbachia, while it was highly prevalent in the secondary vector, Cx. pipiens. The presence of Wolbachia could potentially have an impact on the vector competence of these two species. Furthermore, the detection of Wolbachia in Cx. torrentium could indicate horizontal transmission of the endosymbiont between arthropods of different species.

RevDate: 2021-08-31

Parry R, James ME, S Asgari (2021)

Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus.

Microorganisms, 9(8):.

Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes' susceptibility to arbovirus infection in both in vivo and in vitro co-infection models. While research is ongoing to implicate individual ISVs as proviral or antiviral factors, we have a limited understanding of the composition and diversity of the Aedes virome. To address this gap, we used a meta-analysis approach to uncover virome diversity by analysing ~3000 available RNA sequencing libraries representing a worldwide geographic range for both mosquitoes. We identified ten novel viruses and previously characterised viruses, including mononegaviruses, orthomyxoviruses, negeviruses, and a novel bi-segmented negev-like group. Phylogenetic analysis suggests close relatedness to mosquito viruses implying likely insect host range except for one arbovirus, the multi-segmented Jingmen tick virus (Flaviviridae) in an Italian colony of Ae. albopictus. Individual mosquito transcriptomes revealed remarkable inter-host variation of ISVs within individuals from the same colony and heterogeneity between different laboratory strains. Additionally, we identified striking virus diversity in Wolbachia infected Aedes cell lines. This study expands our understanding of the virome of these important vectors. It provides a resource for further assessing the ecology, evolution, and interaction of ISVs with their mosquito hosts and the arboviruses they transmit.

RevDate: 2021-08-31

Su CY, Zhu DH, XH Yang (2021)

Design and Testing of Effective Primers for Amplification of the orf7 Gene of Phage WO Associated with Andricus hakonensis.

Insects, 12(8):.

Phage WO was first characterized in Wolbachia, an obligate intracellular Rickettsiales known for its ability to regulate the reproduction of arthropod hosts. In this paper, we focus on the study of virus diversity in Andricus hakonensis and the development of highly effective primers. Based on the existing Wolbachia genome sequence, we designed primers (WO-TF and WO-TR) to amplify the full-length orf7 gene of phage WO. Surprisingly, sequencing results showed a high abundance of other phage WO groups in A. hakonensis, in addition to the four groups previously identified. The results also showed that A. hakonensis contained most of the known types of orf7 genes (I, III, IV, V and VI) and the level of diversity of harbored phage WO was very high. Therefore, we speculated that existing primers were not specific enough and that new primers for the detection of phage WO were needed. Based on the existing orf7 gene sequence, we designed specific detection primers (WO-SUF and WO-SUR). Sequencing results showed that the primers effectively amplified all known types of phage WO. In addition to amplifying most of the known sequences, we also detected some new genotypes in A. hakonensis using the new primers. Importantly, all phage WO groups could be efficiently detected. Combined with the results of previous studies, our results suggest that A. hakonensis contains the largest number of phage types (up to 36 types). This study is novel in that it provides practical molecular evidence supporting base deletions, in addition to gene mutations and genetic recombination, as an important cause of phage WO diversity.

RevDate: 2021-08-31

Fallon AM (2021)

Growth and Maintenance of Wolbachia in Insect Cell Lines.

Insects, 12(8):.

The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent.

RevDate: 2021-09-24

Erban T, Klimov PB, Harant K, et al (2021)

Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: Mite allergens and markers reflecting population-related proteome differences.

Journal of proteomics, 249:104356 pii:S1874-3919(21)00255-4 [Epub ahead of print].

Tyrophagus putrescentiae is an astigmatid mite of great economic, medical and veterinary importance. The microbiome, especially intracellular bacteria, may affect allergy/allergen expression. We targeted Wolbachia proteins, allergen comparisons and markers in Wolbachia-mite interactions in three mite populations. A decoy database was constructed by proteogenomics using the T. putrescentiae draft genome, Wolbachia transcriptome assembly and current T. putrescentiae-related sequences in GenBank. Among thousands of mite-derived proteins, 18 Wolbachia proteins were reliably identified. We suggest that peroxiredoxin, bacterioferritin, ankyrin repeat domain-containing protein and DegQ family serine endoprotease indicate a higher-level bacterium-bacterium-host interaction. We produced evidence that the host-Wolbachia interaction is modulated through pattern recognition receptors (PRRs), mannose-binding lectins/mannose receptors, the cholinergic anti-inflammatory pathway with TNF-α, and others. We observed Tyr p 3 suppression in mites with Wolbachia, linking trypsin to PRR modulation. Nine out of the 12 current WHO/IUIS official allergens were reliably identified, but the remaining three allergens, Tyr p 1, 8 and 35, were detected as only trace hits. This study provides numerous markers for further Wolbachia-host interaction research. For accuracy, mite allergens should be considered according to abundance in species, but mite populations/strains, as well as their microbiome structure, may be key factors. SIGNIFICANCE: The astigmatid mites occurring in homes are significant producers of allergens that are highly dangerous to humans and domesticated animals. Mites are tightly associated with microorganisms that affect their biology and consequently allergy signatures. Mite populations were found to be infected with certain intracellular bacteria, but some populations lacked an intracellular bacterium. Our previous research showed that some populations of Tyrophagus putrescentiae are infected with Wolbachia, but some populations host additional bacteria of interest. Thus, there are not only interactions between the mites and Wolbachia but also likely an additional level of interaction that can be found in the interaction between different bacteria in the mites. These "higher-level" signatures and consequences that bacteria affect, including allergen production, are not understood in mites. In this study, we identified Wolbachia-specific proteins in mites for the first time. This study provides Wolbachia- and mite-derived markers that can be clues for describing "higher-level" mite-bacterium-bacterium interactions. Indeed, the microbiome contribution to allergies can potentially be derived directly from bacterial proteins, especially if they are abundant.

RevDate: 2021-08-26

Möhlmann TWR, Ter Braak CJF, Te Beest DE, et al (2021)

Species Identity, Life History, and Geographic Distance Influence Gut Bacterial Communities in Lab-Reared and European Field-Collected Culicoides Biting midges.

Microbial ecology [Epub ahead of print].

Bacteria are part of the insect gut system and influence many physiological traits of their host. Gut bacteria may even reduce or block the transmission of arboviruses in several species of arthropod vectors. Culicoides biting midges are important arboviral vectors of several livestock and wildlife diseases, yet limited information is available on their gut bacterial communities. Addressing this gap will help inform how these communities can be manipulated and ultimately used as novel tools to control pathogens. To assess how bacterial communities change during the life stages of lab-reared C. nubeculosus and C. sonorensis, endosymbiotic bacteria were identified using Illumina sequencing of 16S rRNA and taxonomically characterised. Analyses were conducted to determine how gut bacterial communities in adults are influenced by species identity and geographic distance among biting midge populations. Communities of the two lab-reared Culicoides species significantly changed after pupation and with maturation into 6-day-old adults. Pseudomonas, Burkholderiaceae and Leucobacter bacteria were part of a core community that was trans-stadially transmitted and found throughout their life cycle. Among field-collected biting midges, the bacterial communities were unique for almost each species. Cardinium, Rickettsia and Wolbachia were some of the most abundant bacteria in midges collected from wetlands. Only Pseudomonas was present in high relative abundance in all field-collected species. In this study, species identity, as well as geographic distance, influenced the gut bacterial communities and may partly explain known inter- and intra-species variability in vector competence. Additionally, stably associated bacterial species could be candidates for paratransgenic strategies to control vector-borne pathogens.

RevDate: 2021-09-10

Edenborough KM, Flores HA, Simmons CP, et al (2021)

Correction for Edenborough et al., "Using Wolbachia to Eliminate Dengue: Will the Virus Fight Back?".

Journal of virology, 95(18):e0095321.

RevDate: 2021-09-04

Arif S, Gerth M, Hone-Millard WG, et al (2021)

Evidence for multiple colonisations and Wolbachia infections shaping the genetic structure of the widespread butterfly Polyommatus icarus in the British Isles.

Molecular ecology [Epub ahead of print].

The paradigm of isolation in southern refugia during glacial periods followed by expansions during interglacials, producing limited genetic differentiation in northern areas, dominates European phylogeography. However, the existence of complex structured populations in formerly glaciated areas, and islands connected to mainland areas during glacial maxima, call for alternative explanations. We reconstructed the mtDNA phylogeography of the widespread Polyommatus Icarus butterfly with an emphasis on the formerly glaciated and connected British Isles. We found distinct geographical structuring of CO1 haplogroups, with an ancient lineage restricted to the marginal European areas, including Northern Scotland and Outer Hebrides. Population genomic analyses, using ddRADSeq genomic markers, also reveal substantial genetic structuring within Britain. However, there is negligble mito-nuclear concordance consistent with independent demographic histories of mitochondrial versus nuclear DNA. While mtDNA-Wolbachia associations in northern Britain could account for the geographic structuring of mtDNA across most of the British Isles, for nuclear DNA markers (derived from ddRADseq data) butterflies from France cluster between northern and southern British populations - an observation consistent with a scenario of multiple recolonisation. Taken together our results suggest that contemporary mtDNA structuring in the British Isles (and potentially elsewhere in Europe) largely results from Wolbachia infections, however, nuclear genomic structuring suggests a history of at least two distinct colonisations. This two-stage colonisation scenario has previously been put forth to explain genetic diversity and structuring in other British flora and fauna. Additionally, we also present preliminary evidence for potential Wolbachia-induced feminization in the Outer Hebrides.

RevDate: 2021-08-17

Gesto JSM, Pinto SB, Dias FBS, et al (2021)

Large-Scale Deployment and Establishment of Wolbachia Into the Aedes aegypti Population in Rio de Janeiro, Brazil.

Frontiers in microbiology, 12:711107.

Traditional methods of vector control have proven insufficient to reduce the alarming incidence of dengue, Zika, and chikungunya in endemic countries. The bacterium symbiont Wolbachia has emerged as an efficient pathogen-blocking and self-dispersing agent that reduces the vectorial potential of Aedes aegypti populations and potentially impairs arboviral disease transmission. In this work, we report the results of a large-scale Wolbachia intervention in Ilha do Governador, Rio de Janeiro, Brazil. wMel-infected adults were released across residential areas between August 2017 and March 2020. Over 131 weeks, including release and post-release phases, we monitored the wMel prevalence in field specimens and analyzed introgression profiles of two assigned intervention areas, RJ1 and RJ2. Our results revealed that wMel successfully invaded both areas, reaching overall infection rates of 50-70% in RJ1 and 30-60% in RJ2 by the end of the monitoring period. At the neighborhood-level, wMel introgression was heterogeneous in both RJ1 and RJ2, with some profiles sustaining a consistent increase in infection rates and others failing to elicit the same. Correlation analysis revealed a weak overall association between RJ1 and RJ2 (r = 0.2849, p = 0.0236), and an association at a higher degree when comparing different deployment strategies, vehicle or backpack-assisted, within RJ1 (r = 0.4676, p < 0.0001) or RJ2 (r = 0.6263, p < 0.0001). The frequency knockdown resistance (kdr) alleles in wMel-infected specimens from both areas were consistently high over this study. Altogether, these findings corroborate that wMel can be successfully deployed at large-scale as part of vector control intervention strategies and provide the basis for imminent disease impact studies in Southeastern Brazil.

RevDate: 2021-09-22

Towett-Kirui S, Morrow JL, Close S, et al (2021)

Host-endoparasitoid-endosymbiont relationships: concealed Strepsiptera provide new twist to Wolbachia in Australian tephritid fruit flies.

Environmental microbiology, 23(9):5587-5604.

Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer. Here, we performed whole-genome sequencing of field-caught Wolbachia-positive flies. Unexpectedly, we found complete mitogenomes of an endoparasitic strepsipteran, Dipterophagus daci, suggesting that Wolbachia in the flies are linked to concealed parasitization. We performed the first genetic characterization of D. daci and detected D. daci in Wolbachia-positive flies not visibly parasitized, and most but not all Wolbachia-negative flies were D. daci-negative, presumably reflecting polymorphism for the Wolbachia infections in D. daci. We dissected D. daci from stylopized flies and confirmed that Wolbachia infects D. daci, but also found Wolbachia in stylopized fly tissues, likely somatic, horizontally transferred, non-heritable infections. Furthermore, no Wolbachia cif and wmk genes were detected and very low mitogenomic variation in D. daci across its distribution. Therefore, Wolbachia may influence host fitness without reproductive manipulation. Our study of 13 tephritid species highlights that concealed early stages of strepsipteran parasitization led to the previous incorrect assignment of Wolbachia co-infections to tephritid species, obscuring ecological studies of this common endosymbiont and its horizontal transmission by parasitoids.

RevDate: 2021-08-18
CmpDate: 2021-08-17

Morrow JL, M Riegler (2021)

Genome analyses of four Wolbachia strains and associated mitochondria of Rhagoletis cerasi expose cumulative modularity of cytoplasmic incompatibility factors and cytoplasmic hitchhiking across host populations.

BMC genomics, 22(1):616.

BACKGROUND: The endosymbiont Wolbachia can manipulate arthropod reproduction and invade host populations by inducing cytoplasmic incompatibility (CI). Some host species are coinfected with multiple Wolbachia strains which may have sequentially invaded host populations by expressing different types of modular CI factor (cif) genes. The tephritid fruit fly Rhagoletis cerasi is a model for CI and Wolbachia population dynamics. It is associated with at least four Wolbachia strains in various combinations, with demonstrated (wCer2, wCer4), predicted (wCer1) or unknown (wCer5) CI phenotypes.

RESULTS: We sequenced and assembled the draft genomes of the Wolbachia strains wCer1, wCer4 and wCer5, and compared these with the previously sequenced genome of wCer2 which currently invades R. cerasi populations. We found complete cif gene pairs in all strains: four pairs in wCer2 (three Type I; one Type V), two pairs in wCer1 (both Type I) and wCer4 (one Type I; one Type V), and one pair in wCer5 (Type IV). Wolbachia genome variant analyses across geographically and genetically distant host populations revealed the largest diversity of single nucleotide polymorphisms (SNPs) in wCer5, followed by wCer1 and then wCer2, indicative of their different lengths of host associations. Furthermore, mitogenome analyses of the Wolbachia genome-sequenced individuals in combination with SNP data from six European countries revealed polymorphic mitogenome sites that displayed reduced diversity in individuals infected with wCer2 compared to those without.

CONCLUSIONS: Coinfections with Wolbachia are common in arthropods and affect options for Wolbachia-based management strategies of pest and vector species already infected by Wolbachia. Our analyses of Wolbachia genomes of a host naturally coinfected by several strains unravelled signatures of the evolutionary dynamics in both Wolbachia and host mitochondrial genomes as a consequence of repeated invasions. Invasion of already infected populations by new Wolbachia strains requires new sets of functionally different cif genes and thereby may select for a cumulative modularity of cif gene diversity in invading strains. Furthermore, we demonstrated at the mitogenomic scale that repeated CI-driven Wolbachia invasions of hosts result in reduced mitochondrial diversity and hitchhiking effects. Already resident Wolbachia strains may experience similar cytoplasmic hitchhiking effects caused by the invading Wolbachia strain.

RevDate: 2021-08-26

Zhang HB, Cao Z, Qiao JX, et al (2021)

Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster.

PLoS pathogens, 17(8):e1009859.

Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.

RevDate: 2021-08-14

Fakhour S, Renoz F, Ambroise J, et al (2021)

Insight into the bacterial communities of the subterranean aphid Anoecia corni.

PloS one, 16(8):e0256019.

Many insect species are associated with bacterial partners that can significantly influence their evolutionary ecology. Compared to other insect groups, aphids harbor a bacterial microbiota that has the reputation of being poorly diversified, generally limited to the presence of the obligate nutritional symbiont Buchnera aphidicola and some facultative symbionts. In this study, we analyzed the bacterial diversity associated with the dogwood-grass aphid Anoecia corni, an aphid species that spends much of its life cycle in a subterranean environment. Little is known about the bacterial diversity associated with aphids displaying such a lifestyle, and one hypothesis is that close contact with the vast microbial community of the rhizosphere could promote the acquisition of a richer bacterial diversity compared to other aphid species. Using 16S rRNA amplicon Illumina sequencing on specimens collected on wheat roots in Morocco, we identified 10 bacterial operational taxonomic units (OTUs) corresponding to five bacterial genera. In addition to the obligate symbiont Buchnera, we identified the facultative symbionts Serratia symbiotica and Wolbachia in certain aphid colonies. The detection of Wolbachia is unexpected as it is considered rare in aphids. Moreover, its biological significance remains unknown in these insects. Besides, we also detected Arsenophonus and Dactylopiibacterium carminicum. These results suggest that, despite its subterranean lifestyle, A. corni shelter a bacterial diversity mainly limited to bacterial endosymbionts.

RevDate: 2021-08-11

Ross PA, Gu X, Robinson KL, et al (2021)

A wAlbB Wolbachia transinfection displays stable phenotypic effects across divergent Aedes aegypti mosquito backgrounds.

Applied and environmental microbiology [Epub ahead of print].

Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection (wAlbBQ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the wAlbBQ transinfection is near-identical to the reference wAlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available wAlbB genome sequences, highlighting the potential diversity of wAlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of wAlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between wAlbB infection and nuclear background for any trait. The wAlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of wAlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations. Importance Wolbachia bacteria are being used to control the transmission of dengue and other arboviruses by mosquitoes. For Wolbachia release programs to be effective globally, Wolbachia infections must be stable across mosquito populations from different locations. In this study, we transferred Wolbachia (strain wAlbB) to Aedes aegypti mosquitoes with an Australian genotype and introduced the infection to Malaysian mosquitoes through backcrossing. We found that the phenotypic effects of Wolbachia are stable across both mosquito backgrounds. We sequenced the genome of wAlbB and found very few genetic changes despite spending over 15 years in a novel mosquito host. Our results suggest that the effects of Wolbachia infections are likely to remain stable across time and host genotype.

RevDate: 2021-08-10

Wheeler TB, Thompson V, Conner WR, et al (2021)

Wolbachia in the spittlebug Prosapia ignipectus: Variable infection frequencies, but no apparent effect on host reproductive isolation.

Ecology and evolution, 11(15):10054-10065.

Animals serve as hosts for complex communities of microorganisms, including endosymbionts that live inside their cells. Wolbachia bacteria are perhaps the most common endosymbionts, manipulating host reproduction to propagate. Many Wolbachia cause cytoplasmic incompatibility (CI), which results in reduced egg hatch when uninfected females mate with infected males. Wolbachia that cause intense CI spread to high and relatively stable frequencies, while strains that cause weak or no CI tend to persist at intermediate, often variable, frequencies. Wolbachia could also contribute to host reproductive isolation (RI), although current support for such contributions is limited to a few systems. To test for Wolbachia frequency variation and effects on host RI, we sampled several local Prosapia ignipectus (Fitch) (Hemiptera: Cercopidae) spittlebug populations in the northeastern United States over two years, including closely juxtaposed Maine populations with different monomorphic color forms, "black" and "lined." We discovered a group-B Wolbachia (wPig) infecting P. ignipectus that diverged from group-A Wolbachia-like model wMel and wRi strains in Drosophila-6 to 46 MYA. Populations of the sister species Prosapia bicincta (Say) from Hawaii and Florida are uninfected, suggesting that P. ignipectus acquired wPig after their initial divergence. wPig frequencies were generally high and variable among sites and between years. While phenotyping wPig effects on host reproduction is not currently feasible, the wPig genome contains three divergent sets of CI loci, consistent with high wPig frequencies. Finally, Maine monomorphic black and monomorphic lined populations of P. ignipectus share both wPig and mtDNA haplotypes, implying no apparent effect of wPig on the maintenance of this morphological contact zone. We hypothesize P. ignipectus acquired wPig horizontally as observed for many Drosophila species, and that significant CI and variable transmission produce high but variable wPig frequencies.

RevDate: 2021-08-23
CmpDate: 2021-08-23

Li XD, Xin L, Rong WT, et al (2021)

Effect of heavy metals pollution on the composition and diversity of the intestinal microbial community of a pygmy grasshopper (Eucriotettix oculatus).

Ecotoxicology and environmental safety, 223:112582.

Heavy metal pollution in the environment is mostly manifested as a multi-elemental compound pollution. The effect of the long-term exposure to heavy metal pollution on the gut microbes of insects has remained unknown. For the current work, the population of Eucriotettix oculatus living in mining areas around the Diaojiang River with a history of hundreds of years of pollution, was selected along with the similar species living in non-mining areas to conduct a comparative study of their gut microbes. The microbial communities were analyzed using 16S rRNA amplicon sequencing. The results showed Proteobacteria to be dominant among gut microbes of E. oculatus, but the abundance of Proteobacteria was significantly increased when the insects were exposed to the environment with heavy metal pollution. The symbiotic bacteria belonging to genus Wolbachia were found to be dominant among the insect population from the non-mining area group, while the pathogenic bacteria belonging to Aeromonas were dominant among the insect population of the mining area group. The diversity analysis showed that the gut microbial community diversity of E. oculatus was reduced in the heavy metal pollution habitat. The analysis of the differences in the gut microbial population and metabolic pathways of the two groups showed that the heavy metal pollution caused the increase in pathogenic bacteria among the gut microbes of E. oculatus, which might have a negative impact on the health of the host. At the same time, probiotics and the beneficial metabolism pathways were also found to increase and enhance, helping the host to resist the damage caused by heavy metal stress. This might be one of the strategies used by E. oculatus to adapt to heavy metal pollution.

RevDate: 2021-09-03

Mendoza-Roldan JA, Gabrielli S, Cascio A, et al (2021)

Zoonotic Dirofilaria immitis and Dirofilaria repens infection in humans and an integrative approach to the diagnosis.

Acta tropica, 223:106083 pii:S0001-706X(21)00262-X [Epub ahead of print].

Dirofilariosis by Dirofilaria immitis and Dirofilaria repens is endemic in dogs from countries of the Mediterranean basin. Both species may infect humans, with most of the infected patients remaining asymptomatic. Based on the recent description of the southernmost hyperendemic European focus of heartworm disease in dogs from the Pelagie archipelagos, we performed a serological and molecular survey in human population of that area. Human blood samples were collected in the islands of Linosa (n=101) and Lampedusa (n=296) and tested by ELISA and molecular test for the detection of D. immitis and D. repens. Samples were also screened for filarioid-associated endosymbionts, Wolbachia sp. The seroprevalence of D. immitis and D. repens was, respectively, 7.9% and 3.96% in Linosa, and 7.77% and 19.93% in Lampedusa. Out of 397 human blood samples tested molecularly, 4 scored positive (1%) for Dirofilaria spp. by qPCR (i.e., three for D. immitis and one for D. repens) and 6 (1.5%) for Wolbachia. Of the qPCR positive for Dirofilaria spp., only D. repens was amplified by cPCR and was positive for Wolbachia. In the phylogenetic analysis, the sequence of Wolbachia detected in D. repens positive samples clustered along with other C supergroup filarioids. Our results overlap with the recent prevalence data collected on dogs from the same area, where D. immitis is prevalent in Linosa and D. repens prevails in Lampedusa. Molecular detection of D. immitis in human blood is quite unusual considering that humans are dead-end hosts for dirofilarial infection and most of the human cases described so far in Europe were ascribed to D. repens. An integrative diagnostic approach using serum analysis and Wolbachia detection is also presented. In endemic areas for canine dirofilarioses humans are exposed to the infection, suggesting the importance of One Health approach in diagnosing, treating and controlling this zoonotic parasitosis.

RevDate: 2021-08-05

Balaji S, Deepthi KNG, SR Prabagaran (2021)

Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti.

Archives of microbiology [Epub ahead of print].

Bacterial species that inhabit mosquito microbiota play an essential role in determining vector competence. In addition to critical factors such as host genotype, feeding habit and geography, intracellular endosymbiont Wolbachia pipientis modulates microbial composition considerably. In the present study, we assessed the midgut bacterial diversity of Aedes aegypti mosquitoes that is either naturally carrying Wolbachia (wAegB+) or antibiotic cured (wAegB-) through a culture-independent approach. Towards this, 16S rRNA gene libraries were constructed from midgut bacterial DNA of laboratory-reared larvae and adult female mosquitoes fed with sugar or blood. Among them 33 genera comprising 65 distinct species were identified, where > 75% of bacterial taxa were commonly shared by both groups (wAegB+ and wAegB-), implying a subtle shift in the bacterial composition influenced by Wolbachia. Though the change was mostly restricted to minimally represented species, predominant taxa were observed unaltered except for certain genera. While Serratia sp. was abundant in Wolbachia carrying mosquitoes, Pseudomonas sp. and Acinetobacter sp. were predominant in Wolbachia free mosquitoes. This result demonstrates the influence of Wolbachia that could modulate the colonization of certain resident bacterial taxa through competitive interactions. Overall, this study shed more light on the impact of wAegB in altering the gut microbiota of Ae. aegypti mosquito, which might challenge host fitness and vector competence.

RevDate: 2021-08-06

Ma Y, Huang CW, Luan YX, et al (2021)

The mitochondrial genome of a minute springtail species Megalothorax incertus (Collembola: Neelipleona: Neelidae).

Mitochondrial DNA. Part B, Resources, 6(8):2430-2432.

In this study, the complete mitochondrial genome for the Wolbachia infected parthenogenetic collembola Megalothorax incertus Börner, 1903 was determined. It represents the first report of a complete mitochondrial genome from Neelipleona, one of the four orders of Collembola. The circularized 14,994 bp mitochondrial genome sequence consists of canonical 37 mito-genes, including 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes. The base composition of the majority strand (same direction as most of the mitochondrial genes) is 32.0% for A, 24.1% for C, 11.9% for G, and 32.1% for T. The phylogenetic trees inferred from 13 PCGs using the Maximum-likelihood (ML) and Bayesian inference (BI) methods suggested that Neelidae is basal to the remaining springtails. This mitochondrial genome provides new insights to decipher the phylogeny of Collembola.

RevDate: 2021-08-06

Zhang Y, Liu S, Jiang R, et al (2021)

Wolbachia Strain wGri From the Tea Geometrid Moth Ectropis grisescens Contributes to Its Host's Fecundity.

Frontiers in microbiology, 12:694466.

Members of the Wolbachia genus manipulate insect-host reproduction and are the most abundant bacterial endosymbionts of insects. The tea Geometrid moth Ectropis grisescens (Warren) (Lepidoptera: Geometridae) is the most devastating insect pest of tea plants [Camellia sinensis (L.) O. Kuntze] in China. However, limited data on the diversity, typing, or phenotypes of Wolbachia in E. grisescens are available. Here, we used a culture-independent method to compare the gut bacteria of E. grisescens and other tea Geometridae moths. The results showed that the composition of core gut bacteria in larvae of the three Geometridae moth species was similar, except for the presence of Wolbachia. Moreover, Wolbachia was also present in adult female E. grisescens samples. A Wolbachia strain was isolated from E. grisescens and designated as wGri. Comparative analyses showed that this strain shared multilocus sequence types and Wolbachia surface protein hypervariable region profiles with cytoplasmic incompatibility (CI)-inducing strains in supergroup B; however, the wGri-associated phenotypes were undetermined. A reciprocal cross analysis showed that Wolbachia-uninfected females mated with infected males resulted in 100% embryo mortality (0% eggs hatched per female). Eggs produced by mating between uninfected males and infected females hatched normally. These findings indicated that wGri induces strong unidirectional CI in E. grisescens. Additionally, compared with uninfected females, Wolbachia-infected females produced approximately 30-40% more eggs. Together, these results show that this Wolbachia strain induces reproductive CI in E. grisescens and enhances the fecundity of its female host. We also demonstrated that wGri potential influences reproductive communication between E. grisescens and Ectropis obliqua through CI.

RevDate: 2021-08-19
CmpDate: 2021-08-19

Karatepe M, Aksoy S, B Karatepe (2021)

Wolbachia spp. and Spiroplasma spp. in Musca spp.: Detection Using Molecular Approaches.

Turkiye parazitolojii dergisi, 45(3):211-215.

Objective: This study aimed to detect the presence of Wolbachia and Spiroplasma endosymbionts in Musca flies through molecular approaches.

Methods: In total, 40 Musca spp. (20 female and 20 male) were used. Before DNA extraction, the flies were dissected and their heads, wings and legs were detached from their bodies under a stereomicroscope. Genomic DNA was analysed by standard polymerase chain reaction (PCR) using primers against Musca beta-tubulin. Afterward, the samples were examined for the presence of Wolbachia spp. using primers against Wolbachia wsp and GroEL. Furthermore, the DNA samples were analysed by PCR to detect the presence of Spiroplasma using primers against the 16S rRNA.

Results: No Wolbachia positivity was detected in Musca flies, as shown by the negative PCR results for wsp and GroEL. Spiroplasma positivity was detected in 5% (1/20) of the female Musca flies but not in the male flies (0/20).

Conclusion: Wolbachia spp. were not detected in Musca flies. Of the total Musca flies, only one was positive for Spiroplasma spp. To our knowledge, this is the first study to detect the presence of Spiroplasma in Musca flies.

RevDate: 2021-08-01

Rothman JA, Loope KJ, McFrederick QS, et al (2021)

Microbiome of the wasp Vespula pensylvanica in native and invasive populations, and associations with Moku virus.

PloS one, 16(7):e0255463.

Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.

RevDate: 2021-08-10

Dutra HLC, Ford SA, Allen SL, et al (2021)

The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO.

PLoS neglected tropical diseases, 15(7):e0009637.

Wolbachia is currently at the forefront of global efforts to control arbovirus transmission from the vector Aedes aegypti. The use of Wolbachia relies on two phenotypes-cytoplasmic incompatibility (CI), conferred by cifA and cifB genes in prophage WO, and Wolbachia-mediated pathogen blocking (WMPB). These traits allow for local, self-sustaining reductions in transmission of dengue (DENV) following release of Wolbachia-infected A. aegypti. Here, aided by previous artificial selection experiment that generated Low and High pathogen blocking lines, we examined the potential link between WMPB and phage WO. We found no evidence that Wolbachia or phage WO relative densities predict DENV blocking strength across selected lines. However, selection resulted in reduced phage WO relative density for the Low WMPB line. The Low blocking line was previously shown to have reduced fitness as a result of selection. Through subsequent genomic analyses, we demonstrate that SNP variation underpinning selection for low blocking led to elevated frequency of potential deleterious SNPs on chromosome 1. The key region on chromosome 1 contains genes relating to cell cycle regulation, oxidative stress, transcriptional pausing, among others, that may have cascading effects on Wolbachia intracellular environment. We hypothesize that reduction in phage WO may be driven by changes in the loci directly under selection for blocking, or by the accumulation of predicted deleterious alleles in linkage disequilibrium with blocking loci resulting from hitchhiking. For the Low line with fewer phage WO, we also detected reduced expression of cifA and cifB CI genes, with patterns of expression varying between somatic and reproductive tissues. In conclusion, we propose that artificial selection for WMPB trait had corresponding impacts on phage WO densities, and also the transcription of CI-causing genes. Future studies may include a more detailed analysis of the regions the A. aegypti chromosome 1's ability to affect WMPB and other Wolbachia-associated intrinsic factors such as phage WO.

RevDate: 2021-07-27

Schairer CE, Najera J, James AA, et al (2021)

Oxitec and MosquitoMate in the United States: lessons for the future of gene drive mosquito control.

Pathogens and global health [Epub ahead of print].

In response to growing concerns regarding mosquito-borne diseases, scientists are developing novel systems of vector control. Early examples include Oxitec's OX513A genetically-engineered mosquito and MosquitoMate's Wolbachia-infected mosquito, and systems using 'gene-drive' are in development. Systems based on genetic engineering are controversial and institutions around the world are grappling with the question of who should have a say in how such technologies are field-tested and used. Based on media coverage and public records, we created comparative timelines of the efforts of Oxitec and MosquitoMate to navigate federal and local governance and bring their products to market in the United States. We analyze these timelines with particular attention to the role of public input in technology governance. These cases illustrate how governance of technology in the US is diverse, complex, and opaque. Further, the public response to proposed field trials of the Oxitec product highlights inconsistencies between public expectations for governance and actual practice. As gene-drive mosquito control products develop, both federal and local agencies will find their legitimacy tested without a better procedure for transparently integrating public input.

RevDate: 2021-08-20

Herran B, Houdelet C, Raimond M, et al (2021)

Feminising Wolbachia disrupt Armadillidium vulgare insulin-like signalling pathway.

Cellular microbiology [Epub ahead of print].

The endosymbiont Wolbachia feminises male isopods by making them refractory to the insulin-like masculinising hormone, which shunts the autocrine development of the androgenic glands. It was, therefore, proposed that Wolbachia silences the IR receptors, either by preventing their expression or by inactivating them. We describe here the two IR paralogs of Armadillidium vulgare. They displayed a conventional structure and belonged to a family widespread among isopods. Av-IR1 displayed an ubiquist expression, whereas the expression of Av-IR2 was restricted to the gonads. Both were constitutively expressed in males and females and throughout development. However, upon silencing, altered gland physiology and gene expression therein suggested antagonistic roles for Av-IR1 (androinhibiting) and Av-IR2 (androstimulating). They may function in tandem with regulating neurohormones, as a conditional platform that conveys insulin signalling. Wolbachia infection did not alter their expression patterns: leaving the IRs unscathed, the bacteria would suppress the secretion of the neurohormones, thus inducing body-wide IR deactivation and feminisation. Adult males injected with Wolbachia acquired an intersexed physiology. Their phenotypes and gene expressions mirrored the silencing of Av-IR1 only, suggesting that imperfect feminisation stems from a flawed invasion of the androstimulating centre, whereas in fully feminised males invasion would be complete in early juveniles. TAKE AWAY: Two antagonistic Insulin Receptors were characterised in Armadillidium vulgare. The IRs were involved in androstimulating and androinhibiting functions. Wolbachia-induced feminisation did not prevent the expression of the IRs. Imperfectly feminised intersexes phenocopied the silencing of Av-IR1 only. Wolbachia would deactivate the IRs by suppressing neurosecretory co-factors.

RevDate: 2021-07-27

Zhu YX, Song ZR, Zhang YY, et al (2021)

Spider Mites Singly Infected With Either Wolbachia or Spiroplasma Have Reduced Thermal Tolerance.

Frontiers in microbiology, 12:706321.

Heritable symbionts play an essential role in many aspects of host ecology in a temperature-dependent manner. However, how temperature impacts the host and their interaction with endosymbionts remains largely unknown. Here, we investigated the impact of moderate (20°C) and high (30 and 35°C) temperatures on symbioses between the spider mite Tetranychus truncatus and two maternally inherited endosymbionts (Wolbachia and Spiroplasma). We found that the thermal tolerance of mites (as measured by survival after heat exposure) was lower for mites that were singly infected with either Wolbachia or Spiroplasma than it was for co-infected or uninfected mites. Although a relatively high temperature (30°C) is thought to promote bacterial replication, rearing at high temperature (35°C) resulted in losses of Wolbachia and particularly Spiroplasma. Exposing the mites to 20°C reduced the density and transmission of Spiroplasma but not Wolbachia. The four spider mite strains tested differed in the numbers of heat shock genes (Hsps) induced under moderate or high temperature exposure. In thermal preference (Tp) assays, the two Wolbachia-infected spider mite strains preferred a lower temperature than strains without Wolbachia. Our results show that endosymbiont-mediated spider mite responses to temperature stress are complex, involving a combination of changing endosymbiont infection patterns, altered thermoregulatory behavior, and transcription responses.

RevDate: 2021-07-25

Caragata EP, Dutra HLC, Sucupira PHF, et al (2021)

Wolbachia as translational science: controlling mosquito-borne pathogens.

Trends in parasitology pii:S1471-4922(21)00164-1 [Epub ahead of print].

In this review we examine how exploiting the Wolbachia-mosquito relationship has become an increasingly popular strategy for controlling arbovirus transmission. Field deployments of Wolbachia-infected mosquitoes have led to significant decreases in dengue virus incidence via high levels of mosquito population suppression and replacement, emphasizing the success of Wolbachia approaches. Here, we examine how improved knowledge of Wolbachia-host interactions has provided key insight into the mechanisms of the essential phenotypes of pathogen blocking and cytoplasmic incompatibility. And we discuss recent studies demonstrating that extrinsic factors, such as ambient temperature, can modulate Wolbachia density and maternal transmission. Finally, we assess the prospects of using Wolbachia to control other vectors and agricultural pest species.

RevDate: 2021-07-24

Cano-Calle D, Saldamando-Benjumea CI, Vivero-Gómez RJ, et al (2021)

Two New Strains of Wolbachia Affecting Natural Avocado Thrips.

Indian journal of microbiology, 61(3):348-354.

Wolbachia is an obligate intracellular bacterium with a high frequency of infection and a continental distribution in arthropods and nematodes. This endosymbiont can induce various reproductive phenotypes in their hosts and has been previously found naturally in several pests including thrips (Thripidae). These insects cause physical fruit damage and economic losses in avocado. The presence of Wolbachia was evaluated for the first time in avocado thrips populations of Frankliniella sp. and Scirtothrips hansoni sp.n. from eastern Antioquia. DNA from adult thrips individuals was used to assess the detection of Wolbachia by amplifying a fragment (600 bp) of the Wolbachia major surface protein (wsp) gene. Results confirmed the presence of two new Wolbachia strains in these two thrips species, with a higher percentage of natural infection in S. hansoni sp.n. The first Wolbachia species was found in Frankliniella sp. and belongs to supergroup A and the second was detected in S. hansoni sp.n. and is part of supergroup B. Wolbachia was more frequently found in females (32.73%), and only found in one male. Analysis of phylogenetic relationships, suggests that the two new Wolbachia sequences (wFran: Frankliniella and wShan: Scirtothrips hansoni) detected here represent two new groups for this endosymbiont. The haplotype network shows the presence of two possible haplotypes for each strain. Future studies to evaluate the possible use of Wolbachia as a control agent in avocado thrips are necessary.

Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-021-00951-5.

RevDate: 2021-09-14

Krueger S, G Moritz (2021)

Sperm ultrastructure in arrhenotokous and thelytokous Thysanoptera.

Arthropod structure & development, 64:101084.

Thysanoptera are haplo-diploid insects that reproduce either via arrhenotoky or thelytoky. Beside genetically based thelytoky, this reproduction mode can also be endosymbiont induced. The recovery of these females from their infection again leads to the development of males. Functionality of these males ranges widely, and this might be associated with sperm structure. We analyzed the sperm ultrastructure in three different species belonging to both suborders with different reproduction systems via electron microscopy. Beside the different reproduction modes, and adaptations to their life style, the arrhenotokous species Suocerathrips linguis (Thysanoptera: Tubulifera) and Echinothrips americanus (Thysanoptera: Terebrantia) possess typical thysanopteran-like sperm structure. But endosymbiont-cured males from the thelytokous species Hercinothrips femoralis (Thysanoptera: Terebrantia) possess several malformed spermatozoa and a large amount of secretions in their testes. Spermiophagy seems to be typical. It indicates a highly conserved mechanism of the male developmental pathways, despite the observed decay. However, this decay would explain why in some species no stable arrhenotokous line can be re-established.

RevDate: 2021-08-01

Ware-Gilmore F, Sgrò CM, Xi Z, et al (2021)

Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions.

PLoS neglected tropical diseases, 15(7):e0009548.

The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, including dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate change, we expect an increase in both global mean temperatures and extreme climatic events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to temperatures beyond their upper thermal limits. Here, we examine how DENV infection alters Ae. aegypti thermotolerance by using a high-throughput physiological 'knockdown' assay modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have previously been shown to accurately predict an insect's distribution in the field. We show that DENV infection increases thermal sensitivity, an effect that may ultimately limit the geographic range of the virus. We also show that the endosymbiotic bacterium Wolbachia pipientis, which is currently being released globally as a biological control agent, has a similar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state, Wolbachia did not provide protection against DENV-associated effects on thermal tolerance, nor were the effects of the two infections additive. The latter suggests that the microbes may act by similar means, potentially through activation of shared immune pathways or energetic tradeoffs. Models predicting future ranges of both virus transmission and Wolbachia's efficacy following field release may wish to consider the effects these microbes have on host survival.

RevDate: 2021-09-16

Manoj RRS, Latrofa MS, Mendoza-Roldan JA, et al (2021)

Molecular detection of Wolbachia endosymbiont in reptiles and their ectoparasites.

Parasitology research, 120(9):3255-3261.

Wolbachia, a maternally transmitted Gram-negative endosymbiont of onchocercid nematodes and arthropods, has a role in the biology of their host; thus it has been exploited for the filariasis treatment in humans. To assess the presence and prevalence of this endosymbiont in reptiles and their ectoparasites, blood and tail tissue as well as ticks and mites collected from them were molecularly screened for Wolbachia DNA using two sets of primers targeting partial 16S rRNA and Wolbachia surface protein (wsp) genes. Positive samples were screened for the partial 12S rRNA and cytochrome c oxidase subunit 1 (cox1) genes for filarioids. Of the different species of lizards (Podarcis siculus, Podarcis muralis and Lacerta bilineata) and snakes (Elaphe quatuorlineata and Boa constrictor constrictor) screened from three collection sites, only P. siculus scored positive for Wolbachia 16S rRNA. Among ectoparasites collected from reptiles (Ixodes ricinus ticks and Neotrombicula autumnalis, Ophionyssus sauracum and Ophionyssus natricis mites), I. ricinus (n = 4; 2.8%; 95% CI, 0.9-7) from P. siculus, N. autumnalis (n = 2 each; 2.8%; 95% CI, 0.9-6.5) from P. siculus and P. muralis and O. natricis (n = 1; 14.3%; 95% CI, 0.7-55.4) from Boa constrictor constrictor scored positive for Wolbachia DNA. None of the positive Wolbachia samples scored positive for filarioids. This represents the first report of Wolbachia in reptilian hosts and their ectoparasites, which follows a single identification in the intestinal cells of a filarioid associated with a gecko. This data could contribute to better understand the reptile filarioid-Wolbachia association and to unveil the evolutionary pattern of Wolbachia in its filarial host.

RevDate: 2021-08-01

Tyagi K, Tyagi I, V Kumar (2021)

Interspecific variation and functional traits of the gut microbiome in spiders from the wild: The largest effort so far.

PloS one, 16(7):e0251790.

Spiders being one of the most diverse group in phylum arthropod are of great importance due to their role as predators, silk producer, and in medicinal applications. Spiders in prey-predator relationships play a crucial role in balancing the food-chain of any ecosystem; therefore it is essential to characterize the gut microbiota of spiders collected from natural environments. In the present work, the largest effort so far has been made to characterize the gut microbiota of 35 spider species belonging to four different families using 16S amplicon targeting sequencing. Further, we compared the gut microbiota composition including endosymbiont abundance in spider species collected from different geographical locations. The results obtained revealed the presence of genera like Acinetobacter (15%), V7clade (9%), Wolbachia (8%), Pseudomonas (5%), Bacillus (6%). Although comparative analysis revealed that the gut bacterial composition in all the spider families has a similar pattern, in terms of community richness and evenness. The bacterial diversity in the spider family, Lycosidae are more diverse than in Salticidae, Tetragnathidae and Araneidae. Furthermore, it was observed that the abundance of endosymbiont genera, i.e. Wolbachia and Rickettsia, leads to shift in the abundance of other bacterial taxa and may cause sexual alterations in spider species. Moreover, predicted functional analysis based on PICRUSt2 reveals that gut microbiota of spider species were involved in functions like metabolism of carbohydrates, cofactors and vitamins, amino acids; biosynthesis of organic compounds, fatty acids, lipids etc. Based on the results obtained, it can be said that different locations do not correlate with community composition of gut microbiota in spider species collected from natural environments.

RevDate: 2021-08-02
CmpDate: 2021-08-02

Wang GH, Gamez S, Raban RR, et al (2021)

Combating mosquito-borne diseases using genetic control technologies.

Nature communications, 12(1):4388.

Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based solutions are sought to reduce the transmission risk of these diseases. Pathogen-blocking Wolbachia bacteria, or genome engineering-based mosquito control strategies including gene drives have been developed to address these problems, both requiring the release of modified mosquitoes into the environment. Here, we review the latest developments, notable similarities, and critical distinctions between these promising technologies and discuss their future applications for mosquito-borne disease control.

RevDate: 2021-07-20

Zhu DH, Su CY, Yang XH, et al (2021)

A Case of Intragenic Recombination Dramatically Impacting the Phage WO Genetic Diversity in Gall Wasps.

Frontiers in microbiology, 12:694115.

The phage WO was characterized in Wolbachia, a strictly intracellular bacterium causing several reproductive alterations in its arthropod hosts. This study aimed to screen the presence of Wolbachia and phage WO in 15 gall wasp species from six provinces of southern China to investigate their diversity and prevalence patterns. A high incidence of Wolbachia infection was determined in the gall wasp species, with an infection rate of 86.7% (13/15). Moreover, seven species had double or multiple infections. All Wolbachia-infected gall wasp species were found to harbor phage WO. The gall wasp species infected with a single Wolbachia strain were found to harbor a single phage WO type. On the contrary, almost all species with double or multiple Wolbachia infections harbored a high level of phage WO diversity (ranging from three to 27 types). Six horizontal transfer events of phage WO in Wolbachia were found to be associated with gall wasps, which shared identical orf7 sequences among their respective accomplices. The transfer potentially took place through gall inducers and associated inquilines infected with or without Wolbachia. Furthermore, 10 putative recombination events were identified from Andricus hakonensis and Andricus sp2, which harbored multiple phage WO types, suggesting that intragenic recombination was the important evolutionary force, which effectively promoted the high level of phage WO diversity associated with gall wasps.

RevDate: 2021-07-20

Huang J, Dai Z, Zheng Z, et al (2021)

Bacteriomic Analyses of Asian Citrus Psyllid and Citrus Samples Infected With "Candidatus Liberibacter asiaticus" in Southern California and Huanglongbing Management Implications.

Frontiers in microbiology, 12:683481.

Citrus Huanglongbing (HLB; yellow shoot disease) is associated with an unculturable α-proteobacterium "Candidatus Liberibacter asiaticus" (CLas). HLB was found in southern California in 2012, and the current management strategy is based on suppression of the Asian citrus psyllid (Diaphorina citri) that transmits CLas and removal of confirmed CLas-positive trees. Little is known about Asian citrus psyllid-associated bacteria and citrus-associated bacteria in the HLB system. Such information is important in HLB management, particularly for accurate detection of CLas. Recent advancements in next-generation sequencing technology provide new opportunities to study HLB through genomic DNA sequence analyses (metagenomics). In this study, HLB-related bacteria in Asian citrus psyllid and citrus (represented by leaf midrib tissues) samples from southern California were analyzed. A metagenomic pipeline was developed to serve as a prototype for future bacteriomic research. This pipeline included steps of next-generation sequencing in Illumina platform, de novo assembly of Illumina reads, sequence classification using the Kaiju tool, acquisition of bacterial draft genome sequences, and taxonomic validation and diversity evaluation using average nucleotide identity. The identified bacteria in Asian citrus psyllids and citrus together included Bradyrhizobium, Buchnera, Burkholderia, "Candidatus Profftella armature," "Candidatus Carsonella ruddii," CLas, Mesorhizobium, Paraburkholderia, Pseudomonas, and Wolbachia. The whole genome of a CLas strain recently found in San Bernardino County was sequenced and classified into prophage typing group 1 (PTG-1), one of the five known CLas groups in California. Based on sequence similarity, Bradyrhizobium and Mesorhizobium were identified as possible source that could interfere with CLas detection using the 16S rRNA gene-based PCR commonly used for HLB diagnosis, particularly at low or zero CLas titer situation.

RevDate: 2021-08-05
CmpDate: 2021-08-05

Liew C, Soh LT, Chen I, et al (2021)

Public sentiments towards the use of Wolbachia-Aedes technology in Singapore.

BMC public health, 21(1):1417.

BACKGROUND: Wolbachia technology is a novel vector control approach that can reduce mosquito populations and the risk of mosquito-borne diseases, which has recently gained popularity amongst countries. In 2016, Singapore embarked on a multi-phased field study named Project Wolbachia - Singapore, to evaluate the use of Wolbachia technology as an Aedes aegypti mosquito population suppression tool to fight dengue. Due to the novelty of this technology in Singapore, this study aims to understand the public's acceptance and sentiments towards the use of Wolbachia technology.

METHODS: Several public sentiment survey approaches - including online, face-to-face in the streets, as well as door-to-door household surveys - were conducted.

RESULTS: The surveys conducted prior to the first field releases and implementation of the project revealed high support for the use of Wolbachia technology in Singapore. A household perception survey conducted in the interim of the first project phase was encouraging, with the majority of the respondents being aware of the project and having no concerns with the release of male Wolbachia-carrying Aedes aegypti (Wolbachia-Aedes) mosquitoes in their neighbourhood.

CONCLUSIONS: The study reveal high support for the use of Wolbachia technology in Singapore and also provided invaluable insights that were used in the development of a public communications and engagement framework model, which thus helped to guide these elements in the subsequent phases and expansion of the project.

RevDate: 2021-09-07

Gangwar M, Jha R, Goyal M, et al (2021)

Biochemical characterization of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA).

International journal for parasitology, 51(10):841-853.

Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.

RevDate: 2021-08-23

Ross PA (2021)

Designing effective Wolbachia release programs for mosquito and arbovirus control.

Acta tropica, 222:106045.

Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.

RevDate: 2021-09-17

Russell A, Borrelli S, Fontana R, et al (2021)

Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod.

Heredity, 127(3):266-277.

Sex chromosomes are highly variable in some taxonomic groups, but the evolutionary mechanisms underlying this diversity are not well understood. In terrestrial isopod crustaceans, evolutionary turnovers in sex chromosomes are frequent, possibly caused by Wolbachia, a vertically-transmitted endosymbiont causing male-to-female sex reversal. Here, we use surgical manipulations and genetic crosses, plus genome sequencing, to examine sex chromosomes in the terrestrial isopod Trachelipus rathkei. Although an earlier cytogenetics study suggested a ZZ/ZW sex chromosome system in this species, we surprisingly find multiple lines of evidence that in our study population, sex is determined by an XX/XY system. Consistent with a recent evolutionary origin for this XX/XY system, the putative male-specific region of the genome is small. The genome shows evidence of Y-linked duplications of the gene encoding the androgenic gland hormone, a major component of male sexual differentiation in isopods. Our analyses also uncover sequences horizontally acquired from past Wolbachia infections, consistent with the hypothesis that Wolbachia may have interfered with the evolution of sex determination in T. rathkei. Overall, these results provide evidence for the co-occurrence of multiple sex chromosome systems within T. rathkei, further highlighting the relevance of terrestrial isopods as models for the study of sex chromosome evolution.

RevDate: 2021-07-23
CmpDate: 2021-07-23

Kee SL, MJT Tan (2021)

Friend, Not Foe: Unveiling Vector-Bacteria Symbiosis and Its Utility as an Arboviral Intervention Strategy in the Philippines.

Frontiers in cellular and infection microbiology, 11:650277.

RevDate: 2021-07-15

Zhu DT, Rao Q, Zou C, et al (2021)

Genomic and transcriptomic analyses reveal metabolic complementarity between whiteflies and their symbionts.

Insect science [Epub ahead of print].

Nutritional mutualism between insects and symbiotic bacteria is widespread. The various sap-feeding whitefly species within the Bemisia tabaci complex associate with the same obligate symbiont (Portiera) and multiple secondary symbionts. It is often assumed that some of the symbionts residing in the whiteflies play crucial roles in the nutritional physiology of their insect hosts. Although effort has been made to understand the functions of the whitefly symbionts, the metabolic complementarity offered by these symbionts to the hosts is not yet well understood. We examined two secondary symbionts, Arsenophonus and Wolbachia, in two species of the B. tabaci whitefly complex, provisionally named as Asia II 3 and China 1. Genomic sequence analyses revealed that Arsenophonus and Wolbachia retained genes responsible for the biosynthesis of B vitamins. We then conducted transcriptomic surveys of the bacteriomes in these two species of whiteflies together with that in another species named MED of this whitefly complex reported previously. The analyses indicated that several key genes in B vitamin syntheses from the three whitefly species were identical. Our findings suggest that, similar to another secondary symbiont Hamiltonella, Arsenophonus and Wolbachia function in the nutrient provision of host whiteflies. Although phylogenetically-distant species of symbionts are associated with their respective hosts, they have evolved and retained similar functions in biosynthesis of some B vitamins. Such metabolic complementarity between whiteflies and symbionts represents an important feature of their coevolution. This article is protected by copyright. All rights reserved.

RevDate: 2021-07-13

Massey JH, ILG Newton (2021)

Diversity and function of arthropod endosymbiont toxins.

Trends in microbiology pii:S0966-842X(21)00140-2 [Epub ahead of print].

Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.

RevDate: 2021-08-01

Pinto SB, Riback TIS, Sylvestre G, et al (2021)

Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study.

PLoS neglected tropical diseases, 15(7):e0009556.

BACKGROUND: The introduction of the bacterium Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Evidence of a reduction in dengue case incidence following field releases of wMel-infected Ae. aegypti has been reported previously from a cluster randomised controlled trial in Indonesia, and quasi-experimental studies in Indonesia and northern Australia.

Following pilot releases in 2015-2016 and a period of intensive community engagement, deployments of adult wMel-infected Ae. aegypti mosquitoes were conducted in Niterói, Brazil during 2017-2019. Deployments were phased across four release zones, with a total area of 83 km2 and a residential population of approximately 373,000. A quasi-experimental design was used to evaluate the effectiveness of wMel deployments in reducing dengue, chikungunya and Zika incidence. An untreated control zone was pre-defined, which was comparable to the intervention area in historical dengue trends. The wMel intervention effect was estimated by controlled interrupted time series analysis of monthly dengue, chikungunya and Zika case notifications to the public health surveillance system before, during and after releases, from release zones and the control zone. Three years after commencement of releases, wMel introgression into local Ae. aegypti populations was heterogeneous throughout Niterói, reaching a high prevalence (>80%) in the earliest release zone, and more moderate levels (prevalence 40-70%) elsewhere. Despite this spatial heterogeneity in entomological outcomes, the wMel intervention was associated with a 69% reduction in dengue incidence (95% confidence interval 54%, 79%), a 56% reduction in chikungunya incidence (95%CI 16%, 77%) and a 37% reduction in Zika incidence (95%CI 1%, 60%), in the aggregate release area compared with the pre-defined control area. This significant intervention effect on dengue was replicated across all four release zones, and in three of four zones for chikungunya, though not in individual release zones for Zika.

CONCLUSIONS/SIGNIFICANCE: We demonstrate that wMel Wolbachia can be successfully introgressed into Ae. aegypti populations in a large and complex urban setting, and that a significant public health benefit from reduced incidence of Aedes-borne disease accrues even where the prevalence of wMel in local mosquito populations is moderate and spatially heterogeneous. These findings are consistent with the results of randomised and non-randomised field trials in Indonesia and northern Australia, and are supportive of the Wolbachia biocontrol method as a multivalent intervention against dengue, chikungunya and Zika.

RevDate: 2021-07-28

Noroy C, DF Meyer (2021)

The super repertoire of type IV effectors in the pangenome of Ehrlichia spp. provides insights into host-specificity and pathogenesis.

PLoS computational biology, 17(7):e1008788.

The identification of bacterial effectors is essential to understand how obligatory intracellular bacteria such as Ehrlichia spp. manipulate the host cell for survival and replication. Infection of mammals-including humans-by the intracellular pathogenic bacteria Ehrlichia spp. depends largely on the injection of virulence proteins that hijack host cell processes. Several hypothetical virulence proteins have been identified in Ehrlichia spp., but one so far has been experimentally shown to translocate into host cells via the type IV secretion system. However, the current challenge is to identify most of the type IV effectors (T4Es) to fully understand their role in Ehrlichia spp. virulence and host adaptation. Here, we predict the T4E repertoires of four sequenced Ehrlichia spp. and four other Anaplasmataceae as comparative models (pathogenic Anaplasma spp. and Wolbachia endosymbiont) using previously developed S4TE 2.0 software. This analysis identified 579 predicted T4Es (228 pT4Es for Ehrlichia spp. only). The effector repertoires of Ehrlichia spp. overlapped, thereby defining a conserved core effectome of 92 predicted effectors shared by all strains. In addition, 69 species-specific T4Es were predicted with non-canonical GC% mostly in gene sparse regions of the genomes and we observed a bias in pT4Es according to host-specificity. We also identified new protein domain combinations, suggesting novel effector functions. This work presenting the predicted effector collection of Ehrlichia spp. can serve as a guide for future functional characterisation of effectors and design of alternative control strategies against these bacteria.

RevDate: 2021-07-16
CmpDate: 2021-07-16

Reyes JIL, Suzuki Y, Carvajal T, et al (2021)

Intracellular Interactions Between Arboviruses and Wolbachia in Aedes aegypti.

Frontiers in cellular and infection microbiology, 11:690087.

Aedes aegypti is inherently susceptible to arboviruses. The geographical expansion of this vector host species has led to the persistence of Dengue, Zika, and Chikungunya human infections. These viruses take advantage of the mosquito's cell to create an environment conducive for their growth. Arboviral infection triggers transcriptomic and protein dysregulation in Ae. aegypti and in effect, host antiviral mechanisms are compromised. Currently, there are no existing vaccines able to protect human hosts from these infections and thus, vector control strategies such as Wolbachia mass release program is regarded as a viable option. Considerable evidence demonstrates how the presence of Wolbachia interferes with arboviruses by decreasing host cytoskeletal proteins and lipids essential for arboviral infection. Also, Wolbachia strengthens host immunity, cellular regeneration and causes the expression of microRNAs which could potentially be involved in virus inhibition. However, variation in the magnitude of Wolbachia's pathogen blocking effect that is not due to the endosymbiont's density has been recently reported. Furthermore, the cellular mechanisms involved in this phenotype differs depending on Wolbachia strain and host species. This prompts the need to explore the cellular interactions between Ae. aegypti-arboviruses-Wolbachia and how different Wolbachia strains overall affect the mosquito's cell. Understanding what happens at the cellular and molecular level will provide evidence on the sustainability of Wolbachia vector control.

RevDate: 2021-07-15

Endersby-Harshman NM, Ali A, Alhumrani B, et al (2021)

Voltage-sensitive sodium channel (Vssc) mutations associated with pyrethroid insecticide resistance in Aedes aegypti (L.) from two districts of Jeddah, Kingdom of Saudi Arabia: baseline information for a Wolbachia release program.

Parasites & vectors, 14(1):361.

BACKGROUND: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population.

METHODS: WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti.

RESULTS: Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah.

CONCLUSIONS: The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.

RevDate: 2021-09-10

Duplouy A, Nair A, Nyman T, et al (2021)

Long-term spatiotemporal genetic structure of an accidental parasitoid introduction, and local changes in prevalence of its associated Wolbachia symbiont.

Molecular ecology, 30(18):4368-4380.

Population bottlenecks associated with founder events strongly impact the establishment and genetic makeup of populations. In addition to their genotype, founding individuals also bring along parasites, as well as symbionts that can manipulate the phenotype of their host, affecting the host population establishment, dynamics and evolution. Thus, to understand introduction, invasion, and spread, we should identify the roles played by accompanying symbionts. In 1991, the parasitoid wasp, Hyposoter horticola, and its associated hyperparasitoid were accidentally introduced from the main Åland islands, Finland, to an isolated island in the archipelago, along with their host, the Glanville fritillary butterfly. Though the receiving island was unoccupied, the butterfly was present on some of the small islands in the vicinity. The three introduced species have persisted locally ever since. A strain of the endosymbiotic bacterium Wolbachia has an intermediate prevalence in the parasitoid H. horticola across the main Åland population. The infection increases its susceptibility of to hyperparasitism. We investigated the establishment and spread of the parasitoid, along with patterns of prevalence of its symbiont using 323 specimens collected between 1992 and 2013, from five localities across Åland, including the source and introduced populations. Using 14 microsatellites and one mitochondrial marker, we suggest that the relatively diverse founding population and occasional migration between islands might have facilitated the persistence of all isolated populations, despite multiple local population crashes. We also show that where the hyperparasitoid is absent, and thus selection against infected wasp genotypes is relaxed, there is near-fixation of Wolbachia.

RevDate: 2021-07-07

Johnston KL, Hong WD, Turner JD, et al (2021)

Anti-Wolbachia drugs for filariasis.

Trends in parasitology pii:S1471-4922(21)00143-4 [Epub ahead of print].

The mutualistic association between Wolbachia endosymbionts and their filarial nematode hosts has been exploited as a validated drug target delivering macrofilaricidal outcomes. Limitations of existing antibiotics to scale-up have driven the search for new drugs, which are effective in shorter regimens of 7 days or less. Here, we review the last 14 years of anti-Wolbachia drug discovery by the anti-Wolbachia (A·WOL) consortium, which has screened more than two million compounds, delivering thousands of hit compounds. Refined screening models integrated with robust pharmacokinetic/pharmacodynamic (PK/PD) driven optimisation and selection strategies have delivered the first two drug candidates specifically designed to target Wolbachia. AWZ1066S and ABBV-4083 are currently progressing through clinical trials with the aim of delivering safe and effective macrofilaricides to support the elimination of onchocerciasis and lymphatic filariasis.

RevDate: 2021-07-06

Chan PK, Hawley JR, MR Lappin (2021)

Evaluation of the role of Babesia species and Cytauxzoon felis in feline anemia cases in Colorado, USA.

JFMS open reports, 7(1):20551169211024967.

Objectives: The aim of this study was to evaluate the blood of cats in Colorado, USA, with suspected infectious causes of anemia for the presence of Babesia species and Cytauxzoon felis DNA. Results of PCR testing for other common vector-borne diseases potentially associated with anemia are also reported.

Methods: Samples from 101 cats were tested using a PCR assay that coamplified the DNA of C felis and Babesia species mitochondrial DNA. PCR testing for DNA of hemoplasmas, Bartonella species, Ehrlichia species, Anaplasma species, Neorickettsia risticii and Wolbachia genera was also performed if not carried out previously.

Results: Twenty-two cats (21.8%) were positive for DNA of an infectious agent. DNA from hemoplasma species were amplified from 14 cats (13.9%). Bartonella species DNA was amplified from four cats (4%) and Ehrlichia canis, Anaplasma platys, Anaplasma phagocytophilum and Wolbachia genera DNA were amplified from one cat each. Babesia species and C felis mitochondrial DNA were not amplified from any sample.

Conclusions and relevance: Based on the results of this study, it does not appear that Babesia species or C felis are clinically relevant in anemic cats in Colorado, USA. For C felis, this suggests that the vector Amblyomma americanum is still uncommon in this geographic area.

RevDate: 2021-07-12
CmpDate: 2021-07-12

Lejal E, Chiquet J, Aubert J, et al (2021)

Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions.

Microbiome, 9(1):153.

BACKGROUND: Ticks transmit pathogens of medical and veterinary importance and are an increasing threat to human and animal health. Assessing disease risk and developing new control strategies requires identifying members of the tick-borne microbiota as well as their temporal dynamics and interactions.

METHODS: Using high-throughput sequencing, we studied the Ixodes ricinus microbiota and its temporal dynamics. 371 nymphs were monthly collected during three consecutive years in a peri-urban forest. After a Poisson lognormal model was adjusted to our data set, a principal component analysis, sparse network reconstruction, and differential analysis allowed us to assess seasonal and monthly variability of I. ricinus microbiota and interactions within this community.

RESULTS: Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and to potentially circulate in ticks: Candidatus Midichloria, Rickettsia, Spiroplasma, Arsenophonus and Wolbachia. The structure of the I. ricinus microbiota varied over time with interannual recurrence and seemed to be mainly driven by OTUs commonly found in the environment. Total network analysis revealed a majority of positive partial correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus, evidence for the presence of the parasitoid wasp Ixodiphagus hookeri in ticks. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia. Finally, more specific network analyses were performed on TBP-infected samples and suggested that the presence of pathogens belonging to the genera Borrelia, Anaplasma and Rickettsia may disrupt microbial interactions in I. ricinus.

CONCLUSIONS: We identified the I. ricinus microbiota and documented marked shifts in tick microbiota dynamics over time. Statistically, we showed strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbiota. We detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. These new findings pave the way for the development of new strategies for the control of ticks and tick-borne diseases. Video abstract.

RevDate: 2021-07-14

Ourry M, Crosland A, Lopez V, et al (2021)

Influential Insider: Wolbachia, an Intracellular Symbiont, Manipulates Bacterial Diversity in Its Insect Host.

Microorganisms, 9(6):.

Facultative intracellular symbionts like the α-proteobacteria Wolbachia influence their insect host phenotype but little is known about how much they affect their host microbiota. Here, we quantified the impact of Wolbachia infection on the bacterial community of the cabbage root fly Delia radicum by comparing the microbiota of Wolbachia-free and infected adult flies of both sexes. We used high-throughput DNA sequencing (Illumina MiSeq, 16S rRNA, V5-V7 region) and performed a community and a network analysis. In both sexes, Wolbachia infection significantly decreased the diversity of D. radicum bacterial communities and modified their structure and composition by reducing abundance in some taxa but increasing it in others. Infection by Wolbachia was negatively correlated to 8 bacteria genera (Erwinia was the most impacted), and positively correlated to Providencia and Serratia. We suggest that Wolbachia might antagonize Erwinia for being entomopathogenic (and potentially intracellular), but would favor Providencia and Serratia because they might protect the host against chemical plant defenses. Although they might seem prisoners in a cell, endocellular symbionts can impact the whole microbiota of their host, hence its extended phenotype, which provides them with a way to interact with the outside world.

RevDate: 2021-07-10

Kupritz J, Martin J, Fischer K, et al (2021)

Isolation and characterization of a novel bacteriophage WO from Allonemobius socius crickets in Missouri.

PloS one, 16(7):e0250051.

Wolbachia are endosymbionts of numerous arthropod and some nematode species, are important for their development and if present can cause distinct phenotypes of their hosts. Prophage DNA has been frequently detected in Wolbachia, but particles of Wolbachia bacteriophages (phage WO) have been only occasionally isolated. Here, we report the characterization and isolation of a phage WO of the southern ground cricket, Allonemobius socius, and provided the first whole-genome sequence of phage WO from this arthropod family outside of Asia. We screened A. socius abdomen DNA extracts from a cricket population in eastern Missouri by quantitative PCR for Wolbachia surface protein and phage WO capsid protein and found a prevalence of 55% and 50%, respectively, with many crickets positive for both. Immunohistochemistry using antibodies against Wolbachia surface protein showed many Wolbachia clusters in the reproductive system of female crickets. Whole-genome sequencing using Oxford Nanopore MinION and Illumina technology allowed for the assembly of a high-quality, 55 kb phage genome containing 63 open reading frames (ORF) encoding for phage WO structural proteins and host lysis and transcriptional manipulation. Taxonomically important regions of the assembled phage genome were validated by Sanger sequencing of PCR amplicons. Analysis of the nucleotides sequences of the ORFs encoding the large terminase subunit (ORF2) and minor capsid (ORF7) frequently used for phage WO phylogenetics showed highest homology to phage WOAu of Drosophila simulans (94.46% identity) and WOCin2USA1 of the cherry fruit fly, Rhagoletis cingulata (99.33% identity), respectively. Transmission electron microscopy examination of cricket ovaries showed a high density of phage particles within Wolbachia cells. Isolation of phage WO revealed particles characterized by 40-62 nm diameter heads and up to 190 nm long tails. This study provides the first detailed description and genomic characterization of phage WO from North America that is easily accessible in a widely distributed cricket species.

RevDate: 2021-07-24

Leitner M, Bishop C, S Asgari (2021)

Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti.

mSphere [Epub ahead of print].

Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )