Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Reynolds Number

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 28 Jan 2023 at 01:33 Created: 

Reynolds Number

It is well known that relative size greatly affects how organisms interact with the world. Less well known, at least among biologists, is that at sufficiently small sizes, mechanical interaction with the environment becomes difficult and then virtually impossible. In fluid dynamics, an important dimensionless parameter is the Reynolds Number (abbreviated Re), which is the ratio of inertial to viscous forces affecting the movement of objects in a fluid medium (or the movement of a fluid in a pipe). Since Re is determined mainly by the size of the object (pipe) and the properties (density and viscosity) of the fluid, organisms of different sizes exhibit significantly different Re values when moving through air or water. A fish, swimming at a high ratio of inertial to viscous forces, gives a flick of its tail and then glides for several body lengths. A bacterium, "swimming" in an environment dominated by viscosity, possesses virtually no inertia. When the bacterium stops moving its flagellum, the bacterium "coasts" for about a half of a microsecond, coming to a stop in a distance less than a tenth the diameter of a hydrogen atom. Similarly, the movement of molecules (nutrients toward, wastes away) in the vicinity of a bacterium is dominated by diffusion. Effective stirring — the generation of bulk flow through mechanical means — is impossible at very low Re. An understanding of the constraints imposed by life at low Reynolds numbers is essentially for understanding the prokaryotic biosphere.

Created with PubMed® Query: ( "reynolds number" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2023-01-23

Hasan HA, Sherza JS, Abed AM, et al (2022)

Thermal and flow performance analysis of a concentrated linear Fresnel solar collector with transverse ribs.

Frontiers in chemistry, 10:1074581.

This article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000-13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain absorber tube. Also, the inclusion of transverse ribs inside the absorber tube increases the average Nusselt number by approximately 115% at Re = 5,000 and 175% at Re = 13,000. For all Reynolds numbers, the skin friction coefficient of the circular tube with ribs in the CLFRC system is larger than that of the plain absorber tube. The coefficient of surface friction reduces as the Reynolds number increases. The performance assessment criterion was found to vary between 1.8 and 1.9 as the Reynolds number increases.

RevDate: 2023-01-21

Fuchs M, Lubos N, S Kabelac (2023)

Numerical Calculation of the Irreversible Entropy Production of Additively Manufacturable Off-Set Strip Fin Heat-Transferring Structures.

Entropy (Basel, Switzerland), 25(1): pii:e25010162.

In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the Fanning friction factor are numerically calculated in the Reynolds number range of 80-920. The structures are classified with respect to their entropy production number according to Bejan. This method is compared with the results from partial differential equations for the calculation of the irreversible entropy production rate due to shear stresses and heat conduction. This study reveals that the chosen temperature difference leads to deviation in terms of entropy production due to heat conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It is further shown that the variation in fin height and fin spacing has only a small influence on heat transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows a larger influence. With respect to the entropy production number, short and long fins, as well as large fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of a single structure shows that the entropy production rate due to heat conduction is dominated by the entropy production rate in the wall, while the fluid has only a minor influence.

RevDate: 2023-01-21

Rajupillai K, Alessa N, Eswaramoorthi S, et al (2022)

Thermal Behavior of the Time-Dependent Radiative Flow of Water-Based CNTs/Au Nanoparticles Past a Riga Plate with Entropy Optimization and Multiple Slip Conditions.

Entropy (Basel, Switzerland), 25(1): pii:e25010076.

This communication deliberates the time-reliant and Darcy-Forchheimer flow of water-based CNTs/gold nanoparticles past a Riga plate. In addition, nonlinear radiation, heat consumption and multiple slip conditions are considered. Entropy generation is computed through various flow parameters. A suitable transformation with symmetry variables is invoked to remodel the governing mathematical flow models into the ODE equations. The homotopy analysis scheme and MATLAB bvp4c method are imposed to solve the reduced ODE equations analytically and numerically. The impact of sundry flow variables on nanofluid velocity, nanofluid temperature, skin friction coefficient, local Nusselt number, entropy profile and Bejan number are computed and analyzed through graphs and tables. It is found that the nanofluid velocity is reduced by greater porosity and slip factors. The thickness of the thermal boundary layer increases with increasing radiation, temperature ratio, and heat consumption/generation parameters. The surface drag force is reduced when there is a higher Forchheimer number, unsteadiness parameter and porosity parameter. The amount of entropy created is proportional to the radiation parameter, porosity parameter and Reynolds number. The Bejan number profile increases with radiation parameter, heat consumption/generation parameter and the Forchheimer number.

RevDate: 2023-01-19

Méry F, D Sebbane (2023)

Aerodynamic characterisation of porous fairings: pressure drop and Laser Doppler Velocimetry measurements.

Scientific data, 10(1):39.

Wind tunnel measurements of pressure drop and steady and unsteady velocity field of a flow through fairing samples are described. 10 samples have been tested in pressure drop among which the velocity fields of 3 samples have been characterized by means of laser Doppler velocimetry. The samples are perforated plates, wiremesh plates or complex 3D geometries resulting from additive manufacturing methods. The Reynolds number of the experiments ranges from 55 000 to 117 000.

RevDate: 2023-01-17

Li Y, Pahlavan AA, Chen Y, et al (2023)

Oil-on-water droplets faceted and stabilized by vortex halos in the subphase.

Proceedings of the National Academy of Sciences of the United States of America, 120(4):e2214657120.

For almost 200 y, the dominant approach to understand oil-on-water droplet shape and stability has been the thermodynamic expectation of minimized energy, yet parallel literature shows the prominence of Marangoni flow, an adaptive gradient of interfacial tension that produces convection rolls in the water. Our experiments, scaling arguments, and linear stability analysis show that the resulting Marangoni-driven high-Reynolds-number flow in shallow water overcomes radial symmetry of droplet shape otherwise enforced by the Laplace pressure. As a consequence, oil-on-water droplets are sheared to become polygons with distinct edges and corners. Moreover, subphase flows beneath individual droplets can inhibit the coalescence of adjacent droplets, leading to rich many-body dynamics that makes them look alive. The phenomenon of a "vortex halo" in the liquid subphase emerges as a hidden variable.

RevDate: 2023-01-17

Jo BW, T Majid (2023)

Enhanced Range and Endurance Evaluation of a Camber Morphing Wing Aircraft.

Biomimetics (Basel, Switzerland), 8(1): pii:biomimetics8010034.

Flight range, endurance, maneuverability, and agility are the key elements that determine an aircraft's performance. Both conventional and morphing wing aircraft have been well studied and estimated in all aspects of performance. When considering the performance of morphing aircraft, most works address aspects of the aerodynamical performance such as L and D as well as flight envelopes for flight dynamics and control perspectives. However, the actual benefits of adopting morphing technologies in practical aspects such as aircraft operation, mission planning, and sustainability have not been addressed so far. Thus, this paper addresses the practical aspect of the benefits when adopting a camber morphing wing aircraft. Identical geometrical and computational conditions were applied to an already-existing aircraft: the RQ-7a Shadow. The wing structure was switched between a fixed wing and a camber morphing wing to generate conventional and morphing wing geometries. The fixed-wing cases had varying flap deflection angles, and the camber morphing wing cases had varying camber rates from 4% to 8%. Once the CL values of the fixed and morphing wing cases were matched up to two significant figures, the CD and CL/CD were analyzed for these matching cases to calculate the flight endurance, range, and improvement. When NACA 6410 is adopted, a 17% improvement in flight range and endurance average was expected. In the case of NACA 8410, an average 60% improvement was expected.

RevDate: 2023-01-17

Jain PK, Lanjewar A, Chaurasiya PK, et al (2023)

Experimental testing of solar-based air heater roughed with discrete V-down rib and staggered element.

Environmental science and pollution research international [Epub ahead of print].

A rough rectangular channel of solar-based air heater (SBAH) is made and tested. The work consists of an effort to perceive the proportion of heat discharge and frictional behavior of air passing over a roughened rectangular channel. The absorber surface of SBAH is roughed with discrete V-down rib and staggered element roughness having different values of relative rib pitch (P/e) that ranged from 6 to 14. Fixed parameters such as relative gap size (g/e), relative staggered element pitch (P'/P), numeral of gaps (Ng), relative staggered element size (r/g), and relative rib height (e/D) are considered 4, 0.4, 3,1, and 0.0433, respectively, all throughout the study. The flow Reynolds number (Re) changes from 4000 to 14,000; consequently the Nusselt number (Nu) and friction factor (f) reach up to 2.16 and 2.73 times, respectively, with respect to plane surface. The optimum rise in terms of thermal-hydraulic performance (THP) is gained analogous to a P/e of 10. The correlation for heat transfer function, R(e[+]), and roughness function, G(e[+]), is given to anticipate the performance of roughness.

RevDate: 2023-01-16

Voskoboinick V, Onyshchenko A, Voskoboinyk O, et al (2022)

Junction flow inside and around three-row cylindrical group on rigid flat surface.

Heliyon, 8(12):e12595 pii:S2405-8440(22)03883-X.

Groups of bluff bodies are widespread in nature and technology. These are the supports of bridge crossings, high-rise buildings in cities, offshore drilling and wind platforms, algae and vegetation in the seas and rivers, forests and other objects. The flow of air or water around such structures has a complex vortex and jet character and requires significant efforts in the process of scientific research to improve the environmental situation and reduce material and technical costs in the process of operating such structures. The purpose of the research is study the features of the generation and evolution of vortex and jet flows near and inside the three-row group of cylinders, which are installed on the rigid flat surface. The results of experimental studies showed that the flow around the group of cylinders had a complex unsteady nature, which is due to the interaction of vortex and jet flows typical flow elements with the three-row cylindrical group, which was located installed on the rigid flat surface. The three-row cylindrical group (31 piles with a diameter of 0.027 m) is a model of a bridge support, which was streamlined at a velocity of 0.06 m/s to 0.5 m/s (Reynolds number Red=(1600-6700) and Froude number Fr=(0.04-0.18)). Visual investigations and measurements of the velocity field were carried out inside and around the three-row structure. The features of the formation and evolution of vortex and jet flows inside and near the cylindrical group were established. Integral, spectral and correlation characteristics of the velocity fluctuation field were obtained. Mean, root-mean-square values of velocity and probability density functions of velocity fluctuations integrally displayed the changes in the velocity field in the spatial and temporal domain in the junction area of grillage and plate. The power spectral densities of velocity fluctuations and mutual correlation functions made it possible to study the features of the generation of the velocity fluctuation field in the frequency domain and its interrelationships in space. It was revealed that the velocity field inside the horseshoe vortex structures was multimodal. The spectral levels of velocity fluctuations at the periphery of the quasistable horseshoe vortex structures were higher than in the cores of these structures. The highest levels of the velocity fluctuation spectra were observed in front of the second lateral cylinder where the interaction of the vortex and jet flows took place. Discrete peaks in the spectral levels of velocity fluctuations are found at the frequencies of formation of large-scale wake vortices and the frequencies of formation of small-scale vortex structures of the shear layer, which are due to the Kelvin-Helmholtz instability. It has been established that the frequency of formation of shear layer vortices is (10-40) times higher than the frequency of formation of wake vortices.

RevDate: 2023-01-09

Munusamy A, Barik D, Sharma P, et al (2023)

Performance analysis of parabolic type solar water heater by using copper-dimpled tube with aluminum coating.

Environmental science and pollution research international [Epub ahead of print].

A solar water heater has been developed to convert solar radiation into heat for use in residential and commercial settings. The collector makes up the bulk of a solar water heating system. The solar energy is captured by the collector and transferred to the tube that delivers the working fluid, water. In addition to the collector's tube, which carries the working fluid, researchers have focused on the design of the collector's tube. This paper examines the performance of a parabolic plate solar water heater that uses a copper dimpled tube with aluminum-coated tube channels. During the test, the flow rate of base fluid was in the range of 1.0 to 3.0 kg/min in steps of 0.5. The performance of the solar water heater was also evaluated and verified using CFD. The test data such as friction factor, Reynolds number, uncertainty analysis, Nusselt number, solar collector efficiency, coefficient of convective heat transfer, linear dimpled tube velocity analysis, achieving maximum energy efficiency and thermal efficiency have been used to generate parametric values for parabolic plate solar water heaters. The results suggest that the best outcomes can be achieved with a mass flow rate of 2.5 kg/min and the overall thermal efficiency was raised to 31.85%, which is 11% greater than that of the plain tube with base fluid. At mass flow rates of 2.5 kg/min, the pressure drop was found to be 6.24% higher than that of 3.0 kg/min. The experimental results were analyzed and compared with the CFD results, and the overall deviation was ± 3.24% which is in the acceptable range.

RevDate: 2023-01-04

Kanies OS, Kremer KR, Mason BM, et al (2023)

A modular microfluidic device that uses magnetically actuatable microposts for enhanced magnetic bead-based workflows.

Lab on a chip [Epub ahead of print].

Magnetic beads have been widely and successfully used for target enrichment in life science assays. There exists a large variety of commercially available magnetic beads functionalized for specific target capture, as well as options that enable simple surface modifications for custom applications. While magnetic beads are ideal for use in the macrofluidic context of typical laboratory workflows, their performance drops in microfluidic contexts, such as consumables for point-of-care diagnostics. A primary cause is the diffusion-limited analyte transport in these low Reynolds number environments. A new method, BeadPak, uses magnetically actuatable microposts to enhance analyte transport, improving yield of the desired targets. Critical parameters were defined for the operation of this technology and its performance characterized in canonical life-science assays. BeadPak achieved up to 1000× faster capture than a microfluidic chamber relying on diffusion alone, enabled a significant specimen concentration via volume reduction, and demonstrated compatibility with a range of biological specimens. The results shown in this work can be extended to other systems that utilize magnetic beads for target capture, concentration, and/or purification.

RevDate: 2023-01-04

Tingting Q, Jianzhong L, Zhenyu O, et al (2023)

Settling mode of a bottom-heavy squirmer in a narrow vessel.

Soft matter [Epub ahead of print].

The lattice Boltzmann-immersed boundary (IB-LB) method is used to numerically simulate the sedimentation motion of a single two-dimensional, bottom-heavy squirmer in a narrow vessel. The effects of the swimming Reynolds number Res = 0.1-3, eccentricity distance l = 0.15d-0.75d, and density ratio of squirmer to fluid γ = 1.1-2.0 on the settlement motion characteristics are investigated and analyzed. The results showed that four settling modes exist: vertical motion, unilateral oscillation, oscillation, and tilt. The bottom-heavy neutral squirmer and puller settle in the vessel during vertical motion when Res is 0.1-1.5. By increasing Res and swimming strength |β|, the bottom-heavy squirmer becomes more self-driven, shifting its settling mode from vertical motion to unilateral oscillation or oscillation. Increasing l or |β| does not affect the bottom-heavy neutral squirmer and puller's vertical settling mode but shifts the bottom-heavy pusher's settling mode from unilateral oscillation to oscillation or oscillation to unilateral oscillation. Similarly, altering γ or |β| has no impact on the eccentric neutral squirmer and puller's settling mode; however, pushers will switch from oscillation mode to attraction mode or from oscillation mode to tilt mode. Additionally, it was found that after the squirmer collided with the bottom wall, the bottom-heavy squirmer settled at the bottom of the vessel in a different state of motion.

RevDate: 2022-12-30

Abed AM, Mouziraji HR, Bakhshi J, et al (2022)

Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins.

Frontiers in chemistry, 10:1057196.

This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin's efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are evaluated. The outcomes showed that the arc-shaped fins could greatly enhance the PCMs' melting rate and the associated heat-storage properties. The melting rate is 17% and 93.1% greater for the case fitted with an inline distribution of the fins with a circular angle of 90° and an upward direction, respectively, than the cases with uniform rectangular fins and no fins, which corresponded to the shorter melting time of 14.5% and 50.4%. For the case with arc-shaped fins with a 90° circular angle, the melting rate increases by 9% using a staggered distribution. Compared to the staggered fin distribution, adding an extra fin to the bottom of the domain indicates adverse effects. The charging time reduces by 5.8% and 9.2% when the Reynolds number (Re) rises from 500 to 1000 and 1500, respectively, while the heat-storage rate increases by 6.3% and 10.3%. When the fluid inlet temperature is 55°C or 50°C, compared with 45°C, the overall charging time increases by 98% and 47%, respectively.

RevDate: 2022-12-29

Issa M, Haupt D, Muddemann T, et al (2022)

Investigation of an electrolysis system with boron-doped diamond anode and gas diffusion cathode to remove water micropollutants.

Water science and technology : a journal of the International Association on Water Pollution Research, 86(12):3236-3247.

Using electrolysis systems to degrade organics in wastewater encourages this technique to remove micropollutants (MPs) in different types of water. In this work, a cell consisting of an anode as a boron-doped diamond (BDD) electrode combined with a gas diffusion (GDE) cathode without a separator showed that MPs degradation can be effectively achieved. Investigating different operating parameters, it was stated that applying a low current density (2 mA/cm[2]) and setting the Reynolds number of the electrolyte flow through the cell at the laminar range raised the treatment time by 3-fold at the same energy demand. This arrangement increased the MPs removal. Some substances like diclofenac were removed up to 84% at a longer treatment time of 180 min coupled with an increase in energy demand. The results at the mentioned parameters indicated an adequate generation rate of radicals needed to remove MPs and the oxidation reactions were promoted. The results show high potential to the investigated electrolysis system in removing MPs in wastewater under considering the need for further reduction of the energy demand.

RevDate: 2022-12-27

Abbas Al-Amshawee SK, MY Bin Mohd Yunus (2022)

Electrodialysis desalination: The impact of solution flowrate (or Reynolds number) on fluid dynamics throughout membrane spacers.

Environmental research pii:S0013-9351(22)02442-2 [Epub ahead of print].

The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.

RevDate: 2022-12-23

de Timary G, Rousseau CJ, Van Melderen L, et al (2022)

Shear-enhanced sorting of ovoid and filamentous bacterial cells using pinch flow fractionation.

Lab on a chip [Epub ahead of print].

In this paper, we experimentally investigate the influence of the flow rate on the trajectory of ovoid and filamentous bacterial cells of E. coli in a low aspect ratio pinch flow fractionation device. To that aim, we vary the Reynolds number over two orders of magnitude, while monitoring the dynamics of the cells across our device. At low flow rates, filamentous cells adopt several rotational motions in the pinched segment, which are induced both by the shear rate and by their close interactions with the nearest wall. As a result, the geometrical centre of the filamentous cells deviates towards the centre of the channel, which increases their effective sorting diameter depending on the length of their major axis as well as on the rotational mode they adopt in the pinch. As the flow rate increases, particles are forced to align vertically in the pinch, in the direction of the main shear gradient, which reduces the amplitude of the lateral deviation generated by their rotation. The trajectory of the particles in the expansion is directly determined by their position at the pinch outlet. As a consequence, the position of the filamentous cells at the outlet of the device strongly depends on the flow rate as well as on the length of their major axis. Based on these observations we optimized the flow conditions to successfully extract an ultra high purity sample of filamentous cells from a solution containing mainly ovoid cells.

RevDate: 2022-12-23

Marnoto S, SM Hashmi (2022)

Application of droplet migration scaling behavior to microchannel flow measurements.

Soft matter [Epub ahead of print].

In confined channels in low Reynolds number flow, droplets drift perpendicular to the flow, moving across streamlines. The phenomenon has proven useful for understanding microfluidic droplet separation, drug delivery vehicle optimization, and single-cell genomic amplification. Particles or droplets undergo several migration mechanisms including wall migration, hydrodynamic diffusion, and migration down gradients of shear. In simple shear flow only wall migration and hydrodynamic diffusion are present. In parabolic flow, droplets also move down gradients of shear. The resulting separation depends on parameters including particle size and stiffness, concentration, and flow rate. Computational methods can incorporate these effects in an exact manner to predict margination phenomena for specific systems, but do not generate a descriptive parametric dependence. In this paper, we present a scaling model that elucidates the parametric dependence of margination on emulsion droplet size, volume fraction, shear rate and suspending fluid viscosity. We experimentally measure the droplet depletion layer of silicone oil droplets and compare the results to theoretical scaling behavior that includes hydrodynamic diffusion and wall migration with and without an added shear-gradient migration. Results demonstrate the viability and limitations of applying a simple scaling behavior to experimental systems to describe parametric dependence. Our conclusions open the possibility for parametric descriptions of migration with broad applicability to particle and droplet systems.

RevDate: 2022-12-23

Ayas M, Skočilas J, Štípek J, et al (2022)

An Approximate Method for Predicting the Friction Factor of Viscoplastic Shear-Thinning Fluids in Non-Circular Channels of Regular Cross-Sections.

Polymers, 14(24):.

The objective of this study is to provide a straightforward generalized simple and quick method for the prediction of the friction factor for fully developed laminar flow of viscoplastic shear-thinning fluids in non-circular channels of regular cross-sections. The most frequently represented substances processed under these conditions are polymers in the processing and plastics industry. A generalized approximate method was proposed to express the relationship between the friction factor and the Reynolds number for the Herschel-Bulkley rheological model. This method uses the generalized Reynolds number for power-law fluids. Moreover, an additional simplified method for rapid engineering calculations was obtained as well. The suggested method was verified by comparing experimental data for concentric annulus found in the literature and results from simulations for concentric annulus, rectangular, square duct with a central cylindrical core and elliptical cross-sections. The results showed that the suggested methods enable us to estimate the friction factor with high accuracy for the investigated geometries.

RevDate: 2022-12-23
CmpDate: 2022-12-23

Moriconi L, RM Pereira (2022)

Statistics of extreme turbulent circulation events from multifractality breaking.

Physical review. E, 106(5-1):054121.

Recent numerical explorations of extremely intense circulation fluctuations at high Reynolds number flows have brought to light novel aspects of turbulent intermittency. Vortex gas modeling ideas, which are related to a picture of turbulence as a dilute system of vortex tube structures, have been introduced alongside such developments, leading to accurate descriptions of the core and the intermediate tails of circulation probability distribution functions (cPDFs), as well as the scaling exponents associated to statistical moments of circulation. We extend the predictive reach of the vortex gas picture of turbulence by emphasizing that multifractality breaking, one of its salient phenomenological ingredients, is the key concept to disclose the asymptotic form of cPDF tails. A remarkable analytical agreement is found with previous results derived within the framework of the instanton approach to circulation intermittency, a functional formalism devised to single out the statistically dominant velocity configurations associated to extreme circulation events.

RevDate: 2022-12-23
CmpDate: 2022-12-23

Maity R, PS Burada (2022)

Near- and far-field hydrodynamic interaction of two chiral squirmers.

Physical review. E, 106(5-1):054613.

Hydrodynamic interaction strongly influences the collective behavior of microswimmers. With this work, we study the behavior of two hydrodynamically interacting self-propelled chiral swimmers in the low Reynolds number regime, considering both the near- and far-field interactions. We use the chiral squirmer model [see Burada et al., Phys. Rev. E 105, 024603 (2022)2470-004510.1103/PhysRevE.105.024603], a spherically shaped body with nonaxisymmetric surface slip velocity, which generalizes the well-known squirmer model. The previous work was restricted only to the case, while the far-field hydrodynamic interaction was influential among the swimmers. It did not approach the scenario while both the swimmers are very close and lubrication effects become dominant. We calculate the lubrication force between the swimmers when they are very close. By varying the slip coefficients and the initial configuration of the swimmers, we investigate their hydrodynamic behavior. In the presence of lubrication force, the swimmers either repel each other or exhibit bounded motion where the distance between the swimmers alters periodically. We identify the possible behaviors exhibited by the chiral squirmers, such as monotonic divergence, divergence, and bounded, as was found in the previous study. However, in the current study, we observe that both the monotonic convergence and the convergence states are converted into divergence states due to the arising lubrication effects. The lubrication force favors the bounded motion in some parameter regimes. This study helps to understand the collective behavior of dense suspension of ciliated microorganisms and artificial swimmers.

RevDate: 2022-12-23
CmpDate: 2022-12-23

Lutz T, Richter SK, AM Menzel (2022)

Effect of boundaries on displacements and motion in two-dimensional fluid or elastic films and membranes.

Physical review. E, 106(5-1):054609.

Thin fluid or elastic films and membranes are found in nature and technology, for instance, as confinements of living cells or in loudspeakers. When applying a net force, the resulting flows in an unbounded two-dimensional incompressible low-Reynolds-number fluid or displacements in a two-dimensional linearly elastic solid seem to diverge logarithmically with the distance from the force center, which has led to some debate. Recently, we have demonstrated that such divergences cancel when the total (net) force vanishes. Here, we illustrate that if a net force is present, the boundaries play a prominent role. Already a single no-slip boundary regulates the flow and displacement fields and leads to their decay to leading order inversely in distance from a force center and the boundary. In other words, it is the boundary that stabilizes the system in this situation, unlike the three-dimensional case, where an unbounded medium by itself is able to absorb a net force. We quantify the mobility and displaceability of an inclusion as a function of the distance from the boundary, as well as interactions between different inclusions. In the case of free-slip boundary conditions, a kinked boundary is necessary to achieve stabilization.

RevDate: 2022-12-23

Guan X, Xie Z, Nan G, et al (2022)

Thermal-Hydrodynamic Behavior and Design of a Microchannel Pin-Fin Hybrid Heat Sink.

Micromachines, 13(12):.

A three-dimensional convective heat transfer model of a microchannel pin-fin hybrid heat sink was established. Considering the non-uniform heat generation of 3D stacked chips, the splitting distance of pin-fins was optimized by minimizing the maximum heat sink temperature under different heat fluxes in the hotspot, the Reynolds numbers at the entrance of the microchannel, and the proportions of the pin-fin volume. The average pressure drop and the performance evaluation criteria were considered to be the performance indexes to analyze the influence of each parameter on the flow performance and comprehensive performance, respectively. The results showed that the maximum temperature of the hybrid heat sink attained a minimum value with an increase in the splitting distance. The average pressure drop in the center passage of the microchannel first increased and then decreased. Furthermore, the optimal value could not be simultaneously obtained with the maximum temperature. Therefore, it should be comprehensively considered in the optimization design. The heat flux in the hotspot was positively correlated with the maximum heat sink temperature. However, it had no effect on the flow pressure drop. When the Reynolds number and the pin-fin diameter increased, the maximum heat sink temperature decreased and the average pressure drop of the microchannel increased. The comprehensive performance of the hybrid heat sink was not good at small Reynolds numbers, but it significantly improved as the Reynolds number gradually increased. Choosing a bigger pin-fin diameter and the corresponding optimal value of the splitting distance in a given Reynolds number would further improve the comprehensive performance of a hybrid heat sink.

RevDate: 2022-12-22

Salman M, Chauhan R, Singh T, et al (2022)

Experimental investigation and optimization of dimple-roughened impinging jet solar air collector using a novel AHP-MABAC approach.

Environmental science and pollution research international [Epub ahead of print].

The effect of the flow and geometric parameters of a dimple-roughened absorber plate on the enactment of solar air collectors (SACs) with air-impinged jets was investigated in this study. The performance-defining criteria (PDCs) of a jet-impinged dimple-roughened SAC (JIDRSAC)-forced convection airflow system are significantly affected by variations in the system's control factors (CFs), such as the arc angle (αaa) ranging from 30° to 75°, dimple pitch ratio (pd/Dh) ranging from 0.269 to 1.08, and dimple height ratio (ed/Dh) ranging from 0.016 to 0.0324. The constant parameters of the jet slot are a stream-wise pitch ratio (Xi/Dhd) is 1.079, a span-wise pitch ratio (Yi/Dhd) is 1.619, and a jet diameter(Di/Dhd) is 0.081. Based on the combined approach of the analytic hierarchy process and multi-attributive border approximation area comparison (AHP-MABAC), the Reynolds number (Re) = 15,000, αaa = 60°, pd/Dh = 0.27, and ed/Dh = 0.027 depicted the best alternative (A-9) set among 16 alternatives to deliver the optimal performance of the JIDRSAC. The jet impingement pass compared to the smooth pass, the Nusselt number increased by 2.16-2.81, and friction factor increased by 3.35-5.95, and JIDRSAC was compared to the jet impingement pass, exhibiting an enhancement in Nusselt number and friction factor in the range of 0.55-0.80 and 0.05-0.15, respectively. In addition, sensitivity analysis is used to examine the ranking's stability and reliability in relation to the PDC weights.

RevDate: 2022-12-22

Raju LB, Sastry GR, Gugulothu SK, et al (2022)

Computational analysis on solar air heater with combination of alternate dimple protrusions and intrusions on absorber plate with one rounded corner triangular duct.

Environmental science and pollution research international [Epub ahead of print].

This study focuses on improving heat transfer by converting one of the corners of the duct to a rounded structure. To study the effect of dimpled shaped protrusions and intrusions on the rounded corner triangular duct with a constant radius of curvature by varying relative streamwise distance (z/e) with a constant transverse distance x'/e = 10,14 and 18. Steady-state, turbulent flow heat transfer under thermal boundary conditions is to be analyzed by varying different Reynolds numbers (5600 to 21000). The duct with dimple-shaped protrusions and intrusions is compared with a simple triangular duct. Optimization of relative horizontal distance (z'/e) by keeping constant protrusion to protrusion distance as z/e = 28 and relative transverse distance as x/e = 10, 14, and 18. It was noted that there was a significant loss in friction and a rise in heat transfer. The relationship between friction factor and Nusselt number was formulated using operating and roughness parameters, using the data collected from the numerical investigation. The friction factor increases significantly with roughness elements, and it is maximum for x'/e = 20 at a low Reynolds number. Nusselt number increases with roughness elements, and it is maximum for x'/e = 14 for all Reynolds numbers and all the models. Enhancement of Nusselt number is due to increase of local heat transfer because of local vortex neat heat transfer zone. The maximum outlet temperature is obtained at a low Reynolds number. The maximum temperature of the heated surface is obtained for Rc = 0.67 h and the minimum for Rc = 0.33 h.

RevDate: 2022-12-19

Lim S, Du Y, Lee Y, et al (2022)

Fabrication, control, and modeling of robots inspired by flagella and cilia.

Bioinspiration & biomimetics, 18(1):.

Flagella and cilia are slender structures that serve important functionalities in the microscopic world through their locomotion induced by fluid and structure interaction. With recent developments in microscopy, fabrication, biology, and modeling capability, robots inspired by the locomotion of these organelles in low Reynolds number flow have been manufactured and tested on the micro-and macro-scale, ranging from medicalin vivomicrobots, microfluidics to macro prototypes. We present a collection of modeling theories, control principles, and fabrication methods for flagellated and ciliary robots.

RevDate: 2022-12-14
CmpDate: 2022-12-15

Hafez NM, Alsemiry RD, Alharbi SA, et al (2022)

Peristaltic transport characteristics of a second-grade dusty fluid flown with heat transfer through a tube revisited.

Scientific reports, 12(1):21605.

This paper provides a rudimentary insight into the influence of heat transfer on the transport characteristics of a second-grade dusty fluid flown in a flexible tube with walls subjected to the peristaltic motion. Both dust particles and fluid movements were modeled using the coupled differential equations. The effects of different types of parameters such as Reynolds number, Prandtl number, Grashof number, wave number, wave amplitude ratio, second grade parameter as well as nature of the heat source and sink are studies on the dust particles velocity, fluid velocity, temperature, pressure profiles of the fluid and streamline patterns of the fluid. The derived equations were solved analytically via the standard perturbation method to determine the fluid temperature, streamline pattern and velocity of the dust particles as well as fluid. The values in the increase of pressure and frictional forces were calculated numerically using DSolve of the Mathematica 11 software (https://www.wolfram.com/mathematica/new-in-11/). In addition, the trapping mechanisms were ascertained by computing the streamlines and various physical parameters. The obtained results were validated with the state-of-the-art literature reports. It was claimed that our systematic approach may constitute a basis for accurately examining the impact of heat transfer on the peristaltic transport of a complex fluid through narrow tubes, useful for diverse medical applications such as the gastric fluid flow through the small intestine during endoscopy. Numerical results are computed and discussed numerically and presented through graphs. The impacts of pertinent parameters on the aforementioned quantities are examined by plotting graphs on the basis of computational results. The results indicate that the effect of parameters is very pronounced. A suitable comparison has been made with the prior results in the literature as a limiting case of the considered problem.

RevDate: 2022-12-13
CmpDate: 2022-12-14

Abd-Alla AM, Abo-Dahab SM, Thabet EN, et al (2022)

Heat and mass transfer for MHD peristaltic flow in a micropolar nanofluid: mathematical model with thermophysical features.

Scientific reports, 12(1):21540.

According to a survey of the literature, nanofluids are superior to traditional fluids at transferring heat. A detailed analysis of the models mentioned above is crucial since there are large gaps in the illumination of current solutions for improving heat transfer in nanomaterials. The ongoing investigation's purpose is to ascertain the tiny size gold particles drift in free with the heat and mass transfer, buoyancy forces, thermophoresis, and Brownian motion of a micropolar nanofluid being transported through a porous medium in an asymmetric channel with a uniform magnetic field using a long-wavelength and low Reynolds number approximation. The resulting dimensionless nonlinear governing equations have been numerically solved using a MATLAB software and the Runge-Kutta-Fehlberg integration scheme. Two comparisons with previously investigated problems are also made to confirm our findings, and an excellent concurrence is discovered. As a result, trustworthy results are being given. Numerical solutions are used to describe the effects of different thermal-fluidic parameters on velocity profiles, temperature, concentration, micropolar rotation, pressure gradient, shear stress, heat flux, and nanoparticle volume flux, etc. Tables, graphs, and bar charts are used to present and discuss numerical results that have been produced. A comparison of the resulting numerical solution to earlier literature also reveals a satisfactory level of agreement. Insight into real-world applications such nanofluidic, energy conservation, friction reduction, and power generation are provided by this work. Furthermore, the Brownian and thermophoresis parameters behave significantly differently in a concentration field. On the other hand, the study puts forward an important note that for peristaltic flow of a micropolar fluid with nanoparticles can be controlled by suitably adjusting the micropolar parameter, thermophoresis parameter, nanoparticle Grashof number, and Brownian motion parameter.

RevDate: 2022-12-12

Shuvo MS, Hasib MH, S Saha (2022)

Entropy generation and characteristics of mixed convection in lid-driven trapezoidal tilted enclosure filled with nanofluid.

Heliyon, 8(12):e12079.

The investigation of steady, incompressible, laminar mixed convective fluid flow within two different types of tilted lid-driven trapezoidal enclosures filled with nanofluid composed of water and Al2O3 nanoparticles has been carried out in this paper. The upper wall of the enclosure is an isothermal cold surface that travels at a constant speed, while the bottom surface of the cavity maintains a constant high temperature. Non-dimensional governing equations along with the appropriate boundary conditions are solved using Galerkin finite element technique. Parametric simulation has been conducted by varying tilt angle of the base wall from 0° to 45°, Reynolds number from 0.1 to 10[3], Grashof number from 10[-2] to 10[6], and Richardson number between 0.1 and 10 for three different cases. The streamlines and the isotherms are used to describe the fluid flow and heat transfer characteristics within the enclosure. Besides, the quantitative evaluations of thermal enhancement in terms of the average Nusselt number, average fluid temperature, and Bejan number of the enclosure are presented. Effects of base wall tilt angle and the presence of nanofluid on convection heat transmission characteristics as well as Bejan number are also explored.

RevDate: 2022-12-12

Hamza NFA, S Aljabair (2022)

Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger.

Heliyon, 8(12):e11950.

The thermal performance parameters of an improved heat exchanger tube fitted with various vortex generator inserts were investigated using numerical and experimental methods. The governing equations have been solved numerically by a Finite Volume approach employing the turbulence model (κ - ε). Two twisted tape types, which being inserted across a circular pipe (plain twisted tape) and (Double V-cut twisted tape), have been achieved. The hybrid nanofluid is prepared by using metal oxide [Al2O3+CuO] with distilled water at volume fraction range (0.6%, 1.2% and 1.8%), Reynolds number range (3560-8320) at twisted ratio (9.25). The experimental data for a plain tube, plain twisted tapes and double v-cut twisted tape are validated using the standard correlations available in the literature. The effect of such variables upon the average Nusselt number, friction factor, and thermal performance factor have been investigated and compared with a plain tube at the same conditions. As compared to plain twisted tape, the tube equipped with a double V-cut twisted tape with hybrid nanofluid displayed increased thermal performance. The greater vortex flow induced by the V-cuts results in more active thermal boundary layer disturbance, resulting in a greater heat transfer rate. The results show that thermal performance factor for hybrid nanofluid in plain circular tube at (∅ = 1.8 %) and Reynolds number (8320) is about (1.068), when the plain twisted tape and double v-cut twisted tape inserted with hybrid nanofluid the thermal performance factor increased to (1.33) and (1.37), respectively. The results show a similar trend for both numerical and experimental cases. The comparison between the experimental and numerical results have maximum error was (9.7)%.

RevDate: 2022-12-11

Arshad M, Hassan A, Haider Q, et al (2022)

Rotating Hybrid Nanofluid Flow with Chemical Reaction and Thermal Radiation between Parallel Plates.

Nanomaterials (Basel, Switzerland), 12(23): pii:nano12234177.

This research investigates the two different hybrid nanofluid flows between two parallel plates placed at two different heights, y0 and yh, respectively. Water-based hybrid nanofluids are obtained by using Al2O3, TiO2 and Cu as nanoparticles, respectively. The upper-level plate is fixed, while the lower-level plate is stretchable. The fluid rotates along the y-axis. The governing equations of momentum, energy and concentration are transformed into partial differential equations by using similarity transformations. These transformed equations are grasped numerically at MATLAB by using the boundary value problem technique. The influence of different parameters are presented through graphs. The numerical outcomes for rotation, Nusselt, Prandtl, and Schmidt numbers are obtained in the form of tables. The heat transfer rate increases by augmentation in the thermophoresis parameter, while it decays by increasing the Reynolds number. Oxide nanoparticles hybrid nanofluid proved more efficient as compared to mixed nanoparticles hybrid nanofluid. This research suggests using oxide nanoparticles for good heat transfer.

RevDate: 2022-12-08

Dong C, Wang L, Huang YM, et al (2022)

Reconnection-driven energy cascade in magnetohydrodynamic turbulence.

Science advances, 8(49):eabn7627.

Magnetohydrodynamic turbulence regulates the transfer of energy from large to small scales in many astrophysical systems, including the solar atmosphere. We perform three-dimensional magnetohydrodynamic simulations with unprecedentedly large magnetic Reynolds number to reveal how rapid reconnection of magnetic field lines changes the classical paradigm of the turbulent energy cascade. By breaking elongated current sheets into chains of small magnetic flux ropes (or plasmoids), magnetic reconnection leads to a previously undiscovered range of energy cascade, where the rate of energy transfer is controlled by the growth rate of the plasmoids. As a consequence, the turbulent energy spectra steepen and attain a spectral index of -2.2 that is accompanied by changes in the anisotropy of turbulence eddies. The omnipresence of plasmoids and their consequences on, for example, solar coronal heating, can be further explored with current and future spacecraft and telescopes.

RevDate: 2022-12-04

Song F, Yan Y, J Sun (2022)

Review of insect-inspired wing micro air vehicle.

Arthropod structure & development pii:S1467-8039(22)00086-X [Epub ahead of print].

Micro air vehicles (MAVs) have wide application prospects in environmental monitoring, disaster rescue and other civil fields because of their flexibility and maneuverability. Compared with fixed wing and rotary wing aircraft, flapping wing micro air vehicles (FWMAVs) have higher energy utilization efficiency and lower cost and have attracted extensive attention from scientists. Insects have become excellent bionic objects for the study of FWMAVs due to their characteristics of low Reynolds number, low noise, hoverability, small size and light weight. By mimicking flying insects, it may be possible to create highly efficient biomimetic FWMAVs. In this paper, insect flight aerodynamics are reviewed, and the mechanism designs of insect-inspired FWMAVs and their aerodynamics are summarized, including the wing type effect, vibration characteristics and aerodynamic characteristics of the flapping wing.

RevDate: 2022-12-05

Jiang H, Wang D, Liu S, et al (2022)

Experimental Evidence for the Existence of the Ultimate Regime in Rapidly Rotating Turbulent Thermal Convection.

Physical review letters, 129(20):204502.

What is the final state of turbulence when the driving parameter approaches infinity? For the traditional Rayleigh-Bénard convection, a possible ultimate scaling dependence of the heat transport (quantified by the Nusselt number Nu) on the Rayleigh number (Ra), which can be extrapolated to arbitrarily high Ra, is predicted by theories. The existence of the ultimate scaling has been intensively debated in the past decades. In this Letter, we adopt a novel supergravitational thermal convection experimental setup to study the possible transition to the ultimate regime. This system is characterized by the combined effects of radial-dependent centrifugal force, the Earth's gravity, and the Coriolis force. With an effective gravity up to 100 times the Earth's gravity, both Ra and shear Reynolds number can be boosted due to the increase of the buoyancy driving and the additional Coriolis forces. With over a decade of Ra range, we demonstrate the existence of ultimate regime with four direct evidences: the ultimate scaling dependence of Nu versus Ra; the appearance of the turbulent velocity boundary layer profile; the enhanced strength of the shear Reynolds number; and the new statistical properties of local temperature fluctuations. The present findings will greatly improve the understanding of the flow dynamics in geophysical and astrophysical flows.

RevDate: 2022-12-05

Rorai C, Toschi F, I Pagonabarraga (2022)

Coexistence of Active and Hydrodynamic Turbulence in Two-Dimensional Active Nematics.

Physical review letters, 129(21):218001.

In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that, in two dimensions, the active forcing alone is able to trigger hydrodynamic turbulence leading to the coexistence of active and inertial turbulence. This type of flow develops for sufficiently active and extensile flow-aligning nematics. We observe that the combined effect of an extensile nematic and large values of the flow-aligning parameter leads to a broadening of the elastic energy spectrum that promotes a growth of kinetic energy able to trigger an inverse energy cascade.

RevDate: 2022-11-30

Robles V, Gonzalez-Parra JC, Cuando-Espitia N, et al (2022)

The effect of scalable PDMS gas-entrapping microstructures on the dynamics of a single cavitation bubble.

Scientific reports, 12(1):20379.

The effect of gas-entrapping polydimethylsiloxane (PDMS) microstructures on the dynamics of cavitation bubbles laser-induced next to the PDMS surface is investigated and compared against the cavitation dynamics next to a flat smooth boundary. Local pressure gradients produced by a cavitation bubble cause the air pockets entrapped in the PDMS microstructures to expand and oscillate, leading to a repulsion of the cavitation bubble. The microstructures were fabricated as boxed crevices via a simple and scalable laser ablation technique on cast acrylic, allowing for testing of variable structure sizes and reusable molds. The bubble dynamics were observed using high speed photography and the surrounding flows were visualized and quantified using particle tracking velocimetry. Smaller entrapped air pockets showed an enhanced ability to withstand deactivation at three stand-off distances and over 50 subsequent cavitation events. This investigation provides insight into the potential to direct the collapse of a cavitation bubble away from a surface to mitigate erosion or to enhance microfluidic mixing in low Reynolds number flows.

RevDate: 2022-11-29
CmpDate: 2022-11-29

Luo J, Ma X, Wang L, et al (2022)

The Influence of Short-Term Heavy Rainfall on Hydraulic Characteristics and Rill Formation in the Yuanmou Dry-Hot Valley.

International journal of environmental research and public health, 19(22): pii:ijerph192215232.

Rill erosion is one of the major environmental problems in the world; it is an important factor with regard to land degradation and has a serious impact on production and daily life in the region. The widely distributed Yuanmou group stratum promotes the development of rill erosion, whereby the strong time-concentrated rainfall and the alternating arid-humid climate prepare the ground for the development of rills in soils. Therefore, a study of the processes of slope rill erosion was carried out, and a gravel-soil slope in the Yuanmou dry-hot valley was chosen to simulate short-term heavy rainfall (25 mm/h) (No. 1 plot) and moderate rainfall (15 mm/h) (No. 2 plot), to study the erosion processes of soil and the dynamic characteristics of runoff involved in erosion. The study results showed that the width of runoff was significantly different between the two plots, while the depth of runoff was not significantly different. During the rill formation process, the width of the two plots first decreased and then increased with increasing washout duration, while its depth did not change significantly. Flow was the key factor in determining the hydraulic characteristics of runoff, and it had a significant or extremely significant positive correlation with hydraulic characteristics parameters, except in the case of Fr (Froude number) (r = 0.039). The total sediment content (CS) of plot No. 1 (0.158 g/cm[3]) was significantly different from that of plot No. 2 (0.153 g/cm[3]), and both CSs in the two plots decreased with increasing washout duration. The CS had an extremely significant negative correlation with τ (runoff shear force) (r = -0.863 **) and DW-f (Darcy-Weisbach drag coefficient) (r = -0.863 **) and a significant negative correlation with Re (Reynolds number) (r = -0.735 *) in the short-term heavy rainfall experiment, while the CS had a significant positive correlation with V (velocity) (r = 0.814 *), R (hydraulic radius) (r = 0.811 *) and P (unit stream power) (r = 0.811 *) in the moderate rainfall experiment. The results of this study will help guide further examination of the processes involved in the dynamic mechanisms of rill erosion on slopes under short-term heavy rainfall conditions.

RevDate: 2022-11-29

Kumari N, Alam T, Ali MA, et al (2022)

A Numerical Investigation on Hydrothermal Performance of Micro Channel Heat Sink with Periodic Spatial Modification on Sidewalls.

Micromachines, 13(11):.

Electronic gadgets have been designed to incorporating very small components such as microcontrollers, electronic chips, transistors, microprocessors, etc. These components are exceptionally heat sensitive and can be wrecked if heat is not released. As a result, the thermal control of such components is critical to their optimum performance and extended life. The use of a microchannel heat sink (MCHS) has shown promising solutions to remove the excess heat. In this paper, we have proposed a novel design of MCHS and investigated it numerically. Four different surface modifications on the sidewall of the passage, namely, extended triangular surface (ETS), extended circular surface (ECS), triangular groove surface (TGS), and the circular groove surface (CGS) in the passage of the microchannel have been exploited in the Reynolds number of 100-900. In the presence of geometrical modification, the cooling capacities have been enhanced. The results show that the Nusselt numbers of ETS-MCHS, ECS-MCHS, TGS-MCHS, and CGS-MCHS are increased by 4.30, 3.61, 1.62, and 1.41 times in comparison to the Nusselt number of MCHS with smooth passage, while the friction factor values are increased by 7.33, 6.03, 2.74, and 1.68 times, respectively. In addition, the thermohydraulic performance parameter (THPP) has been evaluated and discussed. The fact that MCHS have THPP values greater than unity demonstrates that the passage's geometries are a practical means of achieving effective thermal management.

RevDate: 2022-12-03

Toyama K, Togi F, S Harada (2022)

Mass Transfer from Mobile to Immobile Regions in Irregularly Shaped Micro-Channels at Low Reynolds Number.

Ground water [Epub ahead of print].

Transient mass transfer in rough-walled micro-channels was investigated experimentally. We conducted experiments using rough-walled channels with various irregularities at small Reynolds number conditions. Mass transfer in the mainstream (mobile region) and dead water region (immobile region) were quantified using an image analysis technique based on absorption photometry. The experimental results showed that the solute dispersion in the mobile region was influenced by the irregular shape of the channel wall complicatedly. In contrast, mass transfer in the immobile region occurred by molecular diffusion independently on the wall roughness in our experimental conditions. The irregular shape of channel wall may enhance the mass transfer in mobile region by distorting the velocity distribution (Togi et al., 2020), while the solute redistribution to immobile region may suppress it in streamwise direction, just on a longer time scale. We developed a mass transfer model analogous to Mobile-Immobile model (MIM model) proposed by previous studies. The concept of the model is the same as the previous study (Zhou et al., 2019) and the coefficients of the model describing mass transfer in each region were quantified from the experimental results as functions of geometric characteristics of the rough-walled channel. In addition, mass transfer coefficient from mobile to immobile regions were derived mathematically based on the experimental results. The MIM model with the coefficients derived in this study well describes solute dispersion in variously shaped irregular channels quantitatively.

RevDate: 2022-11-22

Kaziz S, Ben Mariem I, Echouchene F, et al (2022)

Taguchi optimization of integrated flow microfluidic biosensor for COVID-19 detection.

European physical journal plus, 137(11):1235.

In this research, Taguchi's method was employed to optimize the performance of a microfluidic biosensor with an integrated flow confinement for rapid detection of the SARS-CoV-2. The finite element method was used to solve the physical model which has been first validated by comparison with experimental results. The novelty of this study is the use of the Taguchi approach in the optimization analysis. An L 8 2 7 orthogonal array of seven critical parameters-Reynolds number (Re), Damköhler number (Da), relative adsorption capacity (σ), equilibrium dissociation constant (KD), Schmidt number (Sc), confinement coefficient (α) and dimensionless confinement position (X), with two levels was designed. Analysis of variance (ANOVA) methods are also used to calculate the contribution of each parameter. The optimal combination of these key parameters was Re = 10[-2], Da = 1000, σ = 0.5, K D = 5, Sc = 10[5], α = 2 and X = 2 to achieve the lowest dimensionless response time (0.11). Among the all-optimization factors, the relative adsorption capacity (σ) has the highest contribution (37%) to the reduction of the response time, while the Schmidt number (Sc) has the lowest contribution (7%).

RevDate: 2022-11-18

Jhun CS, Xu L, Siedlecki C, et al (2022)

Kinetic and Dynamic Effects on Degradation of von Willebrand Factor.

ASAIO journal (American Society for Artificial Internal Organs : 1992) pii:00002480-990000000-00125 [Epub ahead of print].

The loss of high molecular weight multimers (HMWM) of von Willebrand factor (vWF) in aortic stenosis (AS) and continuous-flow left ventricular assist devices (cf-LVADs) is believed to be associated with high turbulent blood shear. The objective of this study is to understand the degradation mechanism of HMWM in terms of exposure time (kinetic) and flow regime (dynamics) within clinically relevant pathophysiologic conditions. A custom high-shear rotary device capable of creating fully controlled exposure times and flows was used. The system was set so that human platelet-poor plasma flowed through at 1.75 ml/sec, 0.76 ml/sec, or 0.38 ml/sec resulting in the exposure time (texp) of 22, 50, or 100 ms, respectively. The flow was characterized by the Reynolds number (Re). The device was run under laminar (Re = 1,500), transitional (Re = 3,000; Re = 3,500), and turbulent (Re = 4,500) conditions at a given texp followed by multimer analysis. No degradation was observed at laminar flow at all given texp. Degradation of HMWM at a given texp increases with the Re. Re (p < 0.0001) and texp (p = 0.0034) are significant factors in the degradation of HMWM. Interaction between Re and texp, however, is not always significant (p = 0.73). http://links.lww.com/ASAIO/A920.

RevDate: 2022-11-21

Bermudez G, A Alexakis (2022)

Saturation of Turbulent Helical Dynamos.

Physical review letters, 129(19):195101.

The presence of large scale magnetic fields in nature is often attributed to the inverse cascade of magnetic helicity driven by turbulent helical dynamos. In this Letter, we show that in turbulent helical dynamos, the inverse flux of magnetic helicity toward the large scales Π_{H} is bounded by |Π_{H}|≤cεk_{η}^{-1}, where ε is the energy injection rate, k_{η} is the Kolmogorov magnetic dissipation wave number, and c an order one constant. Assuming the classical isotropic turbulence scaling, the inverse flux of magnetic helicity Π_{H} decreases at least as a -3/4 power law with the magnetic Reynolds number Rm: |Π_{H}|≤cεℓ_{f}Rm^{-3/4}max[Pm,1]^{1/4}, where Pm is the magnetic Prandtl number and ℓ_{f} the forcing length scale. We demonstrate this scaling with Rm using direct numerical simulations of turbulent dynamos forced at intermediate scales. The results further indicate that nonlinear saturation is achieved by a balance between the inverse cascade and dissipation at domain size scales L for which the saturation value of the magnetic energy is bounded by E_{m}≤cL(εℓ_{f})^{2/3}Rm^{1/4}max[1,Pm]^{1/4}. Numerical simulations also demonstrate this bound. These results are independent of the dynamo mechanism considered. In our setup, they imply that inviscid mechanisms cannot explain large scale magnetic fields and have critical implications for the modeling of astrophysical dynamos.

RevDate: 2022-11-18

Budanur NB, H Kantz (2022)

Scale-dependent error growth in Navier-Stokes simulations.

Physical review. E, 106(4-2):045102.

We estimate the maximal Lyapunov exponent at different resolutions and Reynolds numbers in large eddy simulations (LES) and direct numerical simulations of sinusoidally driven Navier-Stokes equations in three dimensions. Independent of the Reynolds number when nondimensionalized by Kolmogorov units, the LES Lyapunov exponent diverges as an inverse power of the effective grid spacing showing that the fine scale structures exhibit much faster error growth rates than the larger ones. Effectively, i.e., ignoring the cutoff of this phenomenon at the Kolmogorov scale, this behavior introduces an upper bound to the prediction horizon that can be achieved by improving the precision of initial conditions through refining of the measurement grid.

RevDate: 2022-11-19

Yao N, Wang H, Wang B, et al (2022)

Convective thermal cloaks with homogeneous and isotropic parameters and drag-free characteristics for viscous potential flows.

iScience, 25(11):105461.

Although convective thermal cloaking has been advanced significantly, the majority of related researches have concentrated on creeping viscous potential flows. Here, we consider convective thermal cloaking works in non-creeping viscous potential flows, and propose a combination of the separation of variables method and the equivalent-medium integral method to analytically deduce the parameters of convective thermal cloaks with isotropic-homogeneous dynamic viscosity and thermal conductivity. Through numerical simulation, we demonstrate the cloaks can hide the object from thermo-hydrodynamic fields. Besides, by comparing the drag force cloaks bear in cloak case and the objects bear in object-existent case, we find convective thermal cloaks can considerably reduce the drag force, which appears drag-free characteristics. Finally, it is our hope that these developed methods can reduce the difficulties of metadevices fabrications, promote the development of drag reduction technology under higher Reynolds number, and shed light on the control of other multi-physics systems.

RevDate: 2022-11-21
CmpDate: 2022-11-21

Cao BZ, Wang J, Zhao YJ, et al (2022)

[Hydrodynamic characteristics of grass swale runoff in Guanzhong area of Loess Plateau, Northwest China.].

Ying yong sheng tai xue bao = The journal of applied ecology, 33(11):2979-2986.

Grass swale has been widely used in sponge city construction, which can effectively improve the urban ecological environment. To explore the regulation mechanism of runoff in grass swale, runoff scouring experiment was carried out to study the hydrodynamic characteristics of runoff and the distribution of cross-section velocity under the combined conditions of five slopes (1%, 2%, 3%, 4%, 5%) and five scour flows (20, 30, 40, 50, 60 L·min[-1]). With the increases of flow rate and slope, flow velocity, Reynolds number and Froude number all increased gradually, while the Manning roughness coefficient and Darcy-Weisbach friction coefficient decreased gradually. The velocity (V) could be expressed as a power function V=0.3387Q[0.555]S[0.6601] of flow rate (Q) and slope (S). The variation ranges of Reynolds number and Froude number were 1160.95-6596.82 and 0.17-1.21, respectively. The runoff flow patterns were all turbulent. The flow pattern was greatly affected by the slope. When flow rate and slope were small, they had great influence on friction coefficient. Under the experimental conditions, the Darcy-Weisbach friction coefficient was negatively correlated with Reynolds number. The velocity distribution of cross-section showed symmetrical distribution on both sides of the center. The maximum velocity point was located at the center of water surface. With the increases of flow rate and slope, the velocity contours of cross section gradually became dense and the gradient of the velocity change increased. Our results provide a theoretical basis for the design, application and hydraulic calculation of grass swale in the construction of sponge cities in loess areas, and reveal the runoff regulation mechanism by analyzing the hydraulic characteristics of grass swale runoff.

RevDate: 2022-12-05
CmpDate: 2022-11-18

Karami A, Ranjbar B, Rahimi M, et al (2022)

Novel hybrid neuro-fuzzy model to anticipate the heat transfer in a heat exchanger equipped with a new type of self-rotating tube insert.

The European physical journal. E, Soft matter, 45(11):92.

In this investigation, a combination of the wingsuit flying search (WFS) and teaching-learning-based optimization (TLBO) algorithms is developed as a new combinatorial optimization algorithm. The proposed combinatorial algorithm is tested over some well-known benchmark functions and then integrated with the artificial neural network (ANN) to construct a novel hybrid model. After that, the obtained hybrid model is employed to anticipate the experimentally obtained values of the average Nusselt number (Nu), average friction coefficient (f) as well as thermal-hydraulic performance ratio (η), in a heat exchanger equipped with a new type of self-rotating tube insert, against governing parameters. The insert is placed in the tube side of the water heater to heat natural gas. The proposed insert consists of various numbers of self-rotating modules. Indeed, the rotating insert is introduced to create effective secondary sweeping flow on the inner side of the tube. Since this type of tube insert simultaneously provides heat transfer enhancement and undesired pressure drop, a thermal-hydraulic performance ratio is defined to consider both of them. The governing parameters are the number of inserts (0 ≤ N ≤ 30), reservoir's temperature (40 °C ≤ TR ≤ 50 °C) as well as Reynolds number (6 × 10[3] ≤ Re ≤ 18 × 10[3]). It was found that the WFS-TLBO enhances the effectiveness of the main ANN in anticipating the Nusselt number (Nu), average friction coefficient (f) as well as performance ratio (η). Moreover, introducing the WFS-TLBO algorithm into the neural network provides an enhancement in the effectiveness of the hybrid models based on the single WFS and TLBO algorithms in anticipating the same parameters.

RevDate: 2022-11-29

Wei SX, Yang H, Au CT, et al (2022)

Mixing Characteristic and High-Throughput Synthesis of Cadmium Sulfide Nanoparticles with Cubic Hexagonal Phase Junctions in a Chaotic Millireactor.

Langmuir : the ACS journal of surfaces and colloids, 38(47):14439-14450.

A four-stage oscillating feedback millireactor with splitters (S-OFM) was designed to improve the mixing performance based on chaotic advection. Three-dimensional CFD simulations were used to investigate its flow characteristics and mixing performance, and the generation mechanisms of secondary flows were examined. The results show that the mixing index (MIcup) increased with the increase in the Reynolds number (Re), and MIcup could reach 99.8% at Re = 663. Poincaré mapping and Kolmogorov entropy were adopted to characterize the chaotic advection intensity, which indicates that there is a intensity increase with the increase in Re. In addition, the results of Villermaux-Dushman experiments demonstrate that S-OFM performs excellently, and the mixing time could reach 1.04 ms at Re = 2764. Finally, S-OFM was successfully used to synthesize CdS nanoparticles with cubic hexagonal phase junctions. At a flow rate of 180 mL/min, the average particle size was 10.5 nm and the particle size distribution was narrow (with a coefficient of variation of 0.14).

RevDate: 2022-11-15

Antunes GC, Malgaretti P, Harting J, et al (2022)

Pumping and Mixing in Active Pores.

Physical review letters, 129(18):188003.

We show both numerically and analytically that a chemically patterned active pore can act as a micro- or nanopump for fluids, even if it is fore-aft symmetric. This is possible due to a spontaneous symmetry breaking which occurs when advection rather than diffusion is the dominant mechanism of solute transport. We further demonstrate that, for pumping and tuning the flow rate, a combination of geometrical and chemical inhomogeneities is required. For certain parameter values, the flow is unsteady, and persistent oscillations with a tunable frequency appear. Finally, we find that the flow exhibits convection rolls and hence promotes mixing in the low Reynolds number regime.

RevDate: 2022-11-30

Hopkins CC, Shen AQ, SJ Haward (2022)

Effect of blockage ratio on flow of a viscoelastic wormlike micellar solution past a cylinder in a microchannel.

Soft matter, 18(46):8856-8866.

We present experiments on the flow of a viscoelastic wormlike micellar solution around cylinders (radius R) confined in straight microchannels (width W). Thirteen flow geometries are tested where the blockage ratio is varied over a wide range 0.055 ≤ BR = 2R/W ≤ 0.63. Experiments are performed at negligible Reynolds number, and for Weissenberg numbers Wi = λU/R up to 1000, where U is the average flow speed and λ is the relaxation time of the fluid. Micro-particle image velocimetry is used to characterise the flow state at each BR and Wi. In all of the geometries, a first critical Weissenberg number marks a transition from symmetric flow to an asymmetric but time-steady flow state, while a second higher critical Weissenberg number marks the onset of time-dependent flows. However, we report a clear shift in behaviour over a narrow intermediate range of 0.33 ≲ BR ≲ 0.41. Channels with BR ≤ 0.33 fall in a 'low' BR regime, with instabilities that originate from the downstream stagnation point, while those with BR ≥ 0.44 fall in a 'high' BR regime, with instabilities developing at the upstream stagnation point. Behaviour within the newly-identified intermediate BR regime is complex due to the competing influence of the two stagnation points. We summarise all our results in a flow state diagram covering Wi-BR parameter space, clearly defining the different regimes of blockage ratio for the first time. Our results contribute to the understanding of the complexities of viscoelastic flow in this benchmark geometry.

RevDate: 2022-11-12

Chen Y, Feng X, Shi X, et al (2022)

Evaluation of computational fluid dynamics models for predicting pediatric upper airway airflow characteristics.

Medical & biological engineering & computing [Epub ahead of print].

Computational fluid dynamics (CFD) has the potential for use as a clinical tool to predict the aerodynamics and respiratory function in the upper airway (UA) of children; however, careful selection of validated computational models is necessary. This study constructed a 3D model of the pediatric UA based on cone beam computed tomography (CBCT) imaging. The pediatric UA was 3D printed for pressure and velocity experiments, which were used as reference standards to validate the CFD simulation models. Static wall pressure and velocity distribution inside of the UA under inhale airflow rates from 0 to 266.67 mL/s were studied by CFD simulations based on the large eddy simulation (LES) model and four Reynolds-averaged Navier-Stokes (RANS) models. Our results showed that the LES performed best for pressure prediction; however, it was much more time-consuming than the four RANS models. Among the RANS models, the Low Reynolds number (LRN) SST k-ω model had the best overall performance at a series of airflow rates. Central flow velocity determined by particle image velocimetry was 3.617 m/s, while velocities predicted by the LES, LRN SST k-ω, and k-ω models were 3.681, 3.532, and 3.439 m/s, respectively. All models predicted jet flow in the oropharynx. These results suggest that the above CFD models have acceptable accuracy for predicting pediatric UA aerodynamics and that the LRN SST k-ω model has the most potential for clinical application in pediatric respiratory studies.

RevDate: 2022-11-17

de Araujo MT, Furlan L, Brandi A, et al (2022)

A Semi-Analytical Method for Channel and Pipe Flows for the Linear Phan-Thien-Tanner Fluid Model with a Solvent Contribution.

Polymers, 14(21):.

This work presents a semi-analytical method for laminar steady-state channel and pipe flows of viscoelastic fluids using the Linear Phan-Thien-Tanner (LPTT) constitutive equation, with solvent viscosity contribution. For the semi-analytical method validation, it compares its results and two analytical solutions: the Oldroyd-B model and the simplified LPTT model (without solvent viscosity contribution). The results adopted different values of the dimensionless parameters, showing their influence on the viscoelastic fluid flow. The results include the distribution of the streamwise velocity component and the extra-stress tensor components in the wall-normal direction. In order to investigate the proposed semi-analytical method, different solutions were obtained, both for channel and pipe flows, considering different values of Reynolds number, solvent viscosity contribution in the homogeneous mixture, elongational parameter, shear parameter, and Weissenberg number. The results show that the proposed semi-analytical method can find a laminar solution using the non-Newtonian LPTT model with solvent viscosity contribution and verify the effect of the parameters in the resulting flow field.

RevDate: 2022-11-17

Baig MF, Chen GM, CP Tso (2022)

The Thermal Performance Analysis of an Al2O3-Water Nanofluid Flow in a Composite Microchannel.

Nanomaterials (Basel, Switzerland), 12(21):.

Partial filling of porous medium insert in a channel alleviates the tremendous pressure drop associated with a porous medium saturated channel, and enhances heat transfer at an optimum fraction of porous medium filling. This study pioneered an investigation into the viscous dissipative forced convective heat transfer in a parallel-plate channel, partially occupied with a porous medium at the core, under local thermal non-equilibrium condition. Solving the thermal energy equation along the Darcy-Brinkman equation, new exact temperature fields and Nusselt number are presented under symmetrical isoflux thermal boundary condition. Noteworthy is the heat flux bifurcation at the interface between the clear fluid and porous medium driven by viscous dissipation, in cases where the combined hydrodynamic resistance to fluid flow and thermal resistance to fluid conduction is considerable in low Darcy number porous medium insert. However, viscous dissipation does not affect the qualitative variation of the Nusselt number with the fraction of porous medium filling. By using Al2O3-Water nanofluid as the working fluid in a uniformly heated microchannel, partially filled with an optimum volume fraction of porous medium, the heat transfer coefficient improves as compared to utilizing water. The accompanied viscous dissipation however has a more adverse impact on the heat transfer coefficient of nanofluids with an increasing Reynolds number.

RevDate: 2022-11-28

Chen Z, Wang Y, S Zhou (2022)

Numerical Analysis of Mixing Performance in an Electroosmotic Micromixer with Cosine Channel Walls.

Micromachines, 13(11):.

Micromixers have significant potential in the field of chemical synthesis and biological pharmaceuticals, etc. In this study, the design and numerical simulations of a passive micromixer and a novel active electroosmotic micromixer by assembling electrode pairs were both presented with a cosine channel wall. The finite element method (FEM) coupled with Multiphysics modeling was used. To propose an efficient micromixer structure, firstly, different geometrical parameters such as amplitude-to-wavelength ratio (a/c) and mixing units (N) in the steady state without an electric field were investigated. This paper aims to seek a high-quality mixing solution. Therefore, based on the optimization of the above parameters of the passive micromixer, a new type of electroosmotic micromixer with an AC electric field was proposed. The results show that the vortices generated by electroosmosis can effectively induce fluid mixing. The effects of key parameters such as the Reynolds number, the number of electrode pairs, phase shift, voltage, and electrode frequency on the mixing performance were specifically discussed through numerical analysis. The mixing efficiency of the electroosmotic micromixer is quantitatively analyzed, which can be achieved at 96%. The proposed micromixer has a simple structure that can obtain a fast response and high mixing index.

RevDate: 2022-11-27

Dai Y, Cha H, Nguyen NK, et al (2022)

Dynamic Behaviours of Monodisperse Double Emulsion Formation in a Tri-Axial Capillary Device.

Micromachines, 13(11):.

We investigated experimentally, analytically, and numerically the formation process of double emulsion formations under a dripping regime in a tri-axial co-flow capillary device. The results show that mismatches of core and shell droplets under a given flow condition can be captured both experimentally and numerically. We propose a semi-analytical model using the match ratio between the pinch-off length of the shell droplet and the product of the core growth rate and its pinch-off time. The mismatch issue can be avoided if the match ratio is lower than unity. We considered a model with the wall effect to predict the size of the matched double emulsion. The model shows slight deviations with experimental data if the Reynolds number of the continuous phase is lower than 0.06 but asymptotically approaches good agreement if the Reynolds number increases from 0.06 to 0.14. The numerical simulation generally agrees with the experiments under various flow conditions.

RevDate: 2022-11-27

Cao M, Cao S, Zhao J, et al (2022)

Numerical Study of Thermal Enhancement in a Single- and Double-Layer Microchannel Heat Sink with Different Ribs.

Micromachines, 13(11):.

In this paper, a microchannel heat sink model was proposed to realize single- and double- layer flow through built-in ribs. The finite element volume method was used to analyze the influence of the length, thickness and angle of the inner rib on the flow and heat transfer characteristics of the microchannel heat sink. The pressure drop, temperature field, flow field, and thermal characteristics are given. The numerical simulation results show that the rectangular rib plate makes the fluid in the microchannel heat sink flow alternately in the upper and lower layers, which can effectively enhance heat transfer. However, with the increase in rib length, the comprehensive evaluation factor decreases. The change of the angle of the rectangular rib plate has little influence on the Nusselt number. The change rate of the comprehensive evaluation factor of the thickness of the rectangular rib plate is the largest. When the Reynolds number is 1724, the comprehensive evaluation factor of Case 9 is 4.7% higher than that of Case 2. According to the parameter study of the built-in rib plate, the optimal parameter combination is given, in which the angle is 0°, the length is 7.5 mm, and the thickness is 0.2-0.3 mm.

RevDate: 2022-11-27

Cancilla N, Tamburini A, Tarantino A, et al (2022)

Friction and Heat Transfer in Membrane Distillation Channels: An Experimental Study on Conventional and Novel Spacers.

Membranes, 12(11):.

The results of an experimental investigation on pressure drop and heat transfer in spacer-filled plane channels, which are representative of Membrane Distillation units, are presented and discussed. Local and mean heat transfer coefficients were obtained by using Thermochromic Liquid Crystals and Digital Image Processing. The performances of a novel spacer geometry, consisting of spheres that are connected by cylindrical rods, and are hereafter named spheres spacers, were compared with those of more conventional woven and overlapped spacers at equal values of the Reynolds number Re (in the range ~150 to ~2500), the pitch-to-channel height ratio, the flow attack angle and the thermal boundary conditions (two-side heat transfer). For any flow rate, the novel spacer geometry provided the least friction coefficient and a mean Nusselt number intermediate between those of the overlapped and the woven spacers. For any pressure drop and for any pumping power, the novel spacer provided the highest mean Nusselt number over the whole Reynolds number range that was investigated. The influence of buoyancy was also assessed for the case of the horizontal channels. Under the experimental conditions (channel height H ≈ 1 cm, ΔT ≈ 10 °C), it was found to be large in empty (spacer-less) channels that were up to Re ≈ 1200 (corresponding to a Richardson number Ri of ~0.1), but it was much smaller and limited to the range Re < ~500 (Ri < ~0.5) in the spacer-filled channels.

RevDate: 2022-11-17
CmpDate: 2022-11-14

Soulsbury CD, S Humphries (2022)

Biophysical Determinants and Constraints on Sperm Swimming Velocity.

Cells, 11(21):.

Over the last 50 years, sperm competition has become increasingly recognised as a potent evolutionary force shaping male ejaculate traits. One such trait is sperm swimming speed, with faster sperm associated with increased fertilisation success in some species. Consequently, sperm are often thought to have evolved to be longer in order to facilitate faster movement. However, despite the intrinsic appeal of this argument, sperm operate in a different biophysical environment than we are used to, and instead increasing length may not necessarily be associated with higher velocity. Here, we test four predictive models (ConstantPower Density, Constant Speed, Constant Power Transfer, Constant Force) of the relationship between sperm length and speed. We collated published data on sperm morphology and velocity from 141 animal species, tested for structural clustering of sperm morphology and then compared the model predictions across all morphologically similar sperm clusters. Within four of five morphological clusters of sperm, we did not find a significant positive relationship between total sperm length and velocity. Instead, in four morphological sperm clusters we found evidence for the Constant Speed model, which predicts that power output is determined by the flagellum and so is proportional to flagellum length. Our results show the relationship between sperm morphology (size, width) and swimming speed is complex and that traditional models do not capture the biophysical interactions involved. Future work therefore needs to incorporate not only a better understanding of how sperm operate in the microfluid environment, but also the importance of fertilising environment, i.e., internal and external fertilisers. The microenvironment in which sperm operate is of critical importance in shaping the relationship between sperm length and form and sperm swimming speed.

RevDate: 2022-11-16
CmpDate: 2022-11-11

Abdizadeh GR, Farokhinejad M, S Ghasemloo (2022)

Numerical investigation on the aerodynamic efficiency of bio-inspired corrugated and cambered airfoils in ground effect.

Scientific reports, 12(1):19117.

This research numerically investigates the flapping motion effect on the flow around two subsonic airfoils near a ground wall. Thus far, the aerodynamic efficiency of the dragonfly-inspired flapping airfoil has not been challenged by an asymmetric cambered airfoil considering the ground effect phenomenon, especially in the MAV flight range. The analysis is carried out on the basis of an unsteady Reynolds-averaged Navier-stokes (URANS) simulation, whereby the Transition SST turbulence model simulates the flow characteristics. Dragonfly-inspired and NACA4412 airfoils are selected in this research to assess the geometry effect on aerodynamic efficiency. Moreover, the impacts of Reynolds number (Re), Strouhal number (St), and average ground clearance of the flapping airfoil are investigated. The results indicate a direct relationship between the airfoil's aerodynamic performance ([Formula: see text]/[Formula: see text]) and the ground effect. The [Formula: see text]/[Formula: see text] increases by reducing the airfoil and ground distance, especially at [Formula: see text]. At [Formula: see text], by increasing the St from 0.2 to 0.6, the values of [Formula: see text]/[Formula: see text] decrease from 10.34 to 2.1 and 3.22 to 1.8 for NACA4412 and dragonfly airfoils, respectively. As a result, the [Formula: see text]/[Formula: see text] of the NACA4412 airfoil is better than that of the dragonfly airfoil, especially at low oscillation frequency. The efficiency difference between the two airfoils at St=0.6 is approximately 14%, indicating that the [Formula: see text]/[Formula: see text] difference decreases substantially with increasing frequency. For [Formula: see text], the results show the dragonfly airfoil to have better [Formula: see text]/[Formula: see text] in all frequencies than the NACA4412 airfoil.

RevDate: 2022-11-07

Dang J, Duan X, S Tian (2022)

Wall Effects for Spheroidal Particle in Confined Bingham Plastic Fluids.

ACS omega, 7(43):38717-38727.

The wall effects on the sedimentation motion of a single spheroidal particle in cylindrical tubes filled with Bingham plastic fluid are investigated with the fixed computational domain using the Computational Fluid Dynamic (CFD) model in steady-state mode. The CFD model is validated with literature in both bounded and unbounded mediums. The rheological model of the Bingham plastic fluid is regularized with a smoothly varying viscosity. The retardation effects of the tube wall are presented in functions of Reynolds number Re, radius ratio λ (the radius of the tube to the semiaxis of the particle normal to the flow λ = R/r), aspect ratio E (the ratio of the semiaxis of the particle along the flow to r, E = b/r), and Bingham number Bn. The simulation results demonstrate that the drag coefficient C D declines with the rise in Reynolds number. The relative contribution to drag coefficient from the pressure force increases with larger Bingham number comparing with that from the friction force. The formation and size of the recirculation wake is suppressed by the yield stress. While Bn is approaching infinity, the limiting behavior is observed in the location of yield surface and the value of yield-gravity parameter. The values of critical yield-gravity parameter are explicitly given at different values of E, showing independence with Re and λ. For the flow with Bn ≥ 100, the influence of wall can be even ignored while λ is larger than 5.

RevDate: 2022-11-08

Rutledge KM (2022)

Sniffing out Stingray Noses: The Functional Morphology of Batoid Olfaction.

Integrative organismal biology (Oxford, England), 4(1):obac043.

Batoid fishes (rays, skates, sawfishes, and guitarfishes) are macrosmatic, meaning they rely on their sense of smell as one of the primary senses for survival and reproduction. Olfaction is important for long-distance tracking and navigation, predator and prey recognition, and conspecific signaling. However, the mechanisms by which batoids harness odorants is unknown. Without a direct pump-like system, it is hypothesized that batoids irrigate their nostrils via one or a combination of the following: the motion pump, buccopharyngeal pump, pressure (ex. pitot-like mechanism), or a shearing force (ex. viscous entrainment). These mechanisms rely on the size, shape, and position of the nostrils with respect to the head and to each other. Batoids are united as a group by their dorsoventrally compressed body plans, with nostrils on the ventral side of their body. This position presents several challenges for odor capture and likely limits the effectivity of the motion pump. Batoid fishes display an expansive nasal morphology, with inlet nostrils ranging from thin, vertical slits to wide, horizontal ovals to protruding, tube-like funnels, and more. In this paper, a morphometric model is developed to quantify the vast diversity in batoid nose shapes, sizes, and positions on the head in an ecological and functional framework. Specifically, swimming mode, lifestyle, habitat, and diet are examined for correlations with observed nasal morphotypes. Morphometric measurements were taken on all 4 orders present in Batoidea to broadly encompass batoid nasal diversity (Rhinopristiformes 4/5 families; Rajiformes 2/4 families; Torpediniformes 4/4 families; Myliobatiformes 8/11 families). All batoid external nasal diversity was found to be categorized into 5 major morphological groups and were termed: flush nare [circle, comma, intermediate], open nare, and protruding nare. Several morphometric traits remained significant when accounting for shared ancestry, including the position and angle of the nostril on the head, the width of the inlet hole, and the spacing of the nostrils from each other. These measurements were found to be closely correlated and statistically significant with the swimming mode of the animal. This study provides the first crucial step in understanding batoid olfaction, by understanding the diversity of the morphology of the system. Because odor capture is a strictly hydrodynamic process, it may be that factors relating more directly to the fluid dynamics (i.e., swimming mode, velocity, Reynolds number) may be more important in shaping the evolution of the diversity of batoid noses than other ecological factors like habitat and diet.

RevDate: 2022-11-28

Saleem T, Powell T, Walker W, et al (2022)

Assessment of flow mechanics in the lower extremity venous system.

Journal of vascular surgery. Venous and lymphatic disorders pii:S2213-333X(22)00441-3 [Epub ahead of print].

BACKGROUND: The Reynolds number (Re) is a dimensionless parameter that describes fluid flow mechanics. Veins are compliant and collapsible vascular conduits that can accommodate large volume changes in response to small pressure changes. However, only sparse information is available about flow parameters such as the Re in the venous system.

METHODS: Bilateral duplex ultrasound examination of 15 healthy volunteers (30 limbs) was performed before and after exercise (four flights of stairs) of the veins of the lower extremity (left and right sides) and inferior vena cava. These volunteers had been confirmed to not have any signs or symptoms of lower extremity venous disease via focused history and physical examination findings.

RESULTS: Most of the volunteers were women (73%). Their mean age was 37 ± 12.8 years. The Re was highest in the inferior vena cava among all the veins examined (470 ± 144 before exercise and 589 ± 205 after exercise; P = .04). The association between the change in Re before and after exercise and the specific vein examined was also significant for the right and left external iliac veins, right and left common femoral veins, right and left profunda femoris veins, right and left femoral veins, and right common iliac vein. Resistance and velocity maps for the lower extremity venous system were also created. The velocity increased and the resistance decreased as one moved up the venous tree toward the right atrium.

CONCLUSIONS: The Re increased for most of the lower extremity veins after exercise in our healthy volunteers. However, the critical value for turbulent flow was not reached despite the exercise.

RevDate: 2022-11-08

Roósz A, Rónaföldi A, Svéda M, et al (2022)

Effect of crucible wall roughness on the laminar/turbulent flow transition of the Ga75In25 alloy stirred by a rotating magnetic field.

Scientific reports, 12(1):18592.

The critical magnetic induction (Bcr) values of a melt flow produced by a rotating magnetic field (RMF), remaining laminar or turbulent, are essential in different solidification processes. In an earlier paper (Metall Res Technol 100: 1043-1061, 2003), we showed that Bcr depends on the crucible radius (R) and frequency of the magnetic field (f). The effect of wall roughness (WR) on Bcr was investigated in this study. Using ten different wall materials, we determined the angular frequency (ω) and Reynolds number (Re) as a function of the magnetic induction (B) and f using two different measuring methods (pressure compensation method, PCM; height measuring method, HMM). The experiments were performed at room temperature; therefore, the Ga75wt%In25wt% alloy was chosen for the experiments. Based on the measured and calculated results, a simple relationship was determined between Bcr and Re*, f, R, and WR, where the constants K1, K2, K3, and K4 depended on the physical properties of the melt and wall material:[Formula: see text].

RevDate: 2022-11-01

Datta R, Russell DR, Tang I, et al (2022)

Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements.

The Review of scientific instruments, 93(10):103530.

We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive ("b-dot") probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large (RM > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach-Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of Z̄Te, where Z̄ is the average ionization and Te is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic (MS ∼ 8), super-Alfvénic (MA ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and Z̄Te measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON.

RevDate: 2022-11-02

Qiao Y, Ma Z, Onyango C, et al (2022)

DNA fragmentation in a steady shear flow.

Biomicrofluidics, 16(5):054109.

We have determined the susceptibility of T4 DNA (166 kilobase pairs, kbp) to fragmentation under steady shear in a cone-and-plate rheometer. After shearing for at least 30 min at a shear rate of 6000 s - 1 , corresponding to a Reynolds number of O (10 3) and a Weissenberg number of O (10 3) , 97.9 ± 1.3 % of the sample is broken into a polydisperse mixture with a number-averaged molecular weight of 62.6 ± 3.2 kbp and a polydispersity index of 1.29 ± 0.03 , as measured by pulsed-field gel electrophoresis (with a 95% confidence interval). The molecular weight distributions observed here from a shear flow are similar to those produced by a (dominantly extensional) sink flow of DNA and are qualitatively different than the midpoint scission observed in simple extensional flow. Given the inability of shear flow to produce a sharp coil-stretch transition, the data presented here support a model where polymers can be fragmented in flow without complete extension. These results further indicate that DNA fragmentation by shear is unlikely to be a significant issue in microfluidic devices, and anomalous molecular weight observations in experiments are due to DNA processing prior to observation in the device.

RevDate: 2022-11-09
CmpDate: 2022-10-31

Bryan MT (2023)

Assessing the Challenges of Nanotechnology-Driven Targeted Therapies: Development of Magnetically Directed Vectors for Targeted Cancer Therapies and Beyond.

Methods in molecular biology (Clifton, N.J.), 2575:105-123.

Targeted delivery, in which therapeutic agents are preferentially concentrated at the diseased site, has the potential to improve therapeutic outcomes by minimizing off-target interactions in healthy tissue. Both passive and active methods of targeting delivery have been proposed, often with particular emphasis on cancer treatment. Passive methods rely on the overexpression of a biomarker in diseased tissue that can then be used to target the therapy. Active techniques involve physically guiding therapeutic agents toward the target region. Since the motion of magnetic particles can be remotely controlled by external magnetic fields, magnetic technologies have the potential to drive and hold drugs or other cargo at the required therapeutic site, increasing the localized dose while minimizing overall exposure. Directed motion may be generated either by simple magnetic attraction or by causing the particles to perform swimming strokes to produce propulsion. This chapter will compare the different strategies using magnetic nanotechnology to produce directed motion compatible with that required for targeted cargo delivery and magnetically assisted therapies and assess their potential to meet the challenges of operating within the human body.

RevDate: 2022-10-30

Beck J, Palmer M, Inman K, et al (2022)

Heat Transfer Enhancement in the Microscale: Optimization of Fluid Flow.

Nanomaterials (Basel, Switzerland), 12(20):.

The focus of this paper is to investigate the effects of the addition of a connector between two serial microchannels. The idea of adding connector at the inlet of microchannels to enhance the random motion of molecules or nanoparticles in low Reynolds numbers was developed in our research group for the first time. It was experimentally determined that the shape of a connector between two microchannels has a significant impact on the enhancement of the random motion of molecules or nanoparticles. Consequently, the heat transfer coefficient is improved inside the second microchannel. The connector is large enough to refresh the memory of the fluid before entering the second channel, causing a higher maximum heat transfer coefficient in the second channel. It was also observed that the heat transfer coefficient can be increased at the end of the channel when the outlet temperature is relatively high. This may be explained by the fact that as temperature increases, the fluid viscosity tends to decrease, which generally drives an increase in the local random motion of base fluid molecules and nanoparticles. This causes an increase in the microchannel heat transfer coefficient. It was found that the addition of nanoparticles significantly modified the impact of the connector on the microchannel heat transfer coefficient. In addition, the effects of changing the Reynolds number and the shape of the connector were investigated through use of computational fluid dynamics (CFD) calculations. It was found that both factors have an important impact on the variation of velocity and enhancement of random motion of molecules and consequently significantly affect the heat transfer coefficient.

RevDate: 2022-10-30

Chang Q, Fu Z, Zhang S, et al (2022)

Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vortex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator.

Nanomaterials (Basel, Switzerland), 12(20):.

Vortex-induced vibration (VIV) is a process that wind energy converts to the mechanical energy of the bluff body. Enhancing VIV to harvest wind energy is a promising method to power wireless sensor nodes in the Internet of Things. In this work, a VIV-driven square cylinder triboelectric nanogenerator (SC-TENG) is proposed to harvest broadband wind energy. The vibration characteristic and output performance are studied experimentally to investigate the effect of the natural frequency by using five different springs in a wide range of stiffnesses (27&nbsp;N/m

RevDate: 2022-10-30

Khan MI, Lashin MMA, Khedher NB, et al (2022)

Peristaltic Phenomenon in an Asymmetric Channel Subject to Inclined Magnetic Force and Porous Space.

Bioengineering (Basel, Switzerland), 9(10):.

This research is engaged to explore biological peristaltic transport under the action of an externally applied magnetic field passing through an asymmetric channel which is saturated with porous media. The set of governing partial differential equations for the present peristaltic flow are solved in the absence of a low Reynolds number and long wavelength assumptions. The governing equations are to be solved completely, so that inertial effects can be studied. The numerical simulations and results are obtained by the help of a finite element method based on quadratic six-noded triangular elements equipped with a Galerkin residual procedure. The inertial effects and effects of other pertinent parameters are discussed by plotting graphs based on a finite element (FEM) solution. Trapped bolus is discussed using the graphs of streamlines. The obtained results are also compared with the results given in the literature which are highly convergent. It is concluded that velocity and the number of boluses is enhanced by an increase in Hartmann number and porosity parameter K Increasing inertial forces increase the velocity of flow but increasing values of the porosity parameter lead to a decrease in the pressure gradient. The study elaborates that magnetic field and porosity are useful tools to control the velocity, pressure, and boluses in the peristaltic flow pattern.

RevDate: 2022-11-18
CmpDate: 2022-10-28

Ebrahimi S, M Tahmasebipour (2022)

Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels.

Archives of Razi Institute, 77(2):647-660.

Label-free inertial separation of the circulating tumor cells (CTCs) has attracted significant attention recently. The present study proposed a centrifugal platform for the inertial separation of the CTCs from the white blood cells. Particle trajectories of the contraction-expansion array (CEA) microchannels were analyzed by the finite element method. Four expansion geometries (i.e., circular, rectangular, trapezoidal, and triangular) were compared to explore their differences in separation possibilities. Different operational and geometrical parameters were investigated to achieve maximum separation efficiency. Results indicated that the trapezoidal CEA microchannel with ten expansions and a 100 µm channel depth had the best separation performance at an angular velocity of 100 rad/s. Reynolds number of 47 was set as the optimum value to apply minimum shear stress on the CTCs leading to 100% efficiency and 95% purity. Furthermore, the proposed system was simulated for whole blood by considering the red blood cells.

RevDate: 2022-11-29

Treegosol P, Priyadumkol J, Kamutavanich W, et al (2023)

Experimental investigation of the heat transfer and friction loss of turbulent flow in circular pipe under low-frequency ultrasound propagation along the mainstream flow.

Ultrasonics, 128:106866.

The characteristics of the heat transfer and friction loss of turbulent water flow in a circular pipe were investigated experimentally at a constant surface temperature of 45 ℃ for 28 kHz ultrasound propagation along the mainstream flow. Transducers were installed in five rows and three columns in the upstream section of the test pipe, and the number of active transducers was varied (1, 3, and 15) for a Reynolds number range of 10,000-25,000. The results indicated that the ultrasonic effects yielded positive results for both the heat transfer and pressure loss of the pipe flow. Under the influence of 15 ultrasonic transducers, the maximum Nusselt number ratio was 1.57 and the greatest reduction in the friction factor was 21.6 % for a Reynolds number of 10,000. The corresponding maximum thermal performance factor was approximately 1.7. However, the thermal efficiency tended to decrease with an increase in the number of transducers. The maximum thermal efficiency values under ultrasonic waves with 1, 3, and 15 transducers were 5.43, 3.37, and 1.95, respectively. When the change in the friction factor per ultrasonic input power was considered, the most suitable number of ultrasonic transducers was three. Finally, predictive formulas were proposed for the Nusselt number ratio and friction factor ratio under low-frequency ultrasound, with deviations from -5.5 % to 5.4 % and -7.4 % to 7.4 %, respectively.

RevDate: 2022-11-21
CmpDate: 2022-11-21

Sharma A, Gunreddy N, Mulamalla AR, et al (2022)

Conductive and convective heat transfer augmentation in flat plate solar collector from energy, economic and environmental perspectives - a comprehensive review.

Environmental science and pollution research international, 29(58):87019-87067.

The primary objective of the paper is to identify the effective way to enhance the conductive and convective heat transfer of the FPSC. The performance enhancements of different FPSC components such as absorber plate, absorber tube, and heat transfer fluid are reviewed in detail. The influence of absorber plate configurations, material properties, a center-to-center distance of the absorber tube, plate thickness, coatings, and tube geometry have been assessed to increase the conduction heat transfer. Also, the augmentations of convective heat transfer using different nanofluids in FPSC such as Al2O3/water, CuO/water, CNT/water, TiO2/water, SiO2/water, graphene oxide/water, MgO/water, CeO2/water, WO3/water, ZnO/water, and hybrid nanofluids are evaluated in detail. The performance improvements using both conductive and convective (combined) passive technique have been elaborated. The table representation has been used to describe the activities performed in each paper which include FPSC type, passive technique detail, properties of heat transfer fluid, Reynolds number, heat transfer aspects, pumping power, energy, exergy, environmental aspects, and inference. These data will help the researcher to identify existing activities and the potential gap. This review paper also deals with the suggestions for the research work which can be carried out in the direction of heat transfer from solar flat plate collectors.

RevDate: 2022-10-28

Molteno TCA (2022)

Nature's Wind Turbines: The Measured Aerodynamic Efficiency of Spinning Seeds Approaches Theoretical Limits.

Biomimetics (Basel, Switzerland), 7(4):.

This paper describe a procedure to measure experimentally the power coefficient, Cp, of winged seeds, and apply this technique to seeds from the Norway maple (Acer platanoides). We measure Cp=56.9±2% at a tip speed ratio of 3.21±0.06. Our results are in agreement with previously published CFD simulations that indicate that these seeds-operating in low-Reynolds number conditions-approach the Betz limit (Cp=59.3%) the maximum possible efficiency for a wind turbine. In addition, this result is not consistent with the recent theoretical work of Okulov & Sørensen, which suggests that a single-bladed turbine with a tip-speed ratio of 3.2 can achieve a power efficiency of no more than 30%.

RevDate: 2022-10-25

Tao H, Alawi OA, Hussein OA, et al (2022)

Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators.

Scientific reports, 12(1):17710.

Covalent and non-covalent nanofluids were tested inside a circular tube fitted with twisted tape inserts with 45° and 90° helix angles. Reynolds number was 7000 ≤ Re ≤ 17,000, and thermophysical properties were assessed at 308 K. The physical model was solved numerically via a two-equation eddy-viscosity model (SST k-omega turbulence). GNPs-SDBS@DW and GNPs-COOH@DW nanofluids with concentrations (0.025 wt.%, 0.05 wt.% and 0.1 wt.%) were considered in this study. The twisted pipes' walls were heated under a constant temperature of 330 K. The current study considered six parameters: outlet temperature, heat transfer coefficient, average Nusselt number, friction factor, pressure loss, and performance evaluation criterion. In both cases (45° and 90° helix angles), GNPs-SDBS@DW nanofluids presented higher thermohydraulic performance than GNPs-COOH@DW and increased by increasing the mass fractions such as 1.17 for 0.025 wt.%, 1.19 for 0.05 wt.% and 1.26 for 0.1 wt.%. Meanwhile, in both cases (45° and 90° helix angles), the value of thermohydraulic performance using GNPs-COOH@DW was 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 wt.%.

RevDate: 2022-11-22
CmpDate: 2022-11-08

Ibanez R, DH Kelley (2022)

A bioinspired apparatus for modeling peristaltic pumping in biophysical flows.

Bioinspiration & biomimetics, 17(6):.

In this study, we present a novel, bioinspired experimental apparatus, its construction, data acquisition methodology, and validation for the study of peristaltic flows. The apparatus consists of a series of stepper motor actuators, which deflect a deformable membrane to produce peristaltic flows. We show that this apparatus design has significant advantages over previous designs that have been used to study peristaltic flows by offering a much wider range of modeling capabilities. Comparisons between the capabilities of our apparatus and previous ones show our apparatus spanning a larger range of wavelengthλ, wave speedc, amplitudeA, and waveform (i.e. the apparatus is not constrained to nondispersive waves or to a sinusoidal shape). This large parameter range makes the apparatus a useful tool for biomimetic experimental modeling, particularly for systems that have complex waveforms, such as peristaltic flows in perivascular vessels, arteries, the cochlea, and the urethra. We provide details on the experimental design and construction for ease of reconstruction to the reader. The apparatus capabilities are validated for a large parameter range by comparing experimental measurements to analytic results from (Ibanezet al2021Phys. Rev. Fluids6103101) for high Reynolds number (Re > 1) and (Jaffrin and Shapiro 1971Annu. Rev. Fluid Mech.33-37) for low Reynolds number (Re < 1) applications. We show that the apparatus is useful for biophysical peristaltic studies and has potential applications in other types of studies.

RevDate: 2022-10-24
CmpDate: 2022-10-24

Benhanifia K, Redouane F, Lakhdar R, et al (2022)

Investigation of mixing viscoplastic fluid with a modified anchor impeller inside a cylindrical stirred vessel using Casson-Papanastasiou model.

Scientific reports, 12(1):17534.

In process engineering as chemical and biotechnological industry, agitated vessels are commonly used for various applications; mechanical agitation and mixing are performed to enhance heat transfer and improve specific Physico-chemical characteristics inside a heated tank. The research subject of this work is a numerical investigation of the thermo-hydrodynamic behavior of viscoplastic fluid (Casson-Papanastasiou model) in a stirred tank, with introducing a new anchor impeller design by conducting some modifications to the standard anchor impeller shape. Four geometry cases have been presented for achieving the mixing process inside the stirred vessel, CAI; classical anchor impeller, AI1; anchor impeller with added horizontal arm blade, AI2 and AI3 anchor impeller with two and three added arm blades, respectively. The investigation is focused on the effect of inertia and plasticity on the thermo-hydrodynamic behavior (flow pattern, power consumption, and heat transfer) by varying the Reynolds number (Re = 1, 10, 100, 200), Bingham number (Bn = 1, 10, 50), in addition to the effect of geometry design in the overall stirred system parameters. The findings revealed an excellent enhancement of flow pattern and heat transfer in the stirred system relatively to the increase of inertia values. Also, an energy reduction has been remarked and the effect of anchor impeller shape. AI3 geometry design significantly improves the flow pattern and enhances heat transfer by an increased rate of 10.46% over the other cases.

RevDate: 2022-10-21
CmpDate: 2022-10-21

Ji Y, Cao R, Wang C, et al (2022)

Effect of flow regime on mass transfer diffusion and stability of aerobic granular sludge (AGS) in view of interfacial thermodynamic.

Journal of environmental management, 323:116293.

Aerobic granular sludge (AGS) technology has been widely studied as "The Next Generation Wastewater Treatment technology". The effect of hydraulic conditions on the structural stability of AGS has been widely studied. However, the function of flow regime on the AGS stability, especially dissolved oxygen (DO) mass transfer, is still unknown. In this study, we used the Reynolds number (Re) to quantify the flow regime and selected different stages of AGS as experimental subjects. Results showed that the relatively suitable Re (Re = 150) could create lower DO mass transfer limitation (Lc = 27.4 μm) and increase protein (PN) contents and the abundance of hydrophobic functional groups in AGS. At this condition (Re = 150), the interfacial Gibbs free energy of sludge-water (ΔGLS[a]) was at a lower state (-129.75 ± 2.15 mJ·m[-2]), which favored the stability of AGS. Principal component analysis (PCA) and correlation analysis indicated that the response of ΔGLS[a] was affected by Lc, PN, and hydrophobic groups. In addition, results obtained for unstable AGS further verified that suitable Re regulates the structural stability of AGS. This study deepens the understanding of Re as an important hydraulic parameter for structural stability of AGS, which is also of great significance for energy saving of sequential batch reactors (SBRs) with agitation in practical engineering.

RevDate: 2022-11-22
CmpDate: 2022-11-02

Ben-Gida H, R Gurka (2022)

The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry.

Bioinspiration & biomimetics, 17(6):.

The leading-edge vortex (LEV) is a common flow structure that forms over wings at high angles of attack. Over the years, LEVs were exploited for augmenting the lift of man-made slender delta wings aircraft. However, recent observations suggested that natural flyers with high-aspect-ratio (high-AR) wings, such as the common swift (Apus apus), can also generate LEVs while gliding. We hypothesize that the planform shape and nonlinear sweep (increasing towards the wingtip) enable the formation and control of such LEVs. In this paper, we investigate whether a stationary LEV can form over a nonlinear swept-back high-AR wing inspired by the swift's wing shape and evaluate its characteristics and potential aerodynamic benefit. Particle image velocimetry (PIV) measurements were performed in a water flume on a high-AR swept-back wing inspired by the swift wing. Experiments were performed at four spanwise sections and a range of angles of attack for a chord-based Reynolds number of20000. Stationary LEV structures were identified across the wingspan by utilizing the proper orthogonal decomposition (POD) method for angles of attack of 5[∘]-15[∘]. The size and circulation of the stationary LEV were found to grow towards the wingtip in a nonlinear manner due to shear layer feeding and spanwise transport of mass and vorticity within the LEV, thus confirming that nonlinear high-AR swept-back wings can generate stationary LEVs. Our results suggest that the common swift can generate stationary LEVs over its swept-back wings to glide slower and at a higher rate of descent, with the LEVs potentially supporting up to 60% of its weight.

RevDate: 2022-10-17

Abderrahmane A, Younis O, Al-Khaleel M, et al (2022)

2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM.

Nanomaterials (Basel, Switzerland), 12(19):.

In a magnetic field, two-dimensional (2D) mixed convection is investigated within a zigzagged trapezoidal chamber. The lower side of the trapezoidal chamber is irregular, in particular, a zigzagged wall with different zigzag numbers N. The fluid particles move in the room due to the motion of the upper wall, while the porosity-enthalpy approach represents the melting process. The thermal parameters of the fluid are enhanced by what is called a nano-encapsulated phase change material (NEPCM) consisting of polyurethane as the shell and a nonadecane as the core, while water is used as the base fluid. In order to treat the governing equations, the well-known Galerkin finite element method (GFEM) is applied. In addition, the heat transfer (HT) irreversibility and the fluid friction (FF) irreversibility are compared in terms of the average Bejan number. The main results show that the melt band curve behaves parabolically at smaller values of Reynolds number (Re) and larger values of Hartmann number (Ha). Moreover, minimizing the wave number is better in order to obtain a higher heat transfer rate.

RevDate: 2022-10-17
CmpDate: 2022-10-17

Khan A, Khan MS, Pasha AA, et al (2022)

Hydrodynamic analysis of the magnetic field dependent viscous fluid flow and thermosolutal convection between rotating channels.

Scientific reports, 12(1):17170.

According to research, exposing a person to a magnetic field enhances blood flow and minimizes their risk of suffering a heart attack. Ferrohydrodynamics is the study of fluid motion mechanics that is affected by strong magnetic polarisation forces (FHD). Ferrofluids may transmit heat in a variety of ways by using magnetic fluids. This behaviour is demonstrated by liquid-cooled speakers, which utilise less ferrofluid to prevent heat from reaching the speaker coil. This modification boosts the coil's ability to expand, which enables the loudspeaker to create high-fidelity sound. It is investigated how the fluid dynamics of spinning, squeezing plates are affected by thermosolutal convection and a magnetic field dependent (MFD) viscosity. Standard differential equations are used to represent the equations of the modified form of Navier Stokes, Maxwell's, and thermosolutal convection. The magnetic field, modified velocity field equations, and thermosolutal convection equations all yield suitable answers. Additionally computed and thoroughly detailed are the MHD torque and fluid pressure that are imparted to the top plate. To create a technique with quick and certain convergence, the resulting equations for uniform plates are solved using the Homotopy Analysis Method (HAM) with appropriate starting estimates and auxiliary parameters. The validity and reliability of the HAM outcomes are shown by comparing the HAM solutions with the BVP4c numerical solver programme. It has been found that a magnetic Reynolds number lowers the temperature of the fluid as well as the tangential and axial components of the velocity field. Additionally, when the fluid's MFD viscosity rises, the axial and azimuthal components of the magnetic field behave in opposition to one another. This study has applications in the development of new aircraft take-off gear, magnetorheological airbags for automobiles, heating and cooling systems, bio-prosthetics, and biosensor systems.

RevDate: 2022-10-11

Tang P, Chen L, Zhang W, et al (2022)

Bioclogging alleviation for constructed wetland based on the interaction among biofilm growth and hydrodynamics.

Environmental science and pollution research international [Epub ahead of print].

Bioclogging is the most crucial operation problem of the constructed wetlands, which reduce its removal efficiency and life span. A strategy through properly increasing hydraulic loading is proposed in this study to alleviate the bioclogging for CWs. The two-dimensional porous media flow cell (2D PMFC) test indicated that a quadratic correlation was found between local biofilms growth rate and the near-wall Reynolds number (r > 0.765, p < 0.05). The biofilm growth rate declined with the flowrate when Re exceeded about 6.0. It was also found that the higher flowrate (6 mL/min) lead to the homogeneous biofilm and velocity distribution in the PMFC. The column test indicated that the highest hydraulic loading (9.2 cm/h) produced the smallest decrease in hydraulic conductivity, which was 80 times more than that of low hydraulic load (3.0 cm/h) at the end (40 days) of experiment. Moreover, the relatively homogenized distribution of biofilm was found along the column with the highest hydraulic loading, which confirmed that the proper increase in hydraulic loading can alleviate bioclogging.

RevDate: 2022-11-22
CmpDate: 2022-10-31

Li H, MRA Nabawy (2022)

Capturing wake capture: a 2D numerical investigation into wing-wake interaction aerodynamics.

Bioinspiration & biomimetics, 17(6):.

A wing generating lift leaves behind a region of disturbed air in the form of a wake. For a hovering insect, the wings must return through the wake produced by the previous half-stroke and this can have significant effects on the aerodynamic performance. This paper numerically investigates 2D wings interacting with their own wake at Reynolds numbers of 10[2]and 10[3], enabling an improved understanding of the underlying physics of the 'wake capture' aerodynamic mechanism of insect flight. We adopt a simple kinematic motion pattern comprised of a translational stroke motion followed by a complete stop to expose wake interaction effects. Representative stroke distance to chord ratios between 1.5 and 6.0 are considered, enabling different leading-edge vortex (LEV) attachment states. We also allow pitching rotation towards the end of stroke, leading to wake intercepting angles of 135°, 90°, and 45°, analogous to delayed, symmetric, and advanced pitching rotations of insect wings. It is shown that both vortex suction and jet flow impingement mechanisms can lead to either positive or negative effects depending on the LEV attachment state, and that stroke distances resulting in a detached/attached LEV lead to beneficial/detrimental wake interaction lift. Pitching rotation at the end of the stroke motion is found to induce a strong rotational trailing-edge vortex (RTEV). For advanced pitching, this RTEV serves to enable either a stronger flow impingement effect leading to positive wake interaction lift if the LEV is detached, or a less favourable vortex suction effect leading to negative wake interaction lift if the LEV is closely attached. The higher Reynolds number led to faster development of the wake vortices, but the primary wake interaction mechanisms remained the same for both Reynolds numbers.

RevDate: 2022-10-09

Usman , Memon AA, Alghamdi M, et al (2022)

A forced convection of water aluminum oxide nanofluid flow and heat transfer study for a three dimensional annular with inner rotated cylinder.

Scientific reports, 12(1):16735.

The article examines a water alumina nanofluid and heat transfer through the three-dimensional annular. The annular is constructed by the two concentric cylinders in which the inner cylinder can rotate along the tangential direction at a constant speed. A slip boundary condition will be imposed to vanish the viscous effect in the vicinity of the outer cylinder wall. Moreover, the rotating cylinder is kept at a hot temperature, and the outer one is at a cold temperature. A three-dimensional incompressible Navier Stokes and energy equations were carried in cylindrical coordinates. The simulation was observed using the emerging computational tool of COMSOL Multiphysics 5.6, which implements Least Square Galerkin's scheme of finite element method. The parametric study will be done by altering the speed of rotation of the inner cylinder from 1 to 4, volume fraction from 0.001 to 0.9, and the aspect ratio from 0.4 to 0.6 for a fixed Reynolds number of 35,000. The results will be displayed with graphs and tables for average values of the Nusselt number, the percentage change in the temperature, and the skin friction at the middle plan. It was found that the average Nusselt number at the middle of the annular increases before the volume fraction of 0.2 and then decreases for all values of the volume fraction for a fixed rotation of the inner cylinder. The average percentage change relative to the inner cylinder's hot temperature decreases with the volume fraction increase for the fixed rotation. Also, it was found that the quantity of nanoparticles in the domain is improving the average skin friction in the middle of the channel, and it can be reduced by improving the rotation of the inner cylinder by about 10-23% strictly depending upon the aspect ratio for a particular case.

RevDate: 2022-12-02
CmpDate: 2022-10-07

Shoukat G, Idrees H, Sajid M, et al (2022)

Numerical analysis of permeate flux in reverse osmosis by varying strand geometry.

Scientific reports, 12(1):16636.

In regions with limited potable water availability, membrane desalination is being employed to filter water using a pressure-driven approach. Because of the high energy consumption required to produce the pressure differential needed for this method, researchers have been trying different geometric designs of spacer filaments to enhance the amount of permeate flux in terms of energy utilization. The purpose of spacer filaments is to support membranes structurally and induce turbulent mixing in spiral wound membrane desalination. In this paper, the improvement of mass transfer in desalination driven by reverse osmosis has been studied using Computational Fluid Dynamics (CFD) with the introduction of spiral wound membranes that are lined with spacer filaments in a zig-zag formation having alternating diameters for strands. The fluid flow characteristics for a 2-dimensional geometric model were resolved using the open-source program OpenFOAM by changing the Reynolds number to just before the inception of instabilities. Ratios of alternate strand diameters were also varied between one and two. Based on a detailed analysis of velocity contours, pressure distribution, wall shear stresses, and steady-state vortex systems, the research findings offer guidance for employing alternating strand design in zig-zag formation for optimum mass transfer and minimal pressure drop when accounting for concentration polarization.

RevDate: 2022-12-07
CmpDate: 2022-12-07

Pinto Costa R, Nwotchouang BST, Yao J, et al (2023)

Impact of Blood Rheology on Transition to Turbulence and Wall Vibration Downstream of a Stenosis.

Journal of biomechanical engineering, 145(4):.

Previous experimental flow studies have demonstrated a delay (∼20%) in transition to turbulence for whole blood compared to a Newtonian analog fluid in both a straight pipe and eccentric stenosis model with ridged walls. The impact of wall compliance on the transition to turbulence of blood compared to Newtonian analog and on wall vibration is unknown. The present study employed flexible walls downstream of an eccentric stenosis model and examined the wall vibration during the transition to turbulence with whole blood and a Newtonian analog. Measurements of tube wall vibration velocity (WVV) were used as an indicator of the turbulence level within the flexible tube. WVV was measured at 5, 10, and 15 diameters downstream of the stenosis using a laser Doppler vibrometer at Reynolds numbers 0, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, and 750. The root mean squares (RMS) of the measured WVV were utilized as an indirect measure of fluid velocity fluctuations present at that location, and hence, an indicator of transition to turbulence. WVV RMS was near-constant until approximately Reynolds number 400. It increased monotonically with Reynolds number for both whole blood and the Newtonian fluid. No differences in the transition to turbulence were observed between whole blood and the Newtonian fluid, as the WVV RMS curves were remarkably similar in shape. This result suggests that rheology had minimal impact on the WVV downstream of a stenosis for transition to turbulence since the fluids had a similar level of vibration.

RevDate: 2022-10-04

Moon J, Kang G, Im B, et al (2022)

Flapping and powering characteristics of a flexible piezoelectric nanogenerator at Reynolds number range simulating ocean current.

Scientific reports, 12(1):16465.

For effective ocean energy harvesting, it is necessary to understand the coupled motion of the piezoelectric nanogenerator (PENG) and ocean currents. Herein, we experimentally investigate power performance of the PENG in the perspective of the fluid-structure interaction considering ocean conditions with the Reynolds number (Re) values ranging from 1 to 141,489. A piezoelectric polyvinylidene fluoride micromesh was constructed via electrohydrodynamic (EHD) jet printing technique to produce the β-phase dominantly that is desirable for powering performance. Water channel was set to generate water flow to vibrate the flexible PENG. By plotting the Re values as a function of nondimensional bending rigidity (KB) and the structure-to-fluid mass ratio (M*), we could find neutral curves dividing the stable and flapping regimes. Analyzing the flow velocities between the vortex and surroundings via a particle image velocimetry, the larger displacement of the PENG in the chaotic flapping regime than that in the flapping regime was attributed to the sharp pressure gradient. By correlating M*, Re, KB, and the PENG performance, we conclude that there is critical KB that generate chaotic flapping motion for effective powering. We believe this study contributes to the establishment of a design methodology for the flexible PENG harvesting of ocean currents.

RevDate: 2022-11-28
CmpDate: 2022-09-30

Ismael AM, Eldabe NT, Abou Zeid MY, et al (2022)

Thermal micropolar and couple stresses effects on peristaltic flow of biviscosity nanofluid through a porous medium.

Scientific reports, 12(1):16180.

The main aim of the current study is to analyze couple stresses effects on MHD peristaltic transport of a micropolar non-Newtonian nanofluid. The fluid flows through a porous media between two horizontal co-axial tubes. The effects of radiation, chemical reaction, viscous and ohmic dissipation are considered. The inner tube is solid and uniform, while the outer tube has a sinusoidal wave traveling down its wall. The governing equations have been simplified using low-Reynolds number and long wave-length approximations, thus a semi-analytical solutions have been obtained using the homotopy perturbation method. Numerical results for the behaviors of the axial velocity, microrotation velocity, temperature and nanoparticles concentration with the physical parameters are depicted graphically through a set of graphs. Furthermore, the values of the skin friction coefficient, Nusselt and nano Sherwood numbers are computed and presented graphically through some draws. Moreover, the trapping phenomenon is discussed throughout a set of figures. The present study is very important in many medical applications, as the gastric juice motion in the small intestine when an endoscope is inserted through it. Further, gold nanoparticles are utilized in the remedy of cancer tumor.

RevDate: 2022-09-26

Wang Y, Gilson EP, Ebrahimi F, et al (2022)

Observation of Axisymmetric Standard Magnetorotational Instability in the Laboratory.

Physical review letters, 129(11):115001.

We report the first direct evidence for the axisymmetric standard magnetorotational instability (SMRI) from a combined experimental and numerical study of a magnetized liquid-metal shear flow in a Taylor-Couette cell with independently rotating and electrically conducting end caps. When a uniform vertical magnetic field B_{i} is applied along the rotation axis, the measured radial magnetic field B_{r} on the inner cylinder increases linearly with a small magnetic Reynolds number Rm due to the magnetization of the residue Ekman circulation. Onset of the axisymmetric SMRI is identified from the nonlinear increase of B_{r} beyond a critical Rm in both experiments and nonlinear numerical simulations. The axisymmetric SMRI exists only at sufficiently large Rm and intermediate B_{i}, a feature consistent with theoretical predictions. Our simulations further show that the axisymmetric SMRI causes the velocity and magnetic fields to contribute an outward flux of axial angular momentum in the bulk region, just as it should in accretion disks.

RevDate: 2022-09-24

Anonymous (2022)

Correction to: Trends in Stroke Kinematics, Reynolds Number, and Swimming Mode in Shrimp-Like Organisms.

Integrative and comparative biology pii:6713982 [Epub ahead of print].

RevDate: 2022-09-28

Bernad SI, Socoliuc V, Susan-Resiga D, et al (2022)

Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting.

Pharmaceutics, 14(9):.

Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model's aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation.

RevDate: 2022-09-28

Mostefa T, Eddine AD, Tayeb NT, et al (2022)

Kinematic Properties of a Twisted Double Planetary Chaotic Mixer: A Three-Dimensional Numerical Investigation.

Micromachines, 13(9):.

In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating rods inside a moving tank. The considered stirring protocol is a "Continuous sine squared motion" by using the dynamic mesh model and user-defined functions (UDFs)to define the velocity profiles. The chaotic advection is obtained in our active mixers by the temporal modulation of rotational velocities of the moving walls in order to enhance the mixing of the fluid for a low Reynolds number and a high Peclet number. For this goal, we applied the Poincaré section and Lyapunov exponent as reliable mathematic tools for checking mixing quality by tracking a number of massless particles inside the fluid domain. Additionally, we investigated the development of fluid kinematics proprieties, such as vorticity, helicity, strain rate and elongation rate, at various time periods in order to view the impact of temporal modulation on the flow properties. The results of the mentioned simulation showed that it is possible to obtain a chaotic advection after a relatively short time, which can deeply enhance mixing fluid efficiency.

RevDate: 2022-09-28

Ahmed MF, Zaib A, Ali F, et al (2022)

Cattaneo-Christov Double Diffusion (CCDD) on Sutterby Nanofluid with Irreversibility Analysis and Motile Microbes Due to a RIGA Plate.

Micromachines, 13(9):.

In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This Riga plate creates an electric and magnetic field, where a transverse Lorentz force is generated that contributes to the flow along the plate. A new study field has been created by Sutterby nanofluid flows down the Riga plate, which is crucial to the creation of several industrial advancements, including thermal nuclear reactors, flow metres, and nuclear reactor design. This article addresses the second law analysis of MHD Sutter by nanofluid over a stretching sheet with the Riga plate. The Cattaneo-Christov Double Diffusion heat and mass flux have been created to examine the behaviour of relaxation time. The bioconvection of motile microorganisms and chemical reactions are taken into consideration. Similarity transformations are used to make the governing equations non-dimensional ordinary differential equations (ODE's) that are subsequently solved through an efficient and powerful analytic technique, the homotopy analysis method (HAM). The effect of pertained variables on velocity, temperature, concentration, and motile microorganism distributions are elaborated through the plot in detail. Further, the velocity distribution enhances and reduces for greater value Deborah number and Reynold number for the two cases of pseudoplastic and dilatant flow. Microorganism distribution decreases with the augmented magnitude of Peclet number (Pe), Bioconvection Lewis number (Lb), and microorganism concentration difference number (ϖ). The entropy production distribution is increased for the greater estimations of the Reynolds number (ReL) and Brinkman parameter (Br). Two sets of graphical outputs are presented for the Sutterby fluid parameter. Finally, for the justification of these outcomes, tables of comparison are made with various variables.

RevDate: 2022-09-28

Juraeva M, DJ Kang (2022)

Mixing Performance of the Modified Tesla Micromixer with Tip Clearance.

Micromachines, 13(9):.

A passive micromixer based on the modified Tesla mixing unit was designed by embedding tip clearance above the wedge-shape divider, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The height of tip clearance was varied from 40 μm to 80 μm, corresponding to 25% to 33% of the micromixer depth. The numerical results show that the mixing enhancement by the tip clearance is noticeable over a wide range of the Reynolds numbers Re < 50. The height of tip clearance is optimized in terms of the DOM, and the optimum value is roughly h = 60 μm. It corresponds to 33% of the present micromixer depth. The mixing enhancement in the molecular diffusion regime of mixing, Re ≤ 1, is obtained by drag and connection of the interface in the two sub-streams of each Tesla mixing unit. It appears as a wider interface in the tip clearance zone. In the intermediate range of the Reynolds number, 1 < Re ≤ 50, the mixing enhancement is attributed to the interaction of the flow through the tip clearance and the secondary flow in the vortex zone of each Tesla mixing unit. When the Reynolds number is larger than about 50, vortices are formed at various locations and drive the mixing in the modified Tesla micromixer. For the Reynolds number of Re = 80, a pair of vortices is formed around the inlet and outlet of each Tesla mixing unit, and it plays a role as a governing mechanism in the convection-dominant regime of mixing. This vortex pattern is little affected as long as the tip clearance remains smaller than about h = 70 μm. The DOM at the outlet is little enhanced by the presence of tip clearance for the Reynolds numbers Re ≥ 50. The tip clearance contributes to reducing the required pressure load for the same value of the DOM.

RevDate: 2022-09-28

Yokoyama F, Nakajima M, S Ichikawa (2022)

Analysis of Calcium Sulfate Scaling Phenomena on Reverse Osmosis Membranes by Scaling-Based Flux Model.

Membranes, 12(9):.

In this study, the behavior of permeate flux decline due to scale precipitation of calcium sulfate on reverse osmosis membranes was investigated. The proposed scaling-based flux model is able to explain that permeate fluxes attributed to three mechanisms of scale precipitation-cake formation, surface blockage, and mixed crystallization-converge to the same newly defined scaling-based critical flux. In addition, a scaling index is defined, which determines whether scale precipitates on the membrane. The experimental results were analyzed based on this index. The mass-transfer coefficients of flat membrane cells used in the experiments were measured and, although the coefficients differed, they could be summarized in the same form as the Leveque equation. Considering the results of the scale precipitation experiments, where the operating conditions of pressure, solute concentration, temperature, and Reynolds number were varied, the convergent values of the permeate fluxes are explained by the scaling-based critical fluxes and the scale precipitation zones by the scaling indexes.

RevDate: 2022-09-19

Shakeel MR, EMA Mokheimer (2022)

Numerical Study of Stratified Flames Using Reynolds Averaged Navier Stokes Modeling.

ACS omega, 7(36):31822-31833.

Reynolds averaged Navier Stokes technique was used to develop a validated numerical model for stratified flames. The validation was carried out with the experimental data of the non-swirl flames of the Cambridge dual annulus swirl burner. The RNG k-ε turbulence model along with the SG-35 skeletal chemical mechanism was found to give a good prediction of scalar and vector quantities while resulting in the reduction of computational time by 99.75% in comparison with that required for large eddy simulation techniques used in the literature. The effect of stratification at a constant input power, global equivalence ratio, and Reynolds number was examined. At stratification ratios (SRs = ϕin/ϕout) 1 and 2, intense burning, marked by the higher OH concentration, was observed close to the bluff body. Beyond SR = 2, the region of intense burning shifts downstream away from the bluff body. This is a result of the high equivalence ratio in the inner annulus, which is beyond the rich flammability limit of methane-air flames, and as a result, the primary flame region is shifted downstream after the mixtures from inner and outer annulus have mixed properly to produce a mixture with the equivalence ratio in the flammability limit. The maximum temperature was found to increase by 24.1% when the SR is increased from 1 to 2 and the combustion efficiency was found to significantly improve by 267%. The highest maximum temperature of 2249 K is observed for the mildly stratified flame at SR = 2. Beyond SR = 2, the maximum temperature decreases, while the combustion efficiency increases slightly.

RevDate: 2022-09-20

Kotnurkar AS, VT Talawar (2022)

Influence of thermal jump and inclined magnetic field on peristaltic transport of Jeffrey fluid with silver nanoparticle in the eccentric annulus.

Heliyon, 8(9):e10543.

This study investigates the impacts of thermal jump and inclined magnetic field on the peristaltic transport of Jeffrey fluid containing silver nanoparticles in the eccentric annuls under the long wavelength and low Reynolds number assumption. In medical studies, the impact of thermal jumps and slanted magnetic fields on public health is of interest. Peristaltic motion's ability to transmit heat and create a magnetic field has several uses in biomedical and bioengineering. The non-Newtonian Jeffrey fluid with silver nanoparticles is considered in the space between two cylindrical tubes that are eccentrically aligned. The homotopic perturbation method is semi-analytical for modeling and nonlinear partial differential equations (HPM). Analytical solutions for velocity, pressure gradient, and pressure rise were found. To show how physical parameters affect temperature, velocity, concentration, frictional force, and pressure rise of inner and outer tubes were plotted. A comparison of the present method with the exact solution for temperature and nanoparticle concentration profile is shown graphically. The present analysis of analytical solution approaches to the exact solution. The most significant thing in the current investigation is that the Hartmann number and thermophoresis number make the velocity profile decline. Jeffrey fluid parameter and magnetic field angle make the velocity rise. The nanofluid's temperature rises as a result of the thermal jump. In addition, the Jeffrey nanofluid has a higher momentum and temperature than the Jeffrey fluid. This analysis can better evaluate the syringe's injection speed and fluid flow features during cancer treatment, artery blockage removal, and reduced bleeding throughout the surgery.

RevDate: 2022-11-30

Akram J, Akbar NS, D Tripathi (2023)

Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model.

Microvascular research, 145:104435.

Pumping devices with the electrokinetics phenomena are important in many microscale transport phenomena in physiology. This study presents a theoretical and numerical investigation on the peristaltic pumping of non-Newtonian Sutterby nanofluid through capillary in presence of electromagnetohydrodynamics. Here blood (Sutterby fluid) is taken as a base fluid and nanofluid is prepared by the suspension of graphene oxide nanoparticles in blood. Graphene oxide is extremely useful in the medical domain for drug delivery and cancer treatment. The modified Buongiorno model for nanofluids and Poisson-Boltzmann ionic distribution is adopted for the formulation of the present problem. Constitutive flow equations are linearized by the implementation of approximations of low Reynolds number, large wavelength, and the Debye-Hückel linearization. The numerical solution of reduced coupled and nonlinear set of equations is computed through Mathematica and graphical illustration is presented. Further, the impacts of buoyancy forces, thermal radiation, and mixed convection are also studied. It is revealed in this investigation that the inclusion of a large number of nanoparticles alters the flow characteristics significantly and boosts the heat transfer mechanism. Moreover, the pumping power of the peristaltic pump can be enhanced by the reduction in the width of the electric double layer which can be done by altering the electrolyte concentration.

RevDate: 2022-09-20
CmpDate: 2022-09-20

Serafini F, Battista F, Gualtieri P, et al (2022)

Drag Reduction in Turbulent Wall-Bounded Flows of Realistic Polymer Solutions.

Physical review letters, 129(10):104502.

Suspensions of DNA macromolecules (0.8 wppm, 60 kbp), modeled as finitely extensible nonlinear elastic dumbbells coupled to the Newtonian fluid, show drag reduction up to 27% at friction Reynolds number 180, saturating at the previously unachieved Weissenberg number ≃10^{4}. At a large Weissenberg number, the drag reduction is entirely induced by the fully stretched polymers, as confirmed by the extensional viscosity field. The polymer extension is strongly non-Gaussian, in contrast to the assumptions of classical viscoelastic models.

RevDate: 2022-09-16

Parfenyev V (2022)

Profile of a two-dimensional vortex condensate beyond the universal limit.

Physical review. E, 106(2-2):025102.

It is well known that an inverse turbulent cascade in a finite (2π×2π) two-dimensional periodic domain leads to the emergence of a system-sized coherent vortex dipole. We report a numerical hyperviscous study of the spatial vorticity profile inside one of the vortices. The exciting force was shortly correlated in time, random in space, and had a correlation length l_{f}=2π/k_{f} with k_{f} ranging from 100 to 12.5. Previously, it was found that in the asymptotic limit of small-scale forcing, the vorticity exhibits the power-law behavior Ω(r)=(3ε/α)^{1/2}r^{-1}, where r is the distance to the vortex center, α is the bottom friction coefficient, and ε is the inverse energy flux. Now we show that for a spatially homogeneous forcing with finite k_{f} the vorticity profile becomes steeper, with the difference increasing with the pumping scale but decreasing with the Reynolds number at the forcing scale. Qualitatively, this behavior is related to a decrease in the effective pumping of the coherent vortex with distance from its center. To support this statement, we perform an additional simulation with spatially localized forcing, in which the effective pumping of the coherent vortex, on the contrary, increases with r, and show that in this case the vorticity profile can be flatter than the asymptotic limit.

RevDate: 2022-09-16

Koyano Y, H Kitahata (2022)

Anomalous diffusion and transport by a reciprocal convective flow.

Physical review. E, 106(2-1):024102.

Under low-Reynolds-number conditions, dynamics of convection and diffusion are usually considered separately because their dominant spatial and temporal scales are different, but cooperative effects of convection and diffusion can cause diffusion enhancement [Koyano et al., Phys. Rev. E 102, 033109 (2020)2470-004510.1103/PhysRevE.102.033109]. In this paper, such cooperative effects are investigated in detail. Numerical simulations based on the convection-diffusion equation revealed that anisotropic diffusion and net shift as well as diffusion enhancement occur under a reciprocal flow. Such anomalous diffusion and transport are theoretically derived by the analyses of the Langevin dynamics.

RevDate: 2022-09-16

Agrawal V, D Mitra (2022)

Chaos and irreversibility of a flexible filament in periodically driven Stokes flow.

Physical review. E, 106(2-2):025103.

The flow of Newtonian fluid at low Reynolds number is, in general, regular and time-reversible due to absence of nonlinear effects. For example, if the fluid is sheared by its boundary motion that is subsequently reversed, then all the fluid elements return to their initial positions. Consequently, mixing in microchannels happens solely due to molecular diffusion and is very slow. Here, we show, numerically, that the introduction of a single, freely floating, flexible filament in a time-periodic linear shear flow can break reversibility and give rise to chaos due to elastic nonlinearities, if the bending rigidity of the filament is within a carefully chosen range. Within this range, not only the shape of the filament is spatiotemporally chaotic, but also the flow is an efficient mixer. Overall, we find five dynamical phases: the shape of a stiff filament is time-invariant-either straight or buckled; it undergoes a period-two bifurcation as the filament is made softer; becomes spatiotemporally chaotic for even softer filaments but, surprisingly, the chaos is suppressed if bending rigidity is decreased further.

RevDate: 2022-09-13

Bohm S, Phi HB, Moriyama A, et al (2022)

Highly efficient passive Tesla valves for microfluidic applications.

Microsystems & nanoengineering, 8:97.

A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s[-] [1] corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed.

RevDate: 2022-09-13

Xiao X, Li G, Liu T, et al (2022)

Experimental Study of the Jetting Behavior of High-Viscosity Nanosilver Inks in Inkjet-Based 3D Printing.

Nanomaterials (Basel, Switzerland), 12(17):.

Inkjet printing of high-viscosity (up to 10[5] mPa·s) nanosilver inks is an interesting emerging technology to achieve the 3D fully printed fabrication of electronic products. The highly viscous force of the ink makes it impossible to achieve droplet ejection with the traditional piezoelectric-driven drop-on-demand inkjet method. In this study, a pneumatic needle jetting valve is adopted to provide sufficient driving force. A large number of high-viscosity inkjet printing tests are carried out, and the jetting behavior is recorded with a high-speed camera. Different jetting states are determined according to the recorded images, and the causes of their formation are revealed. Additionally, the effects of the operating pressure, preload angle, and fluid pressure on jetting states are elucidated. Furthermore, the jetting phase diagram is obtained with the characterization of the Reynolds number and the printable region is clarified. This provides a better understanding of high-viscosity inkjet printing and will promote the application of high-viscosity inkjet printing in 3D fully printed electronic products.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )