Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Invasive Species

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 18 Sep 2020 at 01:46 Created: 

Invasive Species

Standard Definition: Invasive species are plants, animals, or pathogens that are non-native (or alien) to the ecosystem under consideration and whose introduction causes or is likely to cause harm. Although that definition allows a logical possibility that some species might be non-native and harmless, most of time it seems that invasive species and really bad critter (or weed) that should be eradicated are seen as equivalent phrases. But, there is a big conceptual problem with that notion: every species in every ecosystem started out in that ecosystem as an invader. If there were no invasive species, all of Hawaii would be nothing but bare volcanic rock. Without an invasion of species onto land, there would be no terrestrial ecosystems at all. For the entire history of life on Earth, the biosphere has responded to perturbation and to opportunity with evolutionary innovation and with physical movement. While one may raise economic or aesthetic arguments against invasive species, it is impossible to make such an argument on scientific grounds. Species movement — the occurrence of invasive species — is the way the biosphere responds to perturbation. One might even argue that species movement is the primary, short-term "healing" mechanism employed by the biosphere to respond to perturbation — to "damage." As with any healing process, the short-term effect may be aesthetically unappealing (who thinks scabs are appealing?), but the long-term effects can be glorious.

Created with PubMed® Query: "invasive species" OR "invasion biology" OR "alien species" OR "introduced species" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2020-09-17

Sumiyama D, Hayashida I, Kanazawa T, et al (2020)

Prevalence and antimicrobial-resistance profiles of Salmonella spp. isolated from green anoles (Anolis carolinensis) collected on the Haha-jima of the Ogasawara archipelago, Japan.

The Journal of veterinary medical science [Epub ahead of print].

We investigated the prevalence of Salmonella enterica and its antimicrobial resistance from 79 green anoles, the invasive alien species inhabits Haha-jima of the Ogasawara archipelago. Samples were collected during the period between 2009 and 2010. The resistance of S. enterica of these samples against 12 common antimicrobial agents was also determined. Salmonella strains, including serovar Oranienburg and Aberdeen, were detected from the large intestines of 30.4% of 79 green anole samples. And 37.5% of which were resistant to Oxytetracycline. This study suggests that green anoles may play an important role of the infection of S. enterica on this island. Attention is needed from the aspect of public and ecological health.

RevDate: 2020-09-17

Tareau MA, Bonnefond A, Palisse M, et al (2020)

Phytotherapies in motion: French Guiana as a case study for cross-cultural ethnobotanical hybridization.

Journal of ethnobiology and ethnomedicine, 16(1):54 pii:10.1186/s13002-020-00404-1.

BACKGROUND: French Guiana is characterized by a very multicultural population, made up of formerly settled groups (Amerindians, Maroons, Creoles) and more recent migrants (mostly from Latin America and the Caribbean). It is the ideal place to try to understand the influence of intercultural exchanges on the composition of medicinal floras and the evolution of phytotherapies under the effect of cross-culturalism.

METHODS: A combination of qualitative and quantitative methods was used. Semi-directive interviews were conducted in 12 localities of French Guiana's coast between January 2016 and June 2017, and the responses to all closed questions collected during the survey were computerized in an Excel spreadsheet to facilitate quantitative processing. Herbarium vouchers were collected and deposited at the Cayenne Herbarium to determine Linnaean names of medicinal species mentioned by the interviewees. A list of indicator species for each cultural group considered was adapted from community ecology to this ethnobiological context, according to the Dufrêne-Legendre model, via the "labdsv" package and the "indval" function, after performing a redundancy analysis (RDA).

RESULTS: A total of 205 people, belonging to 15 distinct cultural groups, were interviewed using semi-structured questionnaires. A total of 356 species (for 106 botanical families) were cited. We observed that pantropical and edible species hold a special place in these pharmacopeias. If compared to previous inventories, 31 recently introduced species can be counted. Furthermore, this study shows that the majority of the plants used are not specific to a particular group but shared by many communities. However, despite this obvious cross-culturalism of medicinal plants between the different cultural communities of French Guiana, divergent trends nevertheless appear through the importance of 29 indicator/cultural keystone species in 10 cultural groups. Finally, we have emphasized that the transmission of herbal medicine's knowledge in French Guiana is mainly feminine and intra-cultural.

CONCLUSION: French Guianese medicinal flora is undoubtedly related to the multiple cultures that settled this territory through the last centuries. Cultural pharmacopeias are more hybrid than sometimes expected, but cultural keystone species nevertheless arise from a common background, allowing to understand, and define, the relationships between cultural groups.

RevDate: 2020-09-17
CmpDate: 2020-09-17

Kołodziejek J (2019)

Growth and competitive interaction between seedlings of an invasive Rumex confertus and of co-occurring two native Rumex species in relation to nutrient availability.

Scientific reports, 9(1):3298.

Rumex confertus is an alien invasive perennial plant that has increased its range rapidly within central Europe in the last 100 years. This study examined the effects of a commercial fertilizer on the competition between the invasive Rumex confertus and two non-invasive native species R. acetosa or R. conglomeratus in terms of morphological and physiological traits and relative yield. All three Rumex species were grown in the open field with two levels of nutrient availability in field plots. Competition and fertilizer had significant effects on height, relative growth rate (RGR), specific leaf area (SLA) as well as shoot and root biomass of all three species. The fertilized plants had high macronutrient and nitrate contents in leaf tissue. Relative yield of R. confertus was <1, indicating that for this species the effects of interspecific competition were greater than those of intraspecific competition. The results of this experiment indicate that there is interaction between the nutrient status of the soil and the competition between species. Competitive superiority of R. confertus could explain its dominance in grasslands and in disturbed areas, and might explain its great influence on the occurrence of native species because competition intensity was high in fertilized plots.

RevDate: 2020-09-17
CmpDate: 2020-09-17

Qin W, Lin S, Chen X, et al (2019)

Food Transport of Red Imported Fire Ants (Hymenoptera: Formicidae) on Vertical Surfaces.

Scientific reports, 9(1):3283.

Many ants can cooperatively transport large food items (either coordinated or uncoordinated during transportation), which can be rarely observed in other animals besides humans. Although these behaviors have been extensively investigated on horizontal surfaces, few studies dealt with food transport on vertical surfaces. The red imported fire ant, Solenopsis invicta Buren, is an invasive ant species that commonly forages on trees. Our studies showed that S. invicta used multiple strategies to transport food items on vertical surfaces (tree trunks). Small food items (1 × 1 × 1 mm sausage) were carried and transported by individual ants, and larger food items were either collectively and directly transported or cut collaboratively first and small particles were then transported individually or collectively. Competition and deadlocks were frequently observed during individual and collective transport respectively. During cutting, groups of ants tightly fixed the food on the tree trunks by holding the edges of the food item, while other ants cut the food into smaller particles. All food items and particles were moved downward. We investigated the effects of food placement (placed on a platform or fixed on tree trunk), food shape (cuboid or flattened), particle sizes (0.45-1, 1-2, 2-3, or 3-4 mm), and placement height (20, 80, or 150 cm) on the food transport on tree trunks. Our studies are the first to show how fire ants transport food on a vertical surface, and may provide insights into the development of novel fire ant baiting systems that can be placed on tree trunks.

RevDate: 2020-09-16

Sillero N, Huey RB, Gilchrist G, et al (2020)

Distribution modelling of an introduced species: do adaptive genetic markers affect potential range?.

Proceedings. Biological sciences, 287(1935):20201791.

Biological invasions have increased in the last few decades mostly due to anthropogenic causes such as globalization of trade. Because invaders sometimes cause large economic losses and ecological disturbances, estimating their origin and potential geographical ranges is useful. Drosophila subobscura is native to the Old World but was introduced in the New World in the late 1970s and spread widely. We incorporate information on adaptive genetic markers into ecological niche modelling and then estimate the most probable geographical source of colonizers; evaluate whether the genetic bottleneck experienced by founders affects their potential distribution; and finally test whether this species has spread to all its potential suitable habitats worldwide. We find the environmental space occupied by this species in its native and introduced distributions are notably the same, although the introduced niche has shifted slightly towards higher temperature and lower precipitation. The genetic bottleneck of founding individuals was a key factor limiting the spread of this introduced species. We also find that regions in the Mediterranean and north-central Portugal show the highest probability of being the origin of the colonizers. Using genetically informed environmental niche modelling can enhance our understanding of the initial colonization and spread of invasive species, and also elucidate potential areas of future expansions worldwide.

RevDate: 2020-09-16

Rodrigues JCV, Cosh MH, Hunt ER, et al (2020)

Tracking Red Palm Mite Damage in the Western Hemisphere Invasion with Landsat Remote Sensing Data.

Insects, 11(9): pii:insects11090627.

Red palm mites (Raoiella indica Hirst, Acari: Tenuipalpidae) were first observed in the western hemisphere on the islands and countries surrounding the Caribbean Sea, infesting the coconut palm (Cocos nucifera L.). Detection of invasive pests usually relies upon changes in vegetation properties as result of the pest activity. These changes may be visible in time series of satellite data records, such as Landsat satellites, which have been available with a 16-day repeat cycle at a spatial resolution of 30 m since 1982. Typical red palm mite infestations result in the yellowing of the lower leaves of the palm crown; remote sensing model simulations have indicated that this feature may be better detected using the green normalized difference vegetation index (GNDVI). Using the Google Earth Engine programming environment, a time series of Landsat 5 Thematic Mapper, Landsat 7 Enhanced Thematic Mapper Plus and Landsat 8 Operational Land Imager data was generated for plantations in northern and northeast Brazil, El Salvador, and Trinidad-Tobago. Considering the available studied plantations, there were little or no differences of GNDVI before and after the dates when red palm mites were first revealed at each location. A discussion of possible alternative approaches are discussed related to the limitations of the current satellite platforms.

RevDate: 2020-09-16

Laface VLA, Musarella CM, Cano Ortiz A, et al (2020)

Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy).

Plants (Basel, Switzerland), 9(9): pii:plants9091181.

Knowledge on alien species is needed nowadays to protect natural habitats and prevent ecological damage. The presence of new alien plant species in Italy is increasing every day. Calabria, its southernmost region, is not yet well known with regard to this aspect. Thanks to fieldwork, sampling, and observing many exotic plants in Calabria, here, we report new data on 34 alien taxa. In particular, we found three new taxa for Europe (Cascabela thevetia, Ipomoea setosa subsp. pavonii, and Tecoma stans), three new for Italy (Brugmansia aurea, Narcissus 'Cotinga', and Narcissus 'Erlicheer'), one new one for the Italian Peninsula (Luffa aegyptiaca), and 21 new taxa for Calabria (Allium cepa, Asparagus setaceus, Bassia scoparia, Beta vulgaris subsp. vulgaris, Bidens formosa, Casuarina equisetifolia, Cedrus atlantica, Chlorophytum comosum, Cucurbita maxima subsp. maxima, Dolichandra unguis-cati, Fagopyrum esculentum, Freesia alba, Juglans regia, Kalanchoë delagoënsis, Passiflora caerulea, Portulaca grandiflora, Prunus armeniaca, Prunus dulcis, Solanum tuberosum, Tradescantia sillamontana, and Washingtonia filifera). Furthermore, we provide the first geolocalized record of Araujia sericifera, the confirmation of Oxalis stricta, and propose a change of status for four taxa (Cenchrus setaceus, Salpichroa origanifolia, Sesbania punicea, and Nothoscordum gracile) for Calabria. The updated knowledge on the presence of new alien species in Calabria, in Italy and in Europe could allow for the prevention of other new entries and to eliminate this potential ecological threat to natural habitats.

RevDate: 2020-09-15

Wang Y, Ni G, Hou Y, et al (2020)

Plant-soil feedbacks under resource limitation may not contribute to the invasion by annual Asteraceae plants.

Oecologia pii:10.1007/s00442-020-04756-z [Epub ahead of print].

Changes in resource availability can alter plant growth, the influence of plants on soil characteristics, and, ultimately, plant-soil feedback (PSF). Previous studies often show that invasive plants can outperform native plants under high but not low resource conditions. However, it remains unclear whether under low resource conditions, invaders can outperform natives in the long term by generating more positive or less negative PSFs. Using three non-native invasive and three non-invasive native annual Asteraceae plants, we conducted a two-phase pot experiment, where in the first, conditioning generation plants were grown to induce changes in soil characteristics, and in the second, bioassay generation plants were regrown to evaluate how they respond to these soils. Half of the pots received a nutrient addition treatment in the conditioning generation. We found significant species-specific effects of conditioning on most of the soil characteristics, and some soil characteristics were significantly correlated with bioassay generation biomass of a subset of species, but neither species nor invasive or native status affected bioassay generation biomass. All invasive species generated neutral PSFs across soil nutrient conditions. The native Emilia sonchifolia tended to condition the soil that favored its own growth more than others, and under low nutrient conditions, the native Eclipta prostrata conditioned the soil that disfavored its own growth more than others. These results indicate that invaders may not outperform natives through PSFs under low resource conditions, and increasing resource availability may change the types of PSFs for some native but not invasive plants.

RevDate: 2020-09-15

Elinson RP (2020)

Development of a non-amphibious amphibian: views of a coquí.

The International journal of developmental biology pii:190386re [Epub ahead of print].

Development without a free-living tadpole is common among Ibero American frogs. The most derived condition is direct development where the tadpole has been eliminated, and the most investigated direct developing frog is Eleutherodactylus coqui. To provide a different point-of-view, an imaginary interview with a coqui is conducted. Opinions are offered on invasive species, developmental features that are surprisingly conserved, and novelty in germ layer specification.

RevDate: 2020-09-15

Sinka ME, Pironon S, Massey NC, et al (2020)

A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk.

Proceedings of the National Academy of Sciences of the United States of America pii:2003976117 [Epub ahead of print].

In 2012, an unusual outbreak of urban malaria was reported from Djibouti City in the Horn of Africa and increasingly severe outbreaks have been reported annually ever since. Subsequent investigations discovered the presence of an Asian mosquito species; Anopheles stephensi, a species known to thrive in urban environments. Since that first report, An. stephensi has been identified in Ethiopia and Sudan, and this worrying development has prompted the World Health Organization (WHO) to publish a vector alert calling for active mosquito surveillance in the region. Using an up-to-date database of published locational records for An. stephensi across its full range (Asia, Arabian Peninsula, Horn of Africa) and a set of spatial models that identify the environmental conditions that characterize a species' preferred habitat, we provide evidence-based maps predicting the possible locations across Africa where An. stephensi could establish if allowed to spread unchecked. Unsurprisingly, due to this species' close association with man-made habitats, our maps predict a high probability of presence within many urban cities across Africa where our estimates suggest that over 126 million people reside. Our results strongly support the WHO's call for surveillance and targeted vector control and provide a basis for the prioritization of surveillance.

RevDate: 2020-09-15

Mazza G, Nerva L, Strangi A, et al (2020)

Scent of Jasmine Attracts Alien Invaders and Records on Citizen Science Platforms: Multiple Introductions of the Invasive Lacebug Corythauma ayyari (Drake, 1933) (Heteroptera: Tingidae) in Italy and the Mediterranean Basin.

Insects, 11(9): pii:insects11090620.

The jasmine lacebug Corythauma ayyari is a pest of cultivated and ornamental plants mainly associated to Jasminum spp. This invasive insect is native to Asia, and it has been recently introduced in several countries, mainly within the Mediterranean basin. Here, we updated the known distribution of this species, including five new Italian regions (Liguria, Tuscany, Latium, Apulia, and Calabria); Salamis Island in Greece, and the Occitanie region in France. Citizen-science data have significantly contributed to the knowledge on species distribution, and the online platform for sharing biodiversity information can represent an effective tool for the early detection. Molecular analyses revealed that the specimens collected in Peninsular Italy and Sicily belong to a unique clade, suggesting the possibility of a single introduction, whereas those from Menton (France) and Calabria (Southern Italy) are separated from the others and probably originate from separated introductions.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Kolátková V, Čepička I, Gargiulo GM, et al (2020)

Enigmatic Phytomyxid Parasite of the Alien Seagrass Halophila stipulacea: New Insights into Its Ecology, Phylogeny, and Distribution in the Mediterranean Sea.

Microbial ecology, 79(3):631-643.

Marine phytomyxids represent often overlooked obligate biotrophic parasites colonizing diatoms, brown algae, and seagrasses. An illustrative example of their enigmatic nature is the phytomyxid infecting the seagrass Halophila stipulacea (a well-known Lessepsian migrant from the Indo-Pacific to the Mediterranean Sea). In the Mediterranean, the occurrence of this phytomyxid was first described in 1995 in the Strait of Messina (southern Italy) and the second time in 2017 in the Aegean coast of Turkey. Here we investigated, using scuba diving, stereomicroscopy, light and scanning electron microscopy, and molecular methods, whether the symbiosis is still present in southern Italy, its distribution in this region and its relation to the previous reports. From the total of 16 localities investigated, the symbiosis has only been found at one site. A seasonal pattern was observed with exceptionally high abundance (> 40% of the leaf petioles colonized) in September 2017, absence of the symbiosis in May/June 2018, and then again high infection rates (~ 30%) in September 2018. In terms of anatomy and morphology as well as resting spore dimensions and arrangement, the symbiosis seems to be identical to the preceding observations in the Mediterranean. According to the phylogenetic analyses of the 18S rRNA gene, the phytomyxid represents the first characterized member of the environmental clade "TAGIRI-5". Our results provide new clues about its on-site ecology (incl. possible dispersal mechanisms), hint that it is rare but established in the Mediterranean, and encourage further research into its distribution, ecophysiology, and taxonomy.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Brunel C, Beifen Y, Pouteau R, et al (2020)

Responses of Rhizospheric Microbial Communities of Native and Alien Plant Species to Cuscuta Parasitism.

Microbial ecology, 79(3):617-630.

Parasitic plants have major impacts on host fitness. In the case of species of the holoparasitic Cuscuta genus, these impacts were shown to be particularly strong in some invasive alien plants, which has raised interest in the underlying mechanism. We hypothesized that Cuscuta parasitization may exert strong influence in shaping the diversity patterns in the host rhizosphere microbiome and that this may vary between native (coevolved) and alien (non-coevolved) plants. Here, we report on a field study exploring the effect of parasitization by Cuscuta australis on the rhizosphere microbiota (16S and ITS rDNA) of four plant species sharing and three plant species not sharing the parasite's native range. Despite a predominant role of the host species in shaping the rhizosphere microbiota, the role of host origin and of parasitization still appeared important in structuring microbial communities and their associated functions. Bacterial communities were more strongly influenced than fungi by the native range of the host plant, while fungi were slightly more affected than bacteria by parasitization. About 7% of bacterial phylotypes and 11% of fungal phylotypes were sensitive to Cuscuta parasitization. Parasitization also reduced the abundance of arbuscular mycorrhizal fungi by ca. 18% and of several genes related to plant growth promoting functions (e.g., nitrogen metabolism and quorum sensing). Both fungi and bacteria differentially responded to host parasitization depending on host origin, and the extent of these shifts suggests that they may have more dramatic consequences for alien than for native plants.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Zhang G, Bai J, Zhao Q, et al (2020)

Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Estuary, China.

Microbial ecology, 79(3):644-661.

As an exotic plant species, Spartina alterniflora seriously threatens native ecosystem function in Chinese coastal regions. Unveiling the dynamics of soil bacteria community during its invasion is essential for a better understanding of related biogeochemical processes, while the shift in soil bacterial community over invasive time remains unclear. A short-term chronosequence was identified to assess the impacts of Spartina alterniflora invasion on soil nutrients and bacterial community composition and structure (using 16S rRNA gene high-throughput sequencing) over the time of invasion (i.e., (1) at least 10 years, (2) nearly 5 years, (3) less than 2 years, and (4) in native salt marshes or 0 years) in the Yellow River Estuary. The results exhibited an orderly change in the soil physicochemical properties and bacterial community composition over the invasion time. Soil pH showed a significant decrease with the accumulation of soil organic matter (SOM), whereas soil nutrients such as soil dissolved organic carbon (DOC), total nitrogen (TN), nitrate (NO3-), ammonium (NH4+), K+, and Mg2+ were generally increased with the age of the invasion. The number of operational taxonomic units (OTUs, 97% similarity level) exhibited a decreasing trend, which suggested a decline in bacterial diversity with the invasion age. The dominant groups at the phylum level were Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, and Gemmatimonadetes (the sum of relative abundance was > 70% across all samples). The relative abundances of Chloroflexi and Gemmatimonadetes steadily decreased, while the abundance of Bacteroidetes significantly increased with the plant invasion. The distribution pattern of the soil bacteria was clearly separated according to the principal coordinate analysis (PCoA) and canonical correspondence analysis (CCA) in native and invaded salt marshes. The variation in the soil bacterial community was tightly associated with the soil physicochemical properties (Mantel test, P < 0.05). Variance partitioning analysis (VPA) showed that plant traits explained 4.95% of the bacterial community variation, and soil variables explained approximately 26.96% of the variation. Network analysis also revealed that plant invasion strengthens the interaction among soil bacterial communities. Overall, our findings highlight the bacterial community succession during the Spartina alterniflora invasion in coastal salt marsh soils, which can provide insight regarding the association between soil development and invasive plant.

RevDate: 2020-09-14

Tierney PA, Caffrey JM, Matthews SM, et al (2020)

Evidence for enemy release in invasive common dace Leuciscus leuciscus in Ireland: a helminth community survey and systematic review.

Journal of helminthology, 94:e191 pii:S0022149X20000759.

Invasive species lose parasites in the process of invasion and tend to be less parasitized than conspecifics in the native range and sympatric native species in the invasive range (enemy release). We evaluated enemy release in an invasive freshwater fish in Ireland, common dace Leuciscus leuciscus, using helminth parasite community surveys at the core and front of the invasive range of common dace. Furthermore, we undertook a systematic literature review of helminth infection in common dace across its native range in Great Britain and Europe and invasive range in Ireland. The helminth parasite community survey revealed that invasive common dace were infected with fewer helminth species at the invasion front than at the core. Four helminth taxa - Acanthocephala, Monogenea, Digenea and Nematoda - were present in dace at the invasion core compared to only a single helminth species (Pomphorhynchus tereticollis) at the front. The systematic review revealed that invasive common dace in Ireland hosted fewer species of helminths than common dace in the native range. We report a total of three helminth species in common dace in Ireland compared to 24 in Great Britain and 84 in Continental Europe. Our results support the hypotheses that invasive populations are less parasitized than native populations and that more recently established populations host fewer parasites. However, we demonstrate that invasive species may continue to experience release from parasites long after initial invasion.

RevDate: 2020-09-14

Thushari GGN, JDM Senevirathna (2020)

Plastic pollution in the marine environment.

Heliyon, 6(8):e04709 pii:e04709.

Plastic pollution is recognized as a severe anthropogenic issue in the coastal and marine ecosystems across the world. Unprecedented and continuous accumulation of growing plastic contaminants into any respective aquatic ecosystem by the anthropogenic sources causes direct and/or indirect interruption to ecosystem structure, functions, and consequently, services and values. Land-based and sea-based sources are the primary sources of these contaminants in various modes that enter the ocean. In this review paper, we focused on highlighting different aspects related to plastic pollution in coastal and marine environments. Plastic pollutants are distributed in the ecosystems in different forms, with different size variations as megaplastic, macroplastic, mesoplastic, and microplastic. Microplastics in primary and secondary forms reveal a widespread distribution in the water, sediment, and biota of the marine and coastal habitats. The microplastic level of different coastal and marine ecosystems nearly ranged from 0.001-140 particles/m3 in water and 0.2-8766 particles/m3 in sediments at different aquatic environments over the world. The microplastic accumulation rate of coastal and marine organisms varied at 0.1-15,033 counts. Accordingly, plastic pollution creates several kinds of negative consequences combined with ecological and socio-economic effects. Entanglement, toxicological effects via ingestion of plastics, suffocation, starvation, dispersal, and rafting of organisms, provision of new habitats, and introduction of invasive species are significant ecological effects with growing threats to biodiversity and trophic relationships. Degradation (changes in the ecosystem state) and modifications of marine systems are associated with loss of ecosystem services and values. Consequently, this emerging contaminant affects the socio-economic aspects through negative impacts on tourism, fishery, shipping, and human health. Preventing accumulation sources of plastic pollutants, 3Rs (Reduce-Recycle-Reuse), awareness & capacity building, and producer/manufacturer responsibility are practical approaches toward addressing the issue of plastic pollution. Existing and adopted policies, legislations, regulations, and initiatives at global, regional, and national level play a vital role in reducing plastic debris in the marine and coastal zones. Development of proposals/solutions on key research gaps can open a novel pathway to address this environmental issue in an effective scientific manner. In conclusion, this paper demonstrates the current status of plastic pollution in the marine ecosystem to make aware people of a plastic-free, healthy blue ocean in the near future.

RevDate: 2020-09-14
CmpDate: 2020-09-14

Gaffke AM, Sing SE, Dudley TL, et al (2020)

Establishing Diorhabda carinulata: Impact of Release Disturbances on Pheromone Emission and Influence of Pheromone Lures on Establishment.

Journal of chemical ecology, 46(4):378-386.

Before weed biocontrol insects are transported and released in a new area, they are commonly collected into small paper containers, chilled, and kept under dark conditions. This process can be termed a pre-release protocol. The influence of a pre-release protocol on establishment success of a gregarious biological control agent was assessed using the northern tamarisk beetle, Diorhabda carinulata (Desbrochers), and its exotic, invasive host plant saltcedar (Tamarix spp.). Pre-release protocol impacts on aggregation pheromone production by D. carinulata were characterized under controlled conditions. Additional experiments were undertaken to determine if deployment of aggregation pheromone lures might enhance the agent's persistence at release sites. Adults that experienced the pre-release protocol produced less aggregation pheromone compared to undisturbed adults. Olfactometer bioassays indicated that a cohort of adults subjected to the pre-release protocol were less attractive to other adults than a control cohort. Efficacy of aggregation pheromone-based lures to retain adults at release sites was evaluated by comparing capture numbers of adult beetles at paired treatment and control release sites, 10-14 days after the release of 300, 500, or 1000 individuals. A greater number of adult D. carinulata were captured where the pheromone lures had been deployed compared to control release sites. Application of aggregation pheromone when a new release of D. carinulata is planned should allow biological control practitioners to increase retention of beetles at a release site.

RevDate: 2020-09-14
CmpDate: 2020-09-14

Abboud C, Bonnefon O, Parent E, et al (2019)

Dating and localizing an invasion from post-introduction data and a coupled reaction-diffusion-absorption model.

Journal of mathematical biology, 79(2):765-789.

Invasion of new territories by alien organisms is of primary concern for environmental and health agencies and has been a core topic in mathematical modeling, in particular in the intents of reconstructing the past dynamics of the alien organisms and predicting their future spatial extents. Partial differential equations offer a rich and flexible modeling framework that has been applied to a large number of invasions. In this article, we are specifically interested in dating and localizing the introduction that led to an invasion using mathematical modeling, post-introduction data and an adequate statistical inference procedure. We adopt a mechanistic-statistical approach grounded on a coupled reaction-diffusion-absorption model representing the dynamics of an organism in an heterogeneous domain with respect to growth. Initial conditions (including the date and site of the introduction) and model parameters related to diffusion, reproduction and mortality are jointly estimated in the Bayesian framework by using an adaptive importance sampling algorithm. This framework is applied to the invasion of Xylella fastidiosa, a phytopathogenic bacterium detected in South Corsica in 2015, France.

RevDate: 2020-09-11

Ma KCK, Zardi GI, McQuaid CD, et al (2020)

Historical and contemporary range expansion of an invasive mussel, Semimytlius algosus, in Angola and Namibia despite data scarcity in an infrequently surveyed region.

PloS one, 15(9):e0239167 pii:PONE-D-20-20167.

Understanding the spread of invasive species in many regions is difficult because surveys are rare. Here, historical records of the invasive marine mussel, Semimytilus algosus, on the shores of Angola and Namibia are synthesised to re-construct its invasive history. Since this mussel was first discovered in Namibia about 90 years ago, it has spread throughout the western coast of southern Africa. By the late 1960s, the species was well established across a range of 1005 km of coastline in southern Angola and northern Namibia. Although only coarse spatial resolution data are available since the 1990s, the distribution of S. algosus clearly increased substantially over the subsequent decades. Today, the species is distributed over 2785 km of coastline, appearing in southern Namibia in 2014, whence it spread across the border to northern South Africa in 2017, and in northern Angola in 2015. Conspicuously, its current range appears to be relatively contiguous across at least 810 km of shore in southern Angola and throughout Namibia, with isolated, spatially disjunct occurrences towards the southern and northern limits of its distribution. Despite there being few occurrence records that are unevenly distributed spatially and temporally, data for the distributional patterns of S. algosus in Angola and Namibia provide invaluable insights into how marine invasive species spread in developing regions that are infrequently monitored.

RevDate: 2020-09-11

Sessa FM, Cianti L, Brogelli N, et al (2020)

Risks and critical issues related to the discovery on the market of unauthorized live alien species on the Italian territory: Chinese crab (Eriocheir sinensis).

Italian journal of food safety, 9(2):8774.

Eriocheir sinensis, Chinese Crab or Chinese Mitten Crab is a catadromous species belonging to the Varunidae family, native to river and estuarine areas of North and South East China and Korea. At European level, E. sinensis is widespread in the main water basins of Central and Northern Europe and, since 2016, it has been included in the list of invasive species important for the European Union and subjected to confinement and eradication measures which include the prohibition of collection, transit and placing on the market of live specimens (Regulation (EC) N° 1143/2014). The Chinese Crab can represent a significant danger for the local ecosystem and for the native biota as well as contributing to the appearance of hydrogeological instability phenomena resulting from the intense excavation and erosion of the riverbanks. The first finding of 5 kg of live specimens of Eriocheir sinensis was recorded in the official control by the UFS (Functional Simple Unit) veterinary public health and food safety of the ASL Toscana Centro at an ethnic catering establishment. The specimens were subjected to seizure, photographed, identified morphologically, and subjected to euthanasia and destruction in accordance with the European requirements for welfare and management of animal by-products. From the sanitary point of view, the dangers associated with the consumption of this crab are mainly biological and chemical therefore, risk communication is fundamental, not only at the level of the competent authorities in the sector, but also for the food business operators.

RevDate: 2020-09-11

Varga A, Demeter L, Ulicsni V, et al (2020)

Prohibited, but still present: local and traditional knowledge about the practice and impact of forest grazing by domestic livestock in Hungary.

Journal of ethnobiology and ethnomedicine, 16(1):51 pii:10.1186/s13002-020-00397-x.

BACKGROUND: Forests have been grazed for millennia. Around the world, forest grazing by livestock became a controversial management practice, gradually restricted in many countries over the past 250 years. This was also the case in most Central and Eastern European countries, including Hungary, where forest grazing was a legally prohibited activity between 1961 and 2017. Until the 2010s, ecologists and nature conservationists considered it merely as a historical form of forest use. As a result, there is little contemporary scientific information available about the impact of forest grazing on vegetation and the traditional ecological knowledge associated with it. Our aim was to explore and summarize this type of knowledge held by herders in Hungary.

METHODS: We interviewed 58 knowledgeable herders and participated in forest grazing activities in 43 study locations across the country. The results were analysed qualitatively.

RESULTS: We revealed a living ecological knowledge tradition and practice of forest grazing in native and non-native forest stands. The impact of livestock grazing on native and non-native forests is not considerably different, in the view of the herders. For both forest types, the greatest impact of grazing was the suppression of the shrub layer, while grazing also increased the dominance and palatability ("tameness") of the grasses. Livestock could cause significant damage to seedlings during forest grazing, but if done with care, grazing could also be an integral part of forestry management.

CONCLUSIONS: Sustainability of current forest grazing practices depends on the depth of local and traditional knowledge applied and herders' stewardship. We stress the importance of collaborating with holders of local and traditional knowledge in order to gain a better understanding of the effects of livestock grazing on vegetation in temperate forests.

RevDate: 2020-09-11

Caniço A, Mexia A, L Santos (2020)

First Report of Native Parasitoids of Fall Armyworm Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Mozambique.

Insects, 11(9): pii:insects11090615.

The alien invasive insect pest Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), commonly referred to as fall armyworm (FAW), is causing significant losses to maize production in Africa since its detection in 2016. As an emergency response, governments in several countries distributed and/or promoted massive use of synthetic insecticides among smallholder farmers to fight FAW. The inappropriate use of synthetic insecticides by non-trained and ill-equipped farmers raises environmental and health concerns. This study aimed to assess the occurrence of native parasitoids of FAW, their parasitism rates, and relative abundance in the central province of Manica, Mozambique. A field collection of FAW egg masses and larvae was conducted from May to August 2019 (dry season of the 2018/2019 cropping season) and in December 2019 and January 2020 (rainy season of 2019/2020 cropping season). A total of 101 egg masses and 1444 larvae of FAW were collected from infested fields. Five larval parasitoids were recorded, but no egg parasitism was observed. Coccygidium luteum Brullé (Hymenoptera: Braconidae) and Drino quadrizonula Thomson (Diptera: Tachinidae) were the primary parasitoids. Maximum parasitism of 23.68% and 8.86% and relative abundance of 100 and 96.3 were recorded for C. luteum and D. quadrizonula, respectively. Total parasitism by different parasitoid species was at 9.49%. Cultural practices favoring the action of these parasitoids should be advocated.

RevDate: 2020-09-10

Vivó-Pons A, Alós J, F Tomas (2020)

Invasion by an ecosystem engineer shifts the abundance and distribution of fish but does not decrease diversity.

Marine pollution bulletin, 160:111586 pii:S0025-326X(20)30704-9 [Epub ahead of print].

Negative impacts of invasive species are widely accepted, but there is increasing evidence that neutral or positive effects are more prevalent than initially recognized, particularly for species which are of different functional / trophic group than the invader. We used a BACI design to examine how fish communities responded to the invasion of Halimeda incrassata, an ecosystem engineer which colonizes sandy habitats in the Western Mediterranean. While invasion did not alter overall species richness or diversity, we detected positive, negative and neutral responses by different fish species, which has important ecological and socio-economic implications. Contrasting responses likely result from different alterations that this alga conferred, putatively increasing prey availability via habitat creation, or limiting burial and camouflage abilities of fish. Our results highlight that effects of ecosystem engineers can be multiple and complex, and that predictions of invasive species are not straight forward.

RevDate: 2020-09-10

Quilodrán CS, Nussberger B, Macdonald DW, et al (2020)

Projecting introgression from domestic cats into European wildcats in the Swiss Jura.

Evolutionary applications, 13(8):2101-2112 pii:EVA12968.

Hybridization between wild and domesticated organisms is a worldwide conservation issue. In the Jura Mountains, threatened European wildcats (Felis silvestris) have been demographically spreading for approximately the last 50 years, but this recovery is coupled with hybridization with domestic cats (Felis catus). Here, we project the pattern of future introgression using different spatially explicit scenarios to model the interactions between the two species, including competition and different population sizes. We project the fast introgression of domestic cat genes into the wildcat population under all scenarios if hybridization is not severely restricted. If the current hybridization rate and population sizes remain unchanged, we expect the loss of genetic distinctiveness between wild and domestic cats at neutral nuclear, mitochondrial and Y chromosome markers in one hundred years. However, scenarios involving a competitive advantage for wildcats and a future increase in the wildcat population size project a slower increase in introgression. We recommend that future studies assess the fitness of these hybrids and better characterize their ecological niche and their ecological interactions with parental species to elucidate effective conservation measures.

RevDate: 2020-09-10

Wu Y, Bogdanowicz SM, Andres JA, et al (2020)

Tracking invasions of a destructive defoliator, the gypsy moth (Erebidae: Lymantria dispar): Population structure, origin of intercepted specimens, and Asian introgression into North America.

Evolutionary applications, 13(8):2056-2070 pii:EVA12962.

Genetic data can help elucidate the dynamics of biological invasions, which are fueled by the constant expansion of international trade. The introduction of European gypsy moth (Lymantria dispar dispar) into North America is a classic example of human-aided invasion that has caused tremendous damage to North American temperate forests. Recently, the even more destructive Asian gypsy moth (mainly L. d. asiatica and L. d. japonica) has been intercepted in North America, mostly transported by cargo ships. To track invasion pathways, we developed a diagnostic panel of 60 DNA loci (55 nuclear and 5 mitochondrial) to characterize worldwide genetic differentiation within L. dispar and its sister species L. umbrosa. Hierarchical analyses supported strong differentiation and recovered five geographic groups that correspond to (1) North America, (2) Europe plus North Africa and Middle East, (3) the Urals, Central Asia, and Russian Siberia, (4) continental East Asia, and (5) the Japanese islands. Interestingly, L. umbrosa was grouped with L. d. japonica, and the introduced North American population exhibits remarkable distinctiveness from contemporary European counterparts. Each geographic group, except for North America, shows additional lower-level structures when analyzed individually, which provided the basis for inference of the origin of invasive specimens. Two assignment approaches consistently identified a coastal area of continental East Asia as the major source for Asian invasion during 2014-2015, with Japan being another source. By analyzing simulation and laboratory crosses, we further provided evidence for the occurrence of natural Asian-North American hybrids in the Pacific Northwest, raising concerns for introgression of Asian alleles that may accelerate range expansion of gypsy moth in North America. Our study demonstrates how genetic data contribute to bio-surveillance of invasive species with results that can inform regulatory management and reduce the frequency of trade-associated invasions.

RevDate: 2020-09-10
CmpDate: 2020-09-10

Lovas-Kiss Á, Vincze O, Löki V, et al (2020)

Experimental evidence of dispersal of invasive cyprinid eggs inside migratory waterfowl.

Proceedings of the National Academy of Sciences of the United States of America, 117(27):15397-15399.

Fish have somehow colonized isolated water bodies all over the world without human assistance. It has long been speculated that these colonization events are assisted by waterbirds, transporting fish eggs attached to their feet and feathers, yet empirical support for this is lacking. Recently, it was suggested that endozoochory (i.e., internal transport within the gut) might play a more important role, but only highly resistant diapause eggs of killifish have been found to survive passage through waterbird guts. Here, we performed a controlled feeding experiment, where developing eggs of two cosmopolitan, invasive cyprinids (common carp, Prussian carp) were fed to captive mallards. Live embryos of both species were retrieved from fresh feces and survived beyond hatching. Our study identifies an overlooked dispersal mechanism in fish, providing evidence for bird-mediated dispersal ability of soft-membraned eggs undergoing active development. Only 0.2% of ingested eggs survived gut passage, yet, given the abundance, diet, and movements of ducks in nature, our results have major implications for biodiversity conservation and invasion dynamics in freshwater ecosystems.

RevDate: 2020-09-09

Culshaw-Maurer M, Sih A, JA Rosenheim (2020)

Bugs scaring bugs: enemy-risk effects in biological control systems.

Ecology letters [Epub ahead of print].

Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.

RevDate: 2020-09-09

Mullens P, Su T, Vong Q, et al (2020)

Establishment of the Invasive Aedes aegypti (Diptera: Culicidae) in the West Valley Area of San Bernardino County, CA.

Journal of medical entomology pii:5903247 [Epub ahead of print].

The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), is the most aggressive invasive mosquito species with worldwide distribution. In addition to being a notorious nuisance species, it can pose significant public health concern because of its ability to transmit various viral pathogens. The first adult capture in the West Valley area of San Bernardino County, CA, occurred in September 2015 in Montclair. A strategic surveillance plan was implemented accordingly by the West Valley Mosquito and Vector Control District to document the infestation. The Biogent Sentinel (BG-2) trap augmented with BG-Lure and carbon dioxide (CO2) was deployed as a routine surveillance tool during 2017-2019. Extensive trapping revealed an expanding infestation, when positive trap nights (TN) increased from 14.2% in 2017 to 23.9% in 2018 and 55.6% in 2019. The average counts/TN increased from 0.65 in 2017 and 0.90 in 2018 to 3.83 in 2019. The cities of Montclair, Chino, and Ontario had much higher infestation than other cities in the district with the highest positive TN of 46.0% in Montclair, and highest average trap count of 3.23/TN in Chino. It was interesting to note that males coincided with females with more profound trend during warmer months of July to October when ratios of males ranged 28.4-35.0%. The BG-2 trap significantly outperformed the CO2 trap and gravid trap. The establishment of this invasive species in semiarid inland Southern California was further confirmed by concurrent larval collections.

RevDate: 2020-09-09

Maselko M, Feltman N, Upadhyay A, et al (2020)

Engineering multiple species-like genetic incompatibilities in insects.

Nature communications, 11(1):4468 pii:10.1038/s41467-020-18348-1.

Speciation constrains the flow of genetic information between populations of sexually reproducing organisms. Gaining control over mechanisms of speciation would enable new strategies to manage wild populations of disease vectors, agricultural pests, and invasive species. Additionally, such control would provide safe biocontainment of transgenes and gene drives. Here, we demonstrate a general approach to create engineered genetic incompatibilities (EGIs) in the model insect Drosophila melanogaster. EGI couples a dominant lethal transgene with a recessive resistance allele. Strains homozygous for both elements are fertile and fecund when they mate with similarly engineered strains, but incompatible with wild-type strains that lack resistant alleles. EGI genotypes can also be tuned to cause hybrid lethality at different developmental life-stages. Further, we demonstrate that multiple orthogonal EGI strains of D. melanogaster can be engineered to be mutually incompatible with wild-type and with each other. EGI is a simple and robust approach in multiple sexually reproducing organisms.

RevDate: 2020-09-09

Gilligan TM, Brown JW, J Baixeras (2020)

Immigrant Tortricidae: Holarctic versus Introduced Species in North America.

Insects, 11(9): pii:insects11090594.

In support of a comprehensive update to the checklist of the moths of North America, we attempt to determine the status of 151 species of Tortricidae present in North America that may be Holarctic, introduced, or sibling species of their European counterparts. Discovering the natural distributions of these taxa is often difficult, if not impossible, but several criteria can be applied to determine if a species that is present in both Europe and North America is natively Holarctic, introduced, or represented by different but closely related species on each continent. We use DNA barcodes (when available), morphology, host plants, and historical records (literature and museum specimens) to make these assessments and propose several taxonomic changes, as well as future areas of research. The following taxa are raised from synonymy to species status: Acleris ferrumixtana (Benander, 1934), stat. rev.; Acleris viburnana (Clemens, 1860), stat. rev.; Acleris pulverosana (Walker, 1863), stat. rev.; Acleris placidana (Robinson, 1869), stat. rev.; Lobesia spiraeae (McDunnough, 1938), stat. rev.; and Epiblema arctica Miller, 1985, stat. rev. Cydia saltitans (Westwood, 1858), stat. rev., is determined to be the valid name for the "jumping bean moth," and Phiaris glaciana (Möschler, 1860), comb. n., is placed in a new genus. We determine that the number of Holarctic species has been overestimated by at least 20% in the past, and that the overall number of introduced species in North America is unexpectedly high, with Tortricidae accounting for approximately 23-30% of the total number of Lepidoptera species introduced to North America.

RevDate: 2020-09-09
CmpDate: 2020-09-09

Aximoff I, Zaluar MT, Pissinatti A, et al (2020)

Anomalous Pigmentation in Invasive and Native Marmosets, Callithrix jacchus, Callithrix penicillata (Primates, Callitrichidae), and Their Hybrids in Brazil.

Folia primatologica; international journal of primatology, 91(2):149-158.

Leucism is the lack or reduction in pigmentation in the most or parts of the body, but not in the eyes and body extremities. It is extremely rare in primates and has never been reported for Callithrix, a genus endemic to Brazil. We searched for individuals of Callithrix jacchus and C. penicillata with pigmentation anomalies in a systematic survey of three protected areas in the Atlantic Forest, within museum collections in Brazil, and opportunistically during field studies. Since 2008, we have recorded 8 individuals with leucism in small urban and periurban forest patches. Four were from native populations of C. penicillata in Cerrado savannahs and of C. jacchus in the Caatinga xeric scrubland, and 4 were from populations of hybrids between C. jacchus and C. penicillata in invaded areas in the coastal Atlantic Forest. We found no pigmentation abnormalities in museum specimens. We hypothesize that the observed leucism may be linked to inbreeding within the native range, but to hybridization within the invaded range, and discuss the likely ecological consequences to leucistic individuals.

RevDate: 2020-09-09
CmpDate: 2020-09-09

He Z, Guo JF, Reitz SR, et al (2020)

A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management.

Insect science, 27(4):626-645.

Western flower thrip, Frankliniella occidentalis (Pergande), is among the most economically important agricultural pests globally, attacking a wide range of vegetable and horticultural crops. In addition to causing extensive crop damage, the species is notorious for vectoring destructive plant viruses, mainly belonging to the genera Orthotospovirus, Ilarvirus, Alphacarmovirus and Machlomovirus. Once infected by orthotospoviruses, thrips can remain virulent throughout their lifespan and continue transmitting viruses to host plants when and wherever they feed. These irruptive viral outbreaks in crops will permanently disrupt functional integrated pest management systems, and typically require a remedial treatment involving insecticides, contributing to further development of insecticide resistance. To mitigate against this continuing cycle, the most effective management is early and comprehensive surveillance of the pest species and recognition of plant viruses in the field. This review provides information on the pest status of F. occidentalis, discusses the current global status of the viruses vectored by this thrip species, examines the mechanisms involved in transmitting virus-induced diseases by thrips, and reviews different management strategies, highlighting the potential management tactics developed for various cropping systems. The early surveillance and the utilization of potential methods for control of both F. occidentalis and viruses are proposed.

RevDate: 2020-09-09
CmpDate: 2020-09-09

Jing DP, Guo JF, Jiang YY, et al (2020)

Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques.

Insect science, 27(4):780-790.

The fall armyworm, Spodoptera frugiperda, is a species native to the Americas and has spread to many countries in Africa and Asia in recent years. Proactive actions for potential invasion of S. frugiperda to China coordinated by government agencies and agricultural extension systems resulted in timely detection in January 2019 in Yunnan province neighboring onto Myanmar. The extensive monitoring in southern provinces of China since February 2019 resulted in dynamic tracking of S. frugiperda spreading to 13 provincial regions in China within 4 months by May 10, 2019, which is crucial for timely management actions in the fields. The first detections of S. frugiperda (corn strain) in China were confirmed using cytochrome oxidase subunit 1 (CO1) and triosephosphate isomerase (Tpi) genes molecular marker method. In addition to S. frugiperda, larvae of three other noctuid species with similar morphological appearance (S. litura, S. exigua and Mythimna separata) can occur simultaneously and cause similar damage in cornfields in southern China. Thus, we can use both morphological and molecular marker methods to compare larval stages of four noctuid species. Further, we discuss the risk of potential spread of invasive S. frugiperda to other regions and impact on corn production in China.

RevDate: 2020-09-08

Hereş AM, Petritan IC, Bigler C, et al (2020)

Legacies of past forest management determine current responses to severe drought events of conifer species in the Romanian Carpathians.

The Science of the total environment, 751:141851 pii:S0048-9697(20)35380-8 [Epub ahead of print].

Worldwide increases in droughts- and heat-waves-associated tree mortality events are destabilizing the future of many forests and the ecosystem services they provide. Along with climate, understanding the impact of the legacies of past forest management is key to better explain current responses of different tree species to climate change. We studied tree mortality events that peaked in 2012 affecting one native (silver fir; growing within its natural distribution range) and two introduced (black pine and Scots; growing outside their natural distribution range) conifer species from the Romanian Carpathians. The three conifers were compared in terms of mortality events, growth trends, growth resilience to severe drought events, climate-growth relationships, and regeneration patterns. The mortality rates of the three species were found to be associated with severe drought events. Nevertheless, the native silver fir seems to undergo a self-thinning process, while the future of the remaining living black pine and Scots pine trees is uncertain as they register significant negative growth trends. Overall, the native silver fir showed a higher resilience to severe drought events than the two introduced pine species. Furthermore, and unlike the native silver fir, black pine and Scots pine species do not successfully regenerate. A high diversity of native broadleaf species sprouts and develops instead under them suggesting that we might be witnessing a process of ecological succession, with broadleaves recovering their habitats. As native species seem to perform better in terms of resilience and regeneration than introduced species, the overall effect of the black pine and Scots pine mortality might be compensated. Legacies of past forest management should be taken into account in order to better understand current responses of different tree species to ongoing climate change.

RevDate: 2020-09-08
CmpDate: 2020-09-08

Xiao L, Ding J, Zhang J, et al (2020)

Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism.

The Science of the total environment, 741:140452.

Invasive plant environments differ along latitudes and between native and introduced ranges. In response to herbivory and abiotic stresses that vary with latitudes and between ranges, invasive plants may shift their secondary chemicals to facilitate invasion success. However, it remains unclear whether and how invasive plant chemical responses to herbivory and chemical responses to abiotic environments are associated. We conducted large scale field surveys of herbivory on the invasive tallow tree (Triadica sebifera) along latitudes in both its native (China) and introduced ranges (United States) and collected leaf samples for analyses of tannins and flavonoids. We used data on climate and solar radiation to examine these chemical responses to abiotic environments and their variations along these latitudes and between ranges. We also re-analyzed previously published data from multiple common garden experiments on tallow tree to investigate genetic divergence of secondary chemical concentrations between introduced and native populations. We found foliar tannins and herbivory (chewing, sucking) were higher in the native range compared to the invasive range. Allocation to tannins versus flavonoids decreased with latitude in the native range but did not vary in the invasive range. Analyses of previously published common garden experimental data indicated genetic divergence contributes to chemical concentration differences between ranges. Our field data further indicated that the latitudinal patterns were primarily phenotypic responses to herbivory in China while in US they were primarily phenotypic responses to abiotic environments. The variation of tannins may be linked to flavonoids, given tannins and flavonoids share a biosynthesis pathway. Together, our results suggest that invasive plants adjust their secondary metabolism to decrease chemicals that primarily defend against herbivory and increase those that help them to respond to their abiotic environment. These findings deepen our understanding of how invasive plants adapt to biogeographically heterogeneous environments through trade-offs between secondary chemical responses.

RevDate: 2020-09-08
CmpDate: 2020-09-08

Clarke GS, Shine R, BL Phillips (2019)

May the (selective) force be with you: Spatial sorting and natural selection exert opposing forces on limb length in an invasive amphibian.

Journal of evolutionary biology, 32(9):994-1001.

Spatial sorting on invasion fronts drives the evolution of dispersive phenotypes, and in doing so can push phenotypes in the opposite direction to natural selection. The invasion of cane toads (Rhinella marina) through tropical Australia has accelerated over recent decades because of the accumulation of dispersal-enhancing traits at the invasion front, driven by spatial sorting. One such trait is the length of the forelimbs: invasion-front toads have longer arms (relative to body length) in comparison with populations 10-20 years after invasion. Such a shift likely has fitness consequences: an increase of forearm length would decrease the strength with which a male could cling to a female during amplexus and so render such a male less competitive in competition for mates, compared to short-armed conspecifics. Our laboratory trials of attachment strength confirmed that males with relatively longer arms were easier to displace, and competition trials show higher duration of amplexus for males with shorter arms. Together with the sharp cline in limb length observed behind the invasion front, these results imply an opposition of selective forces: spatial sorting optimizes dispersal, but as this force wanes behind the invasion front, we see the primacy of natural selection reassert itself.

RevDate: 2020-09-08
CmpDate: 2020-09-08

Gowri S, R Thangaraj (2020)

Studies on the toxic effects of agrochemical pesticide (Monocrotophos) on physiological and reproductive behavior of indigenous and exotic earthworm species.

International journal of environmental health research, 30(2):212-225.

Earthworms are an ideal biological model in toxicity assays and environmental monitoring studies. In the present study, the reproductive toxicity and histopathological effects of Monocrotophos pesticide on an exotic epigeic Eudrilus eugeniae and an indigenous epigeic Perionyx barotensis earthworm were studied. Earthworm species were exposed to different concentrations of pesticide like 450 ppm, 500 ppm, and 650 ppm for 45 days and the mortality rate and reproductive activity was recorded every 15 days of exposure. There was an increase in mortality and abnormal sperm (asthenospermia, necrospermia, and oligospermia) and defective cocoons in earthworms with increasing concentrations of the pesticide. Histopathological changes like rupture of chloragogenous tissue, longitudinal muscle, fused and extra-villous growth and necrotic cell rupture in earthworm's body wall (epidermis, circular and longitudinal muscles) were observed. Fluorescent probes have detected cell death in pesticide-treated earthworms when compared to the control group after 45 days. The present findings show that Monocrotophos pesticide on exposure to epigeic earthworm species causes significant reproductive toxicity and histopathological abnormalities and these changes could be used as a tool in environmental risk assessment of pesticides.Abbreviations: DDT: Dichlorodiphenyltrichloroethane; MCP: Monocrotophos; EPA: Environment Protection Act; SL: Soluble Liquid; C: N (Carbon: Nitrogen); C: P (Carbon: Phosphorus); LC: Lethal Concentration; PBS: Phosphate Buffer Solution; WHO: World Health Organization; H&E: Hematoxylin and Eosin; SV: seminal vesicles; O: ovary; GP: genital papillae; Ch: chloragogenous tissue; EL: epithelial layer; CM: circular muscle; LM: longitudinal muscle; CD: cell debris.

RevDate: 2020-09-07

Zhang Z, Liu Y, Brunel C, et al (2020)

Evidence for Elton's diversity-invasibility hypothesis from belowground.

Ecology [Epub ahead of print].

Sixty year ago, Charles Elton posed that species-rich communities should be more resistant to biological invasion. However, still little is known about which processes could drive the diversity-invasibility relationship. Here we examined whether soil-microbes-mediated apparent competition on alien invaders is more negative when the soil originates from multiple native species. We trained soils with five individually grown native species, and used amplicon sequencing to analyze the resulting bacterial and fungal soil communities. We mixed the soils to create trained soils from one, two or four native species. We then grew four alien species separately on these differently trained soils. In the soil-conditioning phase, the five native species built species-specific bacterial and fungal communities in their rhizospheres. In the test phase, it did not matter for biomass of alien plants whether the soil had been trained by one or two native species. However, the alien species achieved 11.7% (95% CI: 3.7% ~ 20.1%) less aboveground biomass when grown on soils trained by four native species than on soils trained by two native species. Our results revealed soil-microbes-mediated apparent competition as a mechanism underlying the negative relationship between diversity and invasibility.

RevDate: 2020-09-06

Mi Kyaw YM, Bi Y, Oo TN, et al (2020)

Traditional medicinal plants used by the Mon people in Myanmar.

Journal of ethnopharmacology pii:S0378-8741(20)33135-4 [Epub ahead of print].

Myanmar's Mon people largely depend on a traditional medical system for health care, however, information about their medical plants is rare in the current literature. In this first ethnobotanical study of Mon traditional medicinal plants (MTMs), we attempt to answer three research questions: 1) What species are used as MTMs by the Mon people and what diseases can be treated with these MTMs? 2) What are the general characteristics of these MTMs? 3) Which species and their usages have high consensus of knowledge?

AIM OF THE STUDY: We aimed (1) to document both the diversity of medicinal plants used by the Mon people and their knowledge of the therapeutic usages of these plants; and (2) to quantitatively identify the most well-known medicinal plant species and prevalent diseases treated by these species, and to evaluate the status of scientific research and application for each of these species.

MATERIALS AND METHODS: Ethnobotanical surveys and interviews were carried out in 10 villages in four townships of Mon State, Myanmar in 2018. Data were collected from interviews with 131 informants, chosen via the snowball sampling method. Therapeutic uses of medicinal plants were categorized according to the ICPC-2 standard. Voucher specimens of plant species were collected and identified by experts. To evaluate the consensus of knowledge, we applied use reports (URs) using the R package of ethnobotanyR.

RESULTS: In total, we recorded 158 medicinal plant species belonging to 64 families as being used by the Mon people, with thirteen species being newly recorded as medicinal plants in Myanmar. The people listed 78 therapeutic uses for these plants, which could be classified into 16 ICPC-2 disease categories. Digestive, urological and respiratory diseases ranked as the most prevalent diseases based on use reports. Fabaceae was the most represented family and the leaf was the most commonly used plant part. Decoction and oral administration ranked top in preparation and administration methods, respectively. Tinospora sinensis (Lour.) Merr, the introduced species Chromolaena odorata (L.) R. M. King & H. Rob., Mimosa pudica L., Tadehagi triquetrum (L.) H. Ohashi, and Alysicarpus vaginalis (L.) DC were the five most cited medicinal plant species, and were used to treat dysuria, cuts and wounds, cough, diabetes and gall stones respectively, with high consensus.

CONCLUSION: The Mon people of Myanmar have a rich and diverse knowledge of traditional medicinal plants. The list of medicinal plants in Myanmar can be renewed, with the addition of 13 species. MTMs still function as an important component of the health care of the Mon people in Myanmar, and a systematic documentation of the local knowledge of MTMs would be of great value in the future. Resource monitoring, phytochemical and pharmacological research and evidence-based drug development are suggested to promote the use of MTMs and aid drug discovery.

RevDate: 2020-09-07
CmpDate: 2020-09-07

Ammann L, Moorhouse-Gann R, Cuff J, et al (2020)

Insights into aphid prey consumption by ladybirds: Optimising field sampling methods and primer design for high throughput sequencing.

PloS one, 15(7):e0235054.

Elucidating the diets of insect predators is important in basic and applied ecology, such as for improving the effectiveness of conservation biological control measures to promote natural enemies of crop pests. Here, we investigated the aphid diet of two common aphid predators in Central European agroecosystems, the native Coccinella septempunctata (Linnaeus) and the invasive Harmonia axyridis (Pallas; Coleoptera: Coccinellidae) by means of high throughput sequencing (HTS). For acquiring insights into diets of mobile flying insects at landscape scale minimizing trapping bias is important, which imposes methodological challenges for HTS. We therefore assessed the suitability of three field sampling methods (sticky traps, pan traps and hand-collection) as well as new aphid primers for identifying aphid prey consumption by coccinellids through HTS. The new aphid primers facilitate identification to species level in 75% of the European aphid genera investigated. Aphid primer specificity was high in silico and in vitro but low in environmental samples with the methods used, although this could be improved in future studies. For insect trapping we conclude that sticky traps are a suitable method in terms of minimizing sampling bias, contamination risk and trapping success, but compromise on DNA-recovery rate. The aphid diets of both field-captured ladybird species were dominated by Microlophium carnosum, the common nettle aphid. Another common prey was Sitobion avenae (cereal aphid), which got more often detected in C. septempunctata compared to H. axyridis. Around one third of the recovered aphid taxa were common crop pests. We conclude that sampling methodologies need constant revision but that our improved aphid primers offer currently one of the best solutions for broad screenings of coccinellid predation on aphids.

RevDate: 2020-09-03

Liu C, Wolter C, Xian W, et al (2020)

Species distribution models have limited spatial transferability for invasive species.

Ecology letters [Epub ahead of print].

The reliability of transferring species distribution models (SDMs) to new ranges and future climates has been widely debated. Biological invasions offer the unique opportunity to evaluate model transferability, as distribution data between species' native and introduced ranges are geographically independent of each other. Here, we performed the first global quantitative synthesis of the spatial transferability of SDMs for 235 invasive species and assessed the association of model transferability with the focal invader, model choice and parameterisation. We found that SDMs had limited spatial transferability overall. However, model transferability was higher for terrestrial endotherms, species introduced from or to the Southern Hemisphere, and species introduced more recently. Model transferability was also positively associated with the number of presences for model calibration and evaluation, respectively, but negatively with the number of predictors. These findings highlight the importance of considering the characteristics of the focal invader, environment and modelling in the application and assessment of SDMs.

RevDate: 2020-09-05

Manda S, Titelboim D, Ashckenazi-Polivoda S, et al (2020)

Epiphytic benthic foraminiferal preferences for macroalgal habitats: Implications for coastal warming.

Marine environmental research, 161:105084 pii:S0141-1136(20)30547-X [Epub ahead of print].

Considering the thermal limits of coastal macroalgae habitats in the South-Eastern Mediterranean, it is important to study the response of the associated meiofauna to better understand the expected feedback of ecosystems to future warming. In this study, we compared benthic foraminiferal assemblages from two common macroalgal habitats, Turf and Coralline algae, based on ecological monitoring of a thermally polluted station representing near future warming, and an undisturbed environment. None of the common local species is confined to a specific algal habitat. This implies that their existence is not threatened by the disappearance of the Coralline algae. However, most likely their community structure will be impacted with coastal warming. Species that are more affiliated with Coralline algae are highly thermally tolerant, thus their proliferation might be reduced with warming. Specifically, the negative response of Coralline algae to warming may limit the contribution of invasive species such as Pararotalia calcariformata.

RevDate: 2020-09-05

Maranesi M, Palermo FA, Bufalari A, et al (2020)

Seasonal Expression of NGF and Its Cognate Receptors in the Ovaries of Grey Squirrels (Sciurus carolinensis).

Animals : an open access journal from MDPI, 10(9): pii:ani10091558.

The grey squirrel is an invasive alien species that seriously threatens the conservation of the native red squirrel species. With the aim of characterizing the reproductive physiology of this species due to its great reproductive success, the function of the ovarian nerve growth factor (NGF) system was analyzed in a grey squirrel population living in central Italy. During the breeding and nonbreeding seasons, the ovarian presence, distribution, and gene expression of NGF, neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR), as well as NGF plasma concentrations, were evaluated in female grey squirrels. NGF was found in the luteal cells and in the thecal and granulosa cells of follicles, while NTRK1 and NGFR were only observed in follicular thecal and granulosa cells. NGF and NGFR transcripts were almost two-fold greater during the breeding season, while no seasonal differences were observed in NTRK1 gene expression. During the breeding season, NGFR was more expressed than NTRK1. Moreover, no changes were observed in NGF plasma levels during the reproductive cycle. The NGF system seems to be involved in regulating the ovarian cycle mainly via local modulation of NGF/NGFR, thus playing a role in the reproductive physiology of this grey squirrel population.

RevDate: 2020-09-04

Sedio BE, Devaney JL, Pullen J, et al (2020)

Chemical novelty facilitates herbivore resistance and biological invasions in some introduced plant species.

Ecology and evolution, 10(16):8770-8792 pii:ECE36575.

Ecological release from herbivory due to chemical novelty is commonly predicted to facilitate biological invasions by plants, but has not been tested on a community scale. We used metabolomics based on mass spectrometry molecular networks to assess the novelty of foliar secondary chemistry of 15 invasive plant species compared to 46 native species at a site in eastern North America. Locally, invasive species were more chemically distinctive than natives. Among the 15 invasive species, the more chemically distinct were less preferred by insect herbivores and less browsed by deer. Finally, an assessment of invasion frequency in 2,505 forest plots in the Atlantic coastal plain revealed that, regionally, invasive species that were less preferred by insect herbivores, less browsed by white-tailed deer, and chemically distinct relative to the native plant community occurred more frequently in survey plots. Our results suggest that chemically mediated release from herbivores contributes to many successful invasions.

RevDate: 2020-09-04

Liu C, Wolter C, Xian W, et al (2020)

Most invasive species largely conserve their climatic niche.

Proceedings of the National Academy of Sciences of the United States of America pii:2004289117 [Epub ahead of print].

The ecological niche is a key concept for elucidating patterns of species distributions and developing strategies for conserving biodiversity. However, recent times are seeing a widespread debate whether species niches are conserved across space and time (niche conservatism hypothesis). Biological invasions represent a unique opportunity to test this hypothesis in a short time frame at the global scale. We synthesized empirical findings for 434 invasive species from 86 studies to assess whether invasive species conserve their climatic niche between native and introduced ranges. Although the niche conservatism hypothesis was rejected in most studies, highly contrasting conclusions for the same species between and within studies suggest that the dichotomous conclusions of these studies were sensitive to techniques, assessment criteria, or author preferences. We performed a consistent quantitative analysis of the dynamics between native and introduced climatic niches reported by previous studies. Our results show there is very limited niche expansion between native and introduced ranges, and introduced niches occupy a position similar to native niches in the environmental space. These findings support the niche conservatism hypothesis overall. In particular, introduced niches were narrower for terrestrial animals, species introduced more recently, or species with more native occurrences. Niche similarity was lower for aquatic species, species introduced only intentionally or more recently, or species with fewer introduced occurrences. Climatic niche conservatism for invasive species not only increases our confidence in transferring ecological niche models to new ranges but also supports the use of niche models for forecasting species responses to changing climates.

RevDate: 2020-09-04

Zapponi L, Bon MC, Fouani JM, et al (2020)

Assemblage of the Egg Parasitoids of the Invasive Stink Bug Halyomorpha halys: Insights on Plant Host Associations.

Insects, 11(9): pii:insects11090588.

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive alien species and a key agricultural pest. Its native parasitoids (Trissolcus japonicus Ashmead and Tr. mitsukurii Ashmead) have been registered in several countries where H. halys brought dramatic economic losses and where biological control is considered to be the most effective long-term solution. By searching for stink bug egg masses and exposing sentinel egg masses, we monitored the distribution of native and exotic egg parasitoids in Trentino-Alto Adige (Italy), an area where both the host and parasitoids are in expansion. We recorded ten pentatomids, seven parasitoid species, with the first report of Tr. japonicus in this area and a hyperparasitoid. In the assemblage, Anastatus bifasciatus (Geoffroy) and Tr. mitsukurii were the dominant parasitoids, with a different distribution in terms of context and host plants. Sycamore was the host plant where the highest number of naturally laid parasitized egg masses (26%) were recorded. Trissolcus mitsukurii showed the highest parasitism rate, and was often found in apple orchards. The emergence of exotic parasitoids showed a temporal delay compared to native ones. Sequence analysis of 823 bp of the CO1 mitochondrial gene revealed that the recovered Tr. japonicus and Tr. mitsukurii harbored one single haplotype each. These haplotypes were previously found in 2018 in Northern Italy. While sentinel egg masses proved to be very effective in tracking the arrival of exotic Trissolcus species, the collection of stink bug egg masses provided fundamental data on the plant host species. The results lend strong support to the adaptation of exotic Trissolcus species to the environmental conditions of the range of introduction, providing new information on plant host-associations, fundamental for the development of biological control programs.

RevDate: 2020-09-04

Londe V, de Sousa HC, MCTB Messias (2020)

Monitoring of forest components reveals that exotic tree species are not always invasive in areas under ecological restoration.

Environmental monitoring and assessment, 192(10):618 pii:10.1007/s10661-020-08583-w.

Exotic species are known to become invasive in several ecosystems, including areas undergoing restoration. But does that always happen? We monitored the tree layer, seed rain, and regenerating layer of 10-year and 20-year-old forests under restoration in southeast Brazil to verify if planted exotic trees were behaving as invasive; if they were influencing the species richness and abundance of regenerating native plants; and the probabilities of exotic trees perpetuating over time. Data from the three forest components (trees, seed rain, and regenerating) were collected in 12 permanent plots of 100 m2 each in each study area. Collected data were analyzed through generalized linear models (GLM) and Markov chains. We verified that exotic species were not behaving as invasive species. Of the five species planted, Acacia mangium, Syzygium cumini, and Psidium guajava were dispersing seeds but recruiting only six new individuals. In general, the species richness and abundance of exotic trees were not related to the richness and abundance of regenerating native plants. In addition, the chances of individuals' transition between forest components were in most cases nil, so that exotic species should continue not to spread in the 10- and 20-year-old forests. We assume that biotic resistance was occurring in the assembled communities and this prevented exotic trees from behaving as invaders. Monitoring of forest components helped to better understand the role of non-native species in the dynamics of these novel ecosystems. Monitoring also indicated that not all recovering forests need management actions against exotic trees after a decade or two of restoration.

RevDate: 2020-09-01

Haelewaters D, Blackwell M, DH Pfister (2020)

Laboulbeniomycetes: Intimate Fungal Associates of Arthropods.

Annual review of entomology [Epub ahead of print].

Arthropod-fungus interactions involving the Laboulbeniomycetes have been pondered for several hundred years. Early studies of Laboulbeniomycetes faced several uncertainties. Were they parasitic worms, red algal relatives, or fungi? If they were fungi, to which group did they belong? What was the nature of their interactions with their arthropod hosts? The historical misperceptions resulted from the extraordinary morphological features of these oddly constructed ectoparasitic fungi. More recently, molecular phylogenetic studies, in combination with a better understanding of life histories, have clearly placed these fungi among filamentous Ascomycota (subphylum Pezizomycotina). Species discovery and research on the classification of the group continue today as arthropods, and especially insects, are routinely collected and examined for the presence of Laboulbeniomycetes. Newly armed with molecular methods, mycologists are poised to use Laboulbeniomycetes-insect associations as models for the study of a variety of basic evolutionary and ecological questions involving host-parasite relationships, modes of nutrient intake, population biology, host specificity, biological control, and invasion biology. Collaboration between mycologists and entomologists is essential to successfully advance knowledge of Laboulbeniomycetes and their intimate association with their hosts. Expected final online publication date for the Annual Review of Entomology, Volume 66 is January 11, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

RevDate: 2020-09-04
CmpDate: 2020-09-04

Saebi M, Xu J, Grey EK, et al (2020)

Higher-order patterns of aquatic species spread through the global shipping network.

PloS one, 15(7):e0220353.

The introduction and establishment of nonindigenous species (NIS) through global ship movements poses a significant threat to marine ecosystems and economies. While ballast-vectored invasions have been partly addressed by some national policies and an international agreement regulating the concentrations of organisms in ballast water, biofouling-vectored invasions remain largely unaddressed. Development of additional efficient and cost-effective ship-borne NIS policies requires an accurate estimation of NIS spread risk from both ballast water and biofouling. We demonstrate that the first-order Markovian assumption limits accurate modeling of NIS spread risks through the global shipping network. In contrast, we show that higher-order patterns provide more accurate NIS spread risk estimates by revealing indirect pathways of NIS transfer using Species Flow Higher-Order Networks (SF-HON). Using the largest available datasets of non-indigenous species for Europe and the United States, we then compare SF-HON model predictions against those from networks that consider only first-order connections and those that consider all possible indirect connections without consideration of their significance. We show that not only SF-HONs yield more accurate NIS spread risk predictions, but there are important differences in NIS spread via the ballast and biofouling vectors. Our work provides information that policymakers can use to develop more efficient and targeted prevention strategies for ship-borne NIS spread management, especially as management of biofouling is of increasing concern.

RevDate: 2020-09-03
CmpDate: 2020-09-03

Rudstam LG, CJ Gandino (2020)

Zebra or quagga mussel dominance depends on trade-offs between growth and defense-Field support from Onondaga Lake, NY.

PloS one, 15(6):e0235387.

Two invasive mussels (zebra mussel, Dreissena polymorpha and quagga mussel D. rostriformis bugensis) have restructured the benthic habitat of many water bodies in both Europe and North America. Quagga mussels dominate in most lakes where they co-occur even though zebra mussels typically invade lakes first. A reversal to zebra mussel over time has rarely been observed. Laboratory experiments have shown that quagga mussels grow faster than zebra mussels when predator kairomones are present and this faster growth is associated with lower investment in anti-predator response in quagga mussels than zebra mussels. This led to the hypothesis that the dominance of quagga mussels is due to faster growth that is not offset by higher vulnerability to predators when predation rates are low, as may be expected in newly colonized lakes. It follows that in lakes with high predation pressure, the anti-predatory investments of zebra mussels should be more advantageous and zebra mussels should be the more abundant of the two species. In Onondaga Lake, NY, a meso-eutrophic lake with annual mussel surveys from 2005 to 2018, quagga mussels increased from less than 6% of the combined mussel biomass in 2007 to 82% in 2009 (from 3 to 69% by number), rates typical of this displacement process elsewhere, but then declined again to 11-20% of the mussel biomass in 2016-2018. Average total mussel biomass also declined from 344-524 g shell-on dry weight (SODW)/m2 in 2009-2011 to 34-73 g SODW/m2 in 2016-2018, mainly due to fewer quagga mussels. This decline in total mussel biomass and a return to zebra mussel as the most abundant species occurred as the round goby (Neogobius melanostomus) increased in abundance. Both the increase to dominance of quagga mussels and the subsequent decline following the increase in this molluscivorous fish are consistent with the differences in the trade-off between investment in growth and investment in defenses of the two species. We predict that similar changes in dreissenid mussel populations will occur in other lakes following round goby invasions, at least on the habitats colonized by both species.

RevDate: 2020-09-03
CmpDate: 2020-09-03

Kean JM, Mansfield S, Hardwick S, et al (2020)

A risk-based detection survey for the predatory mirid Macrolophus pygmaeus in New Zealand.

Bulletin of entomological research, 110(3):370-378.

Macrolophus pygmaeus, a predatory mirid used to manage greenhouse whitefly, was illegally imported into New Zealand, and for a time was reared and sold to commercial tomato growers. We designed and implemented a risk-based detection survey to determine whether M. pygmaeus was still present in New Zealand a decade later. The survey was designed to have an 80% chance of detecting a single low density (0.05 per lineal metre of host plants) population within 1 km of known points of introduction. The survey was implemented between 8 and 15 March 2018. Local habitat constraints meant that the planned sampling had to be modified but this was accounted for in the subsequent analysis. No M. pygmaeus were found in the samples, but 93 specimens from seven other mirid taxa were detected, validating the sample methods. The survey gives 60% confidence that M. pygmaeus was not present at a mean density of 0.05 per lineal metre of habitat. It gives 80% confidence that a population at 0.1 m-1 was not present and 90% confidence that no population exists at >0.18 m-1. Though there are no published data on typical field population densities of M. pygmaeus, for related species the survey would have had high confidence in detecting any medium to high density population present. Therefore, it is likely that M. pygmaeus is no longer present in New Zealand, but if extant within the sampled areas then we have high certainty that it was at low densities compared to other predaceous mirids.

RevDate: 2020-09-04
CmpDate: 2020-09-04

Hood GR, Powell THQ, Doellman MM, et al (2020)

Rapid and repeatable host plant shifts drive reproductive isolation following a recent human-mediated introduction of the apple maggot fly, Rhagoletis pomonella.

Evolution; international journal of organic evolution, 74(1):156-168.

Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this "natural experiment" to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.

RevDate: 2020-09-03
CmpDate: 2020-09-03

Rose A, Ross DW, Havill NP, et al (2020)

Coexistence of three specialist predators of the hemlock woolly adelgid in the Pacific Northwest USA.

Bulletin of entomological research, 110(3):303-308.

The hemlock woolly adelgid (Hemiptera: Adelgidae: Adelges tsugae Annand) is an invasive insect, introduced from Japan to eastern North America, where it causes decline and death of hemlock trees. There is a closely related lineage of A. tsugae native to western North America. To inform classical biological control of A. tsugae in the eastern USA, the density and phenology of three native western adelgid specialist predators, Leucopis argenticollis (Zetterstedt), Le. piniperda (Malloch) (Diptera: Chamaemyiidae), and Laricobius nigrinus Fender (Coleoptera: Derodontidae), were quantified in the Pacific Northwest. Infested branches were collected from western hemlock (Pinaceae: Tsuga heterophylla (Raf.) Sarg.) at four sites around the Puget Sound, Washington and three sites in Oregon. Immature Leucopis were identified to species using DNA barcodes. Leucopis argenticollis was roughly twice as abundant as Le. piniperda. Laricobius nigrinus larvae were more abundant than the two species of Leucopis during the egg stage of the first adelgid generation, but Leucopis were present as feeding larvae during the second adelgid generation when La. nigrinus was aestivating in the soil, resulting in Leucopis being more abundant than La. nigrinus across the entire sampling period. Adelges tsugae and La. nigrinus densities were not correlated, while A. tsugae and Leucopis spp. densities were positively correlated. Leucopis spp. and La. nigrinus densities were negatively correlated. These results support the complementary use of La. nigrinus and the two Leucopis species for biological control of A. tsugae in the eastern USA, and point to the need for further investigation of spatial and temporal niche partitioning among the three predator species.

RevDate: 2020-09-04
CmpDate: 2020-09-04

Barbieri ES, Medina CD, Vázquez N, et al (2019)

First detection of Ostreid herpesvirus 1 in wild Crassostrea gigas in Argentina.

Journal of invertebrate pathology, 166:107222.

Ostreid herpesvirus 1 (OsHV-1) is a DNA virus of the genus Ostreavirus (Malacoherpesviridae family, Herpesvirales order). Worldwide, OsHV-1 and its microvariants have been associated with increased mortality of Pacific oysters, Crassostrea gigas. Adult asymptomatic oysters also have shown a high prevalence of viral infection. As a consequence, surveillance is needed to better describe OsHV-1 diversity, pathogenicity, clinical signs, and geographical distribution. We examined Crassostrea gigas sampled in October 2017 from the inner zone of the Bahía Blanca Estuary, Argentina, and found that 8 of 30 specimens (26.7%) presented macroscopic lesions in mantle tissues. Histological analysis revealed abnormal presentation of mantle epithelial cells and connective tissues. Conventional and real-time PCR conducted on the oyster samples revealed 70% to be positive for presence of OsHV-1 DNA. The nucleotide sequence of the amplicon obtained from one sample using the primer pair IA1/IA2 (targeting ORF 42/43) was 99% identical to OsHV-1 reference as well as µVar strains B and A (KY271630, KY242785.1), sequenced from France and Ireland. This finding represents the first detection of OsHV-1 DNA in a wild population of C. gigas in Argentina in association with gross mantle lesions.

RevDate: 2020-09-03

Brannelly LA, Wetzel DP, Ohmer MEB, et al (2020)

Evaluating environmental DNA as a tool for detecting an amphibian pathogen using an optimized extraction method.

Oecologia pii:10.1007/s00442-020-04743-4 [Epub ahead of print].

Environmental DNA (eDNA) detection is a valuable conservation tool that can be used to identify and monitor imperiled or invasive species and wildlife pathogens. Batrachochytrium pathogens are of global conservation concern because they are a leading cause of amphibian decline. While eDNA techniques have been used to detect Batrachochytrium DNA in the environment, a systematic comparison of extraction methods across environmental samples is lacking. In this study, we first compared eDNA extraction methods and found that a soil extraction kit (Qiagen PowerSoil) was the most effective for detecting Batrachochytrium dendrobatidis in water samples. The PowerSoil extraction had a minimum detection level of 100 zoospores and had a two- to four-fold higher detection probability than other commonly used extraction methods (e.g., QIAamp extraction, DNeasy+Qiashredder extraction method, respectively). Next, we used this extraction method on field-collected water and sediment samples and were able to detect pathogen DNA in both. While field-collected water filters were equivalent to amphibian skin swab samples in detecting the presence of pathogen DNA, the seasonal patterns in pathogen quantity were different between skin swabs and water samples. Detection rate was lowest in sediment samples. We also found that detection probability increases with the volume of water filtered. Our results indicate that water filter eDNA samples can be accurate in detecting pathogen presence at the habitat scale but their utility for quantifying pathogen loads in the environment appears limited. We suggest that eDNA techniques be used for early warning detection to guide animal sampling efforts.

RevDate: 2020-09-03

Fricke EC, JC Svenning (2020)

Accelerating homogenization of the global plant-frugivore meta-network.

Nature, 585(7823):74-78.

Introductions of species by humans are causing the homogenization of species composition across biogeographic barriers1-3. The ecological and evolutionary consequences of introduced species derive from their effects on networks of species interactions4,5, but we lack a quantitative understanding of the impacts of introduced species on ecological networks and their biogeographic patterns globally. Here we address this data gap by analysing mutualistic seed-dispersal interactions from 410 local networks, encompassing 24,455 unique pairwise interactions between 1,631 animal and 3,208 plant species. We show that species introductions reduce biogeographic compartmentalization of the global meta-network, in which nodes are species and links are interactions observed within any local network. This homogenizing effect extends across spatial scales, decreasing beta diversity among local networks and modularity within networks. The prevalence of introduced interactions is directly related to human environmental modifications and is accelerating, having increased sevenfold over the past 75 years. These dynamics alter the coevolutionary environments that mutualists experience6, and we find that introduced species disproportionately interact with other introduced species. These processes are likely to amplify biotic homogenization in future ecosystems7 and may reduce the resilience of ecosystems by allowing perturbations to propagate more quickly and exposing disparate ecosystems to similar drivers. Our results highlight the importance of managing the increasing homogenization of ecological complexity.

RevDate: 2020-09-03

Arbona V, Ximénez-Embún MG, Echavarri-Muñoz A, et al (2020)

Early Molecular Responses of Tomato to Combined Moderate Water Stress and Tomato Red Spider Mite Tetranychus evansi Attack.

Plants (Basel, Switzerland), 9(9): pii:plants9091131.

Interaction between plants and their environment is changing as a consequence of the climate change and global warming, increasing the performance and dispersal of some pest species which become invasive species. Tetranychus evansi also known as the tomato red spider mite, is an invasive species which has been reported to increase its performance when feeding in the tomato cultivar Moneymaker (MM) under water deficit conditions. In order to clarify the underlying molecular events involved, we examined early plant molecular changes occurring on MM during T. evansi infestation alone or in combination with moderate drought stress. Hormonal profiling of MM plants showed an increase in abscisic acid (ABA) levels in drought-stressed plants while salicylic acid (SA) levels were higher in drought-stressed plants infested with T. evansi, indicating that SA is involved in the regulation of plant responses to this stress combination. Changes in the expression of ABA-dependent DREB2, NCED1, and RAB18 genes confirmed the presence of drought-dependent molecular responses in tomato plants and indicated that these responses could be modulated by the tomato red spider mite. Tomato metabolic profiling identified 42 differentially altered compounds produced by T. evansi attack, moderate drought stress, and/or their combination, reinforcing the idea of putative manipulation of tomato plant responses by tomato red spider mite. Altogether, these results indicate that the tomato red spider mite acts modulating plant responses to moderate drought stress by interfering with the ABA and SA hormonal responses, providing new insights into the early events occurring on plant biotic and abiotic stress interaction.

RevDate: 2020-09-03

Korzeniewicz R, Baranowska M, Kwaśna H, et al (2020)

Communities of Fungi in Black Cherry Stumps and Effects of Herbicide.

Plants (Basel, Switzerland), 9(9): pii:plants9091126.

So far, there have been no studies on fungal communities in Prunus serotina (black cherry) wood. Our objectives were to characterize fungal communities from P. serotina wood and to evaluate effects of glyphosate (Glifocyd 360 SL) used on P. serotina stumps on abundance, species richness and diversity of those communities. In August 2016, in the Podanin Forest District, stumps of black cherry trees left after felling were treated with the herbicide. Control stumps were treated with water. Wood discs were cut from the surface of the stumps in May and July-August 2017. Eight treatment combinations (2 herbicide treatments × 2 disc sizes × 2 sample times) were tested. Sub-samples were pooled and ground in an acryogenic mill. Environmental DNA was extracted with a Plant Genomic DNA Purification Kit. The ITS1, 5.8S rDNA region was used to identify fungal species, using primers ITS1FI2 5'-GAACCWGCGGARGGATCA-3' and 5.8S 5'-CGCTGCGTT CTTCATCG-3'. The amplicons were sequenced using the Illumina system. The results were subjected to bioinformatic analysis. Sequences were compared with reference sequences from the NCBI database using the BLASTn 2.8.0 algorithm. Abundance of fungi was defined as the number of Operational Taxonomic Units (OTUs), and diversity as the number of species in a sample. Differences between the number of OTUs and taxa were analyzed using the chi-squared test (χ2). Diversity in microbial communities was compared using diversity indices. A total of 54,644 OTUs were obtained. Culturable fungi produced 49,808 OTUs (91.15%), fungi not known from culture had 2571 OTUs (4.70%), non-fungal organisms had 1333 (2.44%) and organisms with no reference sequence in NCBI, 934 OTUs (1.71%). The total number of taxa ranged from 120 to 319. Fungi in stump wood were significantly more abundant in July-August than in May, in stumps >5 cm diameter than in stumps <5 cm diameter, in glyphosate-treated than in untreated stumps when sampled in May, and in untreated than in glyphosate-treated stumps when sampled in July-August. Species richness was significantly greater in July-August than in May, and in stumps >5 cm diameter than in stumps <5 cm diameter, either treated or untreated, depending on size. Herbicides can therefore affect the abundance and diversity of fungal communities in deciduous tree wood. The greater frequency of Ascomycota in herbicide-treated than in untreated stumps indicates their greater tolerance of glyphosate.

RevDate: 2020-09-03

Leimbach-Maus HB, McCluskey EM, Locher A, et al (2020)

Genetic Structure of Invasive Baby's Breath (Gypsophila paniculata L.) Populations in a Michigan Dune System.

Plants (Basel, Switzerland), 9(9): pii:plants9091123.

Coastal sand dunes are dynamic ecosystems with elevated levels of disturbance and are highly susceptible to plant invasions. One invasive plant that is of concern to the Great Lakes system is Gypsophila paniculata L. (perennial baby's breath). The presence of G. paniculata negatively impacts native species and has the potential to alter ecosystem dynamics. Our research goals were to (1) estimate the genetic structure of invasive G. paniculata along the Michigan dune system and (2) identify landscape features that influence gene flow in this area. We analyzed 12 populations at 14 nuclear and two chloroplast microsatellite loci. We found strong genetic structure among populations (global FST = 0.228), and pairwise comparisons among all populations yielded significant FST values. Results from clustering analysis via STRUCTURE and discriminant analysis of principal components (DAPC) suggest two main genetic clusters that are separated by the Leelanau Peninsula, and this is supported by the distribution of chloroplast haplotypes. Land cover and topography better explained pairwise genetic distances than geographic distance alone, suggesting that these factors influence the genetic distribution of populations within the dunes system. Together, these data aid in our understanding of how invasive populations move through the dune landscape, providing valuable information for managing the spread of this species.

RevDate: 2020-09-03

Dayathilake DDTL, Lokupitiya E, VPIS Wijeratne (2020)

Estimation of aboveground and belowground carbon stocks in urban freshwater wetlands of Sri Lanka.

Carbon balance and management, 15(1):17 pii:10.1186/s13021-020-00152-5.

BACKGROUND: The occurrence of climate change at an unprecedented scale has resulted in alterations of ecosystems around the world. Numerous studies have reported on the potential to slow down climate change through the sequestration of carbon in soil and trees. Freshwater wetlands hold significant potential for climate change mitigation owing to their large capacity to sequester atmospheric carbon dioxide (CO2). Wetlands among all terrestrial ecosystems have the highest carbon density and are found to store up to three to five times more carbon than terrestrial forests. The current study was undertaken to quantify carbon stocks of two carbon pools: aboveground biomass (AGB) and belowground biomass (BGB). Chosen study sites; Kolonnawa wetland and Thalawathugoda wetland park are distributed within the Colombo wetland complex. Colombo was recognized as one of the 18 global Ramsar wetland cities in 2018. A combination of field measurements and allometric tree biomass regression models was used in the study. Stratification of the project area was performed using the normalized difference vegetation index (NDVI).

RESULTS: The AGB carbon stock, across strata, is estimated to be in the range of 13.79 ± 3.65-66.49 ± 6.70 tC/ha and 8.13 ± 2.42-52.63 ± 10.00 tC/ha at Kolonnawa wetland and Thalawathugoda wetland park, respectively. The BGB carbon stock is estimated to be in the range of 2.47 ± 0.61-10.12 ± 0.89 tC/ha and 1.56 ± 0.41-8.17 ± 1.39 tC/ha at Kolonnawa wetland and Thalawathugoda wetland park, respectively. The total AGB carbon stock of Kolonnawa wetland was estimated at 19,803 ± 1566 tCO2eq and that of Thalawathugoda wetland park was estimated at 4180 ± 729 tCO2eq.

CONCLUSIONS: In conclusion, the study reveals that tropical freshwater wetlands contain considerable potential as carbon reservoirs. The study suggests the use of tropical freshwater wetlands in carbon sequestration enhancement plans in the tropics. The study also shows that Annona glabra, an invasive alien species (IAS), has the potential to enhance the net sink of AGB carbon in these non-mangrove wetlands. However, further studies are essential to confirm if enhanced carbon sequestration by Annona glabra is among the unexplored and unreported benefits of the species.

RevDate: 2020-09-03

Shanmuganandam S, Hu Y, Strive T, et al (2020)

Uncovering the microbiome of invasive sympatric European brown hares and European rabbits in Australia.

PeerJ, 8:e9564.

Background: European brown hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) are invasive pest species in Australia, with rabbits having a substantially larger environmental impact than hares. As their spatial distribution in Australia partially overlaps, we conducted a comparative microbiome study to determine how the composition of gastrointestinal microbiota varies between these species, since this may indicate species differences in diet, physiology, and other internal and external factors.

Methods: We analysed the faecal microbiome of nine wild hares and twelve wild rabbits from a sympatric periurban reserve in Canberra, Australia, using a 16S rRNA amplicon-based sequencing approach. Additionally, we compared the concordance between results from Illumina and Nanopore sequencing platforms.

Results: We identified significantly more variation in faecal microbiome composition between individual rabbits compared to hares, despite both species occupying a similar habitat. The faecal microbiome in both species was dominated by the phyla Firmicutes and Bacteroidetes, typical of many vertebrates. Many phyla, including Actinobacteria, Proteobacteria and Patescibacteria, were shared between rabbits and hares. In contrast, bacteria from phylum Verrucomicrobia were present only in rabbits, while phyla Lentisphaerae and Synergistetes were represented only in hares. We did not identify phylum Spirochaetes in Australian hares; this phylum was previously shown to be present at high relative abundance in European hare faecal samples. These differences in the composition of faecal microbiota may be indicative of less discriminate foraging behaviour in rabbits, which in turn may enable them to adapt quicker to new environments, and may reflect the severe environmental impacts that this species has in Australia.

RevDate: 2020-09-03

Vaudo AD, Biddinger DJ, Sickel W, et al (2020)

Introduced bees (Osmia cornifrons) collect pollen from both coevolved and novel host-plant species within their family-level phylogenetic preferences.

Royal Society open science, 7(7):200225.

Studying the pollen preferences of introduced bees allows us to investigate how species use host-plants when establishing in new environments. Osmia cornifrons is a solitary bee introduced into North America from East Asia for pollination of Rosaceae crops such as apples and cherries. We investigated whether O. cornifrons (i) more frequently collected pollen from host-plant species they coevolved with from their geographic origin, or (ii) prefer host-plant species of specific plant taxa independent of origin. To address this question, using pollen metabarcoding, we examined the identity and relative abundance of pollen in larval provisions from nests located in different landscapes with varying abundance of East-Asian and non-Asian plant species. Our results show that O. cornifrons collected more pollen from plant species from their native range. Plants in the family Rosaceae were their most preferred pollen hosts, but they differentially collected species native to East Asia, Europe, or North America depending on the landscape. Our results suggest that while O. cornifrons frequently collect pollen of East-Asian origin, the collection of pollen from novel species within their phylogenetic familial affinities is common and can facilitate pollinator establishment. This phylogenetic preference highlights the effectiveness of O. cornifrons as crop pollinators of a variety of Rosaceae crops from different geographic origins. Our results imply that globalization of non-native plant species may ease the naturalization of their coevolved pollinators outside of their native range.

RevDate: 2020-09-03

Jones FAM, Dornelas M, AE Magurran (2020)

Recent increases in assemblage rarity are linked to increasing local immigration.

Royal Society open science, 7(7):192045.

As pressures on biodiversity increase, a better understanding of how assemblages are responding is needed. Because rare species, defined here as those that have locally low abundances, make up a high proportion of assemblage species lists, understanding how the number of rare species within assemblages is changing will help elucidate patterns of recent biodiversity change. Here, we show that the number of rare species within assemblages is increasing, on average, across systems. This increase could arise in two ways: species already present in the assemblage decreasing in abundance but with no increase in extinctions, or additional species entering the assemblage in low numbers associated with an increase in immigration. The positive relationship between change in rarity and change in species richness provides evidence for the second explanation, i.e. higher net immigration than extinction among the rare species. These measurable changes in the structure of assemblages in the recent past underline the need to use multiple biodiversity metrics to understand biodiversity change.

RevDate: 2020-09-02

Díaz C, Wege FF, Tang CQ, et al (2020)

Aquatic suspended particulate matter as source of eDNA for fish metabarcoding.

Scientific reports, 10(1):14352 pii:10.1038/s41598-020-71238-w.

The use of environmental DNA (eDNA) for monitoring aquatic macrofauna allows the non-invasive species determination and measurement of their DNA abundance and typically involves the analysis of eDNA captured from water samples. In this proof-of-concept study, we focused on the novel use of eDNA extracted from archived suspended particulate matter (SPM) for identifying fish species using metabarcoding, which benefits from the prospect of retrospective monitoring and also analysis of fish communities through time. We used archived SPM samples of the German Environmental Specimen Bank (ESB), which were collected using sedimentation traps from different riverine points in Germany. Environmental DNA was extracted from nine SPM samples differing in location, organic content, and porosity (among other factors) using four different methods for the isolation of high-quality DNA. Application of the PowerSoil DNA Isolation Kit with an overnight incubation in lysis buffer, resulted in DNA extraction with the highest purity and eDNA metabarcoding of these eDNA fragments was used to detect a total of 29 fish taxa among the analyzed samples. Here we demonstrated for the first time that SPM is a promising source of eDNA for metabarcoding analysis, which could provide valuable retrospective information (when using archived SPM) for fish monitoring, complementing the currently used approaches.

RevDate: 2020-09-01

Cuthbert RN, Kotronaki SG, Dick JTA, et al (2020)

Salinity tolerance and geographical origin predict global alien amphipod invasions.

Biology letters, 16(9):20200354.

Invasive alien species are driving global biodiversity loss, compromising ecosystem function and service provision, and human, animal and plant health. Habitat characteristics and geographical origin may predict invasion success, and in aquatic environments could be mediated principally by salinity tolerance. Crustacean invaders are causing global problems and we urgently require better predictive power of their invasiveness. Here, we compiled global aquatic gammarid (Crustacea: Amphipoda: Gammaroidea) diversity and examined their salinity tolerances and regions of origin to test whether these factors predict invasion success. Across 918 aquatic species within this superfamily, relatively few gammarids (n = 27, 3%) were reported as aliens, despite extensive invasion opportunities and high numbers of published studies on amphipod invasions. However, reported alien species were disproportionately salt-tolerant (i.e. 32% of brackish-water species), with significantly lower proportions of aliens originating from freshwater and marine environments (both 1%). Alien gammarids also significantly disproportionally originated from the Ponto-Caspian (20% of these taxa) when compared with all 'other' grouped regions (1%), and principally invaded Eurasian waters, with translocations of salt-tolerant taxa to freshwaters being pervasive. This suggests habitat characteristics, alongside regional contexts, help predict invasibility. In particular, broad environmental tolerances to harsh environments and associated evolutionary history probably promote success of aliens globally.

RevDate: 2020-09-01

Kelly TR, Kimball MG, Stansberry KR, et al (2020)

No, you go first: phenotype and social context affect house sparrow neophobia.

Biology letters, 16(9):20200286.

Novel object trials are commonly used to assess aversion to novelty (neophobia), and previous work has shown neophobia can be influenced by the social environment, but whether the altered behaviour persists afterwards (social learning) is largely unknown in wild animals. We assessed house sparrow (Passer domesticus) novel object responses before, during and after being paired with a conspecific of either similar or different behavioural phenotype. During paired trials, animals housed with a similar or more neophobic partner demonstrated an increased aversion to novel objects. This change did not persist a week after unpairing, but neophobia decreased after unpairing in birds previously housed with a less neophobic partner. We also compared novel object responses to non-object control trials to validate our experimental procedure. Our results provide evidence of social learning in a highly successful invasive species, and an interesting asymmetry in the effects of social environment on neophobia behaviour depending on the animal's initial behavioural phenotype.

RevDate: 2020-09-01

Derstine NT, Meier L, Canlas I, et al (2020)

Plant Volatiles Help Mediate Host Plant Selection and Attraction of the Spotted Lanternfly (Hemiptera: Fulgoridae): a Generalist With a Preferred Host.

Environmental entomology pii:5900068 [Epub ahead of print].

Host plant volatiles play a key role in mediating plant-herbivore interactions. How an array of host plant volatiles guides host preference and attraction in the invasive polyphagous Lycorma delicatula (White), the spotted lanternfly (SLF), is largely unknown. A pernicious phloem feeder, SLF feeds on over 70 species of plants, some with high economic impact. To aid the development of detection and monitoring tools for SLF, we used a two-choice olfactometer to compare 14 host plant species for attraction, first to a blank control, and then to their preferred host Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), tree-of-heaven. SLF were significantly attracted to seven host plants compared to a blank control, but no host plant was more attractive than tree-of-heaven. We then used electroantennographic detection (EAD) to screen select host plants for EAD active compounds, hypothesizing that EAD-active plant volatiles act as kairomones and mediate SLF attraction to host plants. Out of 43 unique antennal responses, 18 compounds were identified and tested individually for attraction in a two-choice olfactometer against a blank control and then against methyl salicylate, the current best attractant. Eleven compounds were significantly attractive, and one, sulcatone, was more attractive than methyl salicylate. Blends of kairomones were then tested for attraction, revealing five blends that were significantly more attractive than methyl salicylate, and could be developed into lures for field testing. The presence of these kairomones in volatile profiles of 17 plant species is described. These findings support the hypothesis that the identified volatiles act as kairomones and function in attraction to host plants.

RevDate: 2020-09-01

Wyckhuys KAG, Lu Y, Zhou W, et al (2020)

Ecological pest control fortifies agricultural growth in Asia-Pacific economies.

Nature ecology & evolution pii:10.1038/s41559-020-01294-y [Epub ahead of print].

The Green Revolution is credited with alleviating famine, mitigating poverty and driving aggregate economic growth since the 1960s. In Asia, high-input technology packages secured a tripling of rice output, with germplasm improvements providing benefits beyond US$4.3 billion yr-1. Here, we unveil the magnitude and macro-economic relevance of parallel nature-based contributions to productivity growth in non-rice crops over the period 1918-2018 (across 23 different Asia-Pacific geopolitical entities). We empirically demonstrate how biological control resolved invasive pest threats in multiple agricultural commodities, ensuring annually accruing (on-farm) benefits of US$14.6-19.5 billion yr-1. Scientifically guided biological control of 43 exotic invertebrate pests permitted 73-100% yield-loss recovery in critical food, feed and fibre crops including banana, breadfruit, cassava and coconut. Biological control thereby promoted rural growth and prosperity even in marginal, poorly endowed, non-rice environments. By placing agro-ecological innovations on equal footing with input-intensive measures, our work provides lessons for future efforts to mitigate invasive species, restore ecological resilience and sustainably raise output of global agrifood systems.

RevDate: 2020-09-01

Karimi S, Hemami MR, Tarkesh Esfahani M, et al (2020)

Endozoochorous dispersal by herbivores and omnivores is mediated by germination conditions.

BMC ecology, 20(1):49 pii:10.1186/s12898-020-00317-3.

BACKGROUND: Vertebrate-mediated seed dispersal is probably the main long distance dispersal mode. Through endozoochory, large mammals act as mobile links between habitats within and among forest patches. Along with other factors, their feeding regimes do affect their contribution as dispersal vectors. We conducted a cross-species comparative experiment involving two herbivores, red deer and roe deer; and two opportunistic omnivores, wild boar and brown bear, all occurring in the forest and steppe-forest ecotone habitats of the south-eastern Caspian region. We compared their role as endozoochorous seed dispersal agents by monitoring seedling emergence in their dungs under greenhouse and natural conditions.

RESULTS: In total, 3078 seedlings, corresponding to 136 plant taxa sprouted from 445 paired dung sub-samples, under greenhouse and natural conditions. Only 336 seedlings, corresponding to 36 plant taxa, emerged under natural conditions, among which five taxa did not appear under greenhouse conditions. Graminoids and forbs composed 91% of the seedlings in the greenhouse whereas shrubs were more abundant under natural conditions, representing 55% of the emerged seedlings. Under greenhouse conditions, first red deer and then wild boar dispersed more species than the other two mammals, while under natural conditions brown bear was the most effective vector. We observed remarkably higher species richness and seedling abundance per dung sub-sample under buffered greenhouse conditions than we did under natural conditions.

CONCLUSIONS: The four sympatric mammals studied provided different seed dispersal services, both in terms of seedling abundance and species richness and may therefore be regarded as complementary. Our results highlight a positive bias when only considering germination under buffered greenhouse conditions. This must be taken into account when planning management options to benefit plant biodiversity based on the dispersal services concluded from greenhouse experiments.

RevDate: 2020-08-31

Day CA, Armstrong EG, BD Byrd (2020)

Population Growth Rates of Aedes atropalpus (Diptera: Culicidae) Are Depressed at Lower Temperatures Where Aedes japonicus japonicus (Diptera: Culicidae) Are Naturally Abundant in Rock Pools.

Journal of medical entomology pii:5899497 [Epub ahead of print].

Recent studies report extensive reductions in the abundance of the North American rock pool mosquito, Aedes atropalpus (Diptera: Culicidae), following the invasion of Ae. japonicus japonicus in the United States. Although developmental temperature is recognized as an important component of the invasion biology of Ae. j. japonicus, its impacts on the population growth and fitness of Ae. atropalpus remain largely undefined. In this study we reared Ae. atropalpus larvae at three temperature ranges reflecting ecologically important temperatures in natural rock pools: a low temperature range (mean: 19°C) where Ae. j. japonicus is common and Ae. atropalpus is often rare, a middle temperature range (mean: 25°C) where both species are naturally found in similar relative abundances, and a higher temperature range (mean: 31°C) where Ae. atropalpus is the dominant species. We measured survival, development time, wing length, and fecundity to calculate a finite population growth rate at each temperature. Our results indicate that Ae. atropalpus population growth suffers in colder rock pools, which informs the perceived displacement of the species in temperate habitats. The population growth rate was highest in the middle temperature range, but not significantly higher than in the highest temperature range used in this study. The developmental success of Ae. atropalpus at the intermediate temperature range suggests that competition with Ae. j. japonicus in rock pools within that range may significantly impact natural Ae. atropalpus populations.

RevDate: 2020-08-31

Ng TH, Jeratthitikul E, Sutcharit C, et al (2020)

Annotated checklist of freshwater molluscs from the largest freshwater lake in Southeast Asia.

ZooKeys, 958:107-141 pii:53865.

The Tonle Sap Lake in Cambodia is a crucial freshwater biodiversity hotspot and supports one of the world's largest inland fisheries. Within the Tonle Sap basin, freshwater molluscs provide vital ecosystem services and are among the fauna targetted for commercial harvesting. Despite their importance, freshwater molluscs of the Tonle Sap basin remain poorly studied. The historical literature was reviewed and at least 153 species of freshwater molluscs have been previously recorded from throughout Cambodia, including 33 from the Tonle Sap basin. Surveys of the Tonle Sap Lake and surrounding watershed were also conducted and found 31 species, 15 bivalves (five families) and 16 gastropods (eight families), in the Tonle Sap basin, including three new records for Cambodia (Scaphula minuta, Novaculina siamensis, Wattebledia siamensis), the presence of globally invasive Pomacea maculata and potential pest species like Limnoperna fortunei. This study represents the most comprehensive documentation of freshwater molluscs of the Tonle Sap basin, and voucher specimens deposited at the Inland Fisheries Research and Development Institute, Cambodia, represent the first known reference collection of freshwater molluscs in the country. In order to combat the combined anthropogenic pressures, including invasive species, climate change and dams along the Mekong River, a multi-pronged approach is urgently required to study the biodiversity, ecology, ecosystem functioning of freshwater molluscs and other aquatic fauna in the Tonle Sap basin.

RevDate: 2020-08-31

van Nieukerken EJ, CS Eiseman (2020)

Splitting the leafmining shield-bearer moth genus Antispila Hübner (Lepidoptera, Heliozelidae): North American species with reduced venation placed in Aspilanta new genus, with a review of heliozelid morphology.

ZooKeys, 957:105-161 pii:53908.

The new genus Aspilantagen. n. is described to harbour Nearctic heliozelid moths with reduced venation, previously placed in Antispila Hübner, 1825, with type species Antispila oinophylla van Nieukerken & Wagner, 2012. The erection of this genus has become possible now that monophyly has been supported by a recent phylotranscriptomics analysis. Six species are combined in this genus: Aspilanta oinophylla (van Nieukerken & Wagner, 2012), comb. n., A. hydrangaeella (Chambers, 1874), comb. n., A. ampelopsifoliella (Chambers, 1874), comb. n., A. voraginella (Braun, 1927), comb. n., A. argentifera (Braun, 1927), comb. n., A. viticordifoliella (Clemens, 1860), comb. n. and two candidate species are recognised. DNA barcode COI sequences of Malaise trapped specimens suggest a rich fauna of Aspilanta in Central America. All are leafminers, with Vitaceae as main host family, and single species feeding respectively on Hydrangeaceae and Myricaceae. The species are briefly diagnosed, and data on biology, DNA barcodes and distribution are provided. To place the genus in context, a review of heliozelid morphology and phylogeny is presented and a key to Nearctic genera is given. The genus is confined to North and Central America, possibly also occurring in South America. Aspilanta oinophylla is also an invasive species on grapevine in Italy. The genus is sister to Coptodisca Walsingham, 1895. Another species is removed from Antispila: Heliozela eugeniella (Busck, 1900), comb. n., feeding on Eugenia (Myrtaceae), from Florida.

RevDate: 2020-08-31

Manenti R, Mori E, Di Canio V, et al (2020)

The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country.

Biological conservation, 249:108728.

The COVID-19 pandemic zoonosis has determined extensive lockdowns worldwide that provide an unprecedented opportunity to understand how large-scale shifts of human activities can impact wildlife. We addressed the impacts of the COVID-19 lockdown on wildlife in Italy, the first European country that performed a countrywide lockdown, and identified potentially beneficial and negative consequences for wildlife conservation and management. We combined a qualitative analysis of social media information with field data from multiple taxa, data from citizen science projects, and questionnaires addressed to managers of protected areas. Both social media information and field data suggest that a reduction of human disturbance allowed wildlife to exploit new habitats and increase daily activity. The field data confirmed some positive effects on wildlife conservation, such as an increase in species richness in temporarily less-disturbed habitats, a higher breeding success of an aerial insectivorous bird, and reduction of road-killing of both amphibians and reptiles. Despite some positive effects, our data also highlighted several negative impacts of the COVID-19 crisis on wildlife. The lower human disturbance linked to lockdown was in fact beneficial for invasive alien species. Results from questionnaires addressed to managers of protected areas highlighted that the COVID-19 lockdown interrupted actions for the control of invasive alien species, and hampered conservation activities targeting threatened taxa. Furthermore, the reduction of enforcement could cause a surge of illegal killing of wildlife. The COVID-19 crisis, besides having deep socio-economic impacts, might profoundly affect wildlife conservation, with potentially long-lasting effects.

RevDate: 2020-08-31

Imatake S, Imaizumi N, Ohashi Y, et al (2020)

Reproductive cycle and maturation of Swinhoe's tree lizard (Diploderma swinhonis (Günther, 1864)) in Hyuga City, Miyazaki Prefecture, Japan.

The Journal of veterinary medical science [Epub ahead of print].

Swinhoe's tree lizard (Diploderma swinhonis) is an arboreal agamid that is native to Taiwan. The species has been introduced to some areas of Japan and is regarded as an invasive alien species. In 2016, a nonnative population of D. swinhonis was discovered in Hyuga City, Miyazaki Prefecture, Japan, but little information was available on the ecology of the population at the time. The main purpose of this study was therefore to investigate the reproductive cycle and maturation of this population. Field research was conducted from 2017 to 2019, and 764 lizards were collected. Euthanized lizards were dissected and the reproductive organs were examined to determine the reproductive period, clutch size, clutch frequency and size at sexual maturity. Females with oviductal eggs or vitellogenic ovarian follicles were observed from May to October. Clutch size ranged from 2 to 8, and clutch frequency was more than twice a year. In males, spermiogenesis started in early May and testicular regression was observed in September. Males with spermatozoa in the epididymides were found from May to November. Minimum snout-vent length at sexual maturity was 50.2 mm in females and 53.0 mm in males. Comparisons of the findings of this study and reports from Taiwan suggest that the nonnative population of D. swinhonis in Hyuga City has a higher fecundity than populations in Taiwan. It is therefore considered necessary to exterminate the population in Hyuga City before this species colonizes other areas.

RevDate: 2020-08-31

Joseph B, Hensgen F, M Wachendorf (2020)

Life Cycle Assessment of bioenergy production from mountainous grasslands invaded by lupine (Lupinus polyphyllus Lindl.).

Journal of environmental management, 275:111182 pii:S0301-4797(20)31107-5 [Epub ahead of print].

Mountainous grasslands are typically important habitats both for fauna and flora but increasingly suffer from invasions by neophytes (i.e. Lupinus polyphyllus Lindl.) in most German low mountain areas, which eventually threatens species richness. Regular defoliation is required to eliminate the invasion, however, at present options to handle the harvested biomass are limited. Integrated generation of solid fuel and biogas from biomass (IFBB) and anaerobic digestion (AD) are two possible options to utilise the biomass and convert it into energy. There is substantial environmental impact associated with the energy and resource usage during conversion of the biomass into fuel and during usage of fuels and co-products obtained. This study examines IFBB and AD to identify the best option in terms of environmental impacts and primary energy usage, also looking at alternatives for process parameters along the life cycle that would reduce environmental impacts. It was found that IFBB was a better option compared to AD, as it had higher environmental and primary energy savings across all grassland sites. Higher energy conversion efficiency of IFBB resulted in higher greenhouse gas (GHG) and energy savings, even though the energy usage for the processing steps were higher compared to AD. Biomass yield was positively related to the savings, providing better GHG and energy savings for grasslands containing invasive species. There were no savings in terms of acidification (AP) and eutrophication potential (EP) for both IFBB and AD, however AP and EP was lower using IFBB compared to AD. Hence, biomass originating from mountainous grasslands with lupine invasion could be effectively utilised with IFBB, as this option had lower environmental impacts and higher energy savings compared to AD. Biomass from non-invaded grasslands could also be converted effectively using IFBB, hence IFBB could be used to utilise the harvested biomass in the situation where the invasion is eliminated.

RevDate: 2020-08-29

Duncan RP, Dexter N, Wayne A, et al (2020)

Eruptive dynamics are common in managed mammal populations.

Ecology [Epub ahead of print].

Successful conservation management is often based on the principle that small or declining populations can recover if we identify and remove the factors that caused them to decline in the first place. But what form will that recovery take? Theory tells us that when a strong limiting factor is removed, a population should increase in size to where it becomes limited by some other factor. However, if the subsequent limitation involves feedbacks between the density of a consumer and its resource, there is potential for the consumer population to undergo substantial fluctuations in size that we would characterise as boom-bust or eruptive dynamics. We analysed long-term (7.6-29 years) data documenting changes in the abundance of 169 populations of 20 mammal species released from a strong limiting factor (fox predation) in Australia. We show that many populations (44) exhibited eruptive dynamics, with exponential increase to a peak and subsequent population decline. Of 51 populations showing eruptive dynamics (the Australian populations plus 7 translocated ungulate populations), the time taken for erupting populations to reach a peak before declining was related negatively to the intrinsic rate of population growth and positively to body mass, such that larger-bodied species with slow rates of population growth had a longer period of population increase before declining. Our results suggest that a substantial proportion of populations recovering after removal of a threatening process are likely to exhibit eruptive dynamics, and that managers of recovering or translocated populations should anticipate this outcome in conservation planning.

RevDate: 2020-08-29

Stoeckli S, Felber R, T Haye (2020)

Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model.

International journal of biometeorology pii:10.1007/s00484-020-01992-z [Epub ahead of print].

Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south.

RevDate: 2020-08-29

Câmara PEAS, Carvalho-Silva M, Pinto OHB, et al (2020)

Diversity and Ecology of Chlorophyta (Viridiplantae) Assemblages in Protected and Non-protected Sites in Deception Island (Antarctica, South Shetland Islands) Assessed Using an NGS Approach.

Microbial ecology pii:10.1007/s00248-020-01584-9 [Epub ahead of print].

Assessment of the diversity of algal assemblages in Antarctica has until now largely relied on traditional microbiological culture approaches. Here we used DNA metabarcoding through high-throughput sequencing (HTS) to assess the uncultured algal diversity at two sites on Deception Island, Antarctica. The first was a relatively undisturbed site within an Antarctic Specially Protected Area (ASPA 140), and the second was a site heavily impacted by human visitation, the Whalers Bay historic site. We detected 65 distinct algal taxa, 50 from within ASPA 140 and 61 from Whalers Bay. Of these taxa, 46 were common to both sites, and 19 only occurred at one site. Algal richness was about six times greater than reported in previous studies using culture methods. A high proportion of DNA reads obtained was assigned to the highly invasive species Caulerpa webbiana at Whalers Bay, and the potentially pathogenic genus Desmodesmus was found at both sites. Our data demonstrate that important differences exist between these two protected and human-impacted sites on Deception Island in terms of algal diversity, richness, and abundance. The South Shetland Islands have experienced considerable effects of climate change in recent decades, while warming through geothermal activity on Deception Island itself makes this island one of the most vulnerable to colonization by non-native species. The detection of DNA of non-native taxa highlights concerns about how human impacts, which take place primarily through tourism and national research operations, may influence future biological colonization processes in Antarctica.

RevDate: 2020-08-28

Arteaga A, Malumbres-Olarte J, Gabriel R, et al (2020)

Arthropod diversity in two Historic Gardens in the Azores, Portugal.

Biodiversity data journal, 8:e54749 pii:54749.

The aim of our study was to characterise and compare the richness and composition of endemic, native (non-endemic) and introduced arthropod assemblages of two Azorean Historic Gardens with contrasting plant species composition. We hypothesised that Faial Botanic Garden would hold higher arthropod diversity and abundance of native and endemic arthropod species due to its larger native plant community. Species were collected using several arthropod standardised techniques between April 2017 and June 2018. We used the alpha diversity metrics (Hill series) and the partitioning of total beta diversity (βtotal) into its replacement (βrepl) and richness (βrich) components, to analyse the adult and total arthropod community. The orders Araneae, Coleoptera and Hemiptera were also studied separately. Our results show that the number of exotic arthropod species exceeds the number of native and/or the endemic species in both gardens, but the arthropod community of Faial Botanic Garden exhibited a higher density of endemic and native species. Despite some minor exceptions, the geographic origins of plant communities largely influenced the arthropod species sampled in each garden. This study improves our knowledge about urban arthropod diversity in the Azores and shows how well-designed urban garden management and planning contribute to the conservation of native and endemic Azorean species.

RevDate: 2020-08-27

Goldson SL, Tomasetto F, AJ Popay (2014)

Biological control against invasive species in simplified ecosystems: its triumphs and emerging threats.

Current opinion in insect science, 5:50-56.

Although records show that the loss of susceptibility of pests to biological control agents is an exceedingly rare event, there are certain behavioural and ecological settings that may well predispose to it. In general, these circumstances rarely converge. Such a critical combination of factors could possibly occur in agroecosystems based on incomplete transplants imported from elsewhere. It can be argued that such ecosystems lack the biodiversity required to confer biotic resistance to invasive species and this can result in spectacularly high and damaging pest densities. Through exactly the same mechanism, introduced control agents such as parasitoid wasps, similarly can prove to be very successful in producing persistently very high levels of parasitism of pests, leading to triumph. However, this feeling may be short-lived. When success is based on very high selection pressure on the host pest species this could have the potential to lead to the evolution of resistance to the control agent. This is particularly so should it coincide with factors such as a lack of pest host refugia, parasitoid parthenogenetic reproduction, versus pest sexual reproduction, as well as suppression based on a narrow range of natural enemies. In effect, the very thing that can lead to spectacular success can eventually become the basis for failure. For the purposes of illustration, these considerations are illustrated via what seems to be a developing cause for concern about biological control in New Zealand's pastures.

RevDate: 2020-08-28
CmpDate: 2020-08-28

Little CJ, Fronhofer EA, F Altermatt (2020)

Nonlinear Effects of Intraspecific Competition Alter Landscape-Wide Scaling Up of Ecosystem Function.

The American naturalist, 195(3):432-444.

A major focus of ecology is to understand and predict ecosystem function across scales. Many ecosystem functions are measured only at local scales, while their effects occur at a landscape level. Here we investigate how landscape-scale predictions of ecosystem function depend on intraspecific competition, a fine-scale process, by manipulating intraspecific density of shredding macroinvertebrates and examining effects on leaf litter decomposition, a key function in freshwater ecosystems. For two species, we found that per capita leaf processing rates declined with increasing density following power functions with negative exponents, likely due to interference competition. To demonstrate consequences of this nonlinearity, we scaled up estimates of leaf litter processing from shredder abundance surveys in 10 replicated headwater streams. In accordance with Jensen's inequality, applying density-dependent consumption rates reduced estimates of catchment-scale leaf consumption by an order of magnitude relative to density-independent rates. Density-dependent consumption estimates aligned closely with metabolic requirements in catchments with large-but not small-shredder populations. Importantly, shredder abundance was not limited by leaf litter availability, and catchment-level leaf litter supply was much higher than estimated consumption. Thus leaf litter processing was not limited by resource supply. Our work highlights the need for scaling up, which accounts for intraspecific interactions.

RevDate: 2020-08-28
CmpDate: 2020-08-28

Bjørnson S, E Elkabir (2019)

Effects of the microsporidian pathogen, Nosema adaliae (Nosematidae) on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae).

Journal of invertebrate pathology, 168:107253.

Lady beetles are important predators in nature. Some species, including the two-spotted lady beetle, Adalia bipunctata L., are native to North America, whereas others, such as the seven-spotted lady beetle, Coccinella septempunctata L., have been introduced in North America for pest control on agriculture crops. Microsporidia are obligate pathogens that cause chronic disease, and these pathogens are known to infect several lady beetle species. Lady beetles are cannibalistic and, because many species share a given landscape, there is potential for microsporidia to infect susceptible coccinellids when infected eggs are eaten. The objective of this study was to examine the effects of the microsporidium Nosema adaliae isolated from A. bipunctata on C. septempunctata fitness (larval development and mortality, sex ratio, adult longevity and fecundity). Mortality was higher for C. septempunctata larvae that ate four A. bipunctata eggs (≥96% mortality) than for those that ate only one (<63.8%), suggesting that the mortality observed was influenced by the number of eggs eaten. A. bipunctata eggs contain adaline and adalinine, two species-specific alkaloids that have been shown to be detrimental to C. septempunctata larvae. Development of larvae that consumed one uninfected or one N. adaliae-infected A. bipunctata egg, did not differ significantly (20.5 ± 0.2 d and 21.3 ± 0.4 d, respectively) and, although mortality remained high for these larvae (53.5% and 65.6% mortality, respectively), these values also did not differ significantly (p = 0.05). Over a 60-d period, mean fecundity for C. septempunctata adults that ate one uninfected A. bipunctata egg as first-instar larvae was significantly greater (776.6 ± 122.0 eggs) than those that ate one N. adaliae-infected egg (335.6 ± 86.6 eggs, p = 0.005). Larvae from the former group also lived significantly longer (58.2 ± 1.8 d) than did those from the latter group (38.4 ± 6.4 d, p = 0.010). Sex ratios of adult beetles did not differ significantly. Because A. bipunctata and C. septempunctata share similar habitats, it is reasonable to expect these two coccinellids to encounter one another in nature. Results of this study show that the consumption of only one infected A. bipunctata egg by C. septempunctata larvae can result in high larval mortality and reduced fecundity.

RevDate: 2020-08-27

Pinteus S, Lemos MFL, Alves C, et al (2020)

The marine invasive seaweeds Asparagopsis armata and Sargassum muticum as targets for greener antifouling solutions.

The Science of the total environment, 750:141372 pii:S0048-9697(20)34901-9 [Epub ahead of print].

Biofouling is a complex phenomenon that affects all maritime dependent industries. The accumulation of both micro and macro-organisms in immerged structures increases significantly the maintenance expenses, and thus the use of antifouling substances is inevitable. Although with recognized antifouling properties, the available antifouling coatings are known to induce negative impacts in aquatic ecosystems. Therefore, greener alternatives are urgently required. Living underwater, marine organisms are prone to biofouling and some have developed strategies to defend themselves against undesirable organisms, which include the production of bioactive substances. As a result, marine organisms are promising sources of natural antifouling substances. Within this framework, the marine invasive seaweeds Sargassum muticum and Asparagopsis armata were addressed for antifouling compounds biodiscovery. Both seaweeds revealed antifouling properties against microfoulers, namely algicidal and anti-biofilm activities; however Asparagopsis armata stand out for its capacity to inhibit marine bacteria and microalgae growth, to decrease biofilm formation, and for acting as a neurotransmitter disruptor through the inhibition of acetylcholinesterase activity. By addressing invasive species, the problematic of the biological material supply for industrial purposes is surpassed while mitigating the negative impacts of invasive species through specimen's collection.

RevDate: 2020-08-27

Wang S, Wei M, Cheng H, et al (2020)

Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress.

Ecotoxicology and environmental safety, 205:111160 pii:S0147-6513(20)30999-4 [Epub ahead of print].

The functional similarity between indigenous plant species (IPS) and invasive alien species (IAS) governs the invasion process of successful IAS because IPS and coexisting IAS suffer alike or even same ecological selection pressures. The aggravated condition created by heavy metal pollution (HMP) and drought stress may generate a noticeable impact on the invasive competitiveness and invasion process of IAS possibly via the variations in the functional similarity between IPS and IAS. Consequently, it is necessary to illumine the functional similarity between IPS and IAS under HMP and drought stress to clarify the mechanisms underlying the successful invasion of IAS. This study aims to estimate the functional similarity between IPS Amaranthus tricolor L. and IAS A. retroflexus L. under the condition with the alone and combined effects of HMP with different kinds (e.g., Cu and Pb) and drought stress [simulated by polyethylene glycol-6000 (PEG) solution]. HMP notably declines A. tricolor growth but has no remarkable effect on A. retroflexus growth. A. retroflexus displays a strong competitive intensity than A. tricolor under HMP. Further, HMP makes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Therefore, HMP can accelerate A. retroflexus invasion. A. retroflexus displays a poor competitive intensity under drought stress. Thus, drought stress can hinder A. retroflexus invasion. However, drought stress causes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the continued drought stress may converse the adverse effects of drought stress on A. retroflexus invasion potentially. The two Amaranthus species tend to diverge functionally under the combined HMP and drought stress. Further, A. retroflexus shows a strong competitive intensity than A. tricolor under the combined HMP and drought stress. Moreover, the combined HMP and drought stress induces a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the combined HMP and drought stress can facilitate A. retroflexus invasion. Meanwhile, the competitiveness for sunlight acquisition and leaf photosynthetic capacity may play a key role in the successful invasion of A. retroflexus under the combined HMP and drought stress.

RevDate: 2020-08-27

Shao F, Ludwig A, Mao Y, et al (2020)

Chromosome-level genome assembly of the female western mosquitofish (Gambusia affinis).

GigaScience, 9(8):.

BACKGROUND: The western mosquitofish (Gambusia affinis) is a sexually dimorphic poeciliid fish known for its worldwide biological invasion and therefore an important research model for studying invasion biology. This organism may also be used as a suitable model to explore sex chromosome evolution and reproductive development in terms of differentiation of ZW sex chromosomes, ovoviviparity, and specialization of reproductive organs. However, there is a lack of high-quality genomic data for the female G. affinis; hence, this study aimed to generate a chromosome-level genome assembly for it.

RESULTS: The chromosome-level genome assembly was constructed using Oxford nanopore sequencing, BioNano, and Hi-C technology. G. affinis genomic DNA sequences containing 217 contigs with an N50 length of 12.9 Mb and 125 scaffolds with an N50 length of 26.5 Mb were obtained by Oxford nanopore and BioNano, respectively, and the 113 scaffolds (90.4% of scaffolds containing 97.9% nucleotide bases) were assembled into 24 chromosomes (pseudo-chromosomes) by Hi-C. The Z and W chromosomes of G. affinis were identified by comparative genomic analysis of female and male G. affinis, and the mechanism of differentiation of the Z and W chromosomes was explored. Combined with transcriptome data from 6 tissues, a total of 23,997 protein-coding genes were predicted and 23,737 (98.9%) genes were functionally annotated.

CONCLUSIONS: The high-quality female G. affinis reference genome provides a valuable omics resource for future studies of comparative genomics and functional genomics to explore the evolution of Z and W chromosomes and the reproductive developmental biology of G. affinis.

RevDate: 2020-08-27

Booy O, Robertson PA, Moore N, et al (2020)

Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe.

Global change biology [Epub ahead of print].

Prioritizing the management of invasive alien species (IAS) is of global importance and within Europe integral to the EU IAS regulation. To prioritize management effectively, the risks posed by IAS need to be assessed, but so too does the feasibility of their management. While the risk of IAS to the EU has been assessed, the feasibility of management has not. We assessed the feasibility of eradicating 60 new (not yet established) and 35 emerging (established with limited distribution) species that pose a threat to the EU, as identified by horizon scanning. The assessment was carried out by 34 experts in invasion management from across Europe, applying the Non-Native Risk Management scheme to defined invasion scenarios and eradication strategies for each species, assessing the feasibility of eradication using seven key risk management criteria. Management priorities were identified by combining scores for risk (derived from horizon scanning) and feasibility of eradication. The results show eradication feasibility score and risk score were not correlated, indicating that risk management criteria evaluate different information than risk assessment. In all, 17 new species were identified as particularly high priorities for eradication should they establish in the future, whereas 14 emerging species were identified as priorities for eradication now. A number of species considered highest priority for eradication were terrestrial vertebrates, a group that has been the focus of a number of eradication attempts in Europe. However, eradication priorities also included a diverse range of other taxa (plants, invertebrates and fish) suggesting there is scope to broaden the taxonomic range of attempted eradication in Europe. We demonstrate that broad scale structured assessments of management feasibility can help prioritize IAS for management. Such frameworks are needed to support evidence-based decision-making.

RevDate: 2020-08-27

Jorgensen A, Sorrell BK, F Eller (2020)

Carbon assimilation through a vertical light gradient in the canopy of invasive herbs grown under different temperature regimes is determined by leaf and whole-plant architecture.

AoB PLANTS, 12(4):plaa031 pii:plaa031.

This study examined the acclimation to temperature of two globally invasive species Iris pseudacorus and Lythrum salicaria, which share the same habitat type but differ in morphology. Iris pseudacorus has long vertical leaves, allowing light penetration through the canopy, while L. salicaria has stems with small horizontal leaves, creating significant self-shading. We aimed to build a physiological understanding of how these two species respond to different growth temperatures with regard to growth and gas exchange-related traits over the canopy. Growth and gas exchange-related traits in response to low (15 °C) and high (25 °C) growth temperature regimes were compared. Plants were grown in growth chambers, and light response curves were measured with infrared gas analysers after 23-33 days at three leaf positions on each plant, following the vertical light gradient through the canopy. After 37 days of growth, above-ground biomass, photosynthetic pigments and leaf N concentration were determined. The maximum photosynthesis rate was lower in lower leaf positions but did not differ significantly between temperatures. Iris pseudacorus photosynthesis decreased with decreasing leaf position, more so than L. salicaria. This was explained by decreasing N and chlorophyll concentrations towards the leaf base in I. pseudacorus, while pigment concentrations increased towards the lower canopy in L. salicaria. Biomass, shoot height and specific leaf area increased with temperature, more so in I. pseudacorus than in L. salicaria. Light response curves revealed that L. salicaria had a higher degree of shade acclimation than I. pseudacorus, probably due to self-shading in L. salicaria. High temperature decreased C assimilation at the bottom of the canopy in L. salicaria, while C assimilation in I. pseudacorus was less affected by temperature. As vegetative growth and flowering was stimulated by temperature, the invasive potential of these species is predicted to increase under global warming.

RevDate: 2020-08-27

Bakacsy L, I Bagi (2020)

Survival and regeneration ability of clonal common milkweed (Asclepias syriaca L.) after a single herbicide treatment in natural open sand grasslands.

Scientific reports, 10(1):14222 pii:10.1038/s41598-020-71202-8.

Invasive species are a major threat to biodiversity, human health, and economies worldwide. Clonal growth is a common ability of most invasive plants. The clonal common milkweed Asclepias syriaca L. is the most widespread invasive species in Pannonic sand grasslands. Despite of being an invader in disturbed semi-natural vegetation, this plant prefers agricultural fields or plantations. Herbicide treatment could be one of the most cost-effective and efficient methods for controlling the extended stands of milkweed in both agricultural and protected areas. The invasion of milkweed stand was monitored from 2011 to 2017 in a strictly protected UNESCO biosphere reserve in Hungary, and a single herbicide treatment was applied in May 2014. This single treatment was successful only in a short-term but not in a long-term period, as the number of milkweed shoots decreased following herbicide treatment. The herbicide translocation by rhizomatic roots induced the damage of dormant bud banks. The surviving buds developing shoots, growth of the milkweed stand showed a slow regeneration for a longer-term period. We concluded that the successful control of milkweed after herbicide treatment depends on repeated management of treated areas to suppress further spreading during subsequent seasons.

RevDate: 2020-08-26

Hunt CL, Andradi-Brown DA, Hudson CJ, et al (2020)

Shelter use interactions of invasive lionfish with commercially and ecologically important native invertebrates on Caribbean coral reefs.

PloS one, 15(8):e0236200 pii:PONE-D-20-12173.

Indo-Pacific lionfish have become invasive throughout the western Atlantic. Their predatory effects have been the focus of much research and are suggested to cause declines in native fish abundance and diversity across the invaded range. However, little is known about their non-consumptive effects, or their effects on invertebrates. Lionfish use shelters on the reef, thus there is potential for competition with other shelter-dwelling organisms. We demonstrate similar habitat associations between invasive lionfish, native spiny lobsters (Panulirus argus) and native long-spined sea urchins (Diadema antillarum), indicating the potential for competition. We then used a laboratory experiment to compare activity and shelter use of each species when alone and when lionfish were paired with each native species. Spiny lobsters increased their activity but did not change their shelter use in the presence of a lionfish, whilst long-spined sea urchins changed neither their activity nor shelter use. However, lionfish reduced their shelter use in the presence of spiny lobsters and long-spined sea urchins. This study highlights the importance not only of testing for the non-consumptive effects of invasive species, but also exploring whether native species exert non-consumptive effects on the invasive.

RevDate: 2020-08-26

Darling JA, Martinson J, Pagenkopp Lohan KM, et al (2020)

Metabarcoding quantifies differences in accumulation of ballast water borne biodiversity among three port systems in the United States.

The Science of the total environment, 749:141456 pii:S0048-9697(20)34985-8 [Epub ahead of print].

Characterizing biodiversity conveyed in ships' ballast water (BW), a global driver of biological invasions, is critically important for understanding risks posed by this key vector and establishing baselines to evaluate changes associated with BW management. Here we employ high throughput sequence (HTS) metabarcoding of the 18S small subunit rRNA to test for and quantify differences in the accumulation of BW-borne biodiversity among three distinct recipient port systems in the United States. These systems were located on three different coasts (Pacific, Gulf, and Atlantic) and chosen to reflect distinct trade patterns and source port biogeography. Extensive sampling of BW tanks (n = 116) allowed detailed exploration of molecular diversity accumulation. Our results indicate that saturation of introduced zooplankton diversity may be achieved quickly, with fewer than 25 tanks needed to achieve 95% of the total extrapolated diversity, if source biogeography is relatively limited. However, as predicted, port systems with much broader source geographies require more extensive sampling to estimate diversity, which continues to accumulate after sampling >100 discharges. The ability to identify BW sources using molecular indicators was also found to depend on the breadth of source biogeography and the extent to which sources had been sampled. These findings have implications both for the effort required to fully understand introduced diversity and for projecting risks associated with future changes to maritime traffic that may increase source biogeography for many recipient ports. Our data also suggest that molecular diversity may not decline significantly with BW age, indicating either that some organisms survive longer than recognized in previous studies or that nucleic acids from dead organisms persist in BW tanks. We present evidence for detection of potentially invasive species in arriving BW but discuss important caveats that preclude strong inferences regarding the presence of living representatives of these species in BW tanks.

RevDate: 2020-08-26

Bellaloui N, Saha S, Tonos JL, et al (2020)

Effects of Interspecific Chromosome Substitution in Upland Cotton on Cottonseed Micronutrients.

Plants (Basel, Switzerland), 9(9): pii:plants9091081.

Micronutrients are essential for plant growth and development, and important for human health nutrition and livestock feed. Therefore, the discovery of novel germplasm with significant variability or higher micronutrients content in crop seeds is critical. Currently, there is no information available on the effects of chromosome or chromosome arm substitution in cotton on cottonseed micronutrients. Thus, the objective of this study was to evaluate the effects of chromosome or chromosome arm substitution on the variability and levels of micronutrients B, Fe, Cu, Zn, Mn, and Ni in cottonseed from chromosome substitution (CS) cotton lines. Our hypothesis was that interspecific chromosome substitution in cotton can affect cottonseed micronutrients content, resulting in significant differences and variabilities of these nutrients among CS lines and between CS lines and the controls. Nine CS lines were grown in two-field experiments at two locations (in 2013 in South Carolina, USA; and in 2014 in Mississippi, USA). TM-1 (the recurrent parent of the CS line) and AM UA48 (cultivar) were used as control. The results showed significant variability among CS lines compared to the controls AM UA48 and TM-1. For example, in South Carolina (SC), B concentration in cottonseed ranged from 10.35 mg kg-1 in CS-M02 to 13.67 mg kg-1 in CS-T04. The concentration of Cu ranged from 4.81 mg kg-1 in CS-B08sh to 7.65 mg kg-1 in CS-T02, and CS-T02 was higher than both controls. The concentration of Fe ranged from 36.09 mg kg-1 to 56.69 mg kg-1 (an increase up to 57%), and six CS lines (CS-B02, CS-B08sh, CS-M02, CS-M04, CS-T02, and CS-T04) had higher concentration than both controls in 2013. In 2014 at the Mississippi location (MS), similar observation was found with CS lines for micronutrients content. The CS lines with higher concentrations of these micronutrients can be used as a genetic tool toward QTL identification for desired seed traits because these lines are genetically similar with TM-1, except the substituted chromosome or chromosome segment pairs from the alien species. Chromosome substitution provides an effective means for upland cotton improvement by targeted interspecific introgression, yielding CS lines that facilitate trait discovery, such as seed micronutritional qualities, due to increased isogenicity and markedly reduced complexity from epistatic interactions with non-target alien chromosomes. The positive correlation between B, Cu, and Fe at both locations, between Ni and Mn, between Zn and Cu, and between Zn and Ni at both locations signify the importance of a good agricultural and fertilizer management of these nutrients to maintain higher cottonseed nutrient content.

RevDate: 2020-08-26

Freeman M, Looney C, Orlova-Bienkowskaja MJ, et al (2020)

Predicting the Invasion Potential of the Lily Leaf Beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae), in North America.

Insects, 11(9): pii:insects11090560.

Invasive species are among the leading threats to global ecosystems due to impacts on native flora and fauna through competition and predation. The lily leaf beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae), is an invasive pest of lilies (Lilium spp.) and other genera of Liliaceae (Liliales). A habitat suitability model was created using Maxent, to help predict if L. lilii will be able to establish in locations were native North American Liliaceae species grow. The model was created using georeferenced occurrence records from the beetle's native, naturalized, and invasive range. Model results indicate that precipitation in the driest quarter and annual average temperatures are most strongly correlated with L. lilii distribution, and suggest that the species will perform poorly in very dry, hot, or cold environments. The model also indicates that the beetle should be able to establish throughout the range of most North American Liliaceae genera, including species of special conservation concern. This model can be used by natural area managers to identify areas of high habitat suitability that overlap with vulnerable North American Liliaceae species, and prioritize L. lilii monitoring and control activities as the beetle continues to expand its range.

RevDate: 2020-08-26
CmpDate: 2020-08-26

van Kleunen M, Xu X, Yang Q, et al (2020)

Economic use of plants is key to their naturalization success.

Nature communications, 11(1):3201.

Humans cultivate thousands of economic plants (i.e. plants with economic value) outside their native ranges. To analyze how this contributes to naturalization success, we combine global databases on economic uses and naturalization success of the world's seed plants. Here we show that naturalization likelihood is 18 times higher for economic than non-economic plants. Naturalization success is highest for plants grown as animal food or for environmental uses (e.g. ornamentals), and increases with number of uses. Taxa from the Northern Hemisphere are disproportionately over-represented among economic plants, and economic plants from Asia have the greatest naturalization success. In regional naturalized floras, the percentage of economic plants exceeds the global percentage and increases towards the equator. Phylogenetic patterns in the naturalized flora partly result from phylogenetic patterns in the plants we cultivate. Our study illustrates that accounting for the intentional introduction of economic plants is key to unravelling drivers of plant naturalization.

RevDate: 2020-08-27
CmpDate: 2020-08-27

Van Dyken JD (2020)

Evolutionary Rescue from a Wave of Biological Invasion.

The American naturalist, 195(1):115-128.

Evolution can potentially rescue populations from being driven extinct by biological invasions, but predictions for this occurrence are generally lacking. Here I derive theoretical predictions for evolutionary rescue of a resident population experiencing invasion from an introduced competitor that spreads over its introduced range as a traveling spatial wave that displaces residents. I compare the likelihood of evolutionary rescue from invasion for two modes of competition: exploitation and interference competition. I find that, all else equal, evolutionary rescue is less effective at preventing extinction caused by interference-driven invasions than by exploitation-driven invasions. Rescue from interference-driven invasions is, surprisingly, independent of invader dispersal rate or the speed of invasion and is more weakly dependent on range size than in the exploitation-driven case. In contrast, rescue from exploitation-driven invasions strongly depends on range size and is less likely during fast invasions. The results presented here have potential applications for conserving endemic species from nonnative invaders and for ensuring extinction of pests using intentionally introduced biocontrol agents.

RevDate: 2020-08-25

Alaniz AJ, Carvajal MA, PM Vergara (2020)

Giants are coming? Predicting the potential spread and impacts of the giant Asian hornet (Vespa mandarinia, Hymenoptera:Vespidae) in the United States.

Pest management science [Epub ahead of print].

BACKGOUND: Biological invasions are a global concern in agriculture, food production, and biodiversity. Among the invasive species, some hornets are known to have serious effects on honey bees, as found during the invasion of Vespa velutina in Europe. The recent findings of Vespa mandarinia individuals in Washington state in the west coast of the United States of America (USA) have raised alarm in the whole country. Here we estimate the potential spread of V. mandarinia in the USA, analyzing its potential impacts on honey bee colonies, economic losses of the honey bee industry and bee-pollinated croplands.

RESULTS: We found that V. mandarinia can potentially colonize Washington and Oregon states in the west coast and a significant proportion of the east coast. If this species spread across the country, it could threaten 95 216 ± 5551 honey bee colonies, threatening an estimated income of 11.9 and 101.8 million dollars for hive derived products and bee-pollinated crops production, while colonizing 60 837.8 km2 of bee-pollinated croplands.

CONCLUSION: Our results suggest that V. mandarinia will have serious effects in the USA, raising the need for prompt monitoring actions and planning at different administrative levels to avoid its potential spread. This article is protected by copyright. All rights reserved.

RevDate: 2020-08-25
CmpDate: 2020-08-25

Mody K, Lerch D, Müller AK, et al (2020)

Flower power in the city: Replacing roadside shrubs by wildflower meadows increases insect numbers and reduces maintenance costs.

PloS one, 15(6):e0234327.

Massive declines in insect biodiversity and biomass are reported from many regions and habitats. In urban areas, creation of native wildflower meadows is one option to support insects and reduce maintenance costs of urban green spaces. However, benefits for insect conservation may depend on previous land use, and the size and location of new wildflower meadows. We show effects of conversion of roadside plantings-from exotic shrubs into wildflower meadows-on (1) the abundance of 13 arthropod taxa-Opiliones, Araneae, Isopoda, Collembola, Orthoptera, Aphidoidea, Auchenorrhyncha, Heteroptera, Coleoptera, Nematocera, Brachycera, Apocrita, Formicidae-and (2) changes in maintenance costs. We assessed the influence of vegetation type (meadow vs. woody), meadow age, size, location (distance to city boundary), and mowing regime. We found many, but not all, arthropod taxa profiting from meadows in terms of arthropod activity abundance in pitfall traps and arthropod density in standardized suction samples. Arthropod number in meadows was 212% higher in pitfall traps and 260% higher in suction samples compared to woody vegetation. The increased arthropod number in meadows was independent of the size and isolation of green spaces for most taxa. However, mowing regime strongly affected several arthropod taxa, with an increase of 63% of total arthropod density in unmown compared to mown meadow spots. Costs of green space maintenance were fivefold lower for meadows than for woody vegetation. Our study shows that (1) many different arthropod taxa occur in roadside vegetation in urban areas, (2) replacement of exotic woody vegetation by native wildflower meadows can significantly increase arthropod abundance, especially if meadow management permits temporarily unmown areas, and (3) maintenance costs can be considerably reduced by converting woody plantings into wildflower meadows. Considering many groups of arthropods, our study provides new insights into possible measures to support arthropods in urban environments.

RevDate: 2020-08-24

Corlett RT (2020)

Safeguarding our future by protecting biodiversity.

Plant diversity pii:S2468-2659(20)30035-4 [Epub ahead of print].

The Anthropocene is marked by twin crises: climate change and biodiversity loss. Climate change has tended to dominate the headlines, reflecting, in part, the greater complexity of the biodiversity crisis. Biodiversity itself is a difficult concept. Land plants dominate the global biomass and terrestrial arthropods probably dominate in terms of numbers of species, but most of the Tree of Life consists of single-celled eukaryotes, bacteria, and archaea. Wild plants provide a huge variety of products and services to people, ranging from those that are species-specific, such as food, medicine, and genetic resources, to many which are partly interchangeable, such as timber and forage for domestic animals, and others which depend on the whole community, but not on individual species, such as regulation of water supply and carbon sequestration. The use of information from remote sensing has encouraged a simplified view of the values of nature's contributions to people, but this does not match the way most people value nature. We can currently estimate the proportion of species threatened by human impacts only for a few well-assessed groups, for which it ranges from 14% (birds) to 63% (cycads). Less than 8% of land plants have been assessed, but it has been estimated that 30-44% are threatened, although there are still few (0.2%) well-documented extinctions. Priorities for improving protection of biodiversity include: improving the inventory, with surveys focused on geographical areas and taxonomic groups which are under-collected; expanding the protected area system and its representativeness; controlling overexploitation; managing invasive species; conserving threatened species ex situ; restoring degraded ecosystems; and controlling climate change. The Convention on Biological Diversity (CBD) COP15 and the United Nations Framework Convention on Climate Change (UNFCCC) COP26 meetings, both postponed to 2021, will provide an opportunity to address both crises, but success will require high ambition from all participants.

RevDate: 2020-08-24

Mori E, Andreoni A, Cecere F, et al (2020)

Patterns of activity rhythms of invasive coypus Myocastor coypus inferred through camera-trapping.

Mammalian biology = Zeitschrift fur Saugetierkunde pii:52 [Epub ahead of print].

Studies on activity rhythms are pivotal for the management of invasive alien species, as they provide basic insights into species basic ecology and may increase the success of control programs. The coypu Myocastor coypus, introduced from South America for fur farms, has become one of the most invasive rodents in Europe. Introduced coypus may affect crop productions, as well as natural vegetation and the breeding success of wading birds. In this study, we examined activity data collected through intensive camera-trapping in three Italian areas, including two natural areas in Northern and Central Italy, and a suburban area in Central Italy. Coypus were mostly diurnal in areas characterised by low predator pressure and, at night, they are mostly active in bright moonlight. Conversely, where predators, human pressure or numerical control programmes are present, coypus remarkably shift their behaviour towards crepuscular and night hours. In these last areas, nocturnal activity increased as moonlight decreased, possibly to reduce predation risk or encounters with humans. Where winter temperature are low, diurnal habits may have developed as a physiological adaptation and a strategy to preserve energy, potentially achieving a cost/effective thermal balance.

RevDate: 2020-08-24

Glon H, Daly M, Carlton JT, et al (2020)

Mediators of invasions in the sea: life history strategies and dispersal vectors facilitating global sea anemone introductions.

Biological invasions pii:2321 [Epub ahead of print].

Widespread non-native species tend to demonstrate an apparent lack of selectivity in habitat requirements, feeding regimes, and reproductive needs, while displaying a tendency to thrive in human-modified habitats. The high phenotypic plasticity typical of sessile, substrate-attached marine species may enhance their chances of survival and spread in a new region. Anthropogenic activities have changed marine habitats over a wide range of phenomena, including water temperature, community species composition, and the types of available substrates, creating new physical and biotic regimes that may contribute to the potential for successful species introduction. Here we examine ten species of sea anemones that have been introduced outside of their native range, and elucidate specific characteristics that are common among globally introduced sea anemones. Various life history strategies enable these species to survive and flourish through transport, introduction, establishment and spread, leading to the successful colonization of a new geographic area. Considering life history strategies and weighing of vector potential, we suggest conditions that facilitate introduction of these species, and identify species of sea anemones that may be introduced in the future in the face of changing climate and increased anthropogenic activities.

RevDate: 2020-08-24

Shwiff S, Pelham A, Shwiff S, et al (2020)

Framework for assessing vertebrate invasive species damage: the case of feral swine in the United States.

Biological invasions pii:2311 [Epub ahead of print].

The aim of this study is to provide a general overview of the economic impacts associated with vertebrate invasive species (VIS) in the United States and suggests a methodology for differentiating types of damage. We identify a general framework for categorizing VIS damage that separates this damage into three main categories: destruction, depredation, and disease. We then examine how this framework fits into current published estimates of damage and management costs. Economic impacts associated with feral swine damage and management are plentiful enough to warrant separate treatment from other VIS and are observed in all three categories. For all VIS examined in this study, damage estimates associated with destruction provide the most evaluations of VIS impacts, especially destruction of crops. Evaluations of the losses associated with depredation are largely absent from the literature. We find that while published studies have estimated substantial economic impact associated with VIS, the current state of the literature focusing on VIS frequently fails to address all of the categories of damage, is difficult to compare or replicate, and is unsuited for extrapolation to nation-wide estimates of damage.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

cover-pic

Order from Amazon

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )