Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Human Microbiome

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 25 Sep 2022 at 01:59 Created: 

Human Microbiome

The human microbiome is the set of all microbes that live on or in humans. Together, a human body and its associated microbiomes constitute a human holobiont. Although a human holobiont is mostly mammal by weight, by cell count it is mostly microbial. The number of microbial genes in the associated microbiomes far outnumber the number of human genes in the human genome. Just as humans (and other multicellular eukaryotes) evolved in the constant presence of gravity, so they also evolved in the constant presence of microbes. Consequently, nearly every aspect of human biology has evolved to deal with, and to take advantage of, the existence of associated microbiota. In some cases, the absence of a "normal microbiome" can cause disease, which can be treated by the transplant of a correct microbiome from a healthy donor. For example, fecal transplants are an effective treatment for chronic diarrhea from over abundant Clostridium difficile bacteria in the gut.

Created with PubMed® Query: "human microbiome" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2022-09-24

White MG, JA Wargo (2022)

The Microbiome in Gastrointestinal Cancers.

Gastroenterology clinics of North America, 51(3):667-680.

The human microbiome has been recognized as increasingly important to health and disease. This is especially prescient in the development of various cancers, their progression, and the microbiome's modulation of various anticancer therapeutics. Mechanisms behind these interactions have been increasingly well described through modulation of the host immune system as well as induction of genetic changes and local inactivation of cancer therapeutics. Here, we review these associations for a variety of gastrointestinal malignancies as well as contemporary strategies proposed to leverage these associations to improve cancer treatment outcomes.

RevDate: 2022-09-24

Pedro N, Brucato N, Cavadas B, et al (2022)

First insight into oral microbiome diversity in Papua New Guineans reveals a specific regional signature.

Molecular ecology [Epub ahead of print].

The oral microbiota is a highly complex and diversified part of the human microbiome. Being located at the interface between the human body and the exterior environment, this microbiota can deepen our understanding of the environmental impacts on the global status of human health. This research topic has been well addressed in Westernized populations, but these populations only represent a fraction of human diversity. Papua New Guinea hosts very diverse environments and one of the most unique human biological diversities worldwide. In this work we performed the first known characterization of the oral microbiome in 85 Papua New Guinean individuals living in different environments, using a qualitative and quantitative approach. We found a significant geographical structure of the Papua New Guineans oral microbiome, especially in the groups most isolated from urban spaces. In comparison to other global populations, two bacterial genera related to iron absorption were significantly more abundant in Papua New Guineans and Aboriginal Australians, which suggests a shared oral microbiome signature. Further studies will be needed to confirm and explore this possible regional-specific oral microbiome profile.

RevDate: 2022-09-24

Begum N, Harzandi A, Lee S, et al (2022)

Host-mycobiome metabolic interactions in health and disease.

Gut microbes, 14(1):2121576.

Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.

RevDate: 2022-09-23

Yutin N, Rayko M, Antipov D, et al (2022)

Varidnaviruses in the Human Gut: A Major Expansion of the Order Vinavirales.

Viruses, 14(9): pii:v14091842.

Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm Duplodnaviria, in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not been dissected in detail. Here we report a comprehensive census of a minor component of the gut virome, the tailless bacteriophages of the realm Varidnaviria. Tailless phages are primarily represented in the gut by prophages, that are mostly integrated in genomes of Alphaproteobacteria and Verrucomicrobia and belong to the order Vinavirales, which currently consists of the families Corticoviridae and Autolykiviridae. Phylogenetic analysis of the major capsid proteins (MCP) suggests that at least three new families should be established within Vinavirales to accommodate the diversity of prophages from the human gut virome. Previously, only the MCP and packaging ATPase genes were reported as conserved core genes of Vinavirales. Here we report an extended core set of 12 proteins, including MCP, packaging ATPase, and previously undetected lysis enzymes, that are shared by most of these viruses. We further demonstrate that replication system components are frequently replaced in the genomes of Vinavirales, suggestive of selective pressure for escape from yet unknown host defenses or avoidance of incompatibility with coinfecting related viruses. The results of this analysis show that, in a sharp contrast to marine viromes, varidnaviruses are a minor component of the human gut virome. Moreover, they are primarily represented by prophages, as indicated by the analysis of the flanking genes, suggesting that there are few, if any, lytic varidnavirus infections in the gut at any given time. These findings complement the existing knowledge of the human gut virome by exploring a group of viruses that has been virtually overlooked in previous work.

RevDate: 2022-09-23

Liu M, Nieuwdorp M, de Vos WM, et al (2022)

Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders.

Metabolites, 12(9): pii:metabo12090834.

The trillions of commensal microorganisms comprising the gut microbiota have received growing attention owing to their impact on host physiology. Recent advances in our understandings of the host-microbiota crosstalk support a pivotal role of microbiota-derived metabolites in various physiological processes, as they serve as messengers in the complex dialogue between commensals and host immune and endocrine cells. In this review, we highlight the importance of tryptophan-derived metabolites in host physiology, and summarize the recent findings on the role of tryptophan catabolites in preserving intestinal homeostasis and fine-tuning immune and metabolic responses. Furthermore, we discuss the latest evidence on the effects of microbial tryptophan catabolites, describe their mechanisms of action, and discuss how perturbations of microbial tryptophan metabolism may affect the course of intestinal and extraintestinal disorders, including inflammatory bowel diseases, metabolic disorders, chronic kidney diseases, and cardiovascular diseases.

RevDate: 2022-09-23

Olunoiki E, Rehner J, Bischoff M, et al (2022)

Characteristics of the Skin Microbiome in Selected Dermatological Conditions: A Narrative Review.

Life (Basel, Switzerland), 12(9): pii:life12091420.

The skin is the largest and outermost organ of the human body. The microbial diversity of the skin can be influenced by several variable factors such as physiological state, lifestyle, and geographical locations. Recent years have seen increased interest in research aiming at an improved understanding of the relationship between the human microbiota and several diseases. Albeit understudied, interesting correlations between the skin microbiota and several dermatological conditions have been observed. Studies have shown that a decrease or increase in the abundance of certain microbial communities can be implicated in several dermatological pathologies. This narrative review (i) examines the role of the skin microbiota in the maintenance of skin homeostasis and health, (ii) provides examples on how some common skin diseases (acne inversa, candidiasis, psoriasis) are associated with the dysbiosis of microbial communities, and (iii) describes how recent research approaches used in skin microbiome studies may lead to improved, more sensitive diagnostics and individual therapeutics in the foreseeable future.

RevDate: 2022-09-23

Del Chierico F, Conta G, Matteoli MC, et al (2022)

Gut Microbiota Functional Traits, Blood pH, and Anti-GAD Antibodies Concur in the Clinical Characterization of T1D at Onset.

International journal of molecular sciences, 23(18): pii:ijms231810256.

Alterations of gut microbiota have been identified before clinical manifestation of type 1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and disease markers, the 16S rRNA-based microbiota profiling and 1H-NMR metabolomic analysis were performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects (CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, malonate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium and Alistipes and those with normal blood pH and low serum HbA1c levels showed high levels of purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker associated progression and severity of T1D.

RevDate: 2022-09-23

Riva V, Patania G, Riva F, et al (2022)

Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere.

Antibiotics (Basel, Switzerland), 11(9): pii:antibiotics11091231.

Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is still overlooked. Here, the environmental strain Acinetobacter baylyi BD413 was used to study the acquisition of extracellular DNA (exDNA) carrying an antibiotic resistance gene (ARG) on lettuce phylloplane, performing experiments at conditions (i.e., plasmid quantities) mimicking those that can be found in a water reuse scenario. Moreover, we assessed how the presence of a surfactant, a co-formulant widely used in agriculture, affected exDNA entry in bacteria and plant tissues, besides the penetration and survival of bacteria into the leaf endosphere. Natural transformation frequency in planta was comparable to that occurring under optimal conditions (i.e., temperature, nutrient provision, and absence of microbial competitors), representing an entrance pathway of ARGs into an epiphytic bacterium able to penetrate the endosphere of a leafy vegetable. The presence of the surfactant determined a higher presence of culturable transformant cells in the leaf tissues but did not significantly increase exDNA entry in A. baylyi BD413 cells and lettuce leaves. More research on HGT (Horizontal Gene Transfer) mechanisms in planta should be performed to obtain experimental data on produce safety in terms of antibiotic resistance.

RevDate: 2022-09-21

Smith C, Van Haute MJ, Xian Y, et al (2022)

Carbohydrate utilization by the gut microbiome determines host health responsiveness to whole grain type and processing methods.

Gut microbes, 14(1):2126275.

Little is known about how interactions among grain processing, grain type, and carbohydrate utilization (CU) by the microbiome influence the health benefits of whole grains. Therefore, two whole grains - brown rice and whole wheat - and two processing methods - boiling (porridge) and extrusion - were studied for their effects on host metabolic outcomes in mice harboring human microbiomes previously shown in vitro to have high or low CU. Mice carrying either microbiome experienced increases in body weight and glycemia when consuming Western diets supplemented with extruded grains versus porridge. However, mice with the high but not low CU microbiome also gained more weight and fat over time and were less glucose tolerant when consuming extruded grain diets. In high CU microbiome mice, the exacerbated negative health outcomes associated with extrusion were related to altered abundances of Lachnospiraceae and Ruminococcaceae as well as elevated sugar degradation and colonic acetate production. The amplicon sequence variants (ASVs) associated with extruded and porridge diets in this in vivo study were not the same as those identified in our prior in vitro study; however, the predicted functions were highly correlated. In conclusion, mice harboring both high and low CU microbiomes responded to the whole grain diets similarly, except the high CU microbiome mice exhibited exacerbated effects due to excessive acetate production, indicating that CU by the microbiome is linked to host metabolic health outcomes. Our work demonstrates that a greater understanding of food processing effects on the microbiome is necessary for developing foods that promote rather than diminish host health.Abbreviations: CU- carbohydrate utilization; SCFA- short-chain fatty acids; GF- germ-free; HMA, human-microbiome associated; ipGTT- intraperitoneal glucose tolerance test; HOMA-IR- Homeostatic Model Assessment for Insulin Resistance; AUC- area under the glycemia curve; ASV- amplicon sequence variant; lf- low-fat; wd- Western diet; wd_wwp- Western diet containing whole wheat porridge; wd_wwe- Western diet containing whole wheat extrudate; wd_bre- Western diet containing brown rice extrudate; wd_extr- Western diet containing either whole wheat or brown rice extrudate.

RevDate: 2022-09-21

Mao J, LI Ma (2022)

DIRICHLET-TREE MULTINOMIAL MIXTURES FOR CLUSTERING MICROBIOME COMPOSITIONS.

The annals of applied statistics, 16(3):1476-1499.

Studying the human microbiome has gained substantial interest in recent years, and a common task in the analysis of these data is to cluster microbiome compositions into subtypes. This subdivision of samples into subgroups serves as an intermediary step in achieving personalized diagnosis and treatment. In applying existing clustering methods to modern microbiome studies including the American Gut Project (AGP) data, we found that this seemingly standard task, however, is very challenging in the microbiome composition context due to several key features of such data. Standard distance-based clustering algorithms generally do not produce reliable results as they do not take into account the heterogeneity of the cross-sample variability among the bacterial taxa, while existing model-based approaches do not allow sufficient flexibility for the identification of complex within-cluster variation from cross-cluster variation. Direct applications of such methods generally lead to overly dispersed clusters in the AGP data and such phenomenon is common for other microbiome data. To overcome these challenges, we introduce Dirichlet-tree multinomial mixtures (DTMM) as a Bayesian generative model for clustering amplicon sequencing data in microbiome studies. DTMM models the microbiome population with a mixture of Dirichlet-tree kernels that utilizes the phylogenetic tree to offer a more flexible covariance structure in characterizing within-cluster variation, and it provides a means for identifying a subset of signature taxa that distinguish the clusters. We perform extensive simulation studies to evaluate the performance of DTMM and compare it to state-of-the-art model-based and distance-based clustering methods in the microbiome context, and carry out a validation study on a publicly available longitudinal data set to confirm the biological relevance of the clusters. Finally, we report a case study on the fecal data from the AGP to identify compositional clusters among individuals with inflammatory bowel disease and diabetes. Among our most interesting findings is that enterotypes (i.e., gut microbiome clusters) are not always defined by the most dominant species as previous analyses had assumed, but can involve a number of less abundant OTUs, which cannot be identified with existing distance-based and method-based approaches.

RevDate: 2022-09-20

Darling KW, Boyce AM, Cho MK, et al (2015)

"What is the FDA Going to Think?": Negotiating Values through Reflective and Strategic Category Work in Microbiome Science.

Science, technology & human values, 40(1):71-95.

The US National Institute of Health's Human Microbiome Project aims to use genomic techniques to understand the microbial communities that live on the human body. The emergent field of microbiome science brought together diverse disciplinary perspectives and technologies, thus facilitating the negotiation of differing values. Here, we describe how values are conceptualized and negotiated within microbiome research. Analyzing discussions from a series of interdisciplinary workshops conducted with microbiome researchers, we argue that negotiations of epistemic, social, and institutional values were inextricable from the reflective and strategic category work (i.e., the work of anticipating and strategizing around divergent sets of institutional categories) that defined and organized the microbiome as an object of study and a potential future site of biomedical intervention. Negotiating the divergence or tension between emerging scientific and regulatory classifications also activated "values levers" and opened up reflective discussions of how classifications embody values and how these values might differ across domains. These data suggest that scholars at the intersections of science and technology studies, ethics, and policy could leverage such openings to identify and intervene in the ways that ethical/regulatory and scientific/technical practices are coproduced within unfolding research.

RevDate: 2022-09-16

Askari H, Shojaei-Zarghani S, Raeis-Abdollahi E, et al (2022)

The Role of Gut Microbiota in Inflammatory Bowel Disease-Current State of the Art.

Mini reviews in medicinal chemistry pii:MRMC-EPUB-126304 [Epub ahead of print].

The human microbiome comprises the genomes of the microbiota that live on and within humans, such as protozoa, archaea, eukaryotes, viruses, and most bacteria. Gastrointestinal disorders such as inflammatory bowel disease, colon cancer, celiac disease, and irritable bowel syndrome can all be triggered by a change in gut flora. The alteration of the gut microbiota (also known as "gut dysbiosis") is affected by host genetics, nutrition, antibiotics, and inflammation, and it is associated with the development of inflammatory bowel disease (IBD). Also, intestinal epithelial dysfunction, altered autophagy, and immune hyperactivation are frequently detected in individuals with severe IBD, which may be attributed to impaired miRNA expression functions. While the exact mechanisms of how Gut Microbiota may cause IBD and intestinal epithelial dysfunction are still debated, recent data point toward the possibility that hormones, gender and miRNAs expression are modifiable contributors to IBD. This review summarizes the current evidence for an association between hormones, gender and miRNAs and Gut Microbiota in IBD and discusses potential mechanisms by which gut microbiota may impact IBD. The study also outlines critical unanswered topics that need to be solved to enhance IBD prevention and treatment in people with gut dysbiosis.

RevDate: 2022-09-19
CmpDate: 2022-09-19

Roussel C, Anunciação Braga Guebara S, Plante PL, et al (2022)

Short-term supplementation with ω-3 polyunsaturated fatty acids modulates primarily mucolytic species from the gut luminal mucin niche in a human fermentation system.

Gut microbes, 14(1):2120344.

Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provides multifaceted health benefits. Recent studies suggest that ω-3 PUFAs modulate the gut microbiota by enhancing health-promoting bacteria, such as the mucin specialist Akkermansia muciniphila. However, these prebiotic properties have been poorly investigated and direct effects on the gut microbiome have never been explored dynamically across gut regions and niches (lumen vs. mucus-associated microbiota). Thus, we studied the effects of 1 week EPA- and DHA-enriched ω-3 fish-oil supplementation on the composition and functionality of the human microbiome in a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®). Gut microbial communities derived from one individual harvested in two different seasons were tested in duplicate. Luminal and outer mucus-associated microbiota of the ileum, ascending, transverse and descending colons were cultivated over 28 d from fecal inoculates and supplemented with ω-3 PUFAs for the last 7 d. We show that ω-3 PUFA supplementation modulates the microbiota in a gut region- and niche-dependent fashion. The outer mucus-associated microbiota displayed a higher resilience than the luminal mucin habitat to ω-3 PUFAs, with a remarkable blooming of Akkermansia muciniphila in opposition to a decrease of Firmicutes-mucolytic bacteria. The ω-3 PUFAs also induced a gradual and significant depletion of non-mucolytic Clostridia members in luminal habitats. Finally, increased concentrations of the short chain fatty acids (SCFA) propionate in colon regions at the end of the supplementation was associated positively with the bloom of Akkermansia muciniphila and members of the Desulfovibrionia class.

RevDate: 2022-09-15

Ianiro G, Punčochář M, Karcher N, et al (2022)

Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases.

Nature medicine [Epub ahead of print].

Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered a promising treatment for other microbiome-related disorders, but a comprehensive understanding of microbial engraftment dynamics is lacking, which prevents informed applications of this therapeutic approach. Here, we performed an integrated shotgun metagenomic systematic meta-analysis of new and publicly available stool microbiomes collected from 226 triads of donors, pre-FMT recipients and post-FMT recipients across eight different disease types. By leveraging improved metagenomic strain-profiling to infer strain sharing, we found that recipients with higher donor strain engraftment were more likely to experience clinical success after FMT (P = 0.017) when evaluated across studies. Considering all cohorts, increased engraftment was noted in individuals receiving FMT from multiple routes (for example, both via capsules and colonoscopy during the same treatment) as well as in antibiotic-treated recipients with infectious diseases compared with antibiotic-naïve patients with noncommunicable diseases. Bacteroidetes and Actinobacteria species (including Bifidobacteria) displayed higher engraftment than Firmicutes except for six under-characterized Firmicutes species. Cross-dataset machine learning predicted the presence or absence of species in the post-FMT recipient at 0.77 average AUROC in leave-one-dataset-out evaluation, and highlighted the relevance of microbial abundance, prevalence and taxonomy to infer post-FMT species presence. By exploring the dynamics of microbiome engraftment after FMT and their association with clinical variables, our study uncovered species-specific engraftment patterns and presented machine learning models able to predict donors that might optimize post-FMT specific microbiome characteristics for disease-targeted FMT protocols.

RevDate: 2022-09-15

Schmidt TSB, Li SS, Maistrenko OM, et al (2022)

Drivers and determinants of strain dynamics following fecal microbiota transplantation.

Nature medicine [Epub ahead of print].

Fecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor-recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice.

RevDate: 2022-09-15

Nidhi S, Tripathi P, V Tripathi (2022)

Phylogenetic Analysis of Anti-CRISPR and Member Addition in the Families.

Molecular biotechnology [Epub ahead of print].

CRISPR-Cas is a widespread anti-viral adaptive immune system in the microorganisms. Viruses living in bacteria or some phages carry anti-CRISPR proteins to evade immunity by CRISPR-Cas. The anti-CRISPR proteins are prevalent in phages capable of lying dormant in a CRISPR-carrying host, while their orthologs frequently found in virulent phages. Here, we propose a probabilistic strategy of ancestral sequence reconstruction (ASR) and Hidden Markov Model (HMM) profile search to fish out sequences of anti-CRISPR proteins from environmental metagenomic, human microbiome metagenomic, human microbiome reference genome, and NCBI's non-redundant databases. Our results revealed that the metagenome database dark matter might contain anti-CRISPR encoding genes.

RevDate: 2022-09-19
CmpDate: 2022-09-19

Schul M, Mason A, Ushijima B, et al (2022)

Microbiome and Metabolome Contributions to Coral Health and Disease.

The Biological bulletin, 243(1):76-83.

AbstractCoral populations are declining worldwide as a result of increased environmental stressors, including disease. Coral health is greatly dependent on complex interactions between the host animal and its associated microbial symbionts. While relatively understudied, there is growing evidence that the coral microbiome contributes to the health and resilience of corals in a variety of ways, similar to more well-studied systems, such as the human microbiome. Many of these interactions are dependent upon the production and exchange of natural products, including antibacterial compounds, quorum-sensing molecules, internal signaling molecules, nutrients, and so on. While advances in sequencing, culturing, and metabolomic techniques have aided in moving forward the understanding of coral microbiome interactions, current sequence and metabolite databases are lacking, hindering detailed descriptions of the microbes and metabolites involved. This review focuses on the roles of coral microbiomes in health and disease processes of coral hosts, with special attention to the coral metabolome. We discuss what is currently known about the relationship between the coral microbiome and disease, of beneficial microbial products or services, and how the manipulation of the coral microbiome may chemically benefit the coral host against disease. Understanding coral microbiome-metabolome interactions is critical to assisting management, conservation, and restoration strategies.

RevDate: 2022-09-16
CmpDate: 2022-09-16

Wang X, Pang K, Wang J, et al (2022)

Microbiota dysbiosis in primary Sjögren's syndrome and the ameliorative effect of hydroxychloroquine.

Cell reports, 40(11):111352.

The human microbiome plays an important role in autoimmune diseases. However, there is limited knowledge regarding the microbiota in individuals with primary Sjögren's syndrome (pSS). Here, we perform 16S ribosomal RNA gene sequencing of fecal, oral, and vaginal samples from a cohort of 133 individuals with pSS, 56 with non-pSS, and 40 healthy control (HC) individuals. Dysbiosis in the gut, oral, and vaginal microbiome is evident in patients with pSS, and oral samples demonstrate the greatest extent of microbial variation. Multiple key indicator bacteria and clinical characteristics are identified across different body sites, implying that microbial dysbiosis has important roles in the pathogenesis of pSS. Furthermore, we observe pSS-like dysbiosis in individuals with pre-clinical pSS or non-pSS-related disease, revealing that microbial shifts could appear prior to pSS. After hydroxychloroquine (HCQ) treatment, microbial dysbiosis in individuals with pSS is partially resolved, although the microbiota composition remain disordered. These results contribute to the overall understanding of the relationship between the microbiome and pSS.

RevDate: 2022-09-16
CmpDate: 2022-09-16

Wikström T, Abrahamsson S, Bengtsson-Palme J, et al (2022)

Microbial and human transcriptome in vaginal fluid at midgestation: Association with spontaneous preterm delivery.

Clinical and translational medicine, 12(9):e1023.

BACKGROUND: Intrauterine infection and inflammation caused by microbial transfer from the vagina are believed to be important factors causing spontaneous preterm delivery (PTD). Multiple studies have examined the relationship between the cervicovaginal microbiome and spontaneous PTD with divergent results. Most studies have applied a DNA-based assessment, providing information on the microbial composition but not transcriptional activity. A transcriptomic approach was applied to investigate differences in the active vaginal microbiome and human transcriptome at midgestation between women delivering spontaneously preterm versus those delivering at term.

METHODS: Vaginal swabs were collected in women with a singleton pregnancy at 18 + 0 to 20 + 6 gestational weeks. For each case of spontaneous PTD (delivery <37 + 0 weeks) two term controls were randomized (39 + 0 to 40 + 6 weeks). Vaginal specimens were subject to sequencing of both human and microbial RNA. Microbial reads were taxonomically classified using Kraken2 and RefSeq as a reference. Statistical analyses were performed using DESeq2. GSEA and HUMAnN3 were used for pathway analyses.

RESULTS: We found 17 human genes to be differentially expressed (false discovery rate, FDR < 0.05) in the preterm group (n = 48) compared to the term group (n = 96). Gene expression of kallikrein-2 (KLK2), KLK3 and four isoforms of metallothioneins 1 (MT1s) was higher in the preterm group (FDR < 0.05). We found 11 individual bacterial species to be differentially expressed (FDR < 0.05), most with a low occurrence. No statistically significant differences in bacterial load, diversity or microbial community state types were found between the groups.

CONCLUSIONS: In our mainly white population, primarily bacterial species of low occurrence were differentially expressed at midgestation in women who delivered preterm versus at term. However, the expression of specific human transcripts including KLK2, KLK3 and several isoforms of MT1s was higher in preterm cases. This is of interest, because these genes may be involved in critical inflammatory pathways associated with spontaneous PTD.

RevDate: 2022-09-17

Loiko N, Kanunnikov O, Gannesen A, et al (2022)

Brain Natriuretic Peptide (BNP) Affects Growth and Stress Tolerance of Representatives of the Human Microbiome, Micrococcus luteus C01 and Alcaligenes faecalis DOS7.

Biology, 11(7):.

Brain natriuretic peptide (BNP) is secreted by the ventricles of the heart during overload to signal heart failure. Slight bilateral skin itching induced by BNP has been associated with response activity of the skin microbiota. In this work, we studied the effect of 25-250,000 pg BNP/mL on the growth, long-term survival, and stress (H2O2, antibiotics, salinity, heat and pH shock) resistance of human symbiont bacteria: Gram-positive Micrococcus luteus C01 and Gram-negative Alcaligenes faecalis DOS7. The effect of BNP turned out to be dose-dependent. Up to 250 pg BNP/mL made bacteria more stress resistant. At 2500 pg BNP/mL (heart failure) the thermosensitivity of the bacteria increased. Almost all considered BNP concentrations increased the resistance of bacteria to the action of tetracycline and ciprofloxacin. Both bacteria survived 1.3-1.7 times better during long-term (up to 4 months) storage. Our findings are important both for clinical medical practice and for practical application in other areas. For example, BNP can be used to obtain stress-resistant bacteria, which is important in the collection of microorganisms, as well as for the production of bacterial preparations and probiotics for cosmetology, agriculture, and waste management.

RevDate: 2022-09-15
CmpDate: 2022-09-15

Mangutov EO, Alieva AA, Kharseeva GG, et al (2022)

Corynebacterium spp.: relationship of pathogenic properties and antimicrobial resistance.

Klinicheskaia laboratornaia diagnostika, 67(9):519-524.

Corynebacterium spp. are part of the human microbiome, but can cause the development of inflammatory diseases of various localization. Purpose - to evaluate the relationship between pathogenic properties and resistance to antimicrobial drugs (AMD) of Corynebacterium spp. from patients with inflammatory diseases of the respiratory tract. Strains of Corynebacterium spp. isolated from patients with inflammatory diseases of the respiratory tract (99 pcs.) and practically healthy individuals (33 pcs.). Isolates were identified by mass spectrometric method (MALDI-ToFMS), their adhesive and invasive activity on Hep-2 cells, cytopathic effect (CPE) in CHO-K1 cell culture, and resistance to antimicrobial drugs (AMD) were determined. Indicators of adhesion (3.65±0.679(CFU±m)x102/ml), invasion (1.72±0.230 (CFU±m)x102/ml), cytotoxicity (69.1±3.8% of dead CHO-K1 cells) Corynebasterium spp. strains isolated from patients are higher (p≤0.05) than similar indicators in practically healthy people. 90.9% of isolates from patients had resistance to AMD, in most cases (57.6±4.9%) resistance to only one AMP was noted, less often to two (25.2±4.3%), three or more (8.08±2.7%). According to the results of correlation-regression analysis, pathogenic properties (adhesiveness, invasiveness, cytotoxicity) of Corynebacterium spp. strains isolated from patients are in close direct relationship with resistance to AMD. This indicates the importance of identifying strains of non-diphtheria corynebacteria resistant to AMDs, which, under the influence of developing resistance to AMDs, can increase their pathogenic potential, moving from commensalism to parasitism.

RevDate: 2022-09-13

Wang Y, Guo A, Liu Z, et al (2022)

Expansion of Opportunistic Enteric Fungal Pathogens and Occurrence of Gut Inflammation in Human Liver Echinococcosis.

Microbiology spectrum [Epub ahead of print].

Increasing evidence shows that the gut fungal mycobiota is implicated in human disease. However, its relationship with chronic helminth infections, which cause immunosuppression and affect over 1 billion people worldwide, remains unexplored. In this study, we investigated the gut mycobiome and its associations with gut homeostasis in a severe helminth disease worldwide: liver echinococcosis. Fecal samples from 63 patients and 42 healthy controls were collected to characterize the fungal signatures using ITS1 sequencing, QIIME pipeline, and machine learning analysis. The levels of fecal calprotectin and serological anti-Saccharomyces cerevisiae antibodies (ASCA) in these subjects were experimentally measured. We found that fungal microbiota was significantly skewed in disease, with an overrepresentation of Aspergillus, Candida, Geotrichum, Kazachstania, and Penicillium and a decrease of Fusarium. Machine learning analysis revealed that the altered fungal features could efficiently predict infection with high sensitivity and specificity (area under the curve [AUC] = 0.93). The dysbiosis was characterized by expansions of multiple opportunistic pathogens (Aspergillus spp. and Candida spp.). Clinical association analysis revealed that host immunity might link to the expansions of the invasive fungi. Accompanying the opportunistic pathogen expansion, the levels of fungi-associated fecal calprotectin and serological ASCA in the patients were elevated, suggesting that gut inflammation and microbiota translocation occurred in this generally assumed extraintestinal disease. This study highlights enteric fungal pathogen expansions and increased levels of markers for fungi-associated mucosal inflammation and intestinal permeability as hallmarks of liver echinococcosis. IMPORTANCE Helminth infection affects over 1 billion people worldwide. However, its relationship with the gut mycobiome remains unknown. Among the most prevalent helminth diseases, human hydatid disease (echinococcosis) is highlighted as one of the most important (second/third for alveolar/cystic echinococcosis) foodborne parasitic diseases at the global level. Herein, we investigated the mycobiome and gut homeostasis (i.e., inflammation and permeability) in human echinococcosis. Our results revealed that fungal dysbiosis with an expansion of opportunistic pathogens and increased levels of fecal calprotectin and serum ASCA are hallmarks of human liver echinococcosis. Host immunity is associated with enteric fungal expansions. These findings suggest that an extraintestinal helminth infection is able to alter gut fungal microbiota and impair gut homeostasis, which resembles concomitant gut symptoms in inflammatory gut-related diseases (e.g., AIDS). In clinical practice, physicians need to take cautious medical consideration of gut health for nonintestinal helminth diseases.

RevDate: 2022-09-12

Baky MH, Salah M, Ezzelarab N, et al (2022)

Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis.

Critical reviews in food science and nutrition [Epub ahead of print].

Consumption of food rich in dietary fibers (DFs) has been long recognized to exert an overall beneficial effect on human health. This review aims to provide a holistic overview on how IDFs impact human gut health either directly, or through modulation of the gut microbiome. Several databases were searched for collecting papers such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 2000 till 2022. Firstly, an overview of the chemical structure of the various IDFs and the pathways employed by gut microbiota for their degradation is provided. The impact of IDFs on microbial community structure and pathogens colonization inside the human gut was discussed. Finally, the impact of IDFs on gut homeostasis and systemic effects at the cellular level, as well as the overall immunological benefits of IDFs consumption were analyzed. IDFs viz., cellulose, hemicellulose, resistant starch, and lignin found enriched in food are discussed for these effects. IDFs were found to induce gut immunity, improve intestinal integrity and mucosal proliferation, and favor adhesion of probiotics and hence improve human health. Also, IDFs were concluded to improve the bioavailability of plant polyphenols and improve their health-related functional roles. Ultimately, dietary fibers processing by modification shows potential to enhance fibers-based functional food production, in addition to increase the economic value and usage of food-rich fibers and their by-products.

RevDate: 2022-09-15
CmpDate: 2022-09-13

Korpela K, WM de Vos (2022)

Infant gut microbiota restoration: state of the art.

Gut microbes, 14(1):2118811.

The gut microbiota has a central role in the programming of the host's metabolism and immune function, with both immediate and long-term health consequences. Recent years have witnessed an accumulation of understanding of the process of the colonization and development of the gut microbiota in infants. The natural gut microbiota colonization during birth is frequently disrupted due to C-section birth or intrapartum or postpartum antibiotic exposure, and consequently aberrant gut microbiota development is common. On a positive note, research has shown that restoration of normal gut microbiota development is feasible. We discuss here the current understanding of the infant microbiota, provide an overview of the sources of disturbances, and critically evaluate the evidence on early life gut microbiota restoration for improved health outcomes by analyzing published data from infant gut microbiota restoration studies.

RevDate: 2022-09-10

Czibulka A (2022)

Probiotics for Otolaryngologic Disorders.

Otolaryngologic clinics of North America pii:S0030-6665(22)00067-6 [Epub ahead of print].

Chronic low-level inflammation is a causative factor in many of our common diseases. Switching to an anti-inflammatory diet is an important step that patients can take in for rectifying this risk factor. In this review, the author discusses the essential components of an anti-inflammatory diet and its contribution not only to the overall well-being but also to the body's defense against disease. The human microbiome is reviewed in detail and dietary connections and recommendations are explained for several otolaryngologic conditions.

RevDate: 2022-09-20

Wang S, Kang X, Alenius H, et al (2022)

Oral exposure to Ag or TiO2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 169:113368 pii:S0278-6915(22)00566-X [Epub ahead of print].

Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.

RevDate: 2022-09-09

Pinto S, Benincà E, van Nes EH, et al (2022)

Species abundance correlations carry limited information about microbial network interactions.

PLoS computational biology, 18(9):e1010491 pii:PCOMPBIOL-D-22-00053 [Epub ahead of print].

Unraveling the network of interactions in ecological communities is a daunting task. Common methods to infer interspecific interactions from cross-sectional data are based on co-occurrence measures. For instance, interactions in the human microbiome are often inferred from correlations between the abundance of bacterial phylogenetic groups across subjects. We tested whether such correlation-based methods are indeed reliable for inferring interaction networks. For this purpose, we simulated bacterial communities by means of the generalized Lotka-Volterra model, with variation in model parameters representing variability among hosts. Our results show that correlations can be indicative for presence of bacterial interactions, but only when measurement noise is low relative to the variation in interaction strengths between hosts. Indication of interaction was affected by type of interaction network, process noise and sampling under non-equilibrium conditions. The sign of a correlation mostly coincided with the nature of the strongest pairwise interaction, but this is not necessarily the case. For instance, under rare conditions of identical interaction strength, we found that competitive and exploitative interactions can result in positive as well as negative correlations. Thus, cross-sectional abundance data carry limited information on specific interaction types. Correlations in abundance may hint at interactions but require independent validation.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Bachmann R, Van Hul M, Baldin P, et al (2022)

Akkermansia muciniphila Reduces Peritonitis and Improves Intestinal Tissue Wound Healing after a Colonic Transmural Defect by a MyD88-Dependent Mechanism.

Cells, 11(17):.

Anastomotic leakage is a major complication following colorectal surgery leading to peritonitis, complications, and mortality. Akkermansia muciniphila has shown beneficial effects on the gut barrier function. Whether A. muciniphila reduces peritonitis and mortality during colonic leakage is unknown. Whether A. muciniphila can directly modulate the expression of genes in the colonic mucosa in humans has never been studied. We investigated the effects of a pretreatment (14 days) with live A. muciniphila prior to surgical colonic perforation on peritonitis, mortality, and wound healing. We used mice with an inducible intestinal-epithelial-cell-specific deletion of MyD88 (IEC-MyD88 KO) to investigate the role of the innate immune system in this context. In a proof-of-concept pilot study, healthy humans were exposed to A. muciniphila for 2 h and colonic biopsies taken before and after colonic instillation for transcriptomic analysis. Seven days after colonic perforation, A.-muciniphila-treated mice had significantly lower mortality and severity of peritonitis. This effect was associated with significant improvements of wound histological healing scores, higher production of IL22, but no changes in the mucus layer thickness or genes involved in cell renewal, proliferation, or differentiation. All these effects were abolished in IEC-MyD88 KO mice. Finally, human subjects exposed to A. muciniphila exhibited an increased level of the bacterium at the mucus level 2 h after instillation and significant changes in the expression of different genes involved in the regulation of cell cycling, gene transcription, immunity, and inflammation in their colonic mucosa. A. muciniphila improves wound healing during transmural colonic wall defect through mechanisms possibly involving IL22 signaling and requiring MyD88 in the intestinal cells. In healthy humans, colonic administration of A. muciniphila is well tolerated and changes the expression of genes involved in the immune pathways.

RevDate: 2022-09-08

Wang YR, Zhu T, Kong FQ, et al (2022)

Infant Mode of Delivery Shapes the Skin Mycobiome of Prepubescent Children.

Microbiology spectrum [Epub ahead of print].

Characterizing the skin mycobiome is necessary to define its association with the host immune system, particularly in children. In this study, we describe the skin mycobiome on the face, ventral forearm, and calf of 72 prepubescent children (aged 1 to 10 years) and their mothers, based on internal transcribed spacer (ITS) amplicon sequencing. The age and delivery mode at birth are the most influential factors shaping the skin mycobiome. Compared with that of the vaginally born children, the skin mycobiome of caesarean-born children is assembled by predominantly deterministic niche-based processes and exhibits a more fragile microbial network at all three sampling sites. Moreover, vaginal delivery leads to clearer intra- and interindividual specialization of fungal structures with increasing age; this phenomenon is not observed in caesarean-born children. The maternal correlation with children also differs based on the mode of delivery; specifically, the mycobiomes of vaginally born children at younger ages are more strongly correlated with vagina-associated fungal genera (Candida and Rhodotorula), whereas those of caesarean-delivered children at elder age include more skin-associated and airborne fungal genera (Malassezia and Alternaria). Based on this ecological framework, our results suggest that the delivery mode is significantly associated with maturation of the skin fungal community in children. IMPORTANCE Human skin is permanently colonized by microbes starting at birth. The hygiene hypothesis suggests that a lack of early-life immune imprinting weakens the body's resilience against atopic disorders later in life. To better understand fungal colonization following early-life periods affected by interruption, we studied the skin mycobiomes of 73 children and their mothers. Our results suggest a differentiation of the skin mycobiomes between caesarean-born and vaginally born children. Caesarean-born children exhibit a mycobiome structure with more fitted deterministic niche-based processes, a fragile network, and an unchanged microbial dissimilarity over time. In vaginally born children, this dissimilarity increases with age. The results indicate that initial microbial colonization has a long-term impact on a child's skin mycobiome. We believe that these findings will inspire further investigations of the "hygiene hypothesis" in the human microbiome, especially in providing novel insights into influences on the development of the early-life microbiome.

RevDate: 2022-09-10

Piazzesi A, L Putignani (2022)

Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention.

Frontiers in microbiology, 13:958346.

Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.

RevDate: 2022-09-07

Maringanti VS, Bucci V, GK Gerber (2022)

MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics.

mSystems [Epub ahead of print].

Longitudinal microbiome data sets are being generated with increasing regularity, and there is broad recognition that these studies are critical for unlocking the mechanisms through which the microbiome impacts human health and disease. However, there is a dearth of computational tools for analyzing microbiome time-series data. To address this gap, we developed an open-source software package, Microbiome Differentiable Interpretable Temporal Rule Engine (MDITRE), which implements a new highly efficient method leveraging deep-learning technologies to derive human-interpretable rules that predict host status from longitudinal microbiome data. Using semi-synthetic and a large compendium of publicly available 16S rRNA amplicon and metagenomics sequencing data sets, we demonstrate that in almost all cases, MDITRE performs on par with or better than popular uninterpretable machine learning methods, and orders-of-magnitude faster than the prior interpretable technique. MDITRE also provides a graphical user interface, which we show through case studies can be used to derive biologically meaningful interpretations linking patterns of microbiome changes over time with host phenotypes. IMPORTANCE The human microbiome, or collection of microbes living on and within us, changes over time. Linking these changes to the status of the human host is crucial to understanding how the microbiome influences a variety of human diseases. Due to the large scale and complexity of microbiome data, computational methods are essential. Existing computational methods for linking changes in the microbiome to the status of the human host are either unable to scale to large and complex microbiome data sets or cannot produce human-interpretable outputs. We present a new computational method and software package that overcomes the limitations of previous methods, allowing researchers to analyze larger and more complex data sets while producing easily interpretable outputs. Our method has the potential to enable new insights into how changes in the microbiome over time maintain health or lead to disease in humans and facilitate the development of diagnostic tests based on the microbiome.

RevDate: 2022-09-10
CmpDate: 2022-09-08

Kaiyrlykyzy A, Kozhakhmetov S, Babenko D, et al (2022)

Study of gut microbiota alterations in Alzheimer's dementia patients from Kazakhstan.

Scientific reports, 12(1):15115.

We have investigated the diversity and composition of gut microbiotas isolated from AD (Alzheimer's disease) patients (n = 41) and healthy seniors (n = 43) from Nur-Sultan city (Kazakhstan). The composition of the gut microbiota was characterized by 16S ribosomal RNA sequencing. Our results demonstrated significant differences in bacterial abundance at phylum, class, order, and genus levels in AD patients compared to healthy aged individuals. Relative abundance analysis has revealed increased amount of taxa belonging to Acidobacteriota, Verrucomicrobiota, Planctomycetota and Synergistota phyla in AD patients. Among bacterial genera, microbiotas of AD participants were characterized by a decreased amount of Bifidobacterium, Clostridia bacterium, Castellaniella, Erysipelotrichaceae UCG-003, Roseburia, Tuzzerella, Lactobacillaceae and Monoglobus. Differential abundance analysis determined enriched genera of Christensenellaceae R-7 group, Prevotella, Alloprevotella, Eubacterium coprostanoligenes group, Ruminococcus, Flavobacterium, Ohtaekwangia, Akkermansia, Bacteroides sp. Marseille-P3166 in AD patients, whereas Levilactobacillus, Lactiplantibacillus, Tyzzerella, Eubacterium siraeum group, Monoglobus, Bacteroides, Erysipelotrichaceae UCG-003, Veillonella, Faecalibacterium, Roseburia, Haemophilus were depleted. We have also found correlations between some bacteria taxa and blood serum biochemical parameters. Adiponectin was correlated with Acidimicrobiia, Faecalibacterium, Actinobacteria, Oscillospiraceae, Prevotella and Christensenellaceae R-7. The Christensenellaceae R-7 group and Acidobacteriota were correlated with total bilirubin, while Firmicutes, Acidobacteriales bacterium, Castellaniella alcaligenes, Lachnospiraceae, Christensenellaceae and Klebsiella pneumoniae were correlated with the level of CRP in the blood of AD patients. In addition, we report the correlations found between disease severity and certain fecal bacteria. This is the first reported study demonstrating gut microbiota alterations in AD in the Central Asian region.

RevDate: 2022-09-10
CmpDate: 2022-09-08

Ke S, Weiss ST, YY Liu (2022)

Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes.

Nature communications, 13(1):5235.

Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is often accompanied by gastrointestinal symptoms. However, little is known about the relation between the human microbiome and COVID-19, largely due to the fact that most previous studies fail to provide high taxonomic resolution to identify microbes that likely interact with SARS-CoV-2 infection. Here we used whole-metagenome shotgun sequencing data together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from 514 COVID-19 related nasopharyngeal and fecal samples in six independent cohorts. We reconstructed a total of 11,584 medium-and high-quality microbial MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with strain-level resolution. We found that there is a significant reduction of strain richness for many species in the gut microbiome of COVID-19 patients. The gut microbiome signatures can accurately distinguish COVID-19 cases from healthy controls and predict the progression of COVID-19. Moreover, we identified a set of nrMAGs with a putative causal role in the clinical manifestations of COVID-19 and revealed their functional pathways that potentially interact with SARS-CoV-2 infection. Finally, we demonstrated that the main findings of our study can be largely validated in three independent cohorts. The presented results highlight the importance of incorporating the human gut microbiome in our understanding of SARS-CoV-2 infection and disease progression.

RevDate: 2022-09-19

Piazzesi A, L Putignani (2022)

Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective.

Parasite immunology [Epub ahead of print].

Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.

RevDate: 2022-09-15
CmpDate: 2022-09-08

Puhlmann ML, WM de Vos (2022)

Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health.

Frontiers in immunology, 13:954845.

Dietary fibers contribute to structure and storage reserves of plant foods and fundamentally impact human health, partly by involving the intestinal microbiota, notably in the colon. Considerable attention has been given to unraveling the interaction between fiber type and gut microbiota utilization, focusing mainly on single, purified fibers. Studying these fibers in isolation might give us insights into specific fiber effects, but neglects how dietary fibers are consumed daily and impact our digestive tract: as intrinsic structures that include the cell matrix and content of plant tissues. Like our ancestors we consume fibers that are entangled in a complex network of plants cell walls that further encapsulate and shield intra-cellular fibers, such as fructans and other components from immediate breakdown. Hence, the physiological behavior and consequent microbial breakdown of these intrinsic fibers differs from that of single, purified fibers, potentially entailing unexplored health effects. In this mini-review we explain the difference between intrinsic and isolated fibers and discuss their differential impact on digestion. Subsequently, we elaborate on how food processing influences intrinsic fiber structure and summarize available human intervention studies that used intrinsic fibers to assess gut microbiota modulation and related health outcomes. Finally, we explore current research gaps and consequences of the intrinsic plant tissue structure for future research. We postulate that instead of further processing our already (extensively) processed foods to create new products, we should minimize this processing and exploit the intrinsic health benefits that are associated with the original cell matrix of plant tissues.

RevDate: 2022-09-14

Pepe J, Rossi M, Battafarano G, et al (2022)

Characterization of Extracellular Vesicles in Osteoporotic Patients Compared to Osteopenic and Healthy Controls.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research [Epub ahead of print].

Extracellular vesicles (EVs) are mediators of a range of pathological conditions. However, their role in bone loss disease has not been well understood. In this study we characterized plasma EVs of 54 osteoporotic (OP) postmenopausal women compared to 48 osteopenic (OPN) and 44 healthy controls (CN), and we investigated their effects on osteoclasts and osteoblasts. We found no differences between the three groups in terms of anthropometric measurements and biochemical evaluation of serum calcium, phosphate, creatinine, PTH, 25-hydroxy vitamin D and bone biomarkers, except for an increase of CTX level in OP group. FACS analysis revealed that OP patients presented a significantly increased number of EVs and RANKL+ EVs compared with both CN and OPN subjects. Total EVs are negatively associated with the lumbar spine T-score and femoral neck T-score. Only in the OPN patients we observed a positive association between the total number of EVs and RANKL+ EVs with the serum RANKL. In vitro studies revealed that OP EVs supported osteoclastogenesis of healthy donor peripheral blood mononuclear cells at the same level observed following RANKL and M-CSF treatment, reduced the ability of mesenchymal stem cells to differentiate into osteoblasts, while inducing an increase of OSTERIX and RANKL expression in mature osteoblasts. The analysis of miRNome revealed that miR-1246 and miR-1224-5p were the most upregulated and downregulated in OP EVs; the modulated EV-miRNAs in OP and OPN compared to CN are related to osteoclast differentiation, interleukin-13 production and regulation of canonical WNT pathway. A proteomic comparison between OPN and CN EVs evidenced a decrease in fibrinogen, vitronectin, and clusterin and an increase in coagulation factors and apolipoprotein, which was also upregulated in OP EVs. Interestingly, an increase in RANKL+ EVs and exosomal miR-1246 was also observed in samples from patients affected by Gorham-Stout disease, suggesting that EVs could be good candidate as bone loss disease biomarkers. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

RevDate: 2022-09-02

Frost F (2022)

[Introduction to the microbiome].

Innere Medizin (Heidelberg, Germany) [Epub ahead of print].

The human body is colonized by a multitude of different microbes that are collectively referred to as the human microbiome. Gut microbes account for the largest proportion of these. They constitute a barrier against foreign pathogens, carry out important metabolic functions and regulate the immune system, thereby making them essential for the maintenance of health. The most important determinants of the gut microbiome structure in the general population include exocrine pancreatic function, genetics, nutrition, age, sex, and obesity. Changes in the gut microbiome have also been linked to a variety of diseases not limited to gastrointestinal disorders. Typical microbiome changes in disease include a loss of diversity and beneficial bacteria or an increase in opportunistic pathogens. This may result in a proinflammatory and unstable microbiome. Knowledge about the microbiome is rapidly increasing and microbiome modulation therapies have already been implemented in clinical practice. Therefore, basic knowledge about the microbiome is essential for all medical professionals in order for them to advise and treat their patients properly.

RevDate: 2022-09-03

Yu Y, Wen H, Li S, et al (2022)

Emerging microfluidic technologies for microbiome research.

Frontiers in microbiology, 13:906979.

The importance of the microbiome is increasingly prominent. For example, the human microbiome has been proven to be strongly associated with health conditions, while the environmental microbiome is recognized to have a profound influence on agriculture and even the global climate. Furthermore, the microbiome can serve as a fascinating reservoir of genes that encode tremendously valuable compounds for industrial and medical applications. In the past decades, various technologies have been developed to better understand and exploit the microbiome. In particular, microfluidics has demonstrated its strength and prominence in the microbiome research. By taking advantage of microfluidic technologies, inherited shortcomings of traditional methods such as low throughput, labor-consuming, and high-cost are being compensated or bypassed. In this review, we will summarize a broad spectrum of microfluidic technologies that have addressed various needs in the field of microbiome research, as well as the achievements that were enabled by the microfluidics (or technological advances). Finally, how microfluidics overcomes the limitations of conventional methods by technology integration will also be discussed.

RevDate: 2022-09-01

Hoegenauer C, Hammer HF, Mahnert A, et al (2022)

Methanogenic archaea in the human gastrointestinal tract.

Nature reviews. Gastroenterology & hepatology [Epub ahead of print].

The human microbiome is strongly interwoven with human health and disease. Besides bacteria, viruses and eukaryotes, numerous archaea are located in the human gastrointestinal tract and are responsible for methane production, which can be measured in clinical methane breath analyses. Methane is an important readout for various diseases, including intestinal methanogen overgrowth. Notably, the archaea responsible for methane production are largely overlooked in human microbiome studies due to their non-bacterial biology and resulting detection issues. As such, their importance for health and disease remains largely unclear to date, in particular as not a single archaeal representative has been deemed to be pathogenic. In this Perspective, we discuss the current knowledge on the clinical relevance of methanogenic archaea. We explain the archaeal unique response to antibiotics and their negative and positive effects on human physiology, and present the current understanding of the use of methane as a diagnostic marker.

RevDate: 2022-09-07
CmpDate: 2022-09-07

Yi B, H Chen (2022)

Power law analysis of the human milk microbiome.

Archives of microbiology, 204(9):585.

The human breast milk microbiome (HMM) has far reached health implications for both mothers and infants, and understanding the structure and dynamics of milk microbial communities is therefore of critical biomedical importance. Community heterogeneity, which has certain commonalities with familiar diversity but also with certain fundamental differences, is an important aspect of community structure and dynamics. Taylor's (1961) power law (TPL) (Nature, 1961) was discovered to govern the mean-variance power function relationship of population abundances and can be used to characterize population spatial aggregation (heterogeneity) and/or temporal stability. TPL was further extended to the community level to measure community spatial heterogeneity and/or temporal stability (Ma 2015, Molecular Ecology). Here, we applied TPL extensions (TPLE) to analyze the heterogeneity of the human milk microbiome by reanalyzing 12 datasets (2115 samples) of the healthy human milk microbiome. Our analysis revealed that the TPLE heterogeneity parameter (b) is rather stable across the 12 datasets, and there were approximately no statistically significant differences among ¾ of the datasets, which is consistent with the hypothesis that the heterogeneity scaling (i.e., change across individuals) of the human microbiome, including HMM, is rather stable or even constant. For this, we built a TPLE model for the pooled 12 datasets (b = 1.906), which can therefore represent the scaling rate of community-level spatial heterogeneity of HMM across individuals. Similarly, we also analyzed mixed-species ("averaged virtual species") level heterogeneity of HMM, and it was found that the mixed-species level heterogeneity was smaller than the heterogeneity at the previously mentioned community level (1.620 vs. 1.906).

RevDate: 2022-09-01

Stefanaki E, Kalaitzidou I, Aristou M, et al (2022)

Prenatal antibiotic exposure increases the risk of infant atopic dermatitis. Data from a Greek cohort.

European annals of allergy and clinical immunology [Epub ahead of print].

Summary: Background. The human microbiome is important due to the impact it has on host immunologic development and allergy-associated diseases. Objective. This study aimed to investigate the impact of prenatal exposure to antibiotics on the incidence of atopic dermatitis (AD) in children at 18 months of age. Methods. Mothers were interviewed at baseline, in the maternity ward and by phone questionnaire after 18 months. Demographic data, mode of delivery, yoghurt consumption, antibiotic and other drug use during pregnancy, atopic history, diagnosis of AD and history of infections in the offspring were noted. Statistical analysis included Pearson's Chi-Squared test, Wilcoxon Rank-Sum test and multivariate analysis. Results. 385 mothers were interviewed at baseline. 231 (60%) mothers with 236 children responded at follow up. Caesarean section was reported in 116 (50.2%) deliveries while antibiotic use during pregnancy in 55/231 (23.8%) women. 43/236 (18.22%) infants were diagnosed with AD. Intravenous antibiotic use was associated with a 7.7 increased risk of AD diagnosis in the offspring (95%CI:1.23-48.27, p = 0.029). An increased odd for AD was recorded for mothers 30-40 years of age (OR4.50,95%CI:1.08-18.7, p = 0.039). No significant association between caesarean section and AD (p = 0.70) was recorded. In multivariate analysis, reported food allergy (OR8.03, 95%CI:2.30-27.97, p = 0.001) and otitis media episodes in children (OR3.76,95%CI1.60-8.83, p = 0.002) were significantly associated with AD diagnosis. Conclusions. Αn increased risk of AD was recorded only when antibiotics were given prenatally by intravenous route and in women between 30-40 years of age. Children with food allergy had an increased risk for AD. The relatively high percentage of caesarean sections was not a risk factor for AD.

RevDate: 2022-09-20
CmpDate: 2022-09-08

Nie F, Wang L, Huang Y, et al (2022)

Characteristics of Microbial Distribution in Different Oral Niches of Oral Squamous Cell Carcinoma.

Frontiers in cellular and infection microbiology, 12:905653.

Oral squamous cell carcinoma (OSCC), one of the most common malignant tumors of the head and neck, is closely associated with the presence of oral microbes. However, the microbiomes of different oral niches in OSCC patients and their association with OSCC have not been adequately characterized. In this study, 305 samples were collected from 65 OSCC patients, including tumor tissue, adjacent normal tissue (paracancerous tissue), cancer surface tissue, anatomically matched contralateral normal mucosa, saliva, and tongue coat. 16S ribosomal DNA (16S rDNA) sequencing was used to compare the microbial composition, distribution, and co-occurrence network of different oral niches. The association between the microbiome and the clinical features of OSCC was also characterized. The oral microbiome of OSCC patients showed a regular ecological distribution. Tumor and paracancerous tissues were more microbially diverse than other oral niches. Cancer surface, contralateral normal mucosa, saliva, and tongue coat showed similar microbial compositions, especially the contralateral normal mucosa and saliva. Periodontitis-associated bacteria of the genera Fusobacterium, Prevotella, Porphyromonas, Campylobacter, and Aggregatibacter, and anaerobic bacteria were enriched in tumor samples. The microbiome was highly correlated with tumor clinicopathological features, with several genera (Lautropia, Asteroleplasma, Parvimonas, Peptostreptococcus, Pyramidobacter, Roseburia, and Propionibacterium) demonstrating a relatively high diagnostic power for OSCC metastasis, potentially providing an indicator for the development of OSCC.

RevDate: 2022-08-30

Höyhtyä M, Korpela K, Saqib S, et al (2022)

Quantitative Fecal Microbiota Profiles Relate to Therapy Response During Induction With Tumor Necrosis Factor α Antagonist Infliximab in Pediatric Inflammatory Bowel Disease.

Inflammatory bowel diseases pii:6679143 [Epub ahead of print].

BACKGROUND: The role of intestinal microbiota in inflammatory bowel diseases is intensively researched. Pediatric studies on the relation between microbiota and treatment response are sparse. We aimed to determine whether absolute abundances of gut microbes characterize the response to infliximab induction in pediatric inflammatory bowel disease.

METHODS: We recruited pediatric patients with inflammatory bowel disease introduced to infliximab at Children's Hospital, University of Helsinki. Stool samples were collected at 0, 2, and 6 weeks for microbiota and calprotectin analyses. We defined treatment response as fecal calprotectin value <100 µg/g at week 6. Intestinal microbiota were analyzed by 16S ribosomal RNA gene amplicon sequencing using the Illumina MiSeq platform. We analyzed total bacterial counts using quantitative polymerase chain reaction and transformed the relative abundances into absolute abundances based on the total counts.

RESULTS: At baseline, the intestinal microbiota in the treatment responsive group (n = 10) showed a higher absolute abundance of Bifidobacteriales and a lower absolute abundance of Actinomycetales than nonresponders (n = 19). The level of inflammation according to fecal calprotectin showed no statistically significant association with the absolute abundances of fecal microbiota. The results on relative abundances differed from the absolute abundances. At the genus level, the responders had an increased relative abundance of Anaerosporobacter but a reduced relative abundance of Parasutterella at baseline.

CONCLUSIONS: High absolute abundance of Bifidobacteriales in the gut microbiota of pediatric patients reflects anti-inflammatory characteristics associated with rapid response to therapy. This warrants further studies on whether modification of pretreatment microbiota might improve the outcomes.

RevDate: 2022-09-21

Nava AR, Daneshian L, H Sarma (2022)

Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs.

Environmental research, 215(Pt 1):114212 pii:S0013-9351(22)01539-0 [Epub ahead of print].

Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Lane MM, Lotfaliany M, Forbes M, et al (2022)

Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study.

Nutrients, 14(16):.

BACKGROUND: Few studies have examined associations between ultra-processed food intake and biomarkers of inflammation, and inconsistent results have been reported in the small number of studies that do exist. As such, further investigation is required.

METHODS: Cross-sectional baseline data from the Melbourne Collaborative Cohort Study (MCCS) were analysed (n = 2018). We applied the NOVA food classification system to data from a food frequency questionnaire (FFQ) to determine ultra-processed food intake (g/day). The outcome was high-sensitivity C-reactive protein concentration (hsCRP; mg/L). We fitted unadjusted and adjusted linear regression analyses, with sociodemographic characteristics and lifestyle- and health-related behaviours as covariates. Supplementary analyses further adjusted for body mass index (kg/m2). Sex was assessed as a possible effect modifier. Ultra-processed food intake was modelled as 100 g increments and the magnitude of associations expressed as estimated relative change in hsCRP concentration with accompanying 95% confidence intervals (95%CIs).

RESULTS: After adjustment, every 100 g increase in ultra-processed food intake was associated with a 4.0% increase in hsCRP concentration (95%CIs: 2.1-5.9%, p < 0.001). Supplementary analyses showed that part of this association was independent of body mass index (estimated relative change in hsCRP: 2.5%; 95%CIs: 0.8-4.3%, p = 0.004). No interaction was observed between sex and ultra-processed food intake.

CONCLUSION: Higher ultra-processed food intake was cross-sectionally associated with elevated hsCRP, which appeared to occur independent of body mass index. Future prospective and intervention studies are necessary to confirm directionality and whether the observed association is causal.

RevDate: 2022-08-30
CmpDate: 2022-08-29

Jo H, Kim SY, Kang BH, et al (2022)

Staphylococcus epidermidis Cicaria, a Novel Strain Derived from the Human Microbiome, and Its Efficacy as a Treatment for Hair Loss.

Molecules (Basel, Switzerland), 27(16):.

The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several studies are being conducted to counteract this. However, not many studies have addressed hair loss from the perspective of the microbiome. In this study, subjects with hair loss and those with normal scalps were set as experimental and control groups, respectively. In the experimental group, hair loss had progressed, and there was a large difference in microbiome composition compared to the group with normal scalps. In particular, differences in Accumulibacter, Staphylococcus, and Corynebacterium were found. From Staphylococcus epidermidis Cicaria, two active components were isolated as a result of repeated column chromatography. Spectroscopic data led to the determination of chemical structures for adenosine and biotin. Fractions were obtained, and ex vivo tests were conducted using hair follicles derived from human scalp tissue. When the microbiome adenosine-treated group was compared to the control group, hair follicle length was increased, and hair root diameter was maintained during the experimental periods. In addition, the Cicaria culture medium and the microbial adenosine- and biotin-treated groups maintained the anagen phase, reducing progression to the catagen phase in the hair growth cycle. In conclusion, it was confirmed that the Cicaria culture medium and the microbial adenosine and biotin derived from the culture were effective in inhibiting hair loss.

RevDate: 2022-08-30

Ouwerkerk JP, Tytgat HLP, Elzinga J, et al (2022)

Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation.

Microorganisms, 10(8):.

Akkermansia muciniphila is a champion of mucin degradation in the human gastrointestinal tract. Here, we report the isolation of six novel strains from healthy human donors and their genomic, proteomic and physiological characterization in comparison to the type-strains A. muciniphila MucT and A. glycaniphila PytT. Complete genome sequencing revealed that, despite their large genomic similarity (>97.6%), the novel isolates clustered into two distinct subspecies of A. muciniphila: Amuc1, which includes the type-strain MucT, and AmucU, a cluster of unassigned strains that have not yet been well characterized. CRISPR analysis showed all strains to be unique and confirmed that single healthy subjects can carry more than one A. muciniphila strain. Mucin degradation pathways were strongly conserved amongst all isolates, illustrating the exemplary niche adaptation of A. muciniphila to the mucin interface. This was confirmed by analysis of the predicted glycoside hydrolase profiles and supported by comparing the proteomes of A. muciniphila strain H2, belonging to the AmucU cluster, to MucT and A. glycaniphila PytT (including 610 and 727 proteins, respectively). While some intrinsic resistance was observed among the A. muciniphila straind, none of these seem to pose strain-specific risks in terms of their antibiotic resistance patterns nor a significant risk for the horizontal transfer of antibiotic resistance determinants, opening the way to apply the type-strain MucT or these new A. muciniphila strains as next generation beneficial microbes.

RevDate: 2022-08-30

Harel N, Reshef L, Biran D, et al (2022)

Effect of Solar Radiation on Skin Microbiome: Study of Two Populations.

Microorganisms, 10(8):.

Here, we examined the skin microbiome of two groups of healthy volunteers living on the Mediterranean coast with different exposures to sun radiation. One group, exposed to the sun in the summer, was compared with a group covered with clothing throughout the year. The seasonal effects on the skin microbiome of three body sites were determined before and after summer. Surprisingly, at the phyla level, there were no significant differences in microbiome diversity between the groups. Furthermore, within each group, there were no significant seasonal differences in high-abundance species at any of the sampling sites. These results suggest that the skin microbiome, developed over years, remains stable even after several months of exposure to summer weather, direct sunlight and humidity. However, in the group exposed to the sun during the summer months, there were significant differences in low-abundance species in sun-exposed areas of the skin (the inner and outer arm). These subtle changes in low-abundance species are interesting, and their effect on skin physiology should be studied further.

RevDate: 2022-08-31
CmpDate: 2022-08-29

Huwart SJP, de Wouters d'Oplinter A, Rastelli M, et al (2022)

Food Reward Alterations during Obesity Are Associated with Inflammation in the Striatum in Mice: Beneficial Effects of Akkermansia muciniphila.

Cells, 11(16):.

The reward system involved in hedonic food intake presents neuronal and behavioral dysregulations during obesity. Moreover, gut microbiota dysbiosis during obesity promotes low-grade inflammation in peripheral organs and in the brain contributing to metabolic alterations. The mechanisms underlying reward dysregulations during obesity remain unclear. We investigated if inflammation affects the striatum during obesity using a cohort of control-fed or diet-induced obese (DIO) male mice. We tested the potential effects of specific gut bacteria on the reward system during obesity by administrating Akkermansia muciniphila daily or a placebo to DIO male mice. We showed that dysregulations of the food reward are associated with inflammation and alterations in the blood-brain barrier in the striatum of obese mice. We identified Akkermansia muciniphila as a novel actor able to improve the dysregulated reward behaviors associated with obesity, potentially through a decreased activation of inflammatory pathways and lipid-sensing ability in the striatum. These results open a new field of research and suggest that gut microbes can be considered as an innovative therapeutic approach to attenuate reward alterations in obesity. This study provides substance for further investigations of Akkermansia muciniphila-mediated behavioral improvements in other inflammatory neuropsychiatric disorders.

RevDate: 2022-08-30

Günther V, Allahqoli L, Watrowski R, et al (2022)

Vaginal Microbiome in Reproductive Medicine.

Diagnostics (Basel, Switzerland), 12(8):.

The human microbiome has been given increasing importance in recent years. The establishment of sequencing-based technology has made it possible to identify a large number of bacterial species that were previously beyond the scope of culture-based technologies. Just as microbiome diagnostics has emerged as a major point of focus in science, reproductive medicine has developed into a subject of avid interest, particularly with regard to causal research and treatment options for implantation failure. Thus, the vaginal microbiome is discussed as a factor influencing infertility and a promising target for treatment options. The present review provides an overview of current research concerning the impact of the vaginal microbiome on the outcome of reproductive measures. A non-Lactobacillus-dominated microbiome was shown to be associated with dysbiosis, possibly even bacterial vaginosis. This imbalance has a negative impact on implantation rates in assisted reproductive technologies and may also be responsible for habitual abortions. Screening of the microbiome in conjunction with antibiotic and/or probiotic treatment appears to be one way of improving pregnancy outcomes.

RevDate: 2022-08-26

Liang J, Li T, Zhao J, et al (2022)

Current understanding of the human microbiome in glioma.

Frontiers in oncology, 12:781741.

There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.

RevDate: 2022-08-24

Shen Y, Zhu J, Deng Z, et al (2022)

Ensdeepdp: An Ensemble Deep Learning Approach for Disease Prediction Through Metagenomics.

IEEE/ACM transactions on computational biology and bioinformatics, PP: [Epub ahead of print].

A growing number of studies show that the human microbiome plays a vital role in human health and can be a crucial factor in predicting certain human diseases. However, microbiome data are often characterized by the limited samples and high-dimensional features, which pose a great challenge for machine learning methods. Therefore, this paper proposes a novel ensemble deep learning disease prediction method that combines unsupervised and supervised learning paradigms. First, unsupervised deep learning methods are used to learn the potential representation of the sample. Afterwards, the disease scoring strategy is developed based on the deep representations as the informative features for ensemble analysis. To ensure the optimal ensemble, a score selection mechanism is constructed, and performance boosting features are engaged with the original sample. Finally, the composite features are trained with gradient boosting classifier for health status decision. For case study, the ensemble deep learning flowchart has been demonstrated on six public datasets extracted from the human microbiome profiling. The results show that compared with the existing algorithms, our framework achieves better performance on disease prediction.

RevDate: 2022-09-13
CmpDate: 2022-08-25

Li J, George Markowitz RH, Brooks AW, et al (2022)

Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes.

PLoS biology, 20(8):e3001758.

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.

RevDate: 2022-08-23

Titécat M, Rousseaux C, Dubuquoy C, et al (2022)

Safety and Efficacy of an AIEC-targeted Bacteriophage Cocktail in a Mice Colitis Model.

Journal of Crohn's & colitis pii:6673800 [Epub ahead of print].

BACKGROUND AND AIMS: Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota.

METHODS: The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively.

RESULTS: The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation.

CONCLUSIONS: Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.

RevDate: 2022-08-24

Clark KA, Bushin LB, MR Seyedsayamdost (2022)

RaS-RiPPs in Streptococci and the Human Microbiome.

ACS bio & med chem Au, 2(4):328-339.

Radical S-adenosylmethionine (RaS) enzymes have quickly advanced to one of the most abundant and versatile enzyme superfamilies known. Their chemistry is predicated upon reductive homolytic cleavage of a carbon-sulfur bond in cofactor S-adenosylmethionine forming an oxidizing carbon-based radical, which can initiate myriad radical transformations. An emerging role for RaS enzymes is their involvement in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a natural product family that has become known as RaS-RiPPs. These metabolites are especially prevalent in human and mammalian microbiomes because the complex chemistry of RaS enzymes gives rise to correspondingly complex natural products with minimal cellular energy and genomic fingerprint, a feature that is advantageous in microbes with small, host-adapted genomes in competitive environments. Herein, we review the discovery and characterization of RaS-RiPPs from the human microbiome with a focus on streptococcal bacteria. We discuss the varied chemical modifications that RaS enzymes introduce onto their peptide substrates and the diverse natural products that they give rise to. The majority of RaS-RiPPs remain to be discovered, providing an intriguing avenue for future investigations at the intersection of metalloenzymology, chemical ecology, and the human microbiome.

RevDate: 2022-08-22

Vander Haar EL, Wu G, Gyamfi-Bannerman C, et al (2022)

Microbial Analysis of Umbilical Cord Blood Reveals Novel Pathogens Associated with Stillbirth and Early Preterm Birth.

mBio [Epub ahead of print].

Stillbirths account for half of all perinatal mortality, but the underlying cause of a significant portion of the cases remains unknown. We set out to test the potential role and extent of microbial infection in stillbirth through a case-control analysis of fetal cord blood collected from the multisite Stillbirth Collaborative Research Network. Cases (n = 60) were defined as stillbirths at >20 weeks of gestation, and controls (n = 176) were live births. The bacterial presence, abundance, and composition were analyzed by endpoint PCR of full-length 16S rRNA and the V4 amplicon sequence variants (ASVs). The results demonstrate that bacterial prevalence and abundance were both significantly increased in stillbirth, even after adjusting for maternal age, race, body mass index, number of pregnancies, gestational age, and multiple gestations. Composition of bacterial communities in the cord blood also differed significantly. Using a group of 25 ASVs differentially abundant between the two groups, a Random Forest classification model achieved an accuracy score of 0.76 differentiating stillbirth and live birth, with Group B Streptococcus as the most enriched species in stillbirth. Positive PCR was also significantly associated with early preterm birth. A group of oral anaerobes, including Actinomyces, Campylobacter, Fusobacterium, Peptostreptococcus, Porphyromonas, and Prevotella, were enriched in live early preterm birth, suggesting possible oral origin of infection. Our ASV-based microbiome analysis revealed specific candidate pathogens associated with infections in stillbirth and early preterm birth. The cord blood microbial signatures may be markers of adverse pregnancy outcomes. Our study will help identify possible mechanism of infection and improve our ability to prevent stillbirth and early preterm birth. IMPORTANCE Stillbirth accounts for half of all perinatal mortality, but the underlying cause of a substantial portion of all cases remains elusive. We examined the umbilical cord blood microbiome in stillbirths (n = 60) and live births (n = 176) and discovered that the bacterial prevalence and abundance were significantly higher in stillbirths than live births. The microbial compositions also differed significantly. Group B Streptococcus was the most prevalent species detected in stillbirth. In addition, pathogens previously unknown to be associated with stillbirth were identified. A group of oral anaerobes including Fusobacterium nucleatum were found to be specifically enriched in the cord blood in early preterm live birth. This is by far the most comprehensive study to examine the microbial signatures in umbilical cord blood. Cord blood microbial signatures may be markers for adverse birth outcomes. Detection of key microbial signatures will help identify individuals at risk and develop effective preventative strategies.

RevDate: 2022-08-22

Baker JL (2022)

Using Nanopore Sequencing to Obtain Complete Bacterial Genomes from Saliva Samples.

mSystems [Epub ahead of print].

Obtaining complete, high-quality reference genomes is essential to the study of any organism. Recent advances in nanopore sequencing, as well as genome assembly and analysis methods, have made it possible to obtain complete bacterial genomes from metagenomic (i.e., multispecies) samples, including those from the human microbiome. In this study, methods are presented to obtain complete bacterial genomes from human saliva using complementary Oxford Nanopore (ONT) and Illumina sequencing. Applied to 3 human saliva samples, these methods resulted in 11 complete bacterial genomes: 3 Saccharibacteria clade G6 (also known as Ca. Nanogingivalaceae HMT-870), 1 Saccharibacteria clade G1 HMT-348, 2 Rothia mucilaginosa, 2 Actinomyces graevenitzii, 1 Mogibacterium diversum, 1 Lachnospiraceae HMT-096, and 1 Lancefieldella parvula; and one circular chromosome of Ruminococcaceae HMT-075 (which likely has at least 2 chromosomes). The 4 Saccharibacteria genomes, as well as the Actinomyces graeventizii genomes, represented the first complete genomes from their respective bacterial taxa. Aside from the complete genomes, the assemblies contained 147 contigs of over 500,000 bp each and thousands of smaller contigs, together representing a myriad of additional draft genomes including many which are likely nearly complete. The complete genomes enabled highly accurate pangenome analysis, which identified unique and missing features of each genome compared to its closest relatives with complete genomes available in public repositories. These features provide clues as to the lifestyle and ecological role of these bacteria within the human oral microbiota, which will be particularly useful in designing future studies of the taxa that have never been isolated or cultivated. IMPORTANCE Obtaining complete and accurate genomes is crucial to the study of any organism. Previously, obtaining complete genomes of bacteria, including those of the human microbiome, frequently required isolation of the organism, as well as low-throughput, manual sequencing methods to resolve repeat regions. Advancements in long-read sequencing technologies, including Oxford Nanopore (ONT), have made it possible to obtain complete, closed bacterial genomes from metagenomic samples. This study reports methods to obtain complete genomes from the human oral microbiome using complementary ONT and Illumina sequencing of saliva samples. Eleven complete genomes were obtained from 3 human saliva samples, with genomes of Saccharibacteria HMT-870, Saccharibacteria HMT-348, and Actinomyces graeventzii being the first complete genomes from their respective taxa. Obtaining complete bacterial genomes in a high-throughput manner will help illuminate the metabolic and ecological roles of important members of the human microbiota, particularly those that have remained recalcitrant to isolation and cultivation.

RevDate: 2022-08-23

Puce L, Hampton-Marcell J, Trabelsi K, et al (2022)

Swimming and the human microbiome at the intersection of sports, clinical, and environmental sciences: A scoping review of the literature.

Frontiers in microbiology, 13:984867.

The human microbiota is comprised of more than 10-100 trillion microbial taxa and symbiotic cells. Two major human sites that are host to microbial communities are the gut and the skin. Physical exercise has favorable effects on the structure of human microbiota and metabolite production in sedentary subjects. Recently, the concept of "athletic microbiome" has been introduced. To the best of our knowledge, there exists no review specifically addressing the potential role of microbiomics for swimmers, since each sports discipline requires a specific set of techniques, training protocols, and interactions with the athletic infrastructure/facility. Therefore, to fill in this gap, the present scoping review was undertaken. Four studies were included, three focusing on the gut microbiome, and one addressing the skin microbiome. It was found that several exercise-related variables, such as training volume/intensity, impact the athlete's microbiome, and specifically the non-core/peripheral microbiome, in terms of its architecture/composition, richness, and diversity. Swimming-related power-/sprint- and endurance-oriented activities, acute bouts and chronic exercise, anaerobic/aerobic energy systems have a differential impact on the athlete's microbiome. Therefore, their microbiome can be utilized for different purposes, including talent identification, monitoring the effects of training methodologies, and devising ad hoc conditioning protocols, including dietary supplementation. Microbiomics can be exploited also for clinical purposes, assessing the effects of exposure to swimming pools and developing potential pharmacological strategies to counteract the insurgence of skin infections/inflammation, including acne. In conclusion, microbiomics appears to be a promising tool, even though current research is still limited, warranting, as such, further studies.

RevDate: 2022-09-13
CmpDate: 2022-08-23

Lieberman TD (2022)

Detecting bacterial adaptation within individual microbiomes.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 377(1861):20210243.

The human microbiome harbours a large capacity for within-person adaptive mutations. Commensal bacterial strains can stably colonize a person for decades, and billions of mutations are generated daily within each person's microbiome. Adaptive mutations emerging during health might be driven by selective forces that vary across individuals, vary within an individual, or are completely novel to the human population. Mutations emerging within individual microbiomes might impact the immune system, the metabolism of nutrients or drugs, and the stability of the community to perturbations. Despite this potential, relatively little attention has been paid to the possibility of adaptive evolution within complex human-associated microbiomes. This review discusses the promise of studying within-microbiome adaptation, the conceptual and technical limitations that may have contributed to an underappreciation of adaptive de novo mutations occurring within microbiomes to date, and methods for detecting recent adaptive evolution. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.

RevDate: 2022-09-14
CmpDate: 2022-09-14

Dalton KR, Louis LM, Fandiño-Del-Rio M, et al (2022)

Microbiome alterations from volatile organic compounds (VOC) exposures among workers in salons primarily serving women of color.

Environmental research, 214(Pt 4):114125.

Salon workers, especially those serving an ethnically and racially diverse clientele (i.e., Black/Latina), may experience disparately high levels of workplace exposures to respiratory irritants, including volatile organic compounds (VOCs). Salon workers are also reported to have a greater risk of developing respiratory conditions compared to the general population. Emerging evidence suggests that occupational chemical exposures may alter the human microbiome and that these alterations may be an important mechanism by which workplace VOC exposures adversely impact respiratory health. This preliminary research investigated the potential effects of 28 VOC urinary biomarkers on the 16S rRNA nasal microbiome in 40 workers from salons primarily serving women of color (Black and Dominican salons) compared to office workers. Our exploratory analysis revealed significant differences in microbial composition by worker group; namely dissimilar levels of Staphylococcus species (S. epidermidis and S. aureus, specifically) in salon workers compared to office workers, and higher alpha diversity levels in workers in Dominican salons compared to workers in Black salons. Within-sample alpha diversity levels tended to be decreased with higher VOC urinary biomarker concentrations, significantly for carbon disulfide, acrolein, acrylonitrile, crotonaldehyde, and vinyl chloride biomarkers. Our research highlights that occupational exposures, particularly to chemicals like VOCs, can impact the respiratory microbiome in the vulnerable salon worker group. Further understanding of the potential effects of chemical mixtures on microbial composition may provide key insights to respiratory health and other adverse health outcomes, as well as direct prevention efforts in this largely historically understudied occupational population.

RevDate: 2022-08-26
CmpDate: 2022-08-23

Che H, Xiong Q, Ma J, et al (2022)

Association of Helicobacter pylori infection with survival outcomes in advanced gastric cancer patients treated with immune checkpoint inhibitors.

BMC cancer, 22(1):904.

BACKGROUND: Accumulating evidence has revealed that the gut microbiota influences the effectiveness of immune checkpoint inhibitors (ICIs) in cancer patients. As a part of the human microbiome, Helicobacter pylori (H. pylori) was reported to be associated with reduced effectiveness of anti-PD1 immunotherapy in patients with non-small-cell lung cancer (NSCLC). Gastric cancer is more closely related to H. pylori, so we conducted a retrospective analysis to verify whether the association of H. pylori and effectiveness is applicable to advanced gastric cancer (AGC) patients.

MATERIAL AND METHODS: AGC patients who had evidence of H. pylori and received anti-PD-1 antibodies were enrolled in the study. The differences in the disease control rate (DCR), overall survival (OS) and progression-free survival (PFS) between the H. pylori-positive group and the negative group were compared.

RESULTS: A total of 77 patients were included in this study; 34 patients were H. pylori positive, and the prevalence of H. pylori infection was 44.2%. Compared with the H. pylori-negative group, patients in the H. pylori-positive group had a higher risk of nonclinical response to anti-PD-1 antibody, with an OR of 2.91 (95% CI: 1.13-7.50). Patients in the H. pylori-negative group had a longer OS and PFS than those in the positive group, with an estimated median OS of 17.5 months vs. 6.2 months (HR = 2.85, 95% CI: 1.70-4.78; P = 0.021) and a median PFS of 8.4 months vs. 2.7 months (HR = 3.11, 95% CI: 1.96-5.07, P = 0.008). Multivariate analysis indicated that H. pylori infection was independently associated with PFS (HR = 1.90, 95% CI: 1.10-3.30; P = 0.022).

CONCLUSION: Our study unveils for the first time that H. pylori infection is associated with the outcome of immunotherapy for AGC patients. Multicenter, large sample and prospective clinical studies are needed to verify the association.

RevDate: 2022-09-10
CmpDate: 2022-08-23

Scheithauer TPM, Herrema H, Yu H, et al (2022)

Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction.

Gut microbes, 14(1):2111951.

Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.

RevDate: 2022-08-22

Hurley JC (2022)

Candida and the Gram-positive trio: testing the vibe in the ICU patient microbiome using structural equation modelling of literature derived data.

Emerging themes in epidemiology, 19(1):7.

BACKGROUND: Whether Candida interacts with Gram-positive bacteria, such as Staphylococcus aureus, coagulase negative Staphylococci (CNS) and Enterococci, to enhance their invasive potential from the microbiome of ICU patients remains unclear. Several effective anti-septic, antibiotic, anti-fungal, and non-decontamination based interventions studied for prevention of ventilator associated pneumonia (VAP) and other ICU acquired infections among patients receiving prolonged mechanical ventilation (MV) are known to variably impact Candida colonization. The collective observations within control and intervention groups from numerous ICU infection prevention studies enables tests of these postulated microbial interactions in the clinical context.

METHODS: Four candidate generalized structural equation models (GSEM), each with Staphylococcus aureus, CNS and Enterococci colonization, defined as latent variables, were confronted with blood culture and respiratory tract isolate data derived from 460 groups of ICU patients receiving prolonged MV from 283 infection prevention studies.

RESULTS: Introducing interaction terms between Candida colonization and each of S aureus (coefficient + 0.40; 95% confidence interval + 0.24 to + 0.55), CNS (+ 0.68; + 0.34 to + 1.0) and Enterococcal (+ 0.56; + 0.33 to + 0.79) colonization (all as latent variables) improved the fit for each model. The magnitude and significance level of the interaction terms were similar to the positive associations between exposure to topical antibiotic prophylaxis (TAP) on Enterococcal (+ 0.51; + 0.12 to + 0.89) and Candida colonization (+ 0.98; + 0.35 to + 1.61) versus the negative association of TAP with S aureus (- 0.45; - 0.70 to - 0.20) colonization and the negative association of anti-fungal exposure and Candida colonization (- 1.41; - 1.6 to - 0.72).

CONCLUSIONS: GSEM modelling of published ICU infection prevention data enables the postulated interactions between Candida and Gram-positive bacteria to be tested using clinically derived data. The optimal model implies interactions occurring in the human microbiome facilitating bacterial invasion and infection. This interaction might also account for the paradoxically high bacteremia incidences among studies of TAP in ICU patients.

RevDate: 2022-08-19

Maslennikov R, Ivashkin V, Alieva A, et al (2022)

Gut dysbiosis and body composition in cirrhosis.

World journal of hepatology, 14(6):1210-1225.

BACKGROUND: Gut dysbiosis and changes in body composition (i.e., a decrease in the proportion of muscle mass and an increase in extracellular fluid) are common in cirrhosis.

AIM: To study the relationship between the gut microbiota and body composition in cirrhosis.

METHODS: This observational study included 46 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Multifrequency bioelectrical impedance analysis was performed to assess body composition in these patients.

RESULTS: An increase in fat mass and a decrease in body cell mass were noted in 23/46 (50.0%) and 15/46 (32.6%) patients, respectively. Changes in the gut microbiome were not independently associated with the fat mass percentage in cirrhosis. The abundance of Bacteroidaceae (P = 0.041) and Eggerthella (P = 0.001) increased, whereas that of Erysipelatoclostridiaceae (P = 0.006), Catenibacterium (P = 0.021), Coprococcus (P = 0.033), Desulfovibrio (P = 0.043), Intestinimonas (P = 0.028), and Senegalimassilia (P = 0.015) decreased in the gut microbiome of patients with body cell mass deficiency. The amount of extracellular fluid increased in 22/46 (47.6%) patients. Proteobacteria abundance (P < 0.001) increased, whereas Firmicutes (P = 0.023), Actinobacteria (P = 0.026), Bacilli (P = 0.008), Anaerovoraceceae (P = 0.027), Christensenellaceae (P = 0.038), Eggerthellaceae (P = 0.047), Erysipelatoclostridiaceae (P = 0.015), Erysipelotrichaceae (P = 0.003), Oscillospiraceae (P = 0.024), Rikenellaceae (P = 0.002), Collinsella (P = 0.030), Hungatella (P = 0.040), Peptococcaceae (P = 0.023), Slackia (P = 0.008), and Senegalimassilia (P = 0.024) abundance decreased in these patients. Patients with clinically significant ascites (n = 9) had a higher abundance of Proteobacteria (P = 0.031) and a lower abundance of Actinobacteria (P = 0.019) and Bacteroidetes (P = 0.046) than patients without clinically significant ascites (n = 37).

CONCLUSION: Changes in the amount of body cell mass and extracellular fluid are associated with changes in the gut microbiome in cirrhosis patients.

RevDate: 2022-09-06
CmpDate: 2022-08-19

Nel Van Zyl K, Whitelaw AC, Hesseling AC, et al (2022)

Fungal diversity in the gut microbiome of young South African children.

BMC microbiology, 22(1):201.

BACKGROUND: The fungal microbiome, or mycobiome, is a poorly described component of the gut ecosystem and little is known about its structure and development in children. In South Africa, there have been no culture-independent evaluations of the child gut mycobiota. This study aimed to characterise the gut mycobiota and explore the relationships between fungi and bacteria in the gut microbiome of children from Cape Town communities.

METHODS: Stool samples were collected from children enrolled in the TB-CHAMP clinical trial. Internal transcribed spacer 1 (ITS1) gene sequencing was performed on a total of 115 stool samples using the Illumina MiSeq platform. Differences in fungal diversity and composition in relation to demographic, clinical, and environmental factors were investigated, and correlations between fungi and previously described bacterial populations in the same samples were described.

RESULTS: Taxa from the genera Candida and Saccharomyces were detected in all participants. Differential abundance analysis showed that Candida spp. were significantly more abundant in children younger than 2 years compared to older children. The gut mycobiota was less diverse than the bacterial microbiota of the same participants, consistent with the findings of other human microbiome studies. The variation in richness and evenness of fungi was substantial, even between individuals of the same age. There was significant association between vitamin A supplementation and higher fungal alpha diversity (p = 0.047), and girls were shown to have lower fungal alpha diversity (p = 0.003). Co-occurrence between several bacterial taxa and Candida albicans was observed.

CONCLUSIONS: The dominant fungal taxa in our study population were similar to those reported in other paediatric studies; however, it remains difficult to identify the true core gut mycobiota due to the challenges set by the low abundance of gut fungi and the lack of true gut colonising species. The connection between the microbiota, vitamin A supplementation, and growth and immunity warrants exploration, especially in populations at risk for micronutrient deficiencies. While we were able to provide insight into the gut mycobiota of young South African children, further functional studies are necessary to explain the role of the mycobiota and the correlations between bacteria and fungi in human health.

RevDate: 2022-09-21

Hendrickson EL, Bor B, Kerns KA, et al (2022)

Transcriptome of Epibiont Saccharibacteria Nanosynbacter lyticus Strain TM7x During the Establishment of Symbiosis.

Journal of bacteriology, 204(9):e0011222.

Saccharibacteria Nanosynbacter lyticus strain TM7x is a member of the broadly distributed candidate phylum radiation. These bacteria have ultrasmall cell sizes, have reduced genomes, and live as epibionts on the surfaces of other bacteria. The mechanisms by which they establish and maintain this relationship are not yet fully understood. The transcriptomes of the epibiont TM7x and its host bacteria Schaalia odontolytica strain XH001 were captured across the establishment of symbiosis during both the initial interaction and stable symbiosis. The results showed a dynamic interaction with large shifts in gene expression for both species between the initial encounter and stable symbiosis, notably in transporter genes. During stable symbiosis, the host XH001 showed higher gene expression for peptidoglycan biosynthesis, mannosylation, cell cycle and stress-related genes, whereas it showed lower expression of chromosomal partitioning genes. This was consistent with the elongated cell shape seen in XH001 infected with TM7x and our discovery that infection resulted in thickened cell walls. Within TM7x, increased pili, type IV effector genes, and arginine catabolism/biosynthesis gene expression during stable symbiosis implied a key role for these functions in the interaction. Consistent with its survival and persistence in the human microbiome as an obligate epibiont with reduced de novo biosynthetic capacities, TM7x also showed higher levels of energy production and peptidoglycan biosynthesis, but lower expression of stress-related genes, during stable symbiosis. These results imply that TM7x and its host bacteria keep a delicate balance in order to sustain an episymbiotic lifestyle. IMPORTANCE Nanosynbacter lyticus type strain TM7x is the first cultivated member of the Saccharibacteria and the candidate phyla radiation (CPR). It was discovered to be ultrasmall in cell size with a highly reduced genome that establishes an obligate epibiotic relationship with its host bacterium. The CPR is a large, monophyletic radiation of bacteria with reduced genomes that includes Saccharibacteria. The vast majority of the CPR have yet to be cultivated, and our insights into these unique organisms to date have been derived from only a few Saccharibacteria species. Being obligate parasites, it is unknown how these ultrasmall Saccharibacteria, which are missing many de novo biosynthetic pathways, are maintained at a high prevalence within the human microbiome as well as in the environment.

RevDate: 2022-08-30
CmpDate: 2022-08-16

Zhang Y, Li P, Ma Y, et al (2022)

Artificial intelligence accelerates the mining of bioactive small molecules from human microbiome.

Clinical and translational medicine, 12(8):e1011.

RevDate: 2022-08-16

Jones J, Reinke SN, Mousavi-Derazmahalleh M, et al (2022)

Changes to the Gut Microbiome in Young Children Showing Early Behavioral Signs of Autism.

Frontiers in microbiology, 13:905901.

The human gut microbiome has increasingly been associated with autism spectrum disorder (ASD), which is a neurological developmental disorder, characterized by impairments to social interaction. The ability of the gut microbiota to signal across the gut-brain-microbiota axis with metabolites, including short-chain fatty acids, impacts brain health and has been identified to play a role in the gastrointestinal and developmental symptoms affecting autistic children. The fecal microbiome of older children with ASD has repeatedly shown particular shifts in the bacterial and fungal microbial community, which are significantly different from age-matched neurotypical controls, but it is still unclear whether these characteristic shifts are detectable before diagnosis. Early microbial colonization patterns can have long-lasting effects on human health, and pre-emptive intervention may be an important mediator to more severe autism. In this study, we characterized both the microbiome and short-chain fatty acid concentrations of fecal samples from young children between 21 and 40 months who were showing early behavioral signs of ASD. The fungal richness and acetic acid concentrations were observed to be higher with increasing autism severity, and the abundance of several bacterial taxa also changed due to the severity of ASD. Bacterial diversity and SCFA concentrations were also associated with stool form, and some bacterial families were found with differential abundance according to stool firmness. An exploratory analysis of the microbiome associated with pre-emptive treatment also showed significant differences at multiple taxonomic levels. These differences may impact the microbial signaling across the gut-brain-microbiota axis and the neurological development of the children.

RevDate: 2022-08-16

Wei Q, Li Z, Gu Z, et al (2022)

Shotgun metagenomic sequencing reveals skin microbial variability from different facial sites.

Frontiers in microbiology, 13:933189.

Biogeography (body site) is known to be one of the main factors influencing the composition of the skin microbial community. However, site-associated microbial variability at a fine-scale level was not well-characterized since there was a lack of high-resolution recognition of facial microbiota across kingdoms by shotgun metagenomic sequencing. To investigate the explicit microbial variance in the human face, 822 shotgun metagenomic sequencing data from Han Chinese recently published by our group, in combination with 97 North American samples from NIH Human Microbiome Project (HMP), were reassessed. Metagenomic profiling of bacteria, fungi, and bacteriophages, as well as enriched function modules from three facial sites (forehead, cheek, and the back of the nose), was analyzed. The results revealed that skin microbial features were more alike in the forehead and cheek while varied from the back of the nose in terms of taxonomy and functionality. Analysis based on biogeographic theories suggested that neutral drift with niche selection from the host could possibly give rise to the variations. Of note, the abundance of porphyrin-producing species, i.e., Cutibacterium acnes, Cutibacterium avidum, Cutibacterium granulosum, and Cutibacterium namnetense, was all the highest in the back of the nose compared with the forehead/cheek, which was consistent with the highest porphyrin level on the nose in our population. Sequentially, the site-associated microbiome variance was confirmed in American populations; however, it was not entirely consistent. Furthermore, our data revealed correlation patterns between Propionibacterium acnes bacteriophages with genus Cutibacterium at different facial sites in both populations; however, C. acnes exhibited a distinct correlation with P. acnes bacteriophages in Americans/Chinese. Taken together, in this study, we explored the fine-scale facial site-associated changes in the skin microbiome and provided insight into the ecological processes underlying facial microbial variations.

RevDate: 2022-09-16

Kapoor B, Gulati M, Rani P, et al (2022)

Psoriasis: Interplay between dysbiosis and host immune system.

Autoimmunity reviews, 21(11):103169 pii:S1568-9972(22)00139-2 [Epub ahead of print].

With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.

RevDate: 2022-08-15
CmpDate: 2022-08-15

Mashyn S, Borodanov S, Klymenko O, et al (2022)

THE ROLE OF LACTOBACILLI IN THE HUMAN MICROBIOME AND METHODS OF THEIR CULTIVATION AND PRESERVATION.

Georgian medical news.

The extremely important role of the microbiome for human life and health has long been known. Many studies around the world are devoted to studying the mechanisms of action and functions of various bacteria that are permanent residents of our body. Connections between the bacteria of our microbiome and all organs and systems of the human body (intestine, brain, nervous and cardiovascular systems) have been identified. However, the effect of bacteria can be positive or negative, which affects the emergence and development of diseases or promotes healing. Genus Lactobacillus is one of the most numerous populations of bacteria in the human body. Moreover, they have a significant positive effect on health. Scientists are actively researching methods of cultivating and using bacteria of this genus in the pharmaceutical and industrial fields. Most probiotics contain lactobacilli strains. Therefore, the study of methods of cultivation and storage of lactobacilli in order to find ways to improve their viability and functionality and, at the same time, the invention of options to protect cell culture from various harmful factors is extremely important. In our review, we considered the importance of the microbiome for human health and the role of bacteria of the genus Lactobacillus as its component. Scientific works on studying the mechanisms of influence of lactobacilli on the functional capacity of human organs and systems have been studied. Much of the review is devoted to the study of lactobacilli cultivation methods, the diversity of culture media, and the importance of their components to improve the viability of lactobacilli culture because they are quite demanding and vulnerable. Attention is also paid to the development of methods of storage of grown cultures of bacterial cells and their improvement in order to obtain functional and suitable for further use in the pharmacological and industrial areas of bacterial strains.

RevDate: 2022-08-18
CmpDate: 2022-08-15

Livson S, Virtanen S, Lokki AI, et al (2022)

Cervicovaginal Complement Activation and Microbiota During Pregnancy and in Parturition.

Frontiers in immunology, 13:925630.

Background: Vaginal microbiome and the local innate immune defense, including the complement system, contribute to anti- and proinflammatory homeostasis during pregnancy and parturition. The relationship between commensal vaginal bacteria and complement activation during pregnancy and delivery is not known.

Objective: To study the association of the cervicovaginal microbiota composition to activation and regulation of the complement system during pregnancy and labor.

Study design: We recruited women during late pregnancy (weeks 41 + 5 to 42 + 0, n=48) and women in active labor (weeks 38 + 4 to 42 + 2, n=25). Mucosal swabs were taken from the external cervix and lateral fornix of the vagina. From the same sampling site, microbiota was analyzed with 16S RNA gene amplicon sequencing. A Western blot technique was used to detect complement C3, C4 and factor B activation and presence of complement inhibitors. For semiquantitative analysis, the bands of the electrophoresed proteins in gels were digitized on a flatbed photo scanner and staining intensities were analyzed using ImageJ/Fiji win-64 software. Patient data was collected from medical records and questionnaires.

Results: The vaginal microbiota was Lactobacillus-dominant in most of the samples (n=60), L. iners and L. crispatus being the dominant species. L. gasseri and L. jensenii were found to be more abundant during pregnancy than active labor. L. jensenii abundance correlated with C4 activation during pregnancy but not in labor. Gardnerella vaginalis was associated with C4 activation both during pregnancy and labor. The amount of L. gasseri correlated with factor B activation during pregnancy but not during labor. Atopobium vaginae was more abundant during pregnancy than labor and correlated with C4 activation during labor and with factor B activation during pregnancy. Activation of the alternative pathway factor B was significantly stronger during pregnancy compared to labor. During labor complement activation may be inhibited by the abundant presence of factor H and FHL1.

Conclusions: These results indicate that bacterial composition of the vaginal microbiota could have a role in the local activation and regulation of complement-mediated inflammation during pregnancy. At the time of parturition complement activation appears to be more strictly regulated than during pregnancy.

RevDate: 2022-08-11

Parker KD, Mueller JL, Westfal M, et al (2022)

A pilot study characterizing longitudinal changes in fecal microbiota of patients with Hirschsprung-associated enterocolitis.

Pediatric surgery international [Epub ahead of print].

PURPOSE: Hirschsprung disease is a neurointestinal disease that occurs due to failure of enteric neural crest-derived cells to complete their rostrocaudal migration along the gut mesenchyme, resulting in aganglionosis along variable lengths of the distal bowel. Despite the effective surgery that removes the aganglionic segment, children with Hirschsprung disease remain at high risk for developing a potentially life-threatening enterocolitis (Hirschsprung-associated enterocolitis). Although the etiology of this enterocolitis remains poorly understood, several recent studies in both mouse models and in human subjects suggest potential involvement of gastrointestinal microbiota in the underlying pathogenesis of Hirschsprung-associated enterocolitis.

METHODS: We present the first study to exploit the Illumina MiSeq next-generation sequencing platform within a longitudinal framework focused on microbiomes of Hirschsprung-associated enterocolitis in five patients. We analyzed bacterial communities from fecal samples collected at different timepoints starting from active enterocolitis and progressing into remission.

RESULTS: We observed compositional differences between patients largely attributable to variability in age at the time of sample collection. Remission samples across patients exhibited compositional similarity, including enrichment of Blautia, while active enterocolitis samples showed substantial variability in composition.

CONCLUSIONS: Overall, our findings provide continued support for the role of GI microbiota in the pathogenesis of Hirschsprung-associated enterocolitis.

RevDate: 2022-08-10

Dickerson F, Dilmore AH, Godoy-Vitorino F, et al (2022)

The Microbiome and Mental Health Across the Lifespan.

Current topics in behavioral neurosciences [Epub ahead of print].

INTRODUCTION: The combined genetic material of the microorganisms in the human body, known as the microbiome, is being increasingly recognized as a major determinant of human health and disease. Although located predominantly on mucosal surfaces, these microorganisms have profound effects on brain functioning through the gut-brain axis.

METHOD: The content of the chapter is based on a study group session at the annual meeting of the American College of Neuropsychopharmacology (ACNP). The objective was to discuss the emerging relationship between the human microbiome and mental health as relevant to ACNP's interests in developing and evaluating novel neuropsychiatric treatment strategies. The focus is on specific brain disorders, such as schizophrenia, substance use, and Alzheimer's disease, as well as on broader clinical issues such as suicidality, loneliness and wisdom in old age, and longevity.

RESULTS: Studies of schizophrenia indicate that the microbiome of individuals with this disorder differs from that of non-psychiatric comparison groups in terms of diversity and composition. Differences are also found in microbial metabolic pathways. An early study in substance use disorders found that individuals with this disorder have lower levels of beta diversity in their oral microbiome than a comparison group. This measure, along with others, was used to distinguish individuals with substance use disorders from controls. In terms of suicidality, there is preliminary evidence that persons who have made a suicide attempt differ from psychiatric and non-psychiatric comparison groups in measures of beta diversity. Exploratory studies in Alzheimer's disease indicate that gut microbes may contribute to disease pathogenesis by regulating innate immunity and neuroinflammation and thus influencing brain function. In another study looking at the microbiome in older adults, positive associations were found between wisdom and alpha diversity and negative associations with subjective loneliness. In other studies of older adults, here with a focus on longevity, individuals with healthy aging and unusually long lives had an abundance of specific microorganisms which distinguished them from other individuals.

DISCUSSION: Future studies would benefit from standardizing methods of sample collection, processing, and analysis. There is also a need for the standardized collection of relevant demographic and clinical data, including diet, medications, cigarette smoking, and other potentially confounding factors. While still in its infancy, research to date indicates a role for the microbiome in mental health disorders and conditions. Interventions are available which can modulate the microbiome and lead to clinical improvements. These include microbiome-altering medications as well as probiotic microorganisms capable of modulating the inflammation in the brain through the gut-brain axis. This research holds great promise in terms of developing new methods for the prevention and treatment of a range of human brain disorders.

RevDate: 2022-08-09

Turunen J, Tejesvi MV, Suokas M, et al (2022)

Bacterial extracellular vesicles in the microbiome of first-pass meconium in newborn infants.

Pediatric research [Epub ahead of print].

BACKGROUND: Bacterial extracellular vesicles (EVs) are more likely to cross biological barriers than whole-cell bacteria. We previously observed EV-sized particles by electron microscopy in the first-pass meconium of newborn infants. We hypothesized that EVs may be of bacterial origin and represent a novel entity in the human microbiome during fetal and perinatal periods.

METHODS: We extracted EVs from first-pass meconium samples of 17 newborn infants and performed bacterial 16S rRNA gene sequencing of the vesicles. We compared the EV content from the meconium samples of infants based on the delivery mode, and in vaginal delivery samples, based on the usage of intrapartum antibiotics.

RESULTS: We found bacterial EVs in all first-pass meconium samples. All EV samples had bacterial RNA. Most of the phyla present in the samples were Firmicutes (62%), Actinobacteriota (18%), Proteobacteria (10%), and Bacteroidota (7.3%). The most abundant genera were Streptococcus (21%) and Staphylococcus (17%). The differences between the delivery mode and exposure to antibiotics were not statistically significant.

CONCLUSIONS: Bacterial EVs were present in the first-pass meconium of newborn infants. Bacterial EVs may represent an important novel feature of the gut microbiome during fetal and perinatal periods.

IMPACT: We show that bacterial extracellular vesicles are present in the microbiome of first-pass meconium in newborn infants. This is a novel finding. To our knowledge, this is the first study to report the presence of bacterial extracellular vesicles in the gut microbiome during fetal and perinatal periods. This finding is important because bacterial extracellular vesicles are more likely to cross biological barriers than whole-cell bacteria. Thus, the early gut microbiome may potentially interact with the host through bacterial EVs.

RevDate: 2022-08-09

Zhou X, Kandalai S, Hossain F, et al (2022)

Tumor microbiome metabolism: A game changer in cancer development and therapy.

Frontiers in oncology, 12:933407.

Accumulating recent evidence indicates that the human microbiome plays essential roles in pathophysiological states, including cancer. The tumor microbiome, an emerging concept that has not yet been clearly defined, has been proven to influence both cancer development and therapy through complex mechanisms. Small molecule metabolites produced by the tumor microbiome through unique biosynthetic pathways can easily diffuse into tissues and penetrate cell membranes through transporters or free diffusion, thus remodeling the signaling pathways of cancer and immune cells by interacting with biomacromolecules. Targeting tumor microbiome metabolism could offer a novel perspective for not only understanding cancer progression but also developing new strategies for the treatment of multiple cancer types. Here, we summarize recent advances regarding the role the tumor microbiome plays as a game changer in cancer biology. Specifically, the metabolites produced by the tumor microbiome and their potential effects on the cancer development therapy are discussed to understand the importance of the microbial metabolism in the tumor microenvironment. Finally, new anticancer therapeutic strategies that target tumor microbiome metabolism are reviewed and proposed to provide new insights in clinical applications.

RevDate: 2022-08-09

Buttimer C, Sutton T, Colom J, et al (2022)

Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo.

Frontiers in microbiology, 13:936083.

Escherichia coli and Enterococcus faecalis have been implicated as important players in human gut health that have been associated with the onset of inflammatory bowel disease (IBD). Bacteriophage (phage) therapy has been used for decades to target pathogens as an alternative to antibiotics, but the ability of phage to shape complex bacterial consortia in the lower gastrointestinal tract is not clearly understood. We administered a cocktail of six phages (either viable or heat-inactivated) targeting pro-inflammatory Escherichia coli LF82 and Enterococcus faecalis OG1RF as members of a defined community in both a continuous fermenter and a murine colitis model. The two target strains were members of a six species simplified human microbiome consortium (SIHUMI-6). In a 72-h continuous fermentation, the phage cocktail caused a 1.1 and 1.5 log (log10 genome copies/mL) reduction in E. faecalis and E. coli numbers, respectively. This interaction was accompanied by changes in the numbers of other SIHUMI-6 members, with an increase of Lactiplantibacillus plantarum (1.7 log) and Faecalibacterium prausnitzii (1.8 log). However, in germ-free mice colonized by the same bacterial consortium, the same phage cocktail administered twice a week over nine weeks did not cause a significant reduction of the target strains. Mice treated with active or inactive phage had similar levels of pro-inflammatory cytokines (IFN-y/IL12p40) in unstimulated colorectal colonic strip cultures. However, histology scores of the murine lower GIT (cecum and distal colon) were lower in the viable phage-treated mice, suggesting that the phage cocktail did influence the functionality of the SIHUMI-6 consortium. For this study, we conclude that the observed potential of phages to reduce host populations in in vitro models did not translate to a similar outcome in an in vivo setting, with this effect likely brought about by the reduction of phage numbers during transit of the mouse GIT.

RevDate: 2022-08-07

Peuranpää P, Holster T, Saqib S, et al (2022)

Female reproductive tract microbiota and recurrent pregnancy loss: a nested case-control study.

Reproductive biomedicine online pii:S1472-6483(22)00418-7 [Epub ahead of print].

RESEARCH QUESTION: Is the composition of the endometrial or vaginal microbiota associated with recurrent pregnancy loss (RPL)?

DESIGN: Endometrial and vaginal samples were collected from 47 women with two or more consecutive pregnancy losses and 39 healthy control women without a history of pregnancy loss, between March 2018 and December 2020 at Helsinki University Hospital, Helsinki, Finland. The compositions of the endometrial and vaginal microbiota, analysed using 16S rRNA gene amplicon sequencing, were compared between the RPL and control women, and between individual vaginal and endometrial samples. The mycobiota composition was analysed using internal transcribed spacer 1 amplicon sequencing for a descriptive summary. The models were adjusted for body mass index, age and parity. False discovery rate-corrected P-values (q-values) were used to define nominal statistical significance at q < 0.05.

RESULTS: Lactobacillus crispatus was less abundant in the endometrial samples of women with RPL compared with controls (mean relative abundance 17.2% versus 45.6%, q = 0.04). Gardnerella vaginalis was more abundant in the RPL group than in controls in both endometrial (12.4% versus 5.8%, q < 0.001) and vaginal (8.7% versus 5.7%, q = 0.002) samples. The individual vaginal and endometrial microbial compositions correlated strongly (R = 0.85, P < 0.001). Fungi were detected in 22% of the endometrial and 36% of the vaginal samples.

CONCLUSIONS: Dysbiosis of the reproductive tract microbiota is associated with RPL and may represent a novel risk factor for pregnancy losses.

RevDate: 2022-09-20
CmpDate: 2022-09-20

Huang J, Liu W, Kang W, et al (2022)

Effects of microbiota on anticancer drugs: Current knowledge and potential applications.

EBioMedicine, 83:104197.

Over the last decade, mounting evidence has revealed the key roles of gut microbiota in modulating the efficacy and toxicity of anticancer drugs, via mechanisms such as immunomodulation and microbial enzymatic degradation. As such, human microbiota presents as an exciting prospect for developing biomarkers for predicting treatment outcomes and interventional approaches for improving therapeutic effects. In this review, we analyze the current knowledge of the interplays among gut microorganisms, host responses and anticancer therapies (including cytotoxic chemotherapy and targeted therapy), with an emphasis on the immunomodulation function of microbiota which facilitates the efficacy of immune checkpoint inhibitors. Moreover, we propose several microbiota-modulating strategies including fecal microbiota transplantation and probiotics, which can be pursued to optimize the use and development of anticancer treatments. We anticipate that future clinical and preclinical studies will highlight the significance of human microbiome as a promising target towards precision medicine in cancer therapies. FUNDING: National Key Research and Development Program of China (2020YFA0907800), Shenzhen Science and Technology Innovation Program (KQTD20200820145822023) and National Natural Science Foundation of China (31900056 and 32000096).

RevDate: 2022-08-30
CmpDate: 2022-08-30

Morlock GE, Morlock JA, Cardak AD, et al (2022)

Potential of simple, rapid, and non-target planar bioassay screening of veterinary drug residues.

Journal of chromatography. A, 1679:463392.

Veterinary drug residues in food samples of animal origin are currently analyzed by target analysis using high-performance liquid chromatography combined with sophisticated mass spectrometers. Since the results are only partially consistent with the microbiological results and positive findings occur rarely (in the per mil range in Germany), the potential of a simple planar bioassay screening was studied in the field of veterinary drug residue analysis. Using only a simple dilution of the milk for sample preparation, it was challenging to meet the maximum residue limits for antibiotic drug residues, exemplarily shown for the screening of two fluoroquinolones. However, the potential was evident for a simple, rapid, eco-friendly, and non-target screening without expensive instrumentation. Regardless of whether it is an active metabolite, contaminant, degradation product, or veterinary drug residue, the effect indicated on the planar surface due to bioassay detection will most likely also affect the human microbiome when consumed. The non-target screening of the milk samples revealed compounds with substantial antibacterial effects, which were not in the previous focus of interest. These antibacterial compounds will most likely also affect the human microbiome. Is it only the regulated antibiotic residues or generally all antibiotic compounds in a sample that count for consumer protection? The current prevailing understanding of food safety and antimicrobial resistance, based on the results of target (rather than effect) analyses, is being challenged. Non-target planar bioassay screening has been shown to fill a current gap by providing an understanding of inconsistencies and complementing routine target analysis of veterinary drug residues. As a highlight, it provides the full picture of the real levels of active compounds, regardless of the permitted limits of antibiotics.

RevDate: 2022-09-17
CmpDate: 2022-09-08

Kim K, Lee S, Park SC, et al (2022)

Role of an unclassified Lachnospiraceae in the pathogenesis of type 2 diabetes: a longitudinal study of the urine microbiome and metabolites.

Experimental & molecular medicine, 54(8):1125-1132.

Recent investigations have revealed that the human microbiome plays an essential role in the occurrence of type 2 diabetes (T2D). However, despite the importance of understanding the involvement of the microbiota throughout the body in T2D, most studies have focused specifically on the intestinal microbiota. Extracellular vesicles (EVs) have been recently found to provide important evidence regarding the mechanisms of T2D pathogenesis, as they act as key messengers between intestinal microorganisms and the host. Herein, we explored microorganisms potentially associated with T2D by tracking changes in microbiota-derived EVs from patient urine samples collected three times over four years. Mendelian randomization analysis was conducted to evaluate the causal relationships among microbial organisms, metabolites, and clinical measurements to provide a comprehensive view of how microbiota can influence T2D. We also analyzed EV-derived metagenomic (N = 393), clinical (N = 5032), genomic (N = 8842), and metabolite (N = 574) data from a prospective longitudinal Korean community-based cohort. Our data revealed that GU174097_g, an unclassified Lachnospiraceae, was associated with T2D (β = -189.13; p = 0.00006), and it was associated with the ketone bodies acetoacetate and 3-hydroxybutyrate (r = -0.0938 and -0.0829, respectively; p = 0.0022 and 0.0069, respectively). Furthermore, a causal relationship was identified between acetoacetate and HbA1c levels (β = 0.0002; p = 0.0154). GU174097_g reduced ketone body levels, thus decreasing HbA1c levels and the risk of T2D. Taken together, our findings indicate that GU174097_g may lower the risk of T2D by reducing ketone body levels.

RevDate: 2022-08-05

Maybee J, Pearson T, L Elliott (2022)

The Gut-Brain-Microbiome Connection: Can Probiotics Decrease Anxiety and Depression?.

Issues in mental health nursing [Epub ahead of print].

Anxiety and depression are highly prevalent mood disorders worldwide. Complete remission of symptoms is often difficult to achieve, despite following recommended treatment guidelines. Numerous antidepressants and anxiolytics exist, and new drugs are being developed constantly, yet the incidence of common mood disorders continues to rise. Despite the prevalence of these issues, mental health treatment has not evolved much in recent years. An exciting area of research uncovered in the past decade is the gut-brain-microbiome axis, a bi-directional communication pathway. Because the human microbiome is closely related to mood, research is being done to investigate whether probiotic supplementation could potentially affect symptoms of anxiety and depression.

RevDate: 2022-08-17

Hakimjavadi H, George SH, Taub M, et al (2022)

The vaginal microbiome is associated with endometrial cancer grade and histology.

Cancer research communications, 2(6):447-455.

The human microbiome has been strongly correlated with disease pathology and outcomes, yet remains relatively underexplored in patients with malignant endometrial disease. In this study, vaginal microbiome samples were prospectively collected at the time of hysterectomy from 61 racially and ethnically diverse patients from three disease conditions: 1) benign gynecologic disease (controls, n=11), 2) low-grade endometrial carcinoma (n=30), and 3) high-grade endometrial carcinoma (n=20). Extracted DNA underwent shotgun metagenomics sequencing, and microbial α and β diversities were calculated. Hierarchical clustering was used to describe community state types (CST), which were then compared by microbial diversity and grade. Differential abundance was calculated, and machine learning utilized to assess the predictive value of bacterial abundance to distinguish grade and histology. Both α- and β-diversity were associated with patient tumor grade. Four vaginal CST were identified that associated with grade of disease. Different histologies also demonstrated variation in CST within tumor grades. Using supervised clustering algorithms, critical microbiome markers at the species level were used to build models that predicted benign vs carcinoma, high-grade carcinoma versus benign, and high-grade versus low-grade carcinoma with high accuracy. These results confirm that the vaginal microbiome segregates not just benign disease from endometrial cancer, but is predictive of histology and grade. Further characterization of these findings in large, prospective studies is needed to elucidate their potential clinical applications.

RevDate: 2022-08-06

Díez López C, Montiel González D, Vidaki A, et al (2022)

Prediction of Smoking Habits From Class-Imbalanced Saliva Microbiome Data Using Data Augmentation and Machine Learning.

Frontiers in microbiology, 13:886201.

Human microbiome research is moving from characterization and association studies to translational applications in medical research, clinical diagnostics, and others. One of these applications is the prediction of human traits, where machine learning (ML) methods are often employed, but face practical challenges. Class imbalance in available microbiome data is one of the major problems, which, if unaccounted for, leads to spurious prediction accuracies and limits the classifier's generalization. Here, we investigated the predictability of smoking habits from class-imbalanced saliva microbiome data by combining data augmentation techniques to account for class imbalance with ML methods for prediction. We collected publicly available saliva 16S rRNA gene sequencing data and smoking habit metadata demonstrating a serious class imbalance problem, i.e., 175 current vs. 1,070 non-current smokers. Three data augmentation techniques (synthetic minority over-sampling technique, adaptive synthetic, and tree-based associative data augmentation) were applied together with seven ML methods: logistic regression, k-nearest neighbors, support vector machine with linear and radial kernels, decision trees, random forest, and extreme gradient boosting. K-fold nested cross-validation was used with the different augmented data types and baseline non-augmented data to validate the prediction outcome. Combining data augmentation with ML generally outperformed baseline methods in our dataset. The final prediction model combined tree-based associative data augmentation and support vector machine with linear kernel, and achieved a classification performance expressed as Matthews correlation coefficient of 0.36 and AUC of 0.81. Our method successfully addresses the problem of class imbalance in microbiome data for reliable prediction of smoking habits.

RevDate: 2022-08-06

Alves-Barroco C, Brito PH, Santos-Sanches I, et al (2022)

Phylogenetic analysis and accessory genome diversity reveal insight into the evolutionary history of Streptococcus dysgalactiae.

Frontiers in microbiology, 13:952110.

Streptococcus dysgalactiae (SD) is capable of infecting both humans and animals and causing a wide range of invasive and non-invasive infections. With two subspecies, the taxonomic status of subspecies of SD remains controversial. Subspecies equisimilis (SDSE) is an important human pathogen, while subspecies dysgalactiae (SDSD) has been considered a strictly animal pathogen; however, occasional human infections by this subspecies have been reported in the last few years. Moreover, the differences between the adaptation of SDSD within humans and other animals are still unknown. In this work, we provide a phylogenomic analysis based on the single-copy core genome of 106 isolates from both the subspecies and different infected hosts (animal and human hosts). The accessory genome of this species was also analyzed for screening of genes that could be specifically involved with adaptation to different hosts. Additionally, we searched putatively adaptive traits among prophage regions to infer the importance of transduction in the adaptation of SD to different hosts. Core genome phylogenetic relationships segregate all human SDSE in a single cluster separated from animal SD isolates. The subgroup of bovine SDSD evolved from this later clade and harbors a specialized accessory genome characterized by the presence of specific virulence determinants (e.g., cspZ) and carbohydrate metabolic functions (e.g., fructose operon). Together, our results indicate a host-specific SD and the existence of an SDSD group that causes human-animal cluster infections may be due to opportunistic infections, and that the exact incidence of SDSD human infections may be underestimated due to failures in identification based on the hemolytic patterns. However, more detailed research into the isolation of human SD is needed to assess whether it is a carrier phenomenon or whether the species can be permanently integrated into the human microbiome, making it ready to cause opportunistic infections.

RevDate: 2022-08-26
CmpDate: 2022-08-03

Gu W, Moon J, Chisina C, et al (2022)

MiCloud: A unified web platform for comprehensive microbiome data analysis.

PloS one, 17(8):e0272354.

The recent advance in massively parallel sequencing has enabled accurate microbiome profiling at a dramatically lowered cost. Then, the human microbiome has been the subject of intensive investigation in public health and medicine. In the meanwhile, researchers have developed lots of microbiome data analysis methods, protocols, and/or tools. Among those, especially, the web platforms can be highlighted because of the user-friendly interfaces and streamlined protocols for a long sequence of analytic procedures. However, existing web platforms can handle only a categorical trait of interest, cross-sectional study design, and the analysis with no covariate adjustment. We therefore introduce here a unified web platform, named MiCloud, for a binary or continuous trait of interest, cross-sectional or longitudinal/family-based study design, and with or without covariate adjustment. MiCloud handles all such types of analyses for both ecological measures (i.e., alpha and beta diversity indices) and microbial taxa in relative abundance on different taxonomic levels (i.e., phylum, class, order, family, genus and species). Importantly, MiCloud also provides a unified analytic protocol that streamlines data inputs, quality controls, data transformations, statistical methods and visualizations with vastly extended utility and flexibility that are suited to microbiome data analysis. We illustrate the use of MiCloud through the United Kingdom twin study on the association between gut microbiome and body mass index adjusting for age. MiCloud can be implemented on either the web server (http://micloud.kr) or the user's computer (https://github.com/wg99526/micloudgit).

RevDate: 2022-08-09

Steiner HE, Patterson HK, Giles JB, et al (2022)

Bringing pharmacomicrobiomics to the clinic through well-designed studies.

Clinical and translational science [Epub ahead of print].

Pharmacomicrobiomic studies investigate drug-microbiome interactions, such as the effect of microbial variation on drug response and disposition. Studying and understanding the interactions between the gut microbiome and drugs is becoming increasingly relevant to clinical practice due to its potential for avoiding adverse drug reactions or predicting variability in drug response. The highly variable nature of the human microbiome presents significant challenges to assessing microbes' influence. Studies aiming to explore drug-microbiome interactions should be well-designed to account for variation in the microbiome over time and collect data on confounders such as diet, disease, concomitant drugs, and other environmental factors. Here, we assemble a set of important considerations and recommendations for the methodological features required for performing a pharmacomicrobiomic study in humans with a focus on the gut microbiome. Consideration of these factors enable discovery, reproducibility, and more accurate characterization of the relationships between a given drug and the microbiome. Furthermore, appropriate interpretation and dissemination of results from well-designed studies will push the field closer to clinical relevance and implementation.

RevDate: 2022-08-17

Ye P, Qiao X, Tang W, et al (2022)

Testing latent class of subjects with structural zeros in negative binomial models with applications to gut microbiome data.

Statistical methods in medical research [Epub ahead of print].

Human microbiome research has become a hot-spot in health and medical research in the past decade due to the rapid development of modern high-throughput. Typical data in a microbiome study consisting of the operational taxonomic unit counts may have over-dispersion and/or structural zero issues. In such cases, negative binomial models can be applied to address the over-dispersion issue, while zero-inflated negative binomial models can be applied to address both issues. In practice, it is essential to know if there is zero-inflation in the data before applying negative binomial or zero-inflated negative binomial models because zero-inflated negative binomial models may be unnecessarily complex and difficult to interpret, or may even suffer from convergence issues if there is no zero-inflation in the data. On the other hand, negative binomial models may yield invalid inferences if the data does exhibit excessive zeros. In this paper, we develop a new test for detecting zero-inflation resulting from a latent class of subjects with structural zeros in a negative binomial regression model by directly comparing the amount of observed zeros with what would be expected under the negative binomial regression model. A closed form of the test statistic as well as its asymptotic properties are derived based on estimating equations. Intensive simulation studies are conducted to investigate the performance of the new test and compare it with the classical Wald, likelihood ratio, and score tests. The tests are also applied to human gut microbiome data to test latent class in microbial genera.

RevDate: 2022-07-31
CmpDate: 2022-07-28

Sharon I, Quijada NM, Pasolli E, et al (2022)

The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept.

Nutrients, 14(14):.

The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.

RevDate: 2022-07-31

Rajakaruna S, Pérez-Burillo S, Kramer DL, et al (2022)

Dietary Melanoidins from Biscuits and Bread Crust Alter the Structure and Short-Chain Fatty Acid Production of Human Gut Microbiota.

Microorganisms, 10(7):.

Melanoidins are the products of the Maillard reaction between carbonyl and amino groups of macromolecules and are readily formed in foods, especially during heat treatment. In this study we utilized the three-stage Human Gut Simulator system to assess the effect of providing melanoidins extracted from either biscuits or bread crust to the human gut microbiota. Addition of melanoidins to the growth medium led to statistically significant alterations in the microbial community composition, and it increased short-chain fatty acid and antioxidant production by the microbiota. The magnitude of these changes was much higher for cultures grown with biscuit melanoidins. Several lines of evidence indicate that such differences between these melanoidin sources might be due to the presence of lipid components in biscuit melanoidin structures. Because melanoidins are largely not degraded by human gastrointestinal enzymes, they provide an additional source of microbiota-accessible nutrients to our gut microbes.

RevDate: 2022-07-31

Ratanapokasatit Y, Laisuan W, Rattananukrom T, et al (2022)

How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives.

Life (Basel, Switzerland), 12(7):.

The skin has a multifactorial aging process, caused by both intrinsic and extrinsic factors. A major theory of aging involves cellular senescence or apoptosis resulting from oxidative damage as the skin's antioxidant system tends to weaken with age. The human microbiota is a complex ecosystem that is made up of microorganisms (bacteria, fungi, and viruses). Both gut and skin microbiota have essential roles in the protection against invading pathogens, mediating inflammatory conditions, and the modulation of the immune system which is involved in both innate and adaptive immune responses. However, the human microbiome could be changed during the life stage and affected by various perturbations. An alteration of the intestinal bacteria results in "microbial dysbiosis" which is associated with the influence of various diseases, including aging. The skin interactome is a novel integration of the "genome-microbiome-exposome" that plays a significant role in skin aging and skin health. Mitigating the negative impacts of factors influencing the skin interactome should be the future strategy to protect, prevent, and delay skin aging along with preserving healthy skin conditions. This review summarizes the current evidence on how human microbiomes affect skin aging and demonstrates the possible interventions, relating to human microbiomes, to modulate skin health and aging. Probiotics-based products are currently available mainly for the add-on treatment of many dermatologic conditions. However, at this point, there are limited clinical studies on skin anti-aging purposes and more are required as this evolving concept is on the rise and might provide an insight into future therapeutic options.

RevDate: 2022-07-31
CmpDate: 2022-07-28

Hua X, Song L, Yu G, et al (2022)

MicrobiomeGWAS: A Tool for Identifying Host Genetic Variants Associated with Microbiome Composition.

Genes, 13(7):.

The microbiome is the collection of all microbial genes and can be investigated by sequencing highly variable regions of 16S ribosomal RNA (rRNA) genes. Evidence suggests that environmental factors and host genetics may interact to impact human microbiome composition. Identifying host genetic variants associated with human microbiome composition not only provides clues for characterizing microbiome variation but also helps to elucidate biological mechanisms of genetic associations, prioritize genetic variants, and improve genetic risk prediction. Since a microbiota functions as a community, it is best characterized by β diversity; that is, a pairwise distance matrix. We develop a statistical framework and a computationally efficient software package, microbiomeGWAS, for identifying host genetic variants associated with microbiome β diversity with or without interacting with an environmental factor. We show that the score statistics have positive skewness and kurtosis due to the dependent nature of the pairwise data, which makes p-value approximations based on asymptotic distributions unacceptably liberal. By correcting for skewness and kurtosis, we develop accurate p-value approximations, whose accuracy was verified by extensive simulations. We exemplify our methods by analyzing a set of 147 genotyped subjects with 16S rRNA microbiome profiles from non-malignant lung tissues. Correcting for skewness and kurtosis eliminated the dramatic deviation in the quantile-quantile plots. We provided preliminary evidence that six established lung cancer risk SNPs were collectively associated with microbiome composition for both unweighted (p = 0.0032) and weighted (p = 0.011) UniFrac distance matrices. In summary, our methods will facilitate analyzing large-scale genome-wide association studies of the human microbiome.

RevDate: 2022-07-31

Hajjo R, Sabbah DA, AQ Al Bawab (2022)

Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers.

Diagnostics (Basel, Switzerland), 12(7):.

The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.

RevDate: 2022-07-31

Inchingolo AD, Malcangi G, Semjonova A, et al (2022)

Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature.

Children (Basel, Switzerland), 9(7):.

The oral microbiota plays a vital role in the human microbiome and oral health. Imbalances between microbes and their hosts can lead to oral and systemic disorders such as diabetes or cardiovascular disease. The purpose of this review is to investigate the literature evidence of oral microbiota dysbiosis on oral health and discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis; both have enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches as ORALBIOTICA for oral diseases such as demineralization. PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, EMBEDDED, Dentistry & Oral Sciences Source via EBSCO, APA PsycINFO, APA PsyArticles, and DRUGS@FDA were searched for publications that matched our topic from January 2017 to 22 April 2022, with an English language constraint using the following Boolean keywords: ("microbio*" and "demineralization*") AND ("oral microbiota" and "demineralization"). Twenty-two studies were included for qualitative analysis. As seen by the studies included in this review, the balance of the microbiota is unstable and influenced by oral hygiene, the presence of orthodontic devices in the oral cavity and poor eating habits that can modify its composition and behavior in both positive and negative ways, increasing the development of demineralization, caries processes, and periodontal disease. Under conditions of dysbiosis, favored by an acidic environment, the reproduction of specific bacterial strains increases, favoring cariogenic ones such as Bifidobacterium dentium, Bifidobacterium longum, and S. mutans, than S. salivarius and A. viscosus, and increasing of Firmicutes strains to the disadvantage of Bacteroidetes. Microbial balance can be restored by using probiotics and prebiotics to manage and treat oral diseases, as evidenced by mouthwashes or dietary modifications that can influence microbiota balance and prevent or slow disease progression.

RevDate: 2022-07-29

Lai Y, Mi J, Q Feng (2022)

Fusobacterium nucleatum and Malignant Tumors of the Digestive Tract: A Mechanistic Overview.

Bioengineering (Basel, Switzerland), 9(7):.

Fusobacterium nucleatum (F. nucleatum) is an oral anaerobe that plays a role in several oral diseases. However, F. nucleatum is also found in other tissues of the digestive tract, and several studies have recently reported that the level of F. nucleatum is significantly elevated in malignant tumors of the digestive tract. F. nucleatum is proposed as one of the risk factors in the initiation and progression of digestive tract malignant tumors. In this review, we summarize recent reports on F. nucleatum and its role in digestive tract cancers and evaluate the mechanisms underlying the action of F. nucleatum in digestive tract cancers.

RevDate: 2022-09-02

Kitrinos C, Bell RB, Bradley BJ, et al (2022)

Hair Microbiome Diversity within and across Primate Species.

mSystems, 7(4):e0047822.

Primate hair and skin are substrates upon which social interactions occur and are host-pathogen interfaces. While human hair and skin microbiomes display body site specificity and immunological significance, little is known about the nonhuman primate (NHP) hair microbiome. Here, we collected hair samples (n = 158) from 8 body sites across 12 NHP species housed at three zoological institutions in the United States to examine the following: (1) the diversity and composition of the primate hair microbiome and (2) the factors predicting primate hair microbiome diversity and composition. If both environmental and evolutionary factors shape the microbiome, then we expect significant differences in microbiome diversity across host body sites, sexes, institutions, and species. We found our samples contained high abundances of gut-, respiratory-, and environment-associated microbiota. In addition, multiple factors predicted microbiome diversity and composition, although host species identity outweighed sex, body site, and institution as the strongest predictor. Our results suggest that hair microbial communities are affected by both evolutionary and environmental factors and are relatively similar across nonhuman primate body sites, which differs from the human condition. These findings have important implications for understanding the biology and conservation of wild and captive primates and the uniqueness of the human microbiome. IMPORTANCE We created the most comprehensive primate hair and skin data set to date, including data from 12 nonhuman primate species sampled from 8 body regions each. We find that the nonhuman primate hair microbiome is distinct from the human hair and skin microbiomes in that it is relatively uniform-as opposed to distinct-across body regions and is most abundant in gut-, environment-, and respiratory-associated microbiota rather than human skin-associated microbiota. Furthermore, we found that the nonhuman primate hair microbiome varies with host species identity, host sex, host environment, and host body site, with host species identity being the strongest predictor. This result demonstrates that nonhuman primate hair microbiome diversity varies with both evolutionary and environmental factors and within and across primate species. These findings have important implications for understanding the biology and conservation of wild and captive primates and the uniqueness of the human microbiome.

RevDate: 2022-07-26

Stuivenberg G, Daisley B, Akouris P, et al (2022)

In vitro assessment of histamine and lactate production by a multi-strain synbiotic.

Journal of food science and technology, 59(9):3419-3427.

Recent studies suggest histamine and d-lactate may negatively impact host health. As excess histamine is deleterious to the host, the identification of bacterial producers has contributed to concerns over the consumption of probiotics or live microorganisms in fermented food items. Some probiotic products have been suspected of inducing d-lactic-acidosis; an illness associated with neurocognitive symptoms such as ataxia. The goals of the present study were to test the in vitro production of histamine and d-lactate by a 24-strain daily synbiotic and to outline methods that others can use to test for their production. Using enzymatic based assays, no significant production of histamine was observed compared to controls (P > 0.05), while d-lactate production was comparable to a commercially available probiotic with no associated health risk. These assays provide a means to add to the safety profile of synbiotic and probiotic products.

RevDate: 2022-08-17
CmpDate: 2022-07-26

Romani L, Del Chierico F, Macari G, et al (2022)

The Relationship Between Pediatric Gut Microbiota and SARS-CoV-2 Infection.

Frontiers in cellular and infection microbiology, 12:908492.

This is the first study on gut microbiota (GM) in children affected by coronavirus disease 2019 (COVID-19). Stool samples from 88 patients with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 95 healthy subjects were collected (admission: 3-7 days, discharge) to study GM profile by 16S rRNA gene sequencing and relationship to disease severity. The study group was divided in COVID-19 (68), Non-COVID-19 (16), and MIS-C (multisystem inflammatory syndrome in children) (4). Correlations among GM ecology, predicted functions, multiple machine learning (ML) models, and inflammatory response were provided for COVID-19 and Non-COVID-19 cohorts. The GM of COVID-19 cohort resulted as dysbiotic, with the lowest α-diversity compared with Non-COVID-19 and CTRLs and by a specific β-diversity. Its profile appeared enriched in Faecalibacterium, Fusobacterium, and Neisseria and reduced in Bifidobacterium, Blautia, Ruminococcus, Collinsella, Coprococcus, Eggerthella, and Akkermansia, compared with CTRLs (p < 0.05). All GM paired-comparisons disclosed comparable results through all time points. The comparison between COVID-19 and Non-COVID-19 cohorts highlighted a reduction of Abiotrophia in the COVID-19 cohort (p < 0.05). The GM of MIS-C cohort was characterized by an increase of Veillonella, Clostridium, Dialister, Ruminococcus, and Streptococcus and a decrease of Bifidobacterium, Blautia, Granulicatella, and Prevotella, compared with CTRLs. Stratifying for disease severity, the GM associated to "moderate" COVID-19 was characterized by lower α-diversity compared with "mild" and "asymptomatic" and by a GM profile deprived in Neisseria, Lachnospira, Streptococcus, and Prevotella and enriched in Dialister, Acidaminococcus, Oscillospora, Ruminococcus, Clostridium, Alistipes, and Bacteroides. The ML models identified Staphylococcus, Anaerostipes, Faecalibacterium, Dorea, Dialister, Streptococcus, Roseburia, Haemophilus, Granulicatella, Gemmiger, Lachnospira, Corynebacterium, Prevotella, Bilophila, Phascolarctobacterium, Oscillospira, and Veillonella as microbial markers of COVID-19. The KEGG ortholog (KO)-based prediction of GM functional profile highlighted 28 and 39 KO-associated pathways to COVID-19 and CTRLs, respectively. Finally, Bacteroides and Sutterella correlated with proinflammatory cytokines regardless disease severity. Unlike adult GM profiles, Faecalibacterium was a specific marker of pediatric COVID-19 GM. The durable modification of patients' GM profile suggested a prompt GM quenching response to SARS-CoV-2 infection since the first symptoms. Faecalibacterium and reduced fatty acid and amino acid degradation were proposed as specific COVID-19 disease traits, possibly associated to restrained severity of SARS-CoV-2-infected children. Altogether, this evidence provides a characterization of the pediatric COVID-19-related GM.

RevDate: 2022-09-13
CmpDate: 2022-09-08

Kantele A, Mero S, T Lääveri (2022)

Doxycycline as an antimalarial: Impact on travellers' diarrhoea and doxycycline resistance among various stool bacteria - Prospective study and literature review.

Travel medicine and infectious disease, 49:102403.

BACKGROUND: Antibiotics predispose travellers to acquire multidrug-resistant bacteria, such as extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE). Although widely used in antimalarial prophylaxis, doxycycline has scarcely been studied in this respect.

METHODS: We explored the impact of doxycycline on rates of traveller's diarrhoea (TD), ESBL-PE acquisition and, particularly, doxycycline co-resistance among travel-acquired ESBL-PE in a sample of 412 visitors to low- and middle-income countries. We reviewed the literature on traveller studies of doxycycline/tetracycline resistance among stool pathogens and the impact of doxycycline on TD rates, ESBL-PE acquisition, and doxycycline/tetracycline resistance.

RESULTS: The TD rates were similar for doxycycline users (32/46; 69.6%) and non-users (256/366; 69.9%). Of the 90 travel-acquired ESBL-PE isolates, 84.4% were co-resistant to doxycycline: 100% (11/11) among users and 82.3% (65/79) among non-users. The literature on doxycycline's effect on TD was not conclusive nor did it support a recent decline in doxycycline resistance. Although doxycycline did not increase ESBL-PE acquisition, doxycycline-resistance among stool pathogens proved more frequent for users than non-users.

CONCLUSIONS: Our prospective data and the literature review together suggest the following: 1) doxycycline does not prevent TD; 2) doxycycline use favours acquisition of doxy/tetracycline-co-resistant intestinal bacteria; 3) although doxycycline does not predispose to travel-related ESBL-PE acquisition per se, it selects ESBL-PE strains co-resistant to doxycycline; 4) doxycycline resistance rates are high among stool bacteria in general with no evidence of any tendency to decrease.

RevDate: 2022-08-22
CmpDate: 2022-07-26

Maarsingh JD, Łaniewski P, MM Herbst-Kralovetz (2022)

Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria.

Communications biology, 5(1):725.

Specific bacteria of the human microbiome influence carcinogenesis at diverse anatomical sites. Bacterial vaginosis (BV) is the most common vaginal disorder in premenopausal women that is associated with gynecologic sequelae, including cervical cancer. BV-associated microorganisms, such as Fusobacterium, Lancefieldella, Peptoniphilus, and Porphyromonas have been associated with gynecologic and other cancers, though the pro-oncogenic mechanisms employed by these bacteria are poorly understood. Here, we integrated a multi-omics approach with our three-dimensional (3-D) cervical epithelial cell culture model to investigate how understudied BV-associated bacteria linked to gynecologic neoplasia influence hallmarks of cancer in vitro. Lancefieldella parvulum and Peptoniphilus lacrimalis elicited robust proinflammatory responses in 3-D cervical cells. Fusobacterium nucleatum and Fusobacterium gonidiaformans modulated metabolic hallmarks of cancer corresponding to accumulation of 2-hydroxyglutarate, pro-inflammatory lipids, and signs of oxidative stress and genotoxic hydrogen sulfide. This study provides mechanistic insights into how gynecologic cancer-associated bacteria might facilitate a tumor-promoting microenvironment in the human cervix.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )