Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Human Microbiome

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 27 May 2022 at 01:46 Created: 

Human Microbiome

The human microbiome is the set of all microbes that live on or in humans. Together, a human body and its associated microbiomes constitute a human holobiont. Although a human holobiont is mostly mammal by weight, by cell count it is mostly microbial. The number of microbial genes in the associated microbiomes far outnumber the number of human genes in the human genome. Just as humans (and other multicellular eukaryotes) evolved in the constant presence of gravity, so they also evolved in the constant presence of microbes. Consequently, nearly every aspect of human biology has evolved to deal with, and to take advantage of, the existence of associated microbiota. In some cases, the absence of a "normal microbiome" can cause disease, which can be treated by the transplant of a correct microbiome from a healthy donor. For example, fecal transplants are an effective treatment for chronic diarrhea from over abundant Clostridium difficile bacteria in the gut.

Created with PubMed® Query: "human microbiome" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2022-05-26

Hasan R, Bose S, Roy R, et al (2022)

Tumor tissue-specific bacterial biomarker panel for colorectal cancer: Bacteroides massiliensis, Alistipes species, Alistipes onderdonkii, Bifidobacterium pseudocatenulatum, Corynebacterium appendicis.

Archives of microbiology, 204(6):348.

Human microbiome studies have shown diversity to exist among different ethnic populations. However, studies pertaining to the microbial composition of CRC among the Indian population have not been well explored. We aimed to decipher the microbial signature in tumor tissues from North Indian CRC patients. Next-generation sequencing of tumor and adjacent tissue-derived bacterial 16S rRNA V3-V4 hypervariable regions was performed to investigate the abundance of specific microbes. The expression profile analysis deciphered a decreased diversity among the tumor-associated microbial communities. At the phyla level, Proteobacteria was differentially expressed in CRC tissues than adjacent normal. Further, DeSeq2 normalization identified 4 out of 79 distinct species (p < 0.005) only in CRC, Bacteroides massiliensis, Alistipes onderdonkii, Bifidobacterium pseudocatenulatum, and Corynebacterium appendicis. Thus, the findings suggest that microbial signatures can be used as putative biomarkers in diagnosis, prognosis and treatment management of CRC.

RevDate: 2022-05-25

Gulliver EL, Young RB, Chonwerawong M, et al (2022)

Review article: the future of microbiome-based therapeutics.

Alimentary pharmacology & therapeutics [Epub ahead of print].

BACKGROUND: From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic.

AIM: This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development.

METHODS: Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'.

RESULTS: Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics.

CONCLUSIONS: Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.

RevDate: 2022-05-24

Tong X, Yu X, Du Y, et al (2022)

Peripheral Blood Microbiome Analysis via Noninvasive Prenatal Testing Reveals the Complexity of Circulating Microbial Cell-Free DNA.

Microbiology spectrum [Epub ahead of print].

While circulating cell-free DNA (cfDNA) is becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a microbial cfDNA baseline in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Because noninvasive prenatal testing (NIPT) shares many similarities with the sequencing protocol of metagenomics, we utilized the standard low-pass whole-genome-sequencing-based NIPT to establish a microbial cfDNA baseline in healthy people. Sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening were retrospectively collected and reanalyzed for microbiome DNA screening. It was found that more than 95% of exogenous cfDNA was from bacteria, 3% from eukaryotes, and 0.4% from viruses, indicating the gut/environment origins of many microorganisms. Overall and regional abundance patterns were well illustrated, with huge regional diversity and complexity, and unique interspecies and symbiotic relationships were observed for TORCH organisms (Toxoplasma gondii, others [Treponema pallidum {causing syphilis}, hepatitis B virus {HBV}, and human parvovirus B19 {HPV-B19}], rubella virus, cytomegalovirus [CMV], and herpes simplex virus [HSV]) and another common virus, Epstein-Barr virus (EBV). To sum up, our study revealed the complexity of the baseline circulating microbial cfDNA and showed that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner. IMPORTANCE While circulating cell-free DNA (cfDNA) has been becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a baseline for microbial cfDNA in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Standard low-pass whole-genome-sequencing-based NIPT shares many similarities with the sequencing protocol for metagenomics and could provide a microbial cfDNA baseline in healthy people; thus, a reference cfDNA data set of the human microbiome was established with sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening. Our study revealed the complexity of circulating microbial cfDNA and indicated that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner, especially with regard to geographic patterns and coexistence networks.

RevDate: 2022-05-23

Nabizadeh E, Sadeghi J, Ahangarzadeh Rezaee M, et al (2022)

Interaction Between Altered Gut Microbiota and Sepsis: A Hypothesis or an Authentic Fact?.

Journal of intensive care medicine [Epub ahead of print].

Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies' results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.

RevDate: 2022-05-23

Issilbayeva A, Ainabekova B, Zhetkenev S, et al (2022)

Association Study of Anticitrullinated Peptide Antibody Status with Clinical Manifestations and SNPs in Patients Affected with Rheumatoid Arthritis: A Pilot Study.

Disease markers, 2022:2744762.

Introduction: Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology that leads to disability due to articular and extra-articular damage. RA prevalence is variable. The disease is most common among females with a 3 : 1 ratio. The interaction of environmental and host factors contributes to RA development. Currently, the genome-wide association studies (GWAS) give the opportunity to uncover the RA genetic background. Anticitrullinated peptide antibody (ACPA) is a highly specific RA antibody, associated with poor prognosis and severe course of RA, and regulated by numerous genes. Our study is aimed at investigating whether there are any clinical and genetic aspects correlate with ACPA presence in Kazakhstani patients with RA. Indeed, the available studies on this subject are focused on Caucasian and East Asian populations (mainly Japanese and Chinese), and there are scarce data from Central Asia.

Methods: Our study included 70 RA patients. Patients' blood samples were collected and genotyped for 14 SNPs by real-time polymerase chain reaction (RT-PCR). General examination, anamnestic, and clinical and laboratory data collection were carried out. Statistical analysis was performed using R statistics. Results and Conclusion. Our study revealed a significant association of ACPA positivity with Fc receptor-like 3 (FCRL3) and ACPA negativity with signal transducer and activator of transcription 4 (STAT4) genes, but not with T cell activation Rho GTPase activating protein (TAGAP). In addition, ACPA positivity was associated with radiographic progression, rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), age of RA onset, the patient global assessment, body mass index (BMI), and Gamma globulin.

Conclusion: Remained 11 earlier identified significantly associated in Caucasian and Asian population SNPs were not replicated in our cohort. Further studies on larger cohorts are needed to confirm our findings with higher confidence levels and stronger statistical power.

RevDate: 2022-05-22

Jian C, Silvestre MP, Middleton D, et al (2022)

Gut microbiota predicts body fat change following a low-energy diet: a PREVIEW intervention study.

Genome medicine, 14(1):54.

BACKGROUND: Low-energy diets (LEDs) comprise commercially formulated food products that provide between 800 and 1200 kcal/day (3.3-5 MJ/day) to aid body weight loss. Recent small-scale studies suggest that LEDs are associated with marked changes in the gut microbiota that may modify the effect of the LED on host metabolism and weight loss. We investigated how the gut microbiota changed during 8 weeks of total meal replacement LED and determined their associations with host response in a sub-analysis of 211 overweight adults with pre-diabetes participating in the large multicentre PREVIEW (PREVention of diabetes through lifestyle intervention and population studies In Europe and around the World) clinical trial.

METHODS: Microbial community composition was analysed by Illumina sequencing of the hypervariable V3-V4 regions of the 16S ribosomal RNA (rRNA) gene. Butyrate production capacity was estimated by qPCR targeting the butyryl-CoA:acetate CoA-transferase gene. Bioinformatics and statistical analyses, such as comparison of alpha and beta diversity measures, correlative and differential abundances analysis, were undertaken on the 16S rRNA gene sequences of 211 paired (pre- and post-LED) samples as well as their integration with the clinical, biomedical and dietary datasets for predictive modelling.

RESULTS: The overall composition of the gut microbiota changed markedly and consistently from pre- to post-LED (P = 0.001), along with increased richness and diversity (both P < 0.001). Following the intervention, the relative abundance of several genera previously associated with metabolic improvements (e.g., Akkermansia and Christensenellaceae R-7 group) was significantly increased (P < 0.001), while flagellated Pseudobutyrivibrio, acetogenic Blautia and Bifidobacterium spp. were decreased (all P < 0.001). Butyrate production capacity was reduced (P < 0.001). The changes in microbiota composition and predicted functions were significantly associated with body weight loss (P < 0.05). Baseline gut microbiota features were able to explain ~25% of variation in total body fat change (post-pre-LED).

CONCLUSIONS: The gut microbiota and individual taxa were significantly influenced by the LED intervention and correlated with changes in total body fat and body weight in individuals with overweight and pre-diabetes. Despite inter-individual variation, the baseline gut microbiota was a strong predictor of total body fat change during the energy restriction period.

TRIAL REGISTRATION: The PREVIEW trial was prospectively registered at ClinicalTrials.gov (NCT01777893) on January 29, 2013.

RevDate: 2022-05-20

Carreira EM, Hansen ME, Yasmin SO, et al (2022)

Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single-Step.

Angewandte Chemie (International ed. in English) [Epub ahead of print].

We report the first total syntheses of tricyclic mutanobactins A and B, lipopeptides incorporating a thiazepanone, isolated from Streptococcus mutans , a member of the human oral microbiome. A rapid, solid-phase peptide synthesis (SPPS) based route delivers these natural products from a cascade of cyclization reactions. This versatile process was also employed in a streamlined synthesis of mutanobactin D. Additionally, we provide an independent synthesis of a truncated mutanobactin A analog, utilizing a novel thiazepanone amino acid building block.

RevDate: 2022-05-19

Song SJ, Wang J, Martino C, et al (2021)

Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding.

Med (New York, N.Y.), 2(8):951-964.e5.

BACKGROUND: Early microbiota perturbations are associated with disorders that involve immunological underpinnings. Cesarean section (CS)-born babies show altered microbiota development in relation to babies born vaginally. Here we present the first statistically powered longitudinal study to determine the effect of restoring exposure to maternal vaginal fluids after CS birth.

METHODS: Using 16S rRNA gene sequencing, we followed the microbial trajectories of multiple body sites in 177 babies over the first year of life; 98 were born vaginally, and 79 were born by CS, of whom 30 were swabbed with a maternal vaginal gauze right after birth.

FINDINGS: Compositional tensor factorization analysis confirmed that microbiota trajectories of exposed CS-born babies aligned more closely with that of vaginally born babies. Interestingly, the majority of amplicon sequence variants from maternal vaginal microbiomes on the day of birth were shared with other maternal sites, in contrast to non-pregnant women from the Human Microbiome Project (HMP) study.

CONCLUSIONS: The results of this observational study prompt urgent randomized clinical trials to test whether microbial restoration reduces the increased disease risk associated with CS birth and the underlying mechanisms. It also provides evidence of the pluripotential nature of maternal vaginal fluids to provide pioneer bacterial colonizers for the newborn body sites. This is the first study showing long-term naturalization of the microbiota of CS-born infants by restoring microbial exposure at birth.

FUNDING: C&D, Emch Fund, CIFAR, Chilean CONICYT and SOCHIPE, Norwegian Institute of Public Health, Emerald Foundation, NIH, National Institute of Justice, Janssen.

RevDate: 2022-05-19

Szóstak N, Szymanek A, Havránek J, et al (2022)

The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling.

Scientific reports, 12(1):8470.

In recent years, the number of metagenomic studies increased significantly. Wide range of factors, including the tremendous community complexity and variability, is contributing to the challenge in reliable microbiome community profiling. Many approaches have been proposed to overcome these problems making hardly possible to compare results of different studies. The significant differences between procedures used in metagenomic research are reflected in a variation of the obtained results. This calls for the need for standardisation of the procedure, to reduce the confounding factors originating from DNA isolation, sequencing and bioinformatics analyses in order to ensure that the differences in microbiome composition are of a true biological origin. Although the best practices for metagenomics studies have been the topic of several publications and the main aim of the International Human Microbiome Standard (IHMS) project, standardisation of the procedure for generating and analysing metagenomic data is still far from being achieved. To highlight the difficulties in the standardisation of metagenomics methods, we thoroughly examined each step of the analysis of the human gut microbiome. We tested the DNA isolation procedure, preparation of NGS libraries for next-generation sequencing, and bioinformatics analysis, aimed at identifying microbial taxa. We showed that the homogenisation time is the leading factor impacting sample diversity, with the recommendation for a shorter homogenisation time (10 min). Ten minutes of homogenisation allows for better reflection of the bacteria gram-positive/gram-negative ratio, and the obtained results are the least heterogenous in terms of beta-diversity of samples microbial composition. Besides increasing the homogenisation time, we observed further potential impact of the library preparation kit on the gut microbiome profiling. Moreover, our analysis revealed that the choice of the library preparation kit influences the reproducibility of the results, which is an important factor that has to be taken into account in every experiment. In this study, a tagmentation-based kit allowed for obtaining the most reproducible results. We also considered the choice of the computational tool for determining the composition of intestinal microbiota, with Kraken2/Bracken pipeline outperforming MetaPhlAn2 in our in silico experiments. The design of an experiment and a detailed establishment of an experimental protocol may have a serious impact on determining the taxonomic profile of the intestinal microbiome community. Results of our experiment can be helpful for a wide range of studies that aim to better understand the role of the gut microbiome, as well as for clinical purposes.

RevDate: 2022-05-18

Sim M, Lee J, Wy S, et al (2022)

Generation and application of pseudo-long reads for metagenome assembly.

GigaScience, 11:.

BACKGROUND: Metagenomic assembly using high-throughput sequencing data is a powerful method to construct microbial genomes in environmental samples without cultivation. However, metagenomic assembly, especially when only short reads are available, is a complex and challenging task because mixed genomes of multiple microorganisms constitute the metagenome. Although long read sequencing technologies have been developed and have begun to be used for metagenomic assembly, many metagenomic studies have been performed based on short reads because the generation of long reads requires higher sequencing cost than short reads.

RESULTS: In this study, we present a new method called PLR-GEN. It creates pseudo-long reads from metagenomic short reads based on given reference genome sequences by considering small sequence variations existing in individual genomes of the same or different species. When applied to a mock community data set in the Human Microbiome Project, PLR-GEN dramatically extended short reads in length of 101 bp to pseudo-long reads with N50 of 33 Kbp and 0.4% error rate. The use of these pseudo-long reads generated by PLR-GEN resulted in an obvious improvement of metagenomic assembly in terms of the number of sequences, assembly contiguity, and prediction of species and genes.

CONCLUSIONS: PLR-GEN can be used to generate artificial long read sequences without spending extra sequencing cost, thus aiding various studies using metagenomes.

RevDate: 2022-05-17

Furber MJW, Young GR, Holt GS, et al (2022)

Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization.

mSystems [Epub ahead of print].

Dietary manipulation with high-protein or high-carbohydrate content are frequently employed during elite athletic training, aiming to enhance athletic performance. Such interventions are likely to impact upon gut microbial content. This study explored the impact of acute high-protein or high-carbohydrate diets on measured endurance performance and associated gut microbial community changes. In a cohort of well-matched, highly trained endurance runners, we measured performance outcomes, as well as gut bacterial, viral (FVP), and bacteriophage (IV) communities in a double-blind, repeated-measures design randomized control trial (RCT) to explore the impact of dietary intervention with either high-protein or high-carbohydrate content. High-dietary carbohydrate improved time-trial performance by +6.5% (P < 0.03) and was associated with expansion of Ruminococcus and Collinsella bacterial spp. Conversely, high dietary protein led to a reduction in performance by -23.3% (P = 0.001). This impact was accompanied by significantly reduced diversity (IV: P = 0.04) and altered composition (IV and FVP: P = 0.02) of the gut phageome as well as enrichment of both free and inducible Sk1virus and Leuconostoc bacterial populations. Greatest performance during dietary modification was observed in participants with less substantial shifts in community composition. Gut microbial stability during acute dietary periodization was associated with greater athletic performance in this highly trained, well-matched cohort. Athletes, and those supporting them, should be mindful of the potential consequences of dietary manipulation on gut flora and implications for performance, and periodize appropriately. IMPORTANCE Dietary periodization is employed to improve endurance exercise performance but may impact on gut microbial communities. Bacteriophage are implicated in bacterial cell homeostasis and have been identified as biomarkers of disequilibrium in the gut ecosystem possibly brought about through dietary periodization. We find high-carbohydrate and high-protein diets to have opposing impacts on endurance performance in highly trained athlete populations. Reduced performance is linked with disturbance of microbial stasis in the gut. We demonstrate bacteriophage communities are the most sensitive component of the gut microbiota to increased gut stress following dietary manipulation. Athletes undertaking dietary periodization should be aware of potential negative impacts of drastic changes to dietary composition on gut microbial stasis and, in turn, endurance performance.

RevDate: 2022-05-16

Mangola SM, Lund JR, Schnorr SL, et al (2022)

Ethical microbiome research with Indigenous communities.

Nature microbiology [Epub ahead of print].

Human-microbiome interactions have been associated with evolutionary, cultural and environmental processes. With clinical applications of microbiome research now feasible, it is crucial that the science conducted, particularly among Indigenous communities, adheres to principles of inclusion. This necessitates a transdisciplinary dialogue to decide how biological samples are collected and who benefits from the research and any derived products. As a group of scholars working at the interface of biological and social science, we offer a candid discussion of the lessons learned from our own research and introduce one approach to carry out ethical microbiome research with Indigenous communities.

RevDate: 2022-05-18

Kantele A, Paajanen J, Turunen S, et al (2022)

Scent dogs in detection of COVID-19: triple-blinded randomised trial and operational real-life screening in airport setting.

BMJ global health, 7(5):.

OBJECTIVE: To estimate scent dogs' diagnostic accuracy in identification of people infected with SARS-CoV-2 in comparison with reverse transcriptase polymerase chain reaction (RT-PCR). We conducted a randomised triple-blinded validation trial, and a real-life study at the Helsinki-Vantaa International Airport, Finland.

METHODS: Four dogs were trained to detect COVID-19 using skin swabs from individuals tested for SARS-CoV-2 by RT-PCR. Our controlled triple-blinded validation study comprised four identical sets of 420 parallel samples (from 114 individuals tested positive and 306 negative by RT-PCR), randomly presented to each dog over seven trial sessions. In a real-life setting the dogs screened skin swabs from 303 incoming passengers all concomitantly examined by nasal swab SARS-CoV-2 RT-PCR. Our main outcomes were variables of diagnostic accuracy (sensitivity, specificity, positive predictive value, negative predictive value) for scent dog identification in comparison with RT-PCR.

RESULTS: Our validation experiments had an overall accuracy of 92% (95% CI 90% to 93%), a sensitivity of 92% (95% CI 89% to 94%) and a specificity of 91% (95% CI 89% to 93%) compared with RT-PCR. For our dogs, trained using the wild-type virus, performance was less accurate for the alpha variant (89% for confirmed wild-type vs 36% for alpha variant, OR 14.0, 95% CI 4.5 to 43.4). In the real-life setting, scent detection and RT-PCR matched 98.7% of the negative swabs. Scant airport prevalence (0.47%) did not allow sensitivity testing; our only SARS-CoV-2 positive swab was not identified (alpha variant). However, ad hoc analysis including predefined positive spike samples showed a total accuracy of 98% (95% CI 97% to 99%).

CONCLUSIONS: This large randomised controlled triple-blinded validation study with a precalculated sample size conducted at an international airport showed that trained scent dogs screen airport passenger samples with high accuracy. One of our findings highlights the importance of continuous retraining as new variants emerge. Using scent dogs may present a valuable approach for high-throughput, rapid screening of large numbers of people.

RevDate: 2022-05-16

Vindenes HK, Lin H, Shigdel R, et al (2022)

Exposure to Antibacterial Chemicals Is Associated With Altered Composition of Oral Microbiome.

Frontiers in microbiology, 13:790496.

Antimicrobial chemicals are used as preservatives in cosmetics, pharmaceuticals, and food to prevent the growth of bacteria and fungi in the products. Unintentional exposure in humans to such chemicals is well documented, but whether they also interfere with human oral microbiome composition is largely unexplored. In this study, we explored whether the oral bacterial composition is affected by exposure to antibacterial and environmental chemicals. Gingival fluid, urine, and interview data were collected from 477 adults (18-47 years) from the RHINESSA study in Bergen, Norway. Urine biomarkers of triclosan, triclocarban, parabens, benzophenone-3, bisphenols, and 2,4- and 2,5-dichlorophenols (DCPs) were quantified (by mass spectrometry). Microbiome analysis was based on 16S amplicon sequencing. Diversity and differential abundance analyses were performed to identify how microbial communities may change when comparing groups of different chemical exposure. We identified that high urine levels (>75th percentile) of propyl parabens were associated with a lower abundance of bacteria genera TM7 [G-3], Helicobacter, Megasphaera, Mitsuokella, Tannerella, Propionibacteriaceae [G-2], and Dermabacter, as compared with low propylparaben levels (<25th percentile). High exposure to ethylparaben was associated with a higher abundance of Paracoccus. High urine levels of bisphenol A were associated with a lower abundance of Streptococcus and exposure to another environmental chemical, 2,4-DCP, was associated with a lower abundance of Treponema, Fretibacterium, and Bacteroidales [G-2]. High exposure to antibacterial and environmental chemicals was associated with an altered composition of gingiva bacteria; mostly commensal bacteria in the oral cavity. Our results highlight a need for a better understanding of how antimicrobial chemical exposure influences the human microbiome.

RevDate: 2022-05-16

Rosas-Plaza S, Hernández-Terán A, Navarro-Díaz M, et al (2022)

Human Gut Microbiome Across Different Lifestyles: From Hunter-Gatherers to Urban Populations.

Frontiers in microbiology, 13:843170.

Human lifestyle and its relationship with the human microbiome has been a line of research widely studied. This is because, throughout human history, civilizations have experienced different environments and lifestyles that could have promoted changes in the human microbiome. The comparison between industrialized and non-industrialized human populations in several studies has allowed to observe variation in the microbiome structure due to the population lifestyle. Nevertheless, the lifestyle of human populations is a gradient where several subcategories can be described. Yet, it is not known how these different lifestyles of human populations affect the microbiome structure on a large scale. Therefore, the main goal of this work was the collection and comparison of 16S data from the gut microbiome of populations that have different lifestyles around the world. With the data obtained from 14 studies, it was possible to compare the gut microbiome of 568 individuals that represent populations of hunter-gatherers, agricultural, agropastoral, pastoral, and urban populations. Results showed that industrialized populations present less diversity than those from non-industrialized populations, as has been described before. However, by separating traditional populations into different categories, we were able to observe patterns that cannot be appreciated by encompassing the different traditional lifestyles in a single category. In this sense, we could confirm that different lifestyles exhibit distinct alpha and beta diversity. In particular, the gut microbiome of pastoral and agropastoral populations seems to be more similar to those of urban populations according to beta diversity analysis. Beyond that, beta diversity analyses revealed that bacterial composition reflects the different lifestyles, representing a transition from hunters-gatherers to industrialized populations. Also, we found that certain groups such as Bacteoidaceae, Lanchospiraceae, and Rickenellaceae have been favored in the transition to modern societies, being differentially abundant in urban populations. Thus, we could hypothesize that due to adaptive/ecological processes; multifunctional bacterial groups (e.g., Bacteroidaceae) could be replacing some functions lost in the transition to modern lifestyle.

RevDate: 2022-05-17
CmpDate: 2022-05-17

Chen L, Zheng T, Yang Y, et al (2022)

Integrative multiomics analysis reveals host-microbe-metabolite interplays associated with the aging process in Singaporeans.

Gut microbes, 14(1):2070392.

The age-associated alterations in microbiomes vary across populations due to the influence of genetics and lifestyles. To the best of our knowledge, the microbial changes associated with aging have not yet been investigated in Singapore adults. We conducted shotgun metagenomic sequencing of fecal and saliva samples, as well as fecal metabolomics to characterize the gut and oral microbial communities of 62 healthy adult male Singaporeans, including 32 young subjects (age, 23.1 ± 1.4 years) and 30 elderly subjects (age, 69.0 ± 3.5 years). We identified 8 gut and 13 oral species that were differentially abundant in elderly compared to young subjects. By combining the gut and oral microbiomes, 25 age-associated oral-gut species connections were identified. Moreover, oral bacteria Acidaminococcus intestine and Flavonifractor plautii were less prevalent/abundant in elderly gut samples than in young gut samples, whereas Collinsella aerofaciens and Roseburia hominis showed the opposite trends. These results indicate the varied gut-oral communications with aging. Subsequently, we expanded the association studies on microbiome, metabolome and host phenotypic parameters. In particular, Eubacterium eligens increased in elderly compared to young subjects, and was positively correlated with triglycerides, which implies that the potential role of E. eligens in lipid metabolism is altered during the aging process. Our results demonstrated aging-associated changes in the gut and oral microbiomes, as well as the connections between metabolites and host-microbe interactions, thereby deepening the understanding of alterations in the human microbiome during the aging process in a Singapore population.

RevDate: 2022-05-14
CmpDate: 2022-05-12

van Best N, Dominguez-Bello MG, Hornef MW, et al (2022)

Should we modulate the neonatal microbiome and what should be the goal?.

Microbiome, 10(1):74.

RevDate: 2022-05-11

Sexton RE, Uddin MH, Bannoura S, et al (2022)

Correction to: Connecting the human microbiome and pancreatic cancer.

RevDate: 2022-05-16

Hu C, Beyda ND, KW Garey (2022)

A Vancomycin HPLC Assay for Use in Gut Microbiome Research.

Microbiology spectrum [Epub ahead of print].

The human microbiome project has revolutionized our understanding of the interaction between commensal microbes and human health. By far, the biggest perturbation of the microbiome involves use of broad-spectrum antibiotics excreted in the gut. Thus, pharmacodynamics of microbiome changes in relation to drug exposure pharmacokinetics is an emerging field. However, reproducibility studies are necessary to develop the field. A simple and fast high-performance liquid chromatography-photodiode array detector (HPLC) method was validated for quantitative fecal vancomycin analysis. Reproducibility of results were tested based on sample storage time, homogeneity of antibiotic within stool, and concentration consistency after lyophilization. The HPLC method enabled the complete elution of vancomycin within ~4.2 min on the reversed-phase C18 column under the isocratic elution mode, with excellent recovery (85% to 110%) over a 4-log, quantitative range (0.4-100 μg/mL). Relative standard derivations (RSD) of intra-day and inter-day results ranged from 0.4% to 5.4%. Using sample stool aliquots of various weights consistently demonstrated similar vancomycin concentrations (mean RSD: 6%; range: 2-16%). After correcting for water concentrations, vancomycin concentrations obtained after lyophilization were similar to the concentrations obtained from the original samples (RSD less than 10%). These methodologies establish sample condition standards for a quantitative HPLC to enable vancomycin pharmacokinetic studies with the human microbiome. IMPORTANCE Research on antibiotic effect on the gut microbiome is an emerging field with standardization of research methods needed. In this study, a simple and fast high-performance liquid chromatography method was validated for quantitative fecal vancomycin analysis. Reproducibility of results were tested to standardize storage time, homogeneity of antibiotic within stool, and concentration consistency after lyophilization. These methodologies establish sample condition standards for a quantitative HPLC to enable vancomycin pharmacokinetic studies with the human microbiome.

RevDate: 2022-05-16

Oliver A, Xue Z, Villanueva YT, et al (2022)

Association of Diet and Antimicrobial Resistance in Healthy U.S. Adults.

mBio [Epub ahead of print].

Antimicrobial resistance (AMR) represents a significant source of morbidity and mortality worldwide, with expectations that AMR-associated consequences will continue to worsen throughout the coming decades. Since resistance to antibiotics is encoded in the microbiome, interventions aimed at altering the taxonomic composition of the gut might allow us to prophylactically engineer microbiomes that harbor fewer antibiotic resistant genes (ARGs). Diet is one method of intervention, and yet little is known about the association between diet and antimicrobial resistance. To address this knowledge gap, we examined diet using the food frequency questionnaire (FFQ; habitual diet) and 24-h dietary recalls (Automated Self-Administered 24-h [ASA24®] tool) coupled with an analysis of the microbiome using shotgun metagenome sequencing in 290 healthy adult participants of the United States Department of Agriculture (USDA) Nutritional Phenotyping Study. We found that aminoglycosides were the most abundant and prevalent mechanism of AMR in these healthy adults and that aminoglycoside-O-phosphotransferases (aph3-dprime) correlated negatively with total calories and soluble fiber intake. Individuals in the lowest quartile of ARGs (low-ARG) consumed significantly more fiber in their diets than medium- and high-ARG individuals, which was concomitant with increased abundances of obligate anaerobes, especially from the family Clostridiaceae, in their gut microbiota. Finally, we applied machine learning to examine 387 dietary, physiological, and lifestyle features for associations with antimicrobial resistance, finding that increased phylogenetic diversity of diet was associated with low-ARG individuals. These data suggest diet may be a potential method for reducing the burden of AMR. IMPORTANCE Antimicrobial resistance (AMR) represents a considerable burden to health care systems, with the public health community largely in consensus that AMR will be a major cause of death worldwide in the coming decades. Humans carry antibiotic resistance in the microbes that live in and on us, collectively known as the human microbiome. Diet is a powerful method for shaping the human gut microbiome and may be a tractable method for lessening antibiotic resistance, and yet little is known about the relationship between diet and AMR. We examined this relationship in healthy individuals who contained various abundances of antibiotic resistance genes and found that individuals who consumed diverse diets that were high in fiber and low in animal protein had fewer antibiotic resistance genes. Dietary interventions may be useful for lessening the burden of antimicrobial resistance and might ultimately motivate dietary guidelines which will consider how nutrition can reduce the impact of infectious disease.

RevDate: 2022-05-09

Joachim A, Schwerd T, Hölz H, et al (2022)

[Fecal Microbiota Transfer (FMT) in Children and Adolescents - Review and statement by the GPGE microbiome working group].

Zeitschrift fur Gastroenterologie [Epub ahead of print].

The human microbiome and especially the gastrointestinal microbiota are associated with health and disease. Disturbance in the composition or function of fecal microbiota (dysbiosis) plays a role in the development of pediatric gastrointestinal diseases. Fecal microbiota transfer (FMT) is a special intervention, where microbiota are transferred from a healthy donor.In this review we describe the current state of knowledge for FMT in pediatric patients. There is satisfactory evidence concerning FMT in patients with recurrent C. difficile infection. For inflammatory bowel disease, few studies show a potential benefit.Adverse events occurred frequently in clinical studies, but were mostly mild and transient. There are hardly any data on long-term side effects of FMT, which are particularly significant for pediatrics. In practice, there is uncertainty as to which application route, dosage or frequency should be used. Legally, donor stool is considered a drug in German-speaking countries, for which no marketing authorization exists.In conclusion, knowledge about physiology, efficacy and side effects of FMT is insufficient and legal concerns complicate its implementation. More studies on this topic are needed urgently.

RevDate: 2022-05-10
CmpDate: 2022-05-10

Yeo LF, Lee SC, Palanisamy UD, et al (2022)

The Oral, Gut Microbiota and Cardiometabolic Health of Indigenous Orang Asli Communities.

Frontiers in cellular and infection microbiology, 12:812345.

The Orang Asli (OA) of Malaysia have been relatively understudied where little is known about their oral and gut microbiomes. As human health is closely intertwined with the human microbiome, this study first assessed the cardiometabolic health in four OA communities ranging from urban, rural to semi-nomadic hunter-gatherers. The urban Temuan suffered from poorer cardiometabolic health while rural OA communities were undergoing epidemiological transition. The oral microbiota of the OA were characterised by sequencing the V4 region of the 16S rRNA gene. The OA oral microbiota were unexpectedly homogenous, with comparably low alpha diversity across all four communities. The rural Jehai and Temiar PP oral microbiota were enriched for uncharacterised bacteria, exhibiting potential for discoveries. This finding also highlights the importance of including under-represented populations in large cohort studies. The Temuan oral microbiota were also elevated in opportunistic pathogens such as Corynebacterium, Prevotella, and Mogibacterium, suggesting possible oral dysbiosis in these urban settlers. The semi-nomadic Jehai gut microbiota had the highest alpha diversity, while urban Temuan exhibited the lowest. Rural OA gut microbiota were distinct from urban-like microbiota and were elevated in bacteria genera such as Prevotella 2, Prevotella 9, Lachnospiraceae ND3007, and Solobacterium. Urban Temuan microbiota were enriched in Odoribacter, Blautia, Parabacetroides, Bacteroides and Ruminococcacecae UCG-013. This study brings to light the current health trend of these indigenous people who have minimal access to healthcare and lays the groundwork for future, in-depth studies in these populations.

RevDate: 2022-05-07

Gan R, Zhou F, Si Y, et al (2022)

DBSCAN-SWA: An Integrated Tool for Rapid Prophage Detection and Annotation.

Frontiers in genetics, 13:885048.

As an intracellular form of a bacteriophage in the bacterial host genome, a prophage usually integrates into bacterial DNA with high specificity and contributes to horizontal gene transfer (HGT). With the exponentially increasing number of microbial sequences uncovered in genomic or metagenomics studies, there is a massive demand for a tool that is capable of fast and accurate identification of prophages. Here, we introduce DBSCAN-SWA, a command line software tool developed to predict prophage regions in bacterial genomes. DBSCAN-SWA runs faster than any previous tools. Importantly, it has great detection power based on analysis using 184 manually curated prophages, with a recall of 85% compared with Phage_Finder (63%), VirSorter (74%), and PHASTER (82%) for (Multi-) FASTA sequences. Moreover, DBSCAN-SWA outperforms the existing standalone prophage prediction tools for high-throughput sequencing data based on the analysis of 19,989 contigs of 400 bacterial genomes collected from Human Microbiome Project (HMP) project. DBSCAN-SWA also provides user-friendly result visualizations including a circular prophage viewer and interactive DataTables. DBSCAN-SWA is implemented in Python3 and is available under an open source GPLv2 license from https://github.com/HIT-ImmunologyLab/DBSCAN-SWA/.

RevDate: 2022-05-05

Martí-Marí O, Martínez-Gualda B, Fernández-Barahona I, et al (2022)

Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors.

European journal of medicinal chemistry, 237:114414 pii:S0223-5234(22)00316-6 [Epub ahead of print].

We have recently described a novel family of compounds of reduced size and dual anti-HIV and anti-EV71 activity that encompasses tripodal and tetrapodal derivatives. The tripodal prototype, AL-470, has a nitro group at the focal point of the central scaffold and three attached tryptophan residues, each of which bearing an isophthaloyl moiety at the C2 position of the indole ring. A nitro to amino substitution has allowed us now to introduce a chemically addressable functionality to perform further structural modifications consisting of both direct and linker-mediated attachment of several aromatic groups, including the fluorescent dye Alexa Fluor 647 and the antibody-recruiting 2,4-dinitrophenyl motif. Some of the derivatives turned out to be more potent and selective than AL-470 against HIV-1, HIV-2 and EV-A71. The fluorescent probe demonstrated a specific tropism for intestines and lungs, two important niches for the human microbiome in health and disease.

RevDate: 2022-05-07

Ianiro G, Iorio A, Porcari S, et al (2022)

How the gut parasitome affects human health.

Therapeutic advances in gastroenterology, 15:17562848221091524.

The human gut microbiome (GM) is a complex ecosystem that includes numerous prokaryotic and eukaryotic inhabitants. The composition of GM can influence an array of host physiological functions including immune development. Accumulating evidence suggest that several members of non-bacterial microbiota, including protozoa and helminths, that were earlier considered as pathogens, could have a commensal or beneficial relationship with the host. Here we examine the most recent data from omics studies on prokaryota-meiofauna-host interaction as well as the impact of gut parasitome on gut bacterial ecology and its role as 'immunological driver' in health and disease to glimpse new therapeutic perspectives.

RevDate: 2022-05-03

Zhang Z, Feng Q, Li M, et al (2022)

Age-Related Cancer-Associated Microbiota Potentially Promotes Oral Squamous Cell Cancer Tumorigenesis by Distinct Mechanisms.

Frontiers in microbiology, 13:852566.

The oral squamous cell cancer (OSCC) incidence in young patients has increased since the end of the last century; however, the underlying mechanism is still unclear. Oral microbiota dysbiosis was proven to be a tumorigenesis factor, and we propose that there is a distinct bacterial composition in young patients that facilitates the progression of OSCC. Twenty elderly (>60 years old) and 20 young (<50 years old) subjects were included in this study. OSCC tissue was collected during surgery, sent for 16S rDNA sequencing and analyzed by the QIIME 2 pipeline. The results showed that Ralstonia, Prevotella, and Ochrobactrum were significantly enriched in younger OSCC tissue microbiota, while Pedobacter was more abundant in elderly OSCC tissues. Fusobacterium had high relative abundance in both cohorts. At the phylum level, Proteobacteria was the dominant taxon in all samples. The functional study showed that there were significant differences in the taxa abundance from metabolic and signaling pathways. The results indicated that the microbiota of younger OSCC tissues differed from that of elderly OSCC tissues by both taxon composition and function, which partially explains the distinct roles of bacteria during tumorigenesis in these two cohorts. These findings provide insights into different mechanisms of the microbiota-cancer relationship with regard to aging.

RevDate: 2022-05-03

Jian C, Kanerva S, Qadri S, et al (2022)

In vitro Effects of Bacterial Exposure on Secretion of Zonulin Family Peptides and Their Detection in Human Tissue Samples.

Frontiers in microbiology, 13:848128.

Commercially available ELISAs for zonulin (pre-haptoglobin 2), a protein with tight junction regulatory activity in the epithelia, were recently shown to recognize other proteins that are structurally and functionally related to zonulin, termed zonulin family peptides (ZFPs). With little or no information about the identity and property of ZFPs, various commercial zonulin ELISA kits are widely utilized in research as a marker of intestinal permeability. Bacterial exposure is a known trigger for the secretion of zonulin, but it remains unclear whether distinct bacteria differ in their capability to stimulate zonulin secretion. We hypothesized that ZFPs are similar to zonulin regarding response to bacterial exposure and aimed to compare the effects of non-pathogenic, Gram-negative bacteria (Escherichia coli RY13 and E. coli K12 DH5α) and probiotic, Gram-positive bacteria (Lactobacillus rhamnosus GG and Bifidobacterium bifidum) on ZFP secretion in an in vitro model. Additionally, utilizing samples from human clinical trials, we correlated circulating levels of ZFPs to the gut bacteria and determined the presence of ZFPs in various human tissues. Unexpectedly, we found that the ZFPs quantified by the widely used IDK® Zonulin ELISA kits are specifically triggered by the exposure to live Lactobacillus rhamnosus GG in HT-29 cells, associated with absolute abundances of intestinal Lactobacillus and Bifidobacterium in adults, and are copious in the small intestine but undetectable in the liver or adipose tissue. These characteristics appear to be different from zonulin and highlight the need for further characterization of ZFPs recognized by commercially available and widely used "zonulin" ELISAs.

RevDate: 2022-04-30

Nkera-Gutabara CK, Kerr R, Scholefield J, et al (2022)

Microbiomics: The Next Pillar of Precision Medicine and Its Role in African Healthcare.

Frontiers in genetics, 13:869610.

Limited access to technologies that support early monitoring of disease risk and a poor understanding of the geographically unique biological and environmental factors underlying disease, represent significant barriers to improved health outcomes and precision medicine efforts in low to middle income countries. These challenges are further compounded by the rich genetic diversity harboured within Southern Africa thus necessitating alternative strategies for the prediction of disease risk and clinical outcomes in regions where accessibility to personalized healthcare remains limited. The human microbiome refers to the community of microorganisms (bacteria, archaea, fungi and viruses) that co-inhabit the human body. Perturbation of the natural balance of the gut microbiome has been associated with a number of human pathologies, and the microbiome has recently emerged as a critical determinant of drug pharmacokinetics and immunomodulation. The human microbiome should therefore not be omitted from any comprehensive effort towards stratified healthcare and would provide an invaluable and orthogonal approach to existing precision medicine strategies. Recent studies have highlighted the overarching effect of geography on gut microbial diversity as it relates to human health. Health insights from international microbiome datasets are however not yet verified in context of the vast geographical diversity that exists throughout the African continent. In this commentary we discuss microbiome research in Africa and its role in future precision medicine initiatives across the African continent.

RevDate: 2022-04-30

Vilne B, Ķibilds J, Siksna I, et al (2022)

Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease.

Frontiers in microbiology, 13:627892.

Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the "one-size-fits-all" approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.

RevDate: 2022-05-16

Oliver A, El Alaoui K, Haunschild C, et al (2022)

Fecal Microbial Community Composition in Myeloproliferative Neoplasm Patients Is Associated with an Inflammatory State.

Microbiology spectrum [Epub ahead of print].

The capacity of the human microbiome to modulate inflammation in the context of cancer is becoming increasingly clear. Myeloproliferative neoplasms (MPNs) are chronic hematologic malignancies in which inflammation plays a key role in disease initiation, progression, and symptomatology. To better understand the composition of the gut microbiome in patients with MPN, triplicate fecal samples were collected from 25 MPN patients and 25 non-MPN controls. Although most of the variance between the microbial community compositions could be attributed to the individual (permutational analysis of variance [PERMANOVA], R2 = 0.92, P = 0.001), 1.7% of the variance could be attributed to disease status (MPN versus non-MPN). When a more detailed analysis was performed, significantly fewer reads mapping to a species of Phascolarctobacterium, a microbe previously associated with reduced inflammation, were found in MPNs. Further, our data revealed an association between Parabacteroides and tumor necrosis factor alpha (TNF-α), an inflammatory cytokine elevated in MPNs. Taken together, our results indicate a significant difference in the microbiome of MPN patients compared to non-MPN controls, and we identify specific species which may have a role in the chronic inflammation central to this disease. IMPORTANCE MPNs are chronic blood cancers in which inflammation plays a key role in disease initiation, progression, and symptomatology. The gut microbiome modulates normal blood development and inflammation and may also impact the development and manifestation of blood cancers. Therefore, the microbiome may be an important modulator of inflammation in MPN and could potentially be leveraged therapeutically in this disease. However, the relationship between the gut microbiome and MPNs has not been defined. Therefore, we performed an evaluation of the MPN microbiome, comparing the microbiomes of MPN patients with healthy donors and between MPN patients with various states of disease.

RevDate: 2022-04-25

Mishra AK, CL Müller (2022)

Negative binomial factor regression with application to microbiome data analysis.

Statistics in medicine [Epub ahead of print].

The human microbiome provides essential physiological functions and helps maintain host homeostasis via the formation of intricate ecological host-microbiome relationships. While it is well established that the lifestyle of the host, dietary preferences, demographic background, and health status can influence microbial community composition and dynamics, robust generalizable associations between specific host-associated factors and specific microbial taxa have remained largely elusive. Here, we propose factor regression models that allow the estimation of structured parsimonious associations between host-related features and amplicon-derived microbial taxa. To account for the overdispersed nature of the amplicon sequencing count data, we propose negative binomial reduced rank regression (NB-RRR) and negative binomial co-sparse factor regression (NB-FAR). While NB-RRR encodes the underlying dependency among the microbial abundances as outcomes and the host-associated features as predictors through a rank-constrained coefficient matrix, NB-FAR uses a sparse singular value decomposition of the coefficient matrix. The latter approach avoids the notoriously difficult joint parameter estimation by extracting sparse unit-rank components of the coefficient matrix sequentially, effectively delivering interpretable bi-clusters of taxa and host-associated factors. To solve the nonconvex optimization problems associated with these factor regression models, we present a novel iterative block-wise majorization procedure. Extensive simulation studies and an application to the microbial abundance data from the American Gut Project (AGP) demonstrate the efficacy of the proposed procedure. In the AGP data, we identify several factors that strongly link dietary habits and host life style to specific microbial families.

RevDate: 2022-04-26
CmpDate: 2022-04-26

Dash HR, S Das (2022)

Microbial community signatures for estimation of postmortem time intervals.

Advances in applied microbiology, 118:91-113.

The human body provides a complex ecosystem for symbiotic habitation of a huge number of microorganisms. These commensal microorganisms provide a huge benefit to the living host by acting against many deadly infections. Once the host dies, many changes in the complex ecosystem of the human body take place. The personalized microbes of a human body undergo successional change as many exogenous microbes attack the nutrient-rich cadaver after death. The succession pattern change of microbes in human cadaver allows postulating different models for estimation of Postmortem time interval (PMI). Estimation of PMI has a broad prospect from the criminal investigation point of view. Though many techniques are being used nowadays to estimate PMI, all of them have their pros and cons. With the advent of advanced molecular biological techniques, studies on the thanatomicrobiome of a human cadaver have gained pace and provide a superior alternative for conventional methods of PMI estimation. This chapter summarizes the recent advancements in the changes in signature microflora postmortem with change in human microenvironment to postulate a consensus model for estimation of PMI.

RevDate: 2022-05-11
CmpDate: 2022-04-26

Ventin-Holmberg R, Höyhtyä M, Saqib S, et al (2022)

The gut fungal and bacterial microbiota in pediatric patients with inflammatory bowel disease introduced to treatment with anti-tumor necrosis factor-α.

Scientific reports, 12(1):6654.

Pediatric inflammatory bowel disease (PIBD) is a globally increasing chronic inflammatory disease associated with an imbalanced intestinal microbiota and treated with several treatment options, including anti-tumor necrosis factor alpha (TNF-α), such as infliximab (IFX). Up to half of the patients do not respond to the drug and there are no methods for response prediction. Our aim was to predict IFX response from the gut microbiota composition since this is largely unexplored in PIBD. The gut microbiota of 30 PIBD patients receiving IFX was studied by MiSeq sequencing targeting 16S and ITS region from fecal samples collected before IFX and two and six weeks after the start of treatment. The response to IFX induction was determined by fecal calprotectin value < 100 µg/g at week six. The bacterial microbiota differed significantly between response groups, with higher relative abundance of butyrate-producing bacteria in responders compared to non-responders at baseline, validated by high predictive power (area under curve = 0.892) for baseline Ruminococcus and calprotectin. Additionally, non-responders had higher abundance of Candida, while responders had higher abundance of Saccharomyces at the end of the study. The gut microbiota composition in PIBD patients could predict response to IFX treatment in the future.

RevDate: 2022-04-29
CmpDate: 2022-04-26

Warner JO, JA Warner (2022)

The Foetal Origins of Allergy and Potential Nutritional Interventions to Prevent Disease.

Nutrients, 14(8):.

The first nine months from conception to birth involves greater changes than at any other time in life, affecting organogenesis, endocrine, metabolic and immune programming. It has led to the concept that the "first 1000 days" from conception to the second birthday are critical in establishing long term health or susceptibility to disease. Immune ontogeny is predominantly complete within that time and is influenced by the maternal genome, health, diet and environment pre-conception and during pregnancy and lactation. Components of the immunological protection of the pregnancy is the generation of Th-2 and T-regulatory cytokines with the consequence that neonatal adaptive responses are also biased towards Th-2 (allergy promoting) and T-regulatory (tolerance promoting) responses. Normally after birth Th-1 activity increases while Th-2 down-regulates and the evolving normal human microbiome likely plays a key role. This in turn will have been affected by maternal health, diet, exposure to antibiotics, mode of delivery, and breast or cow milk formula feeding. Complex gene/environment interactions affect outcomes. Many individual nutrients affect immune mechanisms and variations in levels have been associated with susceptibility to allergic disease. However, intervention trials employing single nutrient supplementation to prevent allergic disease have not achieved the expected outcomes suggested by observational studies. Investigation of overall dietary practices including fresh fruit and vegetables, fish, olive oil, lower meat intake and home cooked foods as seen in the Mediterranean and other healthy diets have been associated with reduced prevalence of allergic disease. This suggests that the "soup" of overall nutrition is more important than individual nutrients and requires further investigation both during pregnancy and after the infant has been weaned. Amongst all the potential factors affecting allergy outcomes, modification of maternal and infant nutrition and the microbiome are easier to employ than changing other aspects of the environment but require large controlled trials before recommending changes to current practice.

RevDate: 2022-04-29

Wang S, Alenius H, El-Nezami H, et al (2022)

A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies.

Nanomaterials (Basel, Switzerland), 12(8):.

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology.

RevDate: 2022-04-29

Vera-Urbina F, Dos Santos-Torres MF, Godoy-Vitorino F, et al (2022)

The Gut Microbiome May Help Address Mental Health Disparities in Hispanics: A Narrative Review.

Microorganisms, 10(4):.

The gut-brain axis is the biological connection between the enteric and the central nervous systems. Given the expansion of the microbial sciences with the new human microbiome field facilitated by the decrease in sequencing costs, we now know more about the role of gut microbiota in human health. In this short review, particular focus is given to the gut-brain axis and its role in psychiatric diseases such as anxiety and depression. Additionally, factors that contribute to changes in the gut-brain axis, including the gut microbiome, nutrition, the host's genome, and ethnic difference, are highlighted. Emphasis is given to the lack of studies on Hispanic populations, despite the fact this ethnic group has a higher prevalence of anxiety and depression in the US.

RevDate: 2022-04-29

Hu C, P Rzymski (2022)

Non-Photosynthetic Melainabacteria (Cyanobacteria) in Human Gut: Characteristics and Association with Health.

Life (Basel, Switzerland), 12(4):.

Gut microorganisms are comprised of thousands of species and play an important role in the host's metabolism, overall health status, and risk of disease. Recently, the discovery of non-photosynthetic cyanobacteria (class "Melainabacteria") in the human and animal gut triggered a broad interest in studying cyanobacteria's evolution, physiology, and ecological relevance of the Melainabacteria members. In the present paper, we review the general characteristics of Melainabacteria, their phylogeny, distribution, and ecology. The potential link between these microorganisms and human health is also discussed based on available human-microbiome studies. Their abundance tends to increase in patients with selected neurodegenerative, gastrointestinal, hepatic, metabolic, and respiratory diseases. However, the available evidence is correlative and requires further longitudinal studies. Although the research on Melainabacteria in the human gut is still in its infancy, elucidation of their role appears important in better understanding microbiome-human health interactions. Further studies aiming to identify particular gut cyanobacteria species, culture them in vitro, and characterize them on the molecular, biochemical, and physiological levels are encouraged.

RevDate: 2022-04-29

Agosta M, Bencardino D, Argentieri M, et al (2022)

Prevalence and Molecular Typing of Carbapenemase-Producing Enterobacterales among Newborn Patients in Italy.

Antibiotics (Basel, Switzerland), 11(4):.

The spread of carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), is a serious public health threat in pediatric hospitals. The associated risk in newborns is due to their underdeveloped immune system and limited treatment options. The aim was to estimate the prevalence and circulation of CPE among the neonatal intensive units of a major pediatric hospital in Italy and to investigate their molecular features. A total of 124 CPE were isolated from rectal swabs of 99 newborn patients at Bambino Gesù Children's Hospital between July 2016 and December 2019. All strains were characterized by antimicrobial susceptibility testing, detection of resistance genes, and PCR-based replicon typing (PBRT). One strain for each PBRT profile of K. pneumoniae or E. coli was characterized by multilocus-sequence typing (MLST). Interestingly, the majority of strains were multidrug-resistant and carried the blaNDM gene. A large part was characterized by a multireplicon status, and FII, A/C, FIA (15%) was the predominant. Despite the limited size of collection, MLST analysis revealed a high number of Sequence Types (STs): 14 STs among 28 K. pneumoniae and 8 STs among 11 E. coli, with the prevalence of the well-known clones ST307 and ST131, respectively. This issue indicated that some strains shared the same circulating clone. We identified a novel, so far never described, ST named ST10555, found in one E. coli strain. Our investigation showed a high heterogeneity of CPE circulating among neonatal units, confirming the need to monitor their dissemination in the hospital also through molecular methods.

RevDate: 2022-04-26
CmpDate: 2022-04-26

Hua X, Cao Y, Morgan DM, et al (2022)

Longitudinal analysis of the impact of oral contraceptive use on the gut microbiome.

Journal of medical microbiology, 71(4):.

Introduction. Evidence has linked exogenous and endogenous sex hormones with the human microbiome.Hypothesis/Gap statement. The longitudinal effects of oral contraceptives (OC) on the human gut microbiome have not previously been studied.Aim. We sought to examine the longitudinal impact of OC use on the taxonomic composition and metabolic functions of the gut microbiota and endogenous sex steroid hormones after initiation of OC use.Methodology. We recruited ten healthy women who provided blood and stool samples prior to OC use, 1 month and 6 months after starting OC. We measured serum levels of sex hormones, including estradiol, progesterone, sex hormone-binding globulin (SHBG), and total testosterone. Shotgun metagenomic sequencing was performed on DNA extracted from faecal samples. Species and metabolic pathway abundances were determined using MetaPhlAn2 and HUMAnN2. Multivariate association with linear models was used to identify microbial species and metabolic pathways associated with OC use and endogenous levels of sex hormones.Results. The percentage variance of the microbial community explained by individual factors ranged from 9.9 % for age to 2.7 % for time since initiation of OC use. We observed no changes in the diversity or composition of the gut microbiome following OC initiation. However, the relative abundance of the biosynthesis pathways of peptidoglycan, amino acids (lysine, threonine, methionine, and tryptophan), and the NAD salvage pathway increased after OC initiation. In addition, serum levels of estradiol and SHBG were positively associated with Eubacterium ramulus, a flavonoid-degrading bacterium. Similarly, microbes involving biosynthesis of l-lysine, l-threonine, and l-methionine were significantly associated with lower estradiol, SHBG, and higher levels of total testosterone.Conclusion. Our study provides the first piece of evidence supporting the association between exogenous and endogenous sex hormones and gut microbiome composition and function.

RevDate: 2022-04-22

Garcia-Vello P, Tytgat HLP, Gray J, et al (2022)

Peptidoglycan from Akkermansia muciniphila Muc T: chemical structure and immunostimulatory properties of muropeptides.

Glycobiology pii:6572163 [Epub ahead of print].

Akkermansia muciniphila is an intestinal symbiont known to improve the gut barrier function in mice and humans. Various cell envelope components have been identified to play a critical role in the immune signalling of A. muciniphila, but the chemical composition and role of peptidoglycan (PG) remained elusive. Here, we isolated PG fragments from A. muciniphila MucT (ATCC BAA-835), analysed their composition and evaluated their immune signalling capacity. Structurally, the PG of A. muciniphila was found to be noteworthy due of the presence of some non-acetylated glucosamine residues, which presumably stems from deacetylation of N-acetylglucosamine. Some of the N-acetylmuramic acid (MurNAc) subunits were O-acetylated. The immunological assays revealed that muropeptides released from the A. muciniphila PG could both activate the intracellular NOD1 and NOD2 receptors to a comparable extent as muropeptides from Escherichia coli BW25113. These data challenge the hypothesis that N-non-acetylation of PG can be used as a NOD-1 evasion mechanism. Our results provide new insights into the diversity of cell envelope structures of key gut microbiota members and their role in steering host-microbiome interactions.

RevDate: 2022-04-24

Ventin-Holmberg R, Saqib S, Korpela K, et al (2022)

The Effect of Antibiotics on the Infant Gut Fungal Microbiota.

Journal of fungi (Basel, Switzerland), 8(4):.

Antibiotics are commonly used drugs in infants, causing disruptions in the developing gut microbiota with possible detrimental long-term effects such as chronic inflammatory diseases. The focus has been on bacteria, but research shows that fungi might have an important role as well. There are only a few studies on the infant gut fungal microbiota, the mycobiota, in relation to antibiotic treatment. Here, the aim was to investigate the impact of antibiotics on the infant gut mycobiota, and the interkingdom associations between bacteria and fungi. We had 37 antibiotic-naïve patients suffering from respiratory syncytial virus, of which 21 received one to four courses of antibiotics due to complications, and 16 remained antibiotic-naïve throughout the study. Fecal samples were collected before, during and after antibiotic treatment with a follow-up period of up to 9.5 months. The gut mycobiota was studied by Illumina MiSeq sequencing of the ITS1 region. We found that antibiotic use affected the gut mycobiota, most prominently seen as a higher relative abundance of Candida (p < 0.001), and a higher fungal diversity (p = 0.005-0.04) and richness (p = 0.03) in the antibiotic-treated infants compared to the antibiotic-naïve ones at multiple timepoints. This indicates that the gut mycobiota could contribute to the long-term consequences of antibiotic treatments.

RevDate: 2022-04-24

Abot A, Brochot A, Pomié N, et al (2022)

Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study.

Metabolites, 12(4):.

Overweight, obesity, and their comorbidities are currently considered a major public health concern. Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis. The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.

RevDate: 2022-05-17

Patjas A, A Kantele (2022)

International travel and travelers' diarrhea - Increased risk of urinary tract infection.

Travel medicine and infectious disease, 48:102331 pii:S1477-8939(22)00077-1 [Epub ahead of print].

BACKGROUND: Urinary tract infections (UTIs) rank among the most common infections encountered in health care, with an annual incidence of 12% for women. Despite the vast numbers of international travels (over 1.5 billion annually), no prospective studies have had primary focus on UTIs during travel.

METHODS: We recruited in 2008-17 international travelers who all filled out pre- and post-travel questionnaires. Incidence rates of UTI were calculated separately for both sexes. Multivariable analyses were conducted to identify risk factors for UTI during travel.

RESULTS: In total 15/517 (2,9%) travelers acquired UTI during travel, yielding an annual incidence of 62% for female and 18% for male travelers. Travelers' diarrhea (TD) was identified as a factor predisposing to UTI (OR 9.2, 95% CI 1.5-+∞, p = 0.011); all UTI cases were recorded by travelers with TD.

CONCLUSIONS: To our knowledge, this is the first prospective study with a primary focus on UTI during travel. Our data reveal that among travelers the incidence of UTI far exceeds that reported for the general population. TD was identified as a major risk factor for the infection. Our results suggest TD prevention as a means of also preventing UTI during travel.

RevDate: 2022-05-17

Giliberti R, Cavaliere S, Mauriello IE, et al (2022)

Host phenotype classification from human microbiome data is mainly driven by the presence of microbial taxa.

PLoS computational biology, 18(4):e1010066.

Machine learning-based classification approaches are widely used to predict host phenotypes from microbiome data. Classifiers are typically employed by considering operational taxonomic units or relative abundance profiles as input features. Such types of data are intrinsically sparse, which opens the opportunity to make predictions from the presence/absence rather than the relative abundance of microbial taxa. This also poses the question whether it is the presence rather than the abundance of particular taxa to be relevant for discrimination purposes, an aspect that has been so far overlooked in the literature. In this paper, we aim at filling this gap by performing a meta-analysis on 4,128 publicly available metagenomes associated with multiple case-control studies. At species-level taxonomic resolution, we show that it is the presence rather than the relative abundance of specific microbial taxa to be important when building classification models. Such findings are robust to the choice of the classifier and confirmed by statistical tests applied to identifying differentially abundant/present taxa. Results are further confirmed at coarser taxonomic resolutions and validated on 4,026 additional 16S rRNA samples coming from 30 public case-control studies.

RevDate: 2022-04-23

Zhang WH, Jin ZY, Yang ZH, et al (2022)

Fecal Microbiota Transplantation Ameliorates Active Ulcerative Colitis by Downregulating Pro-inflammatory Cytokines in Mucosa and Serum.

Frontiers in microbiology, 13:818111.

Background: Ulcerative colitis (UC) is a multi-factor disease characterized by alternating remission periods and repeated occurrence. It has been shown that fecal microbiota transplantation (FMT) is an emerging and effective approach for UC treatment. Since most existing studies chose adults as donors for fecal microbiota, we conducted this study to determine the long-term efficacy and safety of the microbiota from young UC patient donors and illustrate its specific physiological effects.

Methods: Thirty active UC patients were enrolled and FMT were administered with the first colonoscopy and two subsequent enema/transendoscopic enteral tubing (TET) practical regimens in The First Affiliated Hospital of Anhui Medical University in China. Disease activity and inflammatory biomarkers were assessed 6 weeks/over 1 year after treatment. The occurrence of adverse events was also recorded. The samples from blood and mucosa were collected to detect the changes of inflammatory biomarkers and cytokines. The composition of gut and oral microbiota were also sampled and sequenced to confirm the alteration of microbial composition.

Results: Twenty-seven patients completed the treatment, among which 16 (59.3%) achieved efficacious clinical response and 11 (40.7%) clinical remission. Full Mayo score and calprotectin dropped significantly and remained stable over 1 year. FMT also significantly reduced the levels of C-reactive protein (CRP), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). The gut microbiota altered significantly with increased bacterial diversity and decreased metabolic diversity in responsive patients. The pro-inflammatory enterobacteria decreased after FMT and the abundance of Collinsella increased. Accordingly, the altered metabolic functions, including antigen synthesis, amino acids metabolism, short chain fatty acid production, and vitamin K synthesis of microbiota, were also corrected by FMT.

Conclusion: Fecal microbiota transplantation seems to be safe and effective for active UC patients who are nonresponsive to mesalazine or prednisone in the long-term. FMT could efficiently downregulate pro-inflammatory cytokines to ameliorate the inflammation.

RevDate: 2022-04-24
CmpDate: 2022-04-22

Soininen L, Roslund MI, Nurminen N, et al (2022)

Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers.

Scientific reports, 12(1):6518.

Urbanization reduces microbiological abundance and diversity, which has been associated with immune mediated diseases. Urban greening may be used as a prophylactic method to restore microbiological diversity in cities and among urbanites. This study evaluated the impact of air-circulating green walls on bacterial abundance and diversity on human skin, and on immune responses determined by blood cytokine measurements. Human subjects working in offices in two Finnish cities (Lahti and Tampere) participated in a two-week intervention, where green walls were installed in the rooms of the experimental group. Control group worked without green walls. Skin and blood samples were collected before (Day0), during (Day14) and two weeks after (Day28) the intervention. The relative abundance of genus Lactobacillus and the Shannon diversity of phylum Proteobacteria and class Gammaproteobacteria increased in the experimental group. Proteobacterial diversity was connected to the lower proinflammatory cytokine IL-17A level among participants in Lahti. In addition, the change in TGF-β1 levels was opposite between the experimental and control group. As skin Lactobacillus and the diversity of Proteobacteria and Gammaproteobacteria are considered advantageous for skin health, air-circulating green walls may induce beneficial changes in a human microbiome. The immunomodulatory potential of air-circulating green walls deserves further research attention.

RevDate: 2022-04-20

Roderburg C, Loosen SH, Joerdens MS, et al (2022)

Antibiotic therapy is associated with an increased incidence of cancer.

Journal of cancer research and clinical oncology [Epub ahead of print].

PURPOSE: There is a growing body of evidence suggesting the decisive involvement of the human microbiome in cancer development. The consumption of antibiotics may fundamentally change the microbiome and thereby create a precancerous environment promoting cancer development and growth. However, clinical data on the association between the consumption of antibiotics and cancer incidence have remained inconclusive. In this study, we quantified the association between the intake of different antibiotics and various cancer entities among outpatients from Germany.

METHODS: This retrospective case-control study based on the IQVIA Disease Analyzer database included 111,828 cancer patients and 111,828 non-cancer controls who were matched to cancer cases using propensity scores. Patients were categorized as non-users, low-consumption (up to 50th percentile), and high-consumption (above 50th percentile) users of antibiotics overall and for each antibiotic class. Multivariable logistic conditional regression models were used to study the association between antibiotic intake within 5 years prior to the index date (first cancer diagnosis for cases or randomly selected date for controls) and cancer incidence.

RESULTS: The probability of cancer was significantly higher among patients with a history of antibiotic intake than in matched controls. Patients using penicillin or cephalosporins displayed a higher incidence of cancer, while the intake of tetracyclines and macrolides actually reduced the risk of cancer development slightly. A complex picture was observed in our cancer site-stratified analyses. Most notably, the consumption of penicillin was significantly and positively associated with cancer development in the respiratory organs only (low consumption OR: 1.33, 95% CI 1.20-1.47; high consumption OR 1.42, 95% CI 1.22-1.64) and cephalosporin consumption was significantly associated with respiratory organ cancer (low consumption OR: 1.32, 95% CI 1.17-1.48, high consumption OR: 1.47, 95% CI 1.29-1.66), breast cancer (high consumption OR: 1.40, 95% CI 1.25-1.56), and lymphoid and hematopoietic tissue cancer (high consumption OR: 1.50, 95% CI 1.35-1.66).

CONCLUSION: Our data strongly support the hypothesis that the intake of antibiotics is positively associated with the risk of cancer development.

RevDate: 2022-05-06
CmpDate: 2022-04-21

Wolf PG, Cowley ES, Breister A, et al (2022)

Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer.

Microbiome, 10(1):64.

BACKGROUND: Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr).

RESULTS: Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S.

CONCLUSIONS: Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.

RevDate: 2022-05-07

Si J, Choi Y, Raes J, et al (2022)

Sputum Bacterial Metacommunities in Distinguishing Heterogeneity in Respiratory Health and Disease.

Frontiers in microbiology, 13:719541.

Background and Objective: Cluster-based analysis, or community typing, has been attempted as a method for studying the human microbiome in various body niches with the aim of reducing variations in the bacterial composition and linking the defined communities to host health and disease. In this study, we have presented the bacterial subcommunities in the healthy and the diseased population cohorts and have assessed whether these subcommunities can distinguish different host health conditions.

Methods: We performed community typing analysis on the sputum microbiome dataset obtained from a healthy Korean twin-family cohort (n = 202) and an external chronic obstructive pulmonary disease (COPD) cohort (n = 324) and implemented a networks analysis to investigate the associations of bacterial metacommunities with host health parameters and microbial interactions in disease.

Results: The analysis of the sputum microbiome of a healthy Korean cohort revealed high levels of interindividual variation, which was driven by two dominant bacteria: Neisseria and Prevotella. Community typing of the cohort samples identified three metacommunities, namely, Neisseria 1 (N1), Neisseria 2 (N2), and Prevotella (P), each of which showed different functional potential and links to host traits (e.g., triglyceride levels, waist circumference, and levels of high-sensitivity C-reactive protein). In particular, the Prevotella-dominant metacommunity showed a low-community diversity, which implies an adverse health association. Network analysis of the healthy twin cohort illustrated co-occurrence of Prevotella with pathogenic anaerobic bacteria; this bacterial cluster was negatively associated with high-density lipoproteins but positively correlated with waist circumference, blood pressure, and pack-years. Community typing of the external COPD cohort identified three sub-metacommunities: one exclusively comprising healthy subjects (HSs) and the other two (CS1 and CS2) comprising patients. The two COPD metacommunities, CS1 and CS2, showed different abundances of specific pathogens, such as Serratia and Moraxella, as well as differing functional potential and community diversity. Network analysis of the COPD cohort showed enhanced bacterial coexclusions in the CS metacommunities when compared with HS metacommunity.

Conclusion: Overall, our findings point to a potential association between pulmonary Prevotella and host health and disease, making it possible to implement community typing for the diagnosis of heterogenic respiratory disease.

RevDate: 2022-04-19
CmpDate: 2022-04-19

Maslennikov R, Ivashkin V, Efremova I, et al (2022)

Gut dysbiosis and small intestinal bacterial overgrowth as independent forms of gut microbiota disorders in cirrhosis.

World journal of gastroenterology, 28(10):1067-1077.

BACKGROUND: Gut dysbiosis and small intestinal bacterial overgrowth (SIBO) are commonly observed in patients with cirrhosis. Despite the substantial number of articles describing the relations between disorders of gut microbiota and various manifestations of cirrhosis, dysbiosis and SIBO were always studied separately.

AIM: To study the relationship of gut dysbiosis and SIBO in cirrhosis.

METHODS: This observational study included 47 in-patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. SIBO was assessed using the lactulose hydrogen breath test.

RESULTS: SIBO was found in 24/47 (51.1%) patients. Patients with SIBO had a higher abundance of Firmicutes (P = 0.017) and Fusobacteria (P = 0.011), and a lower abundance of Bacteroidetes (P = 0.013) than patients without SIBO. This increase in the abundance of Firmicutes occurred mainly due to an increase in the abundance of bacteria from the genus Blautia (P = 0.020) of the Lachnospiraceae family (P = 0.047), while the abundance of other major families of this phylum [Ruminococcaceae (P = 0.856), Peptostreptococcaceae (P = 0.066), Clostridiaceae (P = 0.463), Eubacteriaceae (P = 0.463), Lactobacillaceae (P = 0.413), and Veillonellaceae (P = 0.632)] did not differ significantly between the patients with and without SIBO. Reduced level of Bacteroidetes in samples from patients with SIBO was a result of the decrease in bacterial numbers from all the major families of this phylum [Bacteroidaceae (P = 0.014), Porphyromonadaceae (P = 0.002), and Rikenellaceae (P = 0.047)], with the exception of Prevotellaceae (P = 0.941). There were no significant differences in the abundance of taxa that were the main biomarkers of cirrhosis-associated gut dysbiosis [Proteobacteria (P = 0.790), Bacilli (P = 0.573), Enterobacteriaceae (P = 0.632), Streptococcaceae (P = 0.170), Staphylococcaceae (P = 0.450), and Enterococcaceae (P = 0.873)] between patients with and without SIBO.

CONCLUSION: Despite the differences observed in the gut microbiome between patients with and without SIBO, gut dysbiosis and SIBO are most likely independent disorders of gut microbiota in cirrhosis.

RevDate: 2022-04-28

Li D, Van De Werfhorst LC, PA Holden (2022)

Genetic sequence data evidence that human faecal-associated HF183 sequences are on human skin and in urine.

Journal of applied microbiology [Epub ahead of print].

AIMS: The DNA marker HF183 is a partial 16S rRNA gene sequence highly specific to human-associated Bacteroides including Bacteroides dorei. While HF183 is used to assess human faecal contamination in aquatic environments worldwide, little is known about the existence of HF183 and B. dorei in human microbiomes outside of the human gastrointestinal tract and faeces.

METHODS AND RESULTS: Previously published human skin and urine microbiome data sets from five independent human body skin studies, the Human Microbiome Project (HMP) and three independent human urine studies were analysed. The HF183 gene sequence was detected in all skin data sets, with the ratios of positive samples ranging from 0.5% to 36.3%. Popliteal fossa (knee), volar forearm and inguinal (groin) creases were identified as hot spots. HF183 was detected in two of three urine data sets, with ratios of positive samples ranging from 0% to 37.5%. All HF183-containing sequences from these data sets were classified as associated with B. dorei.

CONCLUSIONS: HF183 is widespread on human skin and present in urine.

Skin and urine microbiomes could be sources of HF183 to environmental waters. Such non-faecal sources of HF183 might explain low concentrations of HF183 in recreational waters when swimmers are present.

RevDate: 2022-04-26

Mohammadzadeh R, Mahnert A, Duller S, et al (2022)

Archaeal key-residents within the human microbiome: characteristics, interactions and involvement in health and disease.

Current opinion in microbiology, 67:102146 pii:S1369-5274(22)00023-6 [Epub ahead of print].

Since the introduction of Archaea as new domain of life more than 40 years ago, they are no longer regarded as eccentric inhabitants of extreme ecosystems. These microorganisms are widespread in various moderate ecosystems, including eukaryotic hosts such as humans. Indeed, members of the archaeal community are now recognized as paramount constituents of human microbiome, while their definite role in disease or health is not fully elucidated and no archaeal pathogen has been reported. Here, we present a brief overview of archaea residing in and on the human body, with a specific focus on common lineages including Methanobrevibacter, Methanosphaeraand Methanomassilococcales.

RevDate: 2022-05-10
CmpDate: 2022-05-10

Safari Z, Sadeghizadeh M, Asgaritarghi G, et al (2022)

M13 phage coated surface elicits an anti-inflammatory response in BALB/c and C57BL/6 peritoneal macrophages.

International immunopharmacology, 107:108654.

Bacteriophages are one of the viral components of the human microbiome. M13 phages have recently been considered for immunotherapy because they can be detected by immune cells and stimulated immune responses. Macrophages are essential innate immune cells that respond to stimuli and direct subsequent immune responses. Therefore, it is crucial to evaluate the immunomodulatory effect of phage on macrophage function. For this purpose, peritoneal macrophages from BALB/c and C57BL/6 mice were cultured on the M13 phage, M13 phage-RGD, gelatin-coated, and un-coated wells. Then macrophages were examined for morphological characteristics, L. arginine metabolism, redox potential, inflammatory cytokine production, and phagocytic activity after two and seven days of culture. We observed that M13 phage-coated surfaces induced anti-inflammatory cytokines production and reduced inflammatory cytokines level of BALB/c and C57BL/6 macrophages at the steady-state and post LPS stimulation. In addition, L. arginine metabolism and phagocytic activity of macrophages were directed to the M2 phenotype by induction of arginase-1 and efferocytosis in the M13 phage-containing groups, respectively. The present study confirms the M13 phage's ability to polarize macrophages toward the M2 phenotype. However, using M13 phage in treating inflammatory diseases in animal models could determine their immunotherapy capacity in the future.

RevDate: 2022-05-06
CmpDate: 2022-04-18

Kostic AD (2022)

The human microbiome: A coming of age story.

Cell host & microbe, 30(4):449-453.

The human microbiome field is coming of age, but it is still defining itself. I can say the same as an investigator who started his career in the early days of this expanding field. This commentary reflects on my Cell Host & Microbe papers along this journey that captured the field's progress.

RevDate: 2022-04-29
CmpDate: 2022-04-29

Higashi DL, McGuire S, Abdelrahman YM, et al (2022)

Development of the First Tractable Genetic System for Parvimonas micra, a Ubiquitous Pathobiont in Human Dysbiotic Disease.

Microbiology spectrum, 10(2):e0046522.

Parvimonas micra is a Gram-positive obligate anaerobe and a typical member of the human microbiome. P. micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with the development of multiple types of malignant tumors. Despite its strong association with disease, surprisingly little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. To address this problem, we directly isolated a collection of P. micra strains from odontogenic abscess clinical specimens and then screened these isolates for natural competence. Amazingly, all of the P. micra clinical isolates exhibited various levels of natural competence, including the reference strain ATCC 33270. By exploiting this ability, we were able to employ cloning-independent methodologies to engineer and complement a variety of targeted chromosomal genetic mutations directly within low-passage-number clinical isolates. To develop a tractable genetic system for P. micra, we first adapted renilla-based bioluminescence for highly sensitive reporter studies. This reporter system was then applied for the development of the novel Theo+ theophylline-inducible riboswitch for tunable gene expression studies over a broad dynamic range. Finally, we demonstrate the feasibility of generating mariner-based transposon sequencing (Tn-seq) libraries for forward genetic screening in P. micra. With the availability of a highly efficient transformation protocol and the current suite of genetic tools, P. micra should now be considered a fully genetically tractable organism suitable for molecular genetic research. The methods presented here provide a clear path to investigate the understudied role of P. micra in polymicrobial infections and tumorigenesis. IMPORTANCE Parvimonas micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with numerous cancers. Despite this, little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. In this study, we provide the first report of P. micra natural competence and describe the only tractable genetic system for this species. The methods presented here will allow for the detailed study of P. micra and its role in infection and tumorigenesis.

RevDate: 2022-04-20

Walles M, Pähler A, Isin EM, et al (2022)

Meeting report of the second European biotransformation workshop.

Xenobiotica; the fate of foreign compounds in biological systems [Epub ahead of print].

Challenges and opportunities in the field of biotransformation were presented and discussed at the 2nd European Biotransformation workshop which was conducted virtually in collaboration with the DMDG on November 24/25, 2021. Here we summarise the presentations and discussions from this workshop.The following topics were covered:Regulatory requirements and biotransformation studies for antibody drug conjugates (ADCs) and antisense oligonucleotides (ASOs).Solutions for mass spectral data processing of peptides and oligonucleotides.Future outsourcing needs in biotransformation for new modalities.Established quantitative and qualitative workflows for metabolite identification.New in vitro systems to study new chemical entities (NCEs) with low metabolic turnover.New strategies on the timing of the human ADME (absorption, distribution, metabolism, excretion) study and to investigate the impact of human microbiome on drug development.

RevDate: 2022-05-18

Ghaffari P, Shoaie S, LK Nielsen (2022)

Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions.

Journal of translational medicine, 20(1):173.

The human microbiome has been linked to several diseases. Gastrointestinal diseases are still one of the most prominent area of study in host-microbiome interactions however the underlying microbial mechanisms in these disorders are not fully established. Irritable bowel syndrome (IBS) remains as one of the prominent disorders with significant changes in the gut microbiome composition and without definitive treatment. IBS has a severe impact on socio-economic and patient's lifestyle. The association studies between the IBS and microbiome have shed a light on relevance of microbial composition, and hence microbiome-based trials were designed. However, there are no clear evidence of potential treatment for IBS. This review summarizes the epidemiology and socioeconomic impact of IBS and then focus on microbiome observational and clinical trials. At the end, we propose a new perspective on using data-driven approach and applying computational modelling and machine learning to design microbiome-aware personalized treatment for IBS.

RevDate: 2022-04-29
CmpDate: 2022-04-13

Verstraeten S, Sencio V, Raise A, et al (2022)

Description of a Newly Isolated Blautia faecis Strain and Its Benefit in Mouse Models of Post-Influenza Secondary Enteric and Pulmonary Infections.

Nutrients, 14(7):.

The expanding knowledge on the systemic influence of the human microbiome suggests that fecal samples are underexploited sources of new beneficial strains for extra-intestinal health. We have recently shown that acetate, a main circulating microbiota-derived molecule, reduces the deleterious effects of pulmonary Streptococcus pneumoniae and enteric Salmonella enterica serovar Typhimurium bacterial post-influenza superinfections. Considering the beneficial and broad effects of acetate, we intended to isolate a commensal strain, producing acetate and potentially exploitable in the context of respiratory infections. We designed successive steps to select intestinal commensals that are extremely oxygen-sensitive, cultivable after a freezing process, without a proinflammatory effect on IL-8 induction, and producing acetate. We have identified the Blautia faecis DSM33383 strain, which decreased the TNFα-induced production of IL-8 by the intestinal epithelial cell line HT-29. The beneficial effect of this bacterial strain was further studied in two preclinical models of post-influenza Streptococcus pneumoniae (S.p) and Salmonella enterica serovar Typhimurium (S.t) superinfection. The intragastrical administration of Blautia faecis DSM33383 led to protection in influenza-infected mice suffering from an S.p. and, to a lesser extent, from an S.t secondary infection. Altogether, this study showed that Blautia faecis DSM33383 could be a promising candidate for preventive management of respiratory infectious diseases.

RevDate: 2022-04-13

Hayes CV, Eley CV, Wood F, et al (2021)

Knowledge and attitudes of adolescents towards the human microbiome and antibiotic resistance: a qualitative study.

JAC-antimicrobial resistance, 3(2):dlab039.

Background: Antibiotic and dietary behaviour affect the human microbiome and influence antibiotic resistance development. Adolescents are a key demographic for influencing knowledge and behaviour change.

Objectives: To explore adolescents' knowledge and attitudes towards the microbiome and antibiotic resistance, and the capability, motivation and opportunity for educators to integrate microbiome teaching in schools.

Methods: Qualitative study informed by the Theoretical Domains Framework (TDF) and COM-B model. Six educational establishments were purposively selected by rural/city and socioeconomic status, within Gloucestershire, South West England in 2019. Forty 14-18-year olds participated in focus groups, and eight science or health educators participated in interviews. Data were analysed thematically, double-coded and mapped to the TDF/COM-B.

Results: Adolescents were aware of 'good microbes' in the body but lacked deeper knowledge. Adolescents' knowledge of, and intentions to use, antibiotics appropriately differed by their levels of scientific study. Adolescents lacked knowledge on the consequences of diet on the microbiome, and therefore lacked capability and motivation to change behaviour. Educators felt capable and motivated to teach microbiome topics but lacked opportunity though absence of topics in the national curriculum and lack of time to teach additional topics.

Conclusions: A disparity in knowledge of adolescents needs to be addressed through increasing antibiotic and microbiome topics in the national curriculum. Public antibiotic campaigns could include communication about the microbiome to increase awareness. Educational resources could motivate adolescents and improve their knowledge, skills and opportunity to improve diet and antibiotic use; so, supporting the UK antimicrobial resistance (AMR) national action plan.

RevDate: 2022-04-13

van Dijk MC, de Kruijff RM, PL Hagedoorn (2022)

The Role of Iron in Staphylococcus aureus Infection and Human Disease: A Metal Tug of War at the Host-Microbe Interface.

Frontiers in cell and developmental biology, 10:857237.

Iron deficiency anemia can be treated with oral or intravenous Fe supplementation. Such supplementation has considerable effects on the human microbiome, and on opportunistic pathogenic micro-organisms. Molecular understanding of the control and regulation of Fe availability at the host-microbe interface is crucial to interpreting the side effects of Fe supplementation. Here, we provide a concise overview of the regulation of Fe by the opportunistic pathogen Staphylococcus aureus. Ferric uptake regulator (Fur) plays a central role in controlling Fe uptake, utilization and storage in order to maintain a required value. The micro-organism has a strong preference for heme iron as an Fe source, which is enabled by the Iron-regulated surface determinant (Isd) system. The strategies it employs to overcome Fe restriction imposed by the host include: hijacking host proteins, replacing metal cofactors, and replacing functions by non-metal dependent enzymes. We propose that integrated omics approaches, which include metalloproteomics, are necessary to provide a comprehensive understanding of the metal tug of war at the host-microbe interface down to the molecular level.

RevDate: 2022-05-08
CmpDate: 2022-04-27

Badawy S, Baka ZAM, Abou-Dobara MI, et al (2022)

Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate.

Archives of virology, 167(5):1333-1341.

Characterization of bacteriophages facilitates better understanding of their biology, host specificity, genomic diversity, and adaptation to their bacterial hosts. This, in turn, is important for the exploitation of phages for therapeutic purposes, as the use of uncharacterized phages may lead to treatment failure. The present study describes the isolation and characterization of a bacteriophage effective against the important clinical pathogen Escherichia coli, which shows increasing accumulation of antibiotic resistance. Phage fEg-Eco19, which is specific for a clinical E. coli strain, was isolated from an Egyptian sewage sample. Phage fEg-Eco19 formed clear, sharp-edged, round plaques. Electron microscopy showed that the isolated phage is tailed and therefore belongs to the order Caudovirales, and morphologically, it resembles siphoviruses. The diameter of the icosahedral head of fEg-Eco19 is 68 ± 2 nm, and the non-contractile tail length and diameter are 118 ± 0.2 and 13 ± 0.6 nm, respectively. The host range of the phage was found to be narrow, as it infected only two out of 137 clinical E. coli strains tested. The phage genome is 45,805 bp in length with a GC content of 50.3% and contains 76 predicted genes. Comparison of predicted and experimental restriction digestion patterns allowed rough mapping of the physical ends of the phage genome, which was confirmed using the PhageTerm tool. Annotation of the predicted genes revealed gene products belonging to several functional groups, including regulatory proteins, DNA packaging and phage structural proteins, host lysis proteins, and proteins involved in DNA/RNA metabolism and replication.

RevDate: 2022-04-29
CmpDate: 2022-04-12

Shetty SA, Kuipers B, Atashgahi S, et al (2022)

Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria.

NPJ biofilms and microbiomes, 8(1):21.

Knowledge of the functional roles and interspecies interactions are crucial for improving our understanding of the human intestinal microbiome in health and disease. However, the complexity of the human intestinal microbiome and technical challenges in investigating it pose major challenges. In this proof-of-concept study, we rationally designed, assembled and experimentally tested a synthetic Diet-based Minimal Microbiome (Db-MM) consisting of ten core intestinal bacterial species that together are capable of efficiently converting dietary fibres into short chain fatty acids (SCFAs). Despite their genomic potential for metabolic competition, all ten bacteria coexisted during growth on a mixture of dietary fibres, including pectin, inulin, xylan, cellobiose and starch. By integrated analyses of metabolite production, community composition and metatranscriptomics-based gene expression data, we identified interspecies metabolic interactions leading to production of key SCFAs such as butyrate and propionate. While public goods, such as sugars liberated from colonic fibres, are harvested by non-degraders, some species thrive by cross-feeding on energetically challenging substrates, including the butyrogenic conversion of acetate and lactate. Using a reductionist approach in an in-vitro system combined with functional measurements, our study provides key insights into the complex interspecies metabolic interactions between core intestinal bacterial species.

RevDate: 2022-05-06

Manos J (2022)

The human microbiome in disease and pathology.

APMIS : acta pathologica, microbiologica, et immunologica Scandinavica [Epub ahead of print].

This narrative review seeks to examine the relationships between bacterial microbiomes and infectious disease. This is achieved by detailing how different human host microbiomes develop and function, from the earliest infant acquisitions of maternal and environmental species through to the full development of microbiomes by adulthood. Communication between bacterial species or communities of species within and outside of the microbiome is a factor in both maintenance of homeostasis and management of threats from the external environment. Dysbiosis of this homeostasis is key to understanding the development of disease states. Several microbiomes and the microbiota within are used as prime examples of how changes in species composition, particularly at the phylum level, leads to such diverse conditions as inflammatory bowel disease (IBD), type 2 diabetes, psoriasis, Parkinson's disease, reflux oesophagitis and others. The review examines spatial relationships between microbiomes to understand how dysbiosis in the gut microbiome in particular can influence diseases in distant host sites via routes such as the gut-lung, gut-skin and gut-brain axes. Microbiome interaction with host processes such as adaptive immunity is increasingly identified as critical to developing the capacity of the immune system to react to pathogens. Dysbiosis of essential bacteria involved in modification of host substrates such as bile acid components can result in development of Crohn's disease, small intestine bacterial overgrowth, hepatic cancer and obesity. Interactions between microbiomes in distantly located sites are being increasingly being identified, resulting in a 'whole of body' effect by the combined host microbiome.

RevDate: 2022-04-11
CmpDate: 2022-04-11

Du Y, Feng R, Chang ET, et al (2022)

Influence of Pre-treatment Saliva Microbial Diversity and Composition on Nasopharyngeal Carcinoma Prognosis.

Frontiers in cellular and infection microbiology, 12:831409.

Background: The human microbiome has been reported to mediate the response to anticancer therapies. However, research about the influence of the oral microbiome on nasopharyngeal carcinoma (NPC) survival is lacking. We aimed to explore the effect of oral microbiota on NPC prognosis.

Methods: Four hundred eighty-two population-based NPC cases in southern China between 2010 and 2013 were followed for survival, and their saliva samples were profiled using 16s rRNA sequencing. We analyzed associations of the oral microbiome diversity with mortality from all causes and NPC.

Results: Within- and between-community diversities of saliva were associated with mortality with an average of 5.29 years follow-up. Lower Faith's phylogenetic diversity was related to higher all-cause mortality [adjusted hazard ratio (aHR), 1.52 (95% confidence interval (CI), 1.06-2.17)] and NPC-specific mortality [aHR, 1.57 (95% CI, 1.07-2.29)], compared with medium diversity, but higher phylogenetic diversity was not protective. The third principal coordinate (PC3) identified from principal coordinates analysis (PCoA) on Bray-Curtis distance was marginally associated with reduced all-cause mortality [aHR, 0.85 (95% CI, 0.73-1.00)], as was the first principal coordinate (PC1) from PCoA on weighted UniFrac [aHR, 0.86 (95% CI, 0.74-1.00)], but neither was associated with NPC-specific mortality. PC3 from robust principal components analysis was associated with lower all-cause and NPC-specific mortalities, with HRs of 0.72 (95% CI, 0.61-0.85) and 0.71 (95% CI, 0.60-0.85), respectively.

Conclusions: Oral microbiome may be an explanatory factor for NPC prognosis. Lower within-community diversity was associated with higher mortality, and certain measures of between-community diversity were related to mortality. Specifically, candidate bacteria were not related to mortality, suggesting that observed associations may be due to global patterns rather than particular pathogens.

RevDate: 2022-04-18
CmpDate: 2022-04-11

Glazier VE (2022)

EFG1, Everyone's Favorite Gene in Candida albicans: A Comprehensive Literature Review.

Frontiers in cellular and infection microbiology, 12:855229.

Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.

RevDate: 2022-05-06

Aggarwala V, Mogno I, Li Z, et al (2022)

Author Correction: Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes.

Nature microbiology, 7(5):736.

RevDate: 2022-04-08

Yadav M, NS Chauhan (2022)

Microbiome therapeutics: exploring the present scenario and challenges.

Gastroenterology report, 10:goab046.

Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.

RevDate: 2022-04-20

Kynkäänniemi E, Lahtinen MH, Jian C, et al (2022)

Correction: Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats.

Food & function, 13(8):4770.

Correction for 'Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats' by Emma Kynkäänniemi et al., Food Funct., 2022, 13, 3746-3759, DOI: 10.1039/D1FO03922A.

RevDate: 2022-04-05

Segal E, Bar Yosef S, Axel A, et al (2022)

Outbreak of Sepsis Following Surgery: Utilizing 16S RNA Sequencing To Detect the Source of Infection.

Cureus, 14(2):e22487.

Background Nosocomial infections are a significant health concern. Following surgery, infections are most commonly associated with the surgical site, yet there are other potential sources for infections after surgical interventions. Identification of the source of infections can be very challenging. Methodology An outbreak of postoperative infections following surgery led to intensive care unit (ICU) admission of patients immediately after the surgical procedure. The blood cultures of two patients were positive for Citrobacter freundii. The only connection between all cases was the anesthesiologist. An epidemiological inquiry could not definitively identify the source of the outbreak. Therefore, we utilized an RNA sequencing technique to evaluate the microbiome of the anesthesiologist and compared the results to bacteria cultured from the bloodstream of the two patients. Results The anesthesiologist's microbiome contained amplicons that were identical to those of the bacteria in the patient's bloodstream. Because Citrobacter freundii is an uncommon source of bloodstream infections, and in the normal human microbiome, the results establish the source of a cluster of infections to the anesthesiologist. Conclusions In cases of nosocomial infections, when conventional microbiological techniques do not clearly establish the source of the infection, using 16S RNA sequencing should be considered.

RevDate: 2022-04-29

Zhu Q, Huang S, Gonzalez A, et al (2022)

Phylogeny-Aware Analysis of Metagenome Community Ecology Based on Matched Reference Genomes while Bypassing Taxonomy.

mSystems, 7(2):e0016722.

We introduce the operational genomic unit (OGU) method, a metagenome analysis strategy that directly exploits sequence alignment hits to individual reference genomes as the minimum unit for assessing the diversity of microbial communities and their relevance to environmental factors. This approach is independent of taxonomic classification, granting the possibility of maximal resolution of community composition, and organizes features into an accurate hierarchy using a phylogenomic tree. The outputs are suitable for contemporary analytical protocols for community ecology, differential abundance, and supervised learning while supporting phylogenetic methods, such as UniFrac and phylofactorization, that are seldom applied to shotgun metagenomics despite being prevalent in 16S rRNA gene amplicon studies. As demonstrated in two real-world case studies, the OGU method produces biologically meaningful patterns from microbiome data sets. Such patterns further remain detectable at very low metagenomic sequencing depths. Compared with taxonomic unit-based analyses implemented in currently adopted metagenomics tools, and the analysis of 16S rRNA gene amplicon sequence variants, this method shows superiority in informing biologically relevant insights, including stronger correlation with body environment and host sex on the Human Microbiome Project data set and more accurate prediction of human age by the gut microbiomes of Finnish individuals included in the FINRISK 2002 cohort. We provide Woltka, a bioinformatics tool to implement this method, with full integration with the QIIME 2 package and the Qiita web platform, to facilitate adoption of the OGU method in future metagenomics studies. IMPORTANCE Shotgun metagenomics is a powerful, yet computationally challenging, technique compared to 16S rRNA gene amplicon sequencing for decoding the composition and structure of microbial communities. Current analyses of metagenomic data are primarily based on taxonomic classification, which is limited in feature resolution. To solve these challenges, we introduce operational genomic units (OGUs), which are the individual reference genomes derived from sequence alignment results, without further assigning them taxonomy. The OGU method advances current read-based metagenomics in two dimensions: (i) providing maximal resolution of community composition and (ii) permitting use of phylogeny-aware tools. Our analysis of real-world data sets shows that it is advantageous over currently adopted metagenomic analysis methods and the finest-grained 16S rRNA analysis methods in predicting biological traits. We thus propose the adoption of OGUs as an effective practice in metagenomic studies.

RevDate: 2022-04-05

Wang S, Song F, Gu H, et al (2022)

Comparative Evaluation of the Salivary and Buccal Mucosal Microbiota by 16S rRNA Sequencing for Forensic Investigations.

Frontiers in microbiology, 13:777882.

The human microbiome has emerged as a new potential biomarker for forensic investigations with the development of high-throughput sequencing and bioinformatic analysis during the last decade. The oral cavity has many different microbial habitats, with each habit colonized by specific and individualized microbiota. As saliva and buccal mucosa are common biological evidence in forensic science, understanding the differences of microbial communities between the two is important for forensic original identification. Moreover, the oral microbiota is individualized, whereas there are few studies on the application of forensic personal identification that need to be supplemented. In this study, Streptococcus was the most abundant genus, with an average relative abundance of 49.61% in the buccal mucosa, while in the saliva, Streptococcus, Veillonella, and Neisseria had similar proportions (20%, 15%, 16%) and were the dominant genera. The α and β diversity displayed a significant distinctness between the saliva and buccal mucosal groups. The community assembly mechanism stated that the deterministic process played a more significant effect in shaping the salivary bacterial community assembly than buccal mucosa, which explained the microbial differences. Of the test samples, 93.3% can be correctly classified with the random forest model based on the microbial differences. Targeting the low-abundance bacteria at the species level, 52% of experimental participants could be discriminated by using the observed unique bacterial species. In conclusion, the salivary bacterial community composition differed from that of the buccal mucosa and showed high richness and diversity. With the random forest model, the microbiota of saliva and buccal mucosa can be classified, which can be used in identifying the source of oral biological trace. Furthermore, each individual has a unique bacterial community pattern, and the presence or absence of unique bacteria and differences in the composition of the core oral microbiota are the key points for forensic personal discrimination that supplement the study of oral microbial application to forensic personal discrimination. Whether for original identification or personal discrimination, the oral microbiome has great potential for application.

RevDate: 2022-04-05

Rees J, Fu SC, Lo J, et al (2022)

How a 7-Week Food Literacy Cooking Program Affects Cooking Confidence and Mental Health: Findings of a Quasi-Experimental Controlled Intervention Trial.

Frontiers in nutrition, 9:802940.

Obesity and mental health disorders are rising simultaneously with shifting dietary behavior away from home cooking, toward typically nutrition-poor and energy-dense convenience meals. Food literacy strongly influences nutrition choices. Community-based cooking interventions target barriers to healthy eating and facilitate development of food literacy skills, thereby potentially increasing preparation of home-cooked meals and positively influencing health. This study of 657 healthy Australian adults explored the efficacy of a 7-week cooking program in improving cooking confidence, whether this transferred to behavior surrounding food, and/or affected mental health. Significant post-program improvements in cooking confidence and satisfaction (all p < 0.001, η p 2 1.12 large), ability to change eating habits (p < 0.001) and overcome lifestyle barriers (p = 0.005) were observed for the intervention group but not control. Participation also improved mental and general health (all p < 0.05, η p 2 0.02 small). No changes were observed for acquisition and consumption of food, or nutrition knowledge in either group. This 7-week cooking program built cooking confidence and improved general and mental health but did not change dietary behavior. To further improve nutrition related behaviors associated with better mental health, more effort is needed to recruit those with below-average nutrition knowledge and interest in cooking.

RevDate: 2022-04-05
CmpDate: 2022-04-05

Monir RL, JJ Schoch (2022)

Clinical Relevance of the Microbiome in Pediatric Skin Disease: A Review.

Dermatologic clinics, 40(2):117-126.

The human microbiome encompasses the microorganisms that live in and on the body. During the prenatal and infantile periods, foundations for the cutaneous and gut microbiomes are being established and refined concurrently with the development of immune function. Herein, we review the relevance of the microbiome to 5 conditions commonly encountered in pediatric dermatology: acne, alopecia areata, atopic dermatitis, psoriasis, and seborrheic dermatitis. Understanding the role microbes play in these conditions may establish the groundwork for future therapeutic interventions.

RevDate: 2022-05-12
CmpDate: 2022-05-03

Patel JR, Oh J, Wang S, et al (2022)

Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome.

Cell, 185(9):1487-1505.e14.

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.

RevDate: 2022-05-11

Sexton RE, Uddin MH, Bannoura S, et al (2022)

Connecting the Human Microbiome and Pancreatic Cancer.

Cancer metastasis reviews [Epub ahead of print].

Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.

RevDate: 2022-04-08
CmpDate: 2022-04-04

Wensel CR, Pluznick JL, Salzberg SL, et al (2022)

Next-generation sequencing: insights to advance clinical investigations of the microbiome.

The Journal of clinical investigation, 132(7):.

Next-generation sequencing (NGS) technology has advanced our understanding of the human microbiome by allowing for the discovery and characterization of unculturable microbes with prediction of their function. Key NGS methods include 16S rRNA gene sequencing, shotgun metagenomic sequencing, and RNA sequencing. The choice of which NGS methodology to pursue for a given purpose is often unclear for clinicians and researchers. In this Review, we describe the fundamentals of NGS, with a focus on 16S rRNA and shotgun metagenomic sequencing. We also discuss pros and cons of each methodology as well as important concepts in data variability, study design, and clinical metadata collection. We further present examples of how NGS studies of the human microbiome have advanced our understanding of human disease pathophysiology across diverse clinical contexts, including the development of diagnostics and therapeutics. Finally, we share insights as to how NGS might further be integrated into and advance microbiome research and clinical care in the coming years.

RevDate: 2022-05-19
CmpDate: 2022-04-04

Reid G, Dhir R, PA Bron (2022)

Fixing Functional GI Disorders Using Microbes: Easier Said Than Done.

Frontiers in endocrinology, 13:804179.

RevDate: 2022-05-11

Challa AP, Hu X, Zhang YQ, et al (2022)

Virtual Screening for the Discovery of Microbiome β-Glucuronidase Inhibitors to Alleviate Cancer Drug Toxicity.

Journal of chemical information and modeling, 62(7):1783-1793.

Despite the potency of most first-line anti-cancer drugs, nonadherence to these drug regimens remains high and is attributable to the prevalence of "off-target" drug effects that result in serious adverse events (SAEs) like hair loss, nausea, vomiting, and diarrhea. Some anti-cancer drugs are converted by liver uridine 5'-diphospho-glucuronosyltransferases through homeostatic host metabolism to form drug-glucuronide conjugates. These sugar-conjugated metabolites are generally inactive and can be safely excreted via the biliary system into the gastrointestinal tract. However, β-glucuronidase (βGUS) enzymes expressed by commensal gut bacteria can remove the glucuronic acid moiety, producing the reactivated drug and triggering dose-limiting side effects. Small-molecule βGUS inhibitors may reduce this drug-induced gut toxicity, allowing patients to complete their full course of treatment. Herein, we report the discovery of novel chemical series of βGUS inhibitors by structure-based virtual high-throughput screening (vHTS). We developed homology models for βGUS and applied them to large-scale vHTS against nearly 400,000 compounds within the chemical libraries of the National Center for Advancing Translational Sciences at the National Institutes of Health. From the vHTS results, we cherry-picked 291 compounds via a multifactor prioritization procedure, providing 69 diverse compounds that exhibited positive inhibitory activity in a follow-up βGUS biochemical assay in vitro. Our findings correspond to a hit rate of 24% and could inform the successful downstream development of a therapeutic adjunct that targets the human microbiome to prevent SAEs associated with first-line, standard-of-care anti-cancer drugs.

RevDate: 2022-05-06

Gomez-Raya-Vilanova MV, Leskinen K, Bhattacharjee A, et al (2022)

The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner.

Nucleic acids research, 50(7):3985-3997.

Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33-36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.

RevDate: 2022-04-01

Montemari AL, Marzano V, Essa N, et al (2022)

A Shaving Proteomic Approach to Unveil Surface Proteins Modulation of Multi-Drug Resistant Pseudomonas aeruginosa Strains Isolated From Cystic Fibrosis Patients.

Frontiers in medicine, 9:818669.

Cystic fibrosis (CF) is the most common rare disease caused by a mutation of the CF transmembrane conductance regulator gene encoding a channel protein of the apical membrane of epithelial cells leading to alteration of Na+ and K+ transport, hence inducing accumulation of dense and sticky mucus and promoting recurrent airway infections. The most detected bacterium in CF patients is Pseudomonas aeruginosa (PA) which causes chronic colonization, requiring stringent antibiotic therapies that, in turn induces multi-drug resistance. Despite eradication attempts at the first infection, the bacterium is able to utilize several adaptation mechanisms to survive in hostile environments such as the CF lung. Its adaptive machinery includes modulation of surface molecules such as efflux pumps, flagellum, pili and other virulence factors. In the present study we compared surface protein expression of PA multi- and pan-drug resistant strains to wild-type antibiotic-sensitive strains, isolated from the airways of CF patients with chronic colonization and recent infection, respectively. After shaving with trypsin, microbial peptides were analyzed by tandem-mass spectrometry on a high-resolution platform that allowed the identification of 174 differentially modulated proteins localized in the region from extracellular space to cytoplasmic membrane. Biofilm assay was performed to characterize all 26 PA strains in term of biofilm production. Among the differentially expressed proteins, 17 were associated to the virulome (e.g., Tse2, Tse5, Tsi1, PilF, FliY, B-type flagellin, FliM, PyoS5), six to the resistome (e.g., OprJ, LptD) and five to the biofilm reservoir (e.g., AlgF, PlsD). The biofilm assay characterized chronic antibiotic-resistant isolates as weaker biofilm producers than wild-type strains. Our results suggest the loss of PA early virulence factors (e.g., pili and flagella) and later expression of virulence traits (e.g., secretion systems proteins) as an indicator of PA adaptation and persistence in the CF lung environment. To our knowledge, this is the first study that, applying a shaving proteomic approach, describes adaptation processes of a large collection of PA clinical strains isolated from CF patients in early and chronic infection phases.

RevDate: 2022-05-03

Kamdar S, Shin S, Leishangthem P, et al (2022)

The colloidal nature of complex fluids enhances bacterial motility.

Nature, 603(7903):819-823.

The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms1-5. Although the low-Reynolds-number hydrodynamics of swimming flagellated bacteria in simple Newtonian fluids has been well developed6-9, our understanding of bacterial motility in complex non-Newtonian fluids is less mature10,11. Even after six decades of research, fundamental questions about the nature and origin of bacterial motility enhancement in polymer solutions are still under debate12-23. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling18,24. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon12-23. A physical model that incorporates the colloidal nature of complex fluids quantitatively explains bacterial wobbling dynamics and mobility enhancement in both colloidal and polymeric fluids. Our findings contribute to the understanding of motile behaviours of bacteria in complex fluids, which are relevant for a wide range of microbiological processes25 and for engineering bacterial swimming in complex environments26,27.

RevDate: 2022-05-03
CmpDate: 2022-04-27

Houttu N, Mokkala K, Saleem WT, et al (2022)

Potential pathobionts in vaginal microbiota are affected by fish oil and/or probiotics intervention in overweight and obese pregnant women.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 149:112841.

New means to stabilize the microbial balance during pregnancy could benefit maternal health. Our objectives were to investigate in overweight/obese pregnant women 1) the impact of long-chain polyunsaturated fatty acids (fish oil) and/or probiotics on the vaginal microbiota, 2) its relation to gestational diabetes mellitus (GDM) and 3) its interaction with vaginal active matrix metalloproteinase-8 (aMMP-8) and serum high sensitivity C-reactive protein (hsCRP) and phosphorylated insulin-like growth factor-binding protein-1 (phIGFBP-1), IGFBP-1 and aMMP-8. The women were allocated to fish oil + placebo, probiotics + placebo, fish oil + probiotics and placebo + placebo-groups, from early pregnancy onwards (fish oil: 1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid; probiotics: Lacticaseibacillus rhamnosus HN001 (formerly Lactobacillus rhamnosus HN001) and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each). Vaginal and serum samples (early pregnancy, n = 112; late pregnancy, n = 116), were analyzed for vaginal microbiota using 16S rRNA gene amplicon sequencing and vaginal aMMP-8 and serum hsCRP, aMMP-8, phIGFBP-1 and IGFBP-1 by immunoassays. GDM was diagnosed from a 2-h 75 g OGTT. ClinicalTrials.gov, NCT01922791. The intervention exerted effects on many low-abundant bacteria. Compared to the placebo-group, there was a lower abundance of potential pathobionts, namely Ureaplasma urealyticum in the fish oil-group, Ureaplasma, U. urealyticum and Prevotella disiens in the probiotics-group, Dialister invisus and Prevotella timonensis in the fish oil + probiotics-group. Moreover, probiotics decreased the abundance of a few potential pathobionts during pregnancy. Many bacteria were related to GDM. The vaginal aMMP-8 level correlated significantly with α-diversity and inversely with two Lactobacillus species. Dietary interventions, especially probiotics, may have beneficial effects on the vaginal microbiota during pregnancy.

RevDate: 2022-04-29
CmpDate: 2022-04-29

Berlinberg AJ, Brar A, Stahly A, et al (2022)

A Novel Approach toward Less Invasive Multiomics Gut Analyses: a Pilot Study.

Microbiology spectrum, 10(2):e0244621.

Newer 'omics approaches, such as metatranscriptomics and metabolomics, allow functional assessments of the interaction(s) between the gut microbiome and the human host. However, in order to generate meaningful data with these approaches, the method of sample collection is critical. Prior studies have relied on expensive and invasive means toward sample acquisition, such as intestinal biopsy, while other studies have relied on easier methods of collection, such as fecal samples that do not necessarily represent those microbes in contact with the host. In this pilot study, we attempt to characterize a novel, minimally invasive method toward sampling the human microbiome using mucosal cytology brush sampling compared to intestinal gut biopsy samples on 5 healthy participants undergoing routine screening colonoscopy. We compared metatranscriptomic analyses between the two collection methods and identified increased taxonomic evenness and beta diversity in the cytology brush samples and similar community transcriptional profiles between the two methods. Metabolomics assessment demonstrated striking differences between the two methods, implying a difference in bacterial-derived versus human-absorbed metabolites. Put together, this study supports the use of microbiome sampling with cytology brushes, but caution must be exercised when performing metabolomics assessment, as this represents differential metabolite production but not absorption by the host. IMPORTANCE In order to generate meaningful metabolomic and microbiome data, the method of sample collection is critical. This study utilizes and compares two methods for intestinal tissue collection for evaluation of metabolites and microbiomes, finding that using a brush to sample the microbiome provides valuable data. However, for metabolomics assessment, biopsy samples may still be required.

RevDate: 2022-03-29

Schiller H, Young C, Schulze S, et al (2022)

A Twist to the Kirby-Bauer Disk Diffusion Susceptibility Test: an Accessible Laboratory Experiment Comparing Haloferax volcanii and Escherichia coli Antibiotic Susceptibility to Highlight the Unique Cell Biology of Archaea.

Journal of microbiology & biology education, 23(1):.

Archaea, once thought to only live in extreme environments, are present in many ecosystems, including the human microbiome, and they play important roles ranging from nutrient cycling to bioremediation. Yet this domain is often overlooked in microbiology classes and rarely included in laboratory exercises. Excluding archaea from high school and undergraduate curricula prevents students from learning the uniqueness and importance of this domain. Here, we have modified a familiar and popular microbiology experiment-the Kirby-Bauer disk diffusion antibiotic susceptibility test-to include, together with the model bacterium Escherichia coli, the model archaeon Haloferax volcanii. Students will learn the differences and similarities between archaea and bacteria by using antibiotics that target, for example, the bacterial peptidoglycan cell wall or the ribosome. Furthermore, the experiment provides a platform to reiterate basic cellular biology concepts that students may have previously discussed. We have developed two versions of this experiment, one designed for an undergraduate laboratory curriculum and the second, limited to H. volcanii, that high school students can perform in their classrooms. This nonpathogenic halophile can be cultured aerobically at ambient temperature in high-salt media, preventing contamination, making the experiment low-cost and safe for use in the high school setting.

RevDate: 2022-03-26

Palacios-García I, Mhuireach GA, Grasso-Cladera A, et al (2022)

The 4E approach to the human microbiome: Nested interactions between the gut-brain/body system within natural and built environments.

BioEssays : news and reviews in molecular, cellular and developmental biology [Epub ahead of print].

The complexity of the human mind and its interaction with the environment is one of the main epistemological debates throughout history. Recent ideas, framed as the 4E perspective to cognition, highlight that human experience depends causally on both cerebral and extracranial processes, but also is embedded in a particular sociomaterial context and is a product of historical accumulation of trajectory changes throughout life. Accordingly, the human microbiome is one of the most intriguing actors modulating brain function and physiology. Here, we present the 4E approach to the Human Microbiome for understanding mental processes from a broader perspective, encompassing one's body physiology and environment throughout their lifespan, interconnected by microbiome community structure and dynamics. We review evidence supporting the approach theoretically and motivates the study of the global set of microbial ecosystem networks encountered by a person across their lifetime (from skin to gut to natural and built environments). We furthermore trace future empirical implementation of the approach. We finally discuss novel research opportunities and clinical interventions aimed toward developing low-cost/high-benefit integrative and personalized bio-psycho-socio-environmental treatments for mental health and including the brain-gut-microbiome axis.

RevDate: 2022-03-29

Ji D, Sun H, Yang W, et al (2022)

Transfer of Human Microbiome to Drosophila Gut Model.

Microorganisms, 10(3):.

Laboratory animals with human microbiome have increasingly been used to study the role of bacteria and host interaction. Drosophila melanogaster, as a model of microbiota-host interaction with high reproductive efficiency and high availability, has always been lacking studies of interaction with human gut microbiome. In this study, we attempted to use antibiotic therapy and human fecal exposure strategy to transfer the human microbiome to the drosophila. The method includes depleting the original intestinal bacteria using a broad-spectrum antibiotic and then introducing human microorganisms by a diet supplemented with donor's fecal samples. The sequencing results showed that 80-87.5% of the OTUs (Operational Taxonomic Units) from donor feces were adopted by the recipient drosophila following 30 days of observation. In comparison to females, the male recipient drosophila inherited more microbiota from the donor feces and had significantly increased lifespan as well as improved vertical climbing ability. Furthermore, distinctly differential expression patterns for age and insulin-like signaling-related genes were obtained for the male vs. female recipients. Only the male drosophila offspring acquired the characteristics of the donor fecal microbiota.

RevDate: 2022-05-09
CmpDate: 2022-05-09

Crits-Christoph A, Hallowell HA, Koutouvalis K, et al (2022)

Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome.

Gut microbes, 14(1):2055944.

A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.

RevDate: 2022-03-29

Panthee B, Gyawali S, Panthee P, et al (2022)

Environmental and Human Microbiome for Health.

Life (Basel, Switzerland), 12(3):.

Microorganisms are an essential part of life on the earth and can exist in association with virtually any living thing. The environmental microbiome is much more diverse than the human microbiome. It is reported that most microbes existing in the environment are difficult to culture in the laboratory. Whereas both pathogenic and beneficial microbes may be prevailing in the environment, the human body can have three categories of microbes- beneficial, pathogenic, and opportunistic pathogenic. With at least 10-fold more cells than human cells, microbes as normal flora are critical for human survival. The microbes present in the human body play a crucial role in maintaining human health, and the environmental microbiome influences the human microbiome makeup. The interaction between the environmental and human microbiome highly influences human health, however it is poorly understood. In addition, as an established infection is associated with health-seeking behavior, a large number of studies have focused on the transmission and dynamics of infectious microorganisms than the noninfectious or beneficial ones. This review will summarize how the interaction between the environmental and human microbiome affects human health and identify approaches that might be beneficial for humans to improve health by being exposed to the natural environment.

RevDate: 2022-05-07

Adelfio M, CE Ghezzi (2022)

Long-Term In Vitro Culture Systems to Study Human Microbiome.

ACS biomaterials science & engineering [Epub ahead of print].

Microbial communities are eubiotic ecosystems that interact dynamically and synergistically with the human body. Imbalances in these interactions may cause dysbiosis by enhancing the occurrence of inflammatory conditions, such as periodontal or inflammatory bowel diseases. However, the mechanisms that lie behind eubiosis-dysbiosis transitions are still unclear and constantly being redefined. While the societal impact of these diseases is steadily increasing, the lack of a clear understanding behind the onset of the inflammatory conditions prevents the proper clinical strategies from being formulated. Although preclinical and clinical models and short-term planar in vitro cultures represent superb research tools, they are still lacking human relevance and long-term use. Bioreactors and organs-on-a-chip have attracted interest because of their ability to recreate and sustain the physical, structural, and mechanical features of the native environment, as well as to support long-term coculture of mammalian cells and the microbiome through modulation of pH and oxygen gradients. Existing devices, however, are still under development to sustain the microbiome-host coculture over long periods of time. In this scenario, to understand disease triggers and develop therapeutics, research efforts should command the development of three-dimensional constructs that would allow the investigation of processes underlying the microbial community assembly and how microorganisms influence host traits in both acute and chronic conditions.

RevDate: 2022-04-06
CmpDate: 2022-04-06

Carmona-Cruz S, Orozco-Covarrubias L, M Sáez-de-Ocariz (2022)

The Human Skin Microbiome in Selected Cutaneous Diseases.

Frontiers in cellular and infection microbiology, 12:834135.

The human skin harbors a wide variety of microbes that, together with their genetic information and host interactions, form the human skin microbiome. The role of the human microbiome in the development of various diseases has lately gained interest. According to several studies, changes in the cutaneous microbiota are involved in the pathophysiology of several dermatoses. A better delineation of the human microbiome and its interactions with the innate and adaptive immune systems could lead to a better understanding of these diseases, as well as the opportunity to achieve new therapeutic modalities. The present review centers on the most recent knowledge on skin microbiome and its participation in the pathogenesis of several skin disorders: atopic and seborrheic dermatitis, alopecia areata, psoriasis and acne.

RevDate: 2022-04-14
CmpDate: 2022-04-14

Chen M, Fan HN, Chen XY, et al (2022)

Alterations in the saliva microbiome in patients with gastritis and small bowel inflammation.

Microbial pathogenesis, 165:105491.

The oral microbiome is an important part of the human microbiome. Accumulating data have shown that oral microbiome alterations are closely related to multiple human diseases. However, salivary microbiota distributions remain unclear in patients with gastritis and small bowel inflammation. Magnetically guided capsule endoscopy (MGCE) is a noninvasive diagnostic tool for patients with gastritis and small bowel inflammation. Herein, we analysed the alterations in saliva microbiota in the normal, small intestinal inflammation and chronic gastritis groups through 16S rRNA gene amplicon sequencing. We found that the abundance of Lactobacillaceae was dramatically higher in chronic gastritis group than healthy individuals (p = 0.001). The levels of Porphyromonas and Faecalibaculum in gastritis samples were increased (p = 0.028; p = 0.006), and the enrichments of Faecalibaculum and Kosakonia in small intestine inflammation samples were elevated (p < 0.001; p = 0.002) compared to those in normal individuals. Our findings clarify the saliva microbiota components and their importance of specific bacteria in gastritis and small bowel inflammation.

RevDate: 2022-03-18

Bernabé BP, Maki PM, Dowty SM, et al (2022)

Correction to: Precision medicine in perinatal depression in light of the human microbiome.

RevDate: 2022-05-02
CmpDate: 2022-05-02

Gehrig JL, Portik DM, Driscoll MD, et al (2022)

Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data.

Microbial genomics, 8(3):.

A long-standing challenge in human microbiome research is achieving the taxonomic and functional resolution needed to generate testable hypotheses about the gut microbiota's impact on health and disease. With a growing number of live microbial interventions in clinical development, this challenge is renewed by a need to understand the pharmacokinetics and pharmacodynamics of therapeutic candidates. While short-read sequencing of the bacterial 16S rRNA gene has been the standard for microbiota profiling, recent improvements in the fidelity of long-read sequencing underscores the need for a re-evaluation of the value of distinct microbiome-sequencing approaches. We leveraged samples from participants enrolled in a phase 1b clinical trial of a novel live biotherapeutic product to perform a comparative analysis of short-read and long-read amplicon and metagenomic sequencing approaches to assess their utility for generating clinical microbiome data. Across all methods, overall community taxonomic profiles were comparable and relationships between samples were conserved. Comparison of ubiquitous short-read 16S rRNA amplicon profiling to long-read profiling of the 16S-ITS-23S rRNA amplicon showed that only the latter provided strain-level community resolution and insight into novel taxa. All methods identified an active ingredient strain in treated study participants, though detection confidence was higher for long-read methods. Read coverage from both metagenomic methods provided evidence of active-ingredient strain replication in some treated participants. Compared to short-read metagenomics, approximately twice the proportion of long reads were assigned functional annotations. Finally, compositionally similar bacterial metagenome-assembled genomes (MAGs) were recovered from short-read and long-read metagenomic methods, although a greater number and more complete MAGs were recovered from long reads. Despite higher costs, both amplicon and metagenomic long-read approaches yielded added microbiome data value in the form of higher confidence taxonomic and functional resolution and improved recovery of microbial genomes compared to traditional short-read methodologies.

RevDate: 2022-05-11

Forster SC, Liu J, Kumar N, et al (2022)

Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome.

Nature communications, 13(1):1445.

Mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) disseminate ARGs when they mobilise into new bacterial hosts. The nature of such horizontal gene transfer (HGT) events between human gut commensals and pathogens remain poorly characterised. Here, we compare 1354 cultured commensal strains (540 species) to 45,403 pathogen strains (12 species) and find 64,188 MGE-mediated ARG transfer events between the two groups using established methods. Among the 5931 MGEs, we find 15 broad host range elements predicted to have crossed different bacterial phyla while also occurring in animal and environmental microbiomes. We experimentally demonstrate that predicted broad host range MGEs can mobilise from commensals Dorea longicatena and Hungatella hathewayi to pathogen Klebsiella oxytoca, crossing phyla simultaneously. Our work establishes the MGE-mediated ARG dissemination network between human gut commensals and pathogens and highlights broad host range MGEs as targets for future ARG dissemination management.

RevDate: 2022-03-19

Zioutis C, Seki D, Bauchinger F, et al (2022)

Ecological Processes Shaping Microbiomes of Extremely Low Birthweight Infants.

Frontiers in microbiology, 13:812136.

The human microbiome has been implicated in affecting health outcomes in premature infants, but the ecological processes governing early life microbiome assembly remain poorly understood. Here, we investigated microbial community assembly and dynamics in extremely low birth weight infants (ELBWI) over the first 2 weeks of life. We profiled the gut, oral cavity and skin microbiomes over time using 16S rRNA gene amplicon sequencing and evaluated the ecological forces shaping these microbiomes. Though microbiomes at all three body sites were characterized by compositional instability over time and had low body-site specificity (PERMANOVA, r 2 = 0.09, p = 0.001), they could nonetheless be clustered into four discrete community states. Despite the volatility of these communities, deterministic assembly processes were detectable in this period of initial microbial colonization. To further explore these deterministic dynamics, we developed a probabilistic approach in which we modeled microbiome state transitions in each ELBWI as a Markov process, or a "memoryless" shift, from one community state to another. This analysis revealed that microbiomes from different body sites had distinctive dynamics as well as characteristic equilibrium frequencies. Time-resolved microbiome sampling of premature infants may help to refine and inform clinical practices. Additionally, this work provides an analysis framework for microbial community dynamics based on Markov modeling that can facilitate new insights, not only into neonatal microbiomes but also other human-associated or environmental microbiomes.

RevDate: 2022-03-16

Liu Y, Xiao F, Zhang R, et al (2022)

Alterations of Plasma Microbiome: A Potentially New Perspective to the Dysbiosis in Systemic Lupus Erythematosus?.

The human microbiome, which consists of the microbial communities inhabiting the human body, has sparked growing excitement in both basic research and clinical practice.1,2 Gut microbiota, in particular, has been considered a major environmental factor in modulating immune responses in autoimmune diseases (ADs).3,4.

RevDate: 2022-04-04
CmpDate: 2022-03-16

Launonen H, Pang Z, Linden J, et al (2021)

Evidence for local aldosterone synthesis in the large intestine of the mouse.

Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 72(5):.

Aldosterone, the main physiological mineralocorticoid, regulates sodium and potassium balance in the distal convoluted tubule of the kidney. Aldosterone is synthesized from cholesterol in the adrenal cortex in a sequence of enzymatic steps. Recently however, several tissues or cells e.g. brain, heart, blood vessels, kidneys and adipocytes have been shown to possess capability to produce aldosterone locally, and there is some evidence that this occurs also in the intestine. Colon expresses mineralocorticoid receptors and is capable of synthesizing corticosterone, the second last intermediate on the route to aldosterone from cholesterol. Based on such reports and on our preliminary finding, we hypothesized that aldosterone could be synthesized locally in the intestine and therefore we measured the concentration of aldosterone as well as the protein and gene expression of aldosterone synthase (CYP11B2), an enzyme responsible on aldosterone synthesis, from the distal section of the gastrointestinal tract of 10-week-old Balb/c male mice. It is known that sodium deficiency regulates aldosterone synthesis in adrenal glands, therefore we fed the mice with low (0.01%), normal (0.2%) and high-sodium (1.6%) diets for 14 days. Here we report that, aldosterone was detected in colon and cecum samples. Measurable amounts of CYP11B2 protein were detected by Western blot and Elisa analysis from both intestinal tissues. We detected CYP11B2 gene expression from the large intestine along with immunohistochemical findings of CYP11B2 in colonic wall. Sodium depletion increased the aldosterone concentration in plasma compared to control and high-sodium groups as well as in the intestine compared to mice fed with the high-sodium diet. To summarize, this study further supports the presence of aldosterone and the enzyme needed to produce this mineralocorticoid in the murine large intestine.

RevDate: 2022-05-07

Wani AK, Roy P, Kumar V, et al (2022)

Metagenomics and artificial intelligence in the context of human health.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 100:105267.

Human microbiome is ubiquitous, dynamic, and site-specific consortia of microbial communities. The pathogenic nature of microorganisms within human tissues has led to an increase in microbial studies. Characterization of genera, like Streptococcus, Cutibacterium, Staphylococcus, Bifidobacterium, Lactococcus and Lactobacillus through culture-dependent and culture-independent techniques has been reported. However, due to the unique environment within human tissues, it is difficult to culture these microorganisms making their molecular studies strenuous. MGs offer a gateway to explore and characterize hidden microbial communities through a culture-independent mode by direct DNA isolation. By function and sequence-based MGs, Scientists can explore the mechanistic details of numerous microbes and their interaction with the niche. Since the data generated from MGs studies is highly complex and multi-dimensional, it requires accurate analytical tools to evaluate and interpret the data. Artificial intelligence (AI) provides the luxury to automatically learn the data dimensionality and ease its complexity that makes the disease diagnosis and disease response easy, accurate and timely. This review provides insight into the human microbiota and its exploration and expansion through MG studies. The review elucidates the significance of MGs in studying the changing microbiota during disease conditions besides highlighting the role of AI in computational analysis of MG data.

RevDate: 2022-05-10
CmpDate: 2022-03-31

Cai YY, Huang FQ, Lao X, et al (2022)

Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis.

NPJ biofilms and microbiomes, 8(1):11.

Microbial trimethylamine (TMA)-lyase activity promotes the development of atherosclerosis by generating of TMA, the precursor of TMA N-oxide (TMAO). TMAO is well documented, but same can not be said of TMA-producing bacteria. This work aimed to identify TMA-producing genera in human intestinal microbiota. We retrieved the genomes of human-associated microorganisms from the Human Microbiome Project database comprising 1751 genomes, Unified Human Gastrointestinal Genome collection consisting 4644 gut prokaryotes, recapitulated 4930 species-level genome bins and public gut metagenomic data of 2134 individuals from 11 populations. By sequence searching, 216 TMA-lyase-containing species from 102 genera were found to contain the homologous sequences of cntA/B, yeaW/X, and/or cutC/D. We identified 13 strains from 5 genera with cntA sequences, and 30 strains from 14 genera with cutC showing detectable relative abundance in healthy individuals. Lachnoclostridium (p = 2.9e-05) and Clostridium (p = 5.8e-04), the two most abundant cutC-containing genera, were found to be much higher in atherosclerotic patients compared with healthy persons. Upon incubation with choline (substrate), L. saccharolyticum effectively transformed it to TMA at a rate higher than 98.7% while that for C. sporogenes was 63.8-67.5% as detected by liquid chromatography-triple quadrupole mass spectrometry. In vivo studies further showed that treatment of L. saccharolyticum and choline promoted a significant increase in TMAO level in the serum of ApoE-/- mice with obvious accumulation of aortic plaque in same. This study discloses the significance and efficiency of the gut bacterium L. saccharolyticum in transforming choline to TMA and consequently promoting the development of atherosclerosis.

RevDate: 2022-03-10

Zhou F, Gan R, Zhang F, et al (2022)

PHISDetector: A tool to detect diverse in silico phage-host interaction signals for virome studies.

Genomics, proteomics & bioinformatics pii:S1672-0229(22)00017-1 [Epub ahead of print].

Phage-microbe interactions are appealing systems to study coevolution, and have also been increasingly emphasized due to their role in human health, disease, and the development of novel therapeutics. Phage-microbe interactions leave diverse signals in bacterial and phage genomic sequences, defined as phage-host interaction signals (PHISs), which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) targeting, prophage, and protein-protein interaction signals. In the present study, we developed a novel tool phage-host interaction signal detector (PHISDetector) to predict phage-host interactions by detecting and integrating diverse in silico PHISs, and scoring the probability of phage-host interactions using machine learning models based on PHIS features. We evaluated the performance of PHISDetector on multiple benchmark datasets and application cases. When testing on a dataset of 758 annotated phage-host pairs, PHISDetector yields the prediction accuracies of 0.51 and 0.73 at the species and genus level outperforming other phage-host prediction tools. When applying on 125,842 metagenomic viral contigs (mVCs) derived from 3042 geographically diverse samples, a detection rate of 54.54% could be achieved. Furthermore, PHISDetector could predict infecting phages for 85.6% of 368 multidrug-resistant (MDR) bacteria and 30% of 454 human gut bacteria obtained from the National Institutes of Health (NIH) Human Microbiome Project (HMP). The PHISDetector can be run either as a web server (http://www.microbiome-bigdata.com/PHISDetector/) for general users to study individual inputs or as a stand-alone version (https://github.com/HIT-ImmunologyLab/PHISDetector) to process massive phage contigs from virome studies.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )