Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Did Mendel Cheat?

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 23 Sep 2018 at 01:37 Created: 

Did Mendel Cheat?

In 1936, R. A. Fisher noted that Mendel's results seem to come too close to the expected value too often, leading him to conclude "the general level of agreement between Mendel's expectations and his reported results shows that it is closer than would be expected in the best of several thousand repetitions. The data have evidently been sophisticated systematically..." That is, Mendel's data had been fiddled with. A small industry has grown up, with various authors taking sides on the controversy.

Created with PubMed® Query: (mendel[TITLE] OR mendelian[TITLE]) AND (cheat OR "too good"[TITLE] OR fisher OR controversy OR controversies) NOT (Humans[MESH] OR rats[MESH] OR Software[MESH] OR "Mendelian randomization") NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-08-20

Liu Y (2018)

Darwin and Mendel: The Historical Connection.

Advances in genetics, 102:1-25.

Darwin carried out a host of carefully controlled cross- and self-pollination experiments in a wide variety of plants, and made a significant and imperishable contribution to the knowledge of hybridization. He not only clearly described the phenomenon of what he called prepotency and what we now call dominance or Mendelian inheritance, but also explained it by his Pangenesis. Recent discovery of small RNAs acting as dominance modifiers supports his Pangenesis regarding the control of prepotency by gemmules. Historical studies show that there is striking evidence that Mendel read Darwin's The Origin of Species, which had influenced his paper presented in 1865 and published in 1866. Although Mendel's paper has been considered a classic in the history of genetics, it generated much controversy since its rediscovery. Mendel's position as the father of genetics is being seriously challenged. Darwin's main contribution to genetics was the collection of a tremendous amount of genetic data, and the formulation of a comprehensive genetical theory for their explanation. Over the past 150 years, however, Darwin's legacy to genetics, particularly his Pangenesis, has not been considered seriously by most geneticists. It is proposed that Darwin should have been regarded as one of the most important pioneers in genetics.

RevDate: 2015-10-09
CmpDate: 2015-11-03

Radick G (2015)

HISTORY OF SCIENCE. Beyond the "Mendel-Fisher controversy".

Science (New York, N.Y.), 350(6257):159-160.

RevDate: 2017-11-08
CmpDate: 2013-05-14

Simunek M, Hoßfeld U, O Breidbach (2012)

'Further Development' of Mendel's legacy? Erich von Tschermak-Seysenegg in the context of Mendelian-biometry controversy, 1901-1906.

Theory in biosciences = Theorie in den Biowissenschaften, 131(4):243-252.

The contribution of Erich von Tschermak-Seysenegg (1871-1962) to the beginning of classical genetics is a matter of dispute. The aim of this study is to analyse, based on newly accessible archive materials, the relevance of his positions and theoretical views in a debate between advocates of early Mendelian explanation of heredity and proponents of biometry, which took place in England around 1901-1906. We challenge not only his role of an 'external consultant', which at the time de facto confirmed his status of 'rediscoverer' of Mendel's work but also analyse his ambivalent positions which are to be seen as a part of 'further development' (Weiterführung), a development of Mendel's legacy as he understood it. Second, there is an interesting aspect of establishing connections within an 'experimental culture' along the Mendel's lines of thought that was parallel to the first step of institutionalizing the new discipline of Genetics after 1905/06. Part of the study is also the analysis of contribution of his older brother Armin von Tschermak-Seysenegg (1870-1952) who--much like in the case of 'rediscovery' of 1900-1901--was for his younger brother an important source of theoretical knowledge. In this particular case, it regarded Bateson's 'Defence' of Mendel from 1902.

RevDate: 2008-04-30
CmpDate: 2008-06-12

Bokhari FA, W Sami (2007)

Did Mendel cheat?.

Journal of Ayub Medical College, Abbottabad : JAMC, 19(3):96.

RevDate: 2016-11-24
CmpDate: 1998-02-19

Magnello ME (1998)

Karl Pearson's mathematization of inheritance: from ancestral heredity to Mendelian genetics (1895-1909).

Annals of science, 55(1):35-94.

Long-standing claims have been made for nearly the entire twentieth century that the biometrician, Karl Pearson, and colleague, W. F. R. Weldon, rejected Mendelism as a theory of inheritance. It is shown that at the end of the nineteenth century Pearson considered various theories of inheritance (including Francis Galton's law of ancestral heredity for characters underpinned by continuous variation), and by 1904 he 'accepted the fundamental idea of Mendel' as a theory of inheritance for discontinuous variation. Moreover, in 1909, he suggested a synthesis of biometry and Mendelism. Despite the many attempts made by a number of geneticists (including R. A. Fisher in 1936) to use Pearson's chi-square (X2, P) goodness-of-fit test on Mendel's data, which produced results that were 'too good to be true', Weldon reached the same conclusion in 1902, but his results were never acknowledged. The geneticist and arch-rival of the biometricians, Williams Bateson, was instead exceptionally critical of this work and interpreted this as Weldon's rejection of Mendelism. Whilst scholarship on Mendel, by historians of science in the last 18 years, has led to a balanced perspective of Mendel, it is suggested that a better balanced and more rounded view of the hereditarian-statistical work of Pearson, Weldon, and the biometricians is long overdue.

RevDate: 2011-06-14
CmpDate: 2012-10-02

Fairbanks DJ, B Rytting (2001)

Mendelian controversies: a botanical and historical review.

American journal of botany, 88(5):737-752.

Gregor Mendel was a 19(th) century priest and botanist who developed the fundamental laws of inheritance. The year 2000 marked a century since the rediscovery of those laws and the beginning of genetics. Although Mendel is now recognized as the founder of genetics, significant controversy ensued about his work throughout the 20(th) century. In this paper, we review five of the most contentious issues by looking at the historical record through the lens of current botanical science: (1) Are Mendel's data too good to be true? (2) Is Mendel's description of his experiments fictitious? (3) Did Mendel articulate the laws of inheritance attributed to him? (4) Did Mendel detect but not mention linkage? (5) Did Mendel support or oppose Darwin?A synthesis of botanical and historical evidence supports our conclusions: Mendel did not fabricate his data, his description of his experiments is literal, he articulated the laws of inheritance attributed to him insofar as was possible given the information he had, he did not detect linkage, and he neither strongly supported nor opposed Darwin.

RevDate: 2004-11-17
CmpDate: 2001-02-15

Lenay C (2000)

Hugo De Vries: from the theory of intracellular pangenesis to the rediscovery of Mendel.

Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie, 323(12):1053-1060.

On the basis of the article by the Dutch botanist Hugo De Vries 'On the law of separation of hybrids' published in the Reports of the Académie des Sciences in 1900, and the beginning of the controversy about priority with Carl Correns and Erich von Tschermak, I consider the question of the posthumous influence of the Mendel paper. I examine the construction of the new theoretical framework which enabled its reading in 1900 as a clear and acceptable presentation of the rules of the transmission of hereditary characters. In particular, I analyse the introduction of the idea of determinants of organic characters, understood as separable material elements which can be distributed randomly in descendants. Starting from the question of heredity, such as it was defined by Darwin in 1868, and after its critical developments by August Weismann, Hugo De Vries was able to suggest such an idea in his Intracellular Pangenesis. He then laid out a programme of research which helps us to understand the 'rediscovery' published in 1900.

RevDate: 2008-11-21
CmpDate: 1991-10-10

Weiling F (1991)

Historical study: Johann Gregor Mendel 1822-1884.

American journal of medical genetics, 40(1):1-25; discussion 26.

The life and personality of Johann Gregor Mendel (1822-1884), the founder of scientific genetics, are reviewed against the contemporary background of his times. At the end are weighed the benefits for Mendel (as charged by Sir Ronald Fisher) to have documented his results on hand of falsified data. Mendel was born into a humble farm family in the "Kuhländchen", then a predominantly German area of Northern Moravia. On the basis of great gifts Mendel was able to begin higher studies; however, he found himself in serious financial difficulties because of his father's accident and incapacitation. His hardships engendered illness which threatened continuation and completion of his studies until he was afforded the chance of absolving successfully theological studies as an Augustinian monk in the famous chapter of St. Thomas in Altbrünn (Staré Brno). Psychosomatic indisposition made Mendel unfit for practical pastoral duties. Thus, he was directed to teach but without appropriate state certification; an attempt to pass such an examination failed. At that point he was sent to the University of Vienna for a 2-year course of studies, with emphasis on physics and botany, to prepare him for the exam. His scientific and methodologic training enabled him to plan studies of the laws of inheritance, which had begun to interest him already during his theology training, and to choose the appropriate experimental plant. In 1865, after 12 years of systematic investigations on peas, he presented his results in the famous paper "Versuche über Pflanzenhybriden." Three years after his return from Vienna he failed to attain his teaching certification a second time. Only by virtue of his exceptional qualifications did he continue to function as a Supplementary Professor of Physics and Natural History in the two lowest classes of a secondary school. In 1868 he was elected Abbot of his chapter, and freed from teaching duties, was able to pursue his many scientific interests with greater efficiency. This included meteorology, the measurement of ground water levels, further hybridization in plants (a.o. involving the hawk week Hieracium up to about 1873), vegetable and fruit tree horticulture, apiculture, and agriculture in general. This involved Mendel's active participation in many organizations interested in advancing these fields at a time when appropriate research institutes did not exist in Brünn. Some of the positions he took in his capacity of Abbot had severe repercussions and further taxed Mendel's already over-stressed system. The worst of these was a 10-year confrontation with the government about the taxation of the monastery.(ABSTRACT TRUNCATED AT 400 WORDS)

RevDate: 2005-11-16
CmpDate: 1991-05-20

Piegorsch WW (1990)

Fisher's contributions to genetics and heredity, with special emphasis on the Gregor Mendel controversy.

Biometrics, 46(4):915-924.

R. A. Fisher is widely respected for his contributions to both statistics and genetics. For instance, his 1930 text on The Genetical Theory of Natural Selection remains a watershed contribution in that area. Fisher's subsequent research led him to study the work of (Johann) Gregor Mendel, the 19th century monk who first developed the basic principles of heredity with experiments on garden peas. In examining Mendel's original 1865 article, Fisher noted that the conformity between Mendel's reported and proposed (theoretical) ratios of segregating individuals was unusually good, "too good" perhaps. The resulting controversy as to whether Mendel "cooked" his data for presentation has continued to the current day. This review highlights Fisher's most salient points as regards Mendel's "too good" fit, within the context of Fisher's extensive contributions to the development of genetical and evolutionary theory.

RevDate: 2009-11-11
CmpDate: 1989-11-29

Olby R (1989)

The dimensions of scientific controversy: the biometric--Mendelian debate.

British journal for the history of science, 22(74 Pt 3):299-320.

RevDate: 2017-02-14
CmpDate: 1986-08-27

Piegorsch WW (1986)

The Gregor Mendel controversy: early issues of goodness-of-fit and recent issues of genetic linkage.

History of science; an annual review of literature, research and teaching, 24(64 pt 2):173-182.

RevDate: 2004-11-17
CmpDate: 1985-02-04

Pilgrim I (1984)

The too-good-to-be-true paradox and Gregor Mendel.

The Journal of heredity, 75(6):501-502.

RevDate: 2016-11-23
CmpDate: 1977-09-15

Norton B, ES Pearson (1976)

A note on the background to, and refereeing of, R. A. Fisher's 1918 paper 'On the correlation between relatives on the supposition of Mendelian inheritance'.

Notes and records of the Royal Society of London, 31(1):151-162.

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )