Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Climate Change

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 15 Apr 2024 at 01:51 Created: 

Climate Change

The world is warming up, with 2023 being by far the hottest year since record keeping began and 2024 shaping up to be hotter yet. But these changes only involve one or two degrees. What's the big deal?

The amount of energy required to raise the temperature of one liter of water by one degree is one kilocalorie (kcal). Scaling up, the amount of energy required for a one-degree increase in the water temperature of the Gulf of Mexico is 2,434,000,000,000,000,000 kcals. That's 25 million times more energy than released by the WW-II atomic bomb that destroyed the city of Hiroshima and killed more than 100,000 people.

So, for every one degree increase in water temperature, the Gulf of Mexico takes on 25-million atomic bombs worth of new energy, which is then available to fuel hurricanes and other storms. Maybe a one-degree rise in temperature is a big deal.

Created with PubMed® Query: (( "climate change"[TITLE] OR "global warming"[TITLE] )) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2024-04-13

Barton M, Elhindi J, Dey C, et al (2024)

Climate change: A clear and present danger to mental health - Response to Amos (2023) 'Thinking clearly about climate change and mental health'.

RevDate: 2024-04-13

Deng C, Zhong Q, Shao D, et al (2024)

Potential Suitable Habitats of Chili Pepper in China under Climate Change.

Plants (Basel, Switzerland), 13(7):.

Chili pepper (Capsicum annuum L.) is extensively cultivated in China, with its production highly reliant on regional environmental conditions. Given ongoing climate change, it is imperative to assess its impact on chili pepper cultivation and identify suitable habitats for future cultivation. In this study, the MaxEnt model was optimized and utilized to predict suitable habitats for open-field chili pepper cultivation, and changes in these habitats were analyzed using ArcGIS v10.8. Our results showed that the parameter settings of the optimal model were FC = LQPTH and RM = 2.7, and the critical environmental variables influencing chili pepper distribution were annual mean temperature, isothermality, maximum temperature of the warmest month, and precipitation of the warmest quarter. Under current climate conditions, suitable habitats were distributed across all provinces in China, with moderately- and highly-suitable habitats concentrated in the east of the Qinghai-Tibetan Plateau and south of the Inner Mongolia Plateau. Under future climate scenarios, the area of suitable habitats was expected to be larger than the current ones, except for SSP126-2050s, and reached the maximum under SSP126-2090s. The overlapping suitable habitats were concentrated in the east of the Qinghai-Tibetan Plateau and south of the Inner Mongolia Plateau under various climate scenarios. In the 2050s, the centroids of suitable habitats were predicted to shift towards the southwest, except for SSP126, whereas this trend was reversed in the 2090s. Our results suggest that climate warming is conductive to the cultivation of chili pepper, and provide scientific guidance for the introduction and cultivation of chili pepper in the face of climate warming.

RevDate: 2024-04-13

Zhang S, Wang X, Kinay P, et al (2024)

Climate Change Impacts on Potato Storage.

Foods (Basel, Switzerland), 13(7): pii:foods13071119.

In this study, we present a comprehensive literature review of the potential impacts of climate change on potato storage. Potato preservation can help reduce food loss and waste while increasing long-term food security, as potatoes are one of the most important crops worldwide. The review's results suggest climate change can negatively affect potato storage, especially tuber sprouting and diseases in storage chambers. Lower Sielianinov coefficient values (indicating dry and hot conditions) during the vegetative season of potato growing can lead to earlier sprouting. For instance, a decrease of 0.05 in the Sielianinov coefficient during the growing season results in tubers stored at 3 °C sprouting 25 days earlier and tubers stored at 5 °C experiencing a 15-day reduction in dormancy. This is due to the fact that the dry and hot climate conditions during the vegetation period of potato planting tend to shorten potato tubers' natural dormancy, which further leads to earlier sprouting during storage. Furthermore, high Sielianinov coefficient values may lead to worse disease situations. The results also suggest that research about the impacts of climate change on potato storage is very limited at the current stage, and further studies are needed to address the key knowledge gaps identified in this study.

RevDate: 2024-04-13

ÄŒanak I, Kostelac D, Jakopović Ž, et al (2024)

Lactic Acid Bacteria of Marine Origin as a Tool for Successful Shellfish Farming and Adaptation to Climate Change Conditions.

Foods (Basel, Switzerland), 13(7): pii:foods13071042.

Climate change, especially in the form of temperature increase and sea acidification, poses a serious challenge to the sustainability of aquaculture and shellfish farming. In this context, lactic acid bacteria (LAB) of marine origin have attracted attention due to their ability to improve water quality, stimulate the growth and immunity of organisms, and reduce the impact of stress caused by environmental changes. Through a review of relevant research, this paper summarizes previous knowledge on this group of bacteria, their application as protective probiotic cultures in mollusks, and also highlights their potential in reducing the negative impacts of climate change during shellfish farming. Furthermore, opportunities for further research and implementation of LAB as a sustainable and effective solution for adapting mariculture to changing climate conditions were identified.

RevDate: 2024-04-12

Sun PW, Chang JT, Luo MX, et al (2024)

Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change.

BMC plant biology, 24(1):279.

BACKGROUND: Climate change is expected to alter the factors that drive changes in adaptive variation. This is especially true for species with long life spans and limited dispersal capabilities. Rapid climate changes may disrupt the migration of beneficial genetic variations, making it challenging for them to keep up with changing environments. Understanding adaptive genetic variations in tree species is crucial for conservation and effective forest management. Our study used landscape genomic analyses and phenotypic traits from a thorough sampling across the entire range of Quercus longinux, an oak species native to Taiwan, to investigate the signals of adaptation within this species.

RESULTS: Using ecological data, phenotypic traits, and 1,933 single-nucleotide polymorphisms (SNPs) from 205 individuals, we classified three genetic groups, which were also phenotypically and ecologically divergent. Thirty-five genes related to drought and freeze resistance displayed signatures of natural selection. The adaptive variation was driven by diverse environmental pressures such as low spring precipitation, low annual temperature, and soil grid sizes. Using linear-regression-based methods, we identified isolation by environment (IBE) as the optimal model for adaptive SNPs. Redundancy analysis (RDA) further revealed a substantial joint influence of demography, geology, and environments, suggesting a covariation between environmental gradients and colonization history. Lastly, we utilized adaptive signals to estimate the genetic offset for each individual under diverse climate change scenarios. The required genetic changes and migration distance are larger in severe climates. Our prediction also reveals potential threats to edge populations in northern and southeastern Taiwan due to escalating temperatures and precipitation reallocation.

CONCLUSIONS: We demonstrate the intricate influence of ecological heterogeneity on genetic and phenotypic adaptation of an oak species. The adaptation is also driven by some rarely studied environmental factors, including wind speed and soil features. Furthermore, the genetic offset analysis predicted that the edge populations of Q. longinux in lower elevations might face higher risks of local extinctions under climate change.

RevDate: 2024-04-12

Xue S, Massazza A, Akhter-Khan SC, et al (2024)

Mental health and psychosocial interventions in the context of climate change: a scoping review.

Npj mental health research, 3(1):10.

The evidence on the impacts of climate change on mental health and wellbeing is growing rapidly. The objective of this scoping review is to understand the extent and type of existing mental health and psychosocial interventions aimed at addressing the mental health and psychosocial impacts of climate change. A scoping review methodology was followed. MEDLINE, PsycINFO, and Web of Science databases were searched from inception to May 2022. Comprehensive gray literature search, including expert consultation, was conducted to identify interventions for which peer-reviewed academic literature may not yet be available. Data on intervention type, setting, climate stressor, mental health outcome, evaluation, and any other available details were extracted, and results were summarized narratively. Academic literature search identified 16 records and gray literature search identified a further 24 records. Altogether, 37 unique interventions or packages of interventions were identified. The interventions act at the levels of microsystem, mesosystem, exosystem, and macrosystem through diverse mechanisms. While most interventions have not been formally evaluated, promising preliminary results support interventions in low- and middle-income-country settings disproportionately affected by climate disasters. Interventions from multidisciplinary fields are emerging to reduce psychological distress and enhance mental health and wellbeing in the context of climate change. This scoping review details existing evidence on the interventions and summarizes intervention gaps and lessons learned to inform continued intervention development and scale-up interventions.

RevDate: 2024-04-12

Abdullah MA, Chuah LF, Zakariya R, et al (2024)

Evaluating climate change impacts on reef environments via multibeam echo sounder and acoustic Doppler current profiler technology.

Environmental research pii:S0013-9351(24)00762-X [Epub ahead of print].

Crucial to the Earth's oceans, ocean currents dynamically react to various factors, including rotation, wind patterns, temperature fluctuations, alterations in salinity and the gravitational pull of the moon. Climate change impacts coastal ecosystems, emphasizing the need for understanding these currents. This study explores multibeam echo sounder (MBES), specifically R2-Sonic 2020, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data study explores multibeam echo sounder (MBES), specifically R2-Sonic 2020, offering detailed seabed information. Investigating coral reefs, rocky reefs and artificial reefs aimed to map seafloor currents movement and their climate change responses. MBES data viz. Bathymetry and backscatter were classified and acoustic doppler current profiler (ADCP) ground data were validated using random forest regression. Results indicated high precision in currents speed measurement i.e. coral reefs with 0.96, artificial reefs with 0.94 and rocky reefs with 0.97. Currents direction accuracy was notable in coral reefs with 0.85, slightly lower in rocky reefs with 0.72 and artificial reefs with 0.60. Random forest identified sediment and backscatter as key for speed prediction while direction relies on bathymetry, slope and aspect. The study emphasizes integrating sediment size, backscatter, bathymetry and ADCP data for seafloor current analysis. This multibeam data on sediments and currents support better marine spatial planning and determine biodiversity patterns planning in the reef area.

RevDate: 2024-04-12

Pauline NM, GA Lema (2024)

Consideration of Climate Change on Environmental Impact Assessment in Tanzania: Challenges and Prospects.

Environmental management [Epub ahead of print].

The potential of the environmental impact assessment (EIA) process to respond to climate change impacts of development projects can only be realized with the support of policies, regulations, and actors' engagement. While considering climate change in EIA has become partly mandatory through the EU revised Directive in Europe, African countries are still lagging. This paper assesses Tanzanian policies, laws, regulations, and EIA reports to uncover consideration of climate change impacts, adaptation, and mitigation measures, drawing from the transformational role of EIA. The methodology integrates content analysis, interpretive policy analysis, and discourse analysis. The analyses draw from environmental policy, three regulatory documents and three EIA reports in Tanzania using a multi-cases study design. The aim was to understand how considering Climate Change issues in EIA has played out in practice. Results reveal less consideration of climate change issues in EIA. The policy, laws, and regulations do not guide when and how the EIA process should consider climate change-related impacts mitigation and adaptation. The practice of EIA in the country is utterly procedural in line with regulations provisions. Consequently, environmental impact statements only profile the climatology of the study area without conducting a deeper analysis of the historical and future climate to enhance the resilience of proposed projects. The weakness exposed in the laws and regulations contributes to the challenges of responding to the impacts of climate change through the EIA process. It is possible to address climate change issues throughout the project life cycle, including design, approval, implementation, monitoring, and auditing, provided the policy and regulations guide how and when the EIA process should consider climate change issues. Additionally, increasing stakeholders' awareness and participation can enhance the EIA process's potential to respond to the impacts of climate change.

RevDate: 2024-04-11

Hosseini N, Ghorbanpour M, H Mostafavi (2024)

The influence of climate change on the future distribution of two Thymus species in Iran: MaxEnt model-based prediction.

BMC plant biology, 24(1):269.

Within a few decades, the species habitat was reshaped at an alarming rate followed by climate change, leading to mass extinction, especially for sensitive species. Species distribution models (SDMs), which estimate both present and future species distribution, have been extensively developed to investigate the impacts of climate change on species distribution and assess habitat suitability. In the West Asia essential oils of T. daenensis and T. kotschyanus include high amounts of thymol and carvacrol and are commonly used as herbal tea, spice, flavoring agents and medicinal plants. Therefore, this study aimed to model these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The findings revealed that the mean temperature of the warmest quarter (bio10) was the most significant variable affecting the distribution of T. daenensis. In the case of T. kotschyanus, slope percentage was the primary influencing factor. The MaxEnt modeling also demonstrated excellent performance, as indicated by all the Area Under the Curve (AUC) values exceeding 0.9. Moreover, based on the projections, the two mentioned species are expected to undergo negative area changes in the coming years. These results can serve as a valuable achievement for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change.

RevDate: 2024-04-13

Bisanti L, La Corte C, Dara M, et al (2024)

Global warming-related response after bacterial challenge in Astroides calycularis, a Mediterranean thermophilic coral.

Scientific reports, 14(1):8495.

A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.

RevDate: 2024-04-11

Afifa , Arshad K, Hussain N, et al (2024)

Air pollution and climate change as grand challenges to sustainability.

The Science of the total environment pii:S0048-9697(24)02516-6 [Epub ahead of print].

There is a cross-disciplinary link between air pollution, climate crisis, and sustainable lifestyle as they are the most complex struggles of the present century. This review takes an in-depth look at this relationship, considering carbon dioxide emissions primarily from the burning of fossil fuels as the main contributor to global warming and focusing on primary SLCPs such as methane and ground-level ozone. Such pollutants severely alter the climate through the generation of greenhouse gases. The discussion is extensive and includes best practices from conventional pollution control technologies to hi-tech alternatives, including electric vehicles, the use of renewables, and green decentralized solutions. It also addresses policy matters, such as imposing stricter emissions standards, setting stronger environmental regulations, and rethinking some economic measures. Besides that, new developments such as congestion charges, air ionization, solar-assisted cleaning systems, and photocatalytic materials are among the products discussed. These strategies differ in relation to the local conditions and therefore exhibit a varying effectiveness level, but they remain evident as a tool of pollution deterrence. This stresses the importance of holistic and inclusive approach in terms of engineering, policies, stakeholders, and ecological spheres to tackle.

RevDate: 2024-04-11

Voosen P (2024)

Clearer skies may be accelerating global warming.

Science (New York, N.Y.), 384(6692):147-148.

Study suggests declining pollution is one cause of worldwide rise in absorbed solar energy.

RevDate: 2024-04-10

Adamczyk B (2024)

Tannins and Climate Change: Are Tannins Able To Stabilize Carbon in the Soil?.

Journal of agricultural and food chemistry [Epub ahead of print].

The interaction between tannins and proteins has been studied intensively for more than half a century as a result of its significance for various applications. In chemical ecology, tannins are involved in response to environmental stress, including biotic (pathogens and herbivores) and abiotic (e.g., drought) stress, and in carbon (C) and nutrient cycling. This perspective summarizes the newest insights into the role of tannins in soil processes, including the interaction with fungi leading to C stabilization. Recent knowledge presented here may help to optimize land management to increase or preserve soil C to mitigate climate change.

RevDate: 2024-04-10

Chowdhury M, Martínez-Sansigre A, Mole M, et al (2024)

AI-driven remote sensing enhances Mediterranean seagrass monitoring and conservation to combat climate change and anthropogenic impacts.

Scientific reports, 14(1):8360.

Seagrasses are undergoing widespread loss due to anthropogenic pressure and climate change. Since 1960, the Mediterranean seascape lost 13-50% of the areal extent of its dominant and endemic seagrass-Posidonia oceanica, which regulates its ecosystem. Many conservation and restoration projects failed due to poor site selection and lack of long-term monitoring. Here, we present a fast and efficient operational approach based on a deep-learning artificial intelligence model using Sentinel-2 data to map the spatial extent of the meadows, enabling short and long-term monitoring, and identifying the impacts of natural and human-induced stressors and changes at different timescales. We apply ACOLITE atmospheric correction to the satellite data and use the output to train the model along with the ancillary data and therefore, map the extent of the meadows. We apply noise-removing filters to enhance the map quality. We obtain 74-92% of overall accuracy, 72-91% of user's accuracy, and 81-92% of producer's accuracy, where high accuracies are observed at 0-25 m depth. Our model is easily adaptable to other regions and can produce maps in in-situ data-scarce regions, providing a first-hand overview. Our approach can be a support to the Mediterranean Posidonia Network, which brings together different stakeholders such as authorities, scientists, international environmental organizations, professionals including yachting agents and marinas from the Mediterranean countries to protect all P. oceanica meadows in the Mediterranean Sea by 2030 and increase each country's capability to protect these meadows by providing accurate and up-to-date maps to prevent its future degradation.

RevDate: 2024-04-11

Pearson H (2024)

The rise of eco-anxiety: scientists wake up to the mental-health toll of climate change.

Nature, 628(8007):256-258.

RevDate: 2024-04-11

Anonymous (2024)

What happens when climate change and the mental-health crisis collide?.

Nature, 628(8007):235.

RevDate: 2024-04-10

Onyekwelu I, V Sharda (2024)

Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change.

The Science of the total environment pii:S0048-9697(24)02348-9 [Epub ahead of print].

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha[-1], with a regional average value of 9270 kgha[-1]. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.

RevDate: 2024-04-10

Tucholska K, Gulla B, A Ziernicka-Wojtaszek (2024)

Climate change beliefs, emotions and pro-environmental behaviors among adults: The role of core personality traits and the time perspective.

PloS one, 19(4):e0300246 pii:PONE-D-23-03403.

Climate change and its consequences are recognized as one of the most important challenges to the functioning of the Earth's ecosystem and humanity. However, the response to the threat posed by the climate crisis still seems inadequate. The question of which psychological factors cause people to engage (or not) in pro-environmental behavior remains without a comprehensive answer. The aim of this study is to establish the links between the cognitive (level of knowledge about climate change and degree of belief in climate myths), emotional (various climate emotions, especially climate anxiety) and behavioral aspects of attitudes towards the climate crisis and their determinants in the form of the Big Five personality domains and time perspectives. The stated hypotheses were verified by analyzing data collected in an online survey of 333 adults using knowledge tests and self-report methods, including psychological questionnaires (Climate Change Anxiety Scale by Clayton and Karazsia, Big Five Inventory-short version by Schupp and Gerlitz, and Zimbardo Time Perspective Inventory by Zimbardo and Boyd), and measurement scales developed for this study (Climate myth belief scale, Climate emotion scale, and Inventories of current and planned pro-environmental activities). The results of stepwise regression analysis demonstrate the importance of the core personality traits and the dominant temporal perspective as determinants of belief in climate change myths, climate anxiety, as well as actual and planned pro-environmental behavior.

RevDate: 2024-04-10

Lee BR, S Schaffer-Morrison (2024)

Forests of the future: The importance of tree seedling research in understanding forest response to anthropogenic climate change.

Tree physiology pii:7643630 [Epub ahead of print].

RevDate: 2024-04-10

Escudero V, Fuenzalida M, Rezende EL, et al (2024)

Perspectives on embryo maturation and seed quality in a global climate change scenario.

Journal of experimental botany pii:7643466 [Epub ahead of print].

Global climate change has already brought noticeable alterations to multiple regions of our planet. Several important steps of plant growth and development, such as embryogenesis, can be affected by environmental changes. For instance, these changes would affect how stored nutrients are used during early stages of seed germination as it transitions from a heterotrophic to autotrophic metabolism, a critical period for the seedling's survival. In this perspective, we provide a brief description of relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change. As examples of the effects associated with climate change are increased CO2 levels and changes in temperature. During seed development, most of the nutrients stored in the seed are accumulated during the seed maturation stage. These nutrients include, depending on the plant species, carbohydrates, lipids and proteins. Regarding micronutrients, it has also been established that iron, a key micronutrient for various electron transfer processes in plant cells, accumulates during embryo maturation. Several articles have been published indicating that climate change can affect the quality of the seed, in terms of total nutritional content, but also, it may affect seed production. Here we discuss the potential effects of temperature and CO2 increase from an embryo autonomous point of view, in an attempt to separate the maternal effects from embryonic effects.

RevDate: 2024-04-10

Cella W, Silva Junior RCAD, Pimenta PFP, et al (2024)

Morphometry of the wings of Anopheles aquasalis in simulated scenarios of climate change.

Revista da Sociedade Brasileira de Medicina Tropical, 57:e00704 pii:S0037-86822024000100704.

BACKGROUND: Climate change has significant implications on ecosystems. We verified the effects of climate change on the malaria vector Anopheles aquasalis using simulated climate change scenarios (SSCCs).

METHODS: An experimental model was designed for SSCCs, which composed of air-conditioned 25 m3 rooms.

RESULTS: The wing size was significantly different between SSCCs. A colony of Anopheles aquasalis could not be established in extreme scenarios.

CONCLUSIONS: Increases in temperature and CO2 in the atmosphere may modify the global epidemiology of malaria, marking its emergence in currently malaria-free areas.

RevDate: 2024-04-10

Leddin D, Singh H, Armstrong D, et al (2024)

The Canadian Association of Gastroenterology's New Climate Change Committee.

Journal of the Canadian Association of Gastroenterology, 7(2):135-136.

RevDate: 2024-04-10

Li S, Nilsson E, Seidel L, et al (2024)

Baltic Sea coastal sediment-bound eukaryotes have increased year-round activities under predicted climate change related warming.

Frontiers in microbiology, 15:1369102.

Climate change related warming is a serious environmental problem attributed to anthropogenic activities, causing ocean water temperatures to rise in the coastal marine ecosystem since the last century. This particularly affects benthic microbial communities, which are crucial for biogeochemical cycles. While bacterial communities have received considerable scientific attention, the benthic eukaryotic community response to climate change remains relatively overlooked. In this study, sediments were sampled from a heated (average 5°C increase over the whole year for over 50 years) and a control (contemporary conditions) Baltic Sea bay during four different seasons across a year. RNA transcript counts were then used to investigate eukaryotic community changes under long-term warming. The composition of active species in the heated and control bay sediment eukaryotic communities differed, which was mainly attributed to salinity and temperature. The family level RNA transcript alpha diversity in the heated bay was higher during May but lower in November, compared with the control bay, suggesting altered seasonal activity patterns and dynamics. In addition, structures of the active eukaryotic communities varied between the two bays during the same season. Hence, this study revealed that long-term warming can change seasonality in eukaryotic diversity patterns. Relative abundances and transcript expression comparisons between bays suggested that some taxa that now have lower mRNA transcripts numbers could be favored by future warming. Furthermore, long-term warming can lead to a more active metabolism in these communities throughout the year, such as higher transcript numbers associated with diatom energy production and protein synthesis in the heated bay during winter. In all, these data can help predict how future global warming will affect the ecology and metabolism of eukaryotic community in coastal sediments.

RevDate: 2024-04-10

Wang Y, Z Wang (2024)

Change of spermatophyte family diversity in distribution patterns with climate change in China.

Heliyon, 10(7):e28519.

The global climate is undergoing extraordinary changes, profoundly influencing a variety of ecological processes. Understanding the distribution patterns and predicting the future of plant diversity is crucial for biodiversity conservation in the context of climate change. However, current studies on predictive geographic patterns of plant diversity often fail to separate the effects of global climate change from other influencing factors. In this study, we developed a spatial simulation model of spermatophyte family diversity (SSMSFD) based on data collected from 200 nature reserves covering approximately 1,500,000 km[2], where direct anthropogenic disturbances to plant diversity and the surrounding environment are absent. We predicted the spermatophyte family diversity for all provinces in China in 2020, 2040, and 2080, considering the impacts of global climate change. On average, China currently exhibits 118 plant families per 25 km[2], with a decreasing trend from southeast to northwest. When considering only the effects of global climate change, excluding direct anthropogenic disturbances, our results indicate that under the Shared Socioeconomic Path Scenarios (SSPs) 245 and 585, spermatophyte family diversity is projected to slowly increase in most Chinese provinces from 2021 to 2080. Notably, the increase is more pronounced under SSPs585 compared to SSPs245. Global climate change has a positive effect on plant diversity, in contrast to the negative impact of anthropogenic disturbances that often lead to declines in plant diversity. This research highlights the contrasting outcomes of future plant diversity under the sole influence of global climate change and the significant negative effects of anthropogenic disturbances on diversity.

RevDate: 2024-04-10

Berhanu AA, Ayele ZB, Dagnew DC, et al (2024)

Smallholder farmers' vulnerability to climate change and variability: Evidence from three agroecologies in the Upper Blue Nile, Ethiopia.

Heliyon, 10(7):e28277.

This study delves into the profound impact of climate change on agriculture in Ethiopia, particularly the vulnerabilities faced by smallholder farmers and the resulting implications for poverty. Focusing on three distinct agroecologies, namely: highland, midland, and lowland zones. The study employed a robust methodology, combining a cross-sectional survey, spatial-temporal trend analysis using GIS, and the development of an overall vulnerability index through the balanced weighted average method. The study, encompassing 646 households, combines data from a variety of sources and analytical tools like the vulnerability index, ArcGIS 10.8, and ERDA's IMAGINE 2015. Utilizing the LVI-IPCC scale, the study shows that climate change is an immediate vulnerability in all agroecological zones. It identifies highland areas as the most sensitive and exposed regions, while lowland households are found to be the most vulnerable in terms of overall vulnerabilities. The research reveals specific challenges faced by communities, such as inadequate health facilities and insufficient food and water supplies in both highland and lowland agroecosystems. Additionally, our investigation has observed a significant alteration in land use practices, specifically the shift from communal grazing land to private cultivation and plantations, emphasizing eucalyptus. This alteration enhances the ecosystem's vulnerability to climate disturbances. The study suggests targeted interventions, such as advocating for sustainable land-use practices, afforestation, and adopting climate-smart agriculture practices. It is important to implement policy measures that prioritize conserving and restoring shrubland, grazing land, and natural forests to ensure both long-term socio-economic and ecosystem resilience. The study's nuanced insights are instrumental in understanding the diverse challenges posed by climate change in Ethiopian agriculture, supporting informed policymaking and sustainable interventions.

RevDate: 2024-04-10

Wakatsuki H, Takimoto T, Ishigooka Y, et al (2024)

A dataset for analyzing the climate change response of grain quality of 48 Japanese rice cultivars with contrasting levels of heat tolerance.

Data in brief, 54:110352.

Climate change has a significant impact on rice grain appearance quality; in particular, high temperatures during the grain filling period increase the rate of chalky immature grains, reducing the marketability of rice. Heat-tolerant cultivars have been bred and released to reduce the rate of chalky grain and improve rice quality under high temperatures, but the ability of these cultivars to actually reduce chalky grain content has never been demonstrated due to the lack of integrated datasets. Here, we present a dataset collected through a systematic literature search from publicly available data sources, for the quantitative analysis of the impact of meteorological factors on grain appearance quality of various rice cultivars with contrasted heat tolerance levels. The dataset contains 1302 field observations of chalky grain rates (%) - a critical trait affecting grain appearance sensitive to temperature shocks - for 48 cultivars covering five different heat-tolerant ranks (HTRs) collected at 44 sites across Japan. The dataset also includes the values of key meteorological variables during the grain filling period, such as the cumulative mean air temperature above the threshold temperature (TaHD), mean solar radiation, and mean relative humidity over 20 days after heading, obtained from a gridded daily meteorological dataset with a 1-km resolution developed by the National Agriculture and Food Research Organization. The dataset covers major commercial rice cultivars cultivated in Japan in different environmental conditions. It is a useful resource for analyzing the climate change impact on crop quality and assess the effectiveness of genetic improvements in heat tolerance. Its value has been illustrated in the research article entitled "Effectiveness of heat tolerance rice cultivars in preserving grain appearance quality under high temperatures - A meta-analysis", where the dataset was used to develop a statistical model quantifying the effects of high temperature on grain quality as a function of cultivar heat tolerance.

RevDate: 2024-04-09

Cave JA (2024)

Medicines and global warming: a complex problem.

RevDate: 2024-04-09

Quan Q, Yi F, H Liu (2024)

Fertilizer response to climate change: Evidence from corn production in China.

The Science of the total environment pii:S0048-9697(24)02369-6 [Epub ahead of print].

Corn is the third most cultivated food crop in the world, and climate change has important effects on corn production and food security. China is the top user of chemical fertilizer in the world, and analyzing how to effectively manage fertilizer application in such a developing country with resource constraints is crucial. We present empirical evidence from China to demonstrate the nonlinear impact of temperature on fertilizer usage in corn production based on a panel dataset that shows 2297 corn-growing counties during 1998-2016. Our findings indicate that fertilizer usage barely changes with increasing temperatures that are below 28 °C; however, exposure to temperatures above 28 °C leads to a sharp increase in fertilizer use. The increase in temperatures in the sample period implies that fertilizer usage per hectare for corn increased by 1.5 kg. Summer corn fertilizer application in the Yellow-Huai River Valley is more sensitive to warming than in the North region. Moreover, nitrogen, phosphorus, and potassium fertilizers have different temperature thresholds of 32 °C, 20 °C, and 20 °C, respectively, that cause significant changes.

RevDate: 2024-04-10

Miranda JJ, C Zavaleta-Cortijo (2023)

The food crisis in the context of climate change and sustainable development goals.

Revista peruana de medicina experimental y salud publica, 40(4):392-394.

RevDate: 2024-04-09

Nuñez JA, Aguiar S, Jobbágy EG, et al (2024)

Climate change and land cover effects on water yield in a subtropical watershed spanning the yungas-chaco transition of Argentina.

Journal of environmental management, 358:120808 pii:S0301-4797(24)00794-1 [Epub ahead of print].

The demand for mountain water resources is increasing, and their availability is threatened by climate change, emphasizing the urgency for effective protection and management. The upper Sali-Dulce watershed holds vital significance as it contributes the majority of the Sali-Dulce water resources, supporting a densely populated dry region in Northwestern Argentina, covering an area of 24,217 km[2]. However, the potential impact of climate change and land use/land cover change on water yield in this watershed remains uncertain. This study employs the InVEST Annual Water Yield model to analyze the average water yield in the watershed and evaluate its potential changes under future scenarios of climate and land use/land cover change. InVEST was calibrated using data from multiple river gauges located across the watershed, indicating satisfactory performance (R[2] = 0.751, p-value = 0.0054). Precipitation and evapotranspiration were the most important variables explaining water yield in the area, followed by land use. Water yield showed a notable concentration in the montane area with 40% of the watershed accounting for 80% of the water yield, underscoring the importance of conserving natural land cover in this critical zone. Climate change scenarios project an increase in water yield ranging from 21 to 75%, while the effects of land cover change scenarios on water yield vary, with reforestation scenarios leading to reductions of up to 15% and expansions in non-irrigated agriculture resulting in increases of up to 40%. Additionally, water yield distribution may become more concentrated or dispersed, largely dependent on the type of land cover. The combined scenarios highlight the pivotal role of land cover in adapting to climate change. Our findings provide valuable insights for designing future studies and developing policies aimed at implementing effective adaptation strategies to climate change within the Salí-Dulce watershed.

RevDate: 2024-04-09

Alanís-Méndez JL, Soto V, F Limón-Salvador (2024)

Effects of Climate Change on the Distribution of Prosthechea mariae (Orchidaceae) and within Protected Areas in Mexico.

Plants (Basel, Switzerland), 13(6): pii:plants13060839.

The impact of climate change on the distribution of native species in the Neotropics remains uncertain for most species. Prosthechea mariae is an endemic epiphytic orchid in Mexico, categorized as threatened. The objective of this study was to assess the effect of climate change on the natural distribution of P. mariae and the capacity of protected areas (PAs) to safeguard optimal environmental conditions for the species in the future. Historical records were obtained from herbaria collections and through field surveys. We utilized climate variables from WorldClim for the baseline scenario and for the 2050 period, using the general circulation models CCSM4 and CNRM-CM5 (RCP 4.5). Three sets of climate data were created for the distribution models, and multiple models were evaluated using the kuenm package. We found that the species is restricted to the eastern region of the country. The projections of future scenarios predict not only a substantial reduction in habitat but also an increase in habitat fragmentation. Ten PAs were found within the current distribution area of the species; in the future, the species could lose between 36% and 48% of its available habitat within these PAs. The results allowed for the identification of locations where climate change will have the most severe effects, and proposals for long-term conservation are addressed.

RevDate: 2024-04-09

Wang C, Zhang Y, Sheng Q, et al (2024)

Impacts of Climate Change on the Biogeography and Ecological Structure of Zelkova schneideriana Hand.-Mazz. in China.

Plants (Basel, Switzerland), 13(6): pii:plants13060798.

This study utilized the platform for ensemble forecasting of species distributions, biomod2, to predict and quantitatively analyze the distribution changes of Zelkova schneideriana Hand.-Mazz. under different climate scenarios (SSP1-2.6 and SSP5-8.5) based on climate and land-use data. This study evaluated the geographic range changes in future distribution areas and the results indicated that, under both SSP1-2.6 and SSP5-8.5 scenarios, the distribution area of Zelkova schneideriana would be reduced, showing a trend towards migration to higher latitudes and elevations. Particularly, in the more extreme SSP5-8.5 scenario, the contraction of the distribution area was more pronounced, accompanied by more significant migration characteristics. Furthermore, the ecological structure within the distribution area of Zelkova schneideriana also experienced significant changes, with an increasing degree of fragmentation. The variables of Bio6 (minimum temperature of the coldest month), Bio2 (mean diurnal temperature range), Bio15 (precipitation seasonality), and elevation exhibited important influences on the distribution of Zelkova schneideriana, with temperature being particularly significant. Changes in land use, especially the conversion of cropland, had a significant impact on the species' habitat. These research findings highlight the distributional pressures faced by Zelkova schneideriana in the future, emphasizing the crucial need for targeted conservation measures to protect this species and similar organisms.

RevDate: 2024-04-09

Vaissi S, Chahardoli A, Haghighi ZMS, et al (2024)

Metal nanoparticle-induced effects on green toads (Amphibia, Anura) under climate change: conservation implications.

Environmental science and pollution research international [Epub ahead of print].

The toxicity of aluminum oxide (Al2O3), copper oxide (CuO), iron oxide (Fe3O4), nickel oxide (NiO), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles (NPs) on amphibians and their interaction with high temperatures, remain unknown. In this study, we investigated the survival, developmental, behavioral, and histological reactions of Bufotes viridis embryos and larvae exposed to different NPs for a duration of 10 days, using lethal concentrations (LC25%, LC50%, and LC75% mg/L) under both ambient (AT: 18 °C) and high (HT: 21 °C) temperatures. Based on LC, NiONPs > ZnONPs > CuONPs > Al2O3NPs > TiO2NPs > Fe3O4NPs showed the highest mortality at AT. A similar pattern was observed at HT, although mortality occurred at lower concentrations and Fe3O4NPs were more toxic than TiO2NPs. The results indicated that increasing concentrations of NPs significantly reduced hatching rates, except for TiO2NPs. Survival rates decreased, abnormality rates increased, and developmental processes slowed down, particularly for NiONPs and ZnONPs, under HT conditions. However, exposure to low concentrations of Fe3O4NPs for up to 7 days, CuONPs for up to 72 h, and NiO, ZnONPs, and TiO2NPs for up to 96 h did not have a negative impact on survival compared with the control group under AT. In behavioral tests with larvae, NPs generally induced hypoactivity at AT and hyperactivity at HT. Histological findings revealed liver and internal gill tissue lesions, and an increase in the number of melanomacrophage centers at HT. These results suggest that global warming may exacerbate the toxicity of metal oxide NPs to amphibians, emphasizing the need for further research and conservation efforts in this context.

RevDate: 2024-04-09

Coker ES, Stone SL, McTigue E, et al (2024)

Climate change and health: rethinking public health messaging for wildfire smoke and extreme heat co-exposures.

Frontiers in public health, 12:1324662.

With the growing climate change crisis, public health agencies and practitioners must increasingly develop guidance documents addressing the public health risks and protective measures associated with multi-hazard events. Our Policy and Practice Review aims to assess current public health guidance and related messaging about co-exposure to wildfire smoke and extreme heat and recommend strengthened messaging to better protect people from these climate-sensitive hazards. We reviewed public health messaging published by governmental agencies between January 2013 and May 2023 in Canada and the United States. Publicly available resources were eligible if they discussed the co-occurrence of wildfire smoke and extreme heat and mentioned personal interventions (protective measures) to prevent exposure to either hazard. We reviewed local, regional, and national governmental agency messaging resources, such as online fact sheets and guidance documents. We assessed these resources according to four public health messaging themes, including (1) discussions around vulnerable groups and risk factors, (2) symptoms associated with these exposures, (3) health risks of each exposure individually, and (4) health risks from combined exposure. Additionally, we conducted a detailed assessment of current messaging about measures to mitigate exposure. We found 15 online public-facing resources that provided health messaging about co-exposure; however, only one discussed all four themes. We identified 21 distinct protective measures mentioned across the 15 resources. There is considerable variability and inconsistency regarding the types and level of detail across described protective measures. Of the identified 21 protective measures, nine may protect against both hazards simultaneously, suggesting opportunities to emphasize these particular messages to address both hazards together. More precise, complete, and coordinated public health messaging would protect against climate-sensitive health outcomes attributable to wildfire smoke and extreme heat co-exposures.

RevDate: 2024-04-09

Smyth SJ, Phillips PWB, D Castle (2024)

An assessment of the linkages between GM crop biotechnology and climate change mitigation.

GM crops & food, 15(1):150-169.

This article provides an analysis and evaluation of peer-reviewed evidence on the contribution of crop biotechnology to climate change mitigation and adaption. While there is a range of agricultural technologies and products that contribute to climate change mitigation, this literature landscape analysis focuses on the development of genetically modified traits, their use and adoption in major commodity crops and responsive changes in production techniques. Jointly, these technologies and products are contributing to climate change mitigation, yet the technology, the literature and evidence is still evolving as more sophisticated research methods are used with greater consistency. The literature analysis is undertaken with consideration of the consequential impact that regulatory regimes have on technology development. This assessment utilizes the Maryland Scientific Methods Scale and citation analysis, concluding that GM crops provide benefits that contribute to climate change mitigation.

RevDate: 2024-04-08

Trost K, Ertl V, König J, et al (2024)

Climate change-related concerns in psychotherapy: therapists' experiences and views on addressing this topic in therapy.

BMC psychology, 12(1):192.

BACKGROUND: While adverse impacts of climate change on physical health are well-known, research on its effects on mental health is still scarce. Thus, it is unclear whether potential impacts have already reached treatment practice. Our study aimed to quantify psychotherapists' experiences with patients reporting climate change-related concerns and their views on dealing with this topic in psychotherapy.

METHODS: In a nationwide online survey, responses were collected from 573 psychotherapists from Germany. Therapists reported on the presence of such patients, their socio-demographic characteristics, and climate change-related reactions. Psychotherapists' views on dealing with this topic in psychotherapy were also assessed. Descriptive statistics were used to analyse the responses.

RESULTS: About 72% (410/573) of psychotherapists indicated having had patients expressing concerns about climate change during treatment. Out of these therapists, 41% (166/410) stated that at least one patient sought treatment deliberately because of such concerns. Patients were mainly young adults with higher education. Most frequent primary diagnoses were depression, adjustment disorder, and generalized anxiety disorder. Psychotherapists having encountered such patients differed from those without such encounters in their views on potential functional impairment and the necessity to target the concerns in treatment. Although 79% (326/415) of all respondents felt adequately prepared by their current therapeutic skills, 50% (209/414) reported a lack of information on how to deal with such concerns in therapy.

CONCLUSIONS: Results indicate that psychotherapists are frequently confronted with climate change-related concerns and regard the mental health impact of climate change on their patients as meaningful to psychotherapeutic care. Regular care could be improved by a continuous refinement of the conceptualization and knowledge of the mental health influences of climate change. This would allow providing tailored methods of assessing and addressing climate change-related concerns in practice.

RevDate: 2024-04-08

Guhan V, Annadurai K, Easwaran S, et al (2024)

Assessing the impact of climate change on water requirement and yield of sugarcane over different agro-climatic zones of Tamil Nadu.

Scientific reports, 14(1):8239.

The DSSAT CANEGRO model was calibrated and verified using field experimental data from five Tamil Nadu Agroclimatic Zones (1981-2022). The genetic coefficients of the sugarcane cultivar (CO-86032) were calculated. R[2] obtained between measured and simulated stalk fresh mass was 0.9 with the nRMSE (0.01) and RMSE (1.6) and R[2] between measured and simulated sucrose mass was 0.9 with the nRMSE (0.16) and RMSE (1.2). For yield R[2] obtained between measured and simulated was 0.9 with the nRMSE (0.01) and RMSE (1.6). As a result, the CANEGRO model may be used to mimic the phenology and yield features of the sugarcane cultivar in Tamil Nadu's Agro Climatic Zones. Temperature increases in Agro Climatic Zones resulted in varying yield reductions, with 2 °C increases causing a 3% loss, 3 °C increases 5%, and 4 °C increases 9%. The Water Requirement rose throughout all of the ACZ due to the high temperature, but to differing degrees. A 2 °C increase often results in an average 4% increase in the WR. 3 °C rise in temperature increased WR to 9% and WR rose by 13% when the temperature was raised by 4 °C.

RevDate: 2024-04-08

Le Roux R, Furusho-Percot C, Deswarte JC, et al (2024)

Mapping the race between crop phenology and climate risks for wheat in France under climate change.

Scientific reports, 14(1):8184.

Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop's current vulnerable seasons, without considering the non-stationarity of their phenology under evolving climatic conditions. We propose a new method for spatially classifying agroclimatic risks for wheat, combining high-resolution climatic data with a wheat's phenological model. The method is implemented for French wheat involving three GCM-RCM model pairs and two emission scenarios. We found that the precocity of phenological stages allows wheat to avoid periods of water deficit in the near future. Nevertheless, in the coming decades the emergence of heat stress and increasing water deficit will deteriorate wheat cultivation over the French territory. Projections show the appearance of combined risks of heat and water deficit up to 4 years per decade under the RCP 8.5 scenario. The proposed method provides a deep level of information that enables regional adaptation strategies: the nature of the risk, its temporal and spatial occurrence, and its potential combination with other risks. It's a first step towards identifying potential sites for breeding crop varieties to increase the resilience of agricultural systems.

RevDate: 2024-04-08

Kamkuemah M, Ayo-Yusuf O, T Oni (2024)

Future proofing health in response to climate change and rapid urbanisation in Africa.

BMJ (Clinical research ed.), 385:e076476.

RevDate: 2024-04-08

Arasaradnam RP, T Hillman (2022)

Climate change and health research - lessons from COP26.

Clinical medicine (London, England), 22(2):172-173.

RevDate: 2024-04-08

Atwoli L, Erhabor GE, Gbakima AA, et al (2022)

COP27 Climate Change Conference: urgent action needed for Africa and the world.

Clinical medicine (London, England), 22(6):594-596.

RevDate: 2024-04-08

McWhorter JK, Halloran PR, Roff G, et al (2024)

Climate change impacts on mesophotic regions of the Great Barrier Reef.

Proceedings of the National Academy of Sciences of the United States of America, 121(16):e2303336121.

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column. Here, we mechanistically downscale climate models and quantify patterns of thermal stratification above mesophotic corals (depth 30 to 50 m) of the Great Barrier Reef (GBR). Stratification insulates many offshore regions of the GBR from heatwaves at the surface. However, this protection is lost once global average temperatures exceed ~3 °C above preindustrial, after which mesophotic temperatures surpass a recognized threshold of 30 °C for coral mortality. Bottom temperatures on the GBR (30 to 50 m) from 2050 to 2060 are estimated to increase by ~0.5 to 1 °C under lower climate emissions (SSP1-1.9) and ~1.2 to 1.7 °C under higher climate emissions (SSP5-8.5). In short, mesophotic coral reefs are also threatened by climate change and research might prioritize the sensitivity of such corals to stress.

RevDate: 2024-04-08

Ruxin TR, Morgenroth DC, Benmarhnia T, et al (2024)

The impact of climate change and related extreme weather on people with limb loss.

PM & R : the journal of injury, function, and rehabilitation [Epub ahead of print].

The human health consequences of climate change and extreme weather events are well documented. Published literature details the unique effects and necessary adaptation planning for people with physical disabilities in general; however, the specific impacts and plans for people with limb loss have yet to be explored. In this article, we discuss the impacts related to threats due to heat, cold, severe storms, and power outages. We describe how climate change uniquely affects people with limb loss and underscore the need for rehabilitation care providers and researchers to: (1) study the health impacts of climate change on people with lower limb loss; (2) educate themselves and patients on the climate crisis and climate preparedness; (3) co-develop resiliency strategies with patients, governments, and community organizations to improve adaptive capacity; and (4) advocate for policy changes that will enact protections for this at-risk population.

RevDate: 2024-04-08

Jaramillo Arias M, Kulkarni N, Le A, et al (2024)

Climate Change, Emerging Vector-Borne Illnesses, and Anesthetic Considerations.

Cureus, 16(4):e57517.

As a result of the widespread prevalence of anesthetic usage, anesthesia-related complications are well studied, ranging from benign postoperative nausea and vomiting to potentially fatal complications, such as paralysis, malignant hyperthermia, and death. However, one intersection that still needs further analysis is the relationship between vector-borne illnesses (VBIs) and anesthetic complications. With the advent of climate change and global warming, what were previously endemic vectors have spread far beyond their typical regions, resulting in the spread of VBI. As the incidence of VBIs rapidly increases in the United States, operations for diagnostic testing, and thus the identification and treatments of these VBIs, have significantly diminished. A literature review was conducted to analyze case reports of patients with VBIs and anesthetic concerns with sources from PubMed and Google Scholar databases, and a wide range of complications were found.

RevDate: 2024-04-08

Vuong QH, Nguyen MH, VP La (2024)

A dataset of blockade, vandalism, and harassment activities for the cause of climate change mitigation.

Data in brief, 54:110342.

Environmental activism is crucial for raising public awareness and support toward addressing the climate crisis. However, using climate change mitigation as the cause for blockade, vandalism, and harassment activities might be counterproductive and risk causing negative repercussions and declining public support. The paper describes a dataset of metadata of 89 blockade, vandalism, and harassment events happening 13 countries in recent years. The dataset comprises three main categories: 1) Events, 2) Activists, and 3) Consequences. For researchers interested in environmental activism, climate change, and sustainability, the dataset is helpful in studying the effectiveness and appropriateness of strategies to raise public awareness and support. For researchers in the field of security studies and green criminology, the dataset offers resources to study features and impacts of blockade, vandalism, and harassment events. The Bayesian Mindsponge Framework (BMF) analytics was employed to validate the dataset. Consequently, the estimated result aligns with the Mindsponge Theory's theoretical reasoning.

RevDate: 2024-04-07

Mohsen M, Ismail S, Yuan X, et al (2024)

Sea cucumber physiological response to abiotic stress: Emergent contaminants and climate change.

The Science of the total environment pii:S0048-9697(24)02351-9 [Epub ahead of print].

The ocean is facing a multitude of abiotic stresses due to factors such as climate change and pollution. Understanding how organisms in the ocean respond to these global changes is vital to better predicting consequences. Sea cucumbers are popular echinoderms with multiple ecological, nutritional, and pharmaceutical benefits. Here, we reviewed the effects of environmental change on an ecologically important echinoderm of the ocean, aiming to understand their response better, which could facilitate healthy culture programs under environmental changes and draw attention to knowledge gaps. After screening articles from the databases, 142 studies were included on the influence of emergent contaminants and climate variation on the early developmental stages and adults of sea cucumbers. We outlined the potential mechanism underlying the physiological response of sea cucumbers to emerging contaminants and climate change. It can be concluded that the physiological response of sea cucumbers to emergent contaminants differs from their response to climate change. Sea cucumbers could accumulate pollutants in their organs but are aestivated when exposed to extreme climate change. Research showed that the physiological response of sea cucumbers to pollutants indicates that these pollutants impair critical physiological processes, particularly during the more susceptible early phases of development compared to adults, and the accumulation of these pollutants in adults is often observed. For climate change, sea cucumbers showed gradual adaptation to the slight variation. However, sea cucumbers undergo aestivation under extreme conditions. Based on this review, critical suggestions for future research are presented, and we call for more efforts focusing on the co-occurrence of different stressors to extend the knowledge regarding the effects of environmental changes on these economically and ecologically important species.

RevDate: 2024-04-07

Kazama T, Hayakawa K, Nagata T, et al (2024)

Impact of climate change and oligotrophication on quality and quantity of lake primary production: A case study in Lake Biwa.

The Science of the total environment pii:S0048-9697(24)02409-4 [Epub ahead of print].

Global climate change and anthropogenic oligotrophication are expected to reshape the dynamics of primary production (PP) in aquatic ecosystems; however, few studies have explored their long-term effects. In theory, the PP of phytoplankton in Lake Biwa may decline over decades due to warming, heightened stratification, and anthropogenic oligotrophication. Furthermore, the PP of large phytoplankton, which are inedible to zooplankton, along with biomass-specific productivity (PBc), could decrease. In this study, data from 1976 to 2021 and active fluorometry measurements taken in 2020 and 2021 were evaluated. Quantitatively, the temporal dynamics of mean seasonal PP during 1971-2021 were assessed according to the carbon fixation rate to investigate relationships among environmental factors. Qualitatively, phytoplankton biomass, PP, and PBc were measured in two size fractions [edible (S) or inedible (L) for zooplankton] in 2020 and 2021, and the L:S balance for these three measures was compared between 1992 (low-temperature/high-nutrient conditions) and 2020-2021 (high-temperature/low-nutrient conditions) to assess seasonal dynamics. The results indicated that climate change and anthropogenic oligotrophication over the past 30 years have diminished Lake Biwa's PP since the 1990s, impacting the phenology of PP dynamics. However, the L:S balance in PP and PBc has exhibited minimal change between the data from 1992 and the 2020-2021 period. These findings suggest that, although climate change and oligotrophication may reduce overall PP, they may not markedly alter the inedible/edible phytoplankton balance in terms of PP and PBc. Instead, as total PP declines, the production of small edible phytoplankton may decrease proportionally, potentially affecting trophic transfer efficiency and material cycling in Lake Biwa.

RevDate: 2024-04-08

Pratt B (2023)

How Should Urban Climate Change Planning Advance Social Justice?.

Kennedy Institute of Ethics journal, 33(1):55-89.

Cities are struggling to balance the moral imperatives of sustainable development, with equity and social justice often ignored and negatively impacted by climate change mitigation and adaptation. Yet, the nature of these impacts on social justice has not been comprehensively investigated and little ethical guidance exists on how to better promote social justice in urban climate change planning practice. This article addresses the normative question: How should urban climate change planning advance social justice? It gathers empirical literature documenting the inclusivity and equity impacts of urban climate change planning and thematically analyses that literature for dimensions of social justice drawn from philosophical and urban justice theory. Study findings demonstrate that four characteristics of climate change planning in cities-underlying neoliberal ideology, unequal treatment, green gentrification, and exclusion from decisionmaking-comprise, create, or worsen social injustices across six dimensions. These characteristics are often interconnected and inseparable. Where neoliberal ideology guides urban climate change planning, the other three characteristics frequently occur as well. The article concludes by arguing that, at a minimum, urban planners and climate planners have an obligation of justice to avoid undertaking climate change planning that exhibits any of the four characteristics and to address injustices generated where planning has such characteristics. It further suggests that planners' negative obligations likely extend beyond this because the literature review revealed gaps in existing empirical data on the equity impacts of urban climate change planning.

RevDate: 2024-04-07

Alsos IG, Boussange V, Rijal DP, et al (2024)

Using ancient sedimentary DNA to forecast ecosystem trajectories under climate change.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 379(1902):20230017.

Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA (sedaDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sedaDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sedaDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.

RevDate: 2024-04-07

Nelson B, W Faquin (2024)

Growing cancer risks on a warming planet: In this first of a two-part series on cancer and climate change, recent natural disasters highlight how global warming is increasing cancer risks and widening health disparities.

Cancer cytopathology, 132(4):200-201.

RevDate: 2024-04-06

Olazabal M, Loroño-Leturiondo M, Amorim-Maia AT, et al (2024)

Integrating science and the arts to deglobalise climate change adaptation.

Nature communications, 15(1):2971.

RevDate: 2024-04-06

Shi J, Xia M, He G, et al (2024)

Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission through MaxEnt modeling.

Journal of environmental management, 357:120841 pii:S0301-4797(24)00827-2 [Epub ahead of print].

Quercus gilva, an evergreen tree species in Quercus section Cyclobalanopsis, is an ecologically and economically valuable species in subtropical regions of East Asia. Predicting the impact of climate change on potential distribution of Q. gilva can provide a scientific basis for the conservation and utilization of its genetic resources, as well as for afforestation. In this study, 74 distribution records of Q. gilva and nine climate variables were obtained after data collection and processing. Current climate data downloaded from WorldClim and future climate data predicted by four future climate scenarios (2040s SSP1-2.6, 2040s SSP5-8.5, 2060s SSP1-2.6, and 2060s SSP5-8.5) mainly based on greenhouse gases emissions of distribution sites were used in MaxEnt model with optimized parameters to predict distribution dynamics of Q. gilva and its response to climate change. The results showed that the predicted current distribution was consistent with natural distribution of Q. gilva, which was mainly located in Hunan, Jiangxi, Zhejiang, Fujian, Guizhou, and Taiwan provinces of China, as well as Japan and Jeju Island of South Korea. Under current climate conditions, precipitation factors played a more significant role than temperature factors on distribution of Q. gilva, and precipitation of driest quarter (BIO17) is the most important restriction factor for its current distribution (contribution rate of 57.35%). Under future climate conditions, mean temperature of driest quarter (BIO9) was the essential climate factor affecting future change in potential distribution of Q. gilva. As the degree of climatic anomaly increased in the future, the total area of predicted distribution of Q. gilva showed a shrinking trend (decreased by 12.24%-45.21%) and Q. gilva would migrate to high altitudes and latitudes. The research results illustrated potential distribution range and suitable climate conditions of Q. gilva, which can provide essential theoretical references for the conservation, development, and utilization of Q. gilva and other related species.

RevDate: 2024-04-06

Stephens J, K Leslie (2024)

Environmental Sustainability and Climate Change Content in Canadian Baccalaureate Nursing Programs.

The Journal of nursing education, 63(4):212-217.

BACKGROUND: This study analyzed publicly available resources related to environmental and climate change material available within the Canadian Bachelor of Nursing Program curricula.

METHOD: This thematic review project contained two stages of data collection: (1) a comprehensive team-based review of Internet materials and (2) a digital survey of program faculties.

RESULTS: Most content reviewed included references to climate change. According to survey responses from program directors (n = 12), barriers to integrating climate change content included lack of institutional support, the perception that content was not important in undergraduate curriculum, a conviction that the material would be more appropriate for public health, and an overall lack of understanding of the topic by course authors.

CONCLUSION: With increasing emphasis on the importance of geopolitical health and climate change to many facets of nursing practice, nurse educators require support from colleagues and postsecondary institutions to incorporate this material into undergraduate nursing curricula. [J Nurs Educ. 2024;63(4):212-217.].

RevDate: 2024-04-05

Roussin-Léveillée C, Rossi CAM, Castroverde CDM, et al (2024)

The plant disease triangle facing climate change: a molecular perspective.

Trends in plant science pii:S1360-1385(24)00060-8 [Epub ahead of print].

Variations in climate conditions can dramatically affect plant health and the generation of climate-resilient crops is imperative to food security. In addition to directly affecting plants, it is predicted that more severe climate conditions will also result in greater biotic stresses. Recent studies have identified climate-sensitive molecular pathways that can result in plants being more susceptible to infection under unfavorable conditions. Here, we review how expected changes in climate will impact plant-pathogen interactions, with a focus on mechanisms regulating plant immunity and microbial virulence strategies. We highlight the complex interactions between abiotic and biotic stresses with the goal of identifying components and/or pathways that are promising targets for genetic engineering to enhance adaptation and strengthen resilience in dynamically changing environments.

RevDate: 2024-04-05

Pfenning-Butterworth A, Buckley LB, Drake JM, et al (2024)

Interconnecting global threats: climate change, biodiversity loss, and infectious diseases.

The Lancet. Planetary health, 8(4):e270-e283.

The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.

RevDate: 2024-04-05

Mazumder H, MM Hossain (2024)

Climate change education for health-care professionals: crucial gaps in low-income and middle-income countries.

The Lancet. Planetary health, 8(4):e216.

RevDate: 2024-04-05

Guan K, Li T, Yang F, et al (2024)

Adaptation measures of the potential double cropping region in Northern China to future climate change.

The Science of the total environment pii:S0048-9697(24)02346-5 [Epub ahead of print].

In the context of climate change, the northern climate-based boundaries of the winter wheat-summer maize double cropping system (DCS) have moved northward and westward. The selection of spring maize single cropping system (SCS) or DCS in the potential DCS region in northern China directly affects the annual crop yield, resource use efficiency, and greenhouse gas (GHG) emissions. Reducing GHG emissions while improving yield and resource use efficiency is essential to green agricultural development. We used future climate data (2021-2060, SSP2-4.5 and SSP5-8.5), along with crop and soil data, to assess the applicability of the Denitrification-Decomposition Model (DNDC) for simulating crop yield and GHG emissions. Through simulation of DNDC, we identified a cropping system that prioritized high yield, resource use efficiency, and GHG emissions reduction, adapting to future climate change. Under this cropping system, we quantified the effects of various straw incorporation rates, irrigation, and nitrogen input on crop yield, resource use efficiency, and GHG emissions. We proposed optimal measures to adapt to future climate change while aiming for high yield, resource use efficiency, and GHG emissions reduction. The results show that the DNDC reliably simulated yield and GHG emissions for the (SCS) and the DCS. In counting for greenhouse gas emission intensity (GHGI) as GHG emissions normalized by crop yield, the GHGI was reduced by 86.4 % and 89.2 % in DCS than in SCS under the SSP2-4.5 and SSP5-8.5, respectively. In the study area, the DCS should be adopted for high yield, resource use efficiency, and GHG emissions reduction (increased by 28.4 % and 34.4 %) in the SSP2-4.5 and SSP5-8.5 with 1) straw incorporation rate for 100 % of winter wheat and for 60 % of summer maize; 2) total irrigating 240 mm for winter wheat at pre-sowing, jointing, booting, and filling stages; and 3) applying nitrogen of 168 kg·N/ha for both crops.

RevDate: 2024-04-05

Qamar W, M Qayum (2024)

Understanding the Impact of Climate Change on Oral Health in Lower Middle-Income Countries.

Journal of the College of Physicians and Surgeons--Pakistan : JCPSP, 34(4):499.

Null.

RevDate: 2024-04-05

Salierno G (2024)

On the Chemical Pathways Influencing the Effective Global Warming Potential of Commercial Hydrofluoroolefin Gases.

ChemSusChem [Epub ahead of print].

The enforcement of a global hydrofluorocarbon (HFC) refrigerant phase down led to the introduction of hydrofluoroolefins (HFOs) as a low Global Warming Potential (GWP) substitute, given their low atmospheric lifetime. However, to this date it is not fully clear the long-term atmospheric fate of HFOs primary degradation products: trifluoro acetaldehyde (TFE), trifluoro acetyl fluoride (TFF), and trifluoroacetic acid (TFA). It particularly concerns the possibility of forming HFC-23, a potent global warming agent. Although the atmospheric reaction networks of TFE, TFF, and TFA have a fair level of complexity, the relevant atmospheric chemical pathways are well characterized in the literature, enabling a comprehensive hazard assessment of HFC-23 formation as a secondary HFO breakdown product in diverse scenarios. A lower bound of the HFOs effective GWP in a baseline scenario is found above regulatory thresholds. While further research is crucial to refine climate risk assessments, the existing evidence suggests a non-negligible climate hazard associated with HFOs.

RevDate: 2024-04-04

Brehm J, H Gruhl (2024)

Increase in concerns about climate change following climate strikes and civil disobedience in Germany.

Nature communications, 15(1):2916.

Climate movements have gained momentum in recent years, aiming to create public awareness of the consequences of climate change through salient climate protests. This paper investigates whether concerns about climate change increase following demonstrative protests and confrontational acts of civil disobedience. Leveraging individual-level survey panel data from Germany, we exploit exogenous variations in the timing of climate protests relative to survey interview dates to compare climate change concerns in the days before and after a protest (N = 24,535). Following climate protests, we find increases in concerns about climate change by, on average, 1.2 percentage points. Further, we find no statistically significant evidence that concerns of any subpopulation decreased after climate protests. Lastly, the increase in concerns following protests is highest when concern levels before the protests are low.

RevDate: 2024-04-04

Pathak HK, Chauhan PK, Seth CS, et al (2024)

Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress.

The Science of the total environment pii:S0048-9697(24)02259-9 [Epub ahead of print].

Climate change, food insecurity, and agricultural pollution are all serious challenges in the twenty-first century, impacting plant growth, soil quality, and food security. Innovative techniques are required to mitigate these negative outcomes. Toxic heavy metals (THMs), organic pollutants (OPs), and emerging contaminants (ECs), as well as other biotic and abiotic stressors, can all affect nutrient availability, plant metabolic pathways, agricultural productivity, and soil-fertility. Comprehending the interactions between root exudates, microorganisms, and modified biochar can aid in the fight against environmental problems such as the accumulation of pollutants and the stressful effects of climate change. Microbes can inhibit THMs uptake, degrade organic pollutants, releases biomolecules that regulate crop development under drought, salinity, pathogenic attack and other stresses. However, these microbial abilities are primarily demonstrated in research facilities rather than in contaminated or stressed habitats. Despite not being a perfect solution, biochar can remove THMs, OPs, and ECs from contaminated areas and reduce the impact of climate change on plants. We hypothesized that combining microorganisms with biochar to address the problems of contaminated soil and climate change stress would be effective in the field. Despite the fact that root exudates have the potential to attract selected microorganisms and biochar, there has been little attention paid to these areas, considering that this work addresses a critical knowledge gap of rhizospheric engineering mediated root exudates to foster microbial and biochar adaptation. Reducing the detrimental impacts of THMs, OPs, ECs, as well as abiotic and biotic stress, requires identifying the best root-associated microbes and biochar adaptation mechanisms.

RevDate: 2024-04-04

Paz S (2024)

Climate change: A driver of increasing vector-borne disease transmission in non-endemic areas.

PLoS medicine, 21(4):e1004382 pii:PMEDICINE-D-24-00719 [Epub ahead of print].

In this Perspective, Shlomit Paz discusses the link between climate change and transmission of vector-borne diseases in non-endemic areas.

RevDate: 2024-04-04

Sohrabizadeh S, Farahi-Ashtiani I, Bahramzadeh A, et al (2024)

Climate change and health: The case of mapping droughts and migration pattern in Iran (2011-2016).

Journal of emergency management (Weston, Mass.), 22(7):113-122.

INTRODUCTION: Migration and mobility of population have been reported as a common reaction to drought. There is historical evidence to suggest the health effects of droughts and human migration linkage in Iran. This study aimed to map the drought and migration patterns in Iran in 2011 and 2016 and explore their possible health impacts.

METHODS: This sequential explanatory mixed-method study was done in two stages of spatial analysis and qualitative study. Data mapping was conducted through the equal interval classification and using drought, migration, and agriculture occupation data based on provincial divisions in Iran in 2011 and 2016. This qualitative study was conducted using the content analysis approach.

RESULTS: The in-migration rate was higher in 2011 rather than 2016. Migration to cities was much higher than migration to villages in both years. The frequency of male migrants was higher than females in all provinces in 2011 and 2016. Physical and mental diseases as well as economic, sociocultural, education, and environment effects on health were extracted from the qualitative data.

CONCLUSION: A holistic picture of droughts and migration issues in Iran and their health consequences were achieved by the present research. Further research is needed to explore the determinants of health impacts of climate change in vulnerable groups. Public health problems can be prevented by adaptive and preventive policy-making and planning. This can improve the coping capacity of the population facing droughts and enforced migration.

RevDate: 2024-04-04

Hamshaw KA, D Baker (2024)

Manufactured housing communities and climate change: Understanding key vulnerabilities and recommendations for emergency managers.

Journal of emergency management (Weston, Mass.), 22(7):87-99.

Manufactured housing communities (MHCs), commonly referred to as mobile home parks, provide an estimated 2.7 million American households with largely unsubsidized, affordable housing. Climate change threatens those who call these communities home by exacerbating known structural and social vulnerabilities associated with this housing type-including but not limited to increased risks to flooding, extreme temperatures, high winds, and wildfires. Climate change requires emergency managers to understand the diverse, integrated, and complex vulnerabilities of MHCs that affect their exposure to climate change risk. This article presents findings from an integrative literature review focused on the climate-related vulnerabilities of these communities described at three levels of scale: household, housing structure, and park community. It then draws on 15 years of engagement and action research with MHC residents and stakeholders in Vermont, including several federally declared flooding disasters, to distill key recommendations for emergency managers for assisting MHCs to prepare for and respond to emergencies. As climate change accelerates, emergency managers can increase efficacy by learning about the MHCs in their jurisdictions by leveraging the best available data to characterize risks, integrating MHCs into planning and mitigation activities, and engaging in conversations with stakeholders, including MHC residents and their trusted partners.

RevDate: 2024-04-04

Amoah A, Asare-Nuamah P, Limantol AM, et al (2024)

COVID-19 and climate change concerns: Matters arising.

Journal of emergency management (Weston, Mass.), 22(7):63-69.

Until the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, developing countries, especially countries in the African continent, battled with the impact of climate change on the food value-chain systems and general livelihood. In this study, we discuss climate change concerns post-COVID-19 and argue that the outbreak of the COVID-19 pandemic has exacerbated the vulnerabilities of most developing and emerging economies. This has heightened political tensions and unrest among such developing nations. We suggest enhancement and intensification of efficient and effective locally engineered adaptation strategies in the post-COVID-19 era for countries that have been susceptible to the impact of climate change and other recent shocks.

RevDate: 2024-04-04

Williams BD (2024)

Emergency management and sustainability: Understanding the link between disaster and citizen participation for sustainability efforts and climate change.

Journal of emergency management (Weston, Mass.), 22(7):11-23.

The goal of this study is to examine how disaster experience influences local government views on citizen participation in addressing issues of sustainability, such as climate change. This study considers concepts such as wicked problems, the social order, the environment, economic development, and citizen participation where sustainability can be considered a solution to help manage and solve the challenges of disaster, like climate change. The data are taken from a 2015 International City/County Management Association national survey that examines the link between disaster and sustainability. The results show that more than half of the respondents do not view public participation as having much of an impact on sustainability; however, we can expect public participation to increasingly impact sustainability efforts as communities experience more disaster. This suggests that emergency management needs to understand public pressures regarding wicked problems, such as climate change, to collectively address the global influence of environmental, economic, and social issues that have local effects on their communities.

RevDate: 2024-04-04

Hertelendy A (2024)

Leveraging technology in emergency management: An opportunity to improve compounding and cascading hazards linked to climate change.

Journal of emergency management (Weston, Mass.), 22(7):9-10.

RevDate: 2024-04-04

Sorouri B, Scales NC, Gaut BS, et al (2024)

Sphingomonas clade and functional distribution with simulated climate change.

Microbiology spectrum [Epub ahead of print].

Microbes are essential for the functioning of all ecosystems, and as global warming and anthropogenic pollution threaten ecosystems, it is critical to understand how microbes respond to these changes. We investigated the climate response of Sphingomonas, a widespread gram-negative bacterial genus, during an 18-month microbial community reciprocal transplant experiment across a Southern California climate gradient. We hypothesized that after 18 months, the transplanted Sphingomonas clade and functional composition would correspond with site conditions and reflect the Sphingomonas composition of native communities. We extracted Sphingomonas sequences from metagenomic data across the gradient and assessed their clade and functional composition. Representatives of at least 12 major Sphingomonas clades were found at varying relative abundances along the climate gradient, and transplanted Sphingomonas clade composition shifted after 18 months. Site had a significant effect (PERMANOVA; P < 0.001) on the distribution of both Sphingomonas functional (R[2] = 0.465) and clade composition (R[2] = 0.400), suggesting that Sphingomonas composition depends on climate parameters. Additionally, for both Sphingomonas clade and functional composition, ordinations revealed that the transplanted communities shifted closer to the native Sphingomonas composition of the grassland site compared with the site they were transplanted into. Overall, our results indicate that climate and substrate collectively determine Sphingomonas clade and functional composition.IMPORTANCESphingomonas is the most abundant gram-negative bacterial genus in litter-degrading microbial communities of desert, grassland, shrubland, and forest ecosystems in Southern California. We aimed to determine whether Sphingomonas responds to climate change in the same way as gram-positive bacteria and whole bacterial communities in these ecosystems. Within Sphingomonas, both clade composition and functional genes shifted in response to climate and litter chemistry, supporting the idea that bacteria respond similarly to climate at different scales of genetic variation. This understanding of how microbes respond to perturbation across scales may aid in future predictions of microbial responses to climate change.

RevDate: 2024-04-04

Finnegan W, C d'Abreu (2024)

The hope wheel: a model to enable hope-based pedagogy in Climate Change Education.

Frontiers in psychology, 15:1347392.

In response to concerns about climate anxiety and distress, researchers and practitioners in both education and psychology have been investigating the importance of engaging climate hope in Climate Change Education (CCE). Synthesizing recent multidisciplinary research, alongside insights from the development of educational programs, this article proposes a new theoretical model for pedagogies of hope in CCE. The Hope Wheel presents three foundational elements: handrails for educators to hold on to while constructively engaging with climate change (honesty, awareness, spaceholding, action), guardrails for educators to be sensitive to when implementing the handrails (climate anxiety, mis-/disinformation, false hope), and lenses to encourage educators to explore connections between complex societal and planetary challenges (complexity, justice, perspectives, creativity, and empathy). This working model aims to support educators by distilling current learnings from the literature into a visual guide. It depicts essential elements to include, as well as avoid, in order to engage honest, hope-oriented CCE for transformative learning in the face of the climate crisis.

RevDate: 2024-04-04

Hedberg P, Olsson M, Höglander H, et al (2024)

Climate change effects on plankton recruitment from coastal sediments.

Journal of plankton research, 46(2):117-125.

In highly seasonal systems, the emergence of planktonic resting stages from the sediment is a key driver for bloom timing and plankton community composition. The termination of the resting phase is often linked to environmental cues, but the extent to which recruitment of resting stages is affected by climate change remains largely unknown for coastal environments. Here we investigate phyto- and zooplankton recruitment from oxic sediments in the Baltic Sea in a controlled experiment under proposed temperature and light increase during the spring and summer. We find that emergence of resting stage differs between seasons and the abiotic environment. Phytoplankton recruitment from resting stages were high in spring with significantly higher emergence rates at increased temperature and light levels for dinoflagellate and cyanobacteria than for diatoms, which had highest emergence under cold and dark conditions. In comparison, hatching of copepod nauplii was not affected by increased temperature and light levels. These results show that activation of plankton resting stages are affected to different degrees by increasing temperature and light levels, indicating that climate change affects plankton dynamics through processes related to resting stage termination with potential consequences for bloom timing, community composition and trophic mismatch.

RevDate: 2024-04-04

Chao K (2024)

Family farming in climate change: Strategies for resilient and sustainable food systems.

Heliyon, 10(7):e28599.

Family farming plays a pivotal role in ensuring household food security and bolstering the resilience of food systems against climate change. Traditional agricultural practices are evolving into context-specific, climate-resilient systems such as family farming, homestead gardening, and urban agriculture. This study examines the ways in which family farming can foster climate-resilient food systems amidst climate vulnerabilities. A systematic literature review spanning the past 22 years was undertaken to develop a conceptual framework. From this review, 37 pertinent documents were identified, leading to the creation of a context-specific, climate-resilient food system framework. The research posits that family farming facilitates easy access to food and nutrition by capitalizing on family-sourced land, labor, and capital, and by securing access to technology and markets. Each facet of family farming is intricately linked with sustainability principles. Local adaptation strategies employed by climate-vulnerable households can diminish their vulnerability and augment their adaptive, absorptive, and transformative capacities, enabling them to establish a climate-resilient food system. The research further reveals that farming families employ a myriad of strategies to fortify their food systems. These include crop diversification, adjusting planting times, cultivating high-value crops and fish, planting fruit trees, rearing poultry and livestock, and leveraging their land, labor, and resources-including their homesteads-to access food and nutrition. This study endorses the climate-resilient family farming framework and offers multiple metrics for assessing the resilience of family farming in developing countries.

RevDate: 2024-04-03

Graham F (2024)

Daily briefing: Climate change is slowing Earth's rotation.

RevDate: 2024-04-03

Bontpart T, Weiss A, Vile D, et al (2024)

Growing on calcareous soils and facing climate change.

Trends in plant science pii:S1360-1385(24)00069-4 [Epub ahead of print].

Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.

RevDate: 2024-04-03

Thomas M, Boulanger Y, Asselin H, et al (2024)

How will climate change and forest harvesting influence the habitat quality of two culturally salient species?.

The Science of the total environment pii:S0048-9697(24)02291-5 [Epub ahead of print].

Boreal landscapes face increasing disturbances which can affect cultural keystone species, i.e. culturally salient species that shape in a major way the cultural identity of a people. Given their importance, the fate of such species should be assessed to be able to act to ensure their perennity. We assessed how climate change and forest harvesting will affect the habitat quality of Rhododendron groenlandicum and Vaccinium angustifolium, two cultural keystone species for many Indigenous peoples in eastern Canada. We used the forest landscape model LANDIS-II in combination with species distribution models to simulate the habitat quality of these two species on the territories of three Indigenous communities according to different climate change and forest harvesting scenarios. Climate-sensitive parameters included wildfire regimes as well as tree growth. Moderate climate change scenarios were associated with an increased proportion of R. groenlandicum and V. angustifolium in the landscape, the latter species also responding positively to severe climate change scenarios. Harvesting had a minimal effect, but slightly decreased the probability of presence of both species where it occurred. According to the modeling results, neither species is at risk under moderate climate change scenarios. However, under severe climate change, R. groenlandicum could decline as the proportion of deciduous trees would increase in the landscape. Climate change mitigation strategies, such as prescribed fires, may be necessary to limit this increase. This would prevent the decrease of R. groenlandicum, as well as contribute to preserve biodiversity and harvestable volumes.

RevDate: 2024-04-03

Ponsonby W, R Di Corleto (2024)

Climate change and heat stress.

Occupational medicine (Oxford, England), 74(2):138-139.

RevDate: 2024-04-03

Wang Y, Hu W, Sun H, et al (2024)

Soil moisture decline in China's monsoon loess critical zone: More a result of land-use conversion than climate change.

Proceedings of the National Academy of Sciences of the United States of America, 121(15):e2322127121.

Soil moisture (SM) is essential for sustaining services from Earth's critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China's monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth (P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were -8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.

RevDate: 2024-04-03

Heilmann A, Rueda Z, Alexander D, et al (2024)

Impact of climate change on amoeba and the bacteria they host.

Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada, 9(1):1-5.

RevDate: 2024-04-03

Osorio-Marín J, Fernandez E, Vieli L, et al (2024)

Climate change impacts on temperate fruit and nut production: a systematic review.

Frontiers in plant science, 15:1352169.

Temperate fruit and nut crops require distinctive cold and warm seasons to meet their physiological requirements and progress through their phenological stages. Consequently, they have been traditionally cultivated in warm temperate climate regions characterized by dry-summer and wet-winter seasons. However, fruit and nut production in these areas faces new challenging conditions due to increasingly severe and erratic weather patterns caused by climate change. This review represents an effort towards identifying the current state of knowledge, key challenges, and gaps that emerge from studies of climate change effects on fruit and nut crops produced in warm temperate climates. Following the PRISMA methodology for systematic reviews, we analyzed 403 articles published between 2000 and 2023 that met the defined eligibility criteria. A 44-fold increase in the number of publications during the last two decades reflects a growing interest in research related to both a better understanding of the effects of climate anomalies on temperate fruit and nut production and the need to find strategies that allow this industry to adapt to current and future weather conditions while reducing its environmental impacts. In an extended analysis beyond the scope of the systematic review methodology, we classified the literature into six main areas of research, including responses to environmental conditions, water management, sustainable agriculture, breeding and genetics, prediction models, and production systems. Given the rapid expansion of climate change-related literature, our analysis provides valuable information for researchers, as it can help them identify aspects that are well understood, topics that remain unexplored, and urgent questions that need to be addressed in the future.

RevDate: 2024-04-02

Syropoulos S, Law KF, Mah A, et al (2024)

Intergenerational concern relates to constructive coping and emotional reactions to climate change via increased legacy concerns and environmental cognitive alternatives.

BMC psychology, 12(1):182.

As the threat of climate change looms large, and we experience first-hand the impacts of rapid global warming, researchers and clinicians emphasize the need to better understand the impact of these changes on our mental health. Existing research suggests that coping with and emotional reactions to climate change can promote action to adapt to and mitigate the impacts of climate change and reduce its negative impacts to one's mental health. In this pre-registered study (N = 771) we examined whether people who display extreme intergenerational concern would also constructively cope with climate change. Empirically-identified individuals showing high intergenerational concern reported more problem-focused and meaning-based coping, and less avoidant coping strategies with climate change. Further, even though they felt guilty, angry, sorrowful and isolated, these individuals also felt hopeful about the future. These effects were explained by increased concerns about one's legacy and higher access to environmental cognitive alternatives. By instilling values that highlight intergenerational concern as a key priority, we could thus not only increase pro-climate action, but also help individuals actively and constructively cope with changes produced by climate change.

RevDate: 2024-04-02

Navas-Martín MÁ, Cuerdo-Vilches T, López-Bueno JA, et al (2024)

Human adaptation to heat in the context of climate change: A conceptual framework.

Environmental research pii:S0013-9351(24)00707-2 [Epub ahead of print].

Climate change is causing serious damage to natural and social systems, as well as having an impact on human health. Among the direct effects of climate change is the rise in global surface temperatures and the increase in the frequency, duration, intensity and severity of heat waves. In addition, understanding of the adaptation process of the exposed population remains limited, posing a challenge in accurately estimating heat-related morbidity and mortality. In this context, this study seeks to establish a conceptual framework that would make it easier to understand and organise knowledge about human adaptation to heat and the factors that may influence this process. An inductive approach based on grounded theory was used, through the analysis of case studies connecting concepts. The proposed conceptual framework is made up of five components (climate change, vulnerability, health risks of heat, axes of inequality and health outcomes), three heat-adaptation domains (physiological, cultural and political), two levels (individual and social), and the pre-existing before a heat event. The application of this conceptual framework facilitates the assistance of decision-makers in planning and implementing effective adaptation measures. Recognizing the importance of addressing heat adaptation as a health problem that calls for political solutions and social changes. Accordingly, this requires a multidisciplinary approach that would foster the participation and collaboration of multiple actors for the purpose of proposing effective measures to address the health impact of the rise in temperature.

RevDate: 2024-04-02

Levett-Jones T, Bonnamy J, Cornish J, et al (2024)

Celebrating Australian nurses who are pioneering the response to climate change: a compilation of case studies.

Contemporary nurse [Epub ahead of print].

BACKGROUND: Nurses, the largest healthcare workforce, are well placed to provide leadership in initiatives that promote planetary health. Yet, few practical examples of nurse leadership in the health sector's response to climate change are evident in the scholarly literature.

AIM: The aim of this discussion paper is to profile Australian nurses who are leading initiatives designed to champion planetary health and promote sustainable practice.

METHODS: The paper presents a series of case studies derived from interviews conducted in October and November 2023.

FINDINGS: The nurses' experiences and insights, along with the challenges they have encountered, are presented as evidence of Kouzes and Posner's five practices of exemplary leadership.

CONCLUSION: The case studies demonstrate that appointment of more nurses with climate and sustainability expertise will accelerate the implementation of responsive strategies that target waste management, emissions reduction and climate resilience across healthcare organisations.

RevDate: 2024-04-02

Tang X, Feng Y, Xi M, et al (2024)

Dynamic simulation and projection of ESV changes in arid regions caused by urban growth under climate change scenarios.

Environmental monitoring and assessment, 196(5):411.

Spatial simulation and projection of ecosystem services value (ESV) changes caused by urban growth are important for sustainable development in arid regions. We developed a new model of cellular automata based grasshopper optimization algorithm (named GOA-CA) for simulating urban growth patterns and assessing the impacts of urban growth on ESV changes under climate change scenarios. The results show that GOA-CA yielded overall accuracy exceeding 98%, and FOM for 2010 and 2020 were 43.2% and 38.1%, respectively, indicating the effectiveness of the model. The prairie lost the highest economic ESVs (192 million USD) and the coniferous yielded the largest economic ESV increase (292 million USD) during 2000-2020. Using climate change scenarios as urban future land use demands, we projected three scenarios of the urban growth of Urumqi for 2050 and their impacts on ESV. Our model can be easily applied to simulating urban development, analyzing its impact on ESV and projecting future scenarios in global arid regions.

RevDate: 2024-04-02

Chen C, Miller G, S Setoguchi (2024)

Climate change and excess length of stay: A call to action for health equity and environmental sustainability.

Journal of hospital medicine [Epub ahead of print].

RevDate: 2024-04-02

Liu J, Zhu A, Wang X, et al (2024)

Predicting the current fishable habitat distribution of Antarctic toothfish (Dissostichus mawsoni) and its shift in the future under climate change in the Southern Ocean.

PeerJ, 12:e17131.

Global warming continues to exert unprecedented impacts on marine habitats. Species distribution models (SDMs) are proven powerful in predicting habitat distribution for marine demersal species under climate change impacts. The Antarctic toothfish, Dissostichus mawsoni (Norman 1937), an ecologically and commercially significant species, is endemic to the Southern Ocean. Utilizing occurrence records and environmental data, we developed an ensemble model that integrates various modelling techniques. This model characterizes species-environment relationships and predicts current and future fishable habitats of D. mawsoni under four climate change scenarios. Ice thickness, depth and mean water temperature were the top three important factors in affecting the distribution of D. mawsoni. The ensemble prediction suggests an overall expansion of fishable habitats, potentially due to the limited occurrence records from fishery-dependent surveys. Future projections indicate varying degrees of fishable habitat loss in large areas of the Amery Ice Shelf's eastern and western portions. Suitable fishable habitats, including the spawning grounds in the seamounts around the northern Ross Sea and the coastal waters of the Bellingshausen Sea and Amundsen Sea, were persistent under present and future environmental conditions, highlighting the importance to protect these climate refugia from anthropogenic disturbance. Though data deficiency existed in this study, our predictions can provide valuable information for designing climate-adaptive development and conservation strategies in maintaining the sustainability of this species.

RevDate: 2024-04-01

Azeez RO, Rampedi IT, Ifegbesan AP, et al (2024)

Geo-demographics and source of information as determinants of climate change consciousness among citizens in African countries.

Heliyon, 10(7):e27872.

Climate change constitutes one of the greatest threats to human health globally and there have been increasing interests in understanding the dynamics of climate change consciousness particularly in less industrialised countries of Africa. Research on cross-country, sub-regional and continent differences in climate change consciousness are rare especially in sub-Saharan Africa. Thus, to complement the existing body of literature, this study was conducted on cross-national predictors of public climate change consciousness. Data from the Afrobarometer round 7 for thirty-four [34] African countries, collected between 2017 and 2020, were used to investigate the influence of geographical, socio-demographics, and source of information on public consciousness of climate change. Statistical analyses of t-test, ANOVA and multiple regression were conducted to test the formulated hypotheses. Results showed a low level of climate change consciousness (CCC) among participants. Radio news was the major source of information for the sampled African citizens. There were significant differences in the CCC of male and female as well as between urban and rural respondents. Significant differences were also found among the sub-regions, educational levels, age groups and occupations. Sources of information and demographic variables significantly influenced the level of CCC among participating citizens. Educational attainment was the single most potent predictor of climate change consciousness. The study recommends that African citizens need capacity building on climate change awareness and initiatives which would assist in mitigating the effects of climate change.

RevDate: 2024-04-01

Zhang FG, Zhang S, Wu K, et al (2024)

Potential habitat areas and priority protected areas of Tilia amurensis Rupr in China under the context of climate change.

Frontiers in plant science, 15:1365264.

INTRODUCTION: Tilia amurensis Rupr (T. amurensis) is one endangered and national class II key protected wild plant in China. It has ornamental, material, economic, edible and medicinal values. At present, the resources of T. amurensis are decreasing, and the prediction of the distribution of its potential habitat in China can provide a theoretical basis for the cultivation and rational management of this species.

METHODS: In this study, the R language was used to evaluate 358 distribution records and 38 environment variables. The MaxEnt model was used to predict the potential distribution areas of T. amurensis under the current and future climate scenarios. The dominant environmental factors affecting the distribution of T. amurensis were analyzed and the Marxan model was used to plan the priority protected areas of this species.

RESULTS: The results showed that Bio18, Slope, Elev, Bio1, Bio9 and Bio2 were the dominant environmental factors affecting the distribution of T. amurensis. Under the future climatic scenarios, the potential suitable areas for T. amurensis will mainly distribute in the Northeast China, the total suitable area will reduce compared with the current climate scenarios, and the general trend of the centroid of suitable habitat will be towards higher latitudes. The SPF value of the best plan obtained from the priority conservation area planning was 1.1, the BLM value was 127,616, and the priority conservation area was about 57.61×10[4] km[2]. The results suggested that climate, soil and topographic factors jointly affected the potential geographical distribution of T. amurensis, and climate and topographic factors had greater influence than soil factors.

DISCUSSION: The total suitable area of T. amurensis in China under different climate scenarios in the future will decrease, so more effective protection should be actively adopted.

RevDate: 2024-04-01

El-Mahdy ME, Abdel-Monsef M, Abo-Elella S, et al (2024)

Impact of climate change on the water resources of the Atbara River using novel hydrological models.

Water science and technology : a journal of the International Association on Water Pollution Research, 89(6):1419-1440.

Rivers respond directly to climate change, as well as incorporating the effects of climate-driven changes occurring within their watersheds. In this research, climate change's impact on the Atbara River, one of the main tributaries of the Nile River, was studied. Various statistical methods of analysis were applied to study the basic characteristics of the climatic parameters that affect the discharge of the Atbara River. The three hydrological gauging stations on the Atbara River, namely, the Upper Atbara and Setit reservoirs, Khashm el-Girba reservoir, and Atbara Kilo 3 station, were included in the study. The correlation between the meteorological parameters and the hydrology of the Atbara River and the prediction of the future hydrology of the Atbara River Basin was determined. Many hydrological models were developed and tested to predict the hydrology of the river. Finally, forecasting for river hydrology was built. No significant trend was found in the precipitation in the study area. The developed model simulates the observed data with a high coefficient of determination ranging from 0.7 to 0.91 for the three hydrological gauging stations studied. Results predicted a slight decrease in river discharge in future years.

RevDate: 2024-04-01

Emanuel K (2024)

Cyclone Jasper's rains in the context of climate change.

Proceedings of the National Academy of Sciences of the United States of America, 121(15):e2400292121.

Cyclone Jasper struck northern Queensland in mid-December, 2023, causing extensive flooding stemming from torrential rain. Many stations reported rainfall totals exceeding 1 m, and a few surpassed 2 m, possibly making Jasper the wettest tropical cyclone in Australian history. To be better prepared for events like Jasper, it is useful to estimate the probability of rainfall events of Jasper's magnitude and how that probability is likely to evolve as climate warms. To make such estimates, we apply an advanced tropical cyclone downscaling technique to nine global climate models, generating a total of 27,000 synthetic tropical cyclones each for the climate of the recent past and that of the end of this century. We estimate that the annual probability of 1 m of rain from tropical cyclones at Cairns increases from about 0.8% at the end of the 20th century to about 2.3% at the end of the 21st, a factor of almost three. Interpolating frequency to the year 2023 suggests that the current annual probability of Jasper's rainfall is about 1.2%, about a 50% increase over that of the year 2000. Further analysis suggests that the primary causes of increasing rainfall are stronger cyclones and a moister atmosphere.

RevDate: 2024-04-01

Piper WH, Glines MR, KC Rose (2024)

Climate change-associated declines in water clarity impair feeding by common loons.

Ecology [Epub ahead of print].

Climate change has myriad impacts on ecosystems, but the mechanisms by which it affects individual species can be difficult to pinpoint. One strategy to discover such mechanisms is to identify a specific ecological factor related to survival or reproduction and determine how that factor is affected by climate. Here we used Landsat imagery to calculate water clarity for 127 lakes in northern Wisconsin from 1995 to 2021 and thus investigate the effect of clarity on the body condition of an aquatic visual predator, the common loon (Gavia immer). In addition, we examined rainfall and temperature as potential predictors of water clarity. Body mass tracked July water clarity strongly in loon chicks, which grow chiefly in that month, but weakly in adult males and females. Long-term mean water clarity was negatively related to chick mass but positively related to adult male mass, suggesting that loons foraging in generally clear lakes enjoy good foraging conditions in the long run but might be sensitive to perturbations in clarity during chick-rearing. Finally, chick mass was positively related to the density of docks, perhaps because angling removes large fishes and thus boosts the abundance of the small fishes on which chicks depend. Water clarity itself declined strongly from 1995 to 2021, was negatively related to July rainfall, and was positively related to July air temperature. Our findings identified both long-term and short-term water clarity as strong predictors of loon foraging efficiency, and suggest that climate change, through water clarity, impacts freshwater ecosystems profoundly. Moreover, our results identified the recent decrease in water clarity as a likely cause of population decline in common loons.

RevDate: 2024-03-31

Mori M, Longépée E, Lefer-Sauvage G, et al (2024)

Climate change by any other name: Social representations and language practices of coastal inhabitants on Mayotte Island in the Indian Ocean.

Public understanding of science (Bristol, England) [Epub ahead of print].

As population-related climate change research increases, so does the need to nuance approaches to this complex phenomenon, including issues related to cultural and linguistic translations. To explore how climate change is understood in understudied societies, a case-study approach is taken to address social representations of climate change by inhabitants of a Maore village in the French island of Mayotte. The study explores how local fishers understand the issue when considering observed environmental changes. Based on analyses of 30 interviews, the study found that social representations and related climate change discourses are not well established, except for individuals in close contact with French institutions. Issues regarding local culture and language reveal the importance of understanding the different components of climate change. Climate change communication and awareness-raising on the island are explored, as well as considerations of culturally and linguistically complex settings with a Global North/Global South interface.

RevDate: 2024-04-01
CmpDate: 2024-04-01

Barbour V (2024)

Health and climate change: call for sustainability in Australia's health care sector.

The Medical journal of Australia, 220(6):281.

RevDate: 2024-03-30

Qasim S, Mahmood T, Rakha BA, et al (2024)

Predicting current and future habitat of Indian pangolin (Manis crassicaudata) under climate change.

Scientific reports, 14(1):7564.

Climate change is among the greatest drivers of biodiversity loss, threatening up to 15-30% of described species by the end of the twenty-first century. We estimated the current suitable habitat and forecasted future distribution ranges of Indian pangolin (Manis crassicaudata) under climate change scenarios. We collected occurrence records of Indian pangolin using burrow counts, remote camera records and previously published literature in Pakistan during 2021-2023. We downloaded bioclimatic data for current (1970-2000) and future (2041-2060, 2061-2080, 2081-2100) climate scenarios from the WorldClim database using the Hadley Global Environment Model (HadGEM3-GC31-LL). We used MaxEnt software to predict current and future distributions of Indian pangolin, then computed the amount of habitat lost, gained, and unchanged across periods. We obtained 560 Indian pangolin occurrences overall, 175 during the study, and 385 from our literature search. Model accuracy was very good (AUC = 0.885, TSS = 0.695), and jackknife tests of variable importance showed that the contribution of annual mean temperature (bio1) was greatest (33.4%), followed by the mean temperature of the coldest quarter (bio-12, 29.3%), temperature seasonality (bio 4, 25.9%), and precipitation seasonality (bio 15, 11.5%). The maxent model predicted that during the current time period (1970-2000) highly suitable habitat for Indian pangolin was (7270 km[2], 2.2%), followed by moderately suitable (12,418 km[2], 3.7%), less suitable (49,846 km[2], 14.8%), and unsuitable habitat (268,355 km[2], 79.4%). Highly suitable habitat decreased in the western part of the study area under most SSPs and in the central parts it declined under all SSPs and in future time periods. The predicted loss in the suitable habitat of the Indian pangolin was greatest (26.97%) under SSP 585 followed by SSP 126 (23.67%) during the time 2061-2080. The gain in suitable habitat of Indian pangolin was less than that of losses on average which ranged between 1.91 and 13.11% under all SSPs during all time periods. While the stable habitat of the Indian pangolin ranged between 64.60 and 83.85% under all SSPs during all time periods. Our study provides the current and future habitat ranges of Indian pangolin in the face of a changing climate. The findings of our study could be helpful for policymakers to set up conservation strategies for Indian pangolin in Pakistan.

RevDate: 2024-03-30

Fathy RF (2024)

Divergent perspectives on the synergistic impacts of thermal-chemical stress on aquatic biota within the framework of climate change scenarios.

Chemosphere pii:S0045-6535(24)00703-3 [Epub ahead of print].

Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.

RevDate: 2024-03-30

Manzoor MA, Xu Y, Lv Z, et al (2024)

Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking.

Journal of environmental management, 357:120759 pii:S0301-4797(24)00745-X [Epub ahead of print].

Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.

RevDate: 2024-03-29

Coleine C, Delgado-Baquerizo M, DiRuggiero J, et al (2024)

Dryland microbiomes reveal community adaptations to desertification and climate change.

The ISME journal pii:7637539 [Epub ahead of print].

Drylands account for 45% of the Earth's land area, supporting approximately 40% of the global population. These regions support some of the most extreme environments on Earth, characterized by extreme temperatures, low and variable rainfall, and low soil fertility. In these biomes, microorganisms provide vital ecosystem services and have evolved distinctive adaptation strategies to endure and flourish in the extreme. However, dryland microbiomes and the ecosystem services they provide are under threat due to intensifying desertification and climate change. In this review, we provide a synthesis of our current understanding of microbial life in drylands, emphasizing the remarkable diversity and adaptations of these communities. We then discuss anthropogenic threats, including the influence of climate change on dryland microbiomes and outline current knowledge gaps. Finally, we propose research priorities to address those gaps and safeguard the sustainability of these fragile biomes.

RevDate: 2024-03-29

Yang P, Leonard A, Lanza MF, et al (2024)

Perceived values and climate change resilience dataset in Siaya County, Kenya.

Data in brief, 54:110317.

This dataset presents perceived values and socioeconomic indicators collected in Siaya, a rural county in Kenya in 2022. The data was obtained from 300 household surveys and group interviews conducted in six sub-counties across eleven villages. Socioeconomic data were collected with a special focus on climate change vulnerability. Information on housing, health, water accessibility and usage, electricity accessibility and usage, extreme weather events, community service, and information accessibility were mapped across survey questions. The user-perceived value (UPV) game - a perception-based surveying approach - was used to elicit local communities' needs and perceptions of climate change challenges. The UPV game involves asking interviewees to select which graphically depicted items would be most necessary in different situations and probing them for the reasons behind their choices (why-probing). The data was collected in two languages (Dholuo and English) and then translated into English. These surveys and interviews were conducted to better understand the needs of rural Kenyan communities and their perceptions of climate change, with the aim to identify ways to build resilience. Kenyan policymakers can use the dataset to inform county-level energy and development plans, while researchers and development practitioners can use the dataset to better design their research and programmes to reflect local needs and values.

RevDate: 2024-03-29

Barcellos C, Matos V, Lana RM, et al (2024)

Author Correction: Climate change, thermal anomalies, and the recent progression of dengue in Brazil.

Scientific reports, 14(1):7428 pii:10.1038/s41598-024-58202-8.

RevDate: 2024-03-28

Michaud A, R Leigh (2024)

Letter from Canada: Global warming and wildfire smoke pollution emerging as major threats to respiratory health.

RevDate: 2024-03-28

Singh A, Ezzine T, Guinto RR, et al (2024)

Reflections from COP28: Resisting healthwashing in climate change negotiations.

PLOS global public health, 4(3):e0003076 pii:PGPH-D-24-00481.

RevDate: 2024-03-28

Kerry V, S Sayeed (2024)

Advancing the climate change and health nexus: The 2024 Agenda.

PLOS global public health, 4(3):e0003008 pii:PGPH-D-24-00073.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )