Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 26 Jan 2020 at 01:44 Created: 


WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2020-01-23

Ross PA, Axford JK, Yang Q, et al (2020)

Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti.

PLoS neglected tropical diseases, 14(1):e0007958 pii:PNTD-D-19-01580.

Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries.

RevDate: 2020-01-21

Covey H, Hall RH, Krafsur A, et al (2020)

Cryptic Wolbachia (Rickettsiales: Rickettsiaceae) Detection and Prevalence in Culicoides (Diptera: Ceratopogonidae) Midge Populations in the United States.

Journal of medical entomology pii:5713395 [Epub ahead of print].

Culicoides midges vector numerous veterinary and human pathogens. Many of these diseases lack effective therapeutic treatments or vaccines to limit transmission. The only effective approach to limit disease transmission is vector control. However, current vector control for Culicoides midges is complicated by the biology of many Culicoides species and is not always effective at reducing midge populations and impacting disease transmission. The endosymbiont Wolbachia pipientis Hertig may offer an alternative control approach to limit disease transmission and affect Culicoides populations. Here the detection of Wolbachia infections in nine species of Culicoides midges is reported. Infections were detected at low densities using qPCR. Wolbachia infections were confirmed with the sequencing of a partial region of the 16S gene. Fluorescence in situ hybridization of Culicoides sonorensis Wirth and Jones adults and dissected ovaries confirm the presence of Wolbachia infections in an important vector of Bluetongue and Epizootic hemorrhagic disease viruses. The presence of Wolbachia in Culicoides populations in the United States suggests the need for further investigation of Wolbachia as a strategy to limit transmission of diseases vectored by Culicoides midges.

RevDate: 2020-01-20

Bing XL, Zhao DS, Sun JT, et al (2020)

Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its "Jekyll and Hyde" mode of infection pattern.

Genome biology and evolution pii:5709815 [Epub ahead of print].

Wolbachia is a widely distributed intracellular bacterial endosymbiont among invertebrates. The wStriCN, the Wolbachia strain that naturally infects an agricultural pest Laodelphax striatellus, has a "Jekyll and Hyde" mode of infection pattern with positive and negative effects: it kills many offspring by inducing cytoplasmic incompatibility (CI) but also significantly increases host fecundity at the same time. In this study, we assembled the draft genome of wStriCN and compared it to other Wolbachia genomes to look for clues to its Jekyll and Hyde characteristics. The assembled wStriCN draft genome is 1.79 Mb in size, which is the largest Wolbachia genome in supergroup B. Phylogenomic analysis showed wStriCN is closest to Wolbachia from Asian citrus psyllid Diaphorina citri. These strains formed a mono-phylogentic clade within supergroup B. Compared to other Wolbachia genomes, wStriCN contains the most diverse insertion sequence families, the largest amount of prophage sequences and the most ankyrin domain protein coding genes. The wStriCN genome encodes components of multiple secretion systems, including Types I, II, IV, VI, Sec and Tac. We detected three pairs of homologs for CI factors CifA and CifB. These proteins harbor the catalytic domains responsible for CI phenotypes but are phylogenetically and structurally distinct from all known Cif proteins. The genome retains pathways for synthesizing biotin and riboflavin, which may explain the beneficial roles of wStriCN in its host planthoppers, which feed on nutrient-poor plant sap. Altogether, the genomic sequencing of wStriCN provides insight into understanding the phylogeny and biology of Wolbachia.

RevDate: 2020-01-20

Zhang H, R Lui (2020)

Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study.

Infectious Disease Modelling, 5:142-160 pii:S2468-0427(19)30044-2.

Wolbachia is a bacterium that is present in 60% of insects but it is not generally found in Aedes aegypti, the primary vector responsible for the transmission of dengue virus, Zika virus, and other human diseases caused by RNA viruses. Wolbachia has been shown to stop the growth of a variety of RNA viruses in Drosophila and in mosquitoes. Wolbachia-infected Ae. aegypti have both reproductive advantages and disadvantages over wild types. If Wolbachia-infected females are fertilized by either normal or infected males, the offspring are healthy and Wolbachia-positive. On the other hand, if Wolbachia-negative females are fertilized by Wolbachia-positive males, the offspring do not hatch. This phenomenon is called cytoplasmic incompatibility. Thus, Wolbachia-positive females have a reproductive advantage, and the Wolbachia is expanded in the population. On the other hand, Wolbachia-infected mosquitoes lay fewer eggs and generally have a shorter lifespan. In recent years, scientists have successfully released these Wolbachia-adapted mosquitoes into the wild in several countries and have achieved a high level of replacement with Wolbachia-positive mosquitoes. Here, we propose a minimal mathematical model to investigate the feasibility of such a release method. The model has five steady-states two of which are locally asymptotically stable. One of these stable steady-states has no Wolbachia-infected mosquitoes while for the other steady-state, all mosquitoes are infected with Wolbachia. We apply optimal control theory to find a release method that will drive the mosquito population close to the steady-state with only Wolbachia-infected mosquitoes in a two-year time period. Because some of the model parameters cannot be accurately measured or predicted, we also perform uncertainty and sensitivity analysis to quantify how variations in our model parameters affect our results.

RevDate: 2020-01-16

Zhu YX, Song ZR, Huo SM, et al (2020)

Variation in the microbiome of the spider mite Tetranychus truncatus with sex, instar, and endosymbiont infection.

FEMS microbiology ecology pii:5704398 [Epub ahead of print].

Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related OTUs dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.

RevDate: 2020-01-15

Perlmutter JI, Meyers JE, SR Bordenstein (2020)

Transgenic Testing Does Not Support a Role for Additional Candidate Genes in Wolbachia Male Killing or Cytoplasmic Incompatibility.

mSystems, 5(1): pii:5/1/e00658-19.

Endosymbiotic bacteria in the genus Wolbachia remarkably infect nearly half of all arthropod species. They spread in part because of manipulations of host sexual reproduction that enhance the maternal transmission of the bacteria, including male killing (death of infected males) and unidirectional cytoplasmic incompatibility (CI; death of offspring from infected fathers and uninfected mothers). Recent discoveries identified several genes in prophage WO of Wolbachia (wmk, cifA, and cifB) that fully or partially recapitulate male killing or CI when transgenically expressed in Drosophila melanogaster However, it is not yet fully resolved if other gene candidates contribute to these phenotypes. Here, we transgenically tested 10 additional gene candidates for their involvement in male killing and/or CI. The results show that despite sequence and protein architecture similarities or comparative associations with reproductive parasitism, transgenic expression of the candidates does not recapitulate male killing or CI. Sequence analysis across Wmk and its closest relatives reveals amino acids that may be important to its function. In addition, evidence is presented to propose new hypotheses regarding the relationship between wmk transcript length and its ability to kill a given host, as well as copy number of wmk homologs within a bacterial strain, which may be predictive of host resistance. Together, these analyses continue to build the evidence for identification of wmk, cifA, and cifB as the major genes that have thus far been shown to cause reproductive parasitism in Wolbachia, and the transgenic resources provide a basis for further functional study of phage WO genes.IMPORTANCEWolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes.

RevDate: 2020-01-15

Hu Y, Xi Z, Liu X, et al (2020)

Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China.

Parasites & vectors, 13(1):28 pii:10.1186/s13071-020-3899-4.

BACKGROUND: Aedes albopictus is naturally infected with Wolbachia spp., maternally transmitted bacteria that influence the reproduction of hosts. However, little is known regarding the prevalence of infection, multiple infection status, and the relationship between Wolbachia density and dengue outbreaks in different regions. Here, we assessed Wolbachia infection in natural populations of Ae. albopictus in China and compared Wolbachia density between regions with similar climates, without dengue and with either imported or local dengue.

RESULTS: To explore the prevalence of Wolbachia infection, Wolbachia DNA was detected in mosquito samples via PCR amplification of the 16S rRNA gene and the surface protein gene wsp. We found that 93.36% of Ae. albopictus in China were positive for Wolbachia. After sequencing gatB, coxA, hcpA, ftsZ, fbpA and wsp genes of Wolbachia strains, we identified a new sequence type (ST) of wAlbB (464/465). Phylogenetic analysis indicated that wAlbA and wAlbB strains formed a cluster with strains from other mosquitoes in a wsp-based maximum likelihood (ML) tree. However, in a ML tree based on multilocus sequence typing (MLST), wAlbB STs (464/465) did not form a cluster with Wolbachia strains from other mosquitoes. To better understand the association between Wolbachia spp. and dengue infection, the prevalence of Wolbachia in Ae. albopictus from different regions (containing local dengue cases, imported dengue cases and no dengue cases) was determined. We found that the prevalence of Wolbachia was lower in regions with only imported dengue cases.

CONCLUSIONS: The natural prevalence of Wolbachia infections in China was much lower than in other countries or regions. The phylogenetic relationships among Wolbachia spp. isolated from field-collected Ae. albopictus reflected the presence of dominant and stable strains. However, wAlbB (464/465) and Wolbachia strains did not form a clade with Wolbachia strains from other mosquitoes. Moreover, lower densities of Wolbachia in regions with only imported dengue cases suggest a relationship between fluctuations in Wolbachia density in field-collected Ae. albopictus and the potential for dengue invasion into these regions.

RevDate: 2020-01-13

Bezerra-Santos MA, Nogueira BCF, Yamatogi RS, et al (2020)

Ticks, fleas and endosymbionts in the ectoparasite fauna of the black-eared opossum Dipelphis aurita in Brazil.

Experimental & applied acarology pii:10.1007/s10493-020-00468-4 [Epub ahead of print].

Ticks and fleas are essential vectors of pathogens that affect humans and animals, and among their hosts, synanthropic animals such as the black-eared opossum, Didelphis aurita, play a role in public health due to their ability to move between urban centers and forested areas in Brazil. This study aimed to assess the ectoparasite fauna of D. aurita, as well as the presence of pathogens and endosymbionts in ticks and fleas. Opossums (n = 58) captured in Tomahawk livetraps were examined for ectoparasites, and their blood sampled for further analysis. Additionally, spleen samples were collected in individuals found dead. Samples were PCR screened for Rickettsia spp., Borrelia spp., Anaplasmataceae, and Babesia spp. Two tick species were morphologically identified as Ixodes loricatus 24/58 (41.4%) and Amblyomma sculptum 1/58 (1.7%). For fleas, Ctenocephalides felis was detected in 60.3% (35/58) of the animals, and Xenopsylla cheopis in 5.2% (3/58). PCR analysis detected Anaplasmataceae DNA in 34% (16/47) of pooled samples of C. felis, and in 66.7% (2/3) pooled samples of X. cheopis. Sequence analysis revealed Wolbachia pipientis symbiont in all positive samples. Tick, blood and spleen samples were all negative for the microorganisms assessed. These findings suggest that these arthropods circulate among wildlife and urban environments, which may implicate in their participation in the cycle of zoonotic pathogens among opossums, humans and companion animals.

RevDate: 2020-01-13

Li Y, X Liu (2020)

Modeling and control of mosquito-borne diseases with Wolbachia and insecticides.

Theoretical population biology pii:S0040-5809(19)30206-0 [Epub ahead of print].

Mosquitoes cause more human suffering than any other organism. It is estimated that over one million people worldwide die from mosquito-borne diseases every year. With the continuous efforts of many researchers, Wolbachia gets more and more attention due to its characteristics of maternal transmission in mosquito population and it may cause cytoplasmic incompatibility (CI) which makes healthy females cannot fertilize normally after mating with infected males. In this paper, mathematical model is established to study Wolbachia transmission in mosquito population, and an integrated mosquito control strategy is explored. Firstly, a classical ordinary differential system with general birth and death rate functions is established to describe the maternal transmission and CI effect. It is shown that the replacement strategy that the Wolbachia-uninfected mosquitoes are replaced by the infected ones is determined by the initial infection frequency. And Wolbachia spreads more easily for greater maternal transmission and CI rate. Moreover, all the wild mosquitoes will eventually be infected with Wolbachia if the maternal transmission is complete. Secondly, an impulsive state feedback control model is constructed to describe the integrated mosquito control. Besides Wolbachia, insecticides are sprayed when the quantity of mosquitoes reaches some Economic Threshold. The existence and stability of Wolbachia replacement periodic solution are discussed. Finally, some discussions are done and the future research directions are prospected.

RevDate: 2020-01-13

Alfano N, Tagliapietra V, Rosso F, et al (2019)

Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-Based Control Strategies.

Frontiers in microbiology, 10:2832.

Since it has been understood that gut microbiota of vector mosquitoes can influence their vector competence, efforts have been undertaken to develop new control strategies based on host microbiota manipulation, and aimed at suppressing the vector population or replacing it with a less competent one. For the proper design of such control strategies it is necessary to know the microbiota composition of the target vector species, how it is acquired, and how it changes throughout the host's life cycle. In this study, 16S rRNA amplicon high-throughput sequencing was used to characterize the changes in microbiota from the aquatic environment (larval breeding sites) to the different developmental stages of field-collected Aedes koreicus in Italy, an emerging invasive mosquito species in Europe and a potential vector of several pathogens. The bacterial communities of the aquatic breeding sites, larvae, pupae and adults showed distinctive structures to one another. Indeed, 84% of community members were unique to a given sample type. Nevertheless, almost 40% of the sequences generated were assigned to bacteria detected in all sample types, suggesting the importance of bacteria transstadially transmitted from water to the adult stage in constituting mosquito microbiota. Among these, genus C39 largely constituted water microbiota, family Burkholderiaceae was the most abundant in larvae and pupae, and genus Asaia dominated adult communities. In addition, Asaia constituted a core microbiota across all sample types. Our results suggest that the microbiota of Ae. koreicus mosquitoes is composed by a community which derives from the aquatic bacteria of the larval breeding sites, is then filtered by the larval gut, where only certain members are able to persist, rearranged by metamorphosis and finally modified by the change in diet at the adult stage. Understanding how the microbiota of Ae. koreicus changes through the mosquito life cycle represents a first step in selecting bacterial candidates for use in microbiota-based intervention measures for this species. The properties which Asaia exhibits in this species, such as dominance, high prevalence and transstadial transmission, prevent the use of Wolbachia but make Asaia an ideal candidate for paratransgenesis.

RevDate: 2020-01-15

Garcia GA, Hoffmann AA, Maciel-de-Freitas R, et al (2020)

Aedes aegypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement.

Scientific reports, 10(1):63.

Mosquitoes that carry Wolbachia endosymbionts may help control the spread of arboviral diseases, such as dengue, Zika and chikungunya. Wolbachia frequencies systematically increase only when the frequency-dependent advantage due to cytoplasmic incompatibility exceeds frequency-independent costs, which may be intrinsic to the Wolbachia and/or can be associated with the genetic background into which Wolbachia are introduced. Costs depend on field conditions such as the environmental pesticide load. Introduced mosquitoes need adequate protection against insecticides to ensure survival after release. We model how insecticide resistance of transinfected mosquitoes determines the success of local Wolbachia introductions and link our theoretical results to field data. Two Ae. aegypti laboratory strains carrying Wolbachia were released in an isolated district of Rio de Janeiro, Brazil: wMelBr (susceptible to pyrethroids) and wMelRio (resistant to pyrethroids). Our models elucidate why releases of the susceptible strain failed to result in Wolbachia establishment, while releases of the resistant strain led to Wolbachia transforming the native Ae. aegypti population. The results highlight the importance of matching insecticide resistance levels in release stocks to those in the target natural populations during Wolbachia deployment.

RevDate: 2020-01-08

Reeves DD, Price SL, Ramalho MO, et al (2020)

The Diversity and Distribution of Wolbachia, Rhizobiales, and Ophiocordyceps Within the Widespread Neotropical Turtle Ant, Cephalotes atratus (Hymenoptera: Formicidae).

Neotropical entomology pii:10.1007/s13744-019-00735-z [Epub ahead of print].

Ants are an ecologically and evolutionarily diverse group, and they harbor a wide range of symbiotic microbial communities that often greatly affect their biology. Turtle ants (genus Cephalotes) engage in mutualistic relationships with gut bacteria and are exploited by microbial parasites. Studies have shown that associations among these microbial lineages and the turtle ant hosts vary geographically. However, these studies have been limited, and thorough within-species analyses of the variation and structure of these microbial communities have yet to be conducted. The giant turtle ant, Cephalotes atratus (Linnaeus 1758), is a geographically widespread, genetically diverse Neotropical species that has been sampled extensively across its geographic range, making it ideal for analysis of microbial associations. In this study, we verified the presence, genetic variation, and geographic patterns at the individual, colony, and population level of three microbial groups associated with the giant turtle ant: Wolbachia, a genus of facultative bacteria which are often parasitic, affecting host reproduction; Rhizobiales, a mutualistic order of bacteria hypothesized to be an obligate nutritional symbiont in turtle ants; and Ophiocordyceps, a genus of endoparasitic fungi infecting many arthropod species by manipulating their behavior for fungal reproduction. In this study, we found varying degrees of prevalence for two distantly related genotypes (haplogroups) of Wolbachia and high degree of prevalence of Rhizobiales across colonies with little genetic variation. In addition, we found low occurrence of Ophiocordyceps. This study highlights a key first step in understanding the diversity, distribution, and prevalence of the microbial community of C. atratus.

RevDate: 2020-01-08

Chrostek E, Hurst GDD, EA McGraw (2020)

Infectious Diseases: Antiviral Wolbachia Limits Dengue in Malaysia.

Current biology : CB, 30(1):R30-R32.

Vector-borne viral diseases pose an urgent public health challenge, particularly in the tropics. Field releases of mosquitoes carrying bacterial symbionts that reduce vector competence are ongoing in Kuala Lumpur, Malaysia. Early results show that wAlbB Wolbachia can persist in mosquitoes in urban settings and decrease dengue incidence in humans.

RevDate: 2020-01-04

Madhav M, Parry R, Morgan JAT, et al (2020)

Wolbachia endosymbiont of the horn fly Haematobia irritans irritans: a supergroup A strain with multiple horizontally acquired cytoplasmic incompatibility genes.

Applied and environmental microbiology pii:AEM.02589-19 [Epub ahead of print].

The horn fly, Haematobia irritans irritans, is a hematophagous parasite of livestock distributed throughout Europe, Africa, Asia, and the Americas. Welfare losses on livestock due to horn fly infestation are estimated to cost between USD 1-2.5 billion annually in North America and Brazil. The endosymbiotic bacterium Wolbachia pipientis is a maternally inherited manipulator of reproductive biology in arthropods and naturally infects laboratory colonies of horn flies from Kerrville, USA and Alberta, Canada, but has also been identified in wild-caught samples from Canada, USA, Mexico and Hungary. Re-assembly of PacBio long-read and Illumina genomic DNA libraries from the Kerrville H. i. irritans genome project allowed for a complete and circularised 1.3 Mb Wolbachia genome (wIrr). Annotation of wIrr yielded 1249 coding genes, 34 tRNAs, three rRNAs, and five prophage regions. Comparative genomics and whole genome Bayesian evolutionary analysis of wIrr compared to published Wolbachia genomes suggests that wIrr is most closely related to and diverged from Wolbachia supergroup A strains known to infect Drosophila spp. Whole-genome synteny analyses between wIrr and closely related genomes indicates that wIrr has undergone significant genome rearrangements while maintaining high nucleotide identity. Comparative analysis of the cytoplasmic incompatibility (CI) genes of wIrr suggests two phylogenetically distinct CI loci and acquisition of another CifB homolog from phylogenetically distant supergroup A Wolbachia strains suggesting horizontal acquisition of these loci. The wIrr genome provides a resource for future examination of the impact Wolbachia may have in both biocontrol and potential insecticide resistance of horn flies.Importance Horn flies, Haematobia irritans irritans, are obligate hematophagous parasites of cattle having significant effects on production and animal welfare. Control of horn flies mainly relies on the use of insecticides, but issues with resistance have increased interest in development of alternative means of control. Wolbachia pipientis is an endosymbiont bacterium known to have a range of effects on host reproduction such as induction of cytoplasmic incompatibility, feminization, male killing, and also impacts on vector transmission. These characteristics of Wolbachia have been exploited in biological control approaches for a range of insect pests. Here we report the assembly and annotation of the circular genome of the Wolbachia strain of the Kerrville, USA horn fly (wIrr). Annotation of wIrr suggests its unique features including the horizontal acquisition of additional transcriptionally active cytoplasmic incompatibility loci. This study will provide the foundation for future Wolbachia-induced biological effect studies for control of horn flies.

RevDate: 2020-01-08

Lefoulon E, Vaisman N, Frydman HM, et al (2019)

Author Correction: Large Enriched Fragment Targeted Sequencing (LEFT-SEQ) Applied to Capture of Wolbachia Genomes.

Scientific reports, 9(1):20184 pii:10.1038/s41598-019-55305-5.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2020-01-08

Asimakis ED, Doudoumis V, Hadapad AB, et al (2019)

Detection and characterization of bacterial endosymbionts in Southeast Asian tephritid fruit fly populations.

BMC microbiology, 19(Suppl 1):290 pii:10.1186/s12866-019-1653-x.

BACKGROUND: Various endosymbiotic bacteria, including Wolbachia of the Alphaproteobacteria, infect a wide range of insects and are capable of inducing reproductive abnormalities to their hosts such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male-killing. These extended phenotypes can be potentially exploited in enhancing environmentally friendly methods, such as the sterile insect technique (SIT), for controlling natural populations of agricultural pests. The goal of the present study is to investigate the presence of Wolbachia, Spiroplasma, Arsenophonus and Cardinium among Bactrocera, Dacus and Zeugodacus flies of Southeast Asian populations, and to genotype any detected Wolbachia strains.

RESULTS: A specific 16S rRNA PCR assay was used to investigate the presence of reproductive parasites in natural populations of nine different tephritid species originating from three Asian countries, Bangladesh, China and India. Wolbachia infections were identified in Bactrocera dorsalis, B. correcta, B. scutellaris and B. zonata, with 12.2-42.9% occurrence, Entomoplasmatales in B. dorsalis, B. correcta, B. scutellaris, B. zonata, Zeugodacus cucurbitae and Z. tau (0.8-14.3%) and Cardinium in B. dorsalis and Z. tau (0.9-5.8%), while none of the species tested, harbored infections with Arsenophonus. Infected populations showed a medium (between 10 and 90%) or low (< 10%) prevalence, ranging from 3 to 80% for Wolbachia, 2 to 33% for Entomoplasmatales and 5 to 45% for Cardinium. Wolbachia and Entomoplasmatales infections were found both in tropical and subtropical populations, the former mostly in India and the latter in various regions of India and Bangladesh. Cardinium infections were identified in both countries but only in subtropical populations. Phylogenetic analysis revealed the presence of Wolbachia with some strains belonging either to supergroup B or supergroup A. Sequence analysis revealed deletions of variable length and nucleotide variation in three Wolbachia genes. Spiroplasma strains were characterized as citri-chrysopicola-mirum and ixodetis strains while the remaining Entomoplasmatales to the Mycoides-Entomoplasmataceae clade. Cardinium strains were characterized as group A, similar to strains infecting Encarsia pergandiella.

CONCLUSIONS: Our results indicated that in the Southeast natural populations examined, supergroup A Wolbachia strain infections were the most common, followed by Entomoplasmatales and Cardinium. In terms of diversity, most strains of each bacterial genus detected clustered in a common group. Interestingly, the deletions detected in three Wolbachia genes were either new or similar to those of previously identified pseudogenes that were integrated in the host genome indicating putative horizontal gene transfer events in B. dorsalis, B. correcta and B. zonata.

RevDate: 2020-01-17

Conte CA, Segura DF, Milla FH, et al (2019)

Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains.

BMC microbiology, 19(Suppl 1):289 pii:10.1186/s12866-019-1652-y.

BACKGROUND: Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae).

RESULTS: We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae.

CONCLUSIONS: We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.

RevDate: 2019-12-31

Hübner MP, Gunderson E, Vogel I, et al (2019)

Short-course quinazoline drug treatments are effective in the Litomosoides sigmodontis and Brugia pahangi jird models.

International journal for parasitology. Drugs and drug resistance, 12:18-27 [Epub ahead of print].

The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days.

RevDate: 2020-01-11

Fauver JR, Martin J, Weil GJ, et al (2019)

De novo Assembly of the Brugia malayi Genome Using Long Reads from a Single MinION Flowcell.

Scientific reports, 9(1):19521.

Filarial nematode infections cause a substantial global disease burden. Genomic studies of filarial worms can improve our understanding of their biology and epidemiology. However, genomic information from field isolates is limited and available reference genomes are often discontinuous. Single molecule sequencing technologies can reduce the cost of genome sequencing and long reads produced from these devices can improve the contiguity and completeness of genome assemblies. In addition, these new technologies can make generation and analysis of large numbers of field isolates feasible. In this study, we assessed the performance of the Oxford Nanopore Technologies MinION for sequencing and assembling the genome of Brugia malayi, a human parasite widely used in filariasis research. Using data from a single MinION flowcell, a 90.3 Mb nuclear genome was assembled into 202 contigs with an N50 of 2.4 Mb. This assembly covered 96.9% of the well-defined B. malayi reference genome with 99.2% identity. The complete mitochondrial genome was obtained with individual reads and the nearly complete genome of the endosymbiotic bacteria Wolbachia was assembled alongside the nuclear genome. Long-read data from the MinION produced an assembly that approached the quality of a well-established reference genome using comparably fewer resources.

RevDate: 2020-01-08

Kyritsis GA, Augustinos AA, Livadaras I, et al (2019)

Medfly-Wolbachia symbiosis: genotype x genotype interactions determine host's life history traits under mass rearing conditions.

BMC biotechnology, 19(Suppl 2):96.

BACKGROUND: Wolbachia pipientis is a widespread, obligatory intracellular and maternally inherited bacterium, that induces a wide range of reproductive alterations to its hosts. Cytoplasmic Incompatibility (CI) is causing embryonic lethality, the most common of them. Despite that Wolbachia-borne sterility has been proposed as an environmental friendly pest control method (Incompatible Insect Technique, IIT) since 1970s, the fact that Wolbachia modifies important fitness components of its hosts sets severe barriers to IIT implementation. Mass rearing of Mediterranean fruit fly, Ceratitis capitata (medfly), is highly optimized given that this pest is a model species regarding the implementation of another sterility based pest control method, the Sterile Insect Technique (SIT). We used the medfly-Wolbachia symbiotic association, as a model system, to study the effect of two different Wolbachia strains, on the life history traits of 2 C. capitata lines with different genomic background.

RESULTS: Wolbachia effects are regulated by both C. capitata genetic background and the Wolbachia strain. Wolbachia infection reduces fertility rates in both C. capitata genetic backgrounds and shortens the pre-pupa developmental duration in the GSS strain. On the other hand, regardless of the strain of Wolbachia (wCer2, wCer4) infection does not affect either the sex ratio or the longevity of adults. wCer4 infection imposed a reduction in females' fecundity but wCer2 did not. Male mating competitiveness, adults flight ability and longevity under water and food deprivation were affected by both the genetic background of medfly and the strain of Wolbachia (genotype by genotype interaction).

CONCLUSION: Wolbachia infection could alter important life history traits of mass-reared C. capitata lines and therefore the response of each genotype on the Wolbachia infection should be considered toward ensuring the productivity of the Wolbachia-infected insects under mass-rearing conditions.

RevDate: 2020-01-14

Wedell N, Price TAR, AK Lindholm (2019)

Gene drive: progress and prospects.

Proceedings. Biological sciences, 286(1917):20192709.

Gene drive is a naturally occurring phenomenon in which selfish genetic elements manipulate gametogenesis and reproduction to increase their own transmission to the next generation. Currently, there is great excitement about the potential of harnessing such systems to control major pest and vector populations. If synthetic gene drive systems can be constructed and applied to key species, they may be able to rapidly spread either modifying or eliminating the targeted populations. This approach has been lauded as a revolutionary and efficient mechanism to control insect-borne diseases and crop pests. Driving endosymbionts have already been deployed to combat the transmission of dengue and Zika virus in mosquitoes. However, there are a variety of barriers to successfully implementing gene drive techniques in wild populations. There is a risk that targeted organisms will rapidly evolve an ability to suppress the synthetic drive system, rendering it ineffective. There are also potential risks of synthetic gene drivers invading non-target species or populations. This Special Feature covers the current state of affairs regarding both natural and synthetic gene drive systems with the aim to identify knowledge gaps. By understanding how natural drive systems spread through populations, we may be able to better predict the outcomes of synthetic drive release.

RevDate: 2019-12-17

Bishop C, Parry R, S Asgari (2019)

Effect of Wolbachia wAlbB on a positive-sense RNA negev-like virus: a novel virus persistently infecting Aedes albopictus mosquitoes and cells.

The Journal of general virology [Epub ahead of print].

The Aedes aegypti mosquito is the primary vector of several medically important arboviruses. The endosymbiotic bacterium, Wolbachia pipientis, has emerged as a means of blocking transmission of arboviruses such as dengue and Zika viruses. One Wolbachia strain that has shown potential in field trials is wAlbB, a naturally occurring Wolbachia strain of the Asian tiger mosquito Aedes albopictus. When transinfected into Ae. aegypti, wAlbB exhibits strong virus inhibition. In addition to modulating arboviruses, Wolbachia also modulates some insect-specific viruses. Here, we explored the effect of Wolbachia on the virome of the Ae. albopictus cell line Aa23 naturally infected with wAlbB and also a stably transinfected recipient Ae. aegypti cell line (Aag2.wAlbB). RNA sequencing and bioinformatic analysis on both cell lines revealed an 11 kb genome of a single-stranded positive-sense RNA negev-like virus related to the recently proposed negevirus taxon. We denoted this novel virus as Aedes albopictus negev-like virus (AalNLV). Tetracycline clearance of Wolbachia from Aa23 cells did not significantly affect AalNLV levels, while in Aag2.wAlbB cells, a significant increase in virus genome RNA copies was observed. We further investigated the inhibitory effect of wAlbB on AalNLV and another positive-sense RNA virus, cell fusing agent virus, which is present in Aag2 cells and known to be suppressed by Wolbachia. wAlbB suppressed both viruses, with the effect on AalNLV being more striking. The findings from this study further supplement our understanding of the complex interaction between Wolbachia, host and virome.

RevDate: 2020-01-03

Li C, He M, Yun Y, et al (2020)

Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola.

Journal of invertebrate pathology, 169:107307.

Associations between endosymbiotic bacteria and their hosts are widespread in nature and have been demonstrated extensively; however, only a few studies have examined how facultative symbionts affect host nutrition and metabolism. To gain insight into the associations between facultative symbionts and host nutrition and metabolic activity, we detected endosymbiotic infection in a small spider species, Hylyphantes graminicola, and established two infectious strains, i.e., W-C+ (Wolbachia negative, Cardinium positive) and W+C+ (Wolbachia positive, Cardinium positive). We then determined the content of fat and free amino acids in W-C+ and W+C+ spiders, respectively. We also detected the transcriptome of H. graminicola and the expression of genes involved in fat and amino acid metabolism at different host ages. Results showed that fat content in W+C+ spiders was higher than that in W-C+ spiders, and free amino acid content was higher in W+C+ males than W-C+ males, with no difference observed in females. Transcriptome analysis identified 144 (W-C+ vs W+C+) differentially expressed genes (DEGs). Moreover, the expression of five genes involved in fat and amino acid metabolism were significantly up-regulated in the third, fourth, and fifth instar stages in W+C+ spiders. This study indicated that Wolbachia and Cardinium co-infection had a pivotal effect on fat and amino acid synthesis in hosts. Moreover, our results provide strong evidence explaining the long-term coexistence of hosts and endosymbionts.

RevDate: 2020-01-08

Duan DY, Zhou HM, TY Cheng (2019)

Comparative analysis of microbial community in the whole body and midgut from fully engorged and unfed female adult Melophagus ovinus.

Medical and veterinary entomology [Epub ahead of print].

Melophagus ovinus is a type of ectoparasite infesting sheep. Data regarding the comprehensive bacterial community associated with the whole body and midgut of M. ovinus under different engorged statuses are required. Melophagus ovinus were collected from the city of Jiuquan, China. Bacterial DNA was extracted from the whole body and midgut of fully engorged female adults, or newly hatched and unfed adult female M. ovinus. The 16S rRNA gene V3-V4 hypervariable regions were sequenced using the IonS5™XL platform (Thermo Fisher Scientific, Waltham, MA, U.S.A.). The whole body bacterial diversity of the newly hatched, unfed adult females was greater compared with that of the other three samples. Proteobacteria was the dominant bacterial phylum in all of the samples. Of the 42 total bacterial genera present in all of the experimental samples, Arsenophonus, Bartonella and Wolbachia were the dominant genera. The relative abundance of Arsenophonus in midgut was greater than that in the whole body. The relative abundance of Bartonella in fully engorged adults was far greater than those in newly hatched, unfed adults. The relative abundance of Wolbachia was highest in the whole body of newly hatched, unfed adults. Seventeen bacterial species were identified in all experimental samples. Bartonella chomelii, Streptococcus hyointestinalis and Escherichia coli were the first species reported in M. ovinus.

RevDate: 2019-12-18

Sawasdichai S, Chaumeau V, Dah T, et al (2019)

Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar.

Wellcome open research, 4:11.

Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. 16S rRNA Wolbachia DNA sequences were detected with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Sequences were diverse and different from those described in the African malaria mosquitoes. Conclusion: The detection of Wolbachia DNA in malaria mosquitoes from Kayin state warrants further investigations to understand better the ecology and biology of Anopheles- Wolbachia interactions in Southeast Asia.

RevDate: 2020-01-08

Li K, Stanojević M, Stamenković G, et al (2019)

Insight into diversity of bacteria belonging to the order Rickettsiales in 9 arthropods species collected in Serbia.

Scientific reports, 9(1):18680.

Rickettsiales bacteria in arthropods play a significant role in both public health and arthropod ecology. However, the extensive genetic diversity of Rickettsiales endosymbionts of arthropods is still to be discovered. In 2016, 515 arthropods belonging to 9 species of four classes (Insecta, Chilopoda, Diplopoda and Arachnida) were collected in Serbia. The presence and genetic diversity of Rickettsiales bacteria were evaluated by characterizing the 16S rRNA (rrs), citrate synthase (gltA) and heat shock protein (groEL) genes. The presence of various Rickettsiales bacteria was identified in the majority of tested arthropod species. The results revealed co-circulation of five recognized Rickettsiales species including Rickettsia, Ehrlichia and Wolbachia, as well as four tentative novel species, including one tentative novel genus named Neowolbachia. These results suggest the remarkable genetic diversity of Rickettsiales bacteria in certain arthropod species in this region. Furthermore, the high prevalence of spotted fever group Rickettsia in Ixodes ricinus ticks highlights the potential public health risk of human Rickettsia infection.

RevDate: 2019-12-10

Arai H, Lin SR, Nakai M, et al (2019)

Closely Related Male-Killing and Nonmale-Killing Wolbachia Strains in the Oriental Tea Tortrix Homona magnanima.

Microbial ecology pii:10.1007/s00248-019-01469-6 [Epub ahead of print].

Wolbachia are inherited intracellular bacteria that cause male-specific death in some arthropods, called male-killing. To date, three Wolbachia strains have been identified in the oriental tea tortrix Homona magnanima (Tortricidae, Lepidoptera); however, none of these caused male-killing in the Japanese population. Here, we describe a male-killing Wolbachia strain in Taiwanese H. magnanima. From field-collected H. magnanima, two female-biased host lines were established, and antibiotic treatments revealed Wolbachia (wHm-t) as the causative agent of male-killing. The wsp and MLST genes in wHm-t are identical to corresponding genes in the nonmale-killing strain wHm-c from the Japanese population, implying a close relationship of the two strains. Crossing the Japanese and Taiwanese H. magnanima revealed that Wolbachia genotype rather than the host genetic background was responsible for the presence of the male-killing phenotype. Quantitative PCR analyses revealed that the density of wHm-t was higher than that of other Wolbachia strains in H. magnanima, including wHm-c. The densities of wHm-t were also heterogeneous between host lines. Notably, wHm-t in the low-density and high-density lines carried identical wsp and MLST genes but had distinct lethal patterns. Furthermore, over 90% of field-collected lines of H. magnanima in Taiwan were infected with wHm-t, although not all host lines harboring wHm-t showed male-killing. The host lines that showed male-killing harbored a high density of Wolbachia compared to the host lines that did not show male-killing. Thus, the differences in the phenotypes appear to be dependent on biological and genetic characteristics of closely related Wolbachia strains.

RevDate: 2019-12-07

Li TP, Zhou CY, Zha SS, et al (2019)

Stable Establishment of Cardinium in the Brown Planthopper Nilaparvata lugens despite Decreased Host Fitness.

Applied and environmental microbiology pii:AEM.02509-19 [Epub ahead of print].

The brown planthopper, Nilaparvata lugens (Hemiptera), is a major pest of rice crops in Asia. Artificial transinfections of Wolbachia have recently been used for reducing host impacts, but transinfections have not yet been undertaken with another important endosymbiont, Cardinium This endosymbiont can manipulate the reproduction of hosts through phenotypes such as cytoplasmic incompatibility (CI), which is strong in the related white-backed planthopper, Sogatella furcifera (Hemiptera). Here, we stably infected N. lugens with Cardinium from S. furcifera and showed that it exhibits perfect maternal transmission in N. lugens The density of Cardinium varied across developmental stages and tissues of its transinfected host. Cardinium did not induce strong CI in N. lugens, likely due to its low density in testicles. The infection did decrease fecundity and hatching rate in the transinfected host, but a decrease in fecundity was not apparent when transinfected females mated with Wolbachia infected males. The experiments show the feasibility of transferring Cardinium endosymbionts across hosts, but the deleterious effects of Cardinium on N. lugens limit its potential to spread in wild populations of N. lugens in the absence of strong CI.IMPORTANCE In this study, we established a Cardinium-infected N. lugens line that possessed complete maternal transmission. Cardinium had a widespread distribution in tissues of N. lugens, and this infection can decrease the fecundity and hatching rate of the host. Our findings emphasize the feasibility of transinfection of Cardinium in insects, and this expands the range of endosymbionts that could be manipulated for pest control.

RevDate: 2019-12-29

Liu Y, Fan ZY, An X, et al (2020)

A single-pair method to screen Rickettsia-infected and uninfected whitefly Bemisia tabaci populations.

Journal of microbiological methods, 168:105797.

Bacterial endosymbionts such as Rickettsia and Wolbachia play prominent roles in the development and behaviour of their insect hosts, such as whiteflies, aphids, psyllids and mealybugs. Accumulating studies have emphasized the importance of establishing experimental insect populations that are either lacking or bearing certain species of endosymbionts, because they are the basis in which to reveal the biological role of individual symbionts. In this study, using Rickettsia as an example, we explored a "single-pair screening" method to establish Rickettsia infected and uninfected populations of whitefly Bemisia tabaci MEAM1 for further experimental use. The original host population had a relatively low infection rate of Rickettsia (< 35%). When B. tabaci adults newly emerged, unmated males and females were randomly selected, and released into a leaf cage that covered a healthy plant leaf in order to oviposit F1 generation eggs. Following 6 days of oviposition, the parents were recaptured and used for PCR detection. The F1 progeny, for which parents were either Rickettsia positive or negative, were used to produce the F2 generation, and similarly in turn for the F3, F4 and F5 generations respectively; if the infection status of Rickettsia was consistent in the F1 to F5 generations, then the populations can be used as Rickettsia positive or negative lines for further experiments. In addition, our phylogenetic analyses revealed that Rickettsia has high fidelity during the maternal transmission in different generations.

RevDate: 2020-01-08

Wanji S, Nji TM, Hamill L, et al (2019)

Implementation of test-and-treat with doxycycline and temephos ground larviciding as alternative strategies for accelerating onchocerciasis elimination in an area of loiasis co-endemicity: the COUNTDOWN consortium multi-disciplinary study protocol.

Parasites & vectors, 12(1):574.

BACKGROUND: Onchocerciasis is a priority neglected tropical disease targeted for elimination by 2025. The standard strategy to combat onchocerciasis is annual Community-Directed Treatment with ivermectin (CDTi). Yet, high prevalence rates and transmission persist following > 12 rounds in South-West Cameroon. Challenges include programme coverage, adherence to, and acceptability of ivermectin in an area of Loa loa co-endemicity. Loiasis patients harbouring heavy infections are at risk of potentially fatal serious adverse events following CDTi. Alternative strategies are therefore needed to achieve onchocerciasis elimination where CDTi effectiveness is suboptimal.

METHODS/DESIGN: We designed an implementation study to evaluate integrating World Health Organisation-endorsed alternative strategies for the elimination of onchocerciasis, namely test-and-treat with the macrofilaricide, doxycycline (TTd), and ground larviciding for suppression of blackfly vectors with the organophosphate temephos. A community-based controlled before-after intervention study will be conducted among > 2000 participants in 20 intervention (Meme River Basin) and 10 control (Indian River Basin) communities. The primary outcome measure is O. volvulus prevalence at follow-up 18-months post-treatment. The study involves four inter-disciplinary components: parasitology, entomology, applied social sciences and health economics. Onchocerciasis skin infection will be diagnosed by skin biopsy and Loa loa infection will be diagnosed by parasitological examination of finger-prick blood samples. A simultaneous clinical skin disease assessment will be made. Eligible skin-snip-positive individuals will be offered directly-observed treatment for 5 weeks with 100 mg/day doxycycline. Transmission assessments of onchocerciasis in the communities will be collected post-human landing catch of the local biting blackfly vector prior to ground larviciding with temephos every week (0.3 l/m3) until biting rate falls below 5/person/day. Qualitative research, including in-depth interviews and focus-group discussions will be used to assess acceptability and feasibility of the implemented alternative strategies among intervention recipients and providers. Health economics will assess the cost-effectiveness of the implemented interventions.

CONCLUSIONS: Using a multidisciplinary approach, we aim to assess the effectiveness of TTd, alone or in combination with ground larviciding, following a single intervention round and scrutinise the acceptability and feasibility of implementing at scale in similar hotspots of onchocerciasis infection, to accelerate onchocerciasis elimination.

RevDate: 2019-12-04

Staunton KM, Rohde BB, Townsend M, et al (2019)

Investigating Male Aedes aegypti (Diptera: Culicidae) Attraction to Different Oviposition Containers Using Various Configurations of the Sound Gravid Aedes Trap.

Journal of medical entomology pii:5651346 [Epub ahead of print].

Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.

RevDate: 2020-01-08

Devescovi F, Conte CA, Augustinos A, et al (2019)

Symbionts do not affect the mating incompatibility between the Brazilian-1 and Peruvian morphotypes of the Anastrepha fraterculus cryptic species complex.

Scientific reports, 9(1):18319.

The South American fruit fly, Anastrepha fraterculus, is clearly undergoing a speciation process. Among others, two of their morphotypes, the Brazilian-1 and Peruvian, have accumulated differences in pre- and post-zygotic mechanisms resulting in a degree of reproductive isolation. Both harbor a different strain of Wolbachia, which is a widespread endosymbiotic bacterium among many invertebrates producing a range of reproductive effects. In this paper, we studied the role of this bacterium as one of the factors involved in such isolation process. Infected and cured laboratory colonies were used to test pre- and post-zygotic effects, with special emphasis in uni- and bi-directional cytoplasmic incompatibility (CI). We showed that Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI). This inhibition showed to be more effective in the Peruvian morphotype. Bi-directional CI was not evidenced, suggesting the presence of compatible Wolbachia strains. We conclude that Wolbachia is not directly involved in the speciation process of these morphotypes. Other mechanisms rather than CI should be explored in order to explain the reduced mating compatibility between the Brazilian-1 and Peruvian morphotypes.

RevDate: 2020-01-08

Chung M, Teigen LE, Libro S, et al (2019)

Drug Repurposing of Bromodomain Inhibitors as Potential Novel Therapeutic Leads for Lymphatic Filariasis Guided by Multispecies Transcriptomics.

mSystems, 4(6):.

To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis.IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.

RevDate: 2020-01-08

Fontes-Sousa AP, Silvestre-Ferreira AC, Carretón E, et al (2019)

Exposure of humans to the zoonotic nematode Dirofilaria immitis in Northern Portugal.

Epidemiology and infection, 147:e282.

Dirofilariosis caused by Dirofilaria immitis (heartworm) is a zoonosis, considered an endemic disease of dogs and cats in several countries of Western Europe, including Portugal. This study assesses the levels of D. immitis exposure in humans from Northern Portugal, to which end, 668 inhabitants of several districts belonging to two different climate areas (Csa: Bragança, Vila Real and Csb: Aveiro, Braga, Porto, Viseu) were tested for anti-D. immitis and anti-Wolbachia surface proteins (WSP) antibodies. The overall prevalence of seropositivity to both anti-D. immitis and WSP antibodies was 6.1%, which demonstrated the risk of infection with D. immitis in humans living in Northern Portugal. This study, carried out in a Western European country, contributes to the characterisation of the risk of infection with D. immitis among human population in this region of the continent. From a One Health point of view, the results of the current work also support the close relationship between dogs and people as a risk factor for human infection.

RevDate: 2020-01-08

Zhou JC, Li YY, Liu QQ, et al (2019)

Effects of temperature and superparasitism on quality and characteristics of thelytokous Wolbachia-infected Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) during mass rearing.

Scientific reports, 9(1):18114.

Thelytokous Wolbachia-infected Trichogramma spp. are widely used egg parasitoids against lepidopteran pests in biological control programs. Wolbachia may manipulate host wasps for superparasitism and is sensitive to temperature. To explore effects of temperature and superparasitism, we compared fitness parameters and Wolbachia-mediated phenotype of thelytokous Wolbachia-infected Trichogramma dendrolimi between those emerging from superparasitised or single-parasitised hosts at 17, 21, 25, or 29 °C. Infected mothers of T. dendrolimi showed reduced superparasitism and parasitism increased with temperature. Wolbachia titre decreased with temperature when females emerged from singly-parasitised hosts, but there was no correlation in superparasitised hosts. Females showed higher Wolbachia titres at 21, 25, or 29 °C when developing from superparasitised hosts. The daily male ratio of offspring increased with temperature, and the day-age threshold for 5%, 50%, or 95% daily male ratio decreased with temperature in both parasitism forms. Females that emerged from superparasitised hosts had a shorter life span and reduced fecundity. These results indicate that Wolbachia may affect host behaviour by increasing superparasitism to enhance its spread, but this has negative effects on thelytokous Wolbachia-infected T. dendrolimi.

RevDate: 2020-01-17

Hotterbeekx A, Raimon S, Abd-Elfarag G, et al (2019)

Onchocerca volvulus is not detected in the cerebrospinal fluid of persons with onchocerciasis-associated epilepsy.

International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 91:119-123 pii:S1201-9712(19)30469-2 [Epub ahead of print].

OBJECTIVES: Epidemiological evidence links onchocerciasis with the development of epilepsy. The aim of this study was to detect Onchocerca volvulus microfilariae or its bacterial endosymbiont, Wolbachia, in the cerebrospinal fluid (CSF) of persons with onchocerciasis-associated epilepsy (OAE).

METHODS: Thirteen persons with OAE and O. volvulus skin snip densities of >80 microfilariae were recruited in Maridi County (South Sudan) and their CSF obtained. Cytospin centrifuged preparations of CSF were examined by light microscopy for the presence of O. volvulus microfilariae. DNA was extracted from CSF to detect O. volvulus (O-150 repeat) by quantitative real-time PCR, and Wolbachia (FtsZ gene) by standard PCR. To further investigate whether CSF from onchocerciasis-infected participants could induce seizures, 3- and 7-day old zebrafish larvae were injected with the CSF intracardially and intraperitoneally, respectively. For other zebrafish larvae, CSF was added directly to the larval medium.

RESULTS: No microfilariae, parasite DNA, or Wolbachia DNA were detected in any of the CSF samples by light microscopy or PCR. All zebrafish survived the procedures and none developed seizures.

CONCLUSIONS: The absence of O. volvulus in the CSF suggests that OAE is likely not caused by direct parasite invasion into the central nervous system, but by another phenomenon triggered by O. volvulus infection.

RevDate: 2019-11-30

Ullah MS, Kamimura T, T Gotoh (2019)

Effects of Temperature on Demographic Parameters of Bryobia praetiosa (Acari: Tetranychidae).

Journal of economic entomology pii:5648928 [Epub ahead of print].

The clover mite, Bryobia praetiosa Koch (Acari: Tetranychidae), is an agricultural pest, as well as a frequent invader of hospitals and homes. However, its adaptability to different temperatures is not well understood. We used age- and stage-specific life tables to investigate the effects of temperature on demographic parameters of B. praetiosa from 15 to 35°C under a long-day photoperiod (16:8 [L:D] h). The clover mite is a thelytokous species (consisting of only females) due to its infection with the symbiotic bacterium Wolbachia. The egg-to-adult development time of female B. praetiosa decreased as the temperature increased from 15 to 32.5°C. At 35°C, females laid eggs, but no eggs hatched. The lower thermal threshold (t0) and the thermal constant (K) for egg-to-adult females were 8.7°C and 274.1 degree-days, respectively. The intrinsic optimum temperature (TØ) was 22.4°C. The oviposition period decreased with increasing temperature. Fecundity was highest at 20°C and extremely low at 30°C. The net reproductive rate (R0) decreased as the temperature increased from 15 to 30°C, but no significant difference was observed between 15 and 20°C. The intrinsic rate of natural increase (r) varied from 0.0721/d at 15°C to 0.1679/d at 25°C, and then decreased to 0.1203/d at 30°C. These results should be useful in developing management strategies for B. praetiosa.

RevDate: 2020-01-08

Vivero RJ, Villegas-Plazas M, Cadavid-Restrepo GE, et al (2019)

Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome.

Scientific reports, 9(1):17746.

Phlebotomine sand flies are remarkable vectors of several etiologic agents (virus, bacterial, trypanosomatid Leishmania), posing a heavy health burden for human populations mainly located at developing countries. Their intestinal microbiota is involved in a wide range of biological and physiological processes, and could exclude or facilitate such transmission of pathogens. In this study, we investigated the Eubacterial microbiome from digestive tracts of Lu. evansi adults structure using 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq) obtained from digestive tracts of Lu. evansi adults. The samples were collected at two locations with high incidence of the disease in humans: peri-urban and forest ecosystems from the department of Sucre, Colombia. 289,068 quality-filtered reads of V4 region of 16S rRNA gene were obtained and clustered into 1,762 operational taxonomic units (OTUs) with 97% similarity. Regarding eubacterial diversity, 14 bacterial phyla and 2 new candidate phyla were found to be consistently associated with the gut microbiome content. Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla in all the samples and the core microbiome was particularly dominated by Methylobacterium genus. Methylobacterium species, are known to have mutualistic relationships with some plants and are involved in shaping the microbial community in the phyllosphere. As a remarkable feature, OTUs classified as Wolbachia spp. were found abundant on peri-urban ecosystem samples, in adult male (OTUs n = 776) and unfed female (OTUs n = 324). Furthermore, our results provide evidence of OTUs classified as Cardinium endosymbiont in relative abundance, notably higher with respect to Wolbachia. The variation in insect gut microbiota may be determined by the environment as also for the type of feeding. Our findings increase the richness of the microbiota associated with Lu. evansi. In this study, OTUs of Methylobacterium found in Lu. evansi was higher in engorged females, suggesting that there are interactions between microbes from plant sources, blood nutrients and the parasites they transmit during the blood intake.

RevDate: 2020-01-08

Stouthamer CM, Kelly SE, Mann E, et al (2019)

Development of a multi-locus sequence typing system helps reveal the evolution of Cardinium hertigii, a reproductive manipulator symbiont of insects.

BMC microbiology, 19(1):266.

BACKGROUND: Cardinium is an intracellular bacterial symbiont in the phylum Bacteroidetes that is found in many different species of arthropods and some nematodes. This symbiont is known to be able to induce three reproductive manipulation phenotypes, including cytoplasmic incompatibility. Placing individual strains of Cardinium within a larger evolutionary context has been challenging because only two, relatively slowly evolving genes, 16S rRNA gene and Gyrase B, have been used to generate phylogenetic trees, and consequently, the relationship of different strains has been elucidated in only its roughest form.

RESULTS: We developed a Multi Locus Sequence Typing (MLST) system that provides researchers with three new genes in addition to Gyrase B for inferring phylogenies and delineating Cardinium strains. From our Cardinium phylogeny, we confirmed the presence of a new group D, a Cardinium clade that resides in the arachnid order harvestmen (Opiliones). Many Cardinium clades appear to display a high degree of host affinity, while some show evidence of host shifts to phylogenetically distant hosts, likely associated with ecological opportunity. Like the unrelated reproductive manipulator Wolbachia, the Cardinium phylogeny also shows no clear phylogenetic signal associated with particular reproductive manipulations.

CONCLUSIONS: The Cardinium phylogeny shows evidence of diversification within particular host lineages, and also of host shifts among trophic levels within parasitoid-host communities. Like Wolbachia, the relatedness of Cardinium strains does not necessarily predict their reproductive phenotypes. Lastly, the genetic tools proposed in this study may help future authors to characterize new strains and add to our understanding of Cardinium evolution.

RevDate: 2020-01-08

Beckmann JF, Sharma GD, Mendez L, et al (2019)

The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors.

eLife, 8:.

Intracellular Wolbachia bacteria manipulate arthropod reproduction to promote their own inheritance. The most prevalent mechanism, cytoplasmic incompatibility (CI), traces to a Wolbachia deubiquitylase, CidB, and CidA. CidB has properties of a toxin, while CidA binds CidB and rescues embryonic viability. CidB is also toxic to yeast where we identified both host effects and high-copy suppressors of toxicity. The strongest suppressor was karyopherin-α, a nuclear-import receptor; this required nuclear localization-signal binding. A protein-interaction screen of Drosophila extracts using a substrate-trapping catalytic mutant, CidB*, also identified karyopherin-α; the P32 protamine-histone exchange factor bound as well. When CidB* bound CidA, these host protein interactions disappeared. These associations would place CidB at the zygotic male pronucleus where CI defects first manifest. Overexpression of karyopherin-α, P32, or CidA in female flies suppressed CI. We propose that CidB targets nuclear-protein import and protamine-histone exchange and that CidA rescues embryos by restricting CidB access to its targets.

RevDate: 2020-01-10

Lau MJ, Endersby-Harshman NM, Axford JK, et al (2020)

Measuring the Host-Seeking Ability of Aedes aegypti Destined for Field Release.

The American journal of tropical medicine and hygiene, 102(1):223-231.

Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.

RevDate: 2019-11-26

Ju JF, Bing XL, Zhao DS, et al (2019)

Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers.

The ISME journal pii:10.1038/s41396-019-0559-9 [Epub ahead of print].

Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia-infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia-uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia, and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.

RevDate: 2020-01-08

Liu QQ, Zhou JC, Zhang C, et al (2019)

Co-occurrence of thelytokous and bisexual Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) in a natural population.

Scientific reports, 9(1):17480.

Trichogramma dendrolimi is one of the most successful biocontrol agents in China. However, an inundative condition is necessary to obtain acceptable parasitism effect. A good solution to this is the application of its thelytokous counterparts which unfortunately are scarce in field. We here report the first case of a natural T. dendrolimi population in China comprising both bisexual wasps and an extremely low proportion of thelytokous wasps. These two forms of T. dendrolimi are phylogenetically related based on the reconstructions of ITS-2 and COI genes. Also, the phylogenetic results suggested a potentially Wolbachia-drived ITS-2 variation. The expression of thelytoky was hardly affected by temperature, which might help control Asian corn borer and Dendrolimus punctatus. Wolbachia are responsible for current thelytoky according to phylogenetic analyses, antibiotic treatment and introgression experiment. We also present the third case of paternal sex ratio chromosome that restrains the expansion of Wolbachia. Moreover, the low frequency of thelytoky may be common in natural populations. Consequently if for biological control it is determined that a thelytokous strain is to be preferred, then large number of field collected females should be set up as isofemale lines, to detect the rare thelytoky.

RevDate: 2020-01-03

Lucchetti C, Genchi M, Venco L, et al (2019)

Optimized protocol for DNA/RNA co-extraction from adults of Dirofilaria immitis.

MethodsX, 6:2601-2605.

Dirofilaria immitis, the etiologic agent of canine heartworm disease, like several other filarial nematodes, harbors the bacterial endosymbiont Wolbachia. To investigate metabolic and functional pathways of D. immitis and Wolbachia individually, along with their interactions, the use of both transcriptomic and genome analysis has becoming increasingly popular. Although several commercial kits are available for the single extraction of either DNA or RNA, no specific protocol has been described for simultaneous extraction of DNA and RNA from such a large organism like an adult D. immitis, where female worms generally reach ∼25 cm in length. More importantly, adult worms of D. immitis can only be obtained either through necropsy of experimentally infected dogs or by minimally-invasive surgical heartworm removal of naturally infected dogs. This makes each individual worm sample extremely important. Thus, in the context of a project aimed at the evaluation of both gene expression analysis and Wolbachia population assessment following different treatments, an optimized protocol for co-extraction of DNA and RNA from a single sample of adult D. immitis has been developed. •An optimized method for DNA/RNA co-extraction from large size nematodes using TRIzol® reagent.•Allows maximum exploitation of unique samples as adults of D. immitis.

RevDate: 2019-12-31

Nazni WA, Hoffmann AA, NoorAfizah A, et al (2019)

Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control.

Current biology : CB, 29(24):4241-4248.e5.

Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.

RevDate: 2019-11-21

López-Madrigal S, EH Duarte (2019)

Titer regulation in arthropod-Wolbachia symbioses.

FEMS microbiology letters pii:5637388 [Epub ahead of print].

Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation, antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here we review both environmental and biological factors modulating Wolbachia titers in arthropods.

RevDate: 2019-12-09

Jasper ME, Yang Q, Ross PA, et al (2019)

A LAMP assay for the rapid and robust assessment of Wolbachia infection in Aedes aegypti under field and laboratory conditions.

PloS one, 14(11):e0225321.

With Wolbachia-based arbovirus control programs being scaled and operationalised around the world, cost effective and reliable detection of Wolbachia in field samples and laboratory stocks is essential for quality control. Here we validate a modified loop-mediated isothermal amplification (LAMP) assay for routine scoring of Wolbachia in mosquitoes from laboratory cultures and the field, applicable to any setting. We show that this assay is a rapid and robust method for highly sensitive and specific detection of wAlbB Wolbachia infection within Aedes aegypti under a variety of conditions. We test the quantitative nature of the assay by evaluating pooled mixtures of Wolbachia-infected and uninfected mosquitoes and show that it is capable of estimating infection frequencies, potentially circumventing the need to perform large-scale individual analysis for wAlbB infection status in the course of field monitoring. These results indicate that LAMP assays are useful for routine screening particularly under field conditions away from laboratory facilities.

RevDate: 2019-11-21

Zhao C, Zhao H, Zhang S, et al (2019)

The Developmental Stage Symbionts of the Pea Aphid-Feeding Chrysoperla sinica (Tjeder).

Frontiers in microbiology, 10:2454.

Chrysoperla sinica (Tjeder) is widely recognized as an important holometabolous natural enemy of various insect pests in different cropping systems and as a non-target surrogate in environmental risk assessment of Bt rice (i.e., genetically modified rice to express a toxin gene from Bacillus thuringiensis). Like other complex organisms, abundant microbes live inside C. sinica; however, to date, microbiome composition and diversity of the whole life cycle in C. sinica has not yet been well characterized. In the current study, we analyze the composition and biodiversity of microbiota across the whole life cycle of C. sinica by using high-throughput Illumina sequencing of the 16S ribosomal RNA gene. Collectively, Proteobacteria and Firmicutes dominated the microenvironment at all stages, but their relative abundances fluctuated by host developmental stage. Interestingly, eggs, neonates, and adults shared similar microbes, including an abundance of Rickettsia and Wolbachia. After larva feeding, Staphylococcus, Enterobacteriaceae, and Serratia were enriched in larvae and pupa, suggesting that food may serve as a major factor contributing to altered microbial community divergence at different developmental stages. Our findings demonstrated that C. sinica harbor a variety of bacteria, and that dynamic changes in community composition and relative abundances of members of its microbiome occur during different life cycle stages. Evaluating the role of these bacterial symbionts in this natural enemy may assist in developing environmental risk assessments and novel biological control strategies.

RevDate: 2019-11-14

Ote M, D Yamamoto (2019)

Impact of Wolbachia infection on Drosophila female germline stem cells.

Current opinion in insect science, 37:8-15 pii:S2214-5745(19)30077-X [Epub ahead of print].

Wolbachia pipientis, one of the most dominant insect-symbiotic bacteria, highjacks the female germline of insects for its own propagation across host generations. Such strict dependence on female gametes in trans-generational propagation has driven Wolbachia to devise ingenious strategies to enhance female fertility. In Drosophila melanogaster females with female-sterile mutant alleles of the master sex-determining gene Sex-lethal (Sxl), Wolbachia colonizing female germline stem cells (GSCs) support the maintenance of GSCs, thereby rescuing the defective ovarian development. In the germ cell cytoplasm, Wolbachia are often found in proximity to ribonucleoprotein-complex processing bodies (P bodies), where the Wolbachia-derived protein TomO interacts with RNAs encoding Nanos and Orb proteins, which support the GSC maintenance and oocyte polarization, respectively. Thus, manipulation of host RNA is the key to successful vertical transmission of Wolbachia.

RevDate: 2019-11-17

NTD Modelling Consortium Onchocerciasis Group (2019)

The World Health Organization 2030 goals for onchocerciasis: Insights and perspectives from mathematical modelling: NTD Modelling Consortium Onchocerciasis Group.

Gates open research, 3:1545.

The World Health Organization (WHO) has embarked on a consultation process to refine the 2030 goals for priority neglected tropical diseases (NTDs), onchocerciasis among them. Current goals include elimination of transmission (EOT) by 2020 in Latin America, Yemen and selected African countries. The new goals propose that, by 2030, EOT be verified in 10 countries; mass drug administration (MDA) with ivermectin be stopped in at least one focus in 34 countries; and that the proportion of the population no longer in need of MDA be equal or greater than 25%, 50%, 75% and 100% in at least 16, 14, 12, and 10 countries, respectively. The NTD Modelling Consortium onchocerciasis teams have used EPIONCHO and ONCHOSIM to provide modelling insights into these goals. EOT appears feasible in low-moderate endemic areas with long-term MDA at high coverage (≥75%), but uncertain in areas of higher endemicity, poor coverage and adherence, and where MDA has not yet, or only recently, started. Countries will have different proportions of their endemic areas classified according to these categories, and this distribution of pre-intervention prevalence and MDA duration and programmatic success will determine the feasibility of achieving the proposed MDA cessation goals. Highly endemic areas would benefit from switching to biannual or quarterly MDA and implementing vector control where possible (determining optimal frequency and duration of anti-vectorial interventions requires more research). Areas without loiasis that have not yet initiated MDA should implement biannual (preferably with moxidectin) or quarterly MDA from the start. Areas with loiasis not previously treated would benefit from implementing test-and(not)-treat-based interventions, vector control, and anti- Wolbachia therapies, but their success will depend on the levels of screening and coverage achieved and sustained. The diagnostic performance of IgG4 Ov16 serology for assessing EOT is currently uncertain. Verification of EOT requires novel diagnostics at the individual- and population-levels.

RevDate: 2019-11-20

Yin X, Zhao S, Yan B, et al (2019)

Bartonella rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. in Fleas from Wild Rodents near the China-Kazakhstan Border.

The Korean journal of parasitology, 57(5):553-559.

The Alataw Pass, near the Ebinur Lake Wetland (northwest of China) and Taldykorgan (east of Kazakhstan), is a natural habitat for wild rodents. To date, little has been done on the surveillance of Bartonella spp. and Wolbachia spp. from fleas in the region. Here we molecularly detected Bartonella spp. and Wolbachia spp. in wild rodent fleas during January and October of 2016 along the Alataw Pass-Kazakhstan border. A total of 1,706 fleas belonging to 10 species were collected from 6 rodent species. Among the 10 flea species, 4 were found to be positive for Wolbachia, and 5 flea species were positive for Bartonella. Molecular analysis indicated that i) B. rochalimae was firstly identified in Xenopsylla gerbilli minax and X. conforms conforms, ii) B. grahamii was firstly identified in X. gerbilli minax, and iii) B. elizabethae was firstly detected in Coptopsylla lamellifer ardua, Paradoxopsyllus repandus, and Nosopsyllus laeviceps laeviceps. Additionally, 3 Wolbachia endosymbionts were firstly found in X. gerbilli minax, X. conforms conforms, P. repandus, and N. laeviceps laeviceps. BLASTn analysis indicated 3 Bartonella species showed genotypic variation. Phylogenetic analysis revealed 3 Wolbachia endosymbionts were clustered into the non-Siphonaptera Wolbachia group. These findings extend our knowledge of the geographical distribution and carriers of B. rochalimae, B. grahamii, B. elizabethae, and Wolbachia spp. In the future, there is a need for China-Kazakhstan cooperation to strengthen the surveillance of flea-borne pathogens in wildlife.

RevDate: 2019-11-14

Adekunle AI, Meehan MT, ES McBryde (2019)

Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection.

Infectious Disease Modelling, 4:265-285.

Arboviral infections, especially dengue, continue to cause significant health burden in their endemic regions. One of the strategies to tackle these infections is to replace the main vector agent, Ae. aegypti, with the ones incapable of transmitting the virus. Wolbachia, an intracellular bacterium, has shown promise in achieving this goal. However, key factors such as imperfect maternal transmission, loss of Wolbachia infection, reduced reproductive capacity and shortened life-span affect the dynamics of Wolbachia in different forms in the Ae. aegypti population. In this study, we developed a Wolbachia transmission dynamic model adjusting for imperfect maternal transmission and loss of Wolbachia infection. The invasive reproductive number that determines the likelihood of replacement of the Wolbachia-uninfected (WU) population is derived and with it, we established the local and global stability of the equilibrium points. This analysis clearly shows that cytoplasmic incompatibility (CI) does not guarantee establishment of the Wolbachia-infected (WI) mosquitoes as imperfect maternal transmission and loss of Wolbachia infection could outweigh the gains from CI. Optimal release programs depending on the level of imperfect maternal transmission and loss of Wolbachia infection are shown. Hence, it is left to decision makers to either aim for replacement or co-existence of both populations.

RevDate: 2020-01-08

Basting PJ, CM Bergman (2019)

Complete Genome Assemblies for Three Variants of the Wolbachia Endosymbiont of Drosophila melanogaster.

Microbiology resource announcements, 8(45):.

Here, we report genome assemblies for three strains of Wolbachia pipientis, assembled from unenriched, unfiltered long-read shotgun sequencing data of geographically distinct strains of Drosophila melanogaster Our simple methodology can be applied to long-read data sets of other Wolbachia-infected species with limited Wolbachia-host lateral gene transfers to produce complete assemblies for this important model symbiont.

RevDate: 2020-01-08

Almeida L, Duprez MG, Privat Y, et al (2019)

Mosquito population control strategies for fighting against arboviruses.

Mathematical biosciences and engineering : MBE, 16(6):6274-6297.

In the fight against vector-borne arboviruses, an important strategy of control of epidemic consists in controlling the population of the vector, Aedes mosquitoes in this case. Among possible actions, two techniques consist either in releasing sterile mosquitoes to reduce the size of the population (Sterile Insect Technique) or in replacing the wild population by one carrying a bacteria, called Wolbachia, blocking the transmission of viruses from insects to humans. This article addresses the issue of optimizing the dissemination protocol for each of these strategies, in order to get as close as possible to these objectives. Starting from a mathematical model describing population dynamics, we study the control problem and introduce the cost function standing for population replacement and sterile insect technique. Then, we establish some properties of the optimal control and illustrate them with numerical simulations.

RevDate: 2020-01-13

Karut K, Castle SJ, Karut ŞT, et al (2019)

Secondary endosymbiont diversity of Bemisia tabaci and its parasitoids.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 78:104104 pii:S1567-1348(19)30330-2 [Epub ahead of print].

Cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide. It is known as a species complex consisting of at least 40 cryptic species. Although there are substantial data regarding species composition, parasitoids and endosymbionts of B. tabaci, data on relationship between the pest, parasitoids and endosymbionts are very restricted. Therefore, in this study, secondary endosymbionts in populations of B. tabaci and their parasitoids collected from Turkey and the USA were determined by PCR-based DNA analysis. Whitefly populations in Turkey represented both Mediterranean (MED) and Middle East-Asia Minor1 (MEAM1) genotypes from single or mixed populations of both genotypes. Arsenophonus, Rickettsia and Wolbachia were found in MED, while Hamiltonella and Rickettsia in MEAM1. Whitefly populations collected from Arizona were all MEAM1 and dually infected with Hamiltonella and Rickettsia. The aphelinid parasitoids Encarsia lutea and Eretmocerus mundus predominated in all Turkish populations. While almost all En. lutea populations were infected with Wolbachia, no endosymbionts were detected in any Er. mundus. Parasitoid species and the pattern of secondary endosymbiont infection in Arizona populations were different with Rickettsia detected only from Encarsia sophia while both Rickettsia and Wolbachia were found in Eretmocerus species. As a result, four secondary endosymbionts, namely, Rickettsia, Hamiltonella, Arsenophonus and Wolbachia, were detected from B.tabaci and its parasitoids. Among them only Wolbachia and Rickettsia were found in both the pest and parasitoids. It is conclude that further studies should be pursued to determine effect of these endosymbionts on biology of the parasitoids and success in biological control of B. tabaci.

RevDate: 2020-01-08

Layton EM, On J, Perlmutter JI, et al (2019)

Paternal Grandmother Age Affects the Strength of Wolbachia-Induced Cytoplasmic Incompatibility in Drosophila melanogaster.

mBio, 10(6):.

Wolbachia are obligate intracellular bacteria that are globally distributed in half of all arthropod species. As the most abundant maternally inherited microbe in animals, Wolbachia manipulate host reproduction via reproductive parasitism strategies, including cytoplasmic incompatibility (CI). CI manifests as embryonic death when Wolbachia-modified sperm fertilize uninfected eggs but not maternally infected eggs. Thus, CI can provide a relative fitness advantage to Wolbachia-infected females and drive the infection through a population. In the genetic model Drosophila melanogaster, the Wolbachia strain wMel induces variable CI, making mechanistic studies in D. melanogaster cumbersome. Here, we demonstrate that sons of older paternal D. melanogaster grandmothers induce stronger CI than sons of younger paternal grandmothers, and we term this relationship the "paternal grandmother age effect" (PGAE). Moreover, the embryos and adult sons of older D. melanogaster grandmothers have higher Wolbachia densities, correlating with their ability to induce stronger CI. In addition, we report that Wolbachia density positively correlates with female age and decreases after mating, suggesting that females transmit Wolbachia loads that are proportional to their own titers. These findings reveal a transgenerational impact of age on wMel-induced CI, elucidate Wolbachia density dynamics in D. melanogaster, and provide a methodological advance to studies aimed at understanding wMel-induced CI in the D. melanogaster model.IMPORTANCE Unidirectional cytoplasmic incompatibility (CI) results in a postfertilization incompatibility between Wolbachia-infected males and uninfected females. CI contributes to reproductive isolation between closely related species and is used in worldwide vector control programs to drastically lower arboviral vector population sizes or to replace populations that transmit arboviruses with those resistant to transmission. Despite decades of research on the factors that influence CI, penetrance is often variable under controlled laboratory conditions in various arthropods, suggesting that additional variables influence CI strength. Here, we demonstrate that paternal D. melanogaster grandmother age influences the strength of CI induced by their sons. Older D. melanogaster females have higher Wolbachia densities and produce offspring with higher Wolbachia densities that associate with stronger CI. This work reveals a multigenerational impact of age on CI and expands our understanding of host-Wolbachia interactions and the biology of CI induced by the Wolbachia strain infecting the most widely used arthropod model, D. melanogaster.

RevDate: 2020-01-08

Liang Y, Hong Y, Mai Z, et al (2019)

Internal and External Microbial Community of the Thitarodes Moth, the Host of Ophiocordyceps sinensis.

Microorganisms, 7(11):.

Ophiocordyceps sinensis is a widely known medicinal entomogenous fungus, which parasitizes the soil-borne larva of Thitarodes (Hepialidae, Lepidoptera) distributed in the Qinghai-Tibetan Plateau and its adjacent areas. Previous research has involved artificial cultivation of Chinese cordyceps (the fungus-caterpillar complex), but it is difficult to achieve large-scale cultivation because the coupling relation between the crucial microbes and their hosts is not quite clear. To clarify the influence of the internal microbial community on the occurrence of Chinese cordyceps, in this study, the unfertilized eggs of Thitarodes of different sampling sites were chosen to analyze the bacterial and fungal communities via 16S rRNA and ITS sequencing for the first time. The results showed that for bacteria, 348 genera (dominant genera include Wolbachia, Spiroplasma, Carnobacterium, Sphingobium, and Acinetobacter) belonging to 26 phyla (dominant phyla include Proteobacteria, Firmicutes, Tenericutes, Actinobacteria, Acidobacteria, and Bacteroidetes), 58 classes, 84 orders, and 120 families were identified from 1294 operational taxonomic units (OTUs). The dominant bacterial genus (Spiroplasma) may be an important bacterial factor promoting the occurrence of Chinese cordyceps. For fungi, 289 genera, mainly including Aureobasidium, Candida, and Cryptococcus, were identified, and they belonged to 5 phyla (Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, and Zygomycota), 26 classes, 82 orders, and 165 families. Eight bacterial OTUs and 12 fungal OTUs were shared among all of the detected samples and were considered as core species. Among them, Wolbachia, Spiroplasma, Carnobacterium, Aureobasidium, and Phoma may play important roles in helping the host larva to digest foods, adapt to extreme environments, or resist pathogens. On the other hand, the external (soil) microbial community was synchronously and comparatively analyzed. Comparative analysis revealed that external microbial factors might play a more significant role in the occurrence of Chinese cordyceps, owing to the significant differences revealed by α-diversity and β-diversity analyses among different groups. In summary, the results of this study may contribute to the large-scale cultivation of Chinese cordyceps.

RevDate: 2019-11-03

Ryan PA, Turley AP, Wilson G, et al (2019)

Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia.

Gates open research, 3:1547.

Background: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown in laboratory studies to reduce transmission of a range of viruses including dengue, Zika, chikungunya, yellow fever, and Mayaro viruses that cause human disease. Here we report the entomological and epidemiological outcomes of staged deployment of Wolbachia across nearly all significant dengue transmission risk areas in Australia. Methods: The wMel strain of Wolbachia was backcrossed into the local Aedes aegypti genotype (Cairns and Townsville backgrounds) and mosquitoes were released in the field by staff or via community assisted methods. Mosquito monitoring was undertaken and mosquitoes were screened for the presence of Wolbachia. Dengue case notifications were used to track dengue incidence in each location before and after releases. Results: Empirical analyses of the Wolbachia mosquito releases, including data on the density, frequency and duration of Wolbachia mosquito releases, indicate that Wolbachia can be readily established in local mosquito populations, using a variety of deployment options and over short release durations (mean release period 11 weeks, range 2-22 weeks). Importantly, Wolbachia frequencies have remained stable in mosquito populations since releases for up to 8 years. Analysis of dengue case notifications data demonstrates near-elimination of local dengue transmission for the past five years in locations where Wolbachia has been established. The regression model estimate of Wolbachia intervention effect from interrupted time series analyses of case notifications data prior to and after releases, indicated a 96% reduction in dengue incidence in Wolbachia treated populations (95% confidence interval: 84 - 99%). Conclusion: Deployment of the wMel strain of Wolbachia into local Ae. aegypti populations across the Australian regional cities of Cairns and most smaller regional communities with a past history of dengue has resulted in the reduction of local dengue transmission across all deployment areas.

RevDate: 2020-01-08

Kieran TJ, Arnold KMH, Thomas JC, et al (2019)

Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens.

Parasites & vectors, 12(1):504.

BACKGROUND: Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama.

METHODS: We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software.

RESULTS: We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48-72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status.

CONCLUSIONS: We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.

RevDate: 2019-11-06

Martinez J, Bruner-Montero G, Arunkumar R, et al (2019)

Virus evolution in Wolbachia-infected Drosophila.

Proceedings. Biological sciences, 286(1914):20192117.

Wolbachia, a common vertically transmitted symbiont, can protect insects against viral infection and prevent mosquitoes from transmitting viral pathogens. For this reason, Wolbachia-infected mosquitoes are being released to prevent the transmission of dengue and other arboviruses. An important question for the long-term success of these programmes is whether viruses can evolve to escape the antiviral effects of Wolbachia. We have found that Wolbachia altered the outcome of competition between strains of the DCV virus in Drosophila. However, Wolbachia still effectively blocked the virus genotypes that were favoured in the presence of the symbiont. We conclude that Wolbachia did cause an evolutionary response in viruses, but this has little or no impact on the effectiveness of virus blocking.

RevDate: 2019-10-29

Newton ILG, DW Rice (2019)

The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist?.

Journal of bacteriology pii:JB.00589-19 [Epub ahead of print].

The most common intracellular symbiont on the planet -Wolbachia pipientis- is infamous largely for the reproductive manipulations induced in its host. However, more recent evidence suggests that this bacterium may also serve as a nutritional mutualist in certain host backgrounds and for certain metabolites. We performed a large-scale analysis of conserved gene content across all sequenced Wolbachia genomes to infer potential nutrients made by these symbionts. We review and critically evaluate the prior research supporting a beneficial role for Wolbachia and suggest future experiments to test hypotheses of metabolic provisioning.

RevDate: 2019-11-14

Kittayapong P, Ninphanomchai S, Limohpasmanee W, et al (2019)

Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand.

PLoS neglected tropical diseases, 13(10):e0007771.

BACKGROUND: Important arboviral diseases, such as dengue, chikungunya, and Zika virus infections, are transmitted mainly by the Aedes aegypti vector. So far, controlling this vector species with current tools and strategies has not demonstrated sustainable and significant impacts. Our main objective was to evaluate whether open field release of sterile males, produced from combining the sterile insect technique using radiation with the insect incompatible technique through Wolbachia-induced incompatibility (SIT/IIT), could suppress natural populations of Ae. aegypti in semi-rural village settings in Thailand.

Irradiated Wolbachia-infected Aedes aegypti males produced by the SIT/IIT approach were completely sterile and were able to compete with the wild fertile ones. Open field release of these sterile males was conducted in an ecologically isolated village in Chachoengsao Province, eastern Thailand. House-to-house visit and media reports resulted in community acceptance and public awareness of the technology. During intervention, approximately 100-200 sterile males were released weekly in each household. After 6 months of sterile male release, a significant reduction (p<0.05) of the mean egg hatch rate (84%) and the mean number of females per household (97.30%) was achieved in the treatment areas when compared to the control ones.

CONCLUSIONS/SIGNIFICANCE: Our study represents the first open field release of sterile Ae. aegypti males developed from a combined SIT/IIT approach. Entomological assessment using ovitraps, adult sticky traps, and portable vacuum aspirators confirmed the success in reducing natural populations of Ae. aegypti females in treated areas. Public awareness through media resulted in positive support for practical use of this strategy in wider areas. Further study using a systematic randomized trial is needed to determine whether this approach could have a significant impact on the diseases transmitted by Ae. aegypti vector.

RevDate: 2020-01-08

Gasser MT, Chung M, Bromley RE, et al (2019)

Complete Genome Sequence of wAna, the Wolbachia Endosymbiont of Drosophila ananassae.

Microbiology resource announcements, 8(43):.

Here, we present the complete genome sequence of the Wolbachia endosymbiont wAna, isolated from Drosophila ananassae and derived from Oxford Nanopore and Illumina sequencing. We anticipate that this will aid in Wolbachia comparative genomics and the assembly of D. ananassae specifically in regions containing extensive lateral gene transfer events.

RevDate: 2020-01-08

Staunton KM, Usher L, Prachar T, et al (2019)

A Novel Methodology For Recording Wing Beat Frequencies of Untethered Male and Female Aedes aegypti.

Journal of the American Mosquito Control Association, 35(3):169-177.

Aedes aegypti is a vector of many significant arboviruses worldwide, including dengue, Zika, chikungunya, and yellow fever viruses. With vector control methodology pivoting toward rearing and releasing large numbers of insects for either population suppression or virus-blocking, economical remote (sentinel) surveillance methods for release tracking become increasingly necessary. Recent steps in this direction include advances in optical sensors that identify and classify insects based on their wing beat frequency (WBF). As these traps are being developed, there is a strong need to better understand the environmental and biological factors influencing mosquito WBFs. Here, we developed new untethered-subject methodology to detect changes in WBFs of male and female Ae. aegypti. This new methodology involves directing an ultrasonic transducer at a free-flying subject and measuring the Doppler shift of the reflected ultrasonic continuous wave signal. This system's utility was assessed by determining its ability to confirm previous reports on the effect of temperature, body size, and age on the WBFs generated from acoustic or optical-based experiments. The presented ultrasonic method successfully detected expected trends for each factor for both male and female Ae. aegypti without the need for subject manipulation and potential impediment of natural flight dynamics due to tethering. As a result, this ultrasonic methodology provides a new method for understanding the environmental and physiological determinants of male and female WBFs that can inform the design of remote mosquito surveillance systems.

RevDate: 2020-01-08
CmpDate: 2019-12-12

Chen R, Su X, Chen J, et al (2019)

Wolbachia Infection in Two Species: Novel Views on the Colonization Ability of Wolbachia in Aphids.

Environmental entomology, 48(6):1388-1393.

Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is an intracellular symbiont residing in arthropods and filarial nematodes. Sixteen supergroups have been described from different host taxa. Four supergroups A, B, M, and N were found in aphids according to prior studies. The cotton aphid, Aphis gossypii, and the green peach aphid, Myzus persicae, are typical polyphagous species with global distributions. We conducted an extensive and systematic survey of Wolbachia infections in these aphids from China. High incidences of Wolbachia infection were detected. The total infection incidence was 60% in A. gossypii and 88% in M. persicae. Both aphid species were infected with supergroups A, B and M. Different incidences of infection were observed among the seven geographical regions in China, which suggested a positive relationship between Wolbachia infections and the geographical distribution of aphid species. Furthermore, multiple infection patterns (M, B, A&M, B&M, and A&B&M) were observed. Infection patterns M and B&M were detected in almost all populations. Patterns A&B&M and B showed geographical restriction in North China. Three factors can possibly influence the Wolbachia infection incidences and patterns: the geographical distribution, aphid species, and different supergroup types.

RevDate: 2019-10-25

Gómez-Zurita J (2019)

Assessment of the role of Wolbachia in mtDNA paraphyly and the evolution of unisexuality in Calligrapha (Coleoptera: Chrysomelidae).

Ecology and evolution, 9(19):11198-11214.

Calligrapha is a New World leaf beetle genus that includes several unisexual species in northeastern North America. Each unisexual species had an independent hybrid origin involving different combinations of bisexual species. However, surprisingly, they all cluster in a single mtDNA clade and with some individuals of their parental species, which are in turn deeply polyphyletic for mtDNA. This pattern is suggestive of a selective sweep which, together with mtDNA taxonomic incongruence and occurrence of unisexuality in Calligrapha, led to hypothesize that Wolbachia might be responsible. I tested this hypothesis studying the correlation between diversity of Wolbachia and well-established mtDNA lineages in >500 specimens of two bisexual species of Calligrapha and their derived unisexual species. Wolbachia appears highly prevalent (83.4%), and fifteen new supergroup-A strains of the bacteria are characterized, belonging to three main classes: wCallA, occupying the whole species ranges, and wCallB and wCallC, narrowly parapatric, infecting beetles with highly divergent mtDNAs where they coexist. Most beetles (71.6%) carried double infections of wCallA with another sequence class. Bayesian inference of ancestral character states and association tests between bacterial diversity and the mtDNA genealogy show that each mtDNA lineage of Calligrapha has specific types of infection. Moreover, shifts can be explained by horizontal or vertical transfer from local populations to an expanding lineage and cytoplasmic incompatibility between wCallB and wCallC types, suggesting that the symbionts hitchhike with the host and are not responsible for selective mtDNA sweeps. Lack of evidence for sweeps and the fact that individuals in the unisexual clade are uninfected or infected by the widespread wCallA type indicate that Wolbachia does not induce unisexuality in Calligrapha, although they may manipulate host reproduction through cytoplasmic incompatibility.

RevDate: 2019-10-24

König K, Zundel P, Krimmer E, et al (2019)

Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps.

Ecology and evolution, 9(18):10694-10706.

The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species-rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum ("DB-lineage"), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host ("GW-lineage"). Between two populations of the DB-lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.

RevDate: 2020-01-08

Bi J, YF Wang (2019)

The effect of the endosymbiont Wolbachia on the behavior of insect hosts.

Insect science [Epub ahead of print].

As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need addressing to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests.

RevDate: 2020-01-16

Galis F, JJM van Alphen (2020)

Parthenogenesis and developmental constraints.

Evolution & development, 22(1-2):205-217.

The absence of a paternal contribution in an unfertilized ovum presents two developmental constraints against the evolution of parthenogenesis. We discuss the constraint caused by the absence of a centrosome and the one caused by the missing set of chromosomes and how they have been broken in specific taxa. They are examples of only a few well-underpinned examples of developmental constraints acting at macro-evolutionary scales in animals. Breaking of the constraint of the missing chromosomes is the best understood and generally involves rare occasions of drastic changes of meiosis. These drastic changes can be best explained by having been induced, or at least facilitated, by sudden cytological events (e.g., repeated rounds of hybridization, endosymbiont infections, and contagious infections). Once the genetic and developmental machinery is in place for regular or obligate parthenogenesis, shifts to other types of parthenogenesis can apparently rather easily evolve, for example, from facultative to obligate parthenogenesis, or from pseudoarrhenotoky to haplodiploidy. We argue that the combination of the two developmental constraints forms a near-absolute barrier against the gradual evolution from sporadic to obligate or regular facultative parthenogenesis, which can probably explain why the occurrence of the highly advantageous mode of regular facultative parthenogenesis is so rare and entirely absent in vertebrates.

RevDate: 2019-10-23

Li F, Hua H, Ali A, et al (2019)

Characterization of a Bacterial Symbiont Asaia sp. in the White-Backed Planthopper, Sogatella furcifera, and Its Effects on Host Fitness.

Frontiers in microbiology, 10:2179.

The white-backed planthopper (WBPH), Sogatella furcifera Horváth (Hemiptera: Delphacidae), is an economically significant rice insect pest that harbors a primary fungal yeast-like symbiont (YLS), and some secondary bacterial symbionts like Wolbachia and Cardinium. In the present study, an additional bacterial symbiont in WBPH was characterized. Phylogenetic analysis employing the 16S rRNA gene showed a bacterium closely related to Asaia of Nilaparvata lugens and Nysius expressus, and Asaia krungthepensis. TEM observation of the bacterium showed the typical morphology of Asaia sp. with signature filamentous structures in the nucleoid region. These results indicate that the bacterium belongs to Asaia. The Asaia bacterium was detected in all the tested individual adults and tissues of the laboratory WBPH population but showed varying infection rates (ca 45%) in the field collected WBPH populations. Quantitative PCR analysis revealed that Asaia sp. were significantly more abundant in WBPH females than males, and mainly distributed in the guts, fatty bodies, and salivary glands. Asaia-infected WBPH were of shorter nymphal duration and heavier adult weight than Asaia-free WBPH, while Asaia-free WBPH comparatively fed more, indicating that Asaia plays a role in improving WBPH fitness through involvement in host's nutrient supply.

RevDate: 2020-01-08

Biwot JC, Zhang HB, Liu C, et al (2019)

Wolbachia-induced expression of kenny gene in testes affects male fertility in Drosophila melanogaster.

Insect science [Epub ahead of print].

Wolbachia are Gram-negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity-related genes, including significant upregulation of kenny (key), in the testes of D. melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild-type females. Wolbachia-infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling signal was significantly stronger than in the control testes, and the level of reactive oxygen species was significantly increased. Overexpression of key also resulted in alterations of some other immunity-related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity-related pathways and thus cause an oxidative damage and cell death in male testes.

RevDate: 2019-11-08

Chen H, Ronau JA, Beckmann JF, et al (2019)

A Wolbachia nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility.

Proceedings of the National Academy of Sciences of the United States of America, 116(44):22314-22321.

Wolbachia are endosymbiotic bacteria that infect nearly half of all arthropod species. This pandemic is due in part to their ability to increase their transmission through the female germline, most commonly by a mechanism called cytoplasmic incompatibility (CI). The Wolbachia cid operon, encoding 2 proteins, CidA and CidB, the latter a deubiquitylating enzyme (DUB), recapitulates CI in transgenic Drosophila melanogaster However, some CI-inducing Wolbachia strains lack a DUB-encoding cid operon; it was therefore proposed that the related cin operon codes for an alternative CI system. Here we show that the Wolbachia cin operon encodes a nuclease, CinB, and a second protein, CinA, that tightly binds CinB. Recombinant CinB has nuclease activity against both single-stranded and double-stranded DNA but not RNA under the conditions tested. Expression of the cin operon in transgenic male flies induces male sterility and embryonic defects typical of CI. Importantly, transgenic CinA can rescue defects in egg-hatch rates when expressed in females. Expression of CinA also rescues CinB-induced growth defects in yeast. CinB has 2 PD-(D/E)xK nuclease domains, and both are required for nuclease activity and for toxicity in yeast and flies. Our data suggest a distinct mechanism for CI involving a nuclease toxin and highlight the central role of toxin-antidote operons in Wolbachia-induced cytoplasmic incompatibility.

RevDate: 2020-01-08

Ghosh A, Jasperson D, Cohnstaedt LW, et al (2019)

Transfection of Culicoides sonorensis biting midge cell lines with Wolbachia pipientis.

Parasites & vectors, 12(1):483.

BACKGROUND: Biting midges of the genus Culicoides vector multiple veterinary pathogens and are difficult to control. Endosymbionts particularly Wolbachia pipientis may offer an alternative to control populations of Culicoides and/or impact disease transmission in the form of population suppression or replacement strategies.

METHODS: Culicoides sonorensis cell lines were transfected with a Wolbachia infection using a modified shell vial technique. Infections were confirmed using PCR and cell localization using fluorescent in situ hybridization (FISH). The stability of Wolbachia infections and density was determined by qPCR. qPCR was also used to examine immune genes in the IMD, Toll and JACK/STAT pathways to determine if Wolbachia were associated with an immune response in infected cells.

RESULTS: Here we have transfected two Culicoides sonorensis cell lines (W3 and W8) with a Wolbachia infection (walbB) from donor Aedes albopictus Aa23 cells. PCR and FISH showed the presence of Wolbachia infections in both C. sonorensis cell lines. Infection densities were higher in the W8 cell lines when compared to W3. In stably infected cells, genes in the immune Toll, IMD and JAK/STAT pathways were upregulated, along with Attacin and an Attacin-like anti-microbial peptides.

CONCLUSIONS: The successful introduction of Wolbachia infections in C. sonorensis cell lines and the upregulation of immune genes, suggest the utility of using Wolbachia for a population replacement and/or population suppression approach to limit the transmission of C. sonorensis vectored diseases. Results support the further investigation of Wolbachia induced pathogen inhibitory effects in Wolbachia-infected C. sonorensis cell lines and the introduction of Wolbachia into C. sonorensis adults via embryonic microinjection to examine for reproductive phenotypes and host fitness effects of a novel Wolbachia infection.

RevDate: 2019-10-23

Tseng SP, Wetterer JK, Suarez AV, et al (2019)

Genetic Diversity and Wolbachia Infection Patterns in a Globally Distributed Invasive Ant.

Frontiers in genetics, 10:838.

Understanding the phylogeographic history of an invasive species may facilitate reconstructing the history and routes of its invasion. The longhorn crazy ant, Paratrechina longicornis, is a ubiquitous agricultural and household pest throughout much of the tropics and subtropics, but little is known about the history of its spread. Here, we examine worldwide genetic variation in P. longicornis and its associated Wolbachia bacterial symbionts. Analyses of mtDNA sequences of 248 P. longicornis workers (one per colony) from 13 geographic regions reveal two highly diverged mtDNA clades that co-occur in most of the geographic regions. These two mtDNA clades are associated with different Wolbachia infection patterns, but are not congruent with patterns of nDNA (microsatellite) variation. Multilocus sequence typing reveals two distinct Wolbachia strains in P. longicornis, namely, wLonA and wLonF. The evolutionary histories of these two strains differ; wLonA appears to be primarily transmitted maternally, and patterns of mtDNA and nDNA variation and wLonA infection status are consistent with a relatively recent Wolbachia-induced selective sweep. In contrast, the observed patterns of mtDNA variation and wLonF infections suggest frequent horizontal transfer and losses of wLonF infections. The lack of nDNA structure among sampled geographic regions coupled with the finding that numerous mtDNA haplotypes are shared among regions implies that inadvertent long-distance movement through human commerce is common in P. longicornis and has shaped the genetic structure of this invasive ant worldwide.

RevDate: 2020-01-08

Caputo B, Moretti R, Manica M, et al (2019)

A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area.

Pest management science [Epub ahead of print].

BACKGROUND: Novel tools are needed to reduce the nuisance and risk of exotic arbovirus transmission associated with the colonization of temperate regions by Aedes albopictus. The incompatible insect technique (IIT) is a population suppression approach based on cytoplasmic incompatibility between males with manipulated endosymbionts and wild females. Here, we present the results of the first field experiment in Europe to assess the capacity of an Ae. albopictus line (ARwP) deprived of its natural endosymbiont Wolbachia and transinfected with a Wolbachia strain from the mosquito Culex pipiens, to sterilize wild females.

RESULTS: We released ∼ 4500 ARwP males weekly for 6 weeks in a green area within urban Rome (Italy) and carried out egg (N = 13 442), female (N = 128) and male (N = 352) collections. Egg (N = 13 783) and female (N = 48) collections were also carried out at two untreated control sites. The percentage of viable eggs during release was, on average, significantly lower in treated sites than in control sites, with the greatest difference (16%) seen after the fourth release. The ARwP to wild male ratio in the release spots between day 3 after the first ARwP male release and day 7 after the last release was, on average, 7:10. Released males survived up to 2 weeks. Approximately 30% of females collected in the release spots showed 100% sterility and 20% showed strongly reduced fertility compared with control sites.

CONCLUSIONS: Results support the potential of IIT as a tool contributing to Ae. albopictus control in the urban context, and stress the need for larger field trials to evaluate the cost-efficacy of the approach in suppressing wild populations. © 2019 Society of Chemical Industry.

RevDate: 2019-11-03

Becking T, Chebbi MA, Giraud I, et al (2019)

Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod.

PLoS biology, 17(10):e3000438.

Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.

RevDate: 2019-11-02

Nainu F, Trenerry A, KN Johnson (2019)

Wolbachia-mediated antiviral protection is cell-autonomous.

The Journal of general virology, 100(11):1587-1592.

Vector-borne viral diseases pose significant risks to human health. To control the transmission of these viruses, a number of approaches are required. The ability of the intracellular bacteria Wolbachia to limit viral accumulation and transmission in some arthropod hosts, highlights its potential as a biocontrol agent. Whilst Wolbachia can reduce the transmission of several epidemiologically important viruses, protection is not consistent amongst all insects, viruses and strains of Wolbachia, which confounds elucidation of the mechanisms that underly this protection. Evidence of different mechanisms has emerged, but is not always consistent, suggesting the tripartite interaction may be complex. Here we provide evidence that Wolbachia-mediated antiviral protection is dependent on the presence of Wolbachia in individual cells, and cannot be conferred to surrounding cells. Our results suggest that protection is cell-autonomous, and this has several mechanistic implications, which can direct future research.

RevDate: 2020-01-08

Wang X, Xiong X, Cao W, et al (2019)

Genome Assembly of the A-Group Wolbachia in Nasonia oneida Using Linked-Reads Technology.

Genome biology and evolution, 11(10):3008-3013.

Wolbachia are obligate intracellular bacteria which commonly infect various nematode and arthropod species. Genome sequences have been generated from arthropod samples following enrichment for the intracellular bacteria, and genomes have also been assembled from arthropod whole-genome sequencing projects. However, these methods remain challenging for infections that occur at low titers in hosts. Here we report the first Wolbachia genome assembled from host sequences using 10× Genomics linked-reads technology. The high read depth attainable by this method allows for recovery of intracellular bacteria that are at low concentrations. Based on the depth differences (714× for the insect and 59× for the bacterium), we assembled the genome of a Wolbachia in the parasitoid jewel wasp species Nasonia oneida. The final draft assembly consists of 1,293, 06 bp in 47 scaffolds with 1,114 coding genes and 97.01% genome completeness assessed by checkM. Comparisons of the five Multi Locus Sequence Typing genes revealed that the sequenced Wolbachia genome is the A1 strain (henceforth wOneA1) previously reported in N. oneida. Pyrosequencing confirms that the wasp strain lacks A2 and B types previously detected in this insect, which were likely lost during laboratory culturing. Assembling bacterial genomes from host genome projects can provide an effective method for sequencing bacterial genomes, even when the infections occur at low density in sampled tissues.

RevDate: 2020-01-08

Bing XL, Lu YJ, Xia CB, et al (2019)

Transcriptome of Tetranychus urticae embryos reveals insights into Wolbachia-induced cytoplasmic incompatibility.

Insect molecular biology [Epub ahead of print].

The endosymbiont Wolbachia is known for manipulating host reproduction in selfish ways. However, the molecular mechanisms have not yet been investigated in embryos. Here, we found that Wolbachia had no effect on the number of deposited eggs in Tetranychus urticae Koch (Acari: Tetranychidae) but caused two types of reproductive manipulation: killing uninfected female embryos via cytoplasmic incompatibility (CI) and increasing the hatching ratio of infected female embryos. RNA sequencing analyses showed that 145 genes were differentially expressed between Wolbachia-infected (WI) and Wolbachia-uninfected (WU) embryos. Wolbachia infection down-regulated messenger RNA (mRNA) expression of glutathione S-transferase that could buffer oxidative stress. In addition, 1613 and 294 genes were identified as CI-specific up-/down-regulated genes. Compared to WU and WI embryos, embryos of CI cross strongly expressed genes involved in transcription, translation, tissue morphogenesis, DNA damage and mRNA surveillance. In contrast, most of the genes associated with energy production and metabolism were down-regulated in the CI embryos compared to the WU and WI embryos, which provides some clues as to the cause of death of CI embryos. These results identify several genes that could be candidates for explaining Wolbachia-induced CI. Our data form a basis to help elucidate the molecular consequences of CI in embryos.

RevDate: 2019-10-09

Li F, Li P, Hua H, et al (2019)

Diversity, Tissue Localization, and Infection Pattern of Bacterial Symbionts of the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae).

Microbial ecology pii:10.1007/s00248-019-01433-4 [Epub ahead of print].

The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is a destructive pest of rice. Bacterial symbionts play an important role in insect hosts, especially hemipteran hosts. This study was designed to examine the bacterial symbionts of the WBPH using 16S rDNA high-throughput sequencing. A total of 63 and 177 operational taxonomic units (OTUs) were identified in females and males of three WBPH populations, respectively. These OTUs included bacteria of 75 genera from 11 phyla, where Wolbachia, Cardinium, and Asaia were the dominant genera, accounting for over 97.99% of all the symbiotic bacteria. Fluorescence in situ hybridization detected Wolbachia, Cardinium, and Asaia in the salivary glands, guts, testes, and eggs of the WBPH, indicating the potential for both horizontal and vertical transmission. Moreover, the infection pattern of the three dominant bacterial symbionts was detected in six WBPH populations. The frequencies of Wolbachia infection of females and Cardinium infection of both sexes were over 96.7%. Wolbachia infection of males ranged between 46.7 and 63.3%, which was significantly lower than that observed for females. Asaia infection of both sexes varied substantially among the populations. These results indicate that the complex host-symbiotic bacteria interaction is influenced by host sex and geographical origin and potentially by the transmission modes of the symbionts.

RevDate: 2019-10-23

Reynolds LA, Hornett EA, Jiggins CD, et al (2019)

Suppression of Wolbachia-mediated male-killing in the butterfly Hypolimnas bolina involves a single genomic region.

PeerJ, 7:e7677.

Background: Sex ratio distorting agents (maternally inherited symbionts and meiotically-driving sex chromosomes) are common in insects. When these agents rise to high frequencies they create strong population sex ratio bias and selection then favours mutations that act to restore the rare sex. Despite this strong selection pressure, the evolution of mutations that suppress sex ratio distorting elements appears to be constrained in many cases, where sex-biased populations persist for many generations. This scenario has been observed in the butterfly Hypolimnas bolina, where Wolbachia-mediated male killing endured for 800-1,000 generations across multiple populations before the evolution of suppression. Here we test the hypothesis that this evolutionary lag is the result of suppression being a multilocus trait requiring multiple mutations.

Methods: We developed genetic markers, based on conservation of synteny, for each H. bolina chromosome and verified coverage using recombinational mapping. We then used a Wolbachia-infected mapping family to assess each chromosome for the presence of loci required for male survival, as determined by the presence of markers in all surviving sons.

Results: Informative markers were obtained for each of the 31 chromosomes in H. bolina. The only marker that cosegregated with suppression was located on chromosome 25. A genomic region necessary for suppression has previously been located on this chromosome. We therefore conclude that a single genomic region of the H. bolina genome is necessary for male-killing suppression.

Discussion: The evolutionary lag observed in our system is not caused by a need for changes at multiple genomic locations. The findings favour hypotheses in which either multiple mutations are required within a single genomic region, or the suppressor mutation is a singularly rare event.

RevDate: 2020-01-10

Voronin D, Schnall E, Grote A, et al (2019)

Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia.

PLoS pathogens, 15(9):e1008085.

Human parasitic nematodes are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness), diseases that are endemic to more than 80 countries and that consistently rank in the top ten for the highest number of years lived with disability. These filarial nematodes have evolved an obligate mutualistic association with an intracellular bacterium, Wolbachia, a symbiont that is essential for the successful development, reproduction, and survival of adult filarial worms. Elimination of the bacteria causes adult worms to die, making Wolbachia a primary target for developing new interventional tools to combat filariases. To further explore Wolbachia as a promising indirect macrofilaricidal drug target, the essential cellular processes that define the symbiotic Wolbachia-host interactions need to be identified. Genomic analyses revealed that while filarial nematodes encode all the enzymes necessary for glycolysis, Wolbachia does not encode the genes for three glycolytic enzymes: hexokinase, 6-phosphofructokinase, and pyruvate kinase. These enzymes are necessary for converting glucose into pyruvate. Wolbachia, however, has the full complement of genes required for gluconeogenesis starting with pyruvate, and for energy metabolism via the tricarboxylic acid cycle. Therefore, we hypothesized that Wolbachia might depend on host glycolysis to maintain a mutualistic association with their parasitic host. We did conditional experiments in vitro that confirmed that glycolysis and its end-product, pyruvate, sustain this symbiotic relationship. Analysis of alternative sources of pyruvate within the worm indicated that the filarial lactate dehydrogenase could also regulate the local intracellular concentration of pyruvate in proximity to Wolbachia and thus help control bacterial growth via molecular interactions with the bacteria. Lastly, we have shown that the parasite's pyruvate kinase, the enzyme that performs the last step in glycolysis, could be a potential novel anti-filarial drug target. Establishing that glycolysis is an essential component of symbiosis in filarial worms could have a broader impact on research focused on other intracellular bacteria-host interactions where the role of glycolysis in supporting intracellular survival of bacteria has been reported.

RevDate: 2019-10-23

Gawande SJ, Anandhan S, Ingle A, et al (2019)

Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae).

PloS one, 14(9):e0223281.

The gut microbial community structure of adult Thrips tabaci collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with Thrips tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. Alpha-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of T. tabaci samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with T. tabaci. The location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.

RevDate: 2020-01-08

Detcharoen M, Arthofer W, Schlick-Steiner BC, et al (2019)

Wolbachia megadiversity: 99% of these microorganismic manipulators unknown.

FEMS microbiology ecology, 95(11):.

Wolbachia (Alphaproteobacteria) are the most widespread endosymbionts of arthropods, manipulating their hosts by various means to maximize the number of host individuals infected. Based on quantitative analyzes of the published literature from Web of Science® and of DNA sequences of arthropod-hosted Wolbachia from GenBank, we made plausible that less than 1% of the expected 100 000 strains of Wolbachia in arthropods is known. Our findings suggest that more and globally better coordinated efforts in screening arthropods are needed to explore the true Wolbachia diversity and to help us understand the ecology and evolution of these host-endosymbiont interactions.

RevDate: 2019-10-23

Huang K, Kelly PJ, Zhang J, et al (2019)

Molecular Detection of Bartonella spp. in China and St. Kitts.

The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale, 2019:3209013.

Bartonella are vector-borne hemotropic bacteria that infect a wide variety of hosts, including people. While there are PCR assays that can identify individual or groups of Bartonella, there is no reliable molecular method to simultaneously detect all species while maintaining genus specificity and sensitivity. By comparing highly conserved 16S rRNA sequences of the better-recognized Bartonella spp. on GenBank, we selected primers and probes for a genus-specific pan-Bartonella FRET-qPCR. Then, a gltA-based Bartonella PCR was established by selecting primers for a highly variable region of gltA, of which the sequenced amplicons could identify individual Bartonella spp. The pan-Bartonella FRET-qPCR did not detect negative controls (Brucella spp., Anaplasma spp., Rickettsia spp., Coxiella burnetii, and Wolbachia) but reliably detected as few as two copies of the positive control (Bartonella henselae) per reaction. There was complete agreement between the pan-Bartonella FRET-qPCR and the gltA-based Bartonella PCR in detecting Bartonella in convenience test samples from China and St. Kitts: cats (26%; 81/310), Ctenocephalides felis (20%; 12/60), cattle (24%; 23/98), and donkeys (4%; 1/20). Sequencing of the gltA-based Bartonella PCR products revealed B. henselae (70%; 57/81) and B. clarridgeiae (30%; 24/81) in cats and C. felis (67%; 8/12, and 33%; 4/12, respectively) and B. bovis in cattle (23.5%; 23/98) and donkeys (4.0%; 1/24). The pan-Bartonella FRET-qPCR and gltA-based Bartonella PCR we developed are highly sensitive and specific in detecting recognized Bartonella spp. in a single reaction. The pan-Bartonella FRET-qPCR is convenient requiring no gel electrophoresis and providing copy numbers, while the gltA-based Bartonella PCR reliably differentiates individual Bartonella species. The use of these PCRs should greatly facilitate large-scale surveillance studies and the diagnosis of infections in clinical samples.

RevDate: 2020-01-07

Andersen BJ, Rosa BA, Kupritz J, et al (2019)

Systems analysis-based assessment of post-treatment adverse events in lymphatic filariasis.

PLoS neglected tropical diseases, 13(9):e0007697.

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease, and the Global Program to Eliminate LF delivers mass drug administration (MDA) to 500 million people every year. Adverse events (AEs) are common after LF treatment.

To better understand the pathogenesis of AEs, we studied LF-patients from a treatment trial. Plasma levels of many filarial antigens increased post-treatment in individuals with AEs, and this is consistent with parasite death. Circulating immune complexes were not elevated in these participants, and the classical complement cascade was not activated. Multiple cytokines increased after treatment in persons with AEs. A transcriptomic analysis was performed for nine individuals with moderate systemic AEs and nine matched controls. Differential gene expression analysis identified a significant transcriptional signature associated with post-treatment AEs; 744 genes were upregulated. The transcriptional signature was enriched for TLR and NF-κB signaling. Increased expression of seven out of the top eight genes upregulated in persons with AEs were validated by qRT-PCR, including TLR2.

CONCLUSIONS/SIGNIFICANCE: This is the first global study of changes in gene expression associated with AEs after treatment of lymphatic filariasis. Changes in cytokines were consistent with prior studies and with the RNAseq data. These results suggest that Wolbachia lipoprotein is involved in AE development, because it activates TLR2-TLR6 and downstream NF-κB. Additionally, LPS Binding Protein (LBP, which shuttles lipoproteins to TLR2) increased post-treatment in individuals with AEs. Improved understanding of the pathogenesis of AEs may lead to improved management, increased MDA compliance, and accelerated LF elimination.

RevDate: 2019-12-20

Bonneau M, Caputo B, Ligier A, et al (2019)

Variation in Wolbachia cidB gene, but not cidA, is associated with cytoplasmic incompatibility mod phenotype diversity in Culex pipiens.

Molecular ecology, 28(21):4725-4736.

Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains. CI can be seen as a modification-rescue system (or mod-resc) in which paternal Wolbachia produce mod factors, inducing embryonic defects, unless the maternal Wolbachia produce compatible resc factors. Transgenic experiments in Drosophila melanogaster and Saccharomyces cerevisiae converged towards a model where the cidB Wolbachia gene is involved in the mod function while cidA is involved in the resc function. However, as cidA expression in Drosophila males was required to observe CI, it has been proposed that cidA could be involved in both resc and mod functions. A recent correlative study in natural Culex pipiens mosquito populations has revealed an association between specific cidA and cidB variations and changes in mod phenotype, also suggesting a role for both these genes in mod diversity. Here, by studying cidA and cidB genomic repertoires of individuals from newly sampled natural C. pipiens populations harbouring wPipIV strains from North Italy, we reinforce the link between cidB variation and mod phenotype variation fostering the involvement of cidB in the mod phenotype diversity. However, no association between any cidA variants or combination of cidA variants and mod phenotype variation was observed. Taken together our results in natural C. pipiens populations do not support the involvement of cidA in mod phenotype variation.

RevDate: 2020-01-08
CmpDate: 2019-12-16

Avtzis DN, Schebeck M, Petsopoulos D, et al (2019)

New Data on the Range Expansion of the Thaumetopoea pityocampa (Lepidoptera: Notodontidae) 'ENA clade' in Greece: The Role of Bacterial Endosymbionts.

Journal of economic entomology, 112(6):2761-2766.

The pine processionary moth, Thaumetopoea pityocampa (Denis and Schiffermüller), is an important insect in the Mediterranean region, as it defoliates pines and its urticating hairs can cause allergic reactions in humans and animals. Moreover, this species exhibits an interesting genetic structure as recently a distinct East-North African mtDNA lineage ('ENA clade') has been described. This clade has been recently detected in Greek populations where it has currently expanded its range by replacing the 'endemic' T. pityocampa lineages. Here, we report new data on the rapid spread of 'ENA clade' in the Greek island Evoia in only a few years. As the underlying mechanisms of the 'ENA clade' range expansion has not been studied so far, we screened T. pityocampa for an infection with the heritable bacterial endosymbionts Wolbachia (Bacteria: Anaplasmataceae), Cardinium (Bacteria: Bacteroidaceae), Rickettsia (Bacteria: Rickettsiaceae) and Spiroplasma (Bacteria: Spiroplasmataceae). These bacteria can manipulate the reproduction of infected hosts, something that could potentially explain the rapid spread of 'ENA clade' lineage. Therefore, we screened 28 individuals that exhibited T. pityocampa 'ENA clade' and 'endemic' T. pityocampa haplotypes from nine populations scattered all over Greece. None of them was infected with any of the four endosymbionts, suggesting that these bacteria do not cause reproductive manipulations in T. pityocampa lineages and, thus, other factors should be explored in future research efforts.

RevDate: 2020-01-08

Ogawa M, Takahashi M, Matsutani M, et al (2019)

Obligate intracellular bacteria diversity in unfed Leptotrombidium scutellare larvae highlights novel bacterial endosymbionts of mites.

Microbiology and immunology [Epub ahead of print].

It is well known that the mite Leptotrombidium scutellare carries the pathogen of scrub typhus, Orientia tsutsugamushi. However, our understanding of other bacterial endosymbionts of mites is limited. This study investigated the diversity of the obligate intracellular bacteria carried by L. scutellare using 16S rRNA gene amplicon analysis with next-generation sequencing. The results showed that the detected bacteria were classified into the genera Rickettsia, Wolbachia, and Rickettsiella and an unknown genus of the order Rickettsiales. For further classification of the detected bacteria, a representative read that was most closely related to the assigned taxonomic classification was subjected to homology search and phylogenic analysis. The results showed that some bacteria of the genus Rickettsia were identical or very close to the human pathogens Rickettsia akari, Rickettsia aeschlimannii, Rickettsia felis, and Rickettsia australis. The genetic distance between the genus Wolbachia bacteria in the present study and in previous reports is highly indicative that the bacteria in the present study can be classified as a new taxon of Wolbachia. This study detected obligate intracellular bacteria from unfed mites; thus, the mites did not acquire bacteria from infected animals or any other infectious sources. Finally, the present study demonstrated that various and novel bacterial endosymbionts of mites, in addition to O. tsutsugamushi, might uniquely evolve with the host mites throughout overlapping generations of the mite life cycle. The roles of the bacteria in mites and their pathogenicity should be further examined in studies based on bacterial isolation.

RevDate: 2019-09-24

O'Neill SL, Ryan PA, Turley AP, et al (2018)

Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses.

Gates open research, 2:36.

Background: A number of new technologies are under development for the control of mosquito transmitted viruses, such as dengue, chikungunya and Zika that all require the release of modified mosquitoes into the environment. None of these technologies has been able to demonstrate evidence that they can be implemented at a scale beyond small pilots. Here we report the first successful citywide scaled deployment of Wolbachia in the northern Australian city of Townsville. Methods: The wMel strain of Wolbachia was backcrossed into a local Aedes aegypti genotype and mass reared mosquitoes were deployed as eggs using mosquito release containers (MRCs). In initial stages these releases were undertaken by program staff but in later stages this was replaced by direct community release including the development of a school program that saw children undertake releases. Mosquito monitoring was undertaken with Biogents Sentinel (BGS) traps and individual mosquitoes were screened for the presence of Wolbachia with a Taqman qPCR or LAMP diagnostic assay. Dengue case notifications from Queensland Health Communicable Disease Branch were used to track dengue cases in the city before and after release. Results: Wolbachia was successfully established into local Ae. aegypti mosquitoes across 66 km 2 in four stages over 28 months with full community support. A feature of the program was the development of a scaled approach to community engagement. Wolbachia frequencies have remained stable since deployment and to date no local dengue transmission has been confirmed in any area of Townsville after Wolbachia has established, despite local transmission events every year for the prior 13 years and an epidemiological context of increasing imported cases. Conclusion: Deployment of Wolbachia into Ae. aegypti populations can be readily scaled to areas of ~60km 2 quickly and cost effectively and appears in this context to be effective at stopping local dengue transmission.

RevDate: 2019-09-22

Sanaei E, Husemann M, Seiedy M, et al (2019)

Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae).

Ecology and evolution, 9(17):9546-9563 pii:ECE35474.

The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.

RevDate: 2019-10-23

Dincă V, Lee KM, Vila R, et al (2019)

The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly.

Proceedings. Biological sciences, 286(1911):20191311.

The Palaearctic butterfly Melitaea didyma stands out as one of the most striking cases of intraspecific genetic differentiation detected in Lepidoptera: 11 partially sympatric mitochondrial lineages have been reported, displaying levels of divergence of up to 7.4%. To better understand the evolutionary processes underlying the diversity observed in mtDNA, we compared mtDNA and genome-wide SNP data using double-digest restriction site-associated DNA sequencing (ddRADseq) results from 93 specimens of M. didyma ranging from Morocco to eastern Kazakhstan. We found that, between ddRADseq and mtDNA results, there is a match only in populations that probably remained allopatric for long periods of time. Other mtDNA lineages may have resulted from introgression events and were probably affected by Wolbachia infection. The five main ddRADseq clades supported by STRUCTURE were parapatric or allopatric and showed high pairwise FST values, but some were also estimated to display various levels of gene flow. Melitaea didyma represents one of the first cases of deep mtDNA splits among European butterflies assessed by a genome-wide DNA analysis and reveals that the interpretation of patterns remains challenging even when a high amount of genomic data is available. These findings actualize the ongoing debate of species delimitation in allopatry, an issue probably of relevance to a significant proportion of global biodiversity.

RevDate: 2020-01-08

Després L (2019)

One, two or more species? Mitonuclear discordance and species delimitation.

Molecular ecology, 28(17):3845-3847.

Delimiting species boundaries is central to understand ecological and evolutionary processes, and to monitor biodiversity patterns over time and space. Yet, most of our current knowledge on animal diversity and phylogeny relies on morphological and mitochondrial (mt) DNA variation, a popular molecular marker also used as a barcode to assign samples to species. For morphologically undistinguishable sympatric species (cryptic species), the congruence of several independent markers is necessary to define separate species. Nuclear markers are becoming more accessible, and have confirmed that cryptic species are widespread in all animal phyla (Fišer, Robinson, & Malard, 2018). However, striking differences between the mitochondrial and nuclear variation patterns are also commonly found within single species. Mitonuclear discordance can result from incomplete lineage sorting, sex-biased dispersal, asymmetrical introgression, natural selection or Wolbachia-mediated genetic sweeps. But more generally, the distinct mode of transmission of these two types of markers (maternal vs. biparental) is sufficient to explain their distinct sensitivity to purely demographic events such as spatial range and population size fluctuations over time. In a From the Cover manuscript in this issue of Molecular Ecology, Hijonosa et al. (2019) show that highly divergent mtDNA lineages coexist in a widespread European butterfly (Figure 1). None of the hundreds of nuclear markers analyzed was associated with mt lineages, nor was Wolbachia variation. These findings rule out the presence of cryptic species but shed light on complex demographic history of lineage divergence/fusion during the Pleistocene climatic fluctuations, and pave the way to a better integration of both mt and nuclear information in demographic models.

RevDate: 2020-01-08

Schwartz RA, Al-Qubati Y, Zieleniewski Ł, et al (2019)

Onchocerciasis (river blindness): larva-induced eczema (onchodermatitis) from an important oculocutaneous tropical disease spilling over into North America and Europe.

International journal of dermatology [Epub ahead of print].

Onchocerciasis is a leading cause of blindness in the world. It may be seen in temperate climates of the United States and Europe in immigrants and travelers from endemic regions, often linked to poverty and war. One should be aware of an incubation period that can be up to 15 months. In its early stage and throughout its course, onchocerciasis has noteworthy skin findings, facilitating diagnosis, as onchodermatitis resembles common eczema with variable degrees of papular, lichenoid, atrophic, and pigmentary alterations, features not suggestive if one is unaware of an individual's immigration and travel history. The same concept applies for the encysted worms (onchocercomas), as they tend to appear as common skin cysts and benign neoplasms. New methods can be employed to increase diagnostic sensitivity and specificity. Ivermectin is the gold standard of therapy, the use of which has almost miraculously eliminated this disease from large areas of the earth. However, its effect remains isolated to microfilariae and can be devastating in those coinfected with Loa loa. Recently, the symbiotic relationship between adult worms and Wolbachia bacteria has been discovered and, with it, the possibility of adding doxycycline as a treatment option. We also discuss coinfection with HIV and other diseases.

RevDate: 2019-09-13

Meng L, Li X, Cheng X, et al (2019)

16S rRNA Gene Sequencing Reveals a Shift in the Microbiota of Diaphorina citri During the Psyllid Life Cycle.

Frontiers in microbiology, 10:1948.

The Asian citrus psyllid (Diaphorina citri) is a major pest of citrus trees as it transmits Candidatus Liberibacter asiaticus (CLas). The composition of a host's microbiota can affect the evolution and ecological distribution of the host. This study monitored the compositional shifts in the citrus psyllid microbiota through all the life stages (egg, nymph 1-5 stages, and adult) by next-generation sequencing (NGS) and quantitative real-time PCR. There were clear differences in both α- and β-diversity of microbiota through the psyllid life stages. Microbiota diversity was markedly higher in the nymph 2-5 stages than in the adult, egg, and nymph 1 stages. Proteobacteria were dominant in all the life stages of D. citri, representing >97.5% of the total bacterial community, and Candidatus Profftella armature was the dominant genus in all the life stages. Data from the qPCR analysis showed an exponential increase in the populations of three D. citri endosymbionts: Candidatus Profftella armature, Candidatus Carsonella ruddii, and Wolbachia. The gut bacterium Pantoea was present in all the life stages, but it was markedly higher in the nymph 2-5 stages. The microbiota composition substantially differed among the egg-nymph 1, nymphs 2-5, and adult stages. Therefore, we successfully characterized the microbiota dynamics and thus identified a microbiota shift during the life cycle of D. citri by 16S rRNA gene sequencing and quantitative PCR. Moreover, 16S rRNA gene sequencing suggested that D. citri acquired the ability to bear CLas in the nymph 1 stage. This study enhances our understanding of microbial establishment in the developing D. citri and provides a reference resource for the identification of potential biocontrol approaches against this pest.

RevDate: 2020-01-08

Ross PA, Turelli M, AA Hoffmann (2019)

Evolutionary Ecology of Wolbachia Releases for Disease Control.

Annual review of genetics, 53:93-116.

Wolbachia is an endosymbiotic Alphaproteobacteria that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural Wolbachia infections in insect populations with Wolbachia transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of Wolbachia releases. Natural Wolbachia infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by Wolbachia is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can Wolbachia fitness effects and virus blocking. Wolbachia spread is also influenced by environmental factors that decrease Wolbachia titer and reduce maternal Wolbachia transmission frequency. More information is needed on the interactions between Wolbachia and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of Wolbachia-mediated virus blocking.

RevDate: 2020-01-10

Perlmutter JI, Bordenstein SR, Unckless RL, et al (2019)

The phage gene wmk is a candidate for male killing by a bacterial endosymbiont.

PLoS pathogens, 15(9):e1007936 pii:PPATHOGENS-D-19-01066.

Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.

RevDate: 2020-01-01
CmpDate: 2020-01-01

Fisher ML, Levine JF, Guy JS, et al (2019)

Lack of influence by endosymbiont Wolbachia on virus titer in the common bed bug, Cimex lectularius.

Parasites & vectors, 12(1):436 pii:10.1186/s13071-019-3694-2.

BACKGROUND: The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius.

METHODS: We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia.

RESULTS: There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups.

CONCLUSIONS: These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.

RevDate: 2019-12-16

Zheng B, Chen LH, QW Sun (2019)

Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model.

Mathematical biosciences and engineering : MBE, 16(5):5531-5550.

To date, an innovative strategy to control dengue is to release Wolbachia-infected male mosquitoes into wild areas to sterilize wild female mosquito vectors by cytoplasmic incompatibility (CI). To investigate the efficacy of Wolbachia in blocking dengue virus transmission, we develop a deterministic mathematical model of human and mosquito populations in which one dengue serotype circulates. The delay differential equation model captures the respective extrinsic and intrinsic incu-bation periods (EIP and IIP) in the mosquito and human, as well as the maturation delay between mating and emergence of adult mosquitoes, which have received relatively little attention. We analyze the existence and stability of disease-free equilibria, and obtain a sufficient and necessary condition on the existence of the disease-endemic equilibrium. We also determine two threshold values of the release ratio $\theta$, denoted by $\theta_1^*$ and $\theta_2^*$ with $\theta_1^*>\theta_2^*$. When $\theta>\theta_1^*$, the mosquito population will be eradicated eventually. When $\theta_2^*<\theta < \theta_1^*$, a complete mosquito eradication becomes impossible, but virus eradication is ensured at the meantime. When $\theta<\theta_2^*$, the disease-endemic equilibrium emerges that allows dengue virus to circulate between humans and mosquitoes. We carry out sensitivity analysis of the threshold values in terms of the model parameters, and simulate several possible control strate-gies with different release ratios, which confirm the public awareness that reducing mosquito bites and killing adult mosquitoes are the most effective strategy to control the epidemic. Our model provides new insights on the effectiveness of Wolbachia in reducing dengue at a population level.

RevDate: 2019-12-16

Huang MG, Tang MX, Yu JS, et al (2019)

The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio.

Mathematical biosciences and engineering : MBE, 16(5):4741-4757.

To control mosquito-borne diseases such as dengue, malaria, and Zika, {\it Wolbachia}-infected male mosquitoes have been released in open areas to suppress wild mosquito population driven by cytoplasmic incompatibility (CI). In this work, we initiate a preliminary assessment on how the CI intensity $\xi$, and the mating competitiveness $\mu$ of released males relative to wild males, impact the suppression efficacy by a delay differential equation model. Our analysis identifies a threshold CI intensity $\xi_0\in (0, 1)$ as an increasing function of the natural reproduction rate of the wild mosquitoes, and a threshold value $r^*$ for the ratio $r(t)$ between the numbers of released males and wild males. The population suppression fails when $\xi\le \xi_0$, and succeeds when $\xi>\xi_0$ and $r(t)\ge r^*$. Our analyses indicate that $\xi$ plays a more important role than $\mu$ in the population suppression. For instance, a slight decrease of $\xi$ from 1 to 0.92 is more devastating than halving $\mu$ from 1 to 0.5. In our estimation of the optimal starting date for infected male release to target a more than $95\%$ wild population reduction during the peak season of dengue in Guangzhou, we find that the optimal date is almost independent of $\mu$ but is sensitive to $\xi$. If CI is complete, then starting about two months ahead can be an optimal option for less financial and labor costs. A slight reduction in the CI intensity requires a considerably earlier starting date.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )