Viewport Size Code:

MENU

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About: ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 25 Sep 2022 at 01:34 Created:

Reynolds Number

It is well known that relative size greatly affects *how*
organisms interact with the world. Less well known, at least among
biologists, is that at sufficiently small sizes, mechanical
interaction with the environment becomes difficult and then virtually
impossible. In fluid dynamics, an important dimensionless parameter is
the Reynolds Number (abbreviated *Re*), which is the ratio of
inertial to viscous forces affecting the movement of objects in a
fluid medium (or the movement of a fluid in a pipe). Since Re is
determined mainly by the size of the object (pipe) and the properties
(density and viscosity) of the fluid, organisms of different sizes
exhibit significantly different Re values when moving through air or
water. A fish, swimming at a high ratio of inertial to viscous forces,
gives a flick of its tail and then glides for several body lengths. A
bacterium, "swimming" in an environment dominated by viscosity,
possesses virtually no inertia. When the bacterium stops moving its
flagellum, the bacterium "coasts" for about a half of a microsecond,
coming to a stop in a distance less than a tenth the diameter of a
hydrogen atom. Similarly, the movement of molecules (nutrients toward,
wastes away) in the vicinity of a bacterium is dominated by diffusion.
Effective stirring — the generation of bulk flow through
mechanical means — is impossible at very low *Re*. An
understanding of the constraints imposed by life at low Reynolds
numbers is essentially for understanding the prokaryotic biosphere.

Created with PubMed^{®} Query:
"reynolds number" NOT pmcbook NOT ispreviousversion

Citations
The Papers
(from PubMed^{®})

-->

RevDate: 2022-09-23

**Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting.**

*Pharmaceutics*, **14(9):** pii:pharmaceutics14091923.

Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model's aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation.

Additional Links: PMID-36145671

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36145671,

year = {2022},

author = {Bernad, SI and Socoliuc, V and Susan-Resiga, D and Crăciunescu, I and Turcu, R and Tombácz, E and Vékás, L and Ioncica, MC and Bernad, ES},

title = {Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting.},

journal = {Pharmaceutics},

volume = {14},

number = {9},

pages = {},

doi = {10.3390/pharmaceutics14091923},

pmid = {36145671},

issn = {1999-4923},

abstract = {Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model's aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation.},

}

RevDate: 2022-09-23

**Kinematic Properties of a Twisted Double Planetary Chaotic Mixer: A Three-Dimensional Numerical Investigation.**

*Micromachines*, **13(9):** pii:mi13091545.

In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating rods inside a moving tank. The considered stirring protocol is a "Continuous sine squared motion" by using the dynamic mesh model and user-defined functions (UDFs)to define the velocity profiles. The chaotic advection is obtained in our active mixers by the temporal modulation of rotational velocities of the moving walls in order to enhance the mixing of the fluid for a low Reynolds number and a high Peclet number. For this goal, we applied the Poincaré section and Lyapunov exponent as reliable mathematic tools for checking mixing quality by tracking a number of massless particles inside the fluid domain. Additionally, we investigated the development of fluid kinematics proprieties, such as vorticity, helicity, strain rate and elongation rate, at various time periods in order to view the impact of temporal modulation on the flow properties. The results of the mentioned simulation showed that it is possible to obtain a chaotic advection after a relatively short time, which can deeply enhance mixing fluid efficiency.

Additional Links: PMID-36144168

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36144168,

year = {2022},

author = {Mostefa, T and Eddine, AD and Tayeb, NT and Hossain, S and Rahman, A and Mohamed, B and Kim, KY},

title = {Kinematic Properties of a Twisted Double Planetary Chaotic Mixer: A Three-Dimensional Numerical Investigation.},

journal = {Micromachines},

volume = {13},

number = {9},

pages = {},

doi = {10.3390/mi13091545},

pmid = {36144168},

issn = {2072-666X},

abstract = {In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating rods inside a moving tank. The considered stirring protocol is a "Continuous sine squared motion" by using the dynamic mesh model and user-defined functions (UDFs)to define the velocity profiles. The chaotic advection is obtained in our active mixers by the temporal modulation of rotational velocities of the moving walls in order to enhance the mixing of the fluid for a low Reynolds number and a high Peclet number. For this goal, we applied the Poincaré section and Lyapunov exponent as reliable mathematic tools for checking mixing quality by tracking a number of massless particles inside the fluid domain. Additionally, we investigated the development of fluid kinematics proprieties, such as vorticity, helicity, strain rate and elongation rate, at various time periods in order to view the impact of temporal modulation on the flow properties. The results of the mentioned simulation showed that it is possible to obtain a chaotic advection after a relatively short time, which can deeply enhance mixing fluid efficiency.},

}

RevDate: 2022-09-23

**Cattaneo-Christov Double Diffusion (CCDD) on Sutterby Nanofluid with Irreversibility Analysis and Motile Microbes Due to a RIGA Plate.**

*Micromachines*, **13(9):** pii:mi13091497.

In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This Riga plate creates an electric and magnetic field, where a transverse Lorentz force is generated that contributes to the flow along the plate. A new study field has been created by Sutterby nanofluid flows down the Riga plate, which is crucial to the creation of several industrial advancements, including thermal nuclear reactors, flow metres, and nuclear reactor design. This article addresses the second law analysis of MHD Sutter by nanofluid over a stretching sheet with the Riga plate. The Cattaneo-Christov Double Diffusion heat and mass flux have been created to examine the behaviour of relaxation time. The bioconvection of motile microorganisms and chemical reactions are taken into consideration. Similarity transformations are used to make the governing equations non-dimensional ordinary differential equations (ODE's) that are subsequently solved through an efficient and powerful analytic technique, the homotopy analysis method (HAM). The effect of pertained variables on velocity, temperature, concentration, and motile microorganism distributions are elaborated through the plot in detail. Further, the velocity distribution enhances and reduces for greater value Deborah number and Reynold number for the two cases of pseudoplastic and dilatant flow. Microorganism distribution decreases with the augmented magnitude of Peclet number (Pe), Bioconvection Lewis number (Lb), and microorganism concentration difference number (ϖ). The entropy production distribution is increased for the greater estimations of the Reynolds number (ReL) and Brinkman parameter (Br). Two sets of graphical outputs are presented for the Sutterby fluid parameter. Finally, for the justification of these outcomes, tables of comparison are made with various variables.

Additional Links: PMID-36144120

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36144120,

year = {2022},

author = {Ahmed, MF and Zaib, A and Ali, F and Bafakeeh, OT and Khan, NB and Mohamed Tag-ElDin, ES and Oreijah, M and Guedri, K and Galal, AM},

title = {Cattaneo-Christov Double Diffusion (CCDD) on Sutterby Nanofluid with Irreversibility Analysis and Motile Microbes Due to a RIGA Plate.},

journal = {Micromachines},

volume = {13},

number = {9},

pages = {},

doi = {10.3390/mi13091497},

pmid = {36144120},

issn = {2072-666X},

abstract = {In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This Riga plate creates an electric and magnetic field, where a transverse Lorentz force is generated that contributes to the flow along the plate. A new study field has been created by Sutterby nanofluid flows down the Riga plate, which is crucial to the creation of several industrial advancements, including thermal nuclear reactors, flow metres, and nuclear reactor design. This article addresses the second law analysis of MHD Sutter by nanofluid over a stretching sheet with the Riga plate. The Cattaneo-Christov Double Diffusion heat and mass flux have been created to examine the behaviour of relaxation time. The bioconvection of motile microorganisms and chemical reactions are taken into consideration. Similarity transformations are used to make the governing equations non-dimensional ordinary differential equations (ODE's) that are subsequently solved through an efficient and powerful analytic technique, the homotopy analysis method (HAM). The effect of pertained variables on velocity, temperature, concentration, and motile microorganism distributions are elaborated through the plot in detail. Further, the velocity distribution enhances and reduces for greater value Deborah number and Reynold number for the two cases of pseudoplastic and dilatant flow. Microorganism distribution decreases with the augmented magnitude of Peclet number (Pe), Bioconvection Lewis number (Lb), and microorganism concentration difference number (ϖ). The entropy production distribution is increased for the greater estimations of the Reynolds number (ReL) and Brinkman parameter (Br). Two sets of graphical outputs are presented for the Sutterby fluid parameter. Finally, for the justification of these outcomes, tables of comparison are made with various variables.},

}

RevDate: 2022-09-23

**Mixing Performance of the Modified Tesla Micromixer with Tip Clearance.**

*Micromachines*, **13(9):** pii:mi13091375.

A passive micromixer based on the modified Tesla mixing unit was designed by embedding tip clearance above the wedge-shape divider, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The height of tip clearance was varied from 40 μm to 80 μm, corresponding to 25% to 33% of the micromixer depth. The numerical results show that the mixing enhancement by the tip clearance is noticeable over a wide range of the Reynolds numbers Re < 50. The height of tip clearance is optimized in terms of the DOM, and the optimum value is roughly h = 60 μm. It corresponds to 33% of the present micromixer depth. The mixing enhancement in the molecular diffusion regime of mixing, Re ≤ 1, is obtained by drag and connection of the interface in the two sub-streams of each Tesla mixing unit. It appears as a wider interface in the tip clearance zone. In the intermediate range of the Reynolds number, 1 < Re ≤ 50, the mixing enhancement is attributed to the interaction of the flow through the tip clearance and the secondary flow in the vortex zone of each Tesla mixing unit. When the Reynolds number is larger than about 50, vortices are formed at various locations and drive the mixing in the modified Tesla micromixer. For the Reynolds number of Re = 80, a pair of vortices is formed around the inlet and outlet of each Tesla mixing unit, and it plays a role as a governing mechanism in the convection-dominant regime of mixing. This vortex pattern is little affected as long as the tip clearance remains smaller than about h = 70 μm. The DOM at the outlet is little enhanced by the presence of tip clearance for the Reynolds numbers Re ≥ 50. The tip clearance contributes to reducing the required pressure load for the same value of the DOM.

Additional Links: PMID-36143998

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36143998,

year = {2022},

author = {Juraeva, M and Kang, DJ},

title = {Mixing Performance of the Modified Tesla Micromixer with Tip Clearance.},

journal = {Micromachines},

volume = {13},

number = {9},

pages = {},

doi = {10.3390/mi13091375},

pmid = {36143998},

issn = {2072-666X},

support = {Bokuk2022//Bokuk/ ; },

abstract = {A passive micromixer based on the modified Tesla mixing unit was designed by embedding tip clearance above the wedge-shape divider, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The height of tip clearance was varied from 40 μm to 80 μm, corresponding to 25% to 33% of the micromixer depth. The numerical results show that the mixing enhancement by the tip clearance is noticeable over a wide range of the Reynolds numbers Re < 50. The height of tip clearance is optimized in terms of the DOM, and the optimum value is roughly h = 60 μm. It corresponds to 33% of the present micromixer depth. The mixing enhancement in the molecular diffusion regime of mixing, Re ≤ 1, is obtained by drag and connection of the interface in the two sub-streams of each Tesla mixing unit. It appears as a wider interface in the tip clearance zone. In the intermediate range of the Reynolds number, 1 < Re ≤ 50, the mixing enhancement is attributed to the interaction of the flow through the tip clearance and the secondary flow in the vortex zone of each Tesla mixing unit. When the Reynolds number is larger than about 50, vortices are formed at various locations and drive the mixing in the modified Tesla micromixer. For the Reynolds number of Re = 80, a pair of vortices is formed around the inlet and outlet of each Tesla mixing unit, and it plays a role as a governing mechanism in the convection-dominant regime of mixing. This vortex pattern is little affected as long as the tip clearance remains smaller than about h = 70 μm. The DOM at the outlet is little enhanced by the presence of tip clearance for the Reynolds numbers Re ≥ 50. The tip clearance contributes to reducing the required pressure load for the same value of the DOM.},

}

RevDate: 2022-09-23

**Analysis of Calcium Sulfate Scaling Phenomena on Reverse Osmosis Membranes by Scaling-Based Flux Model.**

*Membranes*, **12(9):** pii:membranes12090894.

In this study, the behavior of permeate flux decline due to scale precipitation of calcium sulfate on reverse osmosis membranes was investigated. The proposed scaling-based flux model is able to explain that permeate fluxes attributed to three mechanisms of scale precipitation-cake formation, surface blockage, and mixed crystallization-converge to the same newly defined scaling-based critical flux. In addition, a scaling index is defined, which determines whether scale precipitates on the membrane. The experimental results were analyzed based on this index. The mass-transfer coefficients of flat membrane cells used in the experiments were measured and, although the coefficients differed, they could be summarized in the same form as the Leveque equation. Considering the results of the scale precipitation experiments, where the operating conditions of pressure, solute concentration, temperature, and Reynolds number were varied, the convergent values of the permeate fluxes are explained by the scaling-based critical fluxes and the scale precipitation zones by the scaling indexes.

Additional Links: PMID-36135913

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36135913,

year = {2022},

author = {Yokoyama, F and Nakajima, M and Ichikawa, S},

title = {Analysis of Calcium Sulfate Scaling Phenomena on Reverse Osmosis Membranes by Scaling-Based Flux Model.},

journal = {Membranes},

volume = {12},

number = {9},

pages = {},

doi = {10.3390/membranes12090894},

pmid = {36135913},

issn = {2077-0375},

abstract = {In this study, the behavior of permeate flux decline due to scale precipitation of calcium sulfate on reverse osmosis membranes was investigated. The proposed scaling-based flux model is able to explain that permeate fluxes attributed to three mechanisms of scale precipitation-cake formation, surface blockage, and mixed crystallization-converge to the same newly defined scaling-based critical flux. In addition, a scaling index is defined, which determines whether scale precipitates on the membrane. The experimental results were analyzed based on this index. The mass-transfer coefficients of flat membrane cells used in the experiments were measured and, although the coefficients differed, they could be summarized in the same form as the Leveque equation. Considering the results of the scale precipitation experiments, where the operating conditions of pressure, solute concentration, temperature, and Reynolds number were varied, the convergent values of the permeate fluxes are explained by the scaling-based critical fluxes and the scale precipitation zones by the scaling indexes.},

}

RevDate: 2022-09-19

**Numerical Study of Stratified Flames Using Reynolds Averaged Navier Stokes Modeling.**

*ACS omega*, **7(36):**31822-31833.

Reynolds averaged Navier Stokes technique was used to develop a validated numerical model for stratified flames. The validation was carried out with the experimental data of the non-swirl flames of the Cambridge dual annulus swirl burner. The RNG k-ε turbulence model along with the SG-35 skeletal chemical mechanism was found to give a good prediction of scalar and vector quantities while resulting in the reduction of computational time by 99.75% in comparison with that required for large eddy simulation techniques used in the literature. The effect of stratification at a constant input power, global equivalence ratio, and Reynolds number was examined. At stratification ratios (SRs = ϕin/ϕout) 1 and 2, intense burning, marked by the higher OH concentration, was observed close to the bluff body. Beyond SR = 2, the region of intense burning shifts downstream away from the bluff body. This is a result of the high equivalence ratio in the inner annulus, which is beyond the rich flammability limit of methane-air flames, and as a result, the primary flame region is shifted downstream after the mixtures from inner and outer annulus have mixed properly to produce a mixture with the equivalence ratio in the flammability limit. The maximum temperature was found to increase by 24.1% when the SR is increased from 1 to 2 and the combustion efficiency was found to significantly improve by 267%. The highest maximum temperature of 2249 K is observed for the mildly stratified flame at SR = 2. Beyond SR = 2, the maximum temperature decreases, while the combustion efficiency increases slightly.

Additional Links: PMID-36120040

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36120040,

year = {2022},

author = {Shakeel, MR and Mokheimer, EMA},

title = {Numerical Study of Stratified Flames Using Reynolds Averaged Navier Stokes Modeling.},

journal = {ACS omega},

volume = {7},

number = {36},

pages = {31822-31833},

doi = {10.1021/acsomega.2c02542},

pmid = {36120040},

issn = {2470-1343},

abstract = {Reynolds averaged Navier Stokes technique was used to develop a validated numerical model for stratified flames. The validation was carried out with the experimental data of the non-swirl flames of the Cambridge dual annulus swirl burner. The RNG k-ε turbulence model along with the SG-35 skeletal chemical mechanism was found to give a good prediction of scalar and vector quantities while resulting in the reduction of computational time by 99.75% in comparison with that required for large eddy simulation techniques used in the literature. The effect of stratification at a constant input power, global equivalence ratio, and Reynolds number was examined. At stratification ratios (SRs = ϕin/ϕout) 1 and 2, intense burning, marked by the higher OH concentration, was observed close to the bluff body. Beyond SR = 2, the region of intense burning shifts downstream away from the bluff body. This is a result of the high equivalence ratio in the inner annulus, which is beyond the rich flammability limit of methane-air flames, and as a result, the primary flame region is shifted downstream after the mixtures from inner and outer annulus have mixed properly to produce a mixture with the equivalence ratio in the flammability limit. The maximum temperature was found to increase by 24.1% when the SR is increased from 1 to 2 and the combustion efficiency was found to significantly improve by 267%. The highest maximum temperature of 2249 K is observed for the mildly stratified flame at SR = 2. Beyond SR = 2, the maximum temperature decreases, while the combustion efficiency increases slightly.},

}

RevDate: 2022-09-20

**Influence of thermal jump and inclined magnetic field on peristaltic transport of Jeffrey fluid with silver nanoparticle in the eccentric annulus.**

*Heliyon*, **8(9):**e10543.

This study investigates the impacts of thermal jump and inclined magnetic field on the peristaltic transport of Jeffrey fluid containing silver nanoparticles in the eccentric annuls under the long wavelength and low Reynolds number assumption. In medical studies, the impact of thermal jumps and slanted magnetic fields on public health is of interest. Peristaltic motion's ability to transmit heat and create a magnetic field has several uses in biomedical and bioengineering. The non-Newtonian Jeffrey fluid with silver nanoparticles is considered in the space between two cylindrical tubes that are eccentrically aligned. The homotopic perturbation method is semi-analytical for modeling and nonlinear partial differential equations (HPM). Analytical solutions for velocity, pressure gradient, and pressure rise were found. To show how physical parameters affect temperature, velocity, concentration, frictional force, and pressure rise of inner and outer tubes were plotted. A comparison of the present method with the exact solution for temperature and nanoparticle concentration profile is shown graphically. The present analysis of analytical solution approaches to the exact solution. The most significant thing in the current investigation is that the Hartmann number and thermophoresis number make the velocity profile decline. Jeffrey fluid parameter and magnetic field angle make the velocity rise. The nanofluid's temperature rises as a result of the thermal jump. In addition, the Jeffrey nanofluid has a higher momentum and temperature than the Jeffrey fluid. This analysis can better evaluate the syringe's injection speed and fluid flow features during cancer treatment, artery blockage removal, and reduced bleeding throughout the surgery.

Additional Links: PMID-36119891

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36119891,

year = {2022},

author = {Kotnurkar, AS and Talawar, VT},

title = {Influence of thermal jump and inclined magnetic field on peristaltic transport of Jeffrey fluid with silver nanoparticle in the eccentric annulus.},

journal = {Heliyon},

volume = {8},

number = {9},

pages = {e10543},

pmid = {36119891},

issn = {2405-8440},

abstract = {This study investigates the impacts of thermal jump and inclined magnetic field on the peristaltic transport of Jeffrey fluid containing silver nanoparticles in the eccentric annuls under the long wavelength and low Reynolds number assumption. In medical studies, the impact of thermal jumps and slanted magnetic fields on public health is of interest. Peristaltic motion's ability to transmit heat and create a magnetic field has several uses in biomedical and bioengineering. The non-Newtonian Jeffrey fluid with silver nanoparticles is considered in the space between two cylindrical tubes that are eccentrically aligned. The homotopic perturbation method is semi-analytical for modeling and nonlinear partial differential equations (HPM). Analytical solutions for velocity, pressure gradient, and pressure rise were found. To show how physical parameters affect temperature, velocity, concentration, frictional force, and pressure rise of inner and outer tubes were plotted. A comparison of the present method with the exact solution for temperature and nanoparticle concentration profile is shown graphically. The present analysis of analytical solution approaches to the exact solution. The most significant thing in the current investigation is that the Hartmann number and thermophoresis number make the velocity profile decline. Jeffrey fluid parameter and magnetic field angle make the velocity rise. The nanofluid's temperature rises as a result of the thermal jump. In addition, the Jeffrey nanofluid has a higher momentum and temperature than the Jeffrey fluid. This analysis can better evaluate the syringe's injection speed and fluid flow features during cancer treatment, artery blockage removal, and reduced bleeding throughout the surgery.},

}

RevDate: 2022-09-17

**Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.**

Pumping devices with the electrokinetics phenomena are important in many microscale transport phenomena in physiology. This study presents a theoretical and numerical investigation on the peristaltic pumping of non-Newtonian Sutterby nanofluid through capillary in presence of electromagnetohydrodynamics. Here blood (Sutterby fluid) is taken as a base fluid and nanofluid is prepared by the suspension of graphene oxide nanoparticles in blood. Graphene oxide is extremely useful in the medical domain for drug delivery and cancer treatment. The modified Buongiorno model for nanofluids and Poisson-Boltzmann ionic distribution is adopted for the formulation of the present problem. Constitutive flow equations are linearized by the implementation of approximations of low Reynolds number, large wavelength, and the Debye-Hückel linearization. The numerical solution of reduced coupled and nonlinear set of equations is computed through Mathematica and graphical illustration is presented. Further, the impacts of buoyancy forces, thermal radiation, and mixed convection are also studied. It is revealed in this investigation that the inclusion of a large number of nanoparticles alters the flow characteristics significantly and boosts the heat transfer mechanism. Moreover, the pumping power of the peristaltic pump can be enhanced by the reduction in the width of the electric double layer which can be done by altering the electrolyte concentration.

Additional Links: PMID-36115732

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36115732,

year = {2022},

author = {Akram, J and Akbar, NS and Tripathi, D},

title = {Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.},

journal = {Microvascular research},

volume = {},

number = {},

pages = {104435},

doi = {10.1016/j.mvr.2022.104435},

pmid = {36115732},

issn = {1095-9319},

abstract = {Pumping devices with the electrokinetics phenomena are important in many microscale transport phenomena in physiology. This study presents a theoretical and numerical investigation on the peristaltic pumping of non-Newtonian Sutterby nanofluid through capillary in presence of electromagnetohydrodynamics. Here blood (Sutterby fluid) is taken as a base fluid and nanofluid is prepared by the suspension of graphene oxide nanoparticles in blood. Graphene oxide is extremely useful in the medical domain for drug delivery and cancer treatment. The modified Buongiorno model for nanofluids and Poisson-Boltzmann ionic distribution is adopted for the formulation of the present problem. Constitutive flow equations are linearized by the implementation of approximations of low Reynolds number, large wavelength, and the Debye-Hückel linearization. The numerical solution of reduced coupled and nonlinear set of equations is computed through Mathematica and graphical illustration is presented. Further, the impacts of buoyancy forces, thermal radiation, and mixed convection are also studied. It is revealed in this investigation that the inclusion of a large number of nanoparticles alters the flow characteristics significantly and boosts the heat transfer mechanism. Moreover, the pumping power of the peristaltic pump can be enhanced by the reduction in the width of the electric double layer which can be done by altering the electrolyte concentration.},

}

RevDate: 2022-09-20

CmpDate: 2022-09-20

**Drag Reduction in Turbulent Wall-Bounded Flows of Realistic Polymer Solutions.**

*Physical review letters*, **129(10):**104502.

Suspensions of DNA macromolecules (0.8 wppm, 60 kbp), modeled as finitely extensible nonlinear elastic dumbbells coupled to the Newtonian fluid, show drag reduction up to 27% at friction Reynolds number 180, saturating at the previously unachieved Weissenberg number ≃10^{4}. At a large Weissenberg number, the drag reduction is entirely induced by the fully stretched polymers, as confirmed by the extensional viscosity field. The polymer extension is strongly non-Gaussian, in contrast to the assumptions of classical viscoelastic models.

Additional Links: PMID-36112448

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36112448,

year = {2022},

author = {Serafini, F and Battista, F and Gualtieri, P and Casciola, CM},

title = {Drag Reduction in Turbulent Wall-Bounded Flows of Realistic Polymer Solutions.},

journal = {Physical review letters},

volume = {129},

number = {10},

pages = {104502},

doi = {10.1103/PhysRevLett.129.104502},

pmid = {36112448},

issn = {1079-7114},

mesh = {*DNA ; Friction ; *Polymers ; Viscosity ; },

abstract = {Suspensions of DNA macromolecules (0.8 wppm, 60 kbp), modeled as finitely extensible nonlinear elastic dumbbells coupled to the Newtonian fluid, show drag reduction up to 27% at friction Reynolds number 180, saturating at the previously unachieved Weissenberg number ≃10^{4}.

At a large Weissenberg number, the drag reduction is entirely induced by the fully stretched polymers, as confirmed by the extensional viscosity field. The polymer extension is strongly non-Gaussian, in contrast to the assumptions of classical viscoelastic models.},

}

MeSH Terms:

show MeSH Terms

hide MeSH Terms

*DNA

Friction

*Polymers

Viscosity

RevDate: 2022-09-16

**Profile of a two-dimensional vortex condensate beyond the universal limit.**

*Physical review. E*, **106(2-2):**025102.

It is well known that an inverse turbulent cascade in a finite (2π×2π) two-dimensional periodic domain leads to the emergence of a system-sized coherent vortex dipole. We report a numerical hyperviscous study of the spatial vorticity profile inside one of the vortices. The exciting force was shortly correlated in time, random in space, and had a correlation length l_{f}=2π/k_{f} with k_{f} ranging from 100 to 12.5. Previously, it was found that in the asymptotic limit of small-scale forcing, the vorticity exhibits the power-law behavior Ω(r)=(3ε/α)^{1/2}r^{-1}, where r is the distance to the vortex center, α is the bottom friction coefficient, and ε is the inverse energy flux. Now we show that for a spatially homogeneous forcing with finite k_{f} the vorticity profile becomes steeper, with the difference increasing with the pumping scale but decreasing with the Reynolds number at the forcing scale. Qualitatively, this behavior is related to a decrease in the effective pumping of the coherent vortex with distance from its center. To support this statement, we perform an additional simulation with spatially localized forcing, in which the effective pumping of the coherent vortex, on the contrary, increases with r, and show that in this case the vorticity profile can be flatter than the asymptotic limit.

Additional Links: PMID-36109998

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36109998,

year = {2022},

author = {Parfenyev, V},

title = {Profile of a two-dimensional vortex condensate beyond the universal limit.},

journal = {Physical review. E},

volume = {106},

number = {2-2},

pages = {025102},

doi = {10.1103/PhysRevE.106.025102},

pmid = {36109998},

issn = {2470-0053},

abstract = {It is well known that an inverse turbulent cascade in a finite (2π×2π) two-dimensional periodic domain leads to the emergence of a system-sized coherent vortex dipole. We report a numerical hyperviscous study of the spatial vorticity profile inside one of the vortices. The exciting force was shortly correlated in time, random in space, and had a correlation length l_{f}=

2π/k_{f}

with k_{f}

ranging from 100 to 12.5. Previously, it was found that in the asymptotic limit of small-scale forcing, the vorticity exhibits the power-law behavior Ω(r)=(3ε/α)^{1/2}r

^{-1},

where r is the distance to the vortex center, α is the bottom friction coefficient, and ε is the inverse energy flux. Now we show that for a spatially homogeneous forcing with finite k_{f}

the vorticity profile becomes steeper, with the difference increasing with the pumping scale but decreasing with the Reynolds number at the forcing scale. Qualitatively, this behavior is related to a decrease in the effective pumping of the coherent vortex with distance from its center. To support this statement, we perform an additional simulation with spatially localized forcing, in which the effective pumping of the coherent vortex, on the contrary, increases with r, and show that in this case the vorticity profile can be flatter than the asymptotic limit.},

}

RevDate: 2022-09-16

**Anomalous diffusion and transport by a reciprocal convective flow.**

*Physical review. E*, **106(2-1):**024102.

Under low-Reynolds-number conditions, dynamics of convection and diffusion are usually considered separately because their dominant spatial and temporal scales are different, but cooperative effects of convection and diffusion can cause diffusion enhancement [Koyano et al., Phys. Rev. E 102, 033109 (2020)2470-004510.1103/PhysRevE.102.033109]. In this paper, such cooperative effects are investigated in detail. Numerical simulations based on the convection-diffusion equation revealed that anisotropic diffusion and net shift as well as diffusion enhancement occur under a reciprocal flow. Such anomalous diffusion and transport are theoretically derived by the analyses of the Langevin dynamics.

Additional Links: PMID-36109911

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36109911,

year = {2022},

author = {Koyano, Y and Kitahata, H},

title = {Anomalous diffusion and transport by a reciprocal convective flow.},

journal = {Physical review. E},

volume = {106},

number = {2-1},

pages = {024102},

doi = {10.1103/PhysRevE.106.024102},

pmid = {36109911},

issn = {2470-0053},

abstract = {Under low-Reynolds-number conditions, dynamics of convection and diffusion are usually considered separately because their dominant spatial and temporal scales are different, but cooperative effects of convection and diffusion can cause diffusion enhancement [Koyano et al., Phys. Rev. E 102, 033109 (2020)2470-004510.1103/PhysRevE.102.033109]. In this paper, such cooperative effects are investigated in detail. Numerical simulations based on the convection-diffusion equation revealed that anisotropic diffusion and net shift as well as diffusion enhancement occur under a reciprocal flow. Such anomalous diffusion and transport are theoretically derived by the analyses of the Langevin dynamics.},

}

RevDate: 2022-09-16

**Chaos and irreversibility of a flexible filament in periodically driven Stokes flow.**

*Physical review. E*, **106(2-2):**025103.

The flow of Newtonian fluid at low Reynolds number is, in general, regular and time-reversible due to absence of nonlinear effects. For example, if the fluid is sheared by its boundary motion that is subsequently reversed, then all the fluid elements return to their initial positions. Consequently, mixing in microchannels happens solely due to molecular diffusion and is very slow. Here, we show, numerically, that the introduction of a single, freely floating, flexible filament in a time-periodic linear shear flow can break reversibility and give rise to chaos due to elastic nonlinearities, if the bending rigidity of the filament is within a carefully chosen range. Within this range, not only the shape of the filament is spatiotemporally chaotic, but also the flow is an efficient mixer. Overall, we find five dynamical phases: the shape of a stiff filament is time-invariant-either straight or buckled; it undergoes a period-two bifurcation as the filament is made softer; becomes spatiotemporally chaotic for even softer filaments but, surprisingly, the chaos is suppressed if bending rigidity is decreased further.

Additional Links: PMID-36109885

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36109885,

year = {2022},

author = {Agrawal, V and Mitra, D},

title = {Chaos and irreversibility of a flexible filament in periodically driven Stokes flow.},

journal = {Physical review. E},

volume = {106},

number = {2-2},

pages = {025103},

doi = {10.1103/PhysRevE.106.025103},

pmid = {36109885},

issn = {2470-0053},

abstract = {The flow of Newtonian fluid at low Reynolds number is, in general, regular and time-reversible due to absence of nonlinear effects. For example, if the fluid is sheared by its boundary motion that is subsequently reversed, then all the fluid elements return to their initial positions. Consequently, mixing in microchannels happens solely due to molecular diffusion and is very slow. Here, we show, numerically, that the introduction of a single, freely floating, flexible filament in a time-periodic linear shear flow can break reversibility and give rise to chaos due to elastic nonlinearities, if the bending rigidity of the filament is within a carefully chosen range. Within this range, not only the shape of the filament is spatiotemporally chaotic, but also the flow is an efficient mixer. Overall, we find five dynamical phases: the shape of a stiff filament is time-invariant-either straight or buckled; it undergoes a period-two bifurcation as the filament is made softer; becomes spatiotemporally chaotic for even softer filaments but, surprisingly, the chaos is suppressed if bending rigidity is decreased further.},

}

RevDate: 2022-09-13

**Highly efficient passive Tesla valves for microfluidic applications.**

*Microsystems & nanoengineering*, **8:**97.

A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s- 1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed.

Additional Links: PMID-36089943

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36089943,

year = {2022},

author = {Bohm, S and Phi, HB and Moriyama, A and Runge, E and Strehle, S and König, J and Cierpka, C and Dittrich, L},

title = {Highly efficient passive Tesla valves for microfluidic applications.},

journal = {Microsystems & nanoengineering},

volume = {8},

number = {},

pages = {97},

pmid = {36089943},

issn = {2055-7434},

abstract = {A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s- 1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed.},

}

RevDate: 2022-09-09

**Experimental Study of the Jetting Behavior of High-Viscosity Nanosilver Inks in Inkjet-Based 3D Printing.**

*Nanomaterials (Basel, Switzerland)*, **12(17):** pii:nano12173076.

Inkjet printing of high-viscosity (up to 105 mPa·s) nanosilver inks is an interesting emerging technology to achieve the 3D fully printed fabrication of electronic products. The highly viscous force of the ink makes it impossible to achieve droplet ejection with the traditional piezoelectric-driven drop-on-demand inkjet method. In this study, a pneumatic needle jetting valve is adopted to provide sufficient driving force. A large number of high-viscosity inkjet printing tests are carried out, and the jetting behavior is recorded with a high-speed camera. Different jetting states are determined according to the recorded images, and the causes of their formation are revealed. Additionally, the effects of the operating pressure, preload angle, and fluid pressure on jetting states are elucidated. Furthermore, the jetting phase diagram is obtained with the characterization of the Reynolds number and the printable region is clarified. This provides a better understanding of high-viscosity inkjet printing and will promote the application of high-viscosity inkjet printing in 3D fully printed electronic products.

Additional Links: PMID-36080113

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36080113,

year = {2022},

author = {Xiao, X and Li, G and Liu, T and Gu, M},

title = {Experimental Study of the Jetting Behavior of High-Viscosity Nanosilver Inks in Inkjet-Based 3D Printing.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {17},

pages = {},

doi = {10.3390/nano12173076},

pmid = {36080113},

issn = {2079-4991},

support = {52005263//National Natural Science Foundation of China/ ; BK20190466//Natural Science Foundation of Jiangsu Province/ ; },

abstract = {Inkjet printing of high-viscosity (up to 105 mPa·s) nanosilver inks is an interesting emerging technology to achieve the 3D fully printed fabrication of electronic products. The highly viscous force of the ink makes it impossible to achieve droplet ejection with the traditional piezoelectric-driven drop-on-demand inkjet method. In this study, a pneumatic needle jetting valve is adopted to provide sufficient driving force. A large number of high-viscosity inkjet printing tests are carried out, and the jetting behavior is recorded with a high-speed camera. Different jetting states are determined according to the recorded images, and the causes of their formation are revealed. Additionally, the effects of the operating pressure, preload angle, and fluid pressure on jetting states are elucidated. Furthermore, the jetting phase diagram is obtained with the characterization of the Reynolds number and the printable region is clarified. This provides a better understanding of high-viscosity inkjet printing and will promote the application of high-viscosity inkjet printing in 3D fully printed electronic products.},

}

RevDate: 2022-09-06

**Walking is like slithering: A unifying, data-driven view of locomotion.**

*Proceedings of the National Academy of Sciences of the United States of America*, **119(37):**e2113222119.

Legged movement is ubiquitous in nature and of increasing interest for robotics. Most legged animals routinely encounter foot slipping, yet detailed modeling of multiple contacts with slipping exceeds current simulation capacity. Here we present a principle that unifies multilegged walking (including that involving slipping) with slithering and Stokesian (low Reynolds number) swimming. We generated data-driven principally kinematic models of locomotion for walking in low-slip animals (Argentine ant, 4.7% slip ratio of slipping to total motion) and for high-slip robotic systems (BigANT hexapod, slip ratio 12 to 22%; Multipod robots ranging from 6 to 12 legs, slip ratio 40 to 100%). We found that principally kinematic models could explain much of the variability in body velocity and turning rate using body shape and could predict walking behaviors outside the training data. Most remarkably, walking was principally kinematic irrespective of leg number, foot slipping, and turning rate. We find that grounded walking, with or without slipping, is governed by principally kinematic equations of motion, functionally similar to frictional swimming and slithering. Geometric mechanics thus leads to a unified model for swimming, slithering, and walking. Such commonality may shed light on the evolutionary origins of animal locomotion control and offer new approaches for robotic locomotion and motion planning.

Additional Links: PMID-36067311

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36067311,

year = {2022},

author = {Zhao, D and Bittner, B and Clifton, G and Gravish, N and Revzen, S},

title = {Walking is like slithering: A unifying, data-driven view of locomotion.},

journal = {Proceedings of the National Academy of Sciences of the United States of America},

volume = {119},

number = {37},

pages = {e2113222119},

doi = {10.1073/pnas.2113222119},

pmid = {36067311},

issn = {1091-6490},

support = {W911NF-17-1-0306//DOD | US Army | RDECOM | Army Research Office (ARO)/ ; 1825918//National Science Foundation (NSF)/ ; W911NF-17-1-0243//DOD | US Army | RDECOM | Army Research Office (ARO)/ ; },

abstract = {Legged movement is ubiquitous in nature and of increasing interest for robotics. Most legged animals routinely encounter foot slipping, yet detailed modeling of multiple contacts with slipping exceeds current simulation capacity. Here we present a principle that unifies multilegged walking (including that involving slipping) with slithering and Stokesian (low Reynolds number) swimming. We generated data-driven principally kinematic models of locomotion for walking in low-slip animals (Argentine ant, 4.7% slip ratio of slipping to total motion) and for high-slip robotic systems (BigANT hexapod, slip ratio 12 to 22%; Multipod robots ranging from 6 to 12 legs, slip ratio 40 to 100%). We found that principally kinematic models could explain much of the variability in body velocity and turning rate using body shape and could predict walking behaviors outside the training data. Most remarkably, walking was principally kinematic irrespective of leg number, foot slipping, and turning rate. We find that grounded walking, with or without slipping, is governed by principally kinematic equations of motion, functionally similar to frictional swimming and slithering. Geometric mechanics thus leads to a unified model for swimming, slithering, and walking. Such commonality may shed light on the evolutionary origins of animal locomotion control and offer new approaches for robotic locomotion and motion planning.},

}

RevDate: 2022-09-02

**Drag reduction study of a microfiber-coated cylinder.**

*Scientific reports*, **12(1):**15022.

Drag reduction for a bluff body is imperative in a time of increasing awareness of the environmental impact and sustainability of air travel. Microfiber coating has demonstrated its ability to reduce drag on a bluff body. This was done by applying strips of the coating to a cylinder. To widen the application range of the microfiber coating, a fully microfiber-coated cylinder is studied as it has no directionality relative to incoming flow. It is hypothesized that a large coating coverage will cause a reduction in drag dependent on the Reynolds number Re. The fully microfiber-coated cylinder is studied in a wind tunnel and the drag coefficient is determined at a range of Re in the subcritical-flow regime. It is found that the drag coefficient of the microfiber-coated cylinder is a function of Re, and the critical Reynolds number, where the maximum drag reduction occurs, is lower for a microfiber-coated cylinder compared to that of a conventional smooth-surface cylinder.

Additional Links: PMID-36056085

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36056085,

year = {2022},

author = {Hasegawa, M and Chen, YC and Sakaue, H},

title = {Drag reduction study of a microfiber-coated cylinder.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {15022},

pmid = {36056085},

issn = {2045-2322},

abstract = {Drag reduction for a bluff body is imperative in a time of increasing awareness of the environmental impact and sustainability of air travel. Microfiber coating has demonstrated its ability to reduce drag on a bluff body. This was done by applying strips of the coating to a cylinder. To widen the application range of the microfiber coating, a fully microfiber-coated cylinder is studied as it has no directionality relative to incoming flow. It is hypothesized that a large coating coverage will cause a reduction in drag dependent on the Reynolds number Re. The fully microfiber-coated cylinder is studied in a wind tunnel and the drag coefficient is determined at a range of Re in the subcritical-flow regime. It is found that the drag coefficient of the microfiber-coated cylinder is a function of Re, and the critical Reynolds number, where the maximum drag reduction occurs, is lower for a microfiber-coated cylinder compared to that of a conventional smooth-surface cylinder.},

}

RevDate: 2022-09-01

**Calibration and performance characterization of a Mach 5 Ludwieg tube.**

*The Review of scientific instruments*, **93(8):**085104.

Calibration, commissioning, and design features of a new Mach 5 Ludwieg Tube wind tunnel at the University of Arizona are discussed. Mach number uniformity and free-stream noise levels are measured using a Pitot rake at a range of unit Reynolds numbers and at multiple spanwise and streamwise positions. The wind tunnel is shown to have a free-stream Mach number of 4.82 with maximum variance less than 0.8% (and less than 0.5% at most streamwise positions). The average free-stream acoustic noise level in the core (based on Pitot pressure) is shown to be less than 1.2% at an intermediate Reynolds number with some regions dropping locally below 1.0%. The core flow region is measured to be 282.4 mm (11.1 in.) in diameter at the nozzle exit.

Additional Links: PMID-36050069

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36050069,

year = {2022},

author = {Bearden, KP and Padilla, VE and Taubert, L and Craig, SA},

title = {Calibration and performance characterization of a Mach 5 Ludwieg tube.},

journal = {The Review of scientific instruments},

volume = {93},

number = {8},

pages = {085104},

doi = {10.1063/5.0093052},

pmid = {36050069},

issn = {1089-7623},

abstract = {Calibration, commissioning, and design features of a new Mach 5 Ludwieg Tube wind tunnel at the University of Arizona are discussed. Mach number uniformity and free-stream noise levels are measured using a Pitot rake at a range of unit Reynolds numbers and at multiple spanwise and streamwise positions. The wind tunnel is shown to have a free-stream Mach number of 4.82 with maximum variance less than 0.8% (and less than 0.5% at most streamwise positions). The average free-stream acoustic noise level in the core (based on Pitot pressure) is shown to be less than 1.2% at an intermediate Reynolds number with some regions dropping locally below 1.0%. The core flow region is measured to be 282.4 mm (11.1 in.) in diameter at the nozzle exit.},

}

RevDate: 2022-08-31

**Thrust and torque production of a squid-inspired swimmer with a bent nozzle for thrust vectoring.**

*Bioinspiration & biomimetics* [Epub ahead of print].

A three-dimensional pulsed-jet propulsion model consisting of a flexible body and a steerable bent nozzle in tethered mode is presented and studied numerically. By prescribing the body deformation and nozzle angle, we examine the flow evolution and propulsive/turning performance via thrust vectoring. Our results show that the vortex ring is no longer axis-symmetric when the jet is ejected at an angle with the incoming flow. A torque peak is observed during jetting, which is mainly sourced from the suction force (negative pressure) at the lower part of the internal nozzle surface when the flow is directed downward through an acute angle. After this crest, the torque is dominated by the positive pressure at the upper part of the internal nozzle surface, especially at a relatively low jet-based Reynolds number (О(102)). The torque production increases with a larger nozzle bent angle as expected. Meanwhile, the thrust production remains almost unchanged, showing little trade-off between thrust and torque production which demonstrates the advantage of thrust vectoring via a bent nozzle. By decoupling the thrust at the internal and outer surfaces considering special characteristics of force generation by pulsed-jet propulsion, we find that variations in Reynolds number mostly affect the viscous friction at the outer surfaces. The influence of the maximum stroke ratio is also studied. Results show that both the time-averaged thrust and the torque decrease at a larger stroke ratio.

Additional Links: PMID-36044879

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36044879,

year = {2022},

author = {Luo, Y and Xiao, Q and Zhu, Q and Pan, G},

title = {Thrust and torque production of a squid-inspired swimmer with a bent nozzle for thrust vectoring.},

journal = {Bioinspiration & biomimetics},

volume = {},

number = {},

pages = {},

doi = {10.1088/1748-3190/ac8e3f},

pmid = {36044879},

issn = {1748-3190},

abstract = {A three-dimensional pulsed-jet propulsion model consisting of a flexible body and a steerable bent nozzle in tethered mode is presented and studied numerically. By prescribing the body deformation and nozzle angle, we examine the flow evolution and propulsive/turning performance via thrust vectoring. Our results show that the vortex ring is no longer axis-symmetric when the jet is ejected at an angle with the incoming flow. A torque peak is observed during jetting, which is mainly sourced from the suction force (negative pressure) at the lower part of the internal nozzle surface when the flow is directed downward through an acute angle. After this crest, the torque is dominated by the positive pressure at the upper part of the internal nozzle surface, especially at a relatively low jet-based Reynolds number (О(102)). The torque production increases with a larger nozzle bent angle as expected. Meanwhile, the thrust production remains almost unchanged, showing little trade-off between thrust and torque production which demonstrates the advantage of thrust vectoring via a bent nozzle. By decoupling the thrust at the internal and outer surfaces considering special characteristics of force generation by pulsed-jet propulsion, we find that variations in Reynolds number mostly affect the viscous friction at the outer surfaces. The influence of the maximum stroke ratio is also studied. Results show that both the time-averaged thrust and the torque decrease at a larger stroke ratio.},

}

RevDate: 2022-08-31

**Monitoring Aerobic Marine Bacterial Biofilms on Gold Electrode Surfaces and the Influence of Nitric Oxide Attachment Control.**

*Analytical chemistry* [Epub ahead of print].

Detection of aerobic marine bacterial biofilms using electrochemical impedance spectroscopy has been done to monitor the interfacial response of Pseudoalteromonas sp. NCIMB 2021 attachment and growth in order to identify characteristic events on a 0.2 mm diameter gold electrode surface. Uniquely, the applicability of surface charge density has been proven to be valuable in determining biofilm attachment and cell enumeration over a 72 h duration on a gold surface within a modified continuous culture flow cell (a controlled low laminar flow regime with Reynolds number ≈ 1). In addition, biofilm dispersal has been evaluated using 500 nM sodium nitroprusside, a nitric oxide donor (nitric oxide is important for the regulation of several diverse biological processes). Ex situ confocal microscopy studies have been performed to confirm biofilm coverage and morphology, plus the determination and quantification of the nitric oxide biofilm dispersal effects. Overall, the capability of the sensor to electrochemically detect the presence of initial bacterial biofilm formation and extent has been established and shown to have potential for real-time biofilm monitoring.

Additional Links: PMID-36043842

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36043842,

year = {2022},

author = {Werwinski, S and Wharton, JA and Nie, M and Stokes, KR},

title = {Monitoring Aerobic Marine Bacterial Biofilms on Gold Electrode Surfaces and the Influence of Nitric Oxide Attachment Control.},

journal = {Analytical chemistry},

volume = {},

number = {},

pages = {},

doi = {10.1021/acs.analchem.2c00934},

pmid = {36043842},

issn = {1520-6882},

abstract = {Detection of aerobic marine bacterial biofilms using electrochemical impedance spectroscopy has been done to monitor the interfacial response of Pseudoalteromonas sp. NCIMB 2021 attachment and growth in order to identify characteristic events on a 0.2 mm diameter gold electrode surface. Uniquely, the applicability of surface charge density has been proven to be valuable in determining biofilm attachment and cell enumeration over a 72 h duration on a gold surface within a modified continuous culture flow cell (a controlled low laminar flow regime with Reynolds number ≈ 1). In addition, biofilm dispersal has been evaluated using 500 nM sodium nitroprusside, a nitric oxide donor (nitric oxide is important for the regulation of several diverse biological processes). Ex situ confocal microscopy studies have been performed to confirm biofilm coverage and morphology, plus the determination and quantification of the nitric oxide biofilm dispersal effects. Overall, the capability of the sensor to electrochemically detect the presence of initial bacterial biofilm formation and extent has been established and shown to have potential for real-time biofilm monitoring.},

}

RevDate: 2022-08-29

**Irreversibility process analysis for SiO2-MoS2/water-based flow over a rotating and stretching cylinder.**

*Journal of applied biomaterials & functional materials*, **20:**22808000221120329.

Entropy is the measure of the amount of energy in any physical system that is not accessible for the useful work, which causes a decrease in a system's thermodynamic efficiency. The idea of entropy generation analysis plays a vital role in characterizing the evolution of thermal processes and minimizing the impending loss of available mechanical power in thermo-fluid systems from an analytical perspective. It has a wide range of applications in biological, information, and engineering systems, such as transportation, telecommunication, and rate processes. The analysis of the entropy generation of axisymmetric magnetohydrodynamic hybrid nanofluid (SiO2-MoS2)/water flow induced by rotating and stretching cylinder in the presence of heat radiation, ohmic heating, and the magnetic field is focus of this study. Thermal energy transport of hybrid nanofluids is performed by applying the Maxwell model. Heat transport is carried out by using convective boundary condition. The dimensionless ordinary differential equations are acquired by similarity transformations. The numerical solution for these differential equations is obtained by the bvp4c program in MATLAB. A comparison between nanofluid and hybrid nanofluid is made for flow field, temperature, and entropy generation. Comparison of nanofluid flow with hybrid nanofluid flow exhibits a higher rate of heat transmission, while entropy generation exhibits the opposite behavior. It is observed that the flow and heat distribution increase as the solid volume fraction's value grows. An increase in entropy is indicated by augmentation in the Brinkman number and temperature ratio parameter, but the Bejan number shows a declining trend. Furthermore, outcomes of the Nusselt number for hybrid nanofluid and nanofluid are calculated for various parameters. It is noticed that the Nusselt number is reduced for enlarging the magnetic field and Eckert number. The axial and azimuthal wall stress parameters are declined by augmenting the Reynolds number.

Additional Links: PMID-36036196

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36036196,

year = {2022},

author = {Khan, M and Sarfraz, M and Mehmood, S and Ullah, MZ},

title = {Irreversibility process analysis for SiO2-MoS2/water-based flow over a rotating and stretching cylinder.},

journal = {Journal of applied biomaterials & functional materials},

volume = {20},

number = {},

pages = {22808000221120329},

doi = {10.1177/22808000221120329},

pmid = {36036196},

issn = {2280-8000},

abstract = {Entropy is the measure of the amount of energy in any physical system that is not accessible for the useful work, which causes a decrease in a system's thermodynamic efficiency. The idea of entropy generation analysis plays a vital role in characterizing the evolution of thermal processes and minimizing the impending loss of available mechanical power in thermo-fluid systems from an analytical perspective. It has a wide range of applications in biological, information, and engineering systems, such as transportation, telecommunication, and rate processes. The analysis of the entropy generation of axisymmetric magnetohydrodynamic hybrid nanofluid (SiO2-MoS2)/water flow induced by rotating and stretching cylinder in the presence of heat radiation, ohmic heating, and the magnetic field is focus of this study. Thermal energy transport of hybrid nanofluids is performed by applying the Maxwell model. Heat transport is carried out by using convective boundary condition. The dimensionless ordinary differential equations are acquired by similarity transformations. The numerical solution for these differential equations is obtained by the bvp4c program in MATLAB. A comparison between nanofluid and hybrid nanofluid is made for flow field, temperature, and entropy generation. Comparison of nanofluid flow with hybrid nanofluid flow exhibits a higher rate of heat transmission, while entropy generation exhibits the opposite behavior. It is observed that the flow and heat distribution increase as the solid volume fraction's value grows. An increase in entropy is indicated by augmentation in the Brinkman number and temperature ratio parameter, but the Bejan number shows a declining trend. Furthermore, outcomes of the Nusselt number for hybrid nanofluid and nanofluid are calculated for various parameters. It is noticed that the Nusselt number is reduced for enlarging the magnetic field and Eckert number. The axial and azimuthal wall stress parameters are declined by augmenting the Reynolds number.},

}

RevDate: 2022-08-29

**Theoretical analysis of unsteady squeezing nanofluid flow with physical properties.**

*Mathematical biosciences and engineering : MBE*, **19(10):**10176-10191.

Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid flow is studied. The flow of nanofluid between two plates that placed parallel in a rotating system by keeping the variable physical properties: viscosity and thermal conductivity. It is analyzed by using Navier Stokes Equation, Energy Equation and Concentration equation. The prominent equations are transformed by virtue of suitable similarity transformation. Nanofluid model includes the important effects of Thermophoresis and Brownian motion. For analysis graphical results are drawn for verity parameters of our interest i.e., Injection parameter, Squeezing number, Prandtle number and Schmidt number are investigated for the Velocity field, Temperature variation and Concentration profile numerically. The findings underline that the parameter of skin friction increases when the Squeezing Reynolds number, Injection parameter and Prandtle number increases. However, it shows inverse relationship with Schmidt number and Rotation parameter. Furthermore, direct relationship of Nusselt number with injection parameter and Reynolds number is observed while its relation with Schmidt number, Rotation parameter, Brownian parameter and Thermophoretic parameter shows an opposite trend. The results are thus obtained through Parametric Continuation Method (PCM) which is further validated through BVP4c. Moreover, the results are tabulated and set forth for comparison of findings through PCM and BVP4c which shows that the obtained results correspond to each other.

Additional Links: PMID-36031990

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36031990,

year = {2022},

author = {Saeed, A and Shah, RA and Khan, MS and Fernandez-Gamiz, U and Bani-Fwaz, MZ and Noeiaghdam, S and Galal, AM},

title = {Theoretical analysis of unsteady squeezing nanofluid flow with physical properties.},

journal = {Mathematical biosciences and engineering : MBE},

volume = {19},

number = {10},

pages = {10176-10191},

doi = {10.3934/mbe.2022477},

pmid = {36031990},

issn = {1551-0018},

abstract = {Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid flow is studied. The flow of nanofluid between two plates that placed parallel in a rotating system by keeping the variable physical properties: viscosity and thermal conductivity. It is analyzed by using Navier Stokes Equation, Energy Equation and Concentration equation. The prominent equations are transformed by virtue of suitable similarity transformation. Nanofluid model includes the important effects of Thermophoresis and Brownian motion. For analysis graphical results are drawn for verity parameters of our interest i.e., Injection parameter, Squeezing number, Prandtle number and Schmidt number are investigated for the Velocity field, Temperature variation and Concentration profile numerically. The findings underline that the parameter of skin friction increases when the Squeezing Reynolds number, Injection parameter and Prandtle number increases. However, it shows inverse relationship with Schmidt number and Rotation parameter. Furthermore, direct relationship of Nusselt number with injection parameter and Reynolds number is observed while its relation with Schmidt number, Rotation parameter, Brownian parameter and Thermophoretic parameter shows an opposite trend. The results are thus obtained through Parametric Continuation Method (PCM) which is further validated through BVP4c. Moreover, the results are tabulated and set forth for comparison of findings through PCM and BVP4c which shows that the obtained results correspond to each other.},

}

RevDate: 2022-08-27

**A novel angiographic method to estimate arterial blood flow rates using contrast reflux: Effect of injection parameters.**

*Medical physics* [Epub ahead of print].

BACKGROUND: Contrast reflux, which is the retrograde movement of contrast against flow direction, is commonly observed during angiography. Despite a vast body of literature on angiography, the hemodynamic factors affecting contrast reflux have not been studied. Numerous methods have been developed to extract flow from angiography, but the reliability of these methods is not yet sufficient to be of routine clinical use.

PURPOSE: To evaluate the effect of baseline blood flow rates and injection conditions on the extent of contrast reflux. To estimate arterial flow rates based on measurement of contrast reflux length.

MATERIALS AND METHODS: Iodinated contrast was injected into an idealized tube as well as a physiologically accurate model of the cervico-cerebral vasculature. A total of 194 high-speed angiograms were acquired under varying 'blood' flow rates and injection conditions (catheter size, injection rate, injection time). The length of contrast reflux was compared to the input variables and to dimensionless fluid dynamics parameters at the catheter-tip. Arterial blood flow rates were estimated using contrast reflux length as well as a traditional transit-time method and compared to measured flow rates.

RESULTS: Contrast reflux lengths were significantly affected by contrast injection rate (p<0.0001), baseline blood flow rate (p = 0.0004), and catheter size (p = 0.04), but not by contrast injection time (p = 0.4). Reflux lengths were found to be correlated to dimensionless fluid dynamics parameters by an exponential function (R2 = 0.6 to 0.99). When considering the entire dataset in unison, flow estimation errors with the reflux-length method (39±33%) were significantly higher (p = 0.003) than the transit-time method (33±36%). However, when sub-grouped by catheter, the error with the reflux-length method was substantially reduced and was significantly lower (14±14%, p<0.0001) than the transit-time method.

CONCLUSION: Results show correlations between contrast reflux length and baseline hemodynamic parameters that have not been reported previously. Clinically relevant blood flow rate estimation is feasible by simple measurement of reflux length. In vivo and clinical studies are required to confirm these correlations and to refine the methodology of estimating blood flow by reflux. This article is protected by copyright. All rights reserved.

Additional Links: PMID-36030369

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36030369,

year = {2022},

author = {Marfoglio, S and Kovarovic, B and Fiorella, DJ and Sadasivan, C},

title = {A novel angiographic method to estimate arterial blood flow rates using contrast reflux: Effect of injection parameters.},

journal = {Medical physics},

volume = {},

number = {},

pages = {},

doi = {10.1002/mp.15948},

pmid = {36030369},

issn = {2473-4209},

abstract = {BACKGROUND: Contrast reflux, which is the retrograde movement of contrast against flow direction, is commonly observed during angiography. Despite a vast body of literature on angiography, the hemodynamic factors affecting contrast reflux have not been studied. Numerous methods have been developed to extract flow from angiography, but the reliability of these methods is not yet sufficient to be of routine clinical use.

PURPOSE: To evaluate the effect of baseline blood flow rates and injection conditions on the extent of contrast reflux. To estimate arterial flow rates based on measurement of contrast reflux length.

MATERIALS AND METHODS: Iodinated contrast was injected into an idealized tube as well as a physiologically accurate model of the cervico-cerebral vasculature. A total of 194 high-speed angiograms were acquired under varying 'blood' flow rates and injection conditions (catheter size, injection rate, injection time). The length of contrast reflux was compared to the input variables and to dimensionless fluid dynamics parameters at the catheter-tip. Arterial blood flow rates were estimated using contrast reflux length as well as a traditional transit-time method and compared to measured flow rates.

RESULTS: Contrast reflux lengths were significantly affected by contrast injection rate (p<0.0001), baseline blood flow rate (p = 0.0004), and catheter size (p = 0.04), but not by contrast injection time (p = 0.4). Reflux lengths were found to be correlated to dimensionless fluid dynamics parameters by an exponential function (R2 = 0.6 to 0.99). When considering the entire dataset in unison, flow estimation errors with the reflux-length method (39±33%) were significantly higher (p = 0.003) than the transit-time method (33±36%). However, when sub-grouped by catheter, the error with the reflux-length method was substantially reduced and was significantly lower (14±14%, p<0.0001) than the transit-time method.

CONCLUSION: Results show correlations between contrast reflux length and baseline hemodynamic parameters that have not been reported previously. Clinically relevant blood flow rate estimation is feasible by simple measurement of reflux length. In vivo and clinical studies are required to confirm these correlations and to refine the methodology of estimating blood flow by reflux. This article is protected by copyright. All rights reserved.},

}

RevDate: 2022-08-26

**Particle Distribution and Heat Transfer of SiO2/Water Nanofluid in the Turbulent Tube Flow.**

*Nanomaterials (Basel, Switzerland)*, **12(16):** pii:nano12162803.

In order to clarify the effect of particle coagulation on the heat transfer properties, the governing equations of nanofluid together with the equation for nanoparticles in the SiO2/water nanofluid flowing through a turbulent tube are solved numerically in the range of Reynolds number 3000 ≤ Re ≤ 16,000 and particle volume fraction 0.005 ≤ φ ≤ 0.04. Some results are validated by comparing with the experimental results. The effect of particle convection, diffusion, and coagulation on the pressure drop ∆P, particle distribution, and heat transfer of nanofluid are analyzed. The main innovation is that it gives the effect of particle coagulation on the pressure drop, particle distribution, and heat transfer. The results showed that ∆P increases with the increase in Re and φ. When inlet velocity is small, the increase in ∆P caused by adding particles is relatively large, and ∆P increases most obviously compared with the case of pure water when the inlet velocity is 0.589 m/s and φ is 0.004. Particle number concentration M0 decreases along the flow direction, and M0 near the wall is decreased to the original 2% and decreased by about 90% in the central area. M0 increases with increasing Re but with decreasing φ, and basically presents a uniform distribution in the core area of the tube. The geometric mean diameter of particle GMD increases with increasing φ, but with decreasing Re. GMD is the minimum in the inlet area, and gradually increases along the flow direction. The geometric standard deviation of particle diameter GSD increases sharply at the inlet and decreases in the inlet area, remains almost unchanged in the whole tube, and finally decreases rapidly again at the outlet. The effects of Re and φ on the variation in GSD along the flow direction are insignificant. The values of convective heat transfer coefficient h and Nusselt number Nu are larger for nanofluids than that for pure water. h and Nu increase with the increase in Re and φ. Interestingly, the variation in φ from 0.005 to 0.04 has little effect on h and Nu.

Additional Links: PMID-36014668

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36014668,

year = {2022},

author = {Shi, R and Lin, J and Yang, H},

title = {Particle Distribution and Heat Transfer of SiO2/Water Nanofluid in the Turbulent Tube Flow.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {16},

pages = {},

doi = {10.3390/nano12162803},

pmid = {36014668},

issn = {2079-4991},

support = {12132015//National Natural Science Foundation of China/ ; },

abstract = {In order to clarify the effect of particle coagulation on the heat transfer properties, the governing equations of nanofluid together with the equation for nanoparticles in the SiO2/water nanofluid flowing through a turbulent tube are solved numerically in the range of Reynolds number 3000 ≤ Re ≤ 16,000 and particle volume fraction 0.005 ≤ φ ≤ 0.04. Some results are validated by comparing with the experimental results. The effect of particle convection, diffusion, and coagulation on the pressure drop ∆P, particle distribution, and heat transfer of nanofluid are analyzed. The main innovation is that it gives the effect of particle coagulation on the pressure drop, particle distribution, and heat transfer. The results showed that ∆P increases with the increase in Re and φ. When inlet velocity is small, the increase in ∆P caused by adding particles is relatively large, and ∆P increases most obviously compared with the case of pure water when the inlet velocity is 0.589 m/s and φ is 0.004. Particle number concentration M0 decreases along the flow direction, and M0 near the wall is decreased to the original 2% and decreased by about 90% in the central area. M0 increases with increasing Re but with decreasing φ, and basically presents a uniform distribution in the core area of the tube. The geometric mean diameter of particle GMD increases with increasing φ, but with decreasing Re. GMD is the minimum in the inlet area, and gradually increases along the flow direction. The geometric standard deviation of particle diameter GSD increases sharply at the inlet and decreases in the inlet area, remains almost unchanged in the whole tube, and finally decreases rapidly again at the outlet. The effects of Re and φ on the variation in GSD along the flow direction are insignificant. The values of convective heat transfer coefficient h and Nusselt number Nu are larger for nanofluids than that for pure water. h and Nu increase with the increase in Re and φ. Interestingly, the variation in φ from 0.005 to 0.04 has little effect on h and Nu.},

}

RevDate: 2022-08-26

**Impact of Partial Slip on Double Diffusion Convection of Sisko Nanofluids in Asymmetric Channel with Peristaltic Propulsion and Inclined Magnetic Field.**

*Nanomaterials (Basel, Switzerland)*, **12(16):** pii:nano12162736.

The current article discusses the outcomes of the double diffusion convection of peristaltic transport in Sisko nanofluids along an asymmetric channel having an inclined magnetic field. Consideration is given to the Sisko fluid model, which can forecast both Newtonian and non-Newtonian fluid properties. Lubricating greases are the best examples of Sisko fluids. Experimental research shows that most realistic fluids, including human blood, paint, dirt, and other substances, correspond to Sisko's proposed definition of viscosity. Mathematical modelling is considered to explain the flow behavior. The simpler non-linear PEDs are deduced by using an elongated wavelength and a minimal Reynolds number. The expression is also numerically calculated. The impacts of the physical variables on the quantities of flow are plotted graphically as well as numerically. The results reveal that there is a remarkable increase in the concentration, temperature, and nanoparticle fraction with the rise in the Dufour and thermophoresis variables.

Additional Links: PMID-36014601

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36014601,

year = {2022},

author = {Akram, S and Athar, M and Saeed, K and Razia, A and Alghamdi, M and Muhammad, T},

title = {Impact of Partial Slip on Double Diffusion Convection of Sisko Nanofluids in Asymmetric Channel with Peristaltic Propulsion and Inclined Magnetic Field.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {16},

pages = {},

doi = {10.3390/nano12162736},

pmid = {36014601},

issn = {2079-4991},

abstract = {The current article discusses the outcomes of the double diffusion convection of peristaltic transport in Sisko nanofluids along an asymmetric channel having an inclined magnetic field. Consideration is given to the Sisko fluid model, which can forecast both Newtonian and non-Newtonian fluid properties. Lubricating greases are the best examples of Sisko fluids. Experimental research shows that most realistic fluids, including human blood, paint, dirt, and other substances, correspond to Sisko's proposed definition of viscosity. Mathematical modelling is considered to explain the flow behavior. The simpler non-linear PEDs are deduced by using an elongated wavelength and a minimal Reynolds number. The expression is also numerically calculated. The impacts of the physical variables on the quantities of flow are plotted graphically as well as numerically. The results reveal that there is a remarkable increase in the concentration, temperature, and nanoparticle fraction with the rise in the Dufour and thermophoresis variables.},

}

RevDate: 2022-08-24

**Impact assessment of new generation high-speed agricultural tractor aerodynamics on transportation fuel consumption and related phenomena.**

*Environmental science and pollution research international* [Epub ahead of print].

New generation agricultural tractors contribute to transportation by increased travel speeds. There is not any available aerodynamic data on the authentic agricultural tractor form. On-road transportation by tractors is between 8 and 30% of their operational time. In this work, two agricultural tractors are modelled via computational fluid dynamics for nine different speeds to determine aerodynamic resistances. Constant speed travel scenarios are analyzed. Corresponding speeds are 5 and 10 to 80 km/h with 10 km/h increments. Reynolds number changes between 1.6 × 105 and 2.98 × 106. The characteristic lengths are taken as the square root of the streamwise projected area of the tractor geometries. Aerodynamic forces exerted on the tractors change between 3 and 746 N. The calculated drag coefficients are found as independent from Reynolds number and are 0.6 and 0.78 for the two different types of driver compartments. The approximated aerodynamic related fuel consumptions for 1-h changes between 0.002 and 8.28 lt/s which correspond to 0.001 to 5.76 kg/s carbon emission. A potential improvement in decreasing aerodynamic resistance about 20% is discussed by spatial data. Since the conducted work is being regarded as the first instance in the literature, it is estimated that several consecutive reports will be triggered.

Additional Links: PMID-36001259

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid36001259,

year = {2022},

author = {Canli, E and Kucuksariyildiz, H and Carman, K},

title = {Impact assessment of new generation high-speed agricultural tractor aerodynamics on transportation fuel consumption and related phenomena.},

journal = {Environmental science and pollution research international},

volume = {},

number = {},

pages = {},

pmid = {36001259},

issn = {1614-7499},

abstract = {New generation agricultural tractors contribute to transportation by increased travel speeds. There is not any available aerodynamic data on the authentic agricultural tractor form. On-road transportation by tractors is between 8 and 30% of their operational time. In this work, two agricultural tractors are modelled via computational fluid dynamics for nine different speeds to determine aerodynamic resistances. Constant speed travel scenarios are analyzed. Corresponding speeds are 5 and 10 to 80 km/h with 10 km/h increments. Reynolds number changes between 1.6 × 105 and 2.98 × 106. The characteristic lengths are taken as the square root of the streamwise projected area of the tractor geometries. Aerodynamic forces exerted on the tractors change between 3 and 746 N. The calculated drag coefficients are found as independent from Reynolds number and are 0.6 and 0.78 for the two different types of driver compartments. The approximated aerodynamic related fuel consumptions for 1-h changes between 0.002 and 8.28 lt/s which correspond to 0.001 to 5.76 kg/s carbon emission. A potential improvement in decreasing aerodynamic resistance about 20% is discussed by spatial data. Since the conducted work is being regarded as the first instance in the literature, it is estimated that several consecutive reports will be triggered.},

}

RevDate: 2022-08-23

**Mixing and Flow Transition in an Optimized Electrokinetic Turbulent Micromixer.**

*Analytical chemistry* [Epub ahead of print].

Micromixer is a key element in a lab on a chip for broad applications in the analysis and measurement of chemistry and engineering. Previous investigations reported that electrokinetic (EK) turbulence could be realized in a "Y" type micromixer with a cross-sectional dimension of 100 μm order. Although the ultrafast turbulent mixing can be generated at a bulk flow Reynolds number on the order of unity, the micromixer has not been optimized. In this investigation, we systematically investigated the influence of electric field intensity, AC frequency, electric conductivity ratio, and channel width at the entrance on the mixing effect and transition electric Rayleigh number in the "Y" type electrokinetic turbulent micromixer. It is found that the optimal mixing is realized in a 350 μm wide micromixer, under 100 kHz and 1.14 × 105 V/m AC electric field, with an electric conductivity ratio of 1:3000. Under these conditions, a degree of mixedness of 0.93 can be achieved at 84 μm from the entrance and 100 ms. A further investigation of the critical electric field and the critical electric Rayleigh number indicates that the most unstable condition of EK flow instability is inconsistent with that of the optimal mixing in EK turbulence. To predict the evolution of EK flow under high Raσ and guide the design of EK turbulent micromixers, it is necessary to apply a computational turbulence model instead of linear instability analysis.

Additional Links: PMID-35999194

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35999194,

year = {2022},

author = {Nan, K and Shi, Y and Zhao, T and Tang, X and Zhu, Y and Wang, K and Bai, J and Zhao, W},

title = {Mixing and Flow Transition in an Optimized Electrokinetic Turbulent Micromixer.},

journal = {Analytical chemistry},

volume = {},

number = {},

pages = {},

doi = {10.1021/acs.analchem.2c02960},

pmid = {35999194},

issn = {1520-6882},

abstract = {Micromixer is a key element in a lab on a chip for broad applications in the analysis and measurement of chemistry and engineering. Previous investigations reported that electrokinetic (EK) turbulence could be realized in a "Y" type micromixer with a cross-sectional dimension of 100 μm order. Although the ultrafast turbulent mixing can be generated at a bulk flow Reynolds number on the order of unity, the micromixer has not been optimized. In this investigation, we systematically investigated the influence of electric field intensity, AC frequency, electric conductivity ratio, and channel width at the entrance on the mixing effect and transition electric Rayleigh number in the "Y" type electrokinetic turbulent micromixer. It is found that the optimal mixing is realized in a 350 μm wide micromixer, under 100 kHz and 1.14 × 105 V/m AC electric field, with an electric conductivity ratio of 1:3000. Under these conditions, a degree of mixedness of 0.93 can be achieved at 84 μm from the entrance and 100 ms. A further investigation of the critical electric field and the critical electric Rayleigh number indicates that the most unstable condition of EK flow instability is inconsistent with that of the optimal mixing in EK turbulence. To predict the evolution of EK flow under high Raσ and guide the design of EK turbulent micromixers, it is necessary to apply a computational turbulence model instead of linear instability analysis.},

}

RevDate: 2022-08-22

**CFD Investigation of Thermal Characteristics for a Dual Jet with a Parallel Co-flow.**

*ACS omega*, **7(32):**27864-27875.

A combined turbulent wall jet and offset jet (also known as the dual jet) with and without the presence of a parallel co-flow stream is studied. The standard k-ω turbulence model is used to predict the turbulent flow. The study focuses on the effects of the co-flow velocity (CFV) on the heat-transfer characteristics of the dual jet flow with the bottom wall maintained at a constant wall temperature. The CFV is varied up to 40% of the jet inlet velocity, and the height of the offset jet is varied from 5 to 11 times the jet width with the inlet Reynolds number taken as 15,000. The heat-transfer results reveal that the local Nusselt number (Nu x) along the bottom wall exhibits a peak at the immediate downstream of the nozzle exit, followed by a continuous decay in the rest of the converging region before showing a small rise for a short streamwise distance in the merging region. Further downstream, in the combined region, Nu x gradually decreases with the downstream distance. Except the merging region, no influence of co-flow is observed in the other two flow zones (converging and combined regions). In the merging region, for a given offset ratio (OR), Nu x remains nearly constant for a certain axial distance, and it decreases as the CFV increases. As a result of the increase in the CFV, the average Nusselt number decreases, indicating a reduction in overall convective heat transfer for higher values of the CFV. A regression analysis among the average Nusselt number (), CFV, and OR results in a correlation function in the form of within the range OR = 5-11 and CFV = 0-40%.

Additional Links: PMID-35990482

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35990482,

year = {2022},

author = {Mondal, T and Hnaien, N and Ajmi, M and Ghachem, K and Kolsi, L},

title = {CFD Investigation of Thermal Characteristics for a Dual Jet with a Parallel Co-flow.},

journal = {ACS omega},

volume = {7},

number = {32},

pages = {27864-27875},

doi = {10.1021/acsomega.2c00609},

pmid = {35990482},

issn = {2470-1343},

abstract = {A combined turbulent wall jet and offset jet (also known as the dual jet) with and without the presence of a parallel co-flow stream is studied. The standard k-ω turbulence model is used to predict the turbulent flow. The study focuses on the effects of the co-flow velocity (CFV) on the heat-transfer characteristics of the dual jet flow with the bottom wall maintained at a constant wall temperature. The CFV is varied up to 40% of the jet inlet velocity, and the height of the offset jet is varied from 5 to 11 times the jet width with the inlet Reynolds number taken as 15,000. The heat-transfer results reveal that the local Nusselt number (Nu x) along the bottom wall exhibits a peak at the immediate downstream of the nozzle exit, followed by a continuous decay in the rest of the converging region before showing a small rise for a short streamwise distance in the merging region. Further downstream, in the combined region, Nu x gradually decreases with the downstream distance. Except the merging region, no influence of co-flow is observed in the other two flow zones (converging and combined regions). In the merging region, for a given offset ratio (OR), Nu x remains nearly constant for a certain axial distance, and it decreases as the CFV increases. As a result of the increase in the CFV, the average Nusselt number decreases, indicating a reduction in overall convective heat transfer for higher values of the CFV. A regression analysis among the average Nusselt number (), CFV, and OR results in a correlation function in the form of within the range OR = 5-11 and CFV = 0-40%.},

}

RevDate: 2022-08-15

**Hydraulic jumps with low inflow Froude numbers: air-water surface patterns and transverse distributions of two-phase flow properties.**

*Environmental fluid mechanics (Dordrecht, Netherlands : 2001)*, **22(4):**789-818.

Abstract: Hydraulic jumps are commonly employed as energy dissipators to guarantee long-term operation of hydraulic structures. A comprehensive and in-depth understanding of their main features is therefore fundamental. In this context, the current study focused on hydraulic jumps with low Froude numbers, i.e. Fr1 = 2.1 and 2.4, at relatively high Reynolds number: Re ~2 × 105. Experimental tests employed a combination of dual-tip phase-detection probes and ultra-high-speed video camera to provide a comprehensive characterisation of the main air-water flow properties of the hydraulic jump, including surface flow features, void fraction, bubble count rate and interfacial velocities. The current research also focused on the transverse distributions of air-water flow properties, i.e. across the channel width, with the results revealing lower values of void fraction and bubble count rate next to the sidewalls compared to the channel centreline data. Such a spatial variability in the transverse direction questions whether data near the side walls may be truly representative of the behaviour in the bulk of the flow, raising the issue of sidewall effects in image-based techniques. Overall, these findings provide new information to both researchers and practitioners for a better understanding of the physical processes inside the hydraulic jump with low Froude numbers, leading to an optimised design of hydraulic structures.

Article Highlights: Experimental investigation of air-water flow properties in hydraulic jumps with low Froude numbersDetailed description of the main air-water surface features on the breaking rollerTransversal distribution of the air-water flow properties across the channel width and comparison between centreline and sidewall.

Additional Links: PMID-35965667

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35965667,

year = {2022},

author = {Wüthrich, D and Shi, R and Chanson, H},

title = {Hydraulic jumps with low inflow Froude numbers: air-water surface patterns and transverse distributions of two-phase flow properties.},

journal = {Environmental fluid mechanics (Dordrecht, Netherlands : 2001)},

volume = {22},

number = {4},

pages = {789-818},

doi = {10.1007/s10652-022-09854-5},

pmid = {35965667},

issn = {1567-7419},

abstract = {Abstract: Hydraulic jumps are commonly employed as energy dissipators to guarantee long-term operation of hydraulic structures. A comprehensive and in-depth understanding of their main features is therefore fundamental. In this context, the current study focused on hydraulic jumps with low Froude numbers, i.e. Fr1 = 2.1 and 2.4, at relatively high Reynolds number: Re ~2 × 105. Experimental tests employed a combination of dual-tip phase-detection probes and ultra-high-speed video camera to provide a comprehensive characterisation of the main air-water flow properties of the hydraulic jump, including surface flow features, void fraction, bubble count rate and interfacial velocities. The current research also focused on the transverse distributions of air-water flow properties, i.e. across the channel width, with the results revealing lower values of void fraction and bubble count rate next to the sidewalls compared to the channel centreline data. Such a spatial variability in the transverse direction questions whether data near the side walls may be truly representative of the behaviour in the bulk of the flow, raising the issue of sidewall effects in image-based techniques. Overall, these findings provide new information to both researchers and practitioners for a better understanding of the physical processes inside the hydraulic jump with low Froude numbers, leading to an optimised design of hydraulic structures.

Article Highlights: Experimental investigation of air-water flow properties in hydraulic jumps with low Froude numbersDetailed description of the main air-water surface features on the breaking rollerTransversal distribution of the air-water flow properties across the channel width and comparison between centreline and sidewall.},

}

RevDate: 2022-08-12

**High precision compact numerical approximation in exponential form for the system of 2D quasilinear elliptic BVPs on a discrete irrational region.**

*MethodsX*, **9:**101790 pii:S2215-0161(22)00170-4.

This article presents a new approximation of order four in exponential form for two-dimensional (2D) quasilinear partial differential equation (PDE) of elliptic form with solution domain being irrational. It is further extended for application to a system of quasilinear elliptic PDEs with Dirichlet boundary conditions (DBCs). The main highlights of the method framed in this article are as under:•It uses a 9-point stencil with unequal mesh to approach the solution. The error analysis is discussed to authenticate the order of convergence of the proposed numerical approximation.•Various validating problems, for instance the Burgers' equation, Poisson equation in cylindrical coordinates, Navier-Stokes (NS) equations in rectangular and cylindrical coordinates are solved using the proposed techniques to depict their stability. The proposed approximation produces solution free of oscillations for large values of Reynolds Number in the vicinity of a singularity.•The results of the proposed method are superior in comparison to the existing methods of [49] and [56].

Additional Links: PMID-35958096

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35958096,

year = {2022},

author = {Mohanty, RK and Setia, N and Khurana, G and Manchanda, G},

title = {High precision compact numerical approximation in exponential form for the system of 2D quasilinear elliptic BVPs on a discrete irrational region.},

journal = {MethodsX},

volume = {9},

number = {},

pages = {101790},

doi = {10.1016/j.mex.2022.101790},

pmid = {35958096},

issn = {2215-0161},

abstract = {This article presents a new approximation of order four in exponential form for two-dimensional (2D) quasilinear partial differential equation (PDE) of elliptic form with solution domain being irrational. It is further extended for application to a system of quasilinear elliptic PDEs with Dirichlet boundary conditions (DBCs). The main highlights of the method framed in this article are as under:•It uses a 9-point stencil with unequal mesh to approach the solution. The error analysis is discussed to authenticate the order of convergence of the proposed numerical approximation.•Various validating problems, for instance the Burgers' equation, Poisson equation in cylindrical coordinates, Navier-Stokes (NS) equations in rectangular and cylindrical coordinates are solved using the proposed techniques to depict their stability. The proposed approximation produces solution free of oscillations for large values of Reynolds Number in the vicinity of a singularity.•The results of the proposed method are superior in comparison to the existing methods of [49] and [56].},

}

RevDate: 2022-08-12

**Efficient Heat Transfer Augmentation in Channels with Semicircle Ribs and Hybrid Al2O3-Cu/Water Nanofluids.**

*Nanomaterials (Basel, Switzerland)*, **12(15):** pii:nano12152720.

Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid "Al2O3-Cu/water" nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simulations. Six cases with varying rib step heights and pitch gaps, with Re numbers ranging from 10,000 to 25,000, were explored for various volume concentrations of hybrid nanofluids Al2O3-Cu/water (0.33%, 0.75%, 1%, and 2%). The simulation results showed that the presence of ribs enhanced the heat transfer in the passage. The Nusselt number increased when the solid volume fraction of "Al2O3-Cu/water" hybrid nanofluids and the Re number increased. The Nu number reached its maximum value at a 2 percent solid volume fraction for a Reynolds number of 25,000. The local pressure coefficient also improved as the Re number and volume concentration of "Al2O3-Cu/water" hybrid nanofluids increased. The creation of recirculation zones after and before each rib was observed in the velocity and temperature contours. A higher number of ribs was also shown to result in a larger number of recirculation zones, increasing the thermal performance.

Additional Links: PMID-35957150

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35957150,

year = {2022},

author = {Togun, H and Homod, RZ and Yaseen, ZM and Abed, AM and Dhabab, JM and Ibrahem, RK and Dhahbi, S and Rashidi, MM and Ahmadi, G and Yaïci, W and Mahdi, JM},

title = {Efficient Heat Transfer Augmentation in Channels with Semicircle Ribs and Hybrid Al2O3-Cu/Water Nanofluids.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {15},

pages = {},

doi = {10.3390/nano12152720},

pmid = {35957150},

issn = {2079-4991},

abstract = {Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid "Al2O3-Cu/water" nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simulations. Six cases with varying rib step heights and pitch gaps, with Re numbers ranging from 10,000 to 25,000, were explored for various volume concentrations of hybrid nanofluids Al2O3-Cu/water (0.33%, 0.75%, 1%, and 2%). The simulation results showed that the presence of ribs enhanced the heat transfer in the passage. The Nusselt number increased when the solid volume fraction of "Al2O3-Cu/water" hybrid nanofluids and the Re number increased. The Nu number reached its maximum value at a 2 percent solid volume fraction for a Reynolds number of 25,000. The local pressure coefficient also improved as the Re number and volume concentration of "Al2O3-Cu/water" hybrid nanofluids increased. The creation of recirculation zones after and before each rib was observed in the velocity and temperature contours. A higher number of ribs was also shown to result in a larger number of recirculation zones, increasing the thermal performance.},

}

RevDate: 2022-08-04

**Bacteria-Inspired Magnetically Actuated Rod-Like Soft Robot in Viscous Fluids.**

*Bioinspiration & biomimetics* [Epub ahead of print].

This paper seeks to design, develop, and explore the locomotive dynamics and morphological adaptability of a bacteria-inspired rod-like soft robot propelled in highly viscous Newtonian fluids. The soft robots were fabricated as tapered, hollow rod-like soft scaffolds by applying a robust and economic molding technique to a polyacrylamide-based hydrogel polymer. Cylindrical micro-magnets were embedded in both ends of the soft scaffolds, which allowed bending (deformation) and actuation under a uniform rotating magnetic field. We demonstrated that the tapered rod-like soft robot in viscous Newtonian fluids could perform two types of propulsion; boundary rolling was displayed when the soft robot was located near a boundary, and swimming was displayed far away from the boundary. In addition, we performed numerical simulations to understand the swimming propulsion along the rotating axis and the way in which this propulsion is affected by the soft robot's design, rotation frequency, and fluid viscosity. Our results suggested that a simple geometrical asymmetry would enable the rod-like soft robot to perform propulsion in the low Reynolds number (Re<< 1) regime; these promising results provide essential insights into the improvements that must be made to integrate the soft robots into minimally invasivein vivoapplications.

Additional Links: PMID-35926485

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35926485,

year = {2022},

author = {Bhattacharjee, A and Jabbarzadeh, M and Kararsız, G and Fu, H and Kim, M},

title = {Bacteria-Inspired Magnetically Actuated Rod-Like Soft Robot in Viscous Fluids.},

journal = {Bioinspiration & biomimetics},

volume = {},

number = {},

pages = {},

doi = {10.1088/1748-3190/ac870f},

pmid = {35926485},

issn = {1748-3190},

abstract = {This paper seeks to design, develop, and explore the locomotive dynamics and morphological adaptability of a bacteria-inspired rod-like soft robot propelled in highly viscous Newtonian fluids. The soft robots were fabricated as tapered, hollow rod-like soft scaffolds by applying a robust and economic molding technique to a polyacrylamide-based hydrogel polymer. Cylindrical micro-magnets were embedded in both ends of the soft scaffolds, which allowed bending (deformation) and actuation under a uniform rotating magnetic field. We demonstrated that the tapered rod-like soft robot in viscous Newtonian fluids could perform two types of propulsion; boundary rolling was displayed when the soft robot was located near a boundary, and swimming was displayed far away from the boundary. In addition, we performed numerical simulations to understand the swimming propulsion along the rotating axis and the way in which this propulsion is affected by the soft robot's design, rotation frequency, and fluid viscosity. Our results suggested that a simple geometrical asymmetry would enable the rod-like soft robot to perform propulsion in the low Reynolds number (Re<< 1) regime; these promising results provide essential insights into the improvements that must be made to integrate the soft robots into minimally invasivein vivoapplications.},

}

RevDate: 2022-08-02

**Experimental research and analysis on the resistance characteristics of simulated ore bin in water.**

*Scientific reports*, **12(1):**13211.

In order to research the variation law of the longitudinal resistance coefficient of the ore bin in the marine mining system under different length-diameter ratio, external shape, additional weight and Reynolds number, a set of experimental system for testing the resistance coefficient was designed and built independently. By analyzing the experimental results, it can be seen that under the same conditions, the resistance coefficient decreases gradually with the increase of Reynolds number and finally fluctuates around a certain value. Increasing the excitation displacement will reduce the overall resistance coefficient of the ore bin. The smaller the length-diameter ratio is, the larger the corresponding force value when the vibration acceleration of the ore bin is 0, and the larger the overall resistance coefficient is. The resistance coefficient of the cylindrical section is greater than that of the rectangular shape. In order to reduce the longitudinal vibration and the transverse towing offset, the shape of the ore bin should be cylindrical in actual design and production. At low Reynolds number, the increase of added weight will increase the resistance coefficient, while at high Reynolds number, the change of added weight will not cause the change of resistance coefficient.

Additional Links: PMID-35918493

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35918493,

year = {2022},

author = {Xiao, L and Liu, Q and Huang, W},

title = {Experimental research and analysis on the resistance characteristics of simulated ore bin in water.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {13211},

pmid = {35918493},

issn = {2045-2322},

support = {51774193//National Natural Science Foundation of China/ ; ZR2017MEE025//Shandong Provincial Natural Science Foundation/ ; },

abstract = {In order to research the variation law of the longitudinal resistance coefficient of the ore bin in the marine mining system under different length-diameter ratio, external shape, additional weight and Reynolds number, a set of experimental system for testing the resistance coefficient was designed and built independently. By analyzing the experimental results, it can be seen that under the same conditions, the resistance coefficient decreases gradually with the increase of Reynolds number and finally fluctuates around a certain value. Increasing the excitation displacement will reduce the overall resistance coefficient of the ore bin. The smaller the length-diameter ratio is, the larger the corresponding force value when the vibration acceleration of the ore bin is 0, and the larger the overall resistance coefficient is. The resistance coefficient of the cylindrical section is greater than that of the rectangular shape. In order to reduce the longitudinal vibration and the transverse towing offset, the shape of the ore bin should be cylindrical in actual design and production. At low Reynolds number, the increase of added weight will increase the resistance coefficient, while at high Reynolds number, the change of added weight will not cause the change of resistance coefficient.},

}

RevDate: 2022-08-01

**Propagation of H1N1 virus through saliva movement in oesophagus: a mathematical model.**

*European physical journal plus*, **137(7):**866.

H1N1 (Swine flu) is caused by the influenza A virus which belongs to the Orthomyxoviridae family. Influenza A is very harmful to the elderly, and people with chronic respiratory disease and cardiovascular disease. Therefore, it is essential to analyse the behaviour of virus transmission through the saliva movement in oesophagus. A mathematical paradigm is developed to study the saliva movement under the applications of transverse magnetic field. Jeffrey fluid model is considered for saliva to show the viscoelastic nature. The flow nature is considered creeping and assumptions of long wavelength and low Reynolds number are adopted for analytical solutions. The Basset-Boussinesq-Oseen equation is employed to understand the propagation of H1N1 virus through saliva under the effect of applicable forces such as gravity, virtual mass, basset force, and drag forces. The suitable data for saliva, oesophagus and H1N1 virus are taken from the existing literature for simulation of the results using MATLAB software. From the graphical results, it is observed that the susceptibility to viral infections is less because the magnetic field reduces the motion of the virus particle. Further, the chances of infections in males are more as compared to females and children due to variation in viscosity of saliva. Such findings provide an understanding of the mechanics of the virus floating through the saliva (viscoelastic fluids) in the oesophagus.

Additional Links: PMID-35912042

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35912042,

year = {2022},

author = {Ram, D and Bhandari, DS and Tripathi, D and Sharma, K},

title = {Propagation of H1N1 virus through saliva movement in oesophagus: a mathematical model.},

journal = {European physical journal plus},

volume = {137},

number = {7},

pages = {866},

doi = {10.1140/epjp/s13360-022-03070-2},

pmid = {35912042},

issn = {2190-5444},

abstract = {H1N1 (Swine flu) is caused by the influenza A virus which belongs to the Orthomyxoviridae family. Influenza A is very harmful to the elderly, and people with chronic respiratory disease and cardiovascular disease. Therefore, it is essential to analyse the behaviour of virus transmission through the saliva movement in oesophagus. A mathematical paradigm is developed to study the saliva movement under the applications of transverse magnetic field. Jeffrey fluid model is considered for saliva to show the viscoelastic nature. The flow nature is considered creeping and assumptions of long wavelength and low Reynolds number are adopted for analytical solutions. The Basset-Boussinesq-Oseen equation is employed to understand the propagation of H1N1 virus through saliva under the effect of applicable forces such as gravity, virtual mass, basset force, and drag forces. The suitable data for saliva, oesophagus and H1N1 virus are taken from the existing literature for simulation of the results using MATLAB software. From the graphical results, it is observed that the susceptibility to viral infections is less because the magnetic field reduces the motion of the virus particle. Further, the chances of infections in males are more as compared to females and children due to variation in viscosity of saliva. Such findings provide an understanding of the mechanics of the virus floating through the saliva (viscoelastic fluids) in the oesophagus.},

}

RevDate: 2022-08-01

**Consistency of the full and reduced order models for evolve-filter-relax regularization of convection-dominated, marginally-resolved flows.**

*International journal for numerical methods in engineering*, **123(14):**3148-3178.

Numerical stabilization is often used to eliminate (alleviate) the spurious oscillations generally produced by full order models (FOMs) in under-resolved or marginally-resolved simulations of convection-dominated flows. In this article, we investigate the role of numerical stabilization in reduced order models (ROMs) of marginally-resolved, convection-dominated incompressible flows. Specifically, we investigate the FOM-ROM consistency, that is, whether the numerical stabilization is beneficial both at the FOM and the ROM level. As a numerical stabilization strategy, we focus on the evolve-filter-relax (EFR) regularization algorithm, which centers around spatial filtering. To investigate the FOM-ROM consistency, we consider two ROM strategies: (i) the EFR-noEFR, in which the EFR stabilization is used at the FOM level, but not at the ROM level; and (ii) the EFR-EFR, in which the EFR stabilization is used both at the FOM and at the ROM level. We compare the EFR-noEFR with the EFR-EFR in the numerical simulation of a 2D incompressible flow past a circular cylinder in the convection-dominated, marginally-resolved regime. We also perform model reduction with respect to both time and Reynolds number. Our numerical investigation shows that the EFR-EFR is more accurate than the EFR-noEFR, which suggests that FOM-ROM consistency is beneficial in convection-dominated, marginally-resolved flows.

Additional Links: PMID-35912036

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35912036,

year = {2022},

author = {Strazzullo, M and Girfoglio, M and Ballarin, F and Iliescu, T and Rozza, G},

title = {Consistency of the full and reduced order models for evolve-filter-relax regularization of convection-dominated, marginally-resolved flows.},

journal = {International journal for numerical methods in engineering},

volume = {123},

number = {14},

pages = {3148-3178},

doi = {10.1002/nme.6942},

pmid = {35912036},

issn = {0029-5981},

abstract = {Numerical stabilization is often used to eliminate (alleviate) the spurious oscillations generally produced by full order models (FOMs) in under-resolved or marginally-resolved simulations of convection-dominated flows. In this article, we investigate the role of numerical stabilization in reduced order models (ROMs) of marginally-resolved, convection-dominated incompressible flows. Specifically, we investigate the FOM-ROM consistency, that is, whether the numerical stabilization is beneficial both at the FOM and the ROM level. As a numerical stabilization strategy, we focus on the evolve-filter-relax (EFR) regularization algorithm, which centers around spatial filtering. To investigate the FOM-ROM consistency, we consider two ROM strategies: (i) the EFR-noEFR, in which the EFR stabilization is used at the FOM level, but not at the ROM level; and (ii) the EFR-EFR, in which the EFR stabilization is used both at the FOM and at the ROM level. We compare the EFR-noEFR with the EFR-EFR in the numerical simulation of a 2D incompressible flow past a circular cylinder in the convection-dominated, marginally-resolved regime. We also perform model reduction with respect to both time and Reynolds number. Our numerical investigation shows that the EFR-EFR is more accurate than the EFR-noEFR, which suggests that FOM-ROM consistency is beneficial in convection-dominated, marginally-resolved flows.},

}

RevDate: 2022-07-29

**Stochastic Model for Quasi-One-Dimensional Transitional Turbulence with Streamwise Shear Interactions.**

*Physical review letters*, **129(3):**034501.

The transition to turbulence in wall-bounded shear flows is typically subcritical, with a poorly understood interplay between spatial fluctuations, pattern formation, and stochasticity near the critical Reynolds number. Here, we present a spatially extended stochastic minimal model for the energy budget in transitional pipe flow, which successfully recapitulates the way localized patches of turbulence (puffs) decay, split, and grow, respectively, as the Reynolds number increases through the laminar-turbulent transition. Our approach takes into account the flow geometry, as we demonstrate by extending the model to quasi-one-dimensional Taylor-Couette flow, reproducing the observed directed percolation pattern of turbulent patches in space and time.

Additional Links: PMID-35905362

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35905362,

year = {2022},

author = {Wang, X and Shih, HY and Goldenfeld, N},

title = {Stochastic Model for Quasi-One-Dimensional Transitional Turbulence with Streamwise Shear Interactions.},

journal = {Physical review letters},

volume = {129},

number = {3},

pages = {034501},

doi = {10.1103/PhysRevLett.129.034501},

pmid = {35905362},

issn = {1079-7114},

abstract = {The transition to turbulence in wall-bounded shear flows is typically subcritical, with a poorly understood interplay between spatial fluctuations, pattern formation, and stochasticity near the critical Reynolds number. Here, we present a spatially extended stochastic minimal model for the energy budget in transitional pipe flow, which successfully recapitulates the way localized patches of turbulence (puffs) decay, split, and grow, respectively, as the Reynolds number increases through the laminar-turbulent transition. Our approach takes into account the flow geometry, as we demonstrate by extending the model to quasi-one-dimensional Taylor-Couette flow, reproducing the observed directed percolation pattern of turbulent patches in space and time.},

}

RevDate: 2022-07-28

**3D single cell migration driven by temporal correlation between oscillating force dipoles.**

*eLife*, **11:** pii:71032 [Epub ahead of print].

Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.

Additional Links: PMID-35899947

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35899947,

year = {2022},

author = {Godeau, AL and Leoni, M and Comelles, J and Guyomar, T and Lieb, M and Delanoë-Ayari, H and Ott, A and Harlepp, S and Sens, P and Riveline, D},

title = {3D single cell migration driven by temporal correlation between oscillating force dipoles.},

journal = {eLife},

volume = {11},

number = {},

pages = {},

doi = {10.7554/eLife.71032},

pmid = {35899947},

issn = {2050-084X},

support = {CDFA-01-13//Deutsch-Französische Hochschule/ ; ANR-10-IDEX-0002-02//Agence Nationale de la Recherche/ ; ANR-10-LBX-0038//Agence Nationale de la Recherche/ ; ANR-10-IDEX-0001-02//Agence Nationale de la Recherche/ ; SFB 1027//Deutsche Forschungsgemeinschaft/ ; },

abstract = {Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.},

}

RevDate: 2022-07-27

**Hydrodynamic interaction of dorsal fin and caudal fin in tuna swimming.**

*Bioinspiration & biomimetics* [Epub ahead of print].

Tuna, which are known for high-performance swimming, possess a large crescent dorsal fin (DF) and caudal fin (CF) that differ from those of other fishes. The hydrodynamic interaction between the DF and CF in tuna, which are represented by two tandem threedimensional (3D) flapping plates, is numerically explored in the present study. Hydrodynamic properties and wake structures of the models with and without a DF are compared to investigate the effects of the DF. The thrust on the CF is substantially enhanced by the DF, whereas the force on the DF is not affected by the CF. The constructive interaction between the leading-edge vortex (LEV) on the CF and the vortices shed from the dorsal fin (DFVs) is identified from 3D wake topology and twodimensional vorticity distributions. The circulation of spanwise vorticity quantitatively reveals that the LEV on the CF is strengthened by the same-signed DFV. The effect of the flapping phase of the CF is examined. The DF-CF interaction is sensitive to the flapping phase at a short spacing, whereas a long spacing between the two fins enables a robust constructive interaction in tuna swimming. A systematic study is carried out to explore the effects of the Strouhal number (St) and the Reynolds number (Re) on the interaction of the fins. The enhancement of thrust due to the DF is diminished at St = 0.63, whereas the Re does not substantially influence the DF-CF constructive interaction.

Additional Links: PMID-35896094

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35896094,

year = {2022},

author = {Zhang, JD and Sung, HJ and Huang, WX},

title = {Hydrodynamic interaction of dorsal fin and caudal fin in tuna swimming.},

journal = {Bioinspiration & biomimetics},

volume = {},

number = {},

pages = {},

doi = {10.1088/1748-3190/ac84b8},

pmid = {35896094},

issn = {1748-3190},

abstract = {Tuna, which are known for high-performance swimming, possess a large crescent dorsal fin (DF) and caudal fin (CF) that differ from those of other fishes. The hydrodynamic interaction between the DF and CF in tuna, which are represented by two tandem threedimensional (3D) flapping plates, is numerically explored in the present study. Hydrodynamic properties and wake structures of the models with and without a DF are compared to investigate the effects of the DF. The thrust on the CF is substantially enhanced by the DF, whereas the force on the DF is not affected by the CF. The constructive interaction between the leading-edge vortex (LEV) on the CF and the vortices shed from the dorsal fin (DFVs) is identified from 3D wake topology and twodimensional vorticity distributions. The circulation of spanwise vorticity quantitatively reveals that the LEV on the CF is strengthened by the same-signed DFV. The effect of the flapping phase of the CF is examined. The DF-CF interaction is sensitive to the flapping phase at a short spacing, whereas a long spacing between the two fins enables a robust constructive interaction in tuna swimming. A systematic study is carried out to explore the effects of the Strouhal number (St) and the Reynolds number (Re) on the interaction of the fins. The enhancement of thrust due to the DF is diminished at St = 0.63, whereas the Re does not substantially influence the DF-CF constructive interaction.},

}

RevDate: 2022-07-27

**Separation of motile human sperms in a T-shaped sealed microchannel.**

*Biomedical engineering letters*, **12(3):**331-342 pii:229.

Microfluidic methods act as an effective motile sperm separation technique used in infertility treatments. This work presents a standalone microfluidic device to separate motile sperm cells from non-motile sperm cells and debris. The separation mechanism is based on the centrifugal force acting on sperms and the ability of progressive motile sperms to swim upstream. The separation of motile sperm is carried out using a simple T-shaped microchannel which constitutes three reservoirs: one inlet and two outlets. Herein, one of the outlets is kept sealed. The sealed channel leads to a high-velocity gradient and a rheotaxis zone at the T junction resulting in the separation of motile sperms. Separated sperms are isolated in a sealed channel with a low Reynolds number flow so that sperms cannot have a net displacement, which ensures that the sperms do not re-enter the fluid flow. CFD simulation is conducted to study the flow fields inside the channel and experimental investigation is carried to observe the separation behaviour of sperms. The reported device provides 100% sperm separation efficiency and ensures the entrapment of sperm cells for a longer period. A modified colorimetric nitroblue tetrazolium test conducted on separated sperm cells shows that there is only a marginal increase in superoxide (O2 -) production, proving normal sperm integrity. This device offers an effective and safe alternative to conventional sperm sorting methods.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-022-00229-9.

Additional Links: PMID-35892036

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35892036,

year = {2022},

author = {Mane, NS and Puri, DB and Mane, S and Hemadri, V and Banerjee, A and Tripathi, S},

title = {Separation of motile human sperms in a T-shaped sealed microchannel.},

journal = {Biomedical engineering letters},

volume = {12},

number = {3},

pages = {331-342},

doi = {10.1007/s13534-022-00229-9},

pmid = {35892036},

issn = {2093-985X},

abstract = {Microfluidic methods act as an effective motile sperm separation technique used in infertility treatments. This work presents a standalone microfluidic device to separate motile sperm cells from non-motile sperm cells and debris. The separation mechanism is based on the centrifugal force acting on sperms and the ability of progressive motile sperms to swim upstream. The separation of motile sperm is carried out using a simple T-shaped microchannel which constitutes three reservoirs: one inlet and two outlets. Herein, one of the outlets is kept sealed. The sealed channel leads to a high-velocity gradient and a rheotaxis zone at the T junction resulting in the separation of motile sperms. Separated sperms are isolated in a sealed channel with a low Reynolds number flow so that sperms cannot have a net displacement, which ensures that the sperms do not re-enter the fluid flow. CFD simulation is conducted to study the flow fields inside the channel and experimental investigation is carried to observe the separation behaviour of sperms. The reported device provides 100% sperm separation efficiency and ensures the entrapment of sperm cells for a longer period. A modified colorimetric nitroblue tetrazolium test conducted on separated sperm cells shows that there is only a marginal increase in superoxide (O2 -) production, proving normal sperm integrity. This device offers an effective and safe alternative to conventional sperm sorting methods.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-022-00229-9.},

}

RevDate: 2022-07-27

**Coupled Effects of Using Magnetic Field, Rotation and Wavy Porous Layer on the Forced Convection of Hybrid Nanoliquid Flow over 3D-Backward Facing Step.**

*Nanomaterials (Basel, Switzerland)*, **12(14):** pii:nano12142466.

In the present study, the effects of using a corrugated porous layer on the forced convection of a hybrid nanofluid flow over a 3D backward facing step are analyzed under the coupled effects of magnetic field and surface rotation. The thermal analysis is conducted for different values of the Reynolds number (Re between 100 and 500), the rotational Reynolds number (Rew between 0 and 2000), the Hartmann number (Ha between 0 and 15), the permeability of the porous layer (the Darcy number, Da between 10-5 and 10-2) and the amplitude (ax between 0.01 ap and 0.7 ap) and wave number (N between 1 and 16) of the porous layer corrugation. When rotations are activated, the average Nusselt number (Nu) and pressure coefficient values rise, while the increment of the latter is less. The increment in the average Nu is higher for the case with a higher permeability of the layer. When the corrugation amplitude and wave number are increased, favorable impacts of the average Nu are observed, but at the same time pressure coefficients are increased. Successful thermal performance estimations are made by using a neural-based modeling approach with a four input-two output system.

Additional Links: PMID-35889690

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35889690,

year = {2022},

author = {Ghachem, K and Selimefendigil, F and Alshammari, BM and Maatki, C and Kolsi, L},

title = {Coupled Effects of Using Magnetic Field, Rotation and Wavy Porous Layer on the Forced Convection of Hybrid Nanoliquid Flow over 3D-Backward Facing Step.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {14},

pages = {},

doi = {10.3390/nano12142466},

pmid = {35889690},

issn = {2079-4991},

support = {PNURSP2022R41//Princess Nourah bint Abdulrahman University/ ; },

abstract = {In the present study, the effects of using a corrugated porous layer on the forced convection of a hybrid nanofluid flow over a 3D backward facing step are analyzed under the coupled effects of magnetic field and surface rotation. The thermal analysis is conducted for different values of the Reynolds number (Re between 100 and 500), the rotational Reynolds number (Rew between 0 and 2000), the Hartmann number (Ha between 0 and 15), the permeability of the porous layer (the Darcy number, Da between 10-5 and 10-2) and the amplitude (ax between 0.01 ap and 0.7 ap) and wave number (N between 1 and 16) of the porous layer corrugation. When rotations are activated, the average Nusselt number (Nu) and pressure coefficient values rise, while the increment of the latter is less. The increment in the average Nu is higher for the case with a higher permeability of the layer. When the corrugation amplitude and wave number are increased, favorable impacts of the average Nu are observed, but at the same time pressure coefficients are increased. Successful thermal performance estimations are made by using a neural-based modeling approach with a four input-two output system.},

}

RevDate: 2022-07-27

**Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400.**

*Nanomaterials (Basel, Switzerland)*, **12(14):** pii:nano12142344.

Cooling and heating are extremely important in many industrial applications, while the thermal performance of these processes generally depends on many factors, such as fluid flow rate, inlet temperature, and many more. Hence, tremendous efforts are dedicated to the investigation of several parameters to reach an efficient cooling or heating process. The interest in adding nanoparticles in regular heat transfer fluids delivered new fluids to the market, the nanofluids. In this paper, a new nanoparticle-enhanced fluid based on polyethylene glycol with ZnO nanoparticles is considered and its hydrothermal performance is investigated for HVAC applications. The thermophysical properties of PEG 400-ZnO and their variation with temperature at different nanoparticle loading are previously determined on experimental bases and here implemented in a numerical application. The numerical results are completed at Reynolds number from 200 to 2000, while the nanoparticle concentration varies from 0.5 to 5%. Results are discussed in terms of Nusselt number, friction factor, and dimensionless pressure drop ratio at different temperatures and ZnO loading in the PEG 400 base fluid. Additionally, the evaluation performance criteria (EC) are calculated and discussed. Concluding, the newly developed fluid enhances the heat transfer up to 16% with a 13% pressure drop penalty, while the performance evaluation criteria are enhanced. Plus, several correlations are developed for both Nusselt number and friction factor as a function of relevant operating conditions.

Additional Links: PMID-35889569

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35889569,

year = {2022},

author = {Minea, AA and El-Maghlany, WM and Massoud, EZ},

title = {Heat Transfer Analysis of Nanocolloids Based on Zinc Oxide Nanoparticles Dispersed in PEG 400.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {14},

pages = {},

doi = {10.3390/nano12142344},

pmid = {35889569},

issn = {2079-4991},

abstract = {Cooling and heating are extremely important in many industrial applications, while the thermal performance of these processes generally depends on many factors, such as fluid flow rate, inlet temperature, and many more. Hence, tremendous efforts are dedicated to the investigation of several parameters to reach an efficient cooling or heating process. The interest in adding nanoparticles in regular heat transfer fluids delivered new fluids to the market, the nanofluids. In this paper, a new nanoparticle-enhanced fluid based on polyethylene glycol with ZnO nanoparticles is considered and its hydrothermal performance is investigated for HVAC applications. The thermophysical properties of PEG 400-ZnO and their variation with temperature at different nanoparticle loading are previously determined on experimental bases and here implemented in a numerical application. The numerical results are completed at Reynolds number from 200 to 2000, while the nanoparticle concentration varies from 0.5 to 5%. Results are discussed in terms of Nusselt number, friction factor, and dimensionless pressure drop ratio at different temperatures and ZnO loading in the PEG 400 base fluid. Additionally, the evaluation performance criteria (EC) are calculated and discussed. Concluding, the newly developed fluid enhances the heat transfer up to 16% with a 13% pressure drop penalty, while the performance evaluation criteria are enhanced. Plus, several correlations are developed for both Nusselt number and friction factor as a function of relevant operating conditions.},

}

RevDate: 2022-07-27

**CFD-DEM Coupling Model for Deposition Process Analysis of Ultrafine Particles in a Micro Impinging Flow Field.**

*Micromachines*, **13(7):** pii:mi13071110.

Gas with ultrafine particle impaction on a solid surface is a unique case of curvilinear motion that can be widely used for the devices of surface coatings or instruments for particle size measurement. In this work, the Eulerian-Lagrangian method was applied to calculate the motion of microparticles in a micro impinging flow field with consideration of the interactions between particle to particle, particle to wall, and particle to fluid. The coupling computational fluid dynamics (CFD) with the discrete element method (DEM) was employed to investigate the different deposition patterns of microparticles. The vortex structure and two types of particle deposits ("halo" and "ring") have been discussed. The particle deposition characteristics are affected both by the flow Reynolds number (Re) and Stokes number (stk). Moreover, two particle deposition patterns have been categorized in terms of Re and stk. Finally, the characteristics and mechanism of particle deposits have been analyzed using the particle inertia, the process of impinging (particle rebound or no rebound), vortical structures, and the kinetic energy conversion in two-phase flow, etc.

Additional Links: PMID-35888927

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35888927,

year = {2022},

author = {Wang, Y and Yin, Z and Bao, F and Shen, J},

title = {CFD-DEM Coupling Model for Deposition Process Analysis of Ultrafine Particles in a Micro Impinging Flow Field.},

journal = {Micromachines},

volume = {13},

number = {7},

pages = {},

doi = {10.3390/mi13071110},

pmid = {35888927},

issn = {2072-666X},

abstract = {Gas with ultrafine particle impaction on a solid surface is a unique case of curvilinear motion that can be widely used for the devices of surface coatings or instruments for particle size measurement. In this work, the Eulerian-Lagrangian method was applied to calculate the motion of microparticles in a micro impinging flow field with consideration of the interactions between particle to particle, particle to wall, and particle to fluid. The coupling computational fluid dynamics (CFD) with the discrete element method (DEM) was employed to investigate the different deposition patterns of microparticles. The vortex structure and two types of particle deposits ("halo" and "ring") have been discussed. The particle deposition characteristics are affected both by the flow Reynolds number (Re) and Stokes number (stk). Moreover, two particle deposition patterns have been categorized in terms of Re and stk. Finally, the characteristics and mechanism of particle deposits have been analyzed using the particle inertia, the process of impinging (particle rebound or no rebound), vortical structures, and the kinetic energy conversion in two-phase flow, etc.},

}

RevDate: 2022-07-27

**Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly.**

*Micromachines*, **13(7):** pii:mi13071068.

In recent years, microbubbles have been widely used in the field of microrobots due to their unique properties. Microbubbles can be easily produced and used as power sources or tools of microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of bubble applications in microrobotics including propulsion, micromanipulation, and microassembly. First, we introduce the diverse bubble generation and control methods. Then, we review and discuss how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss the prospects of microbubbles in microrobotics.

Additional Links: PMID-35888885

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35888885,

year = {2022},

author = {Zhou, Y and Dai, L and Jiao, N},

title = {Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly.},

journal = {Micromachines},

volume = {13},

number = {7},

pages = {},

doi = {10.3390/mi13071068},

pmid = {35888885},

issn = {2072-666X},

support = {Nos. 62127811, 91748212, 61821005//National Natural Science Foundation of China/ ; },

abstract = {In recent years, microbubbles have been widely used in the field of microrobots due to their unique properties. Microbubbles can be easily produced and used as power sources or tools of microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of bubble applications in microrobotics including propulsion, micromanipulation, and microassembly. First, we introduce the diverse bubble generation and control methods. Then, we review and discuss how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss the prospects of microbubbles in microrobotics.},

}

RevDate: 2022-07-27

**Mixing Enhancement of a Passive Micromixer with Submerged Structures.**

*Micromachines*, **13(7):** pii:mi13071050.

A passive micromixer combined with two different mixing units was designed by submerging planar structures, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The two submerged structures are a Norman window and rectangular baffles. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The amount of submergence was varied from 30 μm to 70 μm, corresponding to 25% to 58% of the micromixer depth. The enhancement of mixing performance is noticeable over a wide range of the Reynolds numbers. When the Reynolds number is 10, the DOM is improved by 182% from that of no submergence case, and the required pressure load is reduced by 44%. The amount of submergence is shown to be optimized in terms of the DOM, and the optimum value is about 40 μm. This corresponds to a third of the micromixer depth. The effects of the submerged structure are most significant in the mixing regime of convection dominance from Re = 5 to 80. In a circular passage along the Norman window, one of the two Dean vortices burst into the submerged space, promoting mixing in the cross-flow direction. The submerged baffles in the semi-circular mixing units generate a vortex behind the baffles that contributes to the mixing enhancement as well as reducing the required pressure load.

Additional Links: PMID-35888870

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35888870,

year = {2022},

author = {Juraeva, M and Kang, DJ},

title = {Mixing Enhancement of a Passive Micromixer with Submerged Structures.},

journal = {Micromachines},

volume = {13},

number = {7},

pages = {},

doi = {10.3390/mi13071050},

pmid = {35888870},

issn = {2072-666X},

support = {BOKUK2022//BOKUK/ ; },

abstract = {A passive micromixer combined with two different mixing units was designed by submerging planar structures, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The two submerged structures are a Norman window and rectangular baffles. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The amount of submergence was varied from 30 μm to 70 μm, corresponding to 25% to 58% of the micromixer depth. The enhancement of mixing performance is noticeable over a wide range of the Reynolds numbers. When the Reynolds number is 10, the DOM is improved by 182% from that of no submergence case, and the required pressure load is reduced by 44%. The amount of submergence is shown to be optimized in terms of the DOM, and the optimum value is about 40 μm. This corresponds to a third of the micromixer depth. The effects of the submerged structure are most significant in the mixing regime of convection dominance from Re = 5 to 80. In a circular passage along the Norman window, one of the two Dean vortices burst into the submerged space, promoting mixing in the cross-flow direction. The submerged baffles in the semi-circular mixing units generate a vortex behind the baffles that contributes to the mixing enhancement as well as reducing the required pressure load.},

}

RevDate: 2022-07-27

**Performance of Microchannel Heat Sink Made of Silicon Material with the Two-Sided Wedge.**

*Materials (Basel, Switzerland)*, **15(14):** pii:ma15144740.

New designs of the microchannel with a two-sided wedge shape at the base were studied numerically. Five different wedge angles ranging from 3° to 15° were incorporated into the microchannel design. Simulation of this novel microchannel was carried out using Computational Fluid Dynamics (CFD). Three-dimensional models of the microchannel heat sink were created, discretized, and based on Navier-Stokes and energy equations; laminar numerical solutions were obtained for heat transfer and pressure drop. Flow characteristics of water as coolant in a microchannel were studied. It was observed that numerical results are in good agreement with experimental results. It was found that the Nusselt number and friction factor are significantly varied with the increase in Reynolds number. The Nusselt number varies in the following ranges of 5.963-8.521, 5.986-8.550, 6.009-8.568, 6.040-8.609, and 6.078-8.644 at 3°, 6°, 9°, 12°, and 15°, respectively. The microchannel with a wedge angle of 15° was found to be better in terms of Nusselt number and thermo-hydraulic performance. The enhancement in the Nusselt number is found as 1.017-1.036 for a wedge angle of 15°; however, friction factors do not show the perceptible values at distinct values of wedge angle. Moreover, the thermo-hydraulic performance parameters (THPP) were evaluated and found to be maximum in the range of 1.027-1.045 for a wedge angle of 15°. However, minimum THPP was found in the range of 1.005-1.0185 for a wedge angle of 3°.

Additional Links: PMID-35888205

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35888205,

year = {2022},

author = {Vatsa, A and Alam, T and Siddiqui, MIH and Ali, MA and Dobrotă, D},

title = {Performance of Microchannel Heat Sink Made of Silicon Material with the Two-Sided Wedge.},

journal = {Materials (Basel, Switzerland)},

volume = {15},

number = {14},

pages = {},

doi = {10.3390/ma15144740},

pmid = {35888205},

issn = {1996-1944},

abstract = {New designs of the microchannel with a two-sided wedge shape at the base were studied numerically. Five different wedge angles ranging from 3° to 15° were incorporated into the microchannel design. Simulation of this novel microchannel was carried out using Computational Fluid Dynamics (CFD). Three-dimensional models of the microchannel heat sink were created, discretized, and based on Navier-Stokes and energy equations; laminar numerical solutions were obtained for heat transfer and pressure drop. Flow characteristics of water as coolant in a microchannel were studied. It was observed that numerical results are in good agreement with experimental results. It was found that the Nusselt number and friction factor are significantly varied with the increase in Reynolds number. The Nusselt number varies in the following ranges of 5.963-8.521, 5.986-8.550, 6.009-8.568, 6.040-8.609, and 6.078-8.644 at 3°, 6°, 9°, 12°, and 15°, respectively. The microchannel with a wedge angle of 15° was found to be better in terms of Nusselt number and thermo-hydraulic performance. The enhancement in the Nusselt number is found as 1.017-1.036 for a wedge angle of 15°; however, friction factors do not show the perceptible values at distinct values of wedge angle. Moreover, the thermo-hydraulic performance parameters (THPP) were evaluated and found to be maximum in the range of 1.027-1.045 for a wedge angle of 15°. However, minimum THPP was found in the range of 1.005-1.0185 for a wedge angle of 3°.},

}

RevDate: 2022-07-27

**Hydrodynamic Behavior of Self-Propelled Particles in a Simple Shear Flow.**

*Entropy (Basel, Switzerland)*, **24(7):** pii:e24070854.

The hydrodynamic properties of a squirmer type of self-propelled particle in a simple shear flow are investigated using the immersed boundary-lattice Boltzmann method in the range of swimming Reynolds number 0.05 ≤ Res ≤ 2.0, flow Reynolds number 40 ≤ Rep ≤ 160, blocking rate 0.2 ≤ κ ≤ 0.5. Some results are validated by comparing with available other results. The effects of Res, Rep and κ on the hydrodynamic properties of squirmer are discussed. The results show that there exist four distinct motion modes for the squirmer, i.e., horizontal mode, attractive oscillation mode, oscillation mode, and chaotic mode. Increasing Res causes the motion mode of the squirmer to change from a constant tumbling near the centerline to a stable horizontal mode, even an oscillatory or appealing oscillatory mode near the wall. Increasing the swimming intensity of squirmer under the definite Res will induce the squirmer to make periodic and stable motion at a specific distance from the wall. Increasing Rep will cause the squirmer to change from a stable swimming state to a spiral motion or continuous rotation. Increasing κ will strengthen the wall's attraction to the squirmer. Increasing swimming intensity of squirmer will modify the strength and direction of the wall's attraction to the squirmer if κ remains constant.

Additional Links: PMID-35885078

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35885078,

year = {2022},

author = {Qi, T and Lin, J and Ouyang, Z},

title = {Hydrodynamic Behavior of Self-Propelled Particles in a Simple Shear Flow.},

journal = {Entropy (Basel, Switzerland)},

volume = {24},

number = {7},

pages = {},

doi = {10.3390/e24070854},

pmid = {35885078},

issn = {1099-4300},

support = {12132015//National Natural Science Foundation of China/ ; },

abstract = {The hydrodynamic properties of a squirmer type of self-propelled particle in a simple shear flow are investigated using the immersed boundary-lattice Boltzmann method in the range of swimming Reynolds number 0.05 ≤ Res ≤ 2.0, flow Reynolds number 40 ≤ Rep ≤ 160, blocking rate 0.2 ≤ κ ≤ 0.5. Some results are validated by comparing with available other results. The effects of Res, Rep and κ on the hydrodynamic properties of squirmer are discussed. The results show that there exist four distinct motion modes for the squirmer, i.e., horizontal mode, attractive oscillation mode, oscillation mode, and chaotic mode. Increasing Res causes the motion mode of the squirmer to change from a constant tumbling near the centerline to a stable horizontal mode, even an oscillatory or appealing oscillatory mode near the wall. Increasing the swimming intensity of squirmer under the definite Res will induce the squirmer to make periodic and stable motion at a specific distance from the wall. Increasing Rep will cause the squirmer to change from a stable swimming state to a spiral motion or continuous rotation. Increasing κ will strengthen the wall's attraction to the squirmer. Increasing swimming intensity of squirmer will modify the strength and direction of the wall's attraction to the squirmer if κ remains constant.},

}

RevDate: 2022-07-26

**Hydrodynamic Model for Renal Microvascular Filtration: Effects of Physiological and Hemodynamic Changes on Glomerular Size-selectivity.**

*Microcirculation (New York, N.Y. : 1994)* [Epub ahead of print].

OBJECTIVE: The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory.

METHODS: Glomerular capillaries are represented as networks of cylindrical tubes with multilayered walls. Glomerular basement membrane (GBM) is a fibrous medium with bimodal fiber sizes. Epithelial slit fiber spacing follows a lognormal distribution based on reported electron micrographs with the highest resolution. Endothelial fenestrae are filled with fibers the size of glycosaminoglycans (GAGs). Effects of fiber-macromolecule steric and hydrodynamic interactions are included. Focusing on diabetic nephropathy, the physiological and hemodynamic factors employed in the computation are those reported for healthy humans and patients with early-but-overt diabetic nephropathy. The macromolecule concentration is obtained as a finite element solution of the convection-diffusion equation.

RESULTS: Computed sieving coefficients averaged along the capillary length agree well with ficoll sieving coefficients from studies in humans for most solute radii. GBM thickening and the loss of the slit diaphragm hardly affect glomerular permselectivity. GAG volume fraction reduction in the endothelial fenestrae, however, significantly increases macromolecule filtration. Increased renal plasma flow rate (RPF), glomerular hypertension and reduction of lumen osmotic pressure cause a slight sieving coefficient decrease. These effects are amplified by an increased macromolecule size.

CONCLUSION: Our results indicate that glomerular hypertension and the reduction in the oncotic pressure decreases glomerular macromolecule filtration. Reduction of RPF and changes in the glomerular barrier structure associated with DN, however, increase the solute sieving. Damage to GAGs caused by hyperglycemia is likely to be the most prominent factor affecting glomerular size-selectivity.

Additional Links: PMID-35879876

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35879876,

year = {2022},

author = {Punyaratabandhu, N and Dechadilok, P and Triampo, W and Katavetin, P},

title = {Hydrodynamic Model for Renal Microvascular Filtration: Effects of Physiological and Hemodynamic Changes on Glomerular Size-selectivity.},

journal = {Microcirculation (New York, N.Y. : 1994)},

volume = {},

number = {},

pages = {e12779},

doi = {10.1111/micc.12779},

pmid = {35879876},

issn = {1549-8719},

abstract = {OBJECTIVE: The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory.

METHODS: Glomerular capillaries are represented as networks of cylindrical tubes with multilayered walls. Glomerular basement membrane (GBM) is a fibrous medium with bimodal fiber sizes. Epithelial slit fiber spacing follows a lognormal distribution based on reported electron micrographs with the highest resolution. Endothelial fenestrae are filled with fibers the size of glycosaminoglycans (GAGs). Effects of fiber-macromolecule steric and hydrodynamic interactions are included. Focusing on diabetic nephropathy, the physiological and hemodynamic factors employed in the computation are those reported for healthy humans and patients with early-but-overt diabetic nephropathy. The macromolecule concentration is obtained as a finite element solution of the convection-diffusion equation.

RESULTS: Computed sieving coefficients averaged along the capillary length agree well with ficoll sieving coefficients from studies in humans for most solute radii. GBM thickening and the loss of the slit diaphragm hardly affect glomerular permselectivity. GAG volume fraction reduction in the endothelial fenestrae, however, significantly increases macromolecule filtration. Increased renal plasma flow rate (RPF), glomerular hypertension and reduction of lumen osmotic pressure cause a slight sieving coefficient decrease. These effects are amplified by an increased macromolecule size.

CONCLUSION: Our results indicate that glomerular hypertension and the reduction in the oncotic pressure decreases glomerular macromolecule filtration. Reduction of RPF and changes in the glomerular barrier structure associated with DN, however, increase the solute sieving. Damage to GAGs caused by hyperglycemia is likely to be the most prominent factor affecting glomerular size-selectivity.},

}

RevDate: 2022-07-25

**Pressure distribution on a flat plate in the context of the phenomenon of the Coanda effect hysteresis.**

*Scientific reports*, **12(1):**12687.

As a result of the Coanda effect, a symmetrical free jet will flow as an asymmetrical wall jet. At the same time, at the obstacle along which the flow is observed, the wall jet generates pressure distribution. In this study, the obstacle located at the diffuser outlet is a flat plate with a variable inclination angle. The article presents results of the study on pressure distributions on a flat plate with a variable angle of inclination. In the experiment, the Reynolds number ranged from 16,192 to 42,240. A fixed geometry diffuser (Witoszyński nozzle) with a height of 0.60 m, width of 0.02 m and outlet velocity of 11.33-29.57 m/s was used. A plate with a length of 1.00 m and a variable inclination angle was installed at the diffuser outlet. What is new, however, is that the presented results of the experimental research include the influence of the Coanda effect hysteresis on the pressure distribution on the plate. The article shows how pressure distributions change on the plate depending on whether the initial angle of inclination was 0° and was increased gradually in the course of the experiment until a detachment of the jet flowing from the plate was observed, or the initial angle of inclination was close to 90° in the primal state and as the angle of the plate inclination was decreased, the jet flowing towards the plate reached the state of attachment to the plate surface. The study demonstrated that for a turbulent jet, pressure distribution on a flat plate is determined not only by the plate's inclination angle, but also by the direction of its rotation.

Additional Links: PMID-35879342

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35879342,

year = {2022},

author = {Skotnicka-Siepsiak, A},

title = {Pressure distribution on a flat plate in the context of the phenomenon of the Coanda effect hysteresis.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {12687},

pmid = {35879342},

issn = {2045-2322},

abstract = {As a result of the Coanda effect, a symmetrical free jet will flow as an asymmetrical wall jet. At the same time, at the obstacle along which the flow is observed, the wall jet generates pressure distribution. In this study, the obstacle located at the diffuser outlet is a flat plate with a variable inclination angle. The article presents results of the study on pressure distributions on a flat plate with a variable angle of inclination. In the experiment, the Reynolds number ranged from 16,192 to 42,240. A fixed geometry diffuser (Witoszyński nozzle) with a height of 0.60 m, width of 0.02 m and outlet velocity of 11.33-29.57 m/s was used. A plate with a length of 1.00 m and a variable inclination angle was installed at the diffuser outlet. What is new, however, is that the presented results of the experimental research include the influence of the Coanda effect hysteresis on the pressure distribution on the plate. The article shows how pressure distributions change on the plate depending on whether the initial angle of inclination was 0° and was increased gradually in the course of the experiment until a detachment of the jet flowing from the plate was observed, or the initial angle of inclination was close to 90° in the primal state and as the angle of the plate inclination was decreased, the jet flowing towards the plate reached the state of attachment to the plate surface. The study demonstrated that for a turbulent jet, pressure distribution on a flat plate is determined not only by the plate's inclination angle, but also by the direction of its rotation.},

}

RevDate: 2022-07-21

**Novel nonwetting solid-infused surfaces for superior fouling mitigation.**

*Journal of colloid and interface science*, **627:**308-319 pii:S0021-9797(22)01145-6 [Epub ahead of print].

Fouling is a ubiquitous issue in several environmental and energy applications. Here we introduce novel nonwetting solid-infused surfaces (SIS) with superior anti-fouling characteristics that are durable than conventional nonwetting surfaces in a dynamic flow environment. A systematic study is presented to elucidate the fouling mitigation performance of SIS in comparison to lubricant-infused surface (LIS) and conventional smooth surface. Copper tubes with SIS, LIS or smooth inner walls are fabricated and subjected to accelerated calcium sulfate fouling in a flow fouling experimental setup. Fouling on the various surface types is quantified in terms of asymptotic fouling resistance, and the fundamental morphological differences in the interactions of the foulant and the various surface types are analyzed. Based on a systematic sweep of the parameter combinations using design of experiments and Taguchi analysis, an analytical dependence of asymptotic fouling resistance on the governing parameters namely, Reynolds number, foulant concentration and temperature is derived. The analytical model is shown to predict the asymptotic fouling resistance to within 20% accuracy with a 95% confidence. In addition, for the first time, the effects of shear durability on the fouling mitigation performance of LIS vis-à-vis SIS are studied. It is shown that the novel nonwetting SIS offers a robust option for superior fouling mitigation over LIS in the long run.

Additional Links: PMID-35863190

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35863190,

year = {2022},

author = {Hatte, S and Pitchumani, R},

title = {Novel nonwetting solid-infused surfaces for superior fouling mitigation.},

journal = {Journal of colloid and interface science},

volume = {627},

number = {},

pages = {308-319},

doi = {10.1016/j.jcis.2022.06.155},

pmid = {35863190},

issn = {1095-7103},

abstract = {Fouling is a ubiquitous issue in several environmental and energy applications. Here we introduce novel nonwetting solid-infused surfaces (SIS) with superior anti-fouling characteristics that are durable than conventional nonwetting surfaces in a dynamic flow environment. A systematic study is presented to elucidate the fouling mitigation performance of SIS in comparison to lubricant-infused surface (LIS) and conventional smooth surface. Copper tubes with SIS, LIS or smooth inner walls are fabricated and subjected to accelerated calcium sulfate fouling in a flow fouling experimental setup. Fouling on the various surface types is quantified in terms of asymptotic fouling resistance, and the fundamental morphological differences in the interactions of the foulant and the various surface types are analyzed. Based on a systematic sweep of the parameter combinations using design of experiments and Taguchi analysis, an analytical dependence of asymptotic fouling resistance on the governing parameters namely, Reynolds number, foulant concentration and temperature is derived. The analytical model is shown to predict the asymptotic fouling resistance to within 20% accuracy with a 95% confidence. In addition, for the first time, the effects of shear durability on the fouling mitigation performance of LIS vis-à-vis SIS are studied. It is shown that the novel nonwetting SIS offers a robust option for superior fouling mitigation over LIS in the long run.},

}

RevDate: 2022-07-21

**A DNA origami rotary ratchet motor.**

*Nature*, **607(7919):**492-498.

To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.

Additional Links: PMID-35859200

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35859200,

year = {2022},

author = {Pumm, AK and Engelen, W and Kopperger, E and Isensee, J and Vogt, M and Kozina, V and Kube, M and Honemann, MN and Bertosin, E and Langecker, M and Golestanian, R and Simmel, FC and Dietz, H},

title = {A DNA origami rotary ratchet motor.},

journal = {Nature},

volume = {607},

number = {7919},

pages = {492-498},

pmid = {35859200},

issn = {1476-4687},

abstract = {To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry1-5. Ratcheting is thought to underpin the function of many natural biological motors, such as the F1F0-ATPase6-8, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. 3) and also in artificial molecular motors created by organic chemical synthesis9-12. DNA nanotechnology13 has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems14-17, which can adopt different configurations, for example, triggered by strand-displacement reactions18,19 or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins20-26. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity27,28 led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F1F0-ATPase.},

}

RevDate: 2022-07-21

CmpDate: 2022-07-21

**Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls.**

*Scientific reports*, **12(1):**12219.

Fluid-structure interaction (FSI) gained a huge attention of scientists and researchers due to its applications in biomedical and mechanical engineering. One of the most important applications of FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using non-Newtonian models. In this study we explored non-Newtonian, incompressible Casson fluid flow in a bifurcated artery with a stenosis. The two-dimensional Casson model is used to study the hemodynamics of the flow. The walls of the artery are supposed to be elastic and the stenosis region is constructed in both walls. Suitable scales are used to transform the nonlinear differential equations into a dimensionless form. The problem is formulated and discretized using Arbitrary Lagrangian-Eulerian (ALE) approach. The finite element method (FEM) technique is used to solve the system of equations, together with appropriate boundary conditions. The analysis is carried out for the Bingham number, Hartmann number, and Reynolds number. The graphical results of pressure field, velocity profile, and load on the walls are assessed and used to study the influence of hemodynamic effects on stenotic arteries, bifurcation region, and elastic walls. This study shows that there is an increase in wall shear stresses (WSS) with increasing values of Bingham number and Hartmann number. Also, for different values of the Bingham number, the load on the upper wall is computed against the Hartmann number. The result indicate that load at the walls increases as the values of Bingham number and Hartmann number increase.

Additional Links: PMID-35851297

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35851297,

year = {2022},

author = {Shahzad, H and Wang, X and Ghaffari, A and Iqbal, K and Hafeez, MB and Krawczuk, M and Wojnicz, W},

title = {Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {12219},

pmid = {35851297},

issn = {2045-2322},

mesh = {Arteries ; Blood Flow Velocity ; Computer Simulation ; Constriction, Pathologic ; *Hemodynamics ; Humans ; *Models, Cardiovascular ; Stress, Mechanical ; },

abstract = {Fluid-structure interaction (FSI) gained a huge attention of scientists and researchers due to its applications in biomedical and mechanical engineering. One of the most important applications of FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using non-Newtonian models. In this study we explored non-Newtonian, incompressible Casson fluid flow in a bifurcated artery with a stenosis. The two-dimensional Casson model is used to study the hemodynamics of the flow. The walls of the artery are supposed to be elastic and the stenosis region is constructed in both walls. Suitable scales are used to transform the nonlinear differential equations into a dimensionless form. The problem is formulated and discretized using Arbitrary Lagrangian-Eulerian (ALE) approach. The finite element method (FEM) technique is used to solve the system of equations, together with appropriate boundary conditions. The analysis is carried out for the Bingham number, Hartmann number, and Reynolds number. The graphical results of pressure field, velocity profile, and load on the walls are assessed and used to study the influence of hemodynamic effects on stenotic arteries, bifurcation region, and elastic walls. This study shows that there is an increase in wall shear stresses (WSS) with increasing values of Bingham number and Hartmann number. Also, for different values of the Bingham number, the load on the upper wall is computed against the Hartmann number. The result indicate that load at the walls increases as the values of Bingham number and Hartmann number increase.},

}

MeSH Terms:

show MeSH Terms

hide MeSH Terms

Arteries

Blood Flow Velocity

Computer Simulation

Constriction, Pathologic

*Hemodynamics

Humans

*Models, Cardiovascular

Stress, Mechanical

RevDate: 2022-07-20

**Dissipation-range fluid turbulence and thermal noise.**

*Physical review. E*, **105(6-2):**065113.

We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation-range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an "effective field theory" valid below some high-wave-number cutoff Λ, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million, comparable to that in Earth's atmospheric boundary layer, the strongest turbulent excitations observed in our simulation penetrate down to a length scale of about eight microns, still two orders of magnitude greater than the mean free path of air. However, for longer observation times or for higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.

Additional Links: PMID-35854607

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35854607,

year = {2022},

author = {Bandak, D and Goldenfeld, N and Mailybaev, AA and Eyink, G},

title = {Dissipation-range fluid turbulence and thermal noise.},

journal = {Physical review. E},

volume = {105},

number = {6-2},

pages = {065113},

doi = {10.1103/PhysRevE.105.065113},

pmid = {35854607},

issn = {2470-0053},

abstract = {We revisit the issue of whether thermal fluctuations are relevant for incompressible fluid turbulence and estimate the scale at which they become important. As anticipated by Betchov in a prescient series of works more than six decades ago, this scale is about equal to the Kolmogorov length, even though that is several orders of magnitude above the mean free path. This result implies that the deterministic version of the incompressible Navier-Stokes equation is inadequate to describe the dissipation range of turbulence in molecular fluids. Within this range, the fluctuating hydrodynamics equation of Landau and Lifschitz is more appropriate. In particular, our analysis implies that both the exponentially decaying energy spectrum and the far-dissipation-range intermittency predicted by Kraichnan for deterministic Navier-Stokes will be generally replaced by Gaussian thermal equipartition at scales just below the Kolmogorov length. Stochastic shell model simulations at high Reynolds numbers verify our theoretical predictions and reveal furthermore that inertial-range intermittency can propagate deep into the dissipation range, leading to large fluctuations in the equipartition length scale. We explain the failure of previous scaling arguments for the validity of deterministic Navier-Stokes equations at any Reynolds number and we provide a mathematical interpretation and physical justification of the fluctuating Navier-Stokes equation as an "effective field theory" valid below some high-wave-number cutoff Λ, rather than as a continuum stochastic partial differential equation. At Reynolds number around a million, comparable to that in Earth's atmospheric boundary layer, the strongest turbulent excitations observed in our simulation penetrate down to a length scale of about eight microns, still two orders of magnitude greater than the mean free path of air. However, for longer observation times or for higher Reynolds numbers, more extreme turbulent events could lead to a local breakdown of fluctuating hydrodynamics.},

}

RevDate: 2022-07-20

**Nonequilibrium ensembles for the three-dimensional Navier-Stokes equations.**

*Physical review. E*, **105(6-2):**065110.

At the molecular level fluid motions are, by first principles, described by time reversible laws. On the other hand, the coarse grained macroscopic evolution is suitably described by the Navier-Stokes equations, which are inherently irreversible, due to the dissipation term. Here, a reversible version of three-dimensional Navier-Stokes is studied, by introducing a fluctuating viscosity constructed in such a way that enstrophy is conserved, along the lines of the paradigm of microcanonical versus canonical treatment in equilibrium statistical mechanics. Through systematic simulations we attack two important questions: (a) What are the conditions that must be satisfied in order to have a statistical equivalence between the two nonequilibrium ensembles? (b) What is the empirical distribution of the fluctuating viscosity observed by changing the Reynolds number and the number of modes used in the discretization of the evolution equation? The latter point is important also to establish regularity conditions for the reversible equations. We find that the probability to observe negative values of the fluctuating viscosity becomes very quickly extremely small when increasing the effective Reynolds number of the flow in the fully resolved hydrodynamical regime, at difference from what was observed previously.

Additional Links: PMID-35854520

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35854520,

year = {2022},

author = {Margazoglou, G and Biferale, L and Cencini, M and Gallavotti, G and Lucarini, V},

title = {Nonequilibrium ensembles for the three-dimensional Navier-Stokes equations.},

journal = {Physical review. E},

volume = {105},

number = {6-2},

pages = {065110},

doi = {10.1103/PhysRevE.105.065110},

pmid = {35854520},

issn = {2470-0053},

abstract = {At the molecular level fluid motions are, by first principles, described by time reversible laws. On the other hand, the coarse grained macroscopic evolution is suitably described by the Navier-Stokes equations, which are inherently irreversible, due to the dissipation term. Here, a reversible version of three-dimensional Navier-Stokes is studied, by introducing a fluctuating viscosity constructed in such a way that enstrophy is conserved, along the lines of the paradigm of microcanonical versus canonical treatment in equilibrium statistical mechanics. Through systematic simulations we attack two important questions: (a) What are the conditions that must be satisfied in order to have a statistical equivalence between the two nonequilibrium ensembles? (b) What is the empirical distribution of the fluctuating viscosity observed by changing the Reynolds number and the number of modes used in the discretization of the evolution equation? The latter point is important also to establish regularity conditions for the reversible equations. We find that the probability to observe negative values of the fluctuating viscosity becomes very quickly extremely small when increasing the effective Reynolds number of the flow in the fully resolved hydrodynamical regime, at difference from what was observed previously.},

}

RevDate: 2022-07-20

**Linear stability of a falling film over a heated slippery plane.**

*Physical review. E*, **105(6-2):**065112.

A detailed parametric study on the linear stability analysis of a three-dimensional thin liquid film flowing down a uniformly heated slippery inclined plane is carried out for disturbances of arbitrary wavenumbers, where the liquid film satisfies Newton's law of cooling at the film surface. A coupled system of boundary value problems is formulated in terms of the amplitudes of perturbation normal velocity and perturbation temperature, respectively. Analytical solution of the boundary value problems demonstrates the existence of three dominant modes, the so-called H mode, S mode, and P mode, where the S mode and P mode emerge due to the thermocapillary effect. It is found that the onset of instabilities for the H mode, S mode, and P mode reduces in the presence of wall slip and leads to a destabilizing influence. Numerical solution based on the Chebyshev spectral collocation method unveils that the finite wavenumber H-mode instability can be stabilized, but the S-mode instability and the finite wavenumber P-mode instability can be destabilized by increasing the value of the Marangoni number. On the other hand, the Biot number shows a dual role in the H-mode and S-mode instabilities. But the P-mode instability can be made stable with the increasing value of the Biot number and the decreasing values of the Marangoni number and the Prandtl number. Furthermore, the H-mode and S-mode instabilities become weaker, but the P-mode instability becomes stronger, with the increasing value of the spanwise wavenumber. In addition, the shear mode emerges in the numerical simulation when the Reynolds number is large, which can be destabilized slightly with the increasing value of the Marangoni number; however, it can be stabilized with the increasing value of the slip length and introducing the spanwise wavenumber to the infinitesimal perturbation.

Additional Links: PMID-35854514

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35854514,

year = {2022},

author = {Choudhury, A and Samanta, A},

title = {Linear stability of a falling film over a heated slippery plane.},

journal = {Physical review. E},

volume = {105},

number = {6-2},

pages = {065112},

doi = {10.1103/PhysRevE.105.065112},

pmid = {35854514},

issn = {2470-0053},

abstract = {A detailed parametric study on the linear stability analysis of a three-dimensional thin liquid film flowing down a uniformly heated slippery inclined plane is carried out for disturbances of arbitrary wavenumbers, where the liquid film satisfies Newton's law of cooling at the film surface. A coupled system of boundary value problems is formulated in terms of the amplitudes of perturbation normal velocity and perturbation temperature, respectively. Analytical solution of the boundary value problems demonstrates the existence of three dominant modes, the so-called H mode, S mode, and P mode, where the S mode and P mode emerge due to the thermocapillary effect. It is found that the onset of instabilities for the H mode, S mode, and P mode reduces in the presence of wall slip and leads to a destabilizing influence. Numerical solution based on the Chebyshev spectral collocation method unveils that the finite wavenumber H-mode instability can be stabilized, but the S-mode instability and the finite wavenumber P-mode instability can be destabilized by increasing the value of the Marangoni number. On the other hand, the Biot number shows a dual role in the H-mode and S-mode instabilities. But the P-mode instability can be made stable with the increasing value of the Biot number and the decreasing values of the Marangoni number and the Prandtl number. Furthermore, the H-mode and S-mode instabilities become weaker, but the P-mode instability becomes stronger, with the increasing value of the spanwise wavenumber. In addition, the shear mode emerges in the numerical simulation when the Reynolds number is large, which can be destabilized slightly with the increasing value of the Marangoni number; however, it can be stabilized with the increasing value of the slip length and introducing the spanwise wavenumber to the infinitesimal perturbation.},

}

RevDate: 2022-07-20

**Self-organized swimming with odd elasticity.**

*Physical review. E*, **105(6-1):**064603.

We theoretically investigate self-oscillating waves of an active material, which were recently introduced as a nonsymmetric part of the elastic moduli, termed odd elasticity. Using Purcell's three-link swimmer model, we reveal that an odd-elastic filament at low Reynolds number can swim in a self-organized manner and that the time-periodic dynamics are characterized by a stable limit cycle generated by elastohydrodynamic interactions. Also, we consider a noisy shape gait and derive a swimming formula for a general elastic material in the Stokes regime with its elasticity modulus being represented by a nonsymmetric matrix, demonstrating that the odd elasticity produces biased net locomotion from random noise.

Additional Links: PMID-35854482

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35854482,

year = {2022},

author = {Ishimoto, K and Moreau, C and Yasuda, K},

title = {Self-organized swimming with odd elasticity.},

journal = {Physical review. E},

volume = {105},

number = {6-1},

pages = {064603},

doi = {10.1103/PhysRevE.105.064603},

pmid = {35854482},

issn = {2470-0053},

abstract = {We theoretically investigate self-oscillating waves of an active material, which were recently introduced as a nonsymmetric part of the elastic moduli, termed odd elasticity. Using Purcell's three-link swimmer model, we reveal that an odd-elastic filament at low Reynolds number can swim in a self-organized manner and that the time-periodic dynamics are characterized by a stable limit cycle generated by elastohydrodynamic interactions. Also, we consider a noisy shape gait and derive a swimming formula for a general elastic material in the Stokes regime with its elasticity modulus being represented by a nonsymmetric matrix, demonstrating that the odd elasticity produces biased net locomotion from random noise.},

}

RevDate: 2022-07-12

**Effects of the continuous pulsation regeneration on the soot combustion in diesel particulate filter for heavy-duty truck.**

*Chemosphere* pii:S0045-6535(22)02144-0 [Epub ahead of print].

Continuous pulsation regeneration combustion of soot is employed for sine and cosine simulation study. Data showed that pressure uniformity of sine condition is better than that of cosine condition with the maximum pressure difference of 4353.5 Pa under the same simulation boundary conditions. The maximum regeneration temperature under cosine pressure is 46.12 K which is higher than that in sine form. Regeneration combustion reaction zone tends to be more stable laminar flow and Reynolds number of sine condition is 435.23 less than that of under cosine condition. The maximum Stanton number of cosine pressure condition is 3.67 and that of sine pressure condition is 5.15, which investigates heat transfer capacity of the sine pressure condition is better than that of the pressure of cosine form. The regeneration efficiency of inlet gradually increased from the minimum regeneration efficiency 74.18%-88.45% of sine and cosine. The soot under both pressure forms has achieved complete regeneration and the regeneration efficiency has exceeded 88% of porous medium filter body section. The soot regeneration combustion efficiency of the porous media filter section and outlet section is more sufficient under sine condition and the heat carried by the fluid can maintain the soot regeneration.

Additional Links: PMID-35820476

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35820476,

year = {2022},

author = {Zhao, X and Zuo, H and Jia, G},

title = {Effects of the continuous pulsation regeneration on the soot combustion in diesel particulate filter for heavy-duty truck.},

journal = {Chemosphere},

volume = {},

number = {},

pages = {135651},

doi = {10.1016/j.chemosphere.2022.135651},

pmid = {35820476},

issn = {1879-1298},

abstract = {Continuous pulsation regeneration combustion of soot is employed for sine and cosine simulation study. Data showed that pressure uniformity of sine condition is better than that of cosine condition with the maximum pressure difference of 4353.5 Pa under the same simulation boundary conditions. The maximum regeneration temperature under cosine pressure is 46.12 K which is higher than that in sine form. Regeneration combustion reaction zone tends to be more stable laminar flow and Reynolds number of sine condition is 435.23 less than that of under cosine condition. The maximum Stanton number of cosine pressure condition is 3.67 and that of sine pressure condition is 5.15, which investigates heat transfer capacity of the sine pressure condition is better than that of the pressure of cosine form. The regeneration efficiency of inlet gradually increased from the minimum regeneration efficiency 74.18%-88.45% of sine and cosine. The soot under both pressure forms has achieved complete regeneration and the regeneration efficiency has exceeded 88% of porous medium filter body section. The soot regeneration combustion efficiency of the porous media filter section and outlet section is more sufficient under sine condition and the heat carried by the fluid can maintain the soot regeneration.},

}

RevDate: 2022-07-11

**Experimental Investigation of the Combustion Behavior of Transformer Oil Jet Flame.**

*ACS omega*, **7(26):**22969-22976.

Transformer oil jet fire is one of the most dangerous types of fires in substations. The combustion behavior of transformer oil jet fire produces uncontrollable hazards to personnel and equipment and even triggers a domino effect. However, the jet fire combustion behavior of such materials as transformer oil has not been revealed before. Investigation of the combustion behavior of transformer oil jet fire has positive implications for the prevention and control of substation fires. In this paper, KI25X transformer oil was used as fuel. A series of transformer oil jet fire experiments were conducted with variable orifice diameters (5, 10, and 15 mm) with heat release rates ranging from 200 to 659.2 kW. The results showed that the entrainment coefficient of transformer oil jet fire was greater than that of pure gas phase jet fire. The entrainment coefficient of transformer oil jet fire was 0.029. Using dimensionless theory, it was proposed that the imaginary point source was proportional to the 0.317 power of Froude number. Based on the point source model, a dimensional analysis model with Reynolds number was developed. The radiation fraction of transformer oil jet fire was proportional to the -0.133 power of Reynolds number. This study played an important role in improving the jet combustion behavior of transformer oil.

Additional Links: PMID-35811899

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35811899,

year = {2022},

author = {Sun, R and Chen, P and Li, L and Liu, Y and Zhai, X},

title = {Experimental Investigation of the Combustion Behavior of Transformer Oil Jet Flame.},

journal = {ACS omega},

volume = {7},

number = {26},

pages = {22969-22976},

doi = {10.1021/acsomega.2c03080},

pmid = {35811899},

issn = {2470-1343},

abstract = {Transformer oil jet fire is one of the most dangerous types of fires in substations. The combustion behavior of transformer oil jet fire produces uncontrollable hazards to personnel and equipment and even triggers a domino effect. However, the jet fire combustion behavior of such materials as transformer oil has not been revealed before. Investigation of the combustion behavior of transformer oil jet fire has positive implications for the prevention and control of substation fires. In this paper, KI25X transformer oil was used as fuel. A series of transformer oil jet fire experiments were conducted with variable orifice diameters (5, 10, and 15 mm) with heat release rates ranging from 200 to 659.2 kW. The results showed that the entrainment coefficient of transformer oil jet fire was greater than that of pure gas phase jet fire. The entrainment coefficient of transformer oil jet fire was 0.029. Using dimensionless theory, it was proposed that the imaginary point source was proportional to the 0.317 power of Froude number. Based on the point source model, a dimensional analysis model with Reynolds number was developed. The radiation fraction of transformer oil jet fire was proportional to the -0.133 power of Reynolds number. This study played an important role in improving the jet combustion behavior of transformer oil.},

}

RevDate: 2022-07-05

**Computational technique of thermal comparative examination of Cu and Au nanoparticles suspended in sodium alginate as Sutterby nanofluid via extending PTSC surface.**

*Journal of applied biomaterials & functional materials*, **20:**22808000221104004.

Current research underscores entropy investigation in an infiltrating mode of Sutterby nanofluid (SNF) stream past a dramatically expanding flat plate that highlights Parabolic Trough Solar Collector (PTSC). Satisfactory likeness factors are utilized to change halfway differential conditions (PDEs) to nonlinear conventional differential conditions (ODEs) along with relating limit requirements. A productive Keller-box system is locked in to achieve approximated arrangement of decreased conventional differential conditions. In the review, two sorts of nanofluids including Copper-sodium alginate (Cu-SA) and Gold-sodium alginate (Au-SA) are dissected. Results are graphically plotted as well as talked about in actual viewpoints. As indicated by key discoveries, an improvement in Brinkmann, as well as Reynolds number, brings about expanding the general framework entropy. Sutterby nanofluid boundary improves heat rate in PTSC. Additionally, Copper-sodium alginate nanofluid is detected as a superior thermal conductor than Gold-sodium alginate nanofluid. Further to that, the reported breakthroughs are beneficial to updating extremely bright lighting bulbs, heating and cooling machinery, ﬁber required to generate light, power production, numerous boilers, and other similar technologies.

Additional Links: PMID-35787191

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35787191,

year = {2022},

author = {Jamshed, W and Safdar, R and Rehman, Z and Lashin, MMA and Ehab, M and Moussa, M and Rehman, A},

title = {Computational technique of thermal comparative examination of Cu and Au nanoparticles suspended in sodium alginate as Sutterby nanofluid via extending PTSC surface.},

journal = {Journal of applied biomaterials & functional materials},

volume = {20},

number = {},

pages = {22808000221104004},

doi = {10.1177/22808000221104004},

pmid = {35787191},

issn = {2280-8000},

abstract = {Current research underscores entropy investigation in an infiltrating mode of Sutterby nanofluid (SNF) stream past a dramatically expanding flat plate that highlights Parabolic Trough Solar Collector (PTSC). Satisfactory likeness factors are utilized to change halfway differential conditions (PDEs) to nonlinear conventional differential conditions (ODEs) along with relating limit requirements. A productive Keller-box system is locked in to achieve approximated arrangement of decreased conventional differential conditions. In the review, two sorts of nanofluids including Copper-sodium alginate (Cu-SA) and Gold-sodium alginate (Au-SA) are dissected. Results are graphically plotted as well as talked about in actual viewpoints. As indicated by key discoveries, an improvement in Brinkmann, as well as Reynolds number, brings about expanding the general framework entropy. Sutterby nanofluid boundary improves heat rate in PTSC. Additionally, Copper-sodium alginate nanofluid is detected as a superior thermal conductor than Gold-sodium alginate nanofluid. Further to that, the reported breakthroughs are beneficial to updating extremely bright lighting bulbs, heating and cooling machinery, ﬁber required to generate light, power production, numerous boilers, and other similar technologies.},

}

RevDate: 2022-06-30

**An Adaptable Flying Fish Robotic Model for Aero- and Hydrodynamic Experimentation.**

*Integrative and comparative biology* pii:6623665 [Epub ahead of print].

Flying fishes (family Exocoetidae) are known for achieving multi-modal locomotion through air and water. Previous work on understanding this animal's aerodynamic and hydrodynamic nature has been based on observations, numerical simulations, or experiments on preserved dead fish, and has focused primarily on flying pectoral fins. The first half of this paper details the design and validation of a modular flying fish inspired robotic model organism (RMO). The second half delves into a parametric aerodynamic study of flying fish pelvic fins, which to date have not been studied in-depth. Using wind tunnel experiments at a Reynolds number of 30,000, we investigated the effect of the pelvic fin geometric parameters on aerodynamic efficiency and longitudinal stability. The pelvic fin parameters investigated in this study include the pelvic fin pitch angle and its location along the body. Results show that the aerodynamic efficiency is maximized for pelvic fins located directly behind the pectoral fins and is higher for more positive pitch angles. In contrast, pitching stability is neither achievable for positive pitching angles nor pelvic fins located directly below the pectoral fin. Thus, there is a clear a trade-off between stability and lift generation, and an optimal pelvic fin configuration depends on the flying fish locomotion stage, be it gliding, taxiing, or taking off. The results garnered from the RMO experiments are insightful for understanding the physics principles governing flying fish locomotion and designing flying fish inspired aerial-aquatic vehicles.

Additional Links: PMID-35771996

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35771996,

year = {2022},

author = {Saro-Cortes, V and Cui, Y and Dufficy, T and Boctor, A and Flammang, BE and Wissa, AW},

title = {An Adaptable Flying Fish Robotic Model for Aero- and Hydrodynamic Experimentation.},

journal = {Integrative and comparative biology},

volume = {},

number = {},

pages = {},

doi = {10.1093/icb/icac101},

pmid = {35771996},

issn = {1557-7023},

abstract = {Flying fishes (family Exocoetidae) are known for achieving multi-modal locomotion through air and water. Previous work on understanding this animal's aerodynamic and hydrodynamic nature has been based on observations, numerical simulations, or experiments on preserved dead fish, and has focused primarily on flying pectoral fins. The first half of this paper details the design and validation of a modular flying fish inspired robotic model organism (RMO). The second half delves into a parametric aerodynamic study of flying fish pelvic fins, which to date have not been studied in-depth. Using wind tunnel experiments at a Reynolds number of 30,000, we investigated the effect of the pelvic fin geometric parameters on aerodynamic efficiency and longitudinal stability. The pelvic fin parameters investigated in this study include the pelvic fin pitch angle and its location along the body. Results show that the aerodynamic efficiency is maximized for pelvic fins located directly behind the pectoral fins and is higher for more positive pitch angles. In contrast, pitching stability is neither achievable for positive pitching angles nor pelvic fins located directly below the pectoral fin. Thus, there is a clear a trade-off between stability and lift generation, and an optimal pelvic fin configuration depends on the flying fish locomotion stage, be it gliding, taxiing, or taking off. The results garnered from the RMO experiments are insightful for understanding the physics principles governing flying fish locomotion and designing flying fish inspired aerial-aquatic vehicles.},

}

RevDate: 2022-06-28

**Aerodynamics of two parallel bristled wings in low Reynolds number flow.**

*Scientific reports*, **12(1):**10928.

Most of the smallest flying insects use bristled wings. It was observed that during the second half of their upstroke, the left and right wings become parallel and close to each other at the back, and move upward at zero angle of attack. In this period, the wings may produce drag (negative vertical force) and side forces which tend to push two wings apart. Here we study the aerodynamic forces and flows of two simplified bristled wings experiencing such a motion, compared with the case of membrane wings (flat-plate wings), to see if there is any advantage in using the bristled wings. The method of computational fluid dynamics is used in the study. The results are as follows. In the motion of two bristled wings, the drag acting on each wing is 40% smaller than the case of a single bristled wing conducting the same motion, and only a very small side force is produced. But in the case of the flat-plate wings, although there is similar drag reduction, the side force on each wing is larger than that of the bristled wing by an order of magnitude (the underlying physical reason is discussed in the paper). Thus, if the smallest insects use membrane wings, their flight muscles need to overcome large side forces in order to maintain the intended motion for less negative lift, whereas using bristled wings do not have this problem. Therefore, the adoption of bristled wings can be beneficial during upward movement of the wings near the end of the upstroke, which may be one reason why most of the smallest insects adopt them.

Additional Links: PMID-35764779

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35764779,

year = {2022},

author = {Wu, YK and Liu, YP and Sun, M},

title = {Aerodynamics of two parallel bristled wings in low Reynolds number flow.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {10928},

pmid = {35764779},

issn = {2045-2322},

support = {Nos. 11832004//National Natural Science Foundation of China/ ; Nos. 11832004//National Natural Science Foundation of China/ ; Nos. 11832004//National Natural Science Foundation of China/ ; },

abstract = {Most of the smallest flying insects use bristled wings. It was observed that during the second half of their upstroke, the left and right wings become parallel and close to each other at the back, and move upward at zero angle of attack. In this period, the wings may produce drag (negative vertical force) and side forces which tend to push two wings apart. Here we study the aerodynamic forces and flows of two simplified bristled wings experiencing such a motion, compared with the case of membrane wings (flat-plate wings), to see if there is any advantage in using the bristled wings. The method of computational fluid dynamics is used in the study. The results are as follows. In the motion of two bristled wings, the drag acting on each wing is 40% smaller than the case of a single bristled wing conducting the same motion, and only a very small side force is produced. But in the case of the flat-plate wings, although there is similar drag reduction, the side force on each wing is larger than that of the bristled wing by an order of magnitude (the underlying physical reason is discussed in the paper). Thus, if the smallest insects use membrane wings, their flight muscles need to overcome large side forces in order to maintain the intended motion for less negative lift, whereas using bristled wings do not have this problem. Therefore, the adoption of bristled wings can be beneficial during upward movement of the wings near the end of the upstroke, which may be one reason why most of the smallest insects adopt them.},

}

RevDate: 2022-06-27

**Effect of Structural Optimization of Scrubbing Cooling Rings on Vertical Falling Film Flow Characteristics.**

*ACS omega*, **7(24):**21291-21305.

In order to study the influence of the structural optimization of the scrubbing cooling ring in the scrubbing cooling chamber on the flow characteristics of the vertical falling film, the flow characteristics of the turbulent falling film in the rising section of the development region at different internal platform heights of the scrubbing cooling ring and a high Reynolds number were studied by FLUENT software. First, the correctness of the model was verified by the maximum error of simulation and experimental results of no more than 9.836%. Then, the distribution of liquid film thickness (δ), velocity (V), and turbulence intensity (I z) at 0° of the tube in the axial direction x = 0-500 mm were calculated and obtained when the platform height (H) was 0-30 mm and the liquid film Reynolds number (Re l) = 1.1541 × 104-3.4623 × 104. The results showed that δ in the entrance region increased sharply due to the "jet" effect with solid wall constraints formed by the structure of the water inlet pipe and the scrubbing cooling ring. On the contrary, the liquid film in the fully developed region showed a stable fluctuation trend due to the weakening of the "jet" effect. When H = 30 mm, the change of δ was relatively stable and the change of I z was small, indicating that this platform height is conducive to the stable and uniform distribution of the liquid film. In addition, when Re l < 1.1541 × 104, the liquid film was unstable due to the low flow rate and insufficient cohesion of the liquid film, but V increased slightly. In addition, with the increase of Re l, δ did not change significantly along the axial direction, that is, the Plateau-Rayleigh hindered the growth of δ. Finally, the empirical formula for δ applicable to Re l = 1.1541 × 104-3.4623 × 104 at the axial fixed position was fitted for the first time.

Additional Links: PMID-35755331

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35755331,

year = {2022},

author = {Huang, X and Wang, Y and Wang, L and Yu, G and Wang, F},

title = {Effect of Structural Optimization of Scrubbing Cooling Rings on Vertical Falling Film Flow Characteristics.},

journal = {ACS omega},

volume = {7},

number = {24},

pages = {21291-21305},

doi = {10.1021/acsomega.2c02492},

pmid = {35755331},

issn = {2470-1343},

abstract = {In order to study the influence of the structural optimization of the scrubbing cooling ring in the scrubbing cooling chamber on the flow characteristics of the vertical falling film, the flow characteristics of the turbulent falling film in the rising section of the development region at different internal platform heights of the scrubbing cooling ring and a high Reynolds number were studied by FLUENT software. First, the correctness of the model was verified by the maximum error of simulation and experimental results of no more than 9.836%. Then, the distribution of liquid film thickness (δ), velocity (V), and turbulence intensity (I z) at 0° of the tube in the axial direction x = 0-500 mm were calculated and obtained when the platform height (H) was 0-30 mm and the liquid film Reynolds number (Re l) = 1.1541 × 104-3.4623 × 104. The results showed that δ in the entrance region increased sharply due to the "jet" effect with solid wall constraints formed by the structure of the water inlet pipe and the scrubbing cooling ring. On the contrary, the liquid film in the fully developed region showed a stable fluctuation trend due to the weakening of the "jet" effect. When H = 30 mm, the change of δ was relatively stable and the change of I z was small, indicating that this platform height is conducive to the stable and uniform distribution of the liquid film. In addition, when Re l < 1.1541 × 104, the liquid film was unstable due to the low flow rate and insufficient cohesion of the liquid film, but V increased slightly. In addition, with the increase of Re l, δ did not change significantly along the axial direction, that is, the Plateau-Rayleigh hindered the growth of δ. Finally, the empirical formula for δ applicable to Re l = 1.1541 × 104-3.4623 × 104 at the axial fixed position was fitted for the first time.},

}

RevDate: 2022-06-25

**Ontogeny of swimming performance of hatchery-reared post-larvae and juvenile fish: a case of two threatened Mediterranean species.**

*Journal of fish biology* [Epub ahead of print].

Swimming performance is a well-established key physiological parameter of fish that is highly linked to their fitness in the wild. In the context of fish restocking or restauration purposes, it therefore appears crucial to study this specific behaviour. Here, we investigated intra and interspecies differences in the swimming performance of hatchery-reared post-larvae and juveniles belonging to two Mediterranean candidate threatened species, the common dentex, Dentex dentex (Sparidae), and the brown meagre, Sciaena umbra (Sciaenidae), with body sizes ranging from 8 to 37 mm TL (from 24 to 58 days post-hatch). The swimming abilities were estimated through the calculation of their critical swimming speed (Ucrit), their relative Ucrit and their Reynolds number (Re). Two different patterns were observed between D. dentex and S. umbra, showing a different effect of ontogeny on the performance of both species. The relative Ucrit of S. umbra decreased linearly through ontogeny, whereas the relative Ucrit and Ucrit of D. dentex increased linearly through the range of sizes tested. The ontogenetic change in Ucrit of S. umbra occurred in two stages: a first stage of sharp improvement and a second stage of a slow decrease in performance. Both stages were separated by a breakpoint that coincided with the appearance of a refusal to swim behaviour that occurred shortly after the end of metamorphosis and can potentially be associated with the establishment of this species sedentary behaviour. The swimming performance of both species showed ontogenetic differences. Sciaena umbra had the highest relative performance when its body sizes were the smallest, whereas D. dentex showed the highest relative performance as its largest body sizes. These results will be linked to future research on both of these species concerning their escape, exploratory and predatory behaviours, and for restocking purposes to draw a more realistic overview of hatchery-reared juvenile performance. Knowledge of both species' behavioural and swimming performance through ontogeny is important to consider when using hatchery-reared fish juveniles for restocking, as size-at-release can have a large impact on fish survival and thus on restocking success. This article is protected by copyright. All rights reserved.

Additional Links: PMID-35751170

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35751170,

year = {2022},

author = {Ducos, S and Pugliese, S and Demolliens, M and Beraud, L and Boussard, A and Delmas, A and Agostini, S and Garcia, J and Aiello, A and Durieux, EDH},

title = {Ontogeny of swimming performance of hatchery-reared post-larvae and juvenile fish: a case of two threatened Mediterranean species.},

journal = {Journal of fish biology},

volume = {},

number = {},

pages = {},

doi = {10.1111/jfb.15144},

pmid = {35751170},

issn = {1095-8649},

abstract = {Swimming performance is a well-established key physiological parameter of fish that is highly linked to their fitness in the wild. In the context of fish restocking or restauration purposes, it therefore appears crucial to study this specific behaviour. Here, we investigated intra and interspecies differences in the swimming performance of hatchery-reared post-larvae and juveniles belonging to two Mediterranean candidate threatened species, the common dentex, Dentex dentex (Sparidae), and the brown meagre, Sciaena umbra (Sciaenidae), with body sizes ranging from 8 to 37 mm TL (from 24 to 58 days post-hatch). The swimming abilities were estimated through the calculation of their critical swimming speed (Ucrit), their relative Ucrit and their Reynolds number (Re). Two different patterns were observed between D. dentex and S. umbra, showing a different effect of ontogeny on the performance of both species. The relative Ucrit of S. umbra decreased linearly through ontogeny, whereas the relative Ucrit and Ucrit of D. dentex increased linearly through the range of sizes tested. The ontogenetic change in Ucrit of S. umbra occurred in two stages: a first stage of sharp improvement and a second stage of a slow decrease in performance. Both stages were separated by a breakpoint that coincided with the appearance of a refusal to swim behaviour that occurred shortly after the end of metamorphosis and can potentially be associated with the establishment of this species sedentary behaviour. The swimming performance of both species showed ontogenetic differences. Sciaena umbra had the highest relative performance when its body sizes were the smallest, whereas D. dentex showed the highest relative performance as its largest body sizes. These results will be linked to future research on both of these species concerning their escape, exploratory and predatory behaviours, and for restocking purposes to draw a more realistic overview of hatchery-reared juvenile performance. Knowledge of both species' behavioural and swimming performance through ontogeny is important to consider when using hatchery-reared fish juveniles for restocking, as size-at-release can have a large impact on fish survival and thus on restocking success. This article is protected by copyright. All rights reserved.},

}

RevDate: 2022-06-24

**Performance improvement and thermodynamic assessment of microchannel heat sink with different types of ribs and cones.**

*Scientific reports*, **12(1):**10802.

The present study aims to investigate the performance of microchannel heat sink via numerical simulations, based on the first and second law of thermodynamics. The heat transfer and flow characteristics of rectangular microchannel heat sinks have been improved by adding six different types of surface enhancers. The cross-sections include rectangular, triangular, and hexagonal-shaped ribs and cones. The cones have been created from the same cross-sections of ribs by drafting them at an angle of 45° orthogonal to the base, which is expected to decrease the pressure drop, dramatically. The performance of ribs and cones has been evaluated using different parameters such as friction factor, wall shear stress, entropy generation rate, augmentation entropy generation number, thermal resistance, and transport efficiency of thermal energy. The results of the present study revealed that the novel effect of coning at an angle of 45° reduces frictional losses (Maximum pressure drop reduced is 85%), however; a compromise on thermal behavior has been shown (Maximum Nusselt number reduced is 25%). Similarly, the application of coning has caused a significant reduction in wall shear stress and friction factor which can lead to reducing the pumping power requirements. Moreover, triangular ribs have more ability to transfer thermal energy than rectangular and hexagonal ribs. Furthermore, it has been examined in the present study that the trend of total entropy generation rate for triangular ribs decreases up to Re = 400 and then increases onwards which means that thermal losses are more significant than frictional losses at lower Reynolds number. However, frictional losses dominate over thermal losses at higher Reynolds numbers, where vortex generation takes place, especially in triangular ribs.

Additional Links: PMID-35750772

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35750772,

year = {2022},

author = {Zhang, S and Ahmad, F and Khan, A and Ali, N and Badran, M},

title = {Performance improvement and thermodynamic assessment of microchannel heat sink with different types of ribs and cones.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {10802},

pmid = {35750772},

issn = {2045-2322},

abstract = {The present study aims to investigate the performance of microchannel heat sink via numerical simulations, based on the first and second law of thermodynamics. The heat transfer and flow characteristics of rectangular microchannel heat sinks have been improved by adding six different types of surface enhancers. The cross-sections include rectangular, triangular, and hexagonal-shaped ribs and cones. The cones have been created from the same cross-sections of ribs by drafting them at an angle of 45° orthogonal to the base, which is expected to decrease the pressure drop, dramatically. The performance of ribs and cones has been evaluated using different parameters such as friction factor, wall shear stress, entropy generation rate, augmentation entropy generation number, thermal resistance, and transport efficiency of thermal energy. The results of the present study revealed that the novel effect of coning at an angle of 45° reduces frictional losses (Maximum pressure drop reduced is 85%), however; a compromise on thermal behavior has been shown (Maximum Nusselt number reduced is 25%). Similarly, the application of coning has caused a significant reduction in wall shear stress and friction factor which can lead to reducing the pumping power requirements. Moreover, triangular ribs have more ability to transfer thermal energy than rectangular and hexagonal ribs. Furthermore, it has been examined in the present study that the trend of total entropy generation rate for triangular ribs decreases up to Re = 400 and then increases onwards which means that thermal losses are more significant than frictional losses at lower Reynolds number. However, frictional losses dominate over thermal losses at higher Reynolds numbers, where vortex generation takes place, especially in triangular ribs.},

}

RevDate: 2022-06-24

**Scaling of Acceleration Statistics in High Reynolds Number Turbulence.**

*Physical review letters*, **128(23):**234502.

The scaling of acceleration statistics in turbulence is examined by combining data from the literature with new data from well-resolved direct numerical simulations of isotropic turbulence, significantly extending the Reynolds number range. The acceleration variance at higher Reynolds numbers departs from previous predictions based on multifractal models, which characterize Lagrangian intermittency as an extension of Eulerian intermittency. The disagreement is even more prominent for higher-order moments of the acceleration. Instead, starting from a known exact relation, we relate the scaling of acceleration variance to that of Eulerian fourth-order velocity gradient and velocity increment statistics. This prediction is in excellent agreement with the variance data. Our Letter highlights the need for models that consider Lagrangian intermittency independent of the Eulerian counterpart.

Additional Links: PMID-35749192

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35749192,

year = {2022},

author = {Buaria, D and Sreenivasan, KR},

title = {Scaling of Acceleration Statistics in High Reynolds Number Turbulence.},

journal = {Physical review letters},

volume = {128},

number = {23},

pages = {234502},

doi = {10.1103/PhysRevLett.128.234502},

pmid = {35749192},

issn = {1079-7114},

abstract = {The scaling of acceleration statistics in turbulence is examined by combining data from the literature with new data from well-resolved direct numerical simulations of isotropic turbulence, significantly extending the Reynolds number range. The acceleration variance at higher Reynolds numbers departs from previous predictions based on multifractal models, which characterize Lagrangian intermittency as an extension of Eulerian intermittency. The disagreement is even more prominent for higher-order moments of the acceleration. Instead, starting from a known exact relation, we relate the scaling of acceleration variance to that of Eulerian fourth-order velocity gradient and velocity increment statistics. This prediction is in excellent agreement with the variance data. Our Letter highlights the need for models that consider Lagrangian intermittency independent of the Eulerian counterpart.},

}

RevDate: 2022-06-24

**Steady State of Motion of Two Particles in Poiseuille Flow of Power-Law Fluid.**

*Polymers*, **14(12):** pii:polym14122368.

The steady state of motion of two particles in Poiseuille flow of power-law fluid is numerically studied using the lattice Boltzmann method in the range of Reynolds number 20 ≤ Re ≤ 60, diameter ratio of two particles 0.125 ≤ β ≤ 2.4, and power-law index of the fluid 0.4 ≤ n ≤ 1.2. Some results are validated by comparing with other available results. The effects of Re, β, and n on the steady state of motion of two particles are discussed. The results show that, for two particles of the same diameter, the particle spacing l in the steady state is independent of n. In shear-thinning fluid, l increases rapidly at first and then slowly, finally approaching a constant for different Re. In shear-thickening fluid, although l tends to be stable in the end, the values of l after stabilization are different. For two particles of different sizes, l does not always reach a stable state, and whether it reaches a stable state depends on n. When the small particle is downstream, l increases rapidly at first and then slowly in shear-thickening fluid, but increases rapidly at first and then decreases slowly, finally approaching a constant in a shear-thinning fluid. In shear-thinning fluid, the larger n is, the smaller l is. In shear-thickening fluid, β has no effect on l in steady-state. When the large particle is downstream, l increases rapidly at first and then slowly in shear-thinning fluid but increases rapidly at first and then decreases in a shear-thickening fluid. The effect of n on l in the steady state is obvious. In shear-thinning fluid, l increases rapidly at first and then slowly, the larger Re is, the smaller l is. In shear- thickening fluid, l will reach a stable state.

Additional Links: PMID-35745944

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35745944,

year = {2022},

author = {Chen, D and Lin, J},

title = {Steady State of Motion of Two Particles in Poiseuille Flow of Power-Law Fluid.},

journal = {Polymers},

volume = {14},

number = {12},

pages = {},

doi = {10.3390/polym14122368},

pmid = {35745944},

issn = {2073-4360},

support = {12132015//National Natural Science Foundation of China/ ; },

abstract = {The steady state of motion of two particles in Poiseuille flow of power-law fluid is numerically studied using the lattice Boltzmann method in the range of Reynolds number 20 ≤ Re ≤ 60, diameter ratio of two particles 0.125 ≤ β ≤ 2.4, and power-law index of the fluid 0.4 ≤ n ≤ 1.2. Some results are validated by comparing with other available results. The effects of Re, β, and n on the steady state of motion of two particles are discussed. The results show that, for two particles of the same diameter, the particle spacing l in the steady state is independent of n. In shear-thinning fluid, l increases rapidly at first and then slowly, finally approaching a constant for different Re. In shear-thickening fluid, although l tends to be stable in the end, the values of l after stabilization are different. For two particles of different sizes, l does not always reach a stable state, and whether it reaches a stable state depends on n. When the small particle is downstream, l increases rapidly at first and then slowly in shear-thickening fluid, but increases rapidly at first and then decreases slowly, finally approaching a constant in a shear-thinning fluid. In shear-thinning fluid, the larger n is, the smaller l is. In shear-thickening fluid, β has no effect on l in steady-state. When the large particle is downstream, l increases rapidly at first and then slowly in shear-thinning fluid but increases rapidly at first and then decreases in a shear-thickening fluid. The effect of n on l in the steady state is obvious. In shear-thinning fluid, l increases rapidly at first and then slowly, the larger Re is, the smaller l is. In shear- thickening fluid, l will reach a stable state.},

}

RevDate: 2022-06-24

**Flow Behaviors of Polymer Solution in a Lid-Driven Cavity.**

*Polymers*, **14(12):** pii:polym14122330.

In this work, a numerical study of polymer flow behaviors in a lid-driven cavity, which is inspired by the coating process, at a broad range of Oldroyd numbers (0≤Od≤50), is carried out. The Reynolds number is height-based and kept at Re=0.001. The fluid investigated is of Carbopol gel possessing yield stress and shear-thinning properties. To express rheological characteristics, the Herschel-Bulkley model cooperated with Papanastasiou's regularization scheme is utilized. Results show that the polymer flow characteristics, i.e., velocity, viscosity, and vortex distributions, are considerably influenced by viscoplastic behaviors. Additionally, there exist solid-like regions which can be of either moving rigid or static dead types in the flow patterns; they become greater and tend to merge together to construct larger ones when Od increases. Furthermore, various polymer flow aspects in different cavity configurations are discussed and analyzed; the cavity width/aspect ratio and skewed angle are found to have significant impacts on the vortex structures and the formation of solid-like regions. Moreover, results for the critical aspect ratio at which the static dead zone is broken into two parts and the characteristic height of this zone are also reported in detail.

Additional Links: PMID-35745906

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35745906,

year = {2022},

author = {Bui, CM and Ho, AT and Nguyen, XB},

title = {Flow Behaviors of Polymer Solution in a Lid-Driven Cavity.},

journal = {Polymers},

volume = {14},

number = {12},

pages = {},

doi = {10.3390/polym14122330},

pmid = {35745906},

issn = {2073-4360},

support = {T2021-06-03//University of Technology and Education - The University of Danang/ ; },

abstract = {In this work, a numerical study of polymer flow behaviors in a lid-driven cavity, which is inspired by the coating process, at a broad range of Oldroyd numbers (0≤Od≤50), is carried out. The Reynolds number is height-based and kept at Re=0.001. The fluid investigated is of Carbopol gel possessing yield stress and shear-thinning properties. To express rheological characteristics, the Herschel-Bulkley model cooperated with Papanastasiou's regularization scheme is utilized. Results show that the polymer flow characteristics, i.e., velocity, viscosity, and vortex distributions, are considerably influenced by viscoplastic behaviors. Additionally, there exist solid-like regions which can be of either moving rigid or static dead types in the flow patterns; they become greater and tend to merge together to construct larger ones when Od increases. Furthermore, various polymer flow aspects in different cavity configurations are discussed and analyzed; the cavity width/aspect ratio and skewed angle are found to have significant impacts on the vortex structures and the formation of solid-like regions. Moreover, results for the critical aspect ratio at which the static dead zone is broken into two parts and the characteristic height of this zone are also reported in detail.},

}

RevDate: 2022-06-24

**Thermo-Hydraulic Performance of Pin-Fins in Wavy and Straight Configurations.**

*Micromachines*, **13(6):** pii:mi13060954.

Pin-fins configurations have been investigated recently for different engineering applications and, in particular, for a cooling turbine. In the present study, we investigated the performance of three different pin-fins configurations: pin-fins forming a wavy mini-channel, pin-fins forming a straight mini-channel, and a mini-channel without pin-fins considering water as the working fluid. The full Navier-Stokes equations and the energy equation are solved numerically using the finite element technique. Different flow rates are studied, represented by the Reynolds number in the laminar flow regime. The thermo-hydraulic performance of the three configurations is determined by examining the Nusselt number, the pressure drop, and the performance evaluation criterion. Results revealed that pin-fins forming a wavy mini-channel exhibited the highest Nusselt number, the lowest pressure drop, and the highest performance evaluation criterion. This finding is valid for any Reynolds number under investigation.

Additional Links: PMID-35744569

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35744569,

year = {2022},

author = {Saghir, MZ and Rahman, MM},

title = {Thermo-Hydraulic Performance of Pin-Fins in Wavy and Straight Configurations.},

journal = {Micromachines},

volume = {13},

number = {6},

pages = {},

doi = {10.3390/mi13060954},

pmid = {35744569},

issn = {2072-666X},

abstract = {Pin-fins configurations have been investigated recently for different engineering applications and, in particular, for a cooling turbine. In the present study, we investigated the performance of three different pin-fins configurations: pin-fins forming a wavy mini-channel, pin-fins forming a straight mini-channel, and a mini-channel without pin-fins considering water as the working fluid. The full Navier-Stokes equations and the energy equation are solved numerically using the finite element technique. Different flow rates are studied, represented by the Reynolds number in the laminar flow regime. The thermo-hydraulic performance of the three configurations is determined by examining the Nusselt number, the pressure drop, and the performance evaluation criterion. Results revealed that pin-fins forming a wavy mini-channel exhibited the highest Nusselt number, the lowest pressure drop, and the highest performance evaluation criterion. This finding is valid for any Reynolds number under investigation.},

}

RevDate: 2022-06-24

**Evaluation of Hydrodynamic and Thermal Behaviour of Non-Newtonian-Nanofluid Mixing in a Chaotic Micromixer.**

*Micromachines*, **13(6):** pii:mi13060933.

Three-dimensional numerical investigations of a novel passive micromixer were carried out to analyze the hydrodynamic and thermal behaviors of Nano-Non-Newtonian fluids. Mass and heat transfer characteristics of two heated fluids have been investigated to understand the quantitative and qualitative fluid faction distributions with temperature homogenization. The effect of fluid behavior and different Al2O3 nanoparticles concentrations on the pressure drop and thermal mixing performances were studied for different Reynolds number (from 0.1 to 25). The performance improvement simulation was conducted in intervals of various Nanoparticles concentrations (φ = 0 to 5%) with Power-law index (n) using CFD. The proposed micromixer displayed a mixing energy cost of 50-60 comparable to that achieved for a recent micromixer (2021y) in terms of fluid homogenization. The analysis exhibited that for high nanofluid concentrations, having a strong chaotic flow enhances significantly the hydrodynamic and thermal performances for all Reynolds numbers. The visualization of vortex core region of mass fraction and path lines presents that the proposed design exhibits a rapid thermal mixing rate that tends to 0.99%, and a mass fraction mixing rate of more than 0.93% with very low pressure losses, thus the proposed micromixer can be utilized to enhance homogenization in different Nano-Non-Newtonian mechanism with minimum energy.

Additional Links: PMID-35744548

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35744548,

year = {2022},

author = {Tayeb, NT and Hossain, S and Khan, AH and Mostefa, T and Kim, KY},

title = {Evaluation of Hydrodynamic and Thermal Behaviour of Non-Newtonian-Nanofluid Mixing in a Chaotic Micromixer.},

journal = {Micromachines},

volume = {13},

number = {6},

pages = {},

doi = {10.3390/mi13060933},

pmid = {35744548},

issn = {2072-666X},

abstract = {Three-dimensional numerical investigations of a novel passive micromixer were carried out to analyze the hydrodynamic and thermal behaviors of Nano-Non-Newtonian fluids. Mass and heat transfer characteristics of two heated fluids have been investigated to understand the quantitative and qualitative fluid faction distributions with temperature homogenization. The effect of fluid behavior and different Al2O3 nanoparticles concentrations on the pressure drop and thermal mixing performances were studied for different Reynolds number (from 0.1 to 25). The performance improvement simulation was conducted in intervals of various Nanoparticles concentrations (φ = 0 to 5%) with Power-law index (n) using CFD. The proposed micromixer displayed a mixing energy cost of 50-60 comparable to that achieved for a recent micromixer (2021y) in terms of fluid homogenization. The analysis exhibited that for high nanofluid concentrations, having a strong chaotic flow enhances significantly the hydrodynamic and thermal performances for all Reynolds numbers. The visualization of vortex core region of mass fraction and path lines presents that the proposed design exhibits a rapid thermal mixing rate that tends to 0.99%, and a mass fraction mixing rate of more than 0.93% with very low pressure losses, thus the proposed micromixer can be utilized to enhance homogenization in different Nano-Non-Newtonian mechanism with minimum energy.},

}

RevDate: 2022-06-23

**Peristaltic pump with heat and mass transfer of a fractional second grade fluid through porous medium inside a tube.**

*Scientific reports*, **12(1):**10608.

In magnetic resonance imaging (MRI), this MRI is used for the diagnosis of the brain. The dynamic of these particles occurs under the action of the peristaltic waves generated on the flexible walls of the brain. Studying such fluid flow of a Fractional Second-Grade under this action is therefore useful in treating tissues of cancer. This paper deals with a theoretical investigation of the interaction of heat and mass transfer in the peristaltic flow of a magnetic field fractional second-grade fluid through a tube, under the assumption of low Reynolds number and long-wavelength. The analytical solution to a problem is obtained by using Caputo's definition. The effect of different physical parameters, the material constant, magnetic field, and fractional parameter on the temperature, concentration, axial velocity, pressure gradient, pressure rise, friction forces, and coefficient of heat and mass transfer are discussed with particular emphasis. The computed results are presented in graphical form. It is because the nature of heat and mass transfer coefficient is oscillatory which is following the physical expectation due to the oscillatory nature of the tube wall. It is perceived that with an increase in Hartmann number, the velocity decreases. A suitable comparison has been made with the prior results in the literature as a limiting case of the considered problem.

Additional Links: PMID-35739213

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35739213,

year = {2022},

author = {Abd-Alla, AM and Abo-Dahab, SM and Thabet, EN and Abdelhafez, MA},

title = {Peristaltic pump with heat and mass transfer of a fractional second grade fluid through porous medium inside a tube.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {10608},

pmid = {35739213},

issn = {2045-2322},

abstract = {In magnetic resonance imaging (MRI), this MRI is used for the diagnosis of the brain. The dynamic of these particles occurs under the action of the peristaltic waves generated on the flexible walls of the brain. Studying such fluid flow of a Fractional Second-Grade under this action is therefore useful in treating tissues of cancer. This paper deals with a theoretical investigation of the interaction of heat and mass transfer in the peristaltic flow of a magnetic field fractional second-grade fluid through a tube, under the assumption of low Reynolds number and long-wavelength. The analytical solution to a problem is obtained by using Caputo's definition. The effect of different physical parameters, the material constant, magnetic field, and fractional parameter on the temperature, concentration, axial velocity, pressure gradient, pressure rise, friction forces, and coefficient of heat and mass transfer are discussed with particular emphasis. The computed results are presented in graphical form. It is because the nature of heat and mass transfer coefficient is oscillatory which is following the physical expectation due to the oscillatory nature of the tube wall. It is perceived that with an increase in Hartmann number, the velocity decreases. A suitable comparison has been made with the prior results in the literature as a limiting case of the considered problem.},

}

RevDate: 2022-06-23

**Particle-Based Imaging Tools Revealing Water Flows in Maize Nodal Vascular Plexus.**

*Plants (Basel, Switzerland)*, **11(12):** pii:plants11121533.

In plants, water flows are the major driving force behind growth and play a crucial role in the life cycle. To study hydrodynamics, methods based on tracking small particles inside water flows attend a special place. Thanks to these tools, it is possible to obtain information about the dynamics of the spatial distribution of the flux characteristics. In this paper, using contrast-enhanced magnetic resonance imaging (MRI), we show that gadolinium chelate, used as an MRI contrast agent, marks the structural characteristics of the xylem bundles of maize stem nodes and internodes. Supplementing MRI data, the high-precision visualization of xylem vessels by laser scanning microscopy was used to reveal the structural and dimensional characteristics of the stem vascular system. In addition, we propose the concept of using prototype "Y-type xylem vascular connection" as a model of the elementary connection of vessels within the vascular system. A Reynolds number could match the microchannel model with the real xylem vessels.

Additional Links: PMID-35736684

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35736684,

year = {2022},

author = {Zubairova, US and Kravtsova, AY and Romashchenko, AV and Pushkareva, AA and Doroshkov, AV},

title = {Particle-Based Imaging Tools Revealing Water Flows in Maize Nodal Vascular Plexus.},

journal = {Plants (Basel, Switzerland)},

volume = {11},

number = {12},

pages = {},

doi = {10.3390/plants11121533},

pmid = {35736684},

issn = {2223-7747},

support = {19-74-10037//Russian Science Foundation/ ; 19-79-10217//Russian Science Foundation/ ; },

abstract = {In plants, water flows are the major driving force behind growth and play a crucial role in the life cycle. To study hydrodynamics, methods based on tracking small particles inside water flows attend a special place. Thanks to these tools, it is possible to obtain information about the dynamics of the spatial distribution of the flux characteristics. In this paper, using contrast-enhanced magnetic resonance imaging (MRI), we show that gadolinium chelate, used as an MRI contrast agent, marks the structural characteristics of the xylem bundles of maize stem nodes and internodes. Supplementing MRI data, the high-precision visualization of xylem vessels by laser scanning microscopy was used to reveal the structural and dimensional characteristics of the stem vascular system. In addition, we propose the concept of using prototype "Y-type xylem vascular connection" as a model of the elementary connection of vessels within the vascular system. A Reynolds number could match the microchannel model with the real xylem vessels.},

}

RevDate: 2022-06-16

CmpDate: 2022-06-16

**Empirical Deposition Correlations.**

*Journal of aerosol medicine and pulmonary drug delivery*, **35(3):**109-120.

Traditionally, empirical correlations for predicting respiratory tract deposition of inhaled aerosols have been developed using limited available in vivo data. More recently, advances in medical image segmentation and additive manufacturing processes have allowed researchers to conduct extensive in vitro deposition experiments in realistic replicas of the upper and central branching airways. This work has led to a collection of empirical equations for predicting regional aerosol deposition, especially in the upper, nasal and oral airways. The present section reviews empirical correlations based on both in vivo and in vitro data, which may be used to predict total and regional deposition. Equations are presented for predicting total respiratory deposition fraction, mouth-throat fraction, nasal, and nose-throat fractions for a large variety of aerosol sizes, subject age groups, and breathing maneuvers. Use of these correlations to estimate total lung deposition is also described.

Additional Links: PMID-35699409

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35699409,

year = {2022},

author = {Martin, AR and Finlay, WH},

title = {Empirical Deposition Correlations.},

journal = {Journal of aerosol medicine and pulmonary drug delivery},

volume = {35},

number = {3},

pages = {109-120},

doi = {10.1089/jamp.2022.29062.arm},

pmid = {35699409},

issn = {1941-2703},

mesh = {Administration, Inhalation ; Aerosols ; *Lung/diagnostic imaging ; Particle Size ; *Pharynx ; },

abstract = {Traditionally, empirical correlations for predicting respiratory tract deposition of inhaled aerosols have been developed using limited available in vivo data. More recently, advances in medical image segmentation and additive manufacturing processes have allowed researchers to conduct extensive in vitro deposition experiments in realistic replicas of the upper and central branching airways. This work has led to a collection of empirical equations for predicting regional aerosol deposition, especially in the upper, nasal and oral airways. The present section reviews empirical correlations based on both in vivo and in vitro data, which may be used to predict total and regional deposition. Equations are presented for predicting total respiratory deposition fraction, mouth-throat fraction, nasal, and nose-throat fractions for a large variety of aerosol sizes, subject age groups, and breathing maneuvers. Use of these correlations to estimate total lung deposition is also described.},

}

MeSH Terms:

show MeSH Terms

hide MeSH Terms

Administration, Inhalation

Aerosols

*Lung/diagnostic imaging

Particle Size

*Pharynx

RevDate: 2022-06-10

**Influence of Foam Morphology on Flow and Heat Transport in a Random Packed Bed with Metallic Foam Pellets-An Investigation Using CFD.**

*Materials (Basel, Switzerland)*, **15(11):** pii:ma15113754.

Open-cell metallic foams used as catalyst supports exhibit excellent transport properties. In this work, a unique application of metallic foam, as pelletized catalyst in a packed bed reactor, is examined. By using a wall-segment Computational Fluid Dynamics (CFD) setup, parametric analyses are carried out to investigate the influence of foam morphologies (cell size ϕ=0.45-3 mm and porosity ε=0.55-0.95) and intrinsic conductivity on flow and heat transport characteristics in a slender packed bed (N=D/dp=6.78) made of cylindrical metallic foam pellets. The transport processes have been modeled using an extended version of conventional particle-resolved CFD, i.e., flow and energy in inter-particle spaces are fully resolved, whereas the porous-media model is used for the effective transport processes inside highly-porous foam pellets. Simulation inputs include the processing parameters relevant to Steam Methane Reforming (SMR), analyzed for low (Rep~100) and high (Rep~5000) flow regimes. The effect of foam morphologies on packed beds has shown that the desired requirements contradict each other, i.e., an increase in cell size and porosity favors the reduction in pressure drop, but, it reduces the heat transfer efficiency. A design study is also conducted to find the optimum foam morphology of a cylindrical foam pellet at a higher Rep~5000, which yields ϕ = 0.45, ε = 0.8. Suitable correlations to predict the friction factor and the overall heat transfer coefficient in a foam-packed bed have been presented, which consider the effect of different foam morphologies over a range of particle Reynolds number, 100≤Rep≤5000.

Additional Links: PMID-35683052

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35683052,

year = {2022},

author = {George, GR and Bockelmann, M and Schmalhorst, L and Beton, D and Gerstle, A and Lindermeir, A and Wehinger, GD},

title = {Influence of Foam Morphology on Flow and Heat Transport in a Random Packed Bed with Metallic Foam Pellets-An Investigation Using CFD.},

journal = {Materials (Basel, Switzerland)},

volume = {15},

number = {11},

pages = {},

doi = {10.3390/ma15113754},

pmid = {35683052},

issn = {1996-1944},

support = {ZF 4640501VS8//Federal Ministry for Economic Affairs and Energy/ ; },

abstract = {Open-cell metallic foams used as catalyst supports exhibit excellent transport properties. In this work, a unique application of metallic foam, as pelletized catalyst in a packed bed reactor, is examined. By using a wall-segment Computational Fluid Dynamics (CFD) setup, parametric analyses are carried out to investigate the influence of foam morphologies (cell size ϕ=0.45-3 mm and porosity ε=0.55-0.95) and intrinsic conductivity on flow and heat transport characteristics in a slender packed bed (N=D/dp=6.78) made of cylindrical metallic foam pellets. The transport processes have been modeled using an extended version of conventional particle-resolved CFD, i.e., flow and energy in inter-particle spaces are fully resolved, whereas the porous-media model is used for the effective transport processes inside highly-porous foam pellets. Simulation inputs include the processing parameters relevant to Steam Methane Reforming (SMR), analyzed for low (Rep~100) and high (Rep~5000) flow regimes. The effect of foam morphologies on packed beds has shown that the desired requirements contradict each other, i.e., an increase in cell size and porosity favors the reduction in pressure drop, but, it reduces the heat transfer efficiency. A design study is also conducted to find the optimum foam morphology of a cylindrical foam pellet at a higher Rep~5000, which yields ϕ = 0.45, ε = 0.8. Suitable correlations to predict the friction factor and the overall heat transfer coefficient in a foam-packed bed have been presented, which consider the effect of different foam morphologies over a range of particle Reynolds number, 100≤Rep≤5000.},

}

RevDate: 2022-06-08

**Eruption of ultralow-viscosity basanite magma at Cumbre Vieja, La Palma, Canary Islands.**

*Nature communications*, **13(1):**3174.

The viscosity of magma exerts control on all aspects of its migration through the crust to eruption. This was particularly true for the 2021 eruption of Cumbre Vieja (La Palma), which produced exceptionally fast and fluid lava at high discharge rates. We have performed concentric cylinder experiments to determine the effective viscosities of the Cumbre Vieja magma, while accounting for its chemistry, crystallinity, and temperature. Here we show that this event produced a nepheline-normative basanite with the lowest viscosity of historical basaltic eruptions, exhibiting values of less than 10 to about 160 Pa s within eruption temperatures of ~1200 to ~1150 °C. The magma's low viscosity was responsible for many eruptive phenomena that lead to particularly impactful events, including high-Reynolds number turbulent flow and supercritical states. Increases in viscosity due to crystallization-induced melt differentiation were subdued in this eruption, due in part to subtle degrees of silica enrichment in alkaline magma.

Additional Links: PMID-35676272

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35676272,

year = {2022},

author = {Castro, JM and Feisel, Y},

title = {Eruption of ultralow-viscosity basanite magma at Cumbre Vieja, La Palma, Canary Islands.},

journal = {Nature communications},

volume = {13},

number = {1},

pages = {3174},

pmid = {35676272},

issn = {2041-1723},

abstract = {The viscosity of magma exerts control on all aspects of its migration through the crust to eruption. This was particularly true for the 2021 eruption of Cumbre Vieja (La Palma), which produced exceptionally fast and fluid lava at high discharge rates. We have performed concentric cylinder experiments to determine the effective viscosities of the Cumbre Vieja magma, while accounting for its chemistry, crystallinity, and temperature. Here we show that this event produced a nepheline-normative basanite with the lowest viscosity of historical basaltic eruptions, exhibiting values of less than 10 to about 160 Pa s within eruption temperatures of ~1200 to ~1150 °C. The magma's low viscosity was responsible for many eruptive phenomena that lead to particularly impactful events, including high-Reynolds number turbulent flow and supercritical states. Increases in viscosity due to crystallization-induced melt differentiation were subdued in this eruption, due in part to subtle degrees of silica enrichment in alkaline magma.},

}

RevDate: 2022-06-06

**Trends in Stroke Kinematics, Reynolds Number, and Swimming Mode in Shrimp-Like Organisms.**

*Integrative and comparative biology* pii:6602354 [Epub ahead of print].

Metachronal propulsion is commonly seen in organisms with the caridoid facies body plan, i.e. shrimp-like organisms, as they beat their pleopods in an adlocomotory sequence. These organisms exist across length scales ranging several orders of Reynolds number magnitude, from 10 to 104, during locomotion. Further, by altering their stroke kinematics, these organisms achieve three distinct swimming modes. To better understand the relationship between Reynolds number, stroke kinematics, and resulting swimming mode, Euphausia pacifica stroke kinematics were quantified using high-speed digital recordings and compared to the results for the larger E. superba. Euphausia pacifica consistently operate with a greater beat frequency and smaller stroke amplitude than E. superba for each swimming mode, suggesting that length scale may affect the kinematics needed to achieve similar swimming modes. To expand on this observation, these euphausiid data are used in combination with previously-published stroke kinematics from mysids and stomatopods to identify broad trends across swimming mode and length scale in metachrony. Principal component analysis (PCA) reveals trends in stroke kinematics and Reynolds number as well as the variation among taxonomic order. Overall, larger beat frequencies, stroke amplitudes, between-cycle phase lags, and Reynolds numbers are more representative of the fast forward swimming mode compared to the slower hovering mode. Additionally, each species has a unique combination of kinematics that result in metachrony, indicating that there are other factors, perhaps morphological, which affect the overall metachronal characteristics of an organism. Finally, uniform phase lag, in which the timing between power strokes of all pleopods is equal, in 5-paddle systems is achieved at different Reynolds numbers for different swimming modes, highlighting the importance of taking into consideration stroke kinematics, length scale, and the resulting swimming mode.

Additional Links: PMID-35662323

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35662323,

year = {2022},

author = {Ruszczyk, M and Webster, DR and Yen, J},

title = {Trends in Stroke Kinematics, Reynolds Number, and Swimming Mode in Shrimp-Like Organisms.},

journal = {Integrative and comparative biology},

volume = {},

number = {},

pages = {},

doi = {10.1093/icb/icac067},

pmid = {35662323},

issn = {1557-7023},

abstract = {Metachronal propulsion is commonly seen in organisms with the caridoid facies body plan, i.e. shrimp-like organisms, as they beat their pleopods in an adlocomotory sequence. These organisms exist across length scales ranging several orders of Reynolds number magnitude, from 10 to 104, during locomotion. Further, by altering their stroke kinematics, these organisms achieve three distinct swimming modes. To better understand the relationship between Reynolds number, stroke kinematics, and resulting swimming mode, Euphausia pacifica stroke kinematics were quantified using high-speed digital recordings and compared to the results for the larger E. superba. Euphausia pacifica consistently operate with a greater beat frequency and smaller stroke amplitude than E. superba for each swimming mode, suggesting that length scale may affect the kinematics needed to achieve similar swimming modes. To expand on this observation, these euphausiid data are used in combination with previously-published stroke kinematics from mysids and stomatopods to identify broad trends across swimming mode and length scale in metachrony. Principal component analysis (PCA) reveals trends in stroke kinematics and Reynolds number as well as the variation among taxonomic order. Overall, larger beat frequencies, stroke amplitudes, between-cycle phase lags, and Reynolds numbers are more representative of the fast forward swimming mode compared to the slower hovering mode. Additionally, each species has a unique combination of kinematics that result in metachrony, indicating that there are other factors, perhaps morphological, which affect the overall metachronal characteristics of an organism. Finally, uniform phase lag, in which the timing between power strokes of all pleopods is equal, in 5-paddle systems is achieved at different Reynolds numbers for different swimming modes, highlighting the importance of taking into consideration stroke kinematics, length scale, and the resulting swimming mode.},

}

RevDate: 2022-06-02

CmpDate: 2022-06-02

**Dynamic experimental rigs for investigation of insect wing aerodynamics.**

*Journal of the Royal Society, Interface*, **19(191):**20210909.

This paper provides a systematic and critical review of dynamic experimental rigs used for insect wing aerodynamics research. The goal is to facilitate meaningful comparison of data from existing rigs and provide insights for designers of new rigs. The scope extends from simple one degree of freedom rotary rigs to multi degrees of freedom rigs allowing various rotation and translation motions. Experimental methods are characterized using a consistent set of parameters that allows objective comparison of different approaches. A comprehensive catalogue is presented for the tested flow conditions (assessed through Reynolds number, Rossby number and advance ratio), wing morphologies (assessed through aspect ratio, planform shape and thickness to mean chord ratio) and kinematics (assessed through motion degrees of freedom). Links are made between the type of aerodynamic characteristics being studied and the type of experimental set-up used. Rig mechanical design considerations are assessed, and the aerodynamic measurements obtained from these rigs are discussed.

Additional Links: PMID-35642428

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35642428,

year = {2022},

author = {Broadley, P and Nabawy, MRA and Quinn, MK and Crowther, WJ},

title = {Dynamic experimental rigs for investigation of insect wing aerodynamics.},

journal = {Journal of the Royal Society, Interface},

volume = {19},

number = {191},

pages = {20210909},

doi = {10.1098/rsif.2021.0909},

pmid = {35642428},

issn = {1742-5662},

mesh = {Animals ; Biomechanical Phenomena ; *Flight, Animal ; Insecta ; *Models, Biological ; Wings, Animal ; },

abstract = {This paper provides a systematic and critical review of dynamic experimental rigs used for insect wing aerodynamics research. The goal is to facilitate meaningful comparison of data from existing rigs and provide insights for designers of new rigs. The scope extends from simple one degree of freedom rotary rigs to multi degrees of freedom rigs allowing various rotation and translation motions. Experimental methods are characterized using a consistent set of parameters that allows objective comparison of different approaches. A comprehensive catalogue is presented for the tested flow conditions (assessed through Reynolds number, Rossby number and advance ratio), wing morphologies (assessed through aspect ratio, planform shape and thickness to mean chord ratio) and kinematics (assessed through motion degrees of freedom). Links are made between the type of aerodynamic characteristics being studied and the type of experimental set-up used. Rig mechanical design considerations are assessed, and the aerodynamic measurements obtained from these rigs are discussed.},

}

MeSH Terms:

show MeSH Terms

hide MeSH Terms

Animals

Biomechanical Phenomena

*Flight, Animal

Insecta

*Models, Biological

Wings, Animal

RevDate: 2022-05-31

**Dataset for the dimethyl sulfoxide as a novel thermodynamic inhibitor of carbon dioxide hydrate formation.**

*Data in brief*, **42:**108289 pii:S2352-3409(22)00491-7.

The temperatures and pressures of the three-phase equilibrium V-Lw-H (gas - aqueous solution - gas hydrate) were measured in the CO2 - H2O - dimethyl sulfoxide (DMSO) system at concentrations of organic solute in the aqueous phase up to 50 mass%. Measurements of CO2 hydrate equilibrium conditions were carried out using a constant volume autoclave by continuous heating at a rate of 0.1 K/h with simultaneous stirring of fluids by a four-blade agitator at 600 rpm. The equilibrium temperature and pressure of CO2 hydrate were determined for the endpoint of the hydrate dissociation in each experiment. The CO2 gas fugacity was calculated by the equation of state for carbon dioxide for the measured points. The flow regime in the autoclave during the operation of the stirring system was characterized by calculating the Reynolds number using literature data on the viscosity and density of water and DMSO aqueous solutions. We employed regression analysis to approximate the dependences of equilibrium pressure (CO2 gas fugacity) on temperature by two- and three-parameter equations. For each measured point, the value of CO2 hydrate equilibrium temperature suppression ΔTh was computed. The dependences of this quantity on CO2 gas fugacity are considered for all DMSO concentrations. The coefficients of empirical correlation describing ΔTh as a function of the DMSO mass fraction in solution and the equilibrium gas pressure are determined. This article is a co-submission with a paper [1].

Additional Links: PMID-35637889

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35637889,

year = {2022},

author = {Semenov, AP and Mendgaziev, RI and Stoporev, AS and Istomin, VA and Sergeeva, DV and Tulegenov, TB and Vinokurov, VA},

title = {Dataset for the dimethyl sulfoxide as a novel thermodynamic inhibitor of carbon dioxide hydrate formation.},

journal = {Data in brief},

volume = {42},

number = {},

pages = {108289},

doi = {10.1016/j.dib.2022.108289},

pmid = {35637889},

issn = {2352-3409},

abstract = {The temperatures and pressures of the three-phase equilibrium V-Lw-H (gas - aqueous solution - gas hydrate) were measured in the CO2 - H2O - dimethyl sulfoxide (DMSO) system at concentrations of organic solute in the aqueous phase up to 50 mass%. Measurements of CO2 hydrate equilibrium conditions were carried out using a constant volume autoclave by continuous heating at a rate of 0.1 K/h with simultaneous stirring of fluids by a four-blade agitator at 600 rpm. The equilibrium temperature and pressure of CO2 hydrate were determined for the endpoint of the hydrate dissociation in each experiment. The CO2 gas fugacity was calculated by the equation of state for carbon dioxide for the measured points. The flow regime in the autoclave during the operation of the stirring system was characterized by calculating the Reynolds number using literature data on the viscosity and density of water and DMSO aqueous solutions. We employed regression analysis to approximate the dependences of equilibrium pressure (CO2 gas fugacity) on temperature by two- and three-parameter equations. For each measured point, the value of CO2 hydrate equilibrium temperature suppression ΔTh was computed. The dependences of this quantity on CO2 gas fugacity are considered for all DMSO concentrations. The coefficients of empirical correlation describing ΔTh as a function of the DMSO mass fraction in solution and the equilibrium gas pressure are determined. This article is a co-submission with a paper [1].},

}

RevDate: 2022-05-31

**Study of the performance of thermoelectric generator for waste heat recovery from chimney: impact of nanofluid-microchannel cooling system.**

*Environmental science and pollution research international* [Epub ahead of print].

A huge number of chimneys all over the world utilized in many industrial applications and applications like restaurants, homes, etc. contribute badly on the global warming and climate change due to their waste heat. So, in this paper, the performance of thermoelectric generator (TEG) cooled by microchannel heat spreader having nanofluid and used for waste heat recovery from vertical chimney is investigated. Using heat spreader with microchannel cooling system increases the output TEG power compared to natural convection cooling system. In this paper, the impact of microchannel sizes, using nanofluid and heat spreader with different sizes on the TEG performance and cooling, is considered. Three-dimensional mathematical models including TEG, microchannel, nanofluid, and heat spreader are presented and solved by Ansys Fluent software utilizing user-defined memory, user-defined function, and user-defined scalar. All TEG effects (Joule, Seebeck, and Thomson) are considered in TEG model. Results indicate that TEG power rises with increasing the heat spreader and microchannel sizes together. Increasing microchannel and heat spreader sizes four times of TEG size raises the TEG output power by 10%. This also achieves the maximum cooling system efficiency of 88.9% and the maximum net output power. Microchannel heat spreader cooling system raises the system (TEG power-pumping power) net power by 125.2% compared to the normal channel and decreases the required cooling fluid flow rate. Utilizing copper-water and Al2O3-water nanofluids rises maximally the TEG output power by 14% and 4%, respectively; however, it increases the pumping power. Moreover, using nanofluids increases the net output power at low Reynolds number and decreases it at higher Reynolds number.

Additional Links: PMID-35635664

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35635664,

year = {2022},

author = {Eldesoukey, A and Hassan, H},

title = {Study of the performance of thermoelectric generator for waste heat recovery from chimney: impact of nanofluid-microchannel cooling system.},

journal = {Environmental science and pollution research international},

volume = {},

number = {},

pages = {},

pmid = {35635664},

issn = {1614-7499},

abstract = {A huge number of chimneys all over the world utilized in many industrial applications and applications like restaurants, homes, etc. contribute badly on the global warming and climate change due to their waste heat. So, in this paper, the performance of thermoelectric generator (TEG) cooled by microchannel heat spreader having nanofluid and used for waste heat recovery from vertical chimney is investigated. Using heat spreader with microchannel cooling system increases the output TEG power compared to natural convection cooling system. In this paper, the impact of microchannel sizes, using nanofluid and heat spreader with different sizes on the TEG performance and cooling, is considered. Three-dimensional mathematical models including TEG, microchannel, nanofluid, and heat spreader are presented and solved by Ansys Fluent software utilizing user-defined memory, user-defined function, and user-defined scalar. All TEG effects (Joule, Seebeck, and Thomson) are considered in TEG model. Results indicate that TEG power rises with increasing the heat spreader and microchannel sizes together. Increasing microchannel and heat spreader sizes four times of TEG size raises the TEG output power by 10%. This also achieves the maximum cooling system efficiency of 88.9% and the maximum net output power. Microchannel heat spreader cooling system raises the system (TEG power-pumping power) net power by 125.2% compared to the normal channel and decreases the required cooling fluid flow rate. Utilizing copper-water and Al2O3-water nanofluids rises maximally the TEG output power by 14% and 4%, respectively; however, it increases the pumping power. Moreover, using nanofluids increases the net output power at low Reynolds number and decreases it at higher Reynolds number.},

}

RevDate: 2022-05-30

**Heat Transfer Attributes of Gold-Silver-Blood Hybrid Nanomaterial Flow in an EMHD Peristaltic Channel with Activation Energy.**

*Nanomaterials (Basel, Switzerland)*, **12(10):** pii:nano12101615.

The heat enhancement in hybrid nanofluid flow through the peristaltic mechanism has received great attention due to its occurrence in many engineering and biomedical systems, such as flow through canals, the cavity flow model and biomedicine. Therefore, the aim of the current study was to discuss the hybrid nanofluid flow in a symmetric peristaltic channel with diverse effects, such as electromagnetohydrodynamics (EMHD), activation energy, gyrotactic microorganisms and solar radiation. The equations governing this motion were simplified under the approximations of a low Reynolds number (LRN), a long wavelength (LWL) and Debye-Hückel linearization (DHL). The numerical solutions for the non-dimensional system of equations were tackled using the computational software Mathematica. The influences of diverse physical parameters on the flow and thermal characteristics were computed through pictorial interpretations. It was concluded from the results that the thermophoresis parameter and Grashof number increased the hybrid nanofluid velocity near the right wall. The nanoparticle temperature decreased with the radiation parameter and Schmidt number. The activation energy and radiation enhanced the nanoparticle volume fraction, and motile microorganisms decreased with an increase in the Peclet number and Schmidt number. The applications of the current investigation include chyme flow in the gastrointestinal tract, the control of blood flow during surgery by altering the magnetic field and novel drug delivery systems in pharmacological engineering.

Additional Links: PMID-35630837

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35630837,

year = {2022},

author = {Souayeh, B and Ramesh, K and Hdhiri, N and Yasin, E and Alam, MW and Alfares, K and Yasin, A},

title = {Heat Transfer Attributes of Gold-Silver-Blood Hybrid Nanomaterial Flow in an EMHD Peristaltic Channel with Activation Energy.},

journal = {Nanomaterials (Basel, Switzerland)},

volume = {12},

number = {10},

pages = {},

doi = {10.3390/nano12101615},

pmid = {35630837},

issn = {2079-4991},

support = {AN00052//Deanship of Scientific Research at King Faisal University/ ; },

abstract = {The heat enhancement in hybrid nanofluid flow through the peristaltic mechanism has received great attention due to its occurrence in many engineering and biomedical systems, such as flow through canals, the cavity flow model and biomedicine. Therefore, the aim of the current study was to discuss the hybrid nanofluid flow in a symmetric peristaltic channel with diverse effects, such as electromagnetohydrodynamics (EMHD), activation energy, gyrotactic microorganisms and solar radiation. The equations governing this motion were simplified under the approximations of a low Reynolds number (LRN), a long wavelength (LWL) and Debye-Hückel linearization (DHL). The numerical solutions for the non-dimensional system of equations were tackled using the computational software Mathematica. The influences of diverse physical parameters on the flow and thermal characteristics were computed through pictorial interpretations. It was concluded from the results that the thermophoresis parameter and Grashof number increased the hybrid nanofluid velocity near the right wall. The nanoparticle temperature decreased with the radiation parameter and Schmidt number. The activation energy and radiation enhanced the nanoparticle volume fraction, and motile microorganisms decreased with an increase in the Peclet number and Schmidt number. The applications of the current investigation include chyme flow in the gastrointestinal tract, the control of blood flow during surgery by altering the magnetic field and novel drug delivery systems in pharmacological engineering.},

}

RevDate: 2022-05-30

**Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression.**

*Microorganisms*, **10(5):** pii:microorganisms10050931.

Hydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h-1 (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h-1 and 2-fold higher for 128 L h-1). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h-1. Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms.

Additional Links: PMID-35630375

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35630375,

year = {2022},

author = {Soares, A and Gomes, LC and Monteiro, GA and Mergulhão, FJ},

title = {Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression.},

journal = {Microorganisms},

volume = {10},

number = {5},

pages = {},

doi = {10.3390/microorganisms10050931},

pmid = {35630375},

issn = {2076-2607},

support = {LA/P/0045/2020 (ALiCE), UIDB/00511/2020 and UIDP/00511/2020 (LEPABE)//FCT/MCTES (PIDDAC)/ ; PTDC/BII-BIO/29589/2017 - POCI-01-0145-FEDER-029589//FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES/ ; SFRH/BD/141614/2018; CEECIND/01700/2017//FCT/ ; },

abstract = {Hydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h-1 (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h-1 and 2-fold higher for 128 L h-1). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h-1. Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms.},

}

RevDate: 2022-05-30

**Impact of Surface Roughness on Flow Physics and Entropy Generation in Jet Impingement Applications.**

*Entropy (Basel, Switzerland)*, **24(5):** pii:e24050661.

In this paper, a numerical investigation was performed of an air jet incident that normally occurs on a horizontal heated plane. Analysis of flow physics and entropy generation due to heat and friction is included using a simple easy-to-manufacture, surface roughening element: a circular rib concentric with the air jet. This study shows how varying the locations and dimensions of the rib can deliver a favorable trade-off between entropy generation and flow parameters, such as vortex generation and heat transfer. The performance of the roughness element was tested at three different radii; R/D = 1, 1.5 and 2, where D was the jet hydraulic diameter and R was the radial distance from the geometric center. At each location, the normalized rib height (e/D) was increased from 0.019 to 0.074 based on an increment of (e/D) = 0.019. The jet-to-target distance was H/D = 6 and the jet Reynolds number (Re) ranged from 10,000 to 50,000 Re, which was obtained from the jet hydraulic diameter (D), and the jet exit velocity (U). All results are presented in the form of entropy generation due to friction and heat exchange, as well as the total entropy generated. A detailed comparison of flow physics is presented for all ribs and compared with the baseline case of a smooth surface. The results show that at higher Reynolds numbers, adding a rib of a suitable height reduced the total entropy (St) by 31% compared to the no rib case. In addition, with ribs of heights 0.019, 0.037 and 0.054, respectively, the entropy generated by friction (Sf) was greater than that due to heat exchange (Sh) by about 42%, 26% and 4%, respectively. The rib of height e/D = 0.074 produced the minimum St at R/D = 1. As for varying R/D, varying rib location and Re values had a noticeable impact on Sh, Sf and (St). Placing the rib at R/D = 1 gave the highest total entropy generation (St) followed by R/D = 1.5 for all Re. Finally, the Bejan number increased as both rib height and rib location increased.

Additional Links: PMID-35626546

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35626546,

year = {2022},

author = {Alenezi, A and Almutairi, A and Alhajeri, H and Almekmesh, SF and Alzuwayer, BB},

title = {Impact of Surface Roughness on Flow Physics and Entropy Generation in Jet Impingement Applications.},

journal = {Entropy (Basel, Switzerland)},

volume = {24},

number = {5},

pages = {},

doi = {10.3390/e24050661},

pmid = {35626546},

issn = {1099-4300},

abstract = {In this paper, a numerical investigation was performed of an air jet incident that normally occurs on a horizontal heated plane. Analysis of flow physics and entropy generation due to heat and friction is included using a simple easy-to-manufacture, surface roughening element: a circular rib concentric with the air jet. This study shows how varying the locations and dimensions of the rib can deliver a favorable trade-off between entropy generation and flow parameters, such as vortex generation and heat transfer. The performance of the roughness element was tested at three different radii; R/D = 1, 1.5 and 2, where D was the jet hydraulic diameter and R was the radial distance from the geometric center. At each location, the normalized rib height (e/D) was increased from 0.019 to 0.074 based on an increment of (e/D) = 0.019. The jet-to-target distance was H/D = 6 and the jet Reynolds number (Re) ranged from 10,000 to 50,000 Re, which was obtained from the jet hydraulic diameter (D), and the jet exit velocity (U). All results are presented in the form of entropy generation due to friction and heat exchange, as well as the total entropy generated. A detailed comparison of flow physics is presented for all ribs and compared with the baseline case of a smooth surface. The results show that at higher Reynolds numbers, adding a rib of a suitable height reduced the total entropy (St) by 31% compared to the no rib case. In addition, with ribs of heights 0.019, 0.037 and 0.054, respectively, the entropy generated by friction (Sf) was greater than that due to heat exchange (Sh) by about 42%, 26% and 4%, respectively. The rib of height e/D = 0.074 produced the minimum St at R/D = 1. As for varying R/D, varying rib location and Re values had a noticeable impact on Sh, Sf and (St). Placing the rib at R/D = 1 gave the highest total entropy generation (St) followed by R/D = 1.5 for all Re. Finally, the Bejan number increased as both rib height and rib location increased.},

}

RevDate: 2022-05-30

**Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach.**

*Entropy (Basel, Switzerland)*, **24(5):** pii:e24050615.

This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems. First, using detailed reaction kinetic reference simulations in a simplified laminar stratified premixed flame, it is demonstrated that the tabulated chemistry is a suitable approach to compute the various sources of irreversibilities. Thereafter, the effects of the operating conditions on the entropy production are investigated. For this purpose, two operating conditions of the Darmstadt stratified burner with varying levels of shear have been considered. The investigations reveal that the contribution to the entropy production through mixing emerging from the chemical reaction is much larger than the one caused by the stratification. Moreover, it is shown that a stronger shear, realized through a larger Reynolds number, yields higher entropy production through heat, mixing and viscous dissipation and reduces the share by chemical reaction to the total entropy generated.

Additional Links: PMID-35626500

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35626500,

year = {2022},

author = {Dressler, L and Nicolai, H and Agrebi, S and Ries, F and Sadiki, A},

title = {Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach.},

journal = {Entropy (Basel, Switzerland)},

volume = {24},

number = {5},

pages = {},

doi = {10.3390/e24050615},

pmid = {35626500},

issn = {1099-4300},

support = {SA 836/15-1//Deutsche Forschungsgemeinschaft/ ; },

abstract = {This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems. First, using detailed reaction kinetic reference simulations in a simplified laminar stratified premixed flame, it is demonstrated that the tabulated chemistry is a suitable approach to compute the various sources of irreversibilities. Thereafter, the effects of the operating conditions on the entropy production are investigated. For this purpose, two operating conditions of the Darmstadt stratified burner with varying levels of shear have been considered. The investigations reveal that the contribution to the entropy production through mixing emerging from the chemical reaction is much larger than the one caused by the stratification. Moreover, it is shown that a stronger shear, realized through a larger Reynolds number, yields higher entropy production through heat, mixing and viscous dissipation and reduces the share by chemical reaction to the total entropy generated.},

}

RevDate: 2022-05-30

**Wing Planform Effect on the Aerodynamics of Insect Wings.**

*Insects*, **13(5):** pii:insects13050459.

This study investigates the effect of wing planform shape on the aerodynamic performance of insect wings by numerically solving the incompressible Navier-Stokes equations. We define the wing planforms using a beta-function distribution and employ kinematics representative of normal hovering flight. In particular, we use three primary parameters to describe the planform geometry: aspect ratio, radial centroid location, and wing root offset. The force coefficients, flow structures, and aerodynamic efficiency for different wing planforms at a Reynolds number of 100 are evaluated. It is found that the wing with the lowest aspect ratio of 1.5 results in the highest peaks of lift and drag coefficients during stroke reversals, whereas the higher aspect ratio wings produce higher lift and drag coefficients during mid half-stroke translation. For the wings considered, the leading-edge vortex detachment is found to be approximately at a location that is 3.5-5 mean chord lengths from the wing center of rotation for all aspect ratios and root offsets investigated. Consequently, the detachment area increases with the increase of aspect ratio and root offset, resulting in reduced aerodynamic coefficients. The radial centroid location is found to influence the local flow evolution time, and this results in earlier formation/detachment of the leading-edge vortex for wings with a smaller radial centroid location. Overall, the best performance, when considering both average lift coefficient and efficiency, is found at the intermediate aspect ratios of 4.5-6; increasing the centroid location mainly increases efficiency; and increasing the root offset leads to a decreased average lift coefficient whilst leading to relatively small variations in aerodynamic efficiency for most aspect ratios.

Additional Links: PMID-35621794

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35621794,

year = {2022},

author = {Li, H and Nabawy, MRA},

title = {Wing Planform Effect on the Aerodynamics of Insect Wings.},

journal = {Insects},

volume = {13},

number = {5},

pages = {},

doi = {10.3390/insects13050459},

pmid = {35621794},

issn = {2075-4450},

support = {RPG-2019-366//Leverhulme Trust/ ; },

abstract = {This study investigates the effect of wing planform shape on the aerodynamic performance of insect wings by numerically solving the incompressible Navier-Stokes equations. We define the wing planforms using a beta-function distribution and employ kinematics representative of normal hovering flight. In particular, we use three primary parameters to describe the planform geometry: aspect ratio, radial centroid location, and wing root offset. The force coefficients, flow structures, and aerodynamic efficiency for different wing planforms at a Reynolds number of 100 are evaluated. It is found that the wing with the lowest aspect ratio of 1.5 results in the highest peaks of lift and drag coefficients during stroke reversals, whereas the higher aspect ratio wings produce higher lift and drag coefficients during mid half-stroke translation. For the wings considered, the leading-edge vortex detachment is found to be approximately at a location that is 3.5-5 mean chord lengths from the wing center of rotation for all aspect ratios and root offsets investigated. Consequently, the detachment area increases with the increase of aspect ratio and root offset, resulting in reduced aerodynamic coefficients. The radial centroid location is found to influence the local flow evolution time, and this results in earlier formation/detachment of the leading-edge vortex for wings with a smaller radial centroid location. Overall, the best performance, when considering both average lift coefficient and efficiency, is found at the intermediate aspect ratios of 4.5-6; increasing the centroid location mainly increases efficiency; and increasing the root offset leads to a decreased average lift coefficient whilst leading to relatively small variations in aerodynamic efficiency for most aspect ratios.},

}

RevDate: 2022-06-10

**Simulation of the FDA nozzle benchmark: A lattice Boltzmann study.**

*Computer methods and programs in biomedicine*, **221:**106863 pii:S0169-2607(22)00245-0 [Epub ahead of print].

BACKGROUND AND OBJECTIVE: Contrary to flows in small intracranial vessels, many blood flow configurations such as those found in aortic vessels and aneurysms involve larger Reynolds numbers and, therefore, transitional or turbulent conditions. Dealing with such systems require both robust and efficient numerical methods.

METHODS: We assess here the performance of a lattice Boltzmann solver with full Hermite expansion of the equilibrium and central Hermite moments collision operator at higher Reynolds numbers, especially for under-resolved simulations. To that end the food and drug administration's benchmark nozzle is considered at three different Reynolds numbers covering all regimes: (1) laminar at a Reynolds number of 500, (2) transitional at a Reynolds number of 3500, and (3) low-level turbulence at a Reynolds number of 6500.

RESULTS: The lattice Boltzmann results are compared with previously published inter-laboratory experimental data obtained by particle image velocimetry. Our results show good agreement with the experimental measurements throughout the nozzle, demonstrating the good performance of the solver even in under-resolved simulations.

CONCLUSION: In this manner, fast but sufficiently accurate numerical predictions can be achieved for flow configurations of practical interest regarding medical applications.

Additional Links: PMID-35617810

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35617810,

year = {2022},

author = {Huang, F and Noël, R and Berg, P and Hosseini, SA},

title = {Simulation of the FDA nozzle benchmark: A lattice Boltzmann study.},

journal = {Computer methods and programs in biomedicine},

volume = {221},

number = {},

pages = {106863},

doi = {10.1016/j.cmpb.2022.106863},

pmid = {35617810},

issn = {1872-7565},

abstract = {BACKGROUND AND OBJECTIVE: Contrary to flows in small intracranial vessels, many blood flow configurations such as those found in aortic vessels and aneurysms involve larger Reynolds numbers and, therefore, transitional or turbulent conditions. Dealing with such systems require both robust and efficient numerical methods.

METHODS: We assess here the performance of a lattice Boltzmann solver with full Hermite expansion of the equilibrium and central Hermite moments collision operator at higher Reynolds numbers, especially for under-resolved simulations. To that end the food and drug administration's benchmark nozzle is considered at three different Reynolds numbers covering all regimes: (1) laminar at a Reynolds number of 500, (2) transitional at a Reynolds number of 3500, and (3) low-level turbulence at a Reynolds number of 6500.

RESULTS: The lattice Boltzmann results are compared with previously published inter-laboratory experimental data obtained by particle image velocimetry. Our results show good agreement with the experimental measurements throughout the nozzle, demonstrating the good performance of the solver even in under-resolved simulations.

CONCLUSION: In this manner, fast but sufficiently accurate numerical predictions can be achieved for flow configurations of practical interest regarding medical applications.},

}

RevDate: 2022-06-06

**Evaporation dynamics of a surrogate respiratory droplet in a vortical environment.**

*Journal of colloid and interface science*, **623:**541-551 pii:S0021-9797(22)00845-1 [Epub ahead of print].

HYPOTHESIS: Vortex droplet interaction is crucial for understanding the route of disease transmission through expiratory jet where several such embedded droplets continuously interact with vortical structures of different strengths and sizes.

EXPERIMENTS: A train of vortex rings with different vortex strength, quantified with vortex Reynolds number (Re'=0,53,221,297) are made to interact with an isolated levitated droplet, and the evolution dynamics is captured using shadowgraphy, particle image velocimetry (PIV), and backlight imaging technique. NaCl-DI water solution of 0, 1, 10 and 20 wt% concentrations are used as test fluids for the droplet.

FINDINGS: The results show the dependence of evaporation characteristics on vortex strength, while the crystallization dynamics was found to be independent of it. A reduction of 12.23% and 14.6% in evaporation time was seen in case of de-ionized (DI) water and 1% wt NaCl solution respectively in presence of vortex ring train at Re'=221. In contrast to this, a minimal reduction in evaporation time (0.6% and 0.9% for DI water and 1% wt NaCl solution, respectively) is observed when Re' is increased from 221 to 297. The mechanisms for evaporation time reduction due to enhancement of convective heat and mass transfer from the droplet and shearing away of vapor layer by vortex ring interaction are discussed in this work.

Additional Links: PMID-35598483

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35598483,

year = {2022},

author = {Sharma, S and Jain, S and Saha, A and Basu, S},

title = {Evaporation dynamics of a surrogate respiratory droplet in a vortical environment.},

journal = {Journal of colloid and interface science},

volume = {623},

number = {},

pages = {541-551},

doi = {10.1016/j.jcis.2022.05.061},

pmid = {35598483},

issn = {1095-7103},

abstract = {HYPOTHESIS: Vortex droplet interaction is crucial for understanding the route of disease transmission through expiratory jet where several such embedded droplets continuously interact with vortical structures of different strengths and sizes.

EXPERIMENTS: A train of vortex rings with different vortex strength, quantified with vortex Reynolds number (Re'=0,53,221,297) are made to interact with an isolated levitated droplet, and the evolution dynamics is captured using shadowgraphy, particle image velocimetry (PIV), and backlight imaging technique. NaCl-DI water solution of 0, 1, 10 and 20 wt% concentrations are used as test fluids for the droplet.

FINDINGS: The results show the dependence of evaporation characteristics on vortex strength, while the crystallization dynamics was found to be independent of it. A reduction of 12.23% and 14.6% in evaporation time was seen in case of de-ionized (DI) water and 1% wt NaCl solution respectively in presence of vortex ring train at Re'=221. In contrast to this, a minimal reduction in evaporation time (0.6% and 0.9% for DI water and 1% wt NaCl solution, respectively) is observed when Re' is increased from 221 to 297. The mechanisms for evaporation time reduction due to enhancement of convective heat and mass transfer from the droplet and shearing away of vapor layer by vortex ring interaction are discussed in this work.},

}

RevDate: 2022-05-23

**The Effect of Roughness in Absorbing Materials on Solar Air Heater Performance.**

*Materials (Basel, Switzerland)*, **15(9):** pii:ma15093088.

Artificial roughness on the absorber of the solar air heater (SAH) is considered to be the best passive technology for performance improvement. The roughened SAHs perform better in comparison to conventional SAHs under the same operational conditions, with some penalty of higher pumping power requirements. Thermo-hydraulic performance, based on effective efficiency, is much more appropriate to design roughened SAH, as it considers both the requirement of pumping power and useful heat gain. The shape, size, and arrangement of artificial roughness are the most important factors for the performance optimization of SAHs. The parameters of artificial roughness and operating parameters, such as the Reynolds number (Re), temperature rise parameter (ΔT/I) and insolation (I) show a combined effect on the performance of SAH. In this case study, various performance parameters of SAH have been evaluated to show the effect of distinct artificial roughness, investigated previously. Therefore, thermal efficiency, thermal efficiency improvement factor (TEIF) and the effective efficiency of various roughened absorbers of SAH have been predicted. As a result, thermal and effective efficiencies strongly depend on the roughness parameter, Re and ΔT/I. Staggered, broken arc hybrid-rib roughness shows a higher value of TEIF, thermal and effective efficiencies consistently among all other distinct roughness geometries for the ascending values of ΔT/I. This roughness shows the maximum value of effective efficiency equals 74.63% at a ΔT/I = 0.01 K·m2/W. The unique combination of parameters p/e = 10, e/Dh = 0.043 and α = 60° are observed for best performance at a ΔT/I higher than 0.00789 K·m2/W.

Additional Links: PMID-35591423

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35591423,

year = {2022},

author = {Karmveer, and Kumar Gupta, N and Siddiqui, MIH and Dobrotă, D and Alam, T and Ali, MA and Orfi, J},

title = {The Effect of Roughness in Absorbing Materials on Solar Air Heater Performance.},

journal = {Materials (Basel, Switzerland)},

volume = {15},

number = {9},

pages = {},

doi = {10.3390/ma15093088},

pmid = {35591423},

issn = {1996-1944},

abstract = {Artificial roughness on the absorber of the solar air heater (SAH) is considered to be the best passive technology for performance improvement. The roughened SAHs perform better in comparison to conventional SAHs under the same operational conditions, with some penalty of higher pumping power requirements. Thermo-hydraulic performance, based on effective efficiency, is much more appropriate to design roughened SAH, as it considers both the requirement of pumping power and useful heat gain. The shape, size, and arrangement of artificial roughness are the most important factors for the performance optimization of SAHs. The parameters of artificial roughness and operating parameters, such as the Reynolds number (Re), temperature rise parameter (ΔT/I) and insolation (I) show a combined effect on the performance of SAH. In this case study, various performance parameters of SAH have been evaluated to show the effect of distinct artificial roughness, investigated previously. Therefore, thermal efficiency, thermal efficiency improvement factor (TEIF) and the effective efficiency of various roughened absorbers of SAH have been predicted. As a result, thermal and effective efficiencies strongly depend on the roughness parameter, Re and ΔT/I. Staggered, broken arc hybrid-rib roughness shows a higher value of TEIF, thermal and effective efficiencies consistently among all other distinct roughness geometries for the ascending values of ΔT/I. This roughness shows the maximum value of effective efficiency equals 74.63% at a ΔT/I = 0.01 K·m2/W. The unique combination of parameters p/e = 10, e/Dh = 0.043 and α = 60° are observed for best performance at a ΔT/I higher than 0.00789 K·m2/W.},

}

RevDate: 2022-05-23

**A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer.**

*Sensors (Basel, Switzerland)*, **22(9):**.

Piezoelectric transducers are used as a sensing device to study the fluids' motion. Moreover, they are used as a harvester of energy of Flow-Induced Vibration (FIV). The current FIV harvesters in the literature rely on piezoelectric cantilevers coupled with a bluff body that creates flow instabilities. This paper studies the use of piezoelectric cylinders as a novel transducer in the field of fluid mechanics, where the transducer makes use of its bluff geometry to create instability. The study was based on wind tunnel measurements performed on four piezoelectric cylinders of different sizes over a speed range of 1-7 m/s. The paper looks at the variation of the generated voltage across the Reynolds number. It also compares the spectra of the generated open-circuit voltage to the turbulence spectra features known from the literature.

Additional Links: PMID-35591154

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35591154,

year = {2022},

author = {Salem, S and Fraňa, K},

title = {A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer.},

journal = {Sensors (Basel, Switzerland)},

volume = {22},

number = {9},

pages = {},

pmid = {35591154},

issn = {1424-8220},

support = {SGS-2022-5040//Technical University of Liberec - SGS/ ; CZ.02.1.01/0.0/0.0/16_019/0000843//European Union and the Czech Government/ ; },

abstract = {Piezoelectric transducers are used as a sensing device to study the fluids' motion. Moreover, they are used as a harvester of energy of Flow-Induced Vibration (FIV). The current FIV harvesters in the literature rely on piezoelectric cantilevers coupled with a bluff body that creates flow instabilities. This paper studies the use of piezoelectric cylinders as a novel transducer in the field of fluid mechanics, where the transducer makes use of its bluff geometry to create instability. The study was based on wind tunnel measurements performed on four piezoelectric cylinders of different sizes over a speed range of 1-7 m/s. The paper looks at the variation of the generated voltage across the Reynolds number. It also compares the spectra of the generated open-circuit voltage to the turbulence spectra features known from the literature.},

}

RevDate: 2022-05-23

**Temperature Measurement of Hot Airflow Using Ultra-Fine Thermo-Sensitive Fluorescent Wires.**

*Sensors (Basel, Switzerland)*, **22(9):**.

In this paper, we propose a temperature measurement method that uses ultrafine fluorescent wires to reduce the wire diameter to a much lesser extent than a thermocouple. This is possible because its structure is simple and any material can be used for the wire. Hence, ultrafine wires with a Reynolds number of less than 1.0 can be selected. Ultra-fine wires less than 50 µm in diameter were set in the test volume. The wire surfaces were coated with fluorescent paint. The test volume was illuminated using an ultraviolet light-emitting diode. The paint emits very tiny, orange-colored fluorescent light with an intensity that changes with the temperature of the atmosphere. The experimental results showed that the heating/cooling layers were well visualized and the temperature field was well analyzed.

Additional Links: PMID-35590864

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35590864,

year = {2022},

author = {Funatani, S and Tsukamoto, Y and Toriyama, K},

title = {Temperature Measurement of Hot Airflow Using Ultra-Fine Thermo-Sensitive Fluorescent Wires.},

journal = {Sensors (Basel, Switzerland)},

volume = {22},

number = {9},

pages = {},

pmid = {35590864},

issn = {1424-8220},

abstract = {In this paper, we propose a temperature measurement method that uses ultrafine fluorescent wires to reduce the wire diameter to a much lesser extent than a thermocouple. This is possible because its structure is simple and any material can be used for the wire. Hence, ultrafine wires with a Reynolds number of less than 1.0 can be selected. Ultra-fine wires less than 50 µm in diameter were set in the test volume. The wire surfaces were coated with fluorescent paint. The test volume was illuminated using an ultraviolet light-emitting diode. The paint emits very tiny, orange-colored fluorescent light with an intensity that changes with the temperature of the atmosphere. The experimental results showed that the heating/cooling layers were well visualized and the temperature field was well analyzed.},

}

RevDate: 2022-05-20

**Unified lattice Boltzmann method with improved schemes for multiphase flow simulation: Application to droplet dynamics under realistic conditions.**

*Physical review. E*, **105(4-2):**045314.

As a powerful mesoscale approach, the lattice Boltzmann method (LBM) has been widely used for the numerical study of complex multiphase flows. Recently, Luo et al. [Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 379, 20200397 (2021)10.1098/rsta.2020.0397] proposed a unified lattice Boltzmann method (ULBM) to integrate the widely used lattice Boltzmann collision operators into a unified framework. In this study, we incorporate additional features into this ULBM in order to simulate multiphase flow under realistic conditions. A nonorthogonal moment set [Fei et al., Phys. Rev. E 97, 053309 (2018)10.1103/PhysRevE.97.053309] and the entropic-multi-relaxation-time (KBC) lattice Boltzmann model are used to construct the collision operator. An extended combined pseudopotential model is proposed to realize multiphase flow simulation at high-density ratio with tunable surface tension over a wide range. The numerical results indicate that the improved ULBM can significantly decrease the spurious velocities and adjust the surface tension without appreciably changing the density ratio. The ULBM is validated through reproducing various droplet dynamics experiments, such as binary droplet collision and droplet impingement on superhydrophobic surfaces. Finally, the extended ULBM is applied to complex droplet dynamics, including droplet pancake bouncing and droplet splashing. The maximum Weber number and Reynolds number in the simulation reach 800 and 7200, respectively, at a density ratio of 1000. The study demonstrates the generality and versatility of ULBM for incorporating schemes to tackle challenging multiphase problems.

Additional Links: PMID-35590633

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35590633,

year = {2022},

author = {Wang, G and Fei, L and Luo, KH},

title = {Unified lattice Boltzmann method with improved schemes for multiphase flow simulation: Application to droplet dynamics under realistic conditions.},

journal = {Physical review. E},

volume = {105},

number = {4-2},

pages = {045314},

doi = {10.1103/PhysRevE.105.045314},

pmid = {35590633},

issn = {2470-0053},

abstract = {As a powerful mesoscale approach, the lattice Boltzmann method (LBM) has been widely used for the numerical study of complex multiphase flows. Recently, Luo et al. [Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 379, 20200397 (2021)10.1098/rsta.2020.0397] proposed a unified lattice Boltzmann method (ULBM) to integrate the widely used lattice Boltzmann collision operators into a unified framework. In this study, we incorporate additional features into this ULBM in order to simulate multiphase flow under realistic conditions. A nonorthogonal moment set [Fei et al., Phys. Rev. E 97, 053309 (2018)10.1103/PhysRevE.97.053309] and the entropic-multi-relaxation-time (KBC) lattice Boltzmann model are used to construct the collision operator. An extended combined pseudopotential model is proposed to realize multiphase flow simulation at high-density ratio with tunable surface tension over a wide range. The numerical results indicate that the improved ULBM can significantly decrease the spurious velocities and adjust the surface tension without appreciably changing the density ratio. The ULBM is validated through reproducing various droplet dynamics experiments, such as binary droplet collision and droplet impingement on superhydrophobic surfaces. Finally, the extended ULBM is applied to complex droplet dynamics, including droplet pancake bouncing and droplet splashing. The maximum Weber number and Reynolds number in the simulation reach 800 and 7200, respectively, at a density ratio of 1000. The study demonstrates the generality and versatility of ULBM for incorporating schemes to tackle challenging multiphase problems.},

}

RevDate: 2022-05-20

**Route to transition in propulsive performance of oscillating foil.**

*Physical review. E*, **105(4-2):**045102.

Transition in the propulsive performance and vortex synchronization of an oscillating foil in a combined heaving and pitching motion is numerically investigated at a range of reduced frequencies (0.16 ≤f^{*}≤ 0.64), phase offsets (0^{∘} ≤ϕ≤ 315^{∘}), and Reynolds number (1000≤Re≤16000). Focusing on the common case of Re=1000, the drag to thrust transition is identified on a ϕ-f^{*} phase map. Here, the range of 90^{∘} ≤ϕ≤ 225^{∘} depicted a drag-dominated regime for increasing reduced frequency. However, thrust-dominated regimes were observed for ϕ< 90^{∘} and ϕ> 225^{∘}, where increasing the reduced frequency led to an increased thrust production. The isoline-depicting drag-thrust boundary was further observed to coincide with transitions in the characteristic near-wake modes with increasing reduced frequency, which ranged from 2P+2S to 2P and reverse von Kármán modes. However, evaluation of the wake with changing phase offsets at individual reduced frequencies only depicted effects on the spatial configuration of the vortex structures, while the number of vortices shed in one oscillation period was unchanged. The existence of similar wake modes with significantly different propulsive performance clearly suggests that transitions of the wake topology may not always be a reliable tool for understanding propulsive mechanisms of fish swimming or development of underwater propulsion systems. We further assessed a possible route to drag production via investigation into the mean velocity fields at increasing phase offset and at intermediate reduced frequencies ranging from 0.24 to 0.40. This revealed bifurcation of a velocity jet behind the foil on account of the wake topology and dynamics of shed vortex structures. The changes posed by increasing ϕ on wake structure interactions further hints at potential mechanisms that limit the achievement of optimum efficiency in underwater locomotion.

Additional Links: PMID-35590627

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35590627,

year = {2022},

author = {Verma, S and Hemmati, A},

title = {Route to transition in propulsive performance of oscillating foil.},

journal = {Physical review. E},

volume = {105},

number = {4-2},

pages = {045102},

doi = {10.1103/PhysRevE.105.045102},

pmid = {35590627},

issn = {2470-0053},

abstract = {Transition in the propulsive performance and vortex synchronization of an oscillating foil in a combined heaving and pitching motion is numerically investigated at a range of reduced frequencies (0.16 ≤f^{*}

0.64), phase offsets (0^{∘}

≤ϕ≤ 315^{∘})

, and Reynolds number (1000≤Re≤16000). Focusing on the common case of Re=1000, the drag to thrust transition is identified on a ϕ-f^{*}

phase map. Here, the range of 90^{∘}

≤ϕ≤ 225^{∘}

depicted a drag-dominated regime for increasing reduced frequency. However, thrust-dominated regimes were observed for ϕ< 90^{∘}

and ϕ> 225^{∘},

where increasing the reduced frequency led to an increased thrust production. The isoline-depicting drag-thrust boundary was further observed to coincide with transitions in the characteristic near-wake modes with increasing reduced frequency, which ranged from 2P+2S to 2P and reverse von Kármán modes. However, evaluation of the wake with changing phase offsets at individual reduced frequencies only depicted effects on the spatial configuration of the vortex structures, while the number of vortices shed in one oscillation period was unchanged. The existence of similar wake modes with significantly different propulsive performance clearly suggests that transitions of the wake topology may not always be a reliable tool for understanding propulsive mechanisms of fish swimming or development of underwater propulsion systems. We further assessed a possible route to drag production via investigation into the mean velocity fields at increasing phase offset and at intermediate reduced frequencies ranging from 0.24 to 0.40. This revealed bifurcation of a velocity jet behind the foil on account of the wake topology and dynamics of shed vortex structures. The changes posed by increasing ϕ on wake structure interactions further hints at potential mechanisms that limit the achievement of optimum efficiency in underwater locomotion.},

}

RevDate: 2022-06-01

**Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.**

*Ultrasonics sonochemistry*, **86:**106035.

Hydrodynamic cavitation is an emerging intensification technology in water treatment or chemical processing, and Venturi-type cavitation reactors exhibit advantages for industrial-scale production. The effects of temperature on hydrodynamic cavitating flows are investigated to find the optimum reaction conditions enhancing cavitating treatment intensity. Results show that the cavitation performance, including the cavitation intensity and cavitation unsteady behavior, is influenced by (1) cavitation number σ (the pressure difference affecting the vaporization process), (2) Reynolds number Re (the inertial/viscous ratio affecting the bubble size and liquid-vapor interface area), and (3) thermodynamic parameter Σ (the thermal effect affecting the temperature drop). With increasing temperature, the cavitation length first increases and then decreases, with a cavitation intensity peak at the transition temperature of 58 °C. With the growth of cavitation extent, the cavity-shedding regimes tend to transition from the attached sheet cavity to the periodic cloud cavity, and the vapor volume fluctuating frequency decreases accordingly. A combined suppression parameter (CSP) is provided to predict that, with increasing CSP value, the cavitation intensity can be decreased. Recommendations are given that working under the low-CSP range (55-60 °C) could enhance the intensification of the cavitation process.

Additional Links: PMID-35580542

Full Text:

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35580542,

year = {2022},

author = {Ge, M and Sun, C and Zhang, G and Coutier-Delgosha, O and Fan, D},

title = {Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.},

journal = {Ultrasonics sonochemistry},

volume = {86},

number = {},

pages = {106035},

doi = {10.1016/j.ultsonch.2022.106035},

pmid = {35580542},

issn = {1873-2828},

abstract = {Hydrodynamic cavitation is an emerging intensification technology in water treatment or chemical processing, and Venturi-type cavitation reactors exhibit advantages for industrial-scale production. The effects of temperature on hydrodynamic cavitating flows are investigated to find the optimum reaction conditions enhancing cavitating treatment intensity. Results show that the cavitation performance, including the cavitation intensity and cavitation unsteady behavior, is influenced by (1) cavitation number σ (the pressure difference affecting the vaporization process), (2) Reynolds number Re (the inertial/viscous ratio affecting the bubble size and liquid-vapor interface area), and (3) thermodynamic parameter Σ (the thermal effect affecting the temperature drop). With increasing temperature, the cavitation length first increases and then decreases, with a cavitation intensity peak at the transition temperature of 58 °C. With the growth of cavitation extent, the cavity-shedding regimes tend to transition from the attached sheet cavity to the periodic cloud cavity, and the vapor volume fluctuating frequency decreases accordingly. A combined suppression parameter (CSP) is provided to predict that, with increasing CSP value, the cavitation intensity can be decreased. Recommendations are given that working under the low-CSP range (55-60 °C) could enhance the intensification of the cavitation process.},

}

RevDate: 2022-06-10

**Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method.**

*Computer methods and programs in biomedicine*, **221:**106850 pii:S0169-2607(22)00232-2 [Epub ahead of print].

BACKGROUND AND OBJECTIVE: Cardiovascular diseases such as atherosclerosis are the first engender of death in the world. The malfunctioning of cardiovascular system is attributed mainly to hemodynamics. However, blood magnetic properties are of major haemodynamic interest, with significant clinical applications. The aim of this work is to study numerically the effect of high magnetic field on blood flow in stenotic artery.

METHODS: In this paper, a double population D2Q9 lattice Boltzmann model is proposed. Velocity and magnetic field are both solved using Lattice Boltzmann method with single relaxation time. Blood is considered homogeneous and Newtonian bio-magnetic fluid. The results of the proposed model are compared and validated by recent numerical and experimental studies in the literature and show good agreement. In this study, simulations are carried out for both hydrodynamics and magneto-hydrodynamics. For the magneto-hydrodynamic case, five values of Hartmann number of 10, 30, 50, 75 and 100 at Reynolds number of 400, 600 and 800 are investigated Results: The results show that velocity and recirculation zone increase with the increase of the degree of stenosis and Reynolds number. In addition, a considerable decrease in velocity, recirculation zones and pressure drop across the stenotic artery is noticed with the increase of Hartmann number.

CONCLUSION: The suggested model is found to be effective and accurate in the treatment of magneto-hydrodynamic blood flow in stenotic artery. The found results can be used by clinicians in the treatment of certain cardiovascular disorders and in regulating blood flow movement, especially during surgical procedures.

Additional Links: PMID-35567865

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35567865,

year = {2022},

author = {Cherkaoui, I and Bettaibi, S and Barkaoui, A and Kuznik, F},

title = {Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method.},

journal = {Computer methods and programs in biomedicine},

volume = {221},

number = {},

pages = {106850},

doi = {10.1016/j.cmpb.2022.106850},

pmid = {35567865},

issn = {1872-7565},

abstract = {BACKGROUND AND OBJECTIVE: Cardiovascular diseases such as atherosclerosis are the first engender of death in the world. The malfunctioning of cardiovascular system is attributed mainly to hemodynamics. However, blood magnetic properties are of major haemodynamic interest, with significant clinical applications. The aim of this work is to study numerically the effect of high magnetic field on blood flow in stenotic artery.

METHODS: In this paper, a double population D2Q9 lattice Boltzmann model is proposed. Velocity and magnetic field are both solved using Lattice Boltzmann method with single relaxation time. Blood is considered homogeneous and Newtonian bio-magnetic fluid. The results of the proposed model are compared and validated by recent numerical and experimental studies in the literature and show good agreement. In this study, simulations are carried out for both hydrodynamics and magneto-hydrodynamics. For the magneto-hydrodynamic case, five values of Hartmann number of 10, 30, 50, 75 and 100 at Reynolds number of 400, 600 and 800 are investigated Results: The results show that velocity and recirculation zone increase with the increase of the degree of stenosis and Reynolds number. In addition, a considerable decrease in velocity, recirculation zones and pressure drop across the stenotic artery is noticed with the increase of Hartmann number.

CONCLUSION: The suggested model is found to be effective and accurate in the treatment of magneto-hydrodynamic blood flow in stenotic artery. The found results can be used by clinicians in the treatment of certain cardiovascular disorders and in regulating blood flow movement, especially during surgical procedures.},

}

RevDate: 2022-05-16

**Partially-covered fractal induced turbulence on fins thermal dissipation.**

*Scientific reports*, **12(1):**7861.

The impacts of partially-covered fractal grids induced turbulence on the forced convective heat transfer across plate-fin heat sink at Reynolds number ReDh = 22.0 × 103 were numerically and experimentally investigated. Results showed that partially covered grids rendered a higher thermal dissipation performance, with partially-covered square fractal grid (PCSFG) registering an outstanding increase of 43% in Nusselt number relative to the no grid configuration. The analyzation via an in-house developed single particle tracking velocimetry (SPTV) system displayed the findings of unique "Turbulence Annulus" formation, which provided a small degree of predictivity in the periodic annulus oscillations. Further assessments on PCSFG revealed the preferred inter-fin flow dynamics of (i) high flow velocity, (ii) strong turbulence intensity, (iii) vigorous flow fluctuations, (iv) small turbulence length scale, and (v) heightened decelerated flow events. These features stemmed from the coupling effects of multilength-scale fractal bar thicknesses in generating a veracity of eddy sizes, and a vertical segmentation producing heightened mass flow rate while inducing favourable wake-flow structures to penetrate inter-fin regions. Teeming effects of such energetic eddies within plate-fin array unveiled a powerful vortex shedding effect, with PCSFG achieving fluctuation frequency f = 18.5 Hz close to an optimal magnitude. The coaction of such traits limits the growth of fin boundary layers, providing superior thermal transfer capabilities which benefits the community in developing for higher efficiency heat transfer systems.

Additional Links: PMID-35551230

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35551230,

year = {2022},

author = {Chew, SH and Hoi, SM and Tran, MV and Foo, JJ},

title = {Partially-covered fractal induced turbulence on fins thermal dissipation.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {7861},

pmid = {35551230},

issn = {2045-2322},

support = {FRGS/1/2018/TK07/MUSM/02/1//Ministry of Higher Education, Malaysia/ ; FRGS/1/2018/TK07/MUSM/02/1//Ministry of Higher Education, Malaysia/ ; MUM25929267//Monash University Malaysia/ ; },

abstract = {The impacts of partially-covered fractal grids induced turbulence on the forced convective heat transfer across plate-fin heat sink at Reynolds number ReDh = 22.0 × 103 were numerically and experimentally investigated. Results showed that partially covered grids rendered a higher thermal dissipation performance, with partially-covered square fractal grid (PCSFG) registering an outstanding increase of 43% in Nusselt number relative to the no grid configuration. The analyzation via an in-house developed single particle tracking velocimetry (SPTV) system displayed the findings of unique "Turbulence Annulus" formation, which provided a small degree of predictivity in the periodic annulus oscillations. Further assessments on PCSFG revealed the preferred inter-fin flow dynamics of (i) high flow velocity, (ii) strong turbulence intensity, (iii) vigorous flow fluctuations, (iv) small turbulence length scale, and (v) heightened decelerated flow events. These features stemmed from the coupling effects of multilength-scale fractal bar thicknesses in generating a veracity of eddy sizes, and a vertical segmentation producing heightened mass flow rate while inducing favourable wake-flow structures to penetrate inter-fin regions. Teeming effects of such energetic eddies within plate-fin array unveiled a powerful vortex shedding effect, with PCSFG achieving fluctuation frequency f = 18.5 Hz close to an optimal magnitude. The coaction of such traits limits the growth of fin boundary layers, providing superior thermal transfer capabilities which benefits the community in developing for higher efficiency heat transfer systems.},

}

RevDate: 2022-05-16

**Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle.**

*Frontiers in physiology*, **13:**867613.

Thrombosis seriously threatens human cardiovascular health and the safe operation of medical devices. The Food and Drug Administration's (FDA) benchmark nozzle model was designed to include the typical structure of medical devices. However, the thrombosis in the FDA nozzle has yet not been investigated. The objective of this study is to predict the thrombus formation process in the idealized medical device by coupling computational fluid dynamics and a macroscopic hemodynamic-based thrombus model. We developed the hemodynamic-based thrombus model by considering the effect of platelet consumption. The thrombus model was quantitatively validated by referring to the latest thrombosis experiment, which was performed in a backward-facing step with human blood flow. The same setup was applied in the FDA nozzle to simulate the thrombus formation process. The thrombus shaped like a ring was firstly observed in the FDA benchmark nozzle. Subsequently, the accuracy of the shear-stress transport turbulence model was confirmed in different turbulent flow conditions. Five scenarios with different Reynolds numbers were carried out. We found that turbulence could change the shape of centrosymmetric thrombus to axisymmetric and high Reynolds number blood flow would delay or even prevent thrombosis. Overall, the present study reports the thrombosis process in the FDA benchmark nozzle using the numerical simulation method, and the primary findings may shed light on the effect of turbulence on thrombosis.

Additional Links: PMID-35547578

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35547578,

year = {2022},

author = {Qiao, Y and Luo, K and Fan, J},

title = {Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle.},

journal = {Frontiers in physiology},

volume = {13},

number = {},

pages = {867613},

pmid = {35547578},

issn = {1664-042X},

abstract = {Thrombosis seriously threatens human cardiovascular health and the safe operation of medical devices. The Food and Drug Administration's (FDA) benchmark nozzle model was designed to include the typical structure of medical devices. However, the thrombosis in the FDA nozzle has yet not been investigated. The objective of this study is to predict the thrombus formation process in the idealized medical device by coupling computational fluid dynamics and a macroscopic hemodynamic-based thrombus model. We developed the hemodynamic-based thrombus model by considering the effect of platelet consumption. The thrombus model was quantitatively validated by referring to the latest thrombosis experiment, which was performed in a backward-facing step with human blood flow. The same setup was applied in the FDA nozzle to simulate the thrombus formation process. The thrombus shaped like a ring was firstly observed in the FDA benchmark nozzle. Subsequently, the accuracy of the shear-stress transport turbulence model was confirmed in different turbulent flow conditions. Five scenarios with different Reynolds numbers were carried out. We found that turbulence could change the shape of centrosymmetric thrombus to axisymmetric and high Reynolds number blood flow would delay or even prevent thrombosis. Overall, the present study reports the thrombosis process in the FDA benchmark nozzle using the numerical simulation method, and the primary findings may shed light on the effect of turbulence on thrombosis.},

}

RevDate: 2022-05-13

**CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance.**

*Biomechanics and modeling in mechanobiology* [Epub ahead of print].

Mechanical circulatory support using ventricular assist devices has become commonplace in the treatment of patients suffering from advanced stages of heart failure. While blood damage generated by these devices has been evaluated in depth, their hemodynamic performance has been investigated much less. This work presents the analysis of the complete operating map of a left ventricular assist device, in terms of pressure head, power and efficiency. Further investigation into its hemocompatibility is included as well. To achieve these objectives, computational fluid dynamics simulations of a centrifugal blood pump with a wide-blade impeller were performed. Several conditions were considered by varying the rotational speed and volumetric flow rate. Regarding the device's hemocompatibility, blood damage was evaluated by means of the hemolysis index. By relating the hemocompatibility of the device to its hemodynamic performance, the results have demonstrated that the highest hemolysis occurs at low flow rates, corresponding to operating conditions of low efficiency. Both performance and hemocompatibility are affected by the gap clearance. An innovative investigation into the influence of this design parameter has yielded decreased efficiencies and increased hemolysis as the gap clearance is reduced. As a further novelty, pump operating maps were non-dimensionalized to highlight the influence of Reynolds number, which allows their application to any working condition. The pump's operating range places it in the transitional regime between laminar and turbulent, leading to enhanced efficiency for the highest Reynolds number.

Additional Links: PMID-35546646

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35546646,

year = {2022},

author = {Gil, A and Navarro, R and Quintero, P and Mares, A and Pérez, M and Montero, JA},

title = {CFD analysis of the HVAD's hemodynamic performance and blood damage with insight into gap clearance.},

journal = {Biomechanics and modeling in mechanobiology},

volume = {},

number = {},

pages = {},

pmid = {35546646},

issn = {1617-7940},

support = {MODELVAD//Fundación para la Investigación del Hospital Universitari La Fe/ ; },

abstract = {Mechanical circulatory support using ventricular assist devices has become commonplace in the treatment of patients suffering from advanced stages of heart failure. While blood damage generated by these devices has been evaluated in depth, their hemodynamic performance has been investigated much less. This work presents the analysis of the complete operating map of a left ventricular assist device, in terms of pressure head, power and efficiency. Further investigation into its hemocompatibility is included as well. To achieve these objectives, computational fluid dynamics simulations of a centrifugal blood pump with a wide-blade impeller were performed. Several conditions were considered by varying the rotational speed and volumetric flow rate. Regarding the device's hemocompatibility, blood damage was evaluated by means of the hemolysis index. By relating the hemocompatibility of the device to its hemodynamic performance, the results have demonstrated that the highest hemolysis occurs at low flow rates, corresponding to operating conditions of low efficiency. Both performance and hemocompatibility are affected by the gap clearance. An innovative investigation into the influence of this design parameter has yielded decreased efficiencies and increased hemolysis as the gap clearance is reduced. As a further novelty, pump operating maps were non-dimensionalized to highlight the influence of Reynolds number, which allows their application to any working condition. The pump's operating range places it in the transitional regime between laminar and turbulent, leading to enhanced efficiency for the highest Reynolds number.},

}

RevDate: 2022-06-03

CmpDate: 2022-06-03

**Scaling up extractive deacidification of waste cooking oil.**

*Journal of environmental management*, **316:**115222.

Biodiesel produced from waste feedstocks can play a significant role in fighting climate change, improperly disposed waste and growing energy demand. Waste feedstocks such as used cooking oil have a great potential for energy production. However, they often have to be purified from free fatty acids prior to biodiesel production. Extractive deacidification with deep eutectic solvents is a promising alternative to conventional purification methods. To evaluate the process of extractive deacidification of waste cooking oil, a full set of physical, hydrodynamic and kinetic data were experimentally determined on a laboratory scale. Hydrodynamic and kinetic experiments were performed in three geometrically similar jacketed agitated vessels. Vessels were equipped with axial flow impeller (four pitched blade impeller). Physical properties (density, viscosity and surface tension) were experimentally determined. Preliminary hydrodynamic experiments involved several model systems without mass transfer. As a result, correlation between power number and Reynolds number as well as scale-up criterion was developed. Obtained dependencies were correlated with the physical properties. Mixing intensity for achieving complete dispersion was determined. Second stage of investigation involved two sets of experiments, hydrodynamic and kinetic, with interphase mass transfer (the extraction of free fatty acids from waste cooking oil with deep eutectic solvent, potassium carbonate:ethylene glycol, 1:10). Obtained results enabled understanding interphase mass transfer and prediction of mass transfer coefficient from the derived dimensionless correlations. The values of volumetric mass transfer coefficients were smaller for the dispersed phase, indicating that the prevailing mass transfer resistance was within the droplets. The working hypothesis was that the same process result should be achieved at the same dispersion rate, and that hypothesis was confirmed - at all scales extraction efficiency was 97.9 ± 0.1%.

Additional Links: PMID-35544978

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35544978,

year = {2022},

author = {Sander, A and Petračić, A and Zokić, I and Vrsaljko, D},

title = {Scaling up extractive deacidification of waste cooking oil.},

journal = {Journal of environmental management},

volume = {316},

number = {},

pages = {115222},

doi = {10.1016/j.jenvman.2022.115222},

pmid = {35544978},

issn = {1095-8630},

mesh = {*Biofuels/analysis ; Cooking ; *Fatty Acids, Nonesterified ; Plant Oils ; Solvents ; },

abstract = {Biodiesel produced from waste feedstocks can play a significant role in fighting climate change, improperly disposed waste and growing energy demand. Waste feedstocks such as used cooking oil have a great potential for energy production. However, they often have to be purified from free fatty acids prior to biodiesel production. Extractive deacidification with deep eutectic solvents is a promising alternative to conventional purification methods. To evaluate the process of extractive deacidification of waste cooking oil, a full set of physical, hydrodynamic and kinetic data were experimentally determined on a laboratory scale. Hydrodynamic and kinetic experiments were performed in three geometrically similar jacketed agitated vessels. Vessels were equipped with axial flow impeller (four pitched blade impeller). Physical properties (density, viscosity and surface tension) were experimentally determined. Preliminary hydrodynamic experiments involved several model systems without mass transfer. As a result, correlation between power number and Reynolds number as well as scale-up criterion was developed. Obtained dependencies were correlated with the physical properties. Mixing intensity for achieving complete dispersion was determined. Second stage of investigation involved two sets of experiments, hydrodynamic and kinetic, with interphase mass transfer (the extraction of free fatty acids from waste cooking oil with deep eutectic solvent, potassium carbonate:ethylene glycol, 1:10). Obtained results enabled understanding interphase mass transfer and prediction of mass transfer coefficient from the derived dimensionless correlations. The values of volumetric mass transfer coefficients were smaller for the dispersed phase, indicating that the prevailing mass transfer resistance was within the droplets. The working hypothesis was that the same process result should be achieved at the same dispersion rate, and that hypothesis was confirmed - at all scales extraction efficiency was 97.9 ± 0.1%.},

}

MeSH Terms:

show MeSH Terms

hide MeSH Terms

*Biofuels/analysis

Cooking

*Fatty Acids, Nonesterified

Plant Oils

Solvents

RevDate: 2022-05-16

**An empirical mean-field model of symmetry-breaking in a turbulent wake.**

*Science advances*, **8(19):**eabm4786.

Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high-Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems.

Additional Links: PMID-35544559

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35544559,

year = {2022},

author = {Callaham, JL and Rigas, G and Loiseau, JC and Brunton, SL},

title = {An empirical mean-field model of symmetry-breaking in a turbulent wake.},

journal = {Science advances},

volume = {8},

number = {19},

pages = {eabm4786},

doi = {10.1126/sciadv.abm4786},

pmid = {35544559},

issn = {2375-2548},

abstract = {Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high-Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems.},

}

RevDate: 2022-05-26

CmpDate: 2022-05-26

**Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing.**

*Soft matter*, **18(20):**3902-3909.

Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.

Additional Links: PMID-35535750

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35535750,

year = {2022},

author = {Zhang, R and Toonder, JD and Onck, PR},

title = {Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing.},

journal = {Soft matter},

volume = {18},

number = {20},

pages = {3902-3909},

doi = {10.1039/d1sm01680f},

pmid = {35535750},

issn = {1744-6848},

mesh = {Biological Transport ; *Cilia/metabolism ; *Magnetics ; Models, Biological ; Motion ; },

abstract = {Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.},

}

MeSH Terms:

show MeSH Terms

hide MeSH Terms

Biological Transport

*Cilia/metabolism

*Magnetics

Models, Biological

Motion

RevDate: 2022-05-09

**Extreme events in transitional turbulence.**

*Philosophical transactions. Series A, Mathematical, physical, and engineering sciences*, **380(2226):**20210036.

Transitional localized turbulence in shear flows is known to either decay to an absorbing laminar state or to proliferate via splitting. The average passage times from one state to the other depend super-exponentially on the Reynolds number and lead to a crossing Reynolds number above which proliferation is more likely than decay. In this paper, we apply a rare-event algorithm, Adaptative Multilevel Splitting, to the deterministic Navier-Stokes equations to study transition paths and estimate large passage times in channel flow more efficiently than direct simulations. We establish a connection with extreme value distributions and show that transition between states is mediated by a regime that is self-similar with the Reynolds number. The super-exponential variation of the passage times is linked to the Reynolds number dependence of the parameters of the extreme value distribution. Finally, motivated by instantons from Large Deviation theory, we show that decay or splitting events approach a most-probable pathway. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

Additional Links: PMID-35527637

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35527637,

year = {2022},

author = {Gomé, S and Tuckerman, LS and Barkley, D},

title = {Extreme events in transitional turbulence.},

journal = {Philosophical transactions. Series A, Mathematical, physical, and engineering sciences},

volume = {380},

number = {2226},

pages = {20210036},

doi = {10.1098/rsta.2021.0036},

pmid = {35527637},

issn = {1471-2962},

abstract = {Transitional localized turbulence in shear flows is known to either decay to an absorbing laminar state or to proliferate via splitting. The average passage times from one state to the other depend super-exponentially on the Reynolds number and lead to a crossing Reynolds number above which proliferation is more likely than decay. In this paper, we apply a rare-event algorithm, Adaptative Multilevel Splitting, to the deterministic Navier-Stokes equations to study transition paths and estimate large passage times in channel flow more efficiently than direct simulations. We establish a connection with extreme value distributions and show that transition between states is mediated by a regime that is self-similar with the Reynolds number. The super-exponential variation of the passage times is linked to the Reynolds number dependence of the parameters of the extreme value distribution. Finally, motivated by instantons from Large Deviation theory, we show that decay or splitting events approach a most-probable pathway. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.},

}

RevDate: 2022-05-09

**Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment.**

*Philosophical transactions. Series A, Mathematical, physical, and engineering sciences*, **380(2226):**20210033.

A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon-anomalous dissipation-is sometimes called the 'zeroth law of turbulence' as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions [Formula: see text] exhibit persistent power-law scaling in the inertial range, namely [Formula: see text] for exponents [Formula: see text] over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that [Formula: see text] for all [Formula: see text] and Onsager's 1949 theory establishes the requirement that [Formula: see text] for [Formula: see text] for consistency with the zeroth law. Empirically, [Formula: see text] and [Formula: see text], suggesting that turbulent Navier-Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

Additional Links: PMID-35527633

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35527633,

year = {2022},

author = {Drivas, TD},

title = {Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment.},

journal = {Philosophical transactions. Series A, Mathematical, physical, and engineering sciences},

volume = {380},

number = {2226},

pages = {20210033},

doi = {10.1098/rsta.2021.0033},

pmid = {35527633},

issn = {1471-2962},

abstract = {A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon-anomalous dissipation-is sometimes called the 'zeroth law of turbulence' as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions [Formula: see text] exhibit persistent power-law scaling in the inertial range, namely [Formula: see text] for exponents [Formula: see text] over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that [Formula: see text] for all [Formula: see text] and Onsager's 1949 theory establishes the requirement that [Formula: see text] for [Formula: see text] for consistency with the zeroth law. Empirically, [Formula: see text] and [Formula: see text], suggesting that turbulent Navier-Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.},

}

RevDate: 2022-05-09

**Continuing invariant solutions towards the turbulent flow.**

*Philosophical transactions. Series A, Mathematical, physical, and engineering sciences*, **380(2226):**20210031.

A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. This is achieved by setting up a continuation procedure of known solutions of the perturbative Navier-Stokes equations, based on the continuous increase of the turbulent eddy viscosity towards its turbulent value. The recovered solutions, being sustained only in the presence of the Reynolds stress tensor, are representative of the statistically coherent motion of turbulent flows. For small friction Reynolds number and/or domain size, the statistically invariant motion is almost identical to the corresponding invariant solution of the Navier-Stokes equations. Whereas, for sufficiently large friction number and/or domain size, it considerably departs from the starting invariant solution of the Navier-Stokes equations, presenting spatial structures, main wavelengths and scaling very close to those characterizing both large- and small-scale motion of turbulent channel flows. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

Additional Links: PMID-35527631

Publisher:

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35527631,

year = {2022},

author = {Parente, E and Farano, M and Robinet, JC and De Palma, P and Cherubini, S},

title = {Continuing invariant solutions towards the turbulent flow.},

journal = {Philosophical transactions. Series A, Mathematical, physical, and engineering sciences},

volume = {380},

number = {2226},

pages = {20210031},

doi = {10.1098/rsta.2021.0031},

pmid = {35527631},

issn = {1471-2962},

abstract = {A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. This is achieved by setting up a continuation procedure of known solutions of the perturbative Navier-Stokes equations, based on the continuous increase of the turbulent eddy viscosity towards its turbulent value. The recovered solutions, being sustained only in the presence of the Reynolds stress tensor, are representative of the statistically coherent motion of turbulent flows. For small friction Reynolds number and/or domain size, the statistically invariant motion is almost identical to the corresponding invariant solution of the Navier-Stokes equations. Whereas, for sufficiently large friction number and/or domain size, it considerably departs from the starting invariant solution of the Navier-Stokes equations, presenting spatial structures, main wavelengths and scaling very close to those characterizing both large- and small-scale motion of turbulent channel flows. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.},

}

RevDate: 2022-05-10

**Unveiling the dynamics of ultra high velocity droplet impact on solid surfaces.**

*Scientific reports*, **12(1):**7416.

The impact of a liquid droplet onto a solid surface is a phenomenon present in a wide range of natural processes and technological applications. In this study, we focus on impact conditions characterised by ultra high velocities (up to 500 m/s), to investigate-for the first time-how the impact dynamics change when the compressibility of the liquid in the droplet is no longer negligible. A water droplet impacting a dry substrate at four different velocities, from 50 to 500 m/s, is simulated. Such conditions are particularly relevant to aviation as well as industrial gas turbine engine risk management. Thus, numerical investigations as the one we present here provide a powerful tool to analyse the process. We find that increasing the impact velocity changes the flow field within and outside the droplet the moment that the compressibility can no longer be neglected, with the rise of pressure fronts in both regions. Increasing the impact velocity, the compressibility affects also the lamella formed and changes its ejection velocity observed over time (and thus the wetting behaviour) when the region shift from incompressible to compressible. Moreover, it is found that the maximum pressure observed at the wall during the impact is located at the corner of the impact, where the lamella is ejected, not in the centre, and it is influenced by the initial velocity. To predict the maximum pressure experienced by the surface during the high velocity impact, we propose a correlation based on the initial Weber and Reynolds number of the droplet. The complexity and the scales of the dynamics involved in the ultra-high velocity impact is limiting the experimental and analytical studies. To the best of our knowledge there are no experimental data currently available at such conditions. In this study, through numerical simulations, new insights about the impact dynamics at such conditions are provided.

Additional Links: PMID-35523801

PubMed:

Citation:

show bibtex listing

hide bibtex listing

@article {pmid35523801,

year = {2022},

author = {Tretola, G and Vogiatzaki, K},

title = {Unveiling the dynamics of ultra high velocity droplet impact on solid surfaces.},

journal = {Scientific reports},

volume = {12},

number = {1},

pages = {7416},

pmid = {35523801},

issn = {2045-2322},

support = {EP/S001824/1//Engineering and Physical Sciences Research Council/ ; EP/S001824/1//Engineering and Physical Sciences Research Council/ ; },

abstract = {The impact of a liquid droplet onto a solid surface is a phenomenon present in a wide range of natural processes and technological applications. In this study, we focus on impact conditions characterised by ultra high velocities (up to 500 m/s), to investigate-for the first time-how the impact dynamics change when the compressibility of the liquid in the droplet is no longer negligible. A water droplet impacting a dry substrate at four different velocities, from 50 to 500 m/s, is simulated. Such conditions are particularly relevant to aviation as well as industrial gas turbine engine risk management. Thus, numerical investigations as the one we present here provide a powerful tool to analyse the process. We find that increasing the impact velocity changes the flow field within and outside the droplet the moment that the compressibility can no longer be neglected, with the rise of pressure fronts in both regions. Increasing the impact velocity, the compressibility affects also the lamella formed and changes its ejection velocity observed over time (and thus the wetting behaviour) when the region shift from incompressible to compressible. Moreover, it is found that the maximum pressure observed at the wall during the impact is located at the corner of the impact, where the lamella is ejected, not in the centre, and it is influenced by the initial velocity. To predict the maximum pressure experienced by the surface during the high velocity impact, we propose a correlation based on the initial Weber and Reynolds number of the droplet. The complexity and the scales of the dynamics involved in the ultra-high velocity impact is limiting the experimental and analytical studies. To the best of our knowledge there are no experimental data currently available at such conditions. In this study, through numerical simulations, new insights about the impact dynamics at such conditions are provided.},

}

▼ ▼ LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began
to use the site for their assigned readings. Other on-line
publishers, ranging from *The New York Times* to *Nature*
referenced ESP materials in their own publications. Nobel laureates
(e.g., Joshua Lederberg) regularly used the
site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

ESP Picks from Around the Web (updated 07 JUL 2018 )

Old Science

Weird Science

Treating Disease with Fecal Transplantation

Fossils of miniature humans (hobbits) discovered in Indonesia

Paleontology

Dinosaur tail, complete with feathers, found preserved in amber.

Astronomy

Mysterious fast radio burst (FRB) detected in the distant universe.

Big Data & Informatics

Big Data: Buzzword or Big Deal?

Hacking the genome: Identifying anonymized human subjects using publicly available data.